
Merge DICOM Toolkit™

5.20.0

.NET/C# User’s Manual

© Copyright Merge Healthcare Solutions Inc. 2025.

Licensed materials - Property of Merge Healthcare Solutions Inc..
The content of this document is confidential information of Merge Healthcare Solutions Inc. and its use and disclosure is subject to
the terms of the agreement pursuant to which you obtained the software that accompanies the documentation.
Merge Healthcare and the Merge Healthcare logo are trademarks of Merge Healthcare Inc.
Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
All other names are trademarks or registered trademarks of their respective companies.

U.S. GOVERNMENT RESTRICTED RIGHTS:

This product is a “Commercial Item” offered with “Restricted Rights.” The Government's rights to use, modify, reproduce, release,
perform, display or disclose this documentation are subject to the restrictions set forth in Federal Acquisition Regulation (“FAR”)
12.211 and 12.212 for civilian agencies and in DFARS 227.7202-3 for military agencies. Contractor is Merge Healthcare Solutions Inc.

Symbols Glossary:

The full symbols glossary can be viewed at
https://www.merative.com/content/dam/merative/documents/brief/Merge_Healthcare_Symbols_Glossary.pdf.

For application support or to report issues with user documentation, contact Customer Support:

1-877-741-5369 (North America)
+44 203808.3608 (Europe, the Middle East and Africa)
1.800.952.156 (Australia)

MC3Support@merative.com

The latest version of this document can be found at https://merge.my.site.com/mergecommunity.

Symbol Title

Manufacturer

Consult Instructions for Use

Part Date Revision Description

COM-6078 February 2025 1.0 Updated bi-annually

Merge Healthcare Incorporated
900 Walnut Ridge Drive
Hartland, WI 53029
USA

mailto:mergesupport@merative.com
https://merge.my.site.com/mergecommunity
mailto: MC3Support@merative.com
https://www.merative.com/content/dam/merative/documents/brief/Merge_Healthcare_Symbols_Glossary.pdf

Contents

3© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 1. Overview... 11

1.1. The DICOM Standard .. 11

1.1.1. A Quick Walk Through DICOM..12

1.1.2. Where to Get the DICOM Standard ..13

1.2. The Merge DICOM Toolkit ...14

1.3. Development Platform Requirements..15

1.4. Assembly Structure ..16

1.4.1. Merge DICOM C/C++ Toolkit Dynamic Library ..17

1.4.2. Binary Message Information and Data Dictionary Files ..18

1.4.3. Sample Applications ..18

1.4.4. Merge DICOM Message Database Manual and Tools ...18

1.5. Documentation Roadmap...18

1.6. Conventions ...19

Chapter 2. Understanding DICOM .. 20

2.1. General Concepts... 20

2.1.1. Application Entities .. 20

2.1.2. Services and Meta Services .. 20

2.1.3. DICOM Information Model...28

2.2. Networking...28

2.2.1. Commands ..28

2.2.2. Association Negotiation... 30

2.3. Messages ...31

2.3.1. DICOM Data Dictionary...31

2.3.2. Message Handling.. 32

2.3.3. Private Attributes .. 33

2.4. Media Interchange ...34

2.4.1. DICOM Files ..34

2.4.2. File Sets ..41

2.4.3. The DICOMDIR ...41

2.4.4. File Management Roles and Services ..44

2.5. Conformance..46

Chapter 3. Using the Merge DICOM Toolkit..47

3.1. Configuration ..47

© Copyright Merge Healthcare Solutions Inc. 2025 4

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

3.1.1. Initialization File ...47

3.1.2. Application Profile ..48

3.1.3. System Profile ..54

3.1.4. Service Profile ..56

3.2. Message Logging ..57

3.3. Utility Programs ...58

3.3.1. mc3comp ...58

3.3.2. mc3conv..58

3.3.3. mc3echo ...59

3.3.4. mc3list..60

3.3.5. mc3valid ..60

3.3.6. mc3file...61

Chapter 4. Developing DICOM Applications ..64

4.1. Library Import ...66

4.2. Library Constants.. 67

4.3. Exception Handling..67

4.4. Library Initialization ..69

4.5. Releasing the library .. 70

4.6. Getting the Assembly Version ...71

4.7. Releasing Native Memory..71

4.8. Using the Merge DICOM log file ...71

4.9. Capturing Log Messages in Your Application... 72

4.10. Registering Your Application .. 72

4.10.1. MCapplication Objects Can Be Disposed .. 73

4.10.2. The Application Entity (AE) Title.. 73

4.11. Association Management (Network Only) ... 73

4.11.1. Preparing a Proposed Context List .. 73

4.11.2. Using a Pre-Configured Proposed Context List .. 73

4.11.3. Creating Your Own Proposed Context List ..74

4.11.4. Using a Pre-Configured Transfer Syntax List ..74

4.11.5. Creating Your Own Transfer Syntax List ..74

4.11.6. Creating Your Own Proposed Context List ..74

4.11.7. MCproposedContext Properties...75

4.11.8. MCproposedContextList Properties ...75

4.11.9. MCresultContext Properties ... 76

4.11.10. MCtransferSyntax Properties ...76

© Copyright Merge Healthcare Solutions Inc. 2025 5

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

4.11.11. MCtransferSyntaxList Properties.. 77

4.11.12. Using Extended Negotiation Information ... 77

4.11.13. Starting an Association Requester...78

4.11.14. Starting an Association Acceptor ...80

4.11.15. Accepting or Rejecting the Association..81

4.11.16. Negotiated Transfer Syntaxes ..83

4.11.17. Merge DICOM Message Classes...85

4.11.18. Association Message Handling..86

4.11.19. Releasing or Aborting the Association ...88

4.11.20. Association Properties ...88

4.11.21. Application Context Name...88

4.11.22. TCP/IP Listen Port ...89

4.11.23. MCapplication Object of the Local AE..89

4.11.24. Application Entity Title..89

4.11.25. Implementation Class UID and Implementation Version...89

4.11.26. Maximum PDU Sizes ..89

4.11.27. Proposed Context List ..90

4.11.28. Read Timeout Value .. 90

4.11.29. Remote Host Name and Address ..90

4.11.30. Association Role..90

4.11.31. Association State .. 90

4.12. Using the MCsopClass Class...91

4.13. Using the MCvr class ...91

4.14. Using the MCtag Class... 93

4.14.1. Constructing Non-Private Tags ... 93

4.14.2. Constructing Private Tags ..94

4.15. Using the MCdataElement Class ..94

4.15.1. Constructing Standard Data Elements ..94

4.15.2. Constructing Non-Standard Data Elements...95

4.16. Working with Attribute Sets ...95

4.16.1. Constructing Message Objects..96

4.16.2. Construct Message Using Pre-Populated Data Set ..96

4.16.3. Construct Message with an Empty Data Set ...96

4.16.4. Construct Message Using Existing Data Set ...97

4.16.5. Convert an MCfile Object ...97

4.16.6. MCdimseMessage Properties..98

© Copyright Merge Healthcare Solutions Inc. 2025 6

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

4.16.7. Transfer Syntax Used..98

4.16.8. Contained Attribute Sets...98

4.16.9. Message Service and Command..98

4.16.10. MCdimseMessage Command Set Properties ...98

4.16.11. Constructing File Objects ...99

4.16.12. Construct with Pre-Populated Data Set .. 100

4.16.13. Construct with Empty Data Set.. 100

4.16.14. Convert MCdimseMessage to MCfile... 100

4.16.15. Setting Data Set Values ..101

4.16.16. Specifying the File Name...101

4.16.17. Constructing Item Objects..101

4.16.18. Get/Set Item Name ..101

4.16.19. Constructing MCdataSet Objects ...101

4.16.20. Retrieving Contained Attribute Sets.. 102

4.16.21. Using the MCattribute Class ... 102

4.16.22. Adding Attributes to Attribute Set .. 103

4.16.23. Using the MCattributeSet Indexer to Access MCattribute Instances... 103

4.16.24. Removing Attributes from Attribute Set..104

4.16.25. Attribute Properties ...104

4.16.26. Assigning Attribute Values from MCattribute... 105

4.16.27. Assigning Attribute Values from MCattributeSet.. 105

4.16.28. Difference between setValue, addValue and Indexer... 105

4.16.29. Assigning a NULL Attribute Value... 105

4.16.30. Assigning a Non-NULL Attribute... 106

4.16.31. Using MCdataSource Class to Assign Attribute Value... 107

4.16.32. Retrieving Attribute Values ...110

4.16.33. Using Callback Class to Retrieve Attribute Value..112

4.16.34. Retrieving Attribute Value Properties ..113

4.16.35. Listing an Attribute Set..114

4.16.36. Converting Attribute Set to Proprietary Schema XML String...114

4.16.37. Converting Proprietary Schema XML String to Attribute Set...115

4.16.38. Converting Attribute Set to Native DICOM Model XML String..115

4.16.39. Converting Native DICOM Model XML String to Attribute Set..117

4.16.40. Converting Attribute Set to DICOM JSON Model String ..117

4.16.41. Converting DICOM JSON Model String to Attribute Set ..119

4.16.42. 8-bit Pixel Data ..119

© Copyright Merge Healthcare Solutions Inc. 2025 7

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

4.16.43. Encapsulated Pixel Data.. 120

4.17. Working with MCabstractMessage Derived Classes..121

4.17.1. Compression and Decompression...121

4.17.2. Merge DICOM Supplied Compressors and Decompressors ... 122

4.17.3. Validating Attribute Sets.. 125

4.17.4. The Overhead of Validation.. 130

4.17.5. Validating Single Attribute ...131

4.17.6. Streaming Attribute Sets..131

4.17.7. Message to Proprietary Schema XML Conversion .. 133

4.17.8. Proprietary Schema XML to Message Conversion .. 134

4.17.9. Message to Native DICOM Model XML Conversion.. 134

4.17.10. Native DICOM Model XML to Message Conversion.. 136

4.17.11. Message to DICOM JSON Model Conversion .. 136

4.17.12. DICOM JSON Model to Message Conversion .. 137

4.18. Message Exchange (Network Only)... 138

4.18.1. Reading Network Messages.. 139

4.18.2. Using the MCdimseService ... 139

4.18.3. Using the sendRequestMessage Method .. 139

4.18.4. Using the sendResponseMessage Method...140

4.19. Using Attribute Containers..141

4.19.1. Using Attribute Container in Server Application ..141

4.19.2. Using Attribute Container in Client Application..141

4.19.3. MCattributeContainer and MCattributeContainerEx Classes.. 142

4.19.4. provideDataLength Method... 143

4.19.5. provideData Method ...144

4.19.6. receiveDataLength Method ...145

4.19.7. receiveData Method ..145

4.19.8. receiveMediaDataLength Method..146

4.19.9. Registering Your MCattributeContainer ...147

4.19.10. Releasing Your MCattributeContainer... 147

4.20. Sequences of Items...147

4.21. DICOM Files .. 150

4.21.1. Constructing New MCfile Instance.. 150

4.21.2. Construct MCfile Object with Pre-Populated Data Set.. 150

4.21.3. Construct MCfile Object with Empty Data Set ..151

4.21.4. Convert MCdimseMessage Object to MCfile Object...151

© Copyright Merge Healthcare Solutions Inc. 2025 8

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

4.21.5. Accessing Service and Command Properties ..151

4.21.6. File Meta Information.. 152

4.21.7. File Preamble.. 152

4.21.8. Contained Data Set.. 152

4.21.9. Resetting the MCfile Object .. 153

4.21.10. File Validation ... 153

4.21.11. MCfile Stream...154

4.21.12. File Transfer Syntax UID ..154

4.21.13. File System File Associated with MCfile Object ..154

4.21.14. Listing MCfile ..154

4.21.15. Using the MCmediaStorageService Class ...154

4.21.16. Constructing MCmediaStorageService Object ...155

4.21.17. Reading Files...155

4.21.18. Creating and Writing Files... 157

4.21.19. Saving Raw (Unparsed) Messages as DICOM Files ..158

4.22. DICOMDIR ...159

4.22.1. Structure ... 160

4.22.2. Constructing New MCdir Instance... 160

4.22.3. MCdirRecord Class ... 160

4.22.4. Navigating the DICOMDIR ..161

4.22.5. Adding and Deleting DICOMDIR Records ... 162

4.23. Memory Management .. 162

4.23.1. Assigning Pixel Data .. 163

4.23.2. Using Attribute Containers... 163

4.23.3. Replacing Merge DICOM Toolkit's Memory Management Functions..164

4.23.4. Accessing Data When Needed ..164

4.23.5. Saving Received Images Directly to Disk..164

4.24. DICOM Structured Reporting...165

4.24.1. Structured Report Structure and Modules..165

4.24.2. Content Item Types ... 167

4.24.3. Relationship Types between Content Items.. 169

4.24.4. Content Item Identifier... 170

4.24.5. Observation Context ..171

4.24.6. Structured Reporting Templates ...171

4.24.7. Overview of the Merge DICOM Toolkit SR Classes .. 176

4.24.8. Encoding SR Documents ... 177

© Copyright Merge Healthcare Solutions Inc. 2025 9

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

4.24.9. Reading SR Documents...181

4.25. Working with Merge DICOM Web Services.. 182

4.25.1. Configuring WADO Http Controllers and MCwado Services .. 182

4.25.2. Constructing an MCrequest..184

4.25.3. Using MCrequestParameter and MCrequestAttribute Classes..185

4.25.4. Implementing IMCservice and IMCcache Interfaces...186

4.25.5. Using MCdicomResponse Class ..188

4.25.6. IMCdicomRenderer Interface and Rendering DICOM Service Response ..189

4.25.7. IMChttpConverter Interface and Creating HttpContent Data..189

4.25.8. IMChttpResponder Interface and Constructing HttpResponseMessage.. 190

Chapter 5. Deploying Applications .. 192

5.1. Merge DICOM Required Files .. 192

5.2. Configuration Options .. 193

5.2.1. UN VR...194

Appendix A. Frequently Asked Questions... 196

Appendix B. Unique Identifiers (UIDs).. 199

B.1. Summary of UID Composition... 199

B.2. Obtaining a UID.. 199

B.2.1. Obtaining a UID from ANSI... 200

Appendix C. Writing a DICOM Conformance Statement... 201

C.1. Conformance Statement Sections .. 201

C.1.1. Implementation Model... 201

C.1.2. Application Data Flow... 201

C.1.3. Sequencing of Real World Activities .. 202

C.1.4. AE Specifications... 202

C.1.5. SOP Classes ... 203

C.1.6. Number of Associations... 203

C.1.7. Asynchronous Nature.. 203

C.1.8. Implementation Identifying Information... 203

C.1.9. SOP Specific Conformance ... 204

C.1.10. Transfer Syntax Selection Policies .. 204

C.2. Network Interfaces.. 204

C.2.1. Physical Network Interface ... 205

C.2.2. IPv4 and IPv6 Support... 205

C.2.3. Configuration ... 205

C.2.4. AE Title/Presentation Address Mapping.. 205

© Copyright Merge Healthcare Solutions Inc. 2025 10

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual Contents

C.2.5. Configurable Parameters... 205

C.2.6. PDU Size .. 205

C.3. Extensions/Specializations/Privatizations.. 206

C.3.1. Standard Extended/Specialized/Private SOPs.. 206

C.3.2. Private Transfer Syntaxes .. 206

Appendix D. Configuration Parameters... 207

D.1. Initialization File .. 207

D.2. Application Profile .. 210

D.2.1. Sections... 210

D.2.2. Parameters ...211

D.3. System Profile ..223

D.4. Service Profile ... 247

Appendix E. Proprietary Schema XML Structure ... 249

E.1. Base64 Encoding of Bulks and Attributes with VR UN... 249

E.2. Default Encoding of Bulks and Attributes with VR UN.. 250

Appendix F. Mergecom ApiController Classes ... 252

Appendix G. Json.NET License... 283

11© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 1. Overview

This User's Manual is targeted toward the developer of medical imaging applications using the
Merge DICOM Toolkit™ to supply DICOM network or media functionality.

Merge DICOM Toolkit .NET supplies you with a powerful and simplified interface to DICOM. It lets
you focus on the important details of your application and immediate needs of your end users,
rather than the often complex and confusing details of the DICOM Standard.

The goal of this manual is to give you basic understanding of DICOM, and a clear understanding of
the Merge DICOM Toolkit.

1.1. The DICOM Standard
The DICOM (Digital Imaging and Communications in Medicine) Standard was originally developed
by a joint committee of the American College of Radiology (ACR) and the National Electrical
Manufacturers Association (NEMA) to “facilitate the open exchange of information between digital
imaging computer systems in medical environments”. 1

1NEMA Standards Publication No. PS 3.5-1993; DICOM Part 5 - Data Structures and Encoding, p.4.

Since its initial completion in 1993, the standard has taken hold. More and more products are
advertising DICOM conformance, and more customers are requiring it. DICOM has also been
incorporated as part of a developing European standard by CEN, as a Japanese standard by JIRA,
and is increasingly becoming an International Standard.

DICOM Version 3.0 is composed of several hundreds of pages over sixteen separate parts. Each
part of the standard focuses on a different aspect of the DICOM protocol:

Part 1: Introduction and Overview

Part 2: Conformance

Part 3: Information Object Definitions

Part 4: Service Class Specifications

Part 5: Data Structures and Encoding

Part 6: Data Dictionary

Part 7: Message Exchange

Part 8: Network Communication Support for Message Exchange

Part 9: Point-to-Point Communication Support for Message Exchange (retired)

Part 10: Common Media Storage Functions for Data Interchange

Part 11: Media Storage Application Profiles

Part 12: Media Formats and Physical Media for Data Interchange

Part 13: Print Management Point-to-Point Communication Support (retired)

Part 14: Grayscale Standard Display Function

Part 15: Security Profiles

Part 16: DICOM Content Mapping Resource

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

12© Copyright Merge Healthcare Solutions Inc. 2025

Part 17: Explanatory Information

Part 18: Web Services

Part 19: Application Hosting

Part 20: Transformation of DICOM to and from HL7 Standards

Part 21: Transformations between DICOM and other Representations

Part 22: Real-Time Communication

1.1.1. A Quick Walk Through DICOM

Part 1 of the standard gives an overview of the standard. Since this part was approved before most
of the other parts were completed, it is already somewhat outdated and can be confusing.

Part 2 describes DICOM conformance and how to write a conformance statement. A conformance
statement is important because it allows a network administrator to plan or coordinate a network of
DICOM applications. For an application to claim DICOM conformance, it must have an accurate
conformance statement.

Parts 3 and 4 define the types of services and information that can be exchanged using DICOM.

Parts 5 and 6 describe how commands and data shall be encoded so that decoding devices can
interpret them.

Part 7 describes the structure of the DICOM commands, that along with related data, make up a
DICOM message. This part also describes the association negotiation process, whereby two DICOM
applications mutually agree upon the services they will perform over the network.

Part 8 describes how the DICOM messages are exchanged over the network using two prominent
transport layer protocols: TCP/IP and OSI. (Note that IPv4 and IPv6 are supported by DICOM and
by Merge DICOM Toolkit.). This is termed the DICOM Upper Layer Protocol (DICOM UL).

Part 9 is rarely of interest, as it describes how DICOM messages shall be exchanged using the 'old'
50-pin point-to-point connection originally specified in the predecessor to DICOM (ACR/NEMA
Version 2). This part has been retired from the DICOM standard.

Part 10 describes the DICOM model for the storage of medical imaging information on removable
media. It specifies the contents of a DICOM File Set, the format of a DICOM File and the policies
associated with the maintenance of a DICOM Media Storage Directory (DICOMDIR) structure.

Part 11 specifies Media Storage Application Profiles that standardizes a number of choices related
to a specific clinical need (modality or application). This includes the specification of a specific
physical medium and media format (e.g., CD-ROM, 3.5" high-density floppy, …), as well as the types
of information (objects) that can be stored within the DICOM File Set. Part 11 also includes useful
templates to provide guidance in authoring media application conformance statements.

Part 12 details the characteristics of various physical medium and media formats that are
referenced by the Media Storage Application Profiles of Part 11.

While parts 11 and 12 of DICOM are expected to evolve along with the introduction of new clinical
procedures and the advancement of storage media and file system technology, Part 10 should
remain quite stable since it specifies file formats independent of medical application or storage
technology.

Part 13 details a point to point protocol for doing print management services. This part has been
retired from the DICOM standard.

Part 14 specifies a standardized display function for display of grayscale images.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

13© Copyright Merge Healthcare Solutions Inc. 2025

Part 15 specifies Security Profiles to which implementations may claim conformance. Profiles are
defined for secure network transfers and secure media.

Part 16 specifies the DICOM Content Mapping Resource (DCMR) which defines the templates and
context groups used elsewhere in the standard.

Part 17 consolidates informative information previously contained in other parts of the standard. It
is composed of several annexes describing the use of the standard.

Part 18 specifies a web-based service for accessing and presenting DICOM persistent objects (e.g.,
images, medical imaging reports).

Part 19 defines an API such that a 'plug-in' Hosted Application written to the API would be able run
in any environment provided by a Hosting System implementing the API.

Part 20 specifies transformations of DICOM data to and from HL7 standards.

Part 21 specifies the transformations between DICOM and other representations of the same
information.

Part 22 specifies an SMPTE ST 2110-10 based service, relying on RTP, for the real-time transport of
DICOM metadata. It provides a mechanism for the transport of DICOM metadata associated with a
video or an audio flow based on the SMPTE ST 2110-20 and SMPTE ST 2110-30, respectively.

The figure below maps portions of the DICOM Standard dealing with networking to the ISO Open
Systems Interconnection (OSI) basic reference model. The organization and terminology of the
DICOM Standard corresponds closely with that used in the OSI Standard.

1.1.2. Where to Get the DICOM Standard

As a user of this toolkit, you should have access to the DICOM Standard. Merge DICOM Toolkit
takes care of most of the details of DICOM for you. However, the standard is the final word. You will
probably find Parts 2 - 6 most useful. The DICOM Standard can be ordered from:

NEMA
1300 N. 17th Street
Suite 1847

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

14© Copyright Merge Healthcare Solutions Inc. 2025

Rosslyn, VA 22209
USA

http://dicomstandard.org

The DICOM Standard is typically published every year. Each version includes approved changes
since the last publishing. The most recent version of the standard is available in PDF format and can
be downloaded from NEMA's public ftp site at:

ftp://medical.nema.org/medical/Dicom/

a. Special Note

Note that the DICOM Standard is evolving so rapidly, that additions to the Standard are published as
'supplements'. For example, the media extensions have been incorporated into the DICOM
Standard as a supplement that contains addenda to various parts of the standard (e.g., PS3.3,
PS3.4, …). If you find that this document references a part of the Standard and you cannot find what
you are looking for in that part, you probably need to get the proper supplement from NEMA. Other
additions to the Standard (e.g., new image objects or documents) will also be published as
supplements. NEMA also makes all supplements to the standard freely available on their ftp server.
You can reference these supplements at:

ftp://medical.nema.org/medical/Dicom/Final/

1.2. The Merge DICOM Toolkit
Merge DICOM Toolkit provides a generalized implementation of DICOM in a .NET or .NET Core
Assembly that you can use with your application. This .NET/.NET Core version of Merge DICOM
makes use of the run-time library of the Merge DICOM C/C++ Toolkit. As such, it benefits from the
power of that library while providing a complete .NET Assembly interface. You use methods of the
Assembly to open connections with other DICOM devices on a network, and to build and exchange
DICOM messages or DICOM files. The .NET Assembly is written in C# and all examples are supplied
in C#, although it can be utilized from other .NET languages.

The figure below presents a pictorial representation of a DICOM Application Entity; Merge DICOM
Toolkit implements for you everything in Parts 5, 6, 7, 8, and 10 of the DICOM Standard. It also
makes it much easier for your application to implement according to Parts 3 and 4 by supplying

http://dicomstandard.org
ftp://medical.nema.org/medical/Dicom/
ftp://medical.nema.org/medical/Dicom/Final/

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

15© Copyright Merge Healthcare Solutions Inc. 2025

many tools for the management of DICOM messages, and to Part 12 by supplying 'hooks' to your
applications underlying file system.

The DICOM Toolkit also supplies useful utility programs for testing a DICOM network connection,
creating sample DICOM messages and writing them to a file, and for validating and listing the
contents of DICOM messages.

Finally, sample application along with sample working source code give you valuable examples to
work from when developing your own DICOM applications.

The DICOM Standard and the Merge Healthcare DICOM Toolkits allow applications to add private
information to a DICOM message or file. For most application developers, this is more than
sufficient. For applications that need to define their own non-standard private network or file
services, an optional Merge DICOM Database Manual is available which describes the use of
additional tools to extend the data dictionary.

1.3. Development Platform Requirements
Based on the version of the .NET Framework required, the Merge DICOM Toolkit is built and
distributed in six packages:

1. Requires version 2.0 of the .NET Framework. The toolkit requires the Merge DICOM C/C++
Toolkit run-time library and currently supports the 2.0 .NET Framework on 32-bit or 64-bit
Microsoft Windows platforms.

2. Requires version 4.5 of the .NET Framework. The toolkit requires the Merge DICOM C/C++
Toolkit run-time library and currently supports the 4.5 .NET Framework on 64-bit Microsoft
Windows platforms.

3. Requires version 4.8 of the .NET Framework. The toolkit requires the Merge DICOM C/C++
Toolkit run-time library and currently supports the 4.8 .NET Framework on 64-bit Microsoft
Windows platforms.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

16© Copyright Merge Healthcare Solutions Inc. 2025

4. Requires version 3.1.6 of .NET Core. The toolkit requires the Merge DICOM C/C++ Toolkit run-
time libraries and currently supports the 3.1.6 version of .NET Core on 64-bit Microsoft and
Linux platforms.

5. Requires version 6.0 of the .NET Framework. The toolkit requires the Merge DICOM C/C++
Toolkit run-time library and currently supports the 6.0 .NET Framework on 64-bit Microsoft
Windows and Linux platforms.

6. Requires version 8.0 of the .NET Framework. The toolkit requires the Merge DICOM C/C++
Toolkit run-time library and currently supports the 8.0 .NET Framework on 64-bit Microsoft
Windows and Linux platforms.

Your development environment (or at a minimum your target environment) should run on a
machine with a network interface over which you can run the TCP/IP protocol. The DICOM Toolkit
library supplies you with the DICOM protocol that runs on top of TCP/IP.

If your application will write DICOM files to interchangeable media, you will need a device driver for
the media storage device and a programming interface between your operating system and the file
system on that device.

1.4. Assembly Structure
Understanding the organization and components of the Merge DICOM Assembly is important to
developing an efficient and capable DICOM application as seen in the figure below. Following is a

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

17© Copyright Merge Healthcare Solutions Inc. 2025

description of the library's structure and the external components it uses at runtime to provide
DICOM functionality.

1.4.1. Merge DICOM C/C++ Toolkit Dynamic Library

The Merge DICOM C/C++ Toolkit Dynamic Library (usually named Mergecom.Native.dll for the
Merge DICOM .NET/C# Toolkit) contains the core DICOM functionality required by the .NET toolkit.
This library services many of the methods of the .NET DICOM Toolkit.

The Merge DICOM .NET/C# Toolkit Assembly and the Merge DICOM C/C++ Toolkit run-time library
shipped with it, have been carefully designed to be re-entrant and have been validated to be thread-
safe. The Merge DICOM Assembly automatically performs all DICOM network activity for each
association instance in its own thread.

When a Merge DICOM Toolkit Application is first run, it reads in its configuration files; usually named
merge.ini, mergecom.app, mergecom.pro, and mergecom.srv. Toolkit configuration is described
later in this document. These configurable parameters are maintained in ASCII files for easy
modification. When modifying your configuration files, your application must be re-run or the library
reinitialized for those changes to take effect.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

18© Copyright Merge Healthcare Solutions Inc. 2025

1.4.2. Binary Message Information and Data Dictionary Files

A great deal of the power of Merge DICOM Toolkit lies in its message handling and message
validation capabilities. Message Objects are what is communicated between DICOM Application
Entities. When your application creates a DICOM message object, the library accesses a binary
message info file with information about that class of message. This info file describes to the library
what attributes to expect as part of that message and each attribute's characteristics (Value Type,
Conditions, and Enumerated or Defined Terms).

Another binary file containing the data dictionary is also accessed by the library. The data dictionary
contains other characteristics of attributes (Name, Value Representation, and Value Multiplicity).

Performance Tuning

Merge DICOM Toolkit gives you added flexibility, by not requiring your application to make use of the
message info file. Certain API calls allow you to open messages without accessing the info files. This
means that the toolkit cannot validate your message against the DICOM standard, but this may not
always be necessary once an application becomes stable. These options are discussed in detail in
the Developing DICOM Applications section of this document.

1.4.3. Sample Applications

Included with the toolkit are sample C# applications and Visual Studio 2005 project files that
compile the sample applications. Sample client and server applications are supplied for several
DICOM services.

1.4.4. Merge DICOM Message Database Manual and Tools

Merge OEM has a DICOM Database Management System in which the DICOM standard is
maintained. This database, along with a few additional tools, is used to generate the binary message
info and dictionary files accessed by the DICOM Toolkit. As the DICOM standard is updated or
extended, by simply maintaining this database, we can generate new binary files and keep the
toolkit current. This also reduces the number of changes that must be made in the core DICOM
Toolkit library over time.

A number of tools are included with Merge DICOM .NET/C# Toolkit for maintaining the data
dictionary. A Message Database Manual is distributed with Merge DICOM and describes the use of
these tools. This manual describes the use of the various tools and text files supplied with Merge
DICOM Toolkit. Users can add definitions for private services and private attributes. Reference this
manual for further information on extending the Merge DICOM data dictionary.

1.5. Documentation Roadmap
The Merge DICOM Toolkit documentation is structured as pictured in the figure below.

The Compiled HTML Help File serves as a reference manual for the .NET Assembly. This help file
contains detailed information on the classes provided by the .NET/C# DICOM Toolkit.

The User's Manual is the foundation for all other documentation because it explains the concepts of
DICOM and the .NET/C# DICOM Toolkit. Before plunging into the Compiled HTML Help File, you
should be comfortable with the material in the User Manual.

The Release Notes contain a complete release history of the Merge DICOM Toolkit. It also contains
a description of the software distribution and information on contacting Merge OEM for support.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

19© Copyright Merge Healthcare Solutions Inc. 2025

The DICOM Message Database Manual is an optional manual that describes the organization of the
Merge DICOM Database and how to use it to extend standard services and define your own private
services. Tools are supplied to integrate your changes and create a new binary runtime object
database.

1.6. Conventions
This manual follows a few formatting conventions.

Terms that are being defined are presented in boldface.

The appropriate .NET class name provided by the DICOM Toolkit Library is listed prior to the
applicable descriptive text in bold italic font.

Sample commands appear in bold courier font, while sample output, source code, and method
calls appear in standard courier font.

Hexadecimal numbers are written with a trailing H. For example, 16 decimal is equivalent to 10H
hexadecimal.

20© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 2. Understanding DICOM

The many separate parts of the DICOM Standard can seem overwhelming, and most would agree
that they are difficult to read. Part of what makes a successful standard is precision and detail. Our
goal here is to explain the key concepts without delving too far into the detail, most of which is
handled automatically for you by the DICOM Toolkit.

2.1. General Concepts
Some key concepts that must be understood to use the DICOM Toolkit wisely are common across
both DICOM networking and interchangeable media applications. These concepts are discussed
first.

2.1.1. Application Entities

The DICOM Standard refers extensively to Application Entities (AEs). An application entity is
simply a DICOM application. If your application interacts with other applications on a network or
with interchangeable media using the DICOM protocol, it is an application entity.

DICOM also refers to Service Class Users (SCU's) and Service Class Providers (SCP's). An
application entity is an SCU when it requests DICOM services over a network and an SCP when it
provides DICOM services over a network. We will more often refer to the SCU as a Client and the
SCP as a Server. A single DICOM application entity can act as both a client and a server. This client/
server model is a powerful and omnipresent one in the world of distributed network computing.

2.1.2. Services and Meta Services

DICOM is formed around the concepts of Services and Service Classes. The DICOM Standard
specifies a set of services that can be performed over a network. Some of the services can also be
stored to interchangeable media (these are italicized in the table below). As new services are
introduced, the standard will be further expanded. The standard also groups related services into a
service class. The table below also lists the DICOM standard service classes and their component
services. The DICOM Standard actually refers to services as Service Object Pairs (SOPs) and meta
services as Meta-SOPs.

When a particular collection of services in a service class implies a higher level of service, this
collection is combined by the standard into a Meta Service. Specifying that your application

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

21© Copyright Merge Healthcare Solutions Inc. 2025

supports a specific meta service is a useful shorthand for explicitly listing out the collection of
services that make up that meta service.

Table 2.1: DICOM Services Classes and their Component Services

Service Class Services Description

MCverificationService

Verification Verification Verifies application level
communication between
DICOM application
entities (AEs).

MCstorageService

Storage 12-lead ECG Waveform
Acquisition Context SR
Advanced Blending Presentation State
Ambulatory ECG Waveform
Arterial Pulse Waveform
Audio Waveform Real-Time Communication
Autorefraction Measurements
Basic Structured Display
Basic Text SR
Basic Voice Audio Waveform
Blending Softcopy Presentation State
Body Position Waveform
Breast Projection X-Ray Image - For Presentation
Breast Projection X-Ray Image - For Processing
Breast Tomosynthesis Image
C-Arm Photon Electron Radiation Record
C-Arm Photon-Electron Radiation
Cardiac Electrophysiology Waveform
Chest CAD SR
Colon CAD SR
Color Palette
Color Softcopy Presentation State
Compositing Planar MPR Volumetric Presentation State
Comprehensive SR
Comprehensive 3D SR
Computed Radiography Image
Confocal Microscopy Image
Confocal Microscopy Tiled Pyramidal Image
Content Assessment Results
Corneal Topography Map
CT Defined Procedure Protocol
CT Image
CT Performed Procedure Protocol

Transfer of medical
images and related
standalone data between
DICOM application
entities, either over a
network or using
interchangeable media.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

22© Copyright Merge Healthcare Solutions Inc. 2025

Deformable Spatial Registration
Dermoscopic Photography Image
Digital Intra-oral X-Ray Image - For Presentation
Digital Intra-oral X-Ray Image - For Processing
Digital Mammography Image - For Presentation
Digital Mammography Image - For Processing
Digital X-Ray Image - For Presentation
Digital X-Ray Image - For Processing
Electromyogram Waveform
Electrooculogram Waveform
Encapsulated CDA
Encapsulated MTL
Encapsulated OBJ
Encapsulated PDF
Encapsulated STL
Enhanced Continuous RT Image
Enhanced CT Image
Enhanced MR Color Image
Enhanced MR Image
Enhanced PET Image
Enhanced RT Image
Enhanced SR
Enhanced US Volume
Enhanced X-Ray Radiation Dose SR
Enhanced XA Image
Enhanced XRF Image
Extensible SR
General 32-bit ECG Waveform
General Audio Waveform
General ECG Waveform
Generic Implant Template
Grayscale Planar MPR Volumetric Presentation State
Grayscale Softcopy Presentation State
Hanging Protocol
Hardcopy Color Image
Hardcopy Grayscale Image
Hemodynamic Waveform
Implant Assembly Template
Implant Template Group
Implantation Plan SR Document
Intraocular Lens Calculations
Intravascular Optical Coherence Tomography Image - For
Presentation
Intravascular Optical Coherence Tomography Image - For
Processing

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

23© Copyright Merge Healthcare Solutions Inc. 2025

Inventory
Keratometry Measurements
Key Object Selection Document
Legacy Converted Enhanced CT Image
Legacy Converted Enhanced MR Image
Legacy Converted Enhanced PET Image
Lensometry Measurements
Macular Grid Thickness and Volume Report
Mammography CAD SR
Microscopy Bulk Simple Annotations
MR Image
MR Spectroscopy
Multi-channel Respiratory Waveform
Multi-frame Grayscale Byte Secondary Capture Image
Multi-frame Grayscale Word Secondary Capture Image
Multi-frame Single Bit Secondary Capture Image
Multi-frame True Color Secondary Capture Image
Multiple Volume Rendering Volumetric Presentation
State
Nuclear Medicine Image
Ophthalmic 16 bit Photography Image
Ophthalmic 8 bit Photography Image
Ophthalmic Axial Measurements
Ophthalmic Optical Coherence Tomography B-scan
Volume Analysis
Ophthalmic Optical Coherence Tomography En Face
Image
Ophthalmic Thickness Map
Ophthalmic Tomography Image
Ophthalmic Visual Field Static Perimetry Measurements
Parametric Map
Patient Radiation Dose SR
Performed Imaging Agent Administration SR
Photoacoustic Image
Planned Imaging Agent Administration SR
Positron Emission Tomography Image
Procedure Log
Protocol Approval
Pseudo-Color Softcopy Presentation State
Radiopharmaceutical Radiation Dose SR
Raw Data
Real World Value Mapping
Rendition Selection Document Real-Time
Communication
Respiratory Waveform
Robotic-Arm Radiation

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

24© Copyright Merge Healthcare Solutions Inc. 2025

Robotic-Arm Radiation Record
Routine Scalp Electroencephalogram Waveform
RT Beams Delivery Instruction
RT Beams Treatment Record
RT Brachy Application Setup Delivery Instruction
RT Brachy Treatment Record
RT Dose
RT Image
RT Ion Beams Treatment Record
RT Ion Plan
RT Patient Position Acquisition Instruction
RT Physician Intent
RT Plan
RT Radiation Record Set
RT Radiation Salvage Record
RT Radiation Set Delivery Instruction
RT Radiation Set
RT Segment Annotation
RT Structure Set
RT Treatment Preparation
RT Treatment Summary Record
Secondary Capture Image
Segmentation
Segmented Volume Rendering Volumetric Presentation
State
Simplified Adult Echo SR
Sleep Electroencephalogram Waveform
Spatial Fiducials
Spatial Registration
Spectacle Prescription Report
Standalone Curve
Standalone Modality LUT
Standalone Overlay
Standalone PET Curve
Standalone VOI LUT
Stereometric Relationship
Stored Print
Subjective Refraction Measurements
Surface Scan Mesh
Surface Scan Point Cloud
Surface Segmentation
Tomotherapeutic Radiation Record
Tomotherapeutic Radiation
Tractography Results

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

25© Copyright Merge Healthcare Solutions Inc. 2025

Ultrasound Image
Ultrasound Multi-Frame Image
Variable Modality LUT Softcopy Presentation State
Video Endoscopic Image
Video Endoscopic Image Real-Time Communication
Video Microscopic Image
Video Photographic Image
Video Photographic Image Real-Time Communication
Visual Acuity Measurements
VL Endoscopic Image
VL Microscopic Image
VL Photographic Image
VL Slide-Coordinates Microscopic Image
VL Whole Slide Microscopy Image
Volume Rendering Volumetric Presentation State
Waveform Annotation SR
Wide Field Ophthalmic Photography 3D Coordinates
Image
Wide Field Ophthalmic Photography Stereographic
Projection Image
X-Ray 3D Angiographic Image
X-Ray 3D Craniofacial Image
X-Ray Angiographic Image
X-Ray Angiographic Bi-Plane Image
X-Ray Radiation Dose SR
X-Ray Radiofluoroscopic Image
XA/XRF Grayscale Softcopy Presentation State
XA Defined Procedure Protocol
XA Performed Procedure Protocol

MCstorageCommitmentService

Storage
Commitment

Storage Commitment Push
Storage Commitment Pull

Ensures that SOP
Instances stored with the
storage service class will
not be deleted after
reception but will be
stored safely and can be
retrieved again at a later
point.

...

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

26© Copyright Merge Healthcare Solutions Inc. 2025

Storage
Management

Inventory Creation An application-level
class-of-service that
facilitates peer-to-peer
controls for
management of
persistent storage of
Composite SOP
Instances.

MCmediaStorageService

Media
Storage

DICOM Basic Directory Storage and storage of various
(italicized) services from the other Service Classes

Exists as a member of
every DICOM File Set
and contains general
information about the
file set and a hierarchical
directory of the DICOM
files contained in the file
set.

MCqueryRetrieveService

Query/Retrieve Defined Procedure Protocol Information Model Find
Defined Procedure Protocol Information Model Move
Defined Procedure Protocol Information Model Get
Inventory Find

Management of images
through a query and
retrieval mechanism
based on a small
number of key attributes.

Inventory Get
Inventory Move
Patient Root Find
Patient Root Move
Patient Root Get
Patient/Study Only Find (Retired)
Patient/Study Only Move (Retired)
Patient/Study Only Get (Retired)
Protocol Approval Information Model Find
Protocol Approval Information Model Move
Protocol Approval Information Model Get
Repository Query
Study Root Find
Study Root Move
Study Root Get

MCbasicWorklistManagementService

Basic
Worklist
Management

Modality Worklist Find Supports the exchange
of any type of worklist
from one AE to another.

MCunifiedProcedureStepService

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

27© Copyright Merge Healthcare Solutions Inc. 2025

Unified
Procedure
Step

Unified Procedure Step - Push
Unified Procedure Step - Watch
Unified Procedure Step - Pull
Unified Procedure Step - Event

Support for the
management of unified
procedure items in
worklists.

MCprintManagementService

Print
Management

Basic Film Session
Basic Film Box
Basic Grayscale Image Box
Basic Color Image Box
Printer
Printer Configuration
Print Queue Management
Pull Print Request
Printer Referenced Image Box
VOI LUT Box
Presentation LUT
Basic Annotation Box
Basic Print Image Overlay Box SOP Class
Print Job
Image Overlay Retired

Printing (or filming) of
medical images and
image related data on a
hard copy medium. Also,
storage of print related
data to interchangeable
media.

Basic Grayscale Print Mgmt. Meta
Basic Color Print Mgmt. Meta
Pull Stored Print Mgmt. Meta
Ref. Grayscale Print Mgmt. Meta
Ref. Color Print Mgmt. Meta

McstudyContentNotificationService

Study
Content
Notification

Basic Study Content Notification Allows one DICOM AE to
notify another DICOM
AE of the existence,
contents, and source
location of the images of
a study.

MCpatientManagementService

Patient
Management

Detached Patient Management
Detached Visit Management
Detached Patient Mgmt. Meta

Creation and tracking of
the subset of patient and
patient visit information
that is required to aid in
the management of
radiographic studies.

MCstudyManagementService

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

28© Copyright Merge Healthcare Solutions Inc. 2025

2.1.3. DICOM Information Model

The DICOM Standard includes the specification of a DICOM Information Model. A detailed entity-
relationship diagram of this model is included in both parts 3 and 4 of the standard. This model
specifies the relationship between the different types of objects (also called entities) managed in
DICOM. For example, a Patient has one or more Studies, each of which are composed of one or
more Series and zero or more Results, etc.

Objects vs. Object Instances

Most of DICOM's services perform actions on or with object instances2. An object can be thought
of as a class of data (CT Image, Film Box, etc.) while an object instance is an actual occurrence of an
object (a particular CT Image, a populated Film Box, etc.).

2 object instances are referred to as SOP Instances or managed SOP's in the DICOM standard.

Normalized vs. Composite

There are two types of objects (and hence, object instances) defined in DICOM. Normalized
objects are objects consisting of a single entity in the DICOM information model (e.g., a Film Box).
Composite objects are composed of several related entities (e.g., an MR Image). When possible, it
is preferable to deal with normalized object instances over the network, because they contain less
redundant data and can be more efficiently managed by an application.

Most services inherited from the ACR/NEMA Version 2.x Standard are composite services
(operate on composite object instances) for reasons of backward compatibility. Newly introduced
services, such as the HIS/RIS and Print Management Services, tend to be normalized services
(operate on normalized object instances).

2.2. Networking
Certain aspects of DICOM only apply to networking when using the DICOM Toolkit. This includes
networking commands and association negotiation.

2.2.1. Commands

DICOM defines a set of networking commands3. Each service uses a subset of these DICOM
commands to perform the service over a network. These commands usually act on object

Study
Management

Detached Study Management
Study Component Management
Modality Performed Procedure Step
Modality Performed Procedure Step Notification
Modality Performed Procedure Step Retrieve

Creation, scheduling,
performance, and
tracking of imaging
studies.

MCresultsManagementService

Results
Management

Detached Results Management
Detached Interpretation Management
Detached Results Mgmt. Meta

Creation and tracking of
results and associated
diagnostic
interpretations.

Service Class Services Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

29© Copyright Merge Healthcare Solutions Inc. 2025

instances. The C-commands operate on composite object instances, while the N-commands
operate on normalized object instances.

3commands are referred to as DIMSE Services in the DICOM Standard.

The DICOM commands and brief descriptions of their actions are listed in the table below.

Table 2.2: DICOM Commands

These DICOM commands can be thought of as primitives that every networking service is built
from. In the context of a particular Service, these primitive actions translate to explicit real-world
activities on the part of an Application Entity. Hence, DICOM places requirements on an application
implementing a DICOM service. DICOM is careful to only express high-level operational
requirements and leaves the creative detail and look and feel of the application entity to the
developer.

Request vs. Response

For every command, there is both a request and a response. A command request indicates that a
command should be performed and is usually sent to an SCP. A command response indicates
whether a command completed or its state of completion and is usually returned to an SCU.
Example request commands are C-STORE-RQ, N-GET-RQ, and N-SET-RQ. Example response
commands are C-STORE-RSP, N-GET-RSP, and N-SET-RSP.

NOTE: It is important to note that this service definition level is where the Merge DICOM Toolkit
Library leaves off, and your Application begins. While Merge DICOM supplies running
sample applications source code for your platform, they are only supplied as an example.
They clearly explain the requirements that implementing certain DICOM services places on
your application and provide worthwhile but primitive examples of how to approach your

DICOM Commands Description

C-STORE Transfer an object instance to a remote AE.

C-GET Retrieve object instance(s) from a remote AE whose
attributes match a specified set of attributes.

C-MOVE Move object instance(s) from a remote AE whose
attributes match a specified set of attributes to yet another
remote AE (or possibly your own AE - which would be
another form of retrieval).

C-FIND Match a set of attributes to the attributes of a set of object
instances on a remote AE.

C-ECHO Verify end-to-end communications with a remote AE.

N-EVENT-REPORT Report an event to a remote AE.

N-GET Retrieve attribute values from a remote AE.

N-SET Request modification of attribute on a remote AE.

N-ACTION Request an action by a remote AE.

N-CREATE Request that a remote AE create a new object instance.

N-DELETE Request that a remote AE delete an existing object
instance.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

30© Copyright Merge Healthcare Solutions Inc. 2025

application with the toolkit. While you will see that the toolkit saves you a great deal of
'DICOM work', it does not implement your end application for you.

2.2.2. Association Negotiation

One of the areas where Merge DICOM Toolkit does a great deal of the 'DICOM work' for you is in
opening an association (session) with another DICOM AE over the network. DICOM application
entities need to agree on certain things before they operate with one another (open an association);
these include:

● the services that can be performed between the two devices, which also impacts the
commands and object instances that can be exchanged.

● the transfer syntax that shall be used in the network communication. The transfer syntax
defines how the commands and object instances are encoded 'on the wire'.

The exchange of DICOM commands and object instances can only occur over an open association.

DICOM defines an association negotiation protocol (see the figure below) in which an association
requester application proposes a connection with an association acceptor application. In the
most common DICOM services, a client application entity (SCU) proposes an association with a
server AE (SCP). However, some services define a mechanism where the client can be the SCP
which opens an association with the SCU. This is used when an SCP sends asynchronous event
reports to an SCU through the N-EVENT-REPORT command. This is done when DICOM role
negotiation is used during standard association negotiation. For the sake of simplicity, the
remainder of this manual refers to the client as the SCU and the server as the SCP.

The association request proposal contains the set of services the client would like to perform and
the transfer syntaxes it understands. The server then responds to the client with a subset of the
services and transfer syntaxes proposed by the client. If this subset is empty, the server has rejected
the association. If the subset is not empty, the server has accepted the association and the agreed
upon services may be performed.

The client is responsible for releasing the association when it is finished performing its network
operations. Either the client or the server can also abort the association in the case of some
catastrophic failure (e.g., disk full, out of memory).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

31© Copyright Merge Healthcare Solutions Inc. 2025

2.3. Messages
Once an association is established, services are performed by AEs through the exchange of DICOM
Messages. A message is the combination of a DICOM command request or response and its
associated object instance (see the figure below). Messages containing command requests will be
referred to as request messages, while messages containing command responses will be referred
to as response messages.

When a DICOM service is stored to interchangeable media in a DICOM File, the structure of a
DICOM File is a slightly specialized class of DICOM message. Media interchange is discussed in
detail later; the only important thing to realize for now is that much of what is discussed relating to
DICOM Messages also applies to DICOM Files.

DICOM specifies the required message structure for each service-command pair. For example,
the Patient Root Find - C-FIND-RQ service-command pair has a specific message structure. The
command portion of a message is specified in Part 7 of the standard, while the object instance
portion is specified in Parts 3 and 4.

The DICOM data dictionary defines many data elements. An attribute is a data element with a
value. A message is constructed of attributes, with each attribute identified by a tag. An attribute is a
unit of data (e.g., Patient's Name, Scheduled Discharge Date, ...). A tag is a 4 byte number identifying
an attribute (e.g., 00100010H for Patient's Name, 0038001CH for Scheduled Discharge Date, ...).

A tag is usually written as an ordered pair of two byte numbers. The first two bytes are sometimes
called a group number, with the last two bytes being called an element number (e.g., (0010, 0010),
(0038, 001C), ...). This terminology is partly a remnant of the ACR-NEMA Standard where elements
within a group were related in some manner. This can no longer be depended on in DICOM, but the
ordered pair notation is still useful and often easier to read.

Also, the ordered pair notation is important when defining a Tag for a private attribute. We will see
later that all private attributes must have an odd group number.

2.3.1. DICOM Data Dictionary

Attributes have certain characteristics that apply to them no matter what message they are used in.
These characteristics are specified in the DICOM Data Dictionary (Part 6 of DICOM) and are Value
Representation (VR) and Value Multiplicity (VM).

Value Representation can be thought of as the 'type specifier' for the values that can be assigned to
an attribute. This includes the data type, as well as its format. The VR's defined by DICOM are listed

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

32© Copyright Merge Healthcare Solutions Inc. 2025

in the table below. You should refer to Part 5 of the standard for a detailed description of their legal
values and formats.

Table 2.3: DICOM Value Representations (VRs)

A single attribute can have multiple values. Value Multiplicity defines the number of values an
attribute can have. VM can be specified as 1, k , 1-k or 1-n, where k is some integer value and n
represents 'many'. For example, Part 6 specifies the VM of Scheduled Discharge Time (0038, 001D)
as 1, while the VM of Referenced Overlay Plane Groups (2040, 0011) is 1-99.

2.3.2. Message Handling

Given the number of services and commands specified in TABLE 2.1: DICOM SERVICES CLASSES
AND THEIR COMPONENT SERVICES ON PAGE 21 and TABLE 2.2: DICOM COMMANDS ON PAGE 29, it is
clear that there are a great deal of messages to manage in DICOM. Remember, each service-
command pair implies a different message. Fortunately, you will see later that Merge DICOM Toolkit
saves the application developer a great deal of work in the message handling arena.

DICOM specifies the required contents of each message in Parts 3, 4, and 7 of the standard. For
each attribute included in a message, additional characteristics of the attribute are defined that only
apply within the context of a service. These characteristics are Enumerated Values, Defined
Terms, and Value Type.

VR Name VR Name

AE Application Entity OW Other Word String

AS Age String PN Person Name

AT Attribute Tag SH Short String

CS Code String SL Signed Long

DA Date SQ Sequence of Items

DS Decimal String SS Signed Short

DT Date Time ST Short Text

FL Floating Point Single SV Signed 64-bit Very Long

FD Floating Point Double TM Time

IS Integer String UC Unlimited Characters

LO Long String UI Unique Identifier

LT Long Text UL Unsigned Long

OB Other Byte String UN Unknown

OD Other Double String UR URI or URL

OF Other Float String US Unsigned Short

OL Other Long UT Unlimited Text

OV Other 64-bit Very Long UV Unsigned 64-bit Very Long

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

33© Copyright Merge Healthcare Solutions Inc. 2025

DICOM specifies that some attributes should have values from a specified set of values. If the
attribute is an enumerated value, it shall have a value taken from the specified set of values. A good
example of enumerated values are (M, F, O) for Patient's Sex (0010, 0040) in Storage services. If the
attribute is a defined term, it may take its value from the specified set, or the set may be extended
with additional values. An example of defined terms are (CREATED, RECORDED, TRANSCRIBED,
APPROVED) for Interpretation Status ID (4008, 0212) in Results Management services. If this set is
extended by an application with another term, such as IN PROCESS, it should be documented in
that application's conformance statement.

The most important characteristic of an attribute that is specified on a message by message basis,
is the Value Type (VT). The VT of an attribute specifies whether or not that attribute needs to be
included in a message and if it needs to have a value. Attributes can be required, optional, or only
required under certain conditions (conditional attributes). Conditional attributes are always
specified along with a condition. The value types defined by DICOM are listed in the table below.
Note that a null valued attribute has a value, that value being null (zero length).

Table 2.4: DICOM Value Types (VTs)

2.3.3. Private Attributes

The DICOM Standard allows application developers to add their own private attributes to a message
as long as they are careful to follow certain rules. A private attribute is identified differently than are
standard attributes. Its tag is composed of an odd group number, a private identification code
string, and a single byte element number.

For example, ACME Imaging Inc. might define a private attribute to hold the name of the field
engineer that last serviced their equipment. They could assign this attribute to private attribute tag
(1455, 'ACME_IMG_INC', 00). This attribute has group number 1455, a private identification code
string of 'ACME_IMG_INC', and a single byte element number of 00.

ACME could assign up 255 other private attributes to private group 1455 by using the other element
numbers (01-FF). Part 5 of DICOM explains how these private tags are translated to standard group
and element numbers and encoded into a message, while avoiding collisions. Merge DICOM Toolkit
handles these details for you.

DICOM makes a couple of rules that must be followed when using private attributes:

Value Type
(VT)

Description

1 The attribute must have a value and be included in the message. The value cannot be null
(empty).

1C The attribute must have a value and be included in the message only under a specified
condition. The value cannot be null. If that condition is not met, the attribute shall not be
included in the message.

2 The attribute must have a value and be included in the message. If the value for the attribute
is unknown and cannot be specified, its value shall be null.

2C The attribute must have a value and be included in the message only under a specified
condition. If the value for the attribute is unknown and cannot be specified, its value shall be
null. If that condition is not met, the attribute shall not be included in the message

3 The attribute is optional. It may or may not be included in the message. If included, the
attribute may or may not have a null value.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

34© Copyright Merge Healthcare Solutions Inc. 2025

● Private attributes shall not be used in place of required (Value Type 1, 1C, 2, or 2C) attributes.

● The possible value representations (VR's) used for private attributes shall be only those
specified by the standard (see TABLE 2.3: DICOM VALUE REPRESENTATIONS (VRS) ON PAGE 32).

The way you use private attributes in your application can also greatly affect your conformance
statement. DICOM conformance is discussed in greater detail later.

2.4. Media Interchange
The DICOM Standard specifies a DICOM file format for the interchange of medical information on
removable media. This file format is a logical extension of the networking portion of the standard.
When an object instance that was communicated over a network would also be of value when
communicated via removable media, DICOM specifies the encapsulation of these object instances
in a DICOM file.

2.4.1. DICOM Files

A DICOM File is the encapsulation of a DICOM object instance, along with File Meta Information.
File meta information is stored in the header of every DICOM file and includes important
identifying information about the encapsulated object instance and its encoding within the file (see
the figure below).

The Merge DICOM Toolkit representation for DICOM files and file meta information consists of the
MCfile and MCfileMetaInfo classes, respectively.

The file meta information begins with a 128 byte buffer available for application profile or
implementation specific use. Application Profiles standardize a number of choices related to a
specific clinical need (modality or application) and are specified in Part 11 of the DICOM Standard.
The next four bytes of the meta information contain the DICOM prefix, which is always “DICM” in a
DICOM file and can be used as an identifying characteristic for all DICOM files. The remainder of
the file (preamble and object instance) is encoded using tagged attributes (as in a DICOM
Message).

The object instances that can be stored within the DICOM file are equivalent to a subset of the
object instances that can be transmitted in network messages. The services that can be performed
to interchangeable media are italicized in TABLE 2.1: DICOM SERVICES CLASSES AND THEIR
COMPONENT SERVICES ON PAGE 21. The Media Storage Service Class (in Part 4 of the DICOM
standard) specifies which service-command pairs can be performed to media. Remember it is the
service-command pair that identifies the object instance portion of the message, and it is only the
object instance portion of the message that is stored in a DICOM file. The command attributes
associated with a network message are never stored in a DICOM File, only the data set.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

35© Copyright Merge Healthcare Solutions Inc. 2025

The service command pairs whose corresponding object instances can be stored to media are
summarized in the table below.

NOTE: The Media Storage Directory Service is not performed over a network and the single object
specified in the Basic Directory Information Object Definition (Part 3) is used.

Table 2.5: Service-Command Pairs Specifying Objects that can be Stored in a DICOM File

Service Command

12-lead ECG Waveform Storage C-STORE

Advanced Blending Presentation State Storage C-STORE

Ambulatory ECG Waveform Storage C-STORE

Arterial Pulse Waveform Storage C-STORE

Audio Waveform Real-Time Communication C-STORE

Autorefraction Measurements Storage C-STORE

Basic Color Image Box N-SET

Basic Film Box N-CREATE

Basic Film Session N-CREATE

Basic Grayscale Image Box N-SET

Basic Structured Display Storage C-STORE

Basic Text Structured Reporting C-STORE

Basic Voice Audio Waveform Storage C-STORE

Blending Softcopy Presentation State Storage C-STORE

Body Position Waveform Storage C-STORE

Breast Projection X-Ray Image Storage - For Presentation C-STORE

Breast Projection X-Ray Image Storage - For Processing C-STORE

Breast Tomosynthesis Image Storage C-STORE

C-Arm Photon-Electron Radiation Record Storage C-STORE

C-Arm Photon-Electron Radiation Storage C-STORE

Cardiac Electrophysiology Waveform Storage C-STORE

Chest CAD SR C-STORE

Colon CAD SR C-STORE

Color Palette Storage C-STORE

Color Softcopy Presentation State Storage C-STORE

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

36© Copyright Merge Healthcare Solutions Inc. 2025

Comprehensive Structured Reporting C-STORE

Computed Radiography Image Storage C-STORE

Confocal Microscopy Image C-STORE

Confocal Microscopy Tiled Pyramidal Image C-STORE

CT Image Storage C-STORE

Deformable Spatial Registration Storage C-STORE

Dermoscopic Photography Image Storage C-STORE

Detached Interpretation Management N-GET

Detached Patient Management N-GET

Detached Results Management N-GET

Detached Study Management N-GET

Detached Study Component Management N-GET

Detached Visit Management N-GET

Digital Intra-oral X-Ray Image Storage - For Presentation C-STORE

Digital Intra-oral X-Ray Image Storage - For Processing C-STORE

Digital Mammography Image Storage - For Presentation C-STORE

Digital Mammography Image Storage - For Processing C-STORE

Digital X-Ray Image Storage - For Presentation C-STORE

Digital X-Ray Image Storage - For Processing C-STORE

Electromyogram Waveform Storage C-STORE

Electrooculogram Waveform Storage C-STORE

Encapsulated CDA Storage C-STORE

Encapsulated MTL Storage C-STORE

Encapsulated OBJ Storage C-STORE

Encapsulated PDF Storage C-STORE

Encapsulated STL Storage C-STORE

Enhanced Continuous RT Image Storage C-STORE

Enhanced CT Image Storage C-STORE

Enhanced MR Color Image Storage C-STORE

Enhanced MR Image Storage C-STORE

Service Command

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

37© Copyright Merge Healthcare Solutions Inc. 2025

Enhanced PET Image Storage C-STORE

Enhanced RT Image Storage C-STORE

Enhanced Structured Reporting C-STORE

Enhanced US Volume Storage C-STORE

Enhanced X-Ray Radiation Dose SR Storage C-STORE

Enhanced XA Image Storage C-STORE

Enhanced XRF Image Storage C-STORE

General Audio Waveform Storage C-STORE

General 32-bit ECG Waveform Storage C-STORE

General ECG Waveform Storage C-STORE

Generic Implant Template Storage C-STORE

Grayscale Softcopy Presentation State Storage C-STORE

Hanging Protocol Storage C-STORE

Hemodynamic Waveform Storage C-STORE

Implant Assembly Template Storage C-STORE

Implant Template Group Storage C-STORE

Implantation Plan SR Document Storage C-STORE

Intraocular Lens Calculations Storage C-STORE

Intravascular Optical Coherence Tomography Image Storage - For Presentation C-STORE

Intravascular Optical Coherence Tomography Image Storage - For Processing C-STORE

Inventory C-STORE

Keratometry Measurements Storage C-STORE

Key Object Selection C-STORE

Legacy Converted Enhanced CT Image Storage C-STORE

Legacy Converted Enhanced MR Image Storage C-STORE

Legacy Converted Enhanced PET Image Storage C-STORE

Lensometry Measurements Storage C-STORE

Macular Grid Thickness and Volume Report C-STORE

Mammography CAD SR C-STORE

Media Storage Directory Storage C-STORE*

Service Command

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

38© Copyright Merge Healthcare Solutions Inc. 2025

Microscopy Bulk Simple Annotations Storage C-STORE

MR Image Storage C-STORE

MR Spectroscopy Storage C-STORE

Multi-channel Respiratory Waveform Storage C-STORE

Multi-frame Grayscale Byte Secondary Capture Image Storage C-STORE

Multi-frame Grayscale Word Secondary Capture Image Storage C-STORE

Multi-frame Single Bit Secondary Capture Image Storage C-STORE

Multi-frame True Color Secondary Capture Image Storage C-STORE

Multiple Volume Rendering Volumetric Presentation State Storage C-STORE

Nuclear Medicine Image Storage C-STORE

Ophthalmic 16 bit Photography Image Storage C-STORE

Ophthalmic 8 bit Photography Image Storage C-STORE

Ophthalmic Axial Measurements Storage C-STORE

Ophthalmic Optical Coherence Tomography B-scan Volume Analysis Storage C-STORE

Ophthalmic Optical Coherence Tomography En Face Image Storage C-STORE

Ophthalmic Tomography Image Storage C-STORE

Ophthalmic Visual Field Static Perimetry Measurements Storage C-STORE

Parametric Map Storage C-STORE

Patient Radiation Dose SR Storage C-STORE

Performed Imaging Agent Administration SR Storage C-STORE

Photoacoustic Image Storage C-STORE

Planned Imaging Agent Administration SR Storage C-STORE

Positron Emission Tomography Image Storage C-STORE

Procedure Log C-STORE

Protocol Approval Storage C-STORE

Pseudo-Color Softcopy Presentation State Storage C-STORE

Raw Data Storage C-STORE

Real World Value Mapping Storage C-STORE

Rendition Selection Document Real-Time Communication C-STORE

Respiratory Waveform Storage C-STORE

Service Command

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

39© Copyright Merge Healthcare Solutions Inc. 2025

Robotic-Arm Radiation Record Storage C-STORE

Robotic-Arm Radiation Storage C-STORE

Routine Scalp Electroencephalogram Waveform Storage C-STORE

RT Beams Delivery Instruction Storage C-STORE

RT Beams Treatment Record Storage C-STORE

RT Brachy Treatment Record Storage C-STORE

RT Dose Storage C-STORE

RT Image Storage C-STORE

RT Ion Beams Treatment Record Storage C-STORE

RT Ion Plan Storage C-STORE

RT Patient Position Acquisition Instruction Storage C-STORE

RT Physician Intent Storage C-STORE

RT Plan Storage C-STORE

RT Radiation Record Set Storage C-STORE

RT Radiation Salvage Record Storage C-STORE

RT Radiation Set Delivery Instruction Storage C-STORE

RT Radiation Set Storage C-STORE

RT Segment Annotation Storage C-STORE

RT Structure Set Storage C-STORE

RT Treatment Preparation Storage C-STORE

RT Treatment Summary Record Storage C-STORE

Secondary Capture Image Storage C-STORE

Segmentation Storage C-STORE

Segmented Volume Rendering Volumetric Presentation State Storage C-STORE

Sleep Electroencephalogram Waveform Storage C-STORE

Spatial Registration Storage C-STORE

Spatial Fiducials Storage C-STORE

Spectacle Prescription Report Storage C-STORE

Standalone Overlay Storage C-STORE

Standalone Curve Storage C-STORE

Service Command

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

40© Copyright Merge Healthcare Solutions Inc. 2025

Standalone Modality LUT Storage C-STORE

Standalone VOI LUT Storage C-STORE

Stereometric Relationship Storage C-STORE

Subjective Refraction Measurements Storage C-STORE

Surface Segmentation Storage C-STORE

Tomotherapeutic Radiation Record Storage C-STORE

Tomotherapeutic Radiation Storage C-STORE

Ultrasound Image Storage C-STORE

Ultrasound Multi-frame Image Storage C-STORE

Variable Modality LUT Softcopy Presentation State Storage C-STORE

Video Endoscopic Image Storage C-STORE

Video Endoscopic Image Real-Time Communication C-STORE

Video Microscopic Image Storage C-STORE

Video Photographic Image Storage C-STORE

Video Photographic Image Real-Time Communication C-STORE

Visual Acuity Measurements Storage C-STORE

VL Endoscopic Image Storage C-STORE

VL Microscopic Image Storage C-STORE

VL Photographic Image Storage C-STORE

VL Slide-Coordinates Microscopic Image Storage C-STORE

VL Whole Slide Microscopy Image Storage C-STORE

Volume Rendering Volumetric Presentation State Storage C-STORE

Waveform Annotation SR Storage C-STORE

Wide Field Ophthalmic Photography 3D Coordinates Image Storage C-STORE

Wide Field Ophthalmic Photography Stereographic Projection Image Storage C-STORE

X-Ray Angiographic Image Storage C-STORE

X-Ray Radiofluoroscopic Image Storage C-STORE

X-Ray Radiation Dose SR Storage C-STORE

X-Ray 3D Angiographic Image Storage C-STORE

X-Ray 3D Craniofacial Image Storage C-STORE

Service Command

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

41© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: * Merge DICOM Toolkit defines a C-STORE command for the Media Storage Directory
(DICOMDIR) service even though it does not formally exist In the DICOM Standard.

Finally, the DICOM file can be padded at the end with the Data Set Trailing Padding attribute (FFFC,
FFFC) whose value is specified by the standard to have no significance.

2.4.2. File Sets

DICOM Files must be stored on removable media in a DICOM File Set. A DICOM file set is defined
as a collection of DICOM files sharing a common naming space within which file IDs are unique
(e.g., a file system partition). A DICOM File Set ID is a string of up to 16 characters that provides a
name for the file set.

A File ID is a name given to a DICOM file that is mapped to each media format specification (in Part
12 of DICOM). A file ID consists of an ordered sequence of one to eight components, where each
component is a string of one to eight characters. One can certainly imagine mapping such a file ID
to a hierarchical file system, and this is done for several media formats in Part 12. It is important to
note that DICOM states that no semantic relationship between DICOM files shall be conveyed by
the contents or structure of file IDs (e.g., the hierarchy). This helps ensure that DICOM files can be
stored in a media format and file system independent manner.

The allowed characters in both a file ID and file set ID are a subset of the ASCII character set
consisting of the uppercase characters (A-Z), the numerals (0-9), and the underscore (_).

2.4.3. The DICOMDIR

The DICOM Directory File or DICOMDIR is a special type of a DICOM File. A single DICOMDIR
must exist within each DICOM file set and it is always given the file ID “DICOMDIR”. It is the
DICOMDIR file that contains identifying information about the entire file set, and usually
(dependent on the Application Profile) a directory of the file set's contents.

XA/XRF Grayscale Softcopy Presentation State Storage C-STORE

XA Defined Procedure Protocol Storage C-STORE

XA Performed Procedure Protocol Storage C-STORE

Service Command

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

42© Copyright Merge Healthcare Solutions Inc. 2025

The figure below shows a graphical representation of a DICOMDIR file and its central role within a
DICOM File Set.

a. The DICOMDIR Hierarchy

If the DICOMDIR file contains directory information, it is composed of a hierarchy of directory
records, with the top-most directory record being the root directory record. A Directory Record
identifies a DICOM File by summarizing key attributes and their values in the file and specifying the
file ID of the corresponding file. The file ID can then be used, in the context of the native file system,
to access the corresponding DICOM file. Each directory record can in turn point down the hierarchy
to one or more related directory records.

Part 3 of the DICOM Standard specifies the allowed relationships between directory records in the
section defining the Basic Directory IOD. We reproduce this table below for learning reasons, but
you should refer to Table F.4-1 in DICOM PS3.3 for the most up-to-date and accurate specification.

Table 2.6: Allowed Directory Entity

Directory Record Type Record Types which may be included in the next lower-level
Directory Entity

(Root Directory Entity) * PATIENT, TOPIC, PRINT QUEUE, HANGING PROTOCOL,
PRIVATE

PATIENT STUDY, PRIVATE

STUDY SERIES, VISIT, RESULTS, STUDY COMPONENT, FILM
SESSION, PRIVATE

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

43© Copyright Merge Healthcare Solutions Inc. 2025

SERIES IMAGE, STORED PRINT, RT DOSE, RT STRUCTURE SET, RT
PLAN, RT TREAT RECORD, OVERLAY, MODALITY LUT, VOI
LUT, CURVE, SR DOCUMENT, PRESENTATION, KEY OBJECT
DOC, SPECTROSCOPY, RAW DATA, WAVEFORM,
REGISTRATION, FIDUCIAL, VALUE MAP, ENCAP DOC,
PRIVATE

HANGING PROTOCOL PRIVATE

IMAGE PRIVATE

STORED PRINT PRIVATE

RT DOSE PRIVATE

RT STRUCTURE SET PRIVATE

RT PLAN PRIVATE

RT TREAT RECORD PRIVATE

OVERLAY PRIVATE

MODALITY LUT PRIVATE

VOI LUT PRIVATE

CURVE PRIVATE

SR DOCUMENT PRIVATE

PRESENTATION PRIVATE

KEY OBJECT DOC PRIVATE

SPECTROSCOPY PRIVATE

RAW DATA PRIVATE

WAVEFORM PRIVATE

REGISTRATION PRIVATE

FIDUCIAL PRIVATE

VALUE MAP PRIVATE

ENCAP DOC PRIVATE

TOPIC STUDY, SERIES, IMAGE, OVERLAY, MODALITY LUT, VOI LUT,
CURVE, FILM SESSION, PRIVATE

VISIT PRIVATE

RESULTS INTERPRETATION, PRIVATE

INTERPRETATION PRIVATE

Directory Record Type Record Types which may be included in the next lower-level
Directory Entity

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

44© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: *The first row of this table specifies the directory records that can be contained within the
Root Directory Entity.

2.4.4. File Management Roles and Services

Part 10 of the DICOM Standard specifies a set of file management roles and services. There are five
DICOM File Services, that describe the entire set of DICOM file operation primitives as seen in the
table below:

Table 2.7: DICOM File Services

The Merge DICOM Toolkit supplies the MCmediaStorageService class that performs the first two
(underlined) file services. That class also implements enhanced read and write functionality for the
creation and maintenance of DICOMDIR files and its hierarchy of directory entities and directory
records. The remaining three file services are best implemented by the application entity through
file system calls because they are file system dependent operations.

DICOM AEs that perform file interchange functionality are in turn classified into three roles:

STUDY COMPONENT PRIVATE

PRINT QUEUE FILM SESSION, PRIVATE

FILM SESSION FILM BOX, PRIVATE

FILM BOX BASIC IMAGE BOX, PRIVATE

BASIC IMAGE BOX PRIVATE

PRIVATE PRIVATE

MRDR (Not applicable)

Directory Record Type Record Types which may be included in the next lower-level
Directory Entity

DICOM File Services Description

M-WRITE Create new files in a file set and assign them a file ID.

M-READ Read existing files based on their file ID.

M-DELETE Delete existing files based on their file ID.

M-INQUIRE FILE-SET Inquire free space available for creating new files within a
file set.

M-INQUIRE FILE Inquire date and time of file creation (or last update if
applicable) for any file within a file set.

File Set Creator (FSC) uses M-WRITE operations to create a DICOMDIR file and one or more
DICOM files.

File Set Reader (FSR) uses M-READ operations to access one or more files in a DICOM file set.
An FSR shall not modify any files of the file set (including the DICOMDIR
file).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

45© Copyright Merge Healthcare Solutions Inc. 2025

The concept of these roles is used within the DICOM conformance statement of an application
entity that supports media interchange to more precisely express the capabilities of the
implementation. Conforming applications shall support one of the capability sets specified in the
table below. DICOM conformance is described in greater detail in the next section.

Table 2.8: Media Application Operations and Roles

File Set Updater (FSU) performs M-READ, M-WRITE, and M-DELETE operations. It reads, but
shall not modify the content of any DICOM files other than the DICOMDIR
file. It may create additional files by means of an M-WRITE or delete
existing files by means of an M-DELETE.

Media Roles M-WRITE M-READ M-DELETE M-INQUIRE
FILE-SET

M-INQUIRE
FILE

FSC Mandatory not required not required Mandatory Mandatory

FSR not required Mandatory not required not required Mandatory

FSC+FSR Mandatory Mandatory not required Mandatory Mandatory

FSU Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSR Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC+FSR Mandatory Mandatory Mandatory Mandatory Mandatory

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

46© Copyright Merge Healthcare Solutions Inc. 2025

2.5. Conformance
Part 2 of DICOM discusses conformance and is important to any AE developer. For an application
to be DICOM conformant it must:

● meet the minimum general conformance requirements specified in Part 2 and service specific
conformance requirements specified in Part 4 (Network Services), and/or Parts 10 and 11
(Media Services).

● have a published DICOM conformance statement detailing the above conformance and any
optional extensions.

Conformance also applies to aspects of the communications protocol that are managed by the
DICOM Toolkit. Most parameters are configurable by your application. The conformance statement
for the Merge DICOM Toolkit in Appendix C: DICOM Conformance Statement lists all these
protocol parameters and how they can be configured.

Part 2 also deals with private extensions to the DICOM Standard by defining Standard Extended
Services. Standard Extended Services give your application a little more flexibility, by allowing you to
add private attributes as long as they are of value type 3 (optional) and are documented in the
conformance statement.

DICOM also allows you to define your own Specialized and Private Services. These should be
avoided by most applications since they are non-standard, add complexity to your application, and
limit interoperability.

If you are significantly extending services or creating your own private services, you may need the
Merge DICOM Toolkit Extended Toolkit to assist in defining these services so that they can be
supported by the toolkit

47© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 3. Using the Merge DICOM Toolkit

You can use the Merge DICOM Toolkit 'out of the box' by using its supplied utility programs and
sample applications. In this section we discuss how to configure the toolkit and to use the utility
programs. Later, we discuss how to develop your own DICOM applications using the Merge DICOM
.NET™ Assembly.

3.1. Configuration
Merge DICOM is highly configurable and understanding its configuration files is critical to using the
library effectively. Four configuration files are used by Merge DICOM: an initialization file, an
application profile, a system profile, and a service profile.

Each of the four toolkit initialization files follow the same format. The format of the initialization files
is the same format that is used by others in the industry. Configuration files are broken down into
sections for easier organization and grouping of parameters. Each section has a section heading
enclosed in square brackets. Next, parameters are defined by putting the parameter name to the
left of an equal sign and its initial value to the right. Zero of more spaces may precede and follow the
equal sign. The figure above illustrates the format of an "ini" file.

Notice that parameter names are relative to their header sections. For example, PARAMETER_1 and
PARAMETER_2 are defined twice in the above example "ini" file. But, since each is defined in a
different section, they are considered different entities.

Each of the four configuration files are discussed separately below. Only the key configurable
parameters are summarized here. For detailed descriptions of all configuration files and their
parameters, see APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207.

3.1.1. Initialization File

The Merge DICOM Initialization File (usually called merge.ini) provides the DICOM Toolkit with its
top-level configuration. It specifies the location of the other three configuration files, along with
message and error logging characteristics.

All Merge DICOM applications require access to the Initialization File. Your .NET programs access
the Initialization File differently than do C applications, such as the utility programs distributed with
the Merge DICOM Toolkit.

The C utility programs access the merge.ini file by accessing the MERGE_INI environment variable.
You must set the MERGE_INI environmental variable to point to the Initialization File. This variable
can be set within a command shell, for example:

In DOS command shell:

set MERGE_INI=\mc3adv\merge.ini

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

48© Copyright Merge Healthcare Solutions Inc. 2025

See the Merge DICOM Toolkit Platform Notes for your platform if none of these methods apply.

Merge DICOM applications written in .NET may not use the MERGE_INI environment variable.
Instead, they can determine the location of the Initialization File in any way that is appropriate and
then pass the location to the Assembly, using the static mcInitialization method of the MC
class.

The initialization file contains one [MergeCOM3] section that points to the location of the other three
Merge DICOM initialization files, specifies characteristics of the message/error log kept by the
DICOM Toolkit library, turns particular types of logging on and off, and specifies where the
messages are logged (file, screen, both, or neither). In most cases the INFO, WARNING, and
ERROR messages will be sufficient. The Tn_MESSAGE settings (where n is an integer between 1 and
9) turns on lower-level protocol tracing capabilities. These capabilities can prove useful when
running into difficulties communicating with other implementations of DICOM over a network and
can be used by Merge OEM service engineers in diagnosing lower-level network problems.

3.1.2. Application Profile

The Merge DICOM Application Profile (usually called mergecom.app) specifies the characteristics
of your own application entity and the AEs your application will connect with over a network. The
name and location of this file is specified in the [MergeCOM3] section of the Merge DICOM
initialization file.

When your application acts as a client (SCU), you must specify in the Application Profile the
network address of the server (SCP) Application Entities you wish to connect (open an association)
with. Your client refers to the application entity by a DICOM Application Entity Title and this
is the same way it is referred to in the application profile. The AE title consists of a string of
characters containing no spaces and having a length of 16 characters or less. A section of the profile
exists for each Server AE you wish to connect with.

For example, if your application is an image source and also performs query and retrieval of images
from two separate DICOM AEs, it might contain sections like the following:

[Acme_Store_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Acme_QR_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_hp2

SERVICE_LIST = Query_Service_List

Acme_Store_SCP and Acme_QR_SCP are the AE titles for the applications you wish to connect with.
The storage server runs on a Sun computer having the host name acme_sun1, while the query/
retrieve server runs on an HP workstation with the host name acme_hp2. Both servers listen on port
104 (the standard DICOM listen port). The host name and port combined, make up the TCP/IP
network address for a listening server application. See the figure below.

Besides entering a hostname for the HOST_NAME parameter, it is also possible to simply enter an
IP address. Both IPv4 addresses and IPv6 addresses are allowed in this field.

The SERVICE_LIST is set to the name of another section in the application profile that lists the
DICOM services that will be negotiated with that application entity. For example, in this case these
sections might look like:

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

49© Copyright Merge Healthcare Solutions Inc. 2025

[Storage_Service_List]

SERVICES_SUPPORTED = 11# Services in list

SERVICE_1 = STANDARD_MR

SERVICE_2 = STANDARD_CR

SERVICE_3 = STANDARD_CT

SERVICE_4 = STANDARD_CURVE

SERVICE_5 = STANDARD_MODALITY_LUT

SERVICE_6 = STANDARD_OVERLAY

SERVICE_7 = STANDARD_SEC_CAPTURE

SERVICE_8 = STANDARD_US

SERVICE_9 = STANDARD_US_MF

SERVICE_10 = STANDARD_VOI_LUT

SERVICE_11 = STANDARD_NM

[Query_Service_List]

SERVICES_SUPPORTED = 2# Services in list

SERVICE_1 = STUDY_ROOT_FIND

SERVICE_2 = STUDY_ROOT_MOVE

[Storage_Service_List] lists the storage services that will be requested, while
[Query_Service_List] lists the type of query/retrieve that will be requested. These service
names are the strings used in Merge DICOM Toolkit to identify standard DICOM services. Any
services listed must be defined in the Service Profile, discussed below.

You may also dynamically create service lists at run time, using the methods of the
MCproposedContext and MCproposedContextList classes, as well as the constructors for the
MCproposedContextList class. This will be discussed in more detail in the DEVELOPING DICOM
APPLICATIONS section below.

A service list also needs to be defined for each of your own server AEs. Even though you do not
need a section for your server AE Title (since it is running on your local machine), you do need to
specify a service list that your application supports as an SCP. If your application also acts as a
storage server, for example, it could use [Storage_Service_List]. You also need to specify a
listen port for your server AE in the System Profile, which is discussed below.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

50© Copyright Merge Healthcare Solutions Inc. 2025

For DICOM Toolkit users, Merge DICOM allows for the defining of the transfer syntaxes supported
for each service in a service list. This functionality is implemented through the use of transfer syntax
lists. The basic service lists discussed above can be modified to include these transfer syntax lists.
The following is an example service list that has transfer syntaxes specified for each service:

[Storage_Service_List]

SERVICES_SUPPORTED = 3 # Number of Services

SERVICE_1 = STANDARD_MR

SYNTAX_LIST_1 = MR_Syntax_List

SERVICE_2 = STANDARD_US

SYNTAX_LIST_2 = US_Syntax_List

SERVICE_3 = STANDARD_CT

SYNTAX_LIST_3 = CT_Syntax_List

[MR_Syntax_List]

SYNTAXES_SUPPORTED = 4 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

SYNTAX_2 = EXPLICIT_BIG_ENDIAN

SYNTAX_3 = EXPLICIT_LITTLE_ENDIAN

SYNTAX_4 = IMPLICIT_LITTLE_ENDIAN

[US_Syntax_List]

SYNTAXES_SUPPORTED = 2 # Number of Syntaxes

SYNTAX_1 = RLE

SYNTAX_2 = IMPLICIT_LITTLE_ENDIAN

[CT_Syntax_List]

SYNTAXES_SUPPORTED = 2 # Number of Syntaxes

SYNTAX_1 = EXPLICIT_LITTLE_ENDIAN

SYNTAX_2 = IMPLICIT_LITTLE_ENDIAN

[Storage_Service_List] lists some standard storage service class services used by Merge
DICOM Toolkit. The SYNTAX_LIST_N parameter has been added to this example to specify a
transfer syntax list for each service. This optional parameter is set to the name of another section in
the application profile which lists a group of DICOM transfer syntaxes to be negotiated. When this
parameter is not set, the default non-compressed transfers syntaxes (implicit VR little endian,
explicit VR little endian, and explicit VR big endian) are negotiated.

The [MR_Syntax_List], [US_Syntax_List], and [CT_Syntax_List] sections each define a
separate transfer syntax list for the MR, US, and CT services respectively. Merge DICOM Toolkit
currently supports all transfer syntaxes specified in the DICOM standard. The names used for these
transfer syntaxes are defined in TABLE D.6: [ASSOC_PARMS] SECTION OF SYSTEM PROFILE
PARAMETERS ON PAGE 224, in APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

51© Copyright Merge Healthcare Solutions Inc. 2025

As mentioned earlier, Merge DICOM supports the dynamic creation of service lists at runtime. The
Assembly also provides the MCtransferSyntaxList.getObject factory method to construct an
MCtransferSyntaxList object from information in the configuration files. This will be discussed
in more detail in the DEVELOPING DICOM APPLICATIONS section below.

For server (SCP) applications, the order in which transfer syntaxes are specified in a transfer syntax
list dictates the priority Merge DICOM places on them during association negotiation. For example,
in the [US_Syntax_List] specified above, if a client (SCU) proposed the Ultrasound storage
service with the RLE compressed transfer syntax and the implicit VR little endian transfer syntax,
Merge DICOM would select the RLE transfer syntax because it was listed first in the transfer syntax
list.

When a transfer syntax list is not specified in a service list the priority Merge DICOM Toolkit places
on transfer syntaxes during association negotiation is dependent on the hardware platform. On little
endian machines (Intel based systems) the priority order is: Explicit VR Little Endian, Implicit VR
Little Endian, and Explicit VR Big Endian.

Merge DICOM also supports DICOM role negotiation through its service lists. Whereas in previous
examples, the same service list could be used for both client (SCU) and server (SCP), these service
lists are specific to the role to be negotiated for each service.

[SCU_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STORAGE_COMMITMENT_PUSH

ROLE_1 = SCU

[SCP_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STORAGE_COMMITMENT_PUSH

ROLE_1 = SCP

In this case, the [SCU_Service_List] supports the Storage Commitment Push SOP class as an
SCU and the [SCP_Service_List] supports the Storage Commitment Push SOP class as an SCP.
Merge DICOM will negotiate the association based on the settings for these roles.

The role for a service can be defined as SCU, SCP, BOTH, or be undefined. The table below contains
a complete listing of configurable roles for both requestors and acceptors along with the resultant
negotiated roles. Note that in some cases a service will be rejected because the roles being
negotiated do not match.

Table 3.1: Negotiated Roles

Requestor's
Configured Role

Acceptor's Configured
Role

Requestor's
Negotiated Role

Acceptor's Negotiated
Role

SCU SCP SCU SCP

SCU Rejected Rejected

BOTH SCU SCP

NOT DEFINED SCU SCP

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

52© Copyright Merge Healthcare Solutions Inc. 2025

For detailed information about the content of the Application Profile, see D.2. APPLICATION PROFILE
ON PAGE 210 in APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207

a. DICOM Asynchronous Communication

Merge DICOM also optionally supports DICOM Asynchronous Operations Window Negotiation
through service lists. The same service list can be used in this case for both the client (SCU) and
server (SCP). The following is an example service list that configures DICOM asynchronous
communication negotiation:

[SCU_Or_SCP_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

MAX_OPERATIONS_INVOKED = 10

MAX_OPERATIONS_PERFORMED = 10

SERVICE_1 = STANDARD_MR

In this case, the [SCU_Or_SCP_Service_List] supports the Standard MR SOP Class. For all
services, it supports 10 maximum operations invoked and 10 maximum operations performed.
When MAX_OPERATIONS_INVOKED and MAX_OPERATIONS_PERFORMED are not included in the
service list, asynchronous communications are not negotiated. See a subsequent section for details
on implementing DICOM asynchronous communications with Merge DICOM Toolkit.

b. Extended Negotiation

Merge DICOM optionally supports configuration of DICOM Extended Negotiation information in
service lists. Currently, the DICOM standard allows extended negotiation information for the Storage
and Query/Retrieve Service classes as defined in PS3.4 of the standard. The extended negotiation

SCP SCP Rejected Rejected

SCU SCP SCU

BOTH SCP SCU

NOT DEFINED Rejected Rejected

BOTH SCP SCU SCP

SCU SCP SCU

BOTH BOTH BOTH

NOT DEFINED SCP SCP

NOT DEFINED SCP SCU SCP

SCU Rejected Rejected

BOTH SCU SCP

NOT DEFINED SCU SCP

Requestor's
Configured Role

Acceptor's Configured
Role

Requestor's
Negotiated Role

Acceptor's Negotiated
Role

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

53© Copyright Merge Healthcare Solutions Inc. 2025

information can be set for only the client (SCU). Server applications utilizing extended negotiation
must set this information at run-time through the .NET Assembly.

[SCU_Service_List]

SERVICES_SUPPORTED = 2 # Number of Services
SERVICE_1 = STUDY_ROOT_QR_FIND
EXT_NEG_INFO_1 = 0x01
SERVICE_2 = STUDY_ROOT_QR_MOVE
EXT_NEG_INFO_2 = 0x01

In this case, the [SCU_Service_List] supports the Study Root Q/R Find and Move services. Both
services have set a single byte of extended negotiation information set to hexadecimal 0x01. (In this
case, this implies the Client supports relational Queries and Moves.) Multiple hexadecimal bytes
can be set in the service list by listing each byte in the format “0x00 0x01 0x02”.

c. Related General SOP Classes and Service Classes

DICOM Supplement 90 defines a mechanism in association negotiation to identify when a SOP
Class is a customization of a generalized SOP Class. It also defines a method to identify the service
class of a SOP Class that is proposed by an SCU. This allows flexibility in an SCP to support service
classes for which it supports the generalized version of a SOP Class, but does not explicitly support
the customized SOP Class. It also allows a mechanism to easily make an SCP that supports all
storage service class SOP Classes that are proposed to it.

Related General SOP Classes can be supported in the application profile by defining a service list
containing the related general SOP Classes for a given SOP class, and then assigning the service list
to the SOP Class. The following example shows how this is done:

[SCU_SR_General]

SERVICES_SUPPORTED = 2

SERVICE_1 = STANDARD_ENHANCED_SR

SERVICE_2 = STANDARD_COMPREHENSIVE_SR

[SCU_DX_General]

SERVICES_SUPPORTED = 1

SERVICE_1 = STANDARD_DX_PRESENT

[SCU_Service_List]

SERVICES_SUPPORTED = 3

SERVICE_1 = STANDARD_BASIC_TEXT_SR

REL_GENERAL_1 = SCU_SR_General

SERVICE_CLASS_1 = 1.2.840.10008.4.2

SERVICE_2 = STANDARD_IO_PRESENT

REL_GENERAL_2 = SCU_DX_General

SERVICE_CLASS_2 = 1.2.840.10008.4.2

SERVICE_3 = STANDARD_CT

SERVICE_CLASS_3 = 1.2.840.10008.4.2

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

54© Copyright Merge Healthcare Solutions Inc. 2025

In this case, the SCU_SR_General service list contains the related general SOP Classes for the
STANDARD_BASIC_TEXT_SR service. The REL_GENERAL_1 option points to the service list to use
as the related general services for SERVICE_1.

The above example also shows how the service class can be defined for each SOP Class within a
service list. For instance, SERVICE_CLASS_3 in the above example specifies the service class for
SERVICE_3. In this case, the UID for the Storage Service Class as defined in Supplement 90 is
used.

The service lists above are only utilized by SCU applications. For SCP applications, there are several
configuration options that define how Merge DICOM will negotiate an association when related
general SOP Classes are included or the Service Class is included for a SOP Class.

When the ACCEPT_STORAGE_SERVICE_CONTEXTS configuration option is set to Yes, Merge
DICOM will accept any proposed SOP class that is defined as supporting the Storage Service Class.

When the ACCEPT_RELATED_GENERAL_SERVICES configuration option is set to Yes, Merge
DICOM will accept any SOP class proposed if the SCP supports in its service list any of the related
general SOP Classes defined for a SOP Class proposed.

3.1.3. System Profile

The Merge DICOM System Profile (usually called mergecom.pro) contains configuration
parameters for the DICOM Toolkit Library itself. The name and location of this file are specified in
the [MergeCOM3] section of the Merge DICOM initialization file.

Many of these parameters should never need to be modified by the user, including low-level
protocol settings such as time-outs. Only the parameters that should be understood by every user
of the toolkit are discussed here; for a discussion of all parameters, see D.3. SYSTEM PROFILE ON
PAGE 223 in APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207.

Most importantly, you must place the license number you received when you purchased the toolkit
in the [ASSOC_PARMS] section of the system profile. If the license you received with your toolkit was
83F3-3F26-FD6E you would need to set it in the [ASSOC_PARMS] section as follows:

[ASSOC_PARMS]

LICENSE = 83F3-3F26-FD6E

IMPLEMENTATION_CLASS_UID = 2.16.840.1.113669.2.1.2

IMPLEMENTATION_VERSION = MergeCOM3_361

ACCEPT_MUTLPLE_PRES_CONTEXTS = Yes

The toolkit sample applications, and your own applications that use the DICOM Toolkit Library will
not work without a valid license number.

The above example of the [ASSOC_PARMS] section of the system profile also contains example
implementation class UID and implementation version configuration values. The implementation
class UID is intended by the DICOM standard to be unique for major revisions of an application
entity. The implementation version is intended to be unique for the minor revisions of an application
entity. These configuration values are used during association negotiation by Merge DICOM and are
intended to aid in tracking versions of applications in the field.

The ACCEPT_MULTIPLE_PRES_CONTEXTS configuration value is used by server (SCP) applications.
This value determines if multiple presentation contexts can be negotiated for a single DICOM
Service. This option is discussed below.

As mentioned earlier, a listen port must be identified for your server AE. Port 104 is the standard
DICOM listen port. This, along with the number of simultaneous TCP connection requests that can

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

55© Copyright Merge Healthcare Solutions Inc. 2025

be queued up for acceptance (pending) for Merge DICOM toolkit, is specified in the
[TRANSPORT_PARMS] section.

The MAX_PENDING_CONNECTIONS setting in the “mergecom.pro” file refers to the maximum
number of outstanding connection requests per listener socket. The value of this configuration is
passed by the toolkit to the listen() call on the socket as the backlog parameter and it specifies how
many pending connections can be queued at any given time.

The MAX_PENDING_CONNECTIONS configuration option affects the accepting of associations but
not the requesting of associations and it affects the behavior at the TCP level. In the default case, if
more than five association requests arrive at once then only the first five will be accepted by TCP
and passed to Merge DICOM Toolkit, the others would be refused at the TCP level.

[TRANSPORT_PARMS]

TCPIP_LISTEN_PORT = 104

Max number of open listen channels

MAX_PENDING_CONNECTIONS = 5

An important section of the System Profile is the [MESSAGE_PARMS]section:

[MESSAGE_PARMS]

LARGE_DATA_STORE = FILE # | MEM Default = FILE

LARGE_DATA_SIZE = 200

OBOW_BUFFER_SIZE = 4096

DICTIONARY_FILE = /users/mc3adv/mrgcom3.dct

TEMP_FILE_DIRECTORY = /users/mc3adv/tmp_files/

MSG_INFO_FILE = /users/mc3adv/mrgcom3.msg

The LARGE_DATA_STORE parameter informs the toolkit where it should store large data; either in
memory, or in temporary files on disk. Large data is defined as a value for an attribute larger than
LARGE_DATA_SIZE bytes. Pixel data associated with a medical image would most certainly be
considered large data.

If you are running your process on a resource rich system that supplies plenty of physical and virtual
memory, you should select LARGE_DATA_STORE = MEM to improve your performance. If your
process is not so fortunate or you are dealing with messages with very large data values, you will
want to use LARGE_DATA_STORE = FILE. In this case, the DICOM Toolkit will manage the large
data in temporary files located in the TEMP_FILE_DIRECTORY you specify.

Large data that is of value representation:

● OB (Other stream of Bytes) or

● OW (Other stream of 16-bit Words) or

● OL (Other stream of 32-bit words) or

● OV (Other stream of 64-bit Words) or

● OD (Other A string of 64-bit IEEE 754:1985 floating point words) or

● OF (Other string of 32- bit IEEE 754:1985 floating point words)

are treated specially by the toolkit. Pixel Data, Curves, and Overlays are composed of this type of
data. You can let the toolkit manage OB/OW/OL/OV/OD/OF data for you like any other large data,
or register your own Callback Class in your applications to deal with such data as it is being received

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

56© Copyright Merge Healthcare Solutions Inc. 2025

or transmitted over the network. The use of Callbacks will be covered later when we discuss
developing DICOM applications with the toolkit.

The OBOW_BUFFER_SIZE is used to tell the toolkit what size 'chunks' in bytes of OB/OW/OL/OV/
OD/OF data it should read in before either writing the data to a temporary file or passing it to your
Callback Class. Choosing a large number for OBOW_BUFFER_SIZE means less time spent by your
application process writing to temporary files or making callbacks, but results in a larger process
size. If you need to use temporary files or callbacks, you should tune this parameter to maximize
performance within the constraints of your runtime environment.

Another binary file supplied with the toolkit is the message info file. This file contains binary
encoded message objects and is accessed when an application opens a message. Once open,
these objects reside in memory, are 'filled in' by your application, and become a message object
instance that can be exchanged over the network. The message info file, along with the data
dictionary file, also make possible the powerful message validation capabilities of the DICOM
Toolkit. The message info file is a binary file supplied with your toolkit with the default name of
mrgcom3.msg. You also specify the location and name of the message info file using the
MSG_INFO_FILE parameter.

It is often useful to capture the raw data that is transmitted across the network to help determine
exactly what each side of an association is sending. Network "sniffer" programs are often used to
capture this data, but they are often not useful when the data is being transmitted over a secure
network connection, as the data is often encrypted. Merge DICOM provides a network capture
facility that will capture network data as it is sent or received. The data that is captured to one or
more files and is formatted such that it can be analyzed using the MergeDPM© utility.

Refer to APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207 for a discussion of the following
configuration parameters that are used to configure the network capture facility. They are encoded
in the [TRANSPORT_PARMS] section of the System Profile (mergecom.pro).

NETWORK_CAPTURE

CAPTURE_FILE

CAPTURE_FILE_SIZE

NUMBER_OF_CAP_FILES

REWRITE_CAPTURE_FILES

3.1.4. Service Profile

The Service Profile (usually called mergecom.srv) informs the toolkit what types of services and
commands it supports, and what the corresponding message info files are. This file also lists the
meta-services and items supported by the toolkit. Items are the nested 'sub-messages'
contained within attributes of a message having the VR Sequence of Item (SQ) and will be
discussed in greater detail later. The name and location of the service profile are specified in the
[MergeCOM3] section of the Merge DICOM initialization file.

The service profile, along with the data dictionary and message info files, is generated from the
Merge DICOM Database and should be modified by other means only by very experienced or
specialized users.

Additional information about the service profile can be found in D.3. SYSTEM PROFILE ON PAGE 223,
of APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

57© Copyright Merge Healthcare Solutions Inc. 2025

3.2. Message Logging
Merge DICOM Toolkit supplies a message logging facility whereby three primary classes of
messages can be logged to a specified file and/or standard output:

● Errors

● Warnings

● Status

Error messages include unrecoverable errors, such as “association aborted”, or “failure to connect
to remote application”. Other error messages may be catastrophic but it is left to the application to
determine whether or not to abort an association, such as an “invalid attribute value” or “missing
attribute value” in a DICOM message.

Warnings are meant to alert toolkit users to unusual conditions, such as missing parameters that
are defaulted or attributes having values that are not one of the defined terms in the standard.

Status messages give high-level messages describing the opening of associations and exchanging
of messages over open associations.

As discussed earlier, other more detailed logging can be obtained by using the T1_MESSAGE
through T9_MESSAGE logging levels. For example, the T5_MESSAGE logging level can be used to log
the results of validate or validateAttribute methods of the MCdimseMessage class.

The trace logging levels are intended strictly for debugging purposes. If left on, they can seriously
degrade toolkit performance. In particular, the T2, T7 and T9 levels should be turned off in normal
operation.

An excerpt from a Merge DICOM Toolkit message log file is included below that contains all three
classes of messages: errors, warnings, and informational.

Message Log Example:

...

(6196) 03-29 21:14:54.77 MC3 W: (0010,1010): Value from stream had
problem:

(6196) 03-29 21:14:54.78 MC3 W: | Invalid value for this tag's VR

(6196) 03-29 21:14:56.41 MC3(Read_PDU_Head) E: Error on
Read_Transport call

(6196) 03-29 21:14:56.41 MC3(MCI_nextPDUtype) E: Error on
Read_PDU_Head call

(6196) 03-29 21:14:56.41 MC3(Transport_Conn_Closed_Event) E:
Transport unexpectedly closed

(6196) 03-29 21:14:56.41 MC3(MCI_ReadNextPDV) I: DUL_read_pdvs error:
UL Provider aborted the association

...

The first column contains the ID of the thread where the message was generated. The next column
contains the date and the time when the message was generated.

The toolkit synchronizes the logging internally. Each call to log a message will block the calling
thread until other pending calls are completed.

See 4.8. USING THE MERGE DICOM LOG FILE ON PAGE 71 for more details on logging.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

58© Copyright Merge Healthcare Solutions Inc. 2025

3.3. Utility Programs
The Merge DICOM Toolkit supplies several useful utility programs. These utilities can be used to
help you validate your own implementations and better understand the standard.

All these utilities use the Merge DICOM Toolkit C Run-time Library and require that you set your
MERGE_INI environmental variable to point to the proper configuration files (as described earlier).

3.3.1. mc3comp

The mc3comp utility can be used to compare the differences between two DICOM objects. The
objects can be encoded in either the DICOM file or “stream” format and do not have to be encoded
in the same format. The utility will output differences in tags between the messages taking into
account differences in byte ordering and encoding. The syntax for the mc3conv utility is the
following:

mc3comp [-t1 <syntax> -t2 <syntax>] [-e file] [-o -m1 -m2] file1 file2

-t1 <syntax>Optional specify transfer syntax of 'file1'message, where

<syntax> = 'il' for implicit little endian (default),

 'el' for explicit little endian,

 'eb' for explicit big endian.

-t2 <syntax>Optional specify transfer syntax of 'file2' message,
where

<syntax> = 'il' for implicit little endian (default),

 'el' for explicit little endian,

 'eb' for explicit big endian.

-e <file>Optional exception file of all tags to ignore in comparison.

-oCompare OB/OW/OF (e.g.,binary pixel) data.

-m1Compare 'file1' in DICOM-3 file format.

-m2Compare 'file2' in DICOM-3 file format.

-hShow these options.

file1DICOM SOP Instance (message) file

file2Another DICOM SOP Instance (message) file

Example:mc3comp -t1 il -m2 -o 1.img 1.dcm

3.3.2. mc3conv

The mc3conv utility can be used to convert a DICOM object between various transfer syntaxes and
formats. The utility will read an input file and then write the output file in the transfer syntax specified
in the command line. The utility can also convert between DICOM “stream” format and the DICOM
file format. The syntax for the mc3conv utility is the following:

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

59© Copyright Merge Healthcare Solutions Inc. 2025

mc3conv input_file output_file [-t <syntax>] [-p] [-m] [-x] [-s
<syntax> [-tag <tag> <"new value">]

input_fileDICOM SOP Instance (message) file.

output_fileOutput DICOM SOP Instance (message) file.

-tSpecify transfer syntax for 'output_file', where

<syntax> = 'il' for implicit little endian (default),

 'el' for explicit little endian,

 'eb' for explicit big endian.

-mSpecify format of 'output_file' to be DICOM-3 media (Part 10)
format.

-sSpecify transfer syntax for 'input_file'f.

-pJust extract the pixel data from 'input_file' into 'output_file'.
If multiframe and encapsulated, '_x' is appended to
'output_file' for each frame

-tagChange value for this tag in 'output_file', where

<tag> = the tag that is to be changed in hex 0x...

<new value> = the value for the tag in quotes, multi values

 separated as "val1\val2".

-xSpecify format of 'output_file' to be XML format

-hShow these options. Example: mc3conv in.img out.dcm -t el -m

Example: mc3conv in.img out.dcm -t el -m

3.3.3. mc3echo

The mc3echo utility validates application level communication between two DICOM AEs. An echo
test is the equivalent of a network 'ping' operation, but at the DICOM application level rather than
the TCP/IP transport level.

All server (SCP) applications built with the DICOM Toolkit also have built-in support of the
Verification Service Class and the C-ECHO command.

The command syntax follows:

mc3echo [-c count] [-r remote_host] [-l local_app_title] [-p
remote_port] remote_app_title

-c countInteger number specifying the number of echoes to send to the
remote host. If -c is not specified, one echo will be
performed.

-r remote_hostHost name of the remote computer If -r is not

specified, the default value for remote_host is configured in the
Application Profile.

-l local_app_titleApplication title of this program.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

60© Copyright Merge Healthcare Solutions Inc. 2025

?- If -l is not specified, the default value

?- For local_app_title is MERGE_ECHO_SCU

-p remote_portPort number the remote computer is listening on.

If -p is not specified, the default value for remote_host is
configured in the Application Profile.

3.3.4. mc3list

mc3list displays the contents of binary DICOM message files in an easy to read manner. The
message files could have been generated by mc3file (see below) or written out by your application.

mc3list is a useful educational tool as well as a tool that can be used for off-line display of the
DICOM messages your application generates or receives.

The command syntax follows:

mc3list <filename> [-t <syntax>] [-m]

filenameFilename containing message to display

-tSpecify transfer syntax of message, where

syntax = "il" (implicit little endian),

"el" (explicit little endian), or

"eb" (explicit big endian)

-m Optional display a DICOM file object

If the DICOM service and/or command cannot be found in the message file, a warning will be
displayed, but the message will still be listed.

The default transfer syntax is implicit little endian (the DICOM default transfer syntax). If the transfer
syntax is incorrectly specified, the message will not be displayed correctly.

3.3.5. mc3valid

The mc3valid utility validates binary message files according to the DICOM standard and notifies
you of missing attributes, improper data types, illegal values, and other problems with a message.
mc3valid is a powerful educational and validation tool that can be used for the off-line validation of
the DICOM messages your application generates or receives.

The command syntax follows:

mc3valid <filename> [-e|-w|-i] [-s <serv> -c <cmd>] [-p] [-q] [-t
<syntax>]

<filename>Filename containing message to validate.

-eDisplay error messages only (optional).

-wDisplay error and warning messages (optional, default).

-iDisplay informational, error, and warning messages (optional).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

61© Copyright Merge Healthcare Solutions Inc. 2025

-s <serv>Force the message to be validated against service name
"serv", used along with '-c' (optional).

-c <cmd>Force the message to be validated against command name "cmd",
used along with '-s' (optional).

-qDisable prompting for correct service-command pairs (optional).

-tSpecify transfer syntax of message, where

syntax = "il" (implicit little endian)

“el" (explicit little endian)

"eb" (explicit big endian)

This command validates the specified message file; printing errors, warnings, and information
generated to standard output. The user can force the message to be validated against a specified
DICOM service-command pair if the message does not already contain this information.

If the service-command pair is not contained in the message, the program will list the possible
service-command pairs and the user can select one of them. When using this program with a batch
file, this option can be shut off with the -q flag.

The default transfer syntax is implicit little endian (the DICOM default transfer syntax). If the transfer
syntax is incorrectly specified, the message cannot be validated.

Limitations

While mc3valid's message validation is quite comprehensive, it does have limitations. These
limitations are discussed in detail in the description of the validate method of the
MCdimseMessage class in the Assembly Windows Help File. The DICOM Standard should be
always be considered the final authority.

3.3.6. mc3file

Sample DICOM messages can be generated with the mc3file utility. You specify the service,
command, and transfer syntax and mc3file generates a 'reasonable' sample message that is
written to a binary file. The contents of this file are generated in DICOM file format or in exactly the
format as the message would be streamed over the network.

The program fills in default values for all the required attributes within the message. You can also
use this utility to generate its own configuration file, which you can then modify to specify your own
values for attributes in generated messages.

These generated messages are purely meant as 'useful' examples that can be used to test message
exchange or give the application developer a feel for the structure of DICOM messages. They are
not intended to represent real world medical data.

The messages generated can be validated or listed with the mc3list and mc3valid utilities.

The command syntax for mc3file is the following:

mc3file <serv> <cmd> <num> [-g <file>] [-c <file>] [-l] [-m]

[-q] [-t <syntax>] [-f <file>]

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

62© Copyright Merge Healthcare Solutions Inc. 2025

<serv> <cmd> These two options are always used together. They
specify the service name and command for the message to be
generated. These names can be either upper or lower case. If the
exact names for a service command pair are not known, the -l
option can be used instead to specify the service name and
command. If the service name and command are improperly
specified, mc3file will act as if the -l option was used and ask
the user to input the correct service name and command.

<num> This option specifies the number of message files to be
generated by mc3file. If the -g option is used, this option is
not needed on the command line. If the -c option is used, mc3file
assumes the number is 1, although a higher number can be
specified on the command line. mc3file will vary any fields that
have a value representation of time when multiple files are
generated, although when the -c option is used, the utility will
use the time fields as specified in the configuration file. Thus
multiple message files generated with the -c option are
identical.

-g <file> This option causes mc3file to generate an ASCII
configuration file. The file contains a listing of all the valid
attributes for the specified message. The utility also adds
sequences contained in the message along with their attributes.
Each attribute in the file contains the tag, value
representation, and the default value MC3File uses for the
attribute. If a given attribute has more than one value, the
character "\" is used to delimit the values. A default value
listed as "NULL" means the attribute is set to NULL. If the
filename specified already exists, it will be written over my
MC3File. The configuration file can be modified and reloaded
into MC3File with the -c option to generate a DICOM message.

-c <file> This option reads in a configuration file previously
generated by mc3file. The service name and command for the
message need not be specified on the command line because they
are contained in <filename>. Because multiple files generated
with this option are identical, mc3file assumes only one file
should be generated. This assumption can be overridden by
specifying a number on the command line.

-l This option lists all the service command pairs supported by
mc3file. When generating a message, this option can be used
instead of explicitly specifying the service name and command on
the command line. When specified alone in the command line, the
complete list of pairs is printed out without pausing.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

63© Copyright Merge Healthcare Solutions Inc. 2025

-m This option allows the user to generate a DICOM file. When
generating the file object, mc3file encodes the File Meta
Information.

-q This option prevents mc3file from prompting the user for
correct service command pairs. It is a useful option when running
the program from a batch file.

-t <syntax> This option specifies the transfer syntax the DICOM
message generated is stored in. The default transfer syntax is
implicit little endian. The possible values for <syntax> are
"il" for implicit little endian, "el" for explicit little
endian, and "eb" for explicit big endian.

-f <file>This option allows the user to specify the first eight
characters of the names of the DICOM message files being
generated. mc3file will then append a unique count to the end of
the filename for each message being generated. The default value
is "file" when creating a DICOM file and "message" when creating
the format that DICOM messages send over a network.

mc3file retrieves default values for attributes from the text file “default.pfl”. Unlike the “info.pfl” and
“diction.pfl” files which are converted into binary files, “default.pfl” is used as a text file. It will first be
searched for in the current directory and then in the message information directory. This file
contains default values for all messages and for specific service-command pairs. This file can be
modified to contain defaults specific for the user, although it is recommended that a backup of the
original be kept. If this file is modified, there are no guarantees that the messages generated will
validate properly.

64© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 4. Developing DICOM
Applications

The Merge DICOM Toolkit .NET Assembly provides classes and interfaces that represent all of the
major components of the DICOM standard:

Utility and Initialization methods — MC

DICOM constants

● MCdicom

DICOM Applications

● Local applications — MCapplication

● Remote applications — MCremoteApplication

Merge DICOM Logging

● MClog

● MClogHandler

● MClogInfo

● MClogTime

DICOM Associations — MCassociation

● Association acceptors — MCacceptor

● Association requesters — MCrequester

● Association negotiation

● MCnegotiationInfo

● McstorageNegotiation

● MCqueryRetrieveNegotiation

● MCproposedContext

● MCproposedContextList

● MCresultContext

● MCtransferSyntax

● MCtransferSyntaxList

DICOM Messages and Message Elements

● DIMSE messages

● MCabstractMessage

● MCdimseMessage

● Data Elements — MCdataElement

● Data element identifiers — MCtag

● DICOM Value Representation — MCvr

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

65© Copyright Merge Healthcare Solutions Inc. 2025

● Attributes — MCattribute

● Attribute representations

● Age String — MCage

● Date — MCdate

● DateTime — MCdateTime

● Time — MCtime

● Person Name — MCpersonName

● UID — MCinstanceUID

● Patient Name Component Group — MCpnComponentGroup

● String Encoding — MCstringEncoder

● Attribute Collections — MCattributeSet

● MCcommandSet

● MCdataSet

● MCitem

● MCfileMetaInfo

DICOM message handling callbacks

● Data Sinks

● MCdataSink interface

● MCfileDataSink

● MCmemoryDataSink

● MCstreamDataSink

● Data Sources

● MCdataSource interface

● MCfileDataSource

● MCmemoryDataSink (MCmemoryDataSink implements the MCdataSink and
MCdataSource interfaces.)

● MCstreamDataSource

DICOM message validation

● MCvalidationError

● validate and validateAttribute methods of MCdataSet, MCfile and MCdimseMessage
classes

DICOM Service class Information

● MCsopClass

● MCfailedSopInfo

● MCrefSopInfo

● MCrefStudyInfo

DICOM Network Service classes — MCdimseService

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

66© Copyright Merge Healthcare Solutions Inc. 2025

● MCbasicWorklistManagementService

● MCpatientManagementService

● MCprintManagementService

● MCqueryRetrieveService

● MCqueueManagementService

● MCresultsManagementService

● MCstorageService

● MCstorageCommitmentService

● MCstudyContentNotificationService

● MCstudyManagementService

● MCverificationService

DICOM media services and objects

● Files —

● MCabstractMessage

● MCfile

● DICOMDIR — MCdir

● DICOMDIR record — MCdirRecord

● DICOM files service — MCmediaStorageService

Exception handling — Mcexception, MCruntimeException and their sub classes

Compression related

● Compression Interface —

● MCcompression

● RLE Compressor — MCrleCompressor

● RLE Decompressor — MCrleDecompressor

● JPEG and JPEG2000 Compressor — MCstandardCompressor

● JPEG and JPEG2000 Decompressor — MCstandardDecompressor

This section of the User's Manual attempts to present the highlights of the Merge DICOM Toolkit
Assembly in a logical manner as it might be used in real DICOM applications. The classes are
presented in the context of example C# source code snippets, and alternative approaches are
presented that tradeoff certain features for the benefits of increased performance.

Most of the discussions that follow pertain both to networking and media interchange applications;
only the 4.11. ASSOCIATION MANAGEMENT (NETWORK ONLY) ON PAGE 73, 4.11.16. NEGOTIATED
TRANSFER SYNTAXES ON PAGE 83, and 4.18. MESSAGE EXCHANGE (NETWORK ONLY) ON PAGE 138
sections are networking specific. The last two sections; 4.21. DICOM FILES ON PAGE 150 and 4.22.
DICOMDIR ON PAGE 159 are media interchange specific.

4.1. Library Import
In order to access the classes of the Merge DICOM Toolkit you should use the mergecom
namespaces in your applications. This gives you visibility not only to the public and protected

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

67© Copyright Merge Healthcare Solutions Inc. 2025

classes, but it also provides visibility to the constants contained in the MCdicom interface. The
following namespaces are utilized by the Merge DICOM .NET assembly:

using Mergecom;

using Mergecom.Exceptions;

using Mergecom.Gen;

using Mergecom.Logging;

4.2. Library Constants
The MCdicom interface is generated from the Merge DICOM dictionary and contains constant
values for all of the attributes defined by the DICOM standard. A copy of the interface source file is
included with the library, although you will never have a need to actually compile the file.

The MCservices interface is generated from the toolkit DICOM database and contains the
constant names of the services defined and supported by the toolkit.

The MCitems interface is also generated from the toolkit DICOM database and normalizes the
names of the sequence items defined and supported by the toolkit

4.3. Exception Handling
Each of the Toolkit classes is documented in the Merge DICOM .NET™ Assembly Help File. The
exceptions that each class may throw are documented there.

Merge DICOM methods throw exceptions derived from MCexception class that extend the
System.ApplicationException class.

A special group of exceptions is MCruntimeException derived exception classes that are thrown
for serious problems within the Assembly or when untenable conditions have been detected. Most
applications would not catch these exceptions.

When an instance of MCexception is thrown, a message is logged to the Merge DICOM log file if the
severity level of the exception is enabled in the merge.ini file. (Most exceptions have a severity level
of "error" and are always logged.)

Each MCexception object has a public exceptionNumber field that identifies the exception. If
desired, you may simply catch MCexception and then interrogate the exceptionNumber property
to determine which specific exception was thrown. The exception numbers are defined by
constants in the MCexception class and listed in TABLE 4.1: EXCEPTIONNUMBER PROPERTY FOR EACH
MCEXCEPTION CLASS ON PAGE 68. The following, for example, may be used to check exception after a
network read.

try {

msg = assoc.read(30000);

} catch (MCassociationReleasedStatus e) {

// Normal association completion:

System.Console.Out.WriteLine("Association Released.");

} catch (MCexception e) {

/ Association is no longer active

if (e.exceptionNumber == NETWORK_SHUTDOWN)

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

68© Copyright Merge Healthcare Solutions Inc. 2025

System.Console.Out.WriteLine("Network dropped");

else if (e.exceptionNumber == ASSOCIATION_ABORTED)

System.Console.Out.WriteLine("Assoc. abort");

else if (e.exceptionNumber == INVALID_MESSAGE_RECEIVED)

System.Console.Out.WriteLine("Invalid msg");

else if (e.exceptionNumber == NETWORK_INACTIVITY_TIMEOUT)

System.Console.Out.WriteLine("Network stopped");

else {

System.Console.Out.WriteLine("MCexception");

}

break;

} catch (System.Exception e) {

System.Console.Out.WriteLine("Error on network read");

assoc.abort();

break;

}

You could, of course, have separate catch clauses for each exception.

Table 4.1: exceptionNumber property for each MCexception class

MCexception subclass exceptionNumber property

MCalreadyExistsException ALREADY_EXISTS

MCalreadyInitializedException ALREADY_INITIALIZED_EXCEPTION

MCalreadyListeningException ALREADY_LISTENING

MCassociationAbortedException ASSOCIATION_ABORTED

MCassociationRejectedException ASSOCIATION_REJECTED

MCassociationReleasedStatus ASSOCIATION_RELEASED

MCattributeNotFoundException ATTRIBUTE_NOT_FOUND

MCcallbackCannotComplyException CALLBACK_CANNOT_COMPLY

MCcallbackInvalidArgumentException CALLBACK_INVALID_ARGUMENT

MCconfigFileErrorException CONFIG_INFO_ERROR

MCconfigurationError CONFIGURATION_ERROR

MCconnectionFailedException CONNECTION_FAILED

MCdicomdirException DICOMDIR_ERROR

MCdisposedException OBJECT_DISPOSED

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

69© Copyright Merge Healthcare Solutions Inc. 2025

4.4. Library Initialization
Your first call to the Assembly should be the static mcInitialization method of the MC class.
Using the library without an explicit initialization results in automatic initialization using the default
configuration. The mcInitialization method provides the location of the Initialization File
(merge.ini) and allows Merge DICOM to perform essential startup tasks.

FileInfo mergeIniFile = new FileInfo("Path to merge.ini");

MCillegalArgumentException ILLEGAL_ARGUMENT_EXCEPTION

MCinactivityTimeoutException NETWORK_INACTIVITY_TIMEOUT

MCincompatibleValueException INCOMPATIBLE_VALUE

MCinvalidEncodingWarning INVALID_CHARS_IN_VALUE

MCinvalidEncodingException INVALID_DIMSE_COMMAND

MCinvalidDirRecordTypeException INVALID_DIR_RECORD_TYPE

MCinvalidLicenseInfoError INVALID_LICENSE

MCinvalidMessageReceivedException INVALID_MESSAGE_RECEIVED

MCinvalidTransferSyntaxException INVALID_TRANSFER_SYNTAX

MClostConnectionException LOST_CONNECTION

MCmaxOperationsExceededWarning MAX_OPERATIONS_EXCEEDED

MCnegotiationAbortedException NEGOTIATION_ABORTED

MCnetworkShutdownException NETWORK_SHUTDOWN

MCnoAttributesException NO_ATTRIBUTES

MCnoSuchRecordException NO_SUCH_RECORD

MCnoSuchValueException NO_SUCH_VALUE

MCnotFoundException NOT_FOUND

MCnotIntiaiizedError NOT_INITIALIZED_EXCEPTION

MCnotStandardElementException NOT_A_STANDARD_DATA_ELEMENT

MCoperationNotAllowedException OPERATION_NOT_ALLOWED

MCrequiredAttributeMissingException REQUIRED_ATTRIBUTE_MISSING

MCtimeoutException TIMEOUT

MCunacceptableServiceException UNNACCEPTABLE_SERVICE

MCunknownHostNameException UNKNOWN_HOST

MCexception subclass exceptionNumber property

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

70© Copyright Merge Healthcare Solutions Inc. 2025

try {

MC.mcInitialization(mergeIniFile);

} catch (MCalreadyInitializedException e) {

…

} catch (MCinvalidLicenseInfoError e) {

…

} catch (MCruntimeException e) {

// DLL Not Found …

}

The mcInitialization method allows the Toolkit to perform the following critical processing.

First, the Merge DICOM C/C++ toolkit dynamic link library, Mergecom.Native.dll is loaded. The
.NET CLR searches for the library using the platform's normal search path.

If the library cannot be located, an MCruntimeException exception will be thrown.

After the dynamic library is loaded, the C toolkit is initialized. If an error occurs during initialization,
the MCnotInitializedError exception is returned. This may include errors accessing the Merge
DICOM Data Dictionary or Message info files. This could happen if you have not specified or
incorrectly specified the DICTIONARY_FILE or MSG_INFO_FILE parameters in the System Profile
(mergecom.pro). When this exception is thrown, further information on the reason for the exception
may be contained in the merge.log file.

Then the license key you specified in the System Profile (mergecom.pro) is checked for validity. If
the key validation fails or the license key is not in the System Profile, an
MCinvalidLicenseInfoError exception is thrown. Any further Library calls will result in an
MCnotInitializedError runtime exception.

At any time you can check to see if the Library has been initialized by using the static
mcIsInitialized method of the MC class. The method returns true if the mcInitialization
method has already been called successfully.

Note that the Library cannot be used from different application domains at the same time. In order
to use it from a different application domain the Library must be released first in the application
domain that initialized it.

4.5. Releasing the library
The static mcLibraryRelease method of the MC class is used to release the resources used by
the Merge DICOM library. The method performs a graceful shutdown of the library.
mcInitialization must be called again before using the library. This method is normally called
before exiting a Merge DICOM application. This method will release all resources allocated by the
Merge DICOM C/C++ Toolkit dynamic link library.

mcLibraryRelease must be called in the same application domain in which the
mcInitialization call was made. After the Library is successfully released it can be re-initialized
in either the same application domain or a new one.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

71© Copyright Merge Healthcare Solutions Inc. 2025

4.6. Getting the Assembly Version
You can use the static mcGetVersionString method of the MC class to retrieve the string
identifying the Merge DICOM Library version. The library version number string is of the form
"n.m.v" where n is major version number, m is minor version number and v is an interim release
number.

4.7. Releasing Native Memory
The Merge DICOM .NET Classes call a number of routines in the C Merge DICOM toolkit that
allocate memory. The .NET classes have been written so native resources associated with a .NET
class are automatically freed when the .NET CLR garbage collector cleans up the managed memory
in the class. Note, however, that a number of classes implement the dispose method that an
application can use if it wants greater control over when native memory is freed. Note that after this
method is called for a specific instance, that instance can no longer be utilized by your application.

Here is a list of the classes that can be disposed explicitly:

● MCapplication

● MCassociation

● MCdataSet

● MCdimseMessage (contains a MCdataSet reference)

● MCfile (contains a MCdataSet reference)

● MCitem

● MCproposedContextList

● MCproposedContext

● MCtransferSyntaxList

● MCdata

4.8. Using the Merge DICOM log file
The Mergecom.Logging namespace contains definitions for utilizing the Merge DICOM log file
(usually merge.log). The Merge DICOM logging mechanism allows logging at several different
logging levels. Error, Warning, Info, and nine trace logging levels are allowed. The MClog class
contains methods for logging to these various log levels. The method prototypes to log to several of
these levels are:

public static void error(System.String msg)

public static void warning(System.String msg)

public static void info(System.String msg)

public static void t1(System.String msg)

public static void t9(System.String msg)

Each of these methods writes an entry into the Merge DICOM log file containing msg. The entry will
be logged only if messages of specific type have been enabled in the merge.ini file.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

72© Copyright Merge Healthcare Solutions Inc. 2025

The Merge DICOM log file is defined by the LOG_FILE parameter in the [MergeCOM3] section of the
merge.ini file. To enable logging of specific types of messages, enter one or more of these
parameters in the merge.ini file:

ERROR_MESSAGE =<destinations>
WARNING_MESSAGE=<destinations>
INFO_MESSAGE=<destinations>

<destinations> may be one or both of these values, separated by commas:

NOTE: Error_Msg type messages are always written to the LOG_FILE.

4.9. Capturing Log Messages in Your Application
You may want to capture log messages yourself, for example to integrate Merge DICOM log
messages into your application's logging scheme.

To do this, create a new class that implements the MClogHandler interface. That interface requires
you to provide a receiveLogMessage method that will be called by Merge DICOM whenever it is
logging a message. Information about the logged message is passed to the receiveLogMessage
method in an instance of the MClogInfo class.

You must register your log handler using the addHandler method of the MClog class. Once
registered your MClogHandler class will be notified as messages are logged. Multiple handlers can
be registered at any given time. You can de-register a handler by calling the removeHandler
method of the MClog class.

Refer to the description of addHandler in the .NET Assembly Windows Help File, for more detailed
information about controlling which messages will reach your handler.

If a log handler is registered the Library calls receiveLogMessage in the thread that generated the
message but the calls are synchronized by the Library so the log handler does not have to deal with
synchronization.

4.10. Registering Your Application
Create an Application Object MCapplication.getApplication

Before performing any network or media activity, your application must register its DICOM
Application Title with the Merge DICOM Toolkit. This is done by calling the getApplication
factory method of the MCapplication class. The getApplication method returns an
MCapplication object that represents your DICOM Application Entity. Note that if the
getApplication method is called more than once with the same argument, the same
MCapplication instance is returned.

This DICOM Application Title is equivalent to the DICOM Application Entity Title defined earlier. If
your application is a server, this application title must be made known to any client application that
wishes to connect to you. If your application is a client, your application title may need to be made

File to request that the messages be written to the LOG_FILE

Screen to request that the messages be written to the system's
standard out

Memory to request that the messages be written to system memory.
This option is useful if the application registers a
custom log handler and no other destination is selected.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

73© Copyright Merge Healthcare Solutions Inc. 2025

known to any server you wish to connect to, depending on whether the server is configured to act as
a server (SCP) only to particular clients for security reasons.

For example, if your application title is "ACME_Query_SCP", you would register with the toolkit as
follows:

MCapplication myAE;

myAE = MCapplication.getApplication("ACME_Query_SCP");

4.10.1. MCapplication Objects Can Be Disposed

If you wish to disable your application and free up its resources to the system you must release it
using the Dispose method. This is necessary to free the resources used by the underlying native
dynamic library.

myAE.dispose();

4.10.2. The Application Entity (AE) Title

Current and potentially future DICOM service classes assume that Application Entity Titles on a
DICOM network are unique. For instance, the retrieve portion of the Query/Retrieve service class
specifies that an image be moved to a specific Application Entity Title (and not to a specific
hostname and listen port). If two identical Application Entity Titles existed on a network, a server
application can only be configured to move images to one of these applications. For this reason, the
DICOM Application Entity Title for your applications should be configurable.

You can use the ApplicationTitle property to retrieve the Application Entity Title of the
MCapplication object.

4.11. Association Management (Network Only)
Once you have registered one or more networking applications, you will probably want to initiate an
association if you are a client, or wait for an association if you are a server. Clients will use the
requestAssociation method of the MCassociation class and servers will use the
startListening method of that class.

4.11.1. Preparing a Proposed Context List

Before you establish an association connection you must determine what DICOM services you are
prepared to handle and perhaps create an MCproposedContextList object to encapsulate the
service information.

4.11.2. Using a Pre-Configured Proposed Context List

If you wish to propose the services that are configured in a [<service_list_name>] section of the
Application Profile (mergecom.app) file, you can use the MCproposedContextList.getObject
factory method to retrieve an MCproposedContextList object based on the configured services.

MCproposedContextList myContext =

MCproposedContextList.getObject("service_list_name");

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

74© Copyright Merge Healthcare Solutions Inc. 2025

4.11.3. Creating Your Own Proposed Context List

You also have the option of creating your own proposed context list at run time. An
MCproposedContextList object represents a collection of MCproposedContext objects. Each
MCproposedContext object represents:

● one DICOM service (SOP class)

● a set of transfer syntaxes you can support for the service

● a declaration of the roles you will play (SCU and/or SCP)

Before you can create an MCproposedContext object you must create one or more
MCtransferSyntaxList objects representing the transfer syntaxes you want to use for the
services. The MCtransferSyntaxList class represents a collection of MCtransferSyntax objects.

4.11.4. Using a Pre-Configured Transfer Syntax List

Again, you have the option of creating an MCtransferSyntaxList object based on configuration
information, or you can create a new transfer syntax list at run time. To create an
MCtransferSyntaxList object from transfer syntaxes configured in a [<syntax_list_name>] section of
the Application Profile (mergecom.app) file, use the getObject factory method of the
MCtransferSyntaxList class:

MCtransferSyntaxList mySyntaxes =

MCtransferSyntaxList.getObject("syntax_list_name name");

4.11.5. Creating Your Own Transfer Syntax List

To create your own transfer syntax list you must create an array containing the predefined instances
of the MCtransferSyntax objects you want to support, and call the constructor for the
MCtransferSyntaxList class.

The MCtransferSyntax class contains a number of static properties which return MCtransferSyntax
instances for each of the defined DICOM transfer syntaxes.

MCtransferSyntax[] mySynArray = new MCtransferSyntax[2];

mySynArray[0] = MCtransferSyntax.ExplicitBigEndian;

mySynArray[1] = MCtransferSyntax.JpegBaseline;

MCtransferSyntaxList myTSL = new MCtransferSyntaxList("MYSYNS",
mySynArray);

4.11.6. Creating Your Own Proposed Context List

For each service you want to include in your MCproposedContextList you must have an
MCsopClass object. You can only get MCsopClass objects for services known to the Toolkit. You
must either identify the service by its name, or you must identify it by its DICOM Unique Identifier
(UID). Valid service names and UIDs are configured in the Service Profile (mergecom.srv) file.

MCsopClass myService1 = MCsopClass.getSopClassByName("STANDARD_CT");

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

75© Copyright Merge Healthcare Solutions Inc. 2025

MCsopClass myService2 = MCsopClass.getSopClassByUid

("1.2.840.10008.5.1.4.1.1.1");

For each service you want to include in your MCproposedContextList you must specify what roles
your application is prepared to play for the service. Your application may indicate whether it is
willing to perform the Service Class User(SCU) role and/or Service Class Provider(SCP) role. It
may support either role or both roles. If these parameters are not specified the default role of the
association requester is SCU only and the default role of the association acceptor is SCP only.

Now, you are ready to create an array of MCproposedContext objects that will be used in your new
MCproposedContextList.

MCproposedContext[] myCtxArray = new MCproposedContext[2];

myCtxArray[0] = new MCproposedContext(myService1, myTSL);

bool scuRole = true, scpRole = true;

myCtxArray[1] = new MCproposedContext(myService2, myTSL,

scuRole, scpRole);

Finally, you create your own MCproposedContextList:

MCproposedContextList myContextList = new
MCproposedContextList("MYLIST1",

myCtxArray);

4.11.7. MCproposedContext Properties

The MCproposedContext class provides properties for the proposed context. The
AbstractSyntax property retrieves the abstract syntax name associated with this proposed
service. Note that this is equivalent to the SOP Class UID used to identify the DICOM service.

The SCProle property retrieves a code defining whether or not the application is willing to perform
the SCP role, and the SCUrole property retrieves a code defining whether or not the application is
willing to perform the SCU role.

The ServiceName property retrieves the name associated with this proposed service. This is the
name configured in the mergecom.srv file.

The TransferSyntaxList property returns the MCtransferSyntaxList object which is a list of
proposed transfer syntaxes for this service.

4.11.8. MCproposedContextList Properties

The MCproposedContextList class provides methods to retrieve properties of the proposed
context list. The clearNegotiationInfo method clears any negotiation information that may
have been set for a service. As a result, no negotiation information will be used for this service when
the library attempts to establish an association with another DICOM application using this
MCproposedContextList list. This method call is treated as a no-op if no negotiation information is
registered for the service.

The setNegotiationInfo method is used to provide extended negotiation information for one or
more services in the list. The extended negotiation information will be used during association
negotiation by Merge DICOM Toolkit. The existence of extended negotiation information is
dependent on the service and must be documented in the application's DICOM Conformance
Statement. The negotiation information is provided by the toByteArray method of the specified

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

76© Copyright Merge Healthcare Solutions Inc. 2025

MCnegotiationInfo instance. If a null pointer or an empty byte array is provided by the toByteArray
method, this call is treated as if it were a clearNegotiationInfo method call.

The contains method determines if the proposed context list contains an MCproposedContext
element or if it contains an element that has a specified service name.

The getContext method uses a service name to identify and return an MCproposedContext
object from those encapsulated in the proposed context list.

The ListName property retrieves the name that uniquely identifies this list among all proposed
context service lists used by the library.

The GetEnumerator method creates and returns an enumerator for all of the MCproposedContext
objects encapsulated in the proposed context list. The iterator will present the elements in the order
they were presented when this object was created.

The Size property contains the number of elements in the MCproposedContextList object.

The toArray method returns a reference to an array of MCproposedContext items that represent
the proposed contexts used in the proposed context list.

4.11.9. MCresultContext Properties

The MCresultContext class contains the properties of a service that has been accepted by both
sides of a DICOM association. Instances of this class are returned by the FirstAcceptableContext
and NextAcceptableContext properties of the MCassociation class. The NextAcceptableContext
property is repeatedly accessed until it returns null, siginaling the end of the result context list.

The getNegotiationInfo method retrieves any extended negotiation information that may have
been received for the service. If none was received the method returns false.

If extended negotiation information was received for this service, the method returns true and calls
the decode method of MCnegotiationInfo instance provided to provide the negotiation information.

The PresentationContextID property retrieves the DICOM Presentation Context ID assigned to
this context's service for the current association.

The ResultCode property retrieves the result/reason code returned by the remote DICOM system
for this context.

The RoleNegotiated property retrieves the role negotiated for the association requestor for this
service. During association negotiation, for each proposed service, the association requestor
proposes that it serve as an SCU (service class user) and/or an SCP (service class provider). An
association acceptor can accept or reject the proposal.

The ServiceName property retrieves the Merge DICOM service name of this service which has
been successfully negotiated between two DICOM application entities.

The TransferSyntax property retrieves a MCtransferSyntax object that contains the Merge
DICOM id for the negotiated transfer syntax, as well as its DICOM Transfer Syntax UID.

4.11.10. MCtransferSyntax Properties

The MCtransferSyntax class provides methods to retrieve properties of the DICOM transfer syntax
encapsulated by class instances.

Since the only instances are those defined by the static fields of the MCtransferSyntax class the
'==' operator can be used to check two transfer syntax references for equality.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

77© Copyright Merge Healthcare Solutions Inc. 2025

The Name property retrieves the transfer syntax name provided by Merge DICOM for the transfer
syntax.

The Uid property retrieves the DICOM Transfer Syntax UID associated with the transfer syntax.

The BigEndian property determines if the transfer syntax uses big endian encoding or not, and the
LittleEndian property determines if the transfer syntax uses little endian encoding or not.

The Encapsulated property determines if the transfer syntax uses encapsulation or not.

The ExplicitVR property determines if the transfer syntax explicitly specifies the DICOM Value
Representation. Otherwise the VR is known implicitly according to each attribute tag.

4.11.11. MCtransferSyntaxList Properties

The MCtransferSyntaxList class provides methods to retrieve properties of the DICOM transfer
syntax list encapsulated by class instances.

The contains method determines if the list contains a specified transfer syntax. The getSyntax
method retrieves a reference to a specific MCtransferSyntax object in the list.

The ListName property retrieves the name that uniquely identifies this list among all transfer syntax
lists used by the library.

The GetEnumerator method creates and returns an Iterator for all of the MCtransferSyntax objects
encapsulated in the list. The iterator will present the elements in the order they were presented
when this object was created.

The Size property returns the number of elements in the list and the toArray method returns a
reference to the encapsulated MCtransferSyntax object array.

4.11.12. Using Extended Negotiation Information

Some DICOM services allow you to use extended negotiation information during the association
creation process. The Toolkit provides the MCnegotiationInfo abstract class to represent this
process. Classes that extend the MCnegotiationInfo class must supply a decode method and a
toByteArray method. The Library calls the decode method when it receives a buffer of extended
negotiation information and it calls the toByteArray method to request that negotiation information
be placed in a byte array for transmission.

Merge DICOM provides two sub-classes to the MCnegotiationInfo class: the
MCstorageNegotiation class and the MCqueryRetrieveNegotiation class. (Refer to the
Merge DICOM .NET™ Assembly Windows Help File for details.)

If you will be using extended negotiation, you will use the setNegotiationInfo method of the
MCproposedContextList class to "register" your MCnegotiationInfo object. For example,

MCnegotiationInfo myInfo;

MyContextList.setNegotiationInfo(myInfo);

NOTE: If you use the MCstorageService or MCqueryRetrieveService classes, this negotiation
processing is handled for you automatically.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

78© Copyright Merge Healthcare Solutions Inc. 2025

4.11.13. Starting an Association Requester

If your application will be an association requester, the MCapplication class provides several options
you can use to request an association with a network partner.

First, you must decide how you will process the new association. If your current thread will process
the association, you will use the following form of the MCassociation requestAssociation
method, providing the Remote Application Title of the server you wish to connect to through the
use of the MCremoteApplication class:

MCapplication myAE =

MCapplication.getApplication("ACME_Query_SCU");

MCremoteApplication remoteApp =

MCremoteApplication.getObject("ACME_Query_SCP");

MCassociation myAssoc;

myAssoc =

MCassociation.requestAssociation(myAE, remoteApp);

You might decide to use a secure association that uses the Secure Socket Layer (SSL) security
protocol for DICOM communication:

MCapplication myAE =

MCapplication.getApplication("ACME_Query_SCU");

MCremoteApplication remoteApp =

MCremoteApplication.getObject("ACME_Query_SCP");

MCsecureContext secureContext = new MCsecureContext();

MCassociation myAssoc;

myAssoc =

MCassociation.requestSecureAssociation(myAE, remoteApp,
secureContext);

MCsecureContext class defines a set of .NET delegates used in secure DICOM connection to
initialize an SSL handshake, to read and write data, and to shutdown a secure connection.

public delegate Status Start(IntPtr Socket, int ConnType,

IntPtr ApplicationContext, ref IntPtr SecureContext);

public delegate Status Read(IntPtr SecureContext, IntPtr

ApplicationContext, IntPtr Buffer, uint BytesToRead,

ref uint BytesRead, int Timeout);

public delegate Status Write(IntPtr SecureContext, IntPtr

ApplicationContext, IntPtr Buffer, uint BytesToWrite,

ref uint BytesWritten, int Timeout);

public delegate void Shutdown(IntPtr SecureContext, IntPtr

ApplicationContext);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

79© Copyright Merge Healthcare Solutions Inc. 2025

You have to instantiate these delegates using MCsecureContext public function properties before
the processing of the secure association. Responsibility for the implementation of SSL delegates
rests with the application developer.

Be advised that a secure DICOM communication has a lower performance due to an SSL
handshake and a bulk encryption/decryption operation for each read/write cycle.

The getObject static method of MCremoteApplication allows you to load configuration
information about the remote application from the Application profile. It is also possible to use the
constructor from MCremoteApplication to supply all of the connection information for the
remote application. See the Merge DICOM .NET Windows Help File description of
MCremoteApplication for the format of these constructors.

If you want a separate thread to process the association, you must first provide a class that will
process the new association. The class must implement the MCrequester interface. That interface
requires that your class have a start method that will be passed a newly-created MCassociation
object. When Merge DICOM has successfully started an association, it will use a separate thread to
call your class’s start method. Everything you need to know about the association is provided in
the MCassociation object. When your start method returns, Merge DICOM will end the thread.

In this case, you must not only supply the Remote Application Title of the server you wish to connect
to, but you must also provide an instance of your MCrequester class:

class MyAssocHandler : MCrequester {

…

void start(MCassociation assoc) {

…

}

}

MyAssocHandler myHandler = new MyAssocHandler();

MCremoteApplication remoteApp =

MCremoteApplication.getObject(“ACME_Query_SCP”);

MCassociation myAssoc;

myAssoc = myAE.requestAssociation(“ACME_Query_SCP”, remoteApp,
myHandler);

If the requestAssociation call returns without throwing an exception the new thread has been
started and your myHandler instance is called to process the association.

Note that in the last two examples we only specified the Application Entity Title of the remote server.
In this case the Library retrieves three important pieces of information from the information in the
Application Profile (mergecom.app) file:

● The list of services to be proposed is obtained from your application’s entry in the Application
Profile.

● The name of the host the remote server is running on is obtained from the remote application
entity’s entry in the Application Profile.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

80© Copyright Merge Healthcare Solutions Inc. 2025

● The TCP/IP port number the remote server is listening on is obtained from the remote
application entity’s entry in the Application Profile.

4.11.14. Starting an Association Acceptor

If your application will be an association acceptor (a server), the MCassociation class provides
the startListening method to start up a thread that will listen for and process requests from
remote DICOM Application Entities that wish to start an association with your local Application
Entity.

Merge DICOM handles every association request that is received in a separate thread. You must
supply an instance of a class that implements the MCacceptor interface. When the new
association request is received, Merge DICOM calls the start method of your MCacceptor class
instance to process the association, passing it a reference to a newly-created MCassociation
object.

NOTE: The widely-known DICOM listen port is 104.

Several forms of the startListening method exist. One allows you to specify which TCP/IP port
is to be listened on; other will wait for association connections on the port specified by the
TCPIP_LISTEN_PORT configuration parameter, or on port 104, if the TCPIP_LISTEN_PORT
configuration parameter is missing from the System Profile (mergecom.pro). The third form allows
an application to specify an IPEndPoint object representing the specific address and port number
to listen on. This form also allows starting a ‘dual-mode’ listener that accepts both IPv4 and IPv6
connections, if the operating system supports such listeners. To initialize a secure DICOM
association you have to use startListening method with a secure context as a parameter (see
MCsecureContext class details above).

Note that a given Application Entity may only make this call one time for a given address-port
combination, without first calling stopListening (see below). It is possible though to start listeners on
the same address and port for different application objects, in this case the toolkit will attach the
existing listener to the second application.

Merge DICOM starts a separate thread for each listener.

In addition to the previous parametes, you must specify an MCproposedContextList object that
describes the services your Application Entity is willing to support.

class MyAssocHandler : MCacceptor {

…

void start(MCassociation assoc) {

…

}

}

MyAssocHandler myHandler = new MyAssocHandler();

MCapplication myAE = MCapplication.getApplication (“ACME_Query_SCP”);

MCproposedContextList myContext = MCproposedContextList.getObject
(“service_list_name”);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

81© Copyright Merge Healthcare Solutions Inc. 2025

int port;// the port that is being listened on

To use the port number configured in mergecom.pro or the default port 104:

port = MCassociation.startListening(myAE, myContext, myHandler);

To listen on a specific port (e.g., 1114):

port = MCassociation.startListening(myAE, 1114, myContext,
myHandler);

To listen on a specific network interface and port number:

IPEndPoint ep = new IPEndPoint(localAddress, 1114);

Mcassociation.startListening(scpApp, ep, false, myContext, myHandler
);

If your application wants to stop listening for association requests on a given port, it must call the
stopListening method of the MCassociation class. This simply requests that the library no longer
accept connection requests on the port that are directed to this Application Entity. A server
program may call this when it is about to shut down, and then wait for any active threads to finish.

MCapplication myAE = MCassociation.getApplication(“ACME_Query_SCP”);

…

MCassociation.stopListening(myAE, port);

4.11.15. Accepting or Rejecting the Association

Before DICOM messages can be exchanged across the association, the association acceptor must
either accept or reject the association request from the association requestor.

When the Merge DICOM library calls the start method of your MCacceptor class, it has already
determined that both the local and remote applications wish to perform at least one common
service. The FirstAcceptableContext and NextAcceptableContext properties of the
MCassociation class may be used to examine the services that are agreeable to both sides. The
NumberOfAcceptableContexts property retrieves the number of contexts that is acceptable to
both sides. Each of these calls returns an MCresultContext object that can be interrogated to
determine the properties of each acceptable service. The NextAcceptableContext property can
be called multiple times to traverse through the acceptable contexts. A null will be returned by the
property when the end of the list has been reached. The FirstAcceptableContext method can
be called to reset the list and traverse through it again. Several other methods are available in
MCassociation class to inquire about the proposed association. (Refer to the MCassociation and
MCresultContext classes in the Windows Help File.)

Note that many applications do not have a need to call the FirstAcceptableContext or
NextAcceptableContext methods since it is acceptable that any of the services it negotiated
were agreeable to both sides.

If this application agrees with the acceptable services, it calls the accept method of
MCassociation to establish an association between the two applications. If it disagrees, for some
reason, it calls the reject method.

class MyAssocHandler : MCacceptor {

…

void start(MCassociation assoc) {

…

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

82© Copyright Merge Healthcare Solutions Inc. 2025

try {

MCresultContext ac = assoc.FirstAcceptableContext;

while (ac != null) {

// Insert your check here
ac = assoc.NextAcceptableContext;

}

if (<the services negotiated are acceptable>)

assoc.accept();

else

assoc.reject();

} catch (MCassociationAbortedException e) {…}

}

}

If you are rejecting the association, DICOM allows you to specify the reason you are rejecting and
what type of rejection it is. If you specify no parameters to the reject method (as in the example
above), it is assumed that the reject is transient (i.e. the remote application can retry later) and no
reason is provided.

If you wish to give a reason, use this form of the reject method:

bool permanentReject = false;

assoc.reject(permanentReject, MCrejectReason.
TRANSIENT_TEMPORARY_CONGESTION);

The reason codes are defined in the MCrejectReason enumerated value. These codes are
available:

PERMANENT_NO_REASON_GIVEN

PERMANENT_NO_REASON_GIVEN_SERV_USER (same as
PERMANENT_NO_REASON_GIVEN)

PERMANENT_NO_REASON_GIVEN_SERV_PROV_ACSE

TRANSIENT_NO_REASON_GIVEN

TRANSIENT_NO_REASON_GIVEN_SERV_USER (same as
TRANSIENT_NO_REASON_GIVEN)

TRANSIENT_NO_REASON_GIVEN_SERV_PROV_ACSE

PERMANENT_APPLICATION_CONTEXT_NAME_NOT_SUPPORTED

PERMANENT_CALLING_AE_TITLE_NOT_RECOGNIZED

PERMANENT_CALLED_AE_TITLE_NOT_RECOGNIZED

PERMANENT_ACSE_PROTOCOL_VERSION_NOT_SUPPORTED

TRANSIENT_TEMPORARY_CONGESTION

TRANSIENT_LOCAL_LIMIT_EXCEEDED

The association requestor (normally the client application) must check for association rejection
when it makes the association request. Other exceptions also need to be checked (see to the
MCaassocition class in the Assembly Windows Help File).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

83© Copyright Merge Healthcare Solutions Inc. 2025

try {

myAssoc = MCassociation.requestAssociation(myAE, remoteApp);

} catch (MCassociationRejectedException e) { … }

catch (MCconnectionFailedException e) { … }

catch (MCnegotiationAbortedException e) { … }

catch (MCunknownHostNameException e) { … }

catch (Exception e) { … }

4.11.16. Negotiated Transfer Syntaxes

Merge DICOM Toolkit supports all currently approved standard and encapsulated DICOM transfer
syntaxes. Encapsulated transfer syntaxes require compression of the pixel data contained in the
message. These messages can be sent and received by the toolkit. A subsequent section describes
how compression and decompression can be done with the library. Encoding of this pixel data is
also discussed below.

For DICOM Toolkit users, the toolkit allows for the negotiation of more than one transfer syntax for a
given DICOM service. This functionality is of most use for applications supporting encapsulated
transfer syntaxes. This functionality may be disabled by use of the
ACCEPT_MUTLPLE_PRES_CONTEXTS configuration value. In order to understand how it is
implemented, a more in depth description of DICOM association negotiation is required.

During association negotiation a client (SCU) application will propose a set of presentation contexts
over which DICOM communication can take place. Each presentation context consists of an
abstract syntax (DICOM service) and a set of transfer syntaxes that the client (SCU) understands.
The server (SCP) will typically accept a presentation context if it supports the abstract syntax and
one of the proposed transfer syntaxes.

As previously discussed, the abstract and transfer syntaxes supported by a server (SCP) are
defined through a service list contained in the Merge DICOM Application Profile. When support
within a server (SCP) is limited to the three non-encapsulated DICOM transfer syntaxes, the toolkit
will transparently handle the use of multiple presentation contexts for a DICOM service. However,
when encapsulated DICOM transfer syntaxes are used, the server (SCP) must be able to determine
the transfer syntax of messages it receives so that it can properly parse the pixel data contained in
them. When a single presentation context is negotiated for a DICOM service, the
FirstAcceptableContext and NextAcceptableContext MCassociation properties can be
used to determine the transfer syntax for a service.

When more than one presentation context is negotiated for a service, the TransferSyntax
property of the MCdimseMessage class must be used to set or get this transfer syntax. The
following is a typical call to this method:

MCdimseMessage dm; // A DICOM message just received

MCtransferSyntax ts = dm.TransferSyntax;

Exchange of messages over the network is discussed further below.

The presentation contexts supported for client (SCU) applications using Merge DICOM are also
defined through the Merge DICOM Application Profile. The following is a typical client's (SCU)
configuration:

[Acme_Store_SCP]

PORT_NUMBER = 104

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

84© Copyright Merge Healthcare Solutions Inc. 2025

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STANDARD_CT

In this case, the client (SCU) would propose the CT Image Storage service in a single presentation
context. The transfer syntaxes for each service are the three standard (non-encapsulated) DICOM
transfer syntaxes.

The following example is the configuration for a client (SCU) that supports more than one
presentation context for a service:

[Acme_Store_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 2 # Number of Services

SERVICE_1 = STANDARD_CT

SYNTAX_LIST_1 = CT_Syntax_List_1

SERVICE_2 = STANDARD_CT

SYNTAX_LIST_2 = CT_Syntax_List_2

[CT_Syntax_List_1]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

[CT_Syntax_List_2]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes

SYNTAX_1 = IMPLICIT_LITTLE_ENDIAN

If a server (SCP) accepts both of these presentation contexts, the client (SCU) must use the
TransferSyntax property of the MCdimseMessage class to specify which presentation context to
send a message over as follows:

MCdimseMessage dm; // A DICOM message ready to send

dm.TransferSyntax = MCtransferSyntax.JpegBaseline;

Server (SCP) applications are configured differently than client (SCU) applications. An SCP should
include all of the transfer syntaxes a service supports in a single transfer syntax list. If more than one
transfer syntax list is used for a service, server (SCP) applications will only support the transfer

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

85© Copyright Merge Healthcare Solutions Inc. 2025

syntaxes contained in the first transfer syntax list. The following is an example configuration for a
server (SCP):

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STANDARD_CT

SYNTAX_LIST_1 = CT_Syntax_List_SCP

[CT_Syntax_List_SCP]

SYNTAXES_SUPPORTED = 4 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

SYNTAX_2 = EXPLICIT_LITTLE_ENDIAN

SYNTAX_3 = IMPLICIT_LITTLE_ENDIAN

SYNTAX_4 = EXPLICIT_BIG_ENDIAN

As discussed previously, for server (SCP) applications, the order in which transfer syntaxes are
specified in a transfer syntax list dictates the priority Merge DICOM places on them during
association negotiation. In this case, Merge DICOM would select JPEG_BASELINE if proposed,
followed by EXPLICIT_LITTLE_ENDIAN, IMPLICIT_LITTLE_ENDIAN, and EXPLICIT_BIG_ENDIAN.

Network message exchange is discussed further in one of the following sections.

4.11.17. Merge DICOM Message Classes

Before we discuss the process of transferring messages, we must discuss some basic Merge
DICOM classes used to represent a DICOM message.

DICOM data elements (MCdataElement class) are identified by a unique number (MCtag class). A
DICOM attribute (MCattribute class) contains the value of a DICOM data element. An attribute has
assigned to it a value representation (MCvr class), a value multiplicity(n[-n]) and a value type (1, 1C,
2, 2C, 3).

DICOM messages sent across a network connection on an association are represented by the
MCdimseMessage class. DICOM supports different sets of attributes (MCattributeSet class). A
DIMSE message contains a command set MCcommandSet class) containing header information
used by the DICOM DIMSE service, plus, optionally, a data set (MCdataSet class) containing
DICOM data being exchanged. The value of a Sequence of Items (SQ) attribute is zero or more

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

86© Copyright Merge Healthcare Solutions Inc. 2025

DICOM items, where each item is a set of attributes. These DICOM items are represented by the
MCitem class. See the figure below.

4.11.18. Association Message Handling

Once an association has been negotiated, the two cooperating applications, the Service Class
Provider (SCP) and the Service Class User (SCU), exchange DICOM messages on the association
network connection. These messages are encapsulated in MCdimseMessage objects.

Applications use instances of the MCdimseService class (or one of its sub-classes) to send
request and reply messages and the read method of the MCassociation class to retrieve the
messages sent by the network partner.

For example, if an application is using the DICOM Storage Service, it would construct an instance of
the MCstorageService and then use its sendStoreRequest method to send a request message
and use, for example, its sendSuccessResponse method to reply to a received DIMSE message.
When you construct a new MCdimseService class you provide the MCassociation object that the
service is to operate on.

MCstorageService myService = new MCstorageService(assoc);

MCdataSet ds = new MCdataSet(C_STORE_RQ, “STANDARD_CR”);

// encode the ds

…

String affectedSopClassUid = “1.2.840.10008.5.1.4.1.1.1”;

MCdimseMessage dm;

try {

// This call creates a new McdimseMessage,

// using the MCdataSet(ds) provided.

// It then sends the message to the network partner.

dm =

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

87© Copyright Merge Healthcare Solutions Inc. 2025

myService.sendStoreRequest(ds, affectedSopClassUid);

} catch (Exception e) { … }

MCstorageService might be used to send a request message provided by an instance of a data
source class, which implements MCdataSource interface, such as MCfileDataSource for instance:

MCstorageService myService = new MCstorageService(assoc);

MCfileDataSource fs = new MCfileDataSource(filename);

…

try {

// This call send a request message from a file to the

// network partner.

myService.sendStoreRequest(fs, filename);

} catch (Exception e) { … }

Internally the message contents are obtained as blocks of data through repeated calls to the
provideData() method of MCdataSource interface. This method is especially useful for
transfering large data and decreasing the application memory footprint.

NOTE: The example above is just a sample of the methods available with the MCstorageService
class. Refer to the Assembly Windows Help File for complete details on using the
mentioned classes.

The MCassociation read method retrieves the next message sent by the network partner. The read
method returns an instance of the MCdimseMessage class. See 4.11.16. NEGOTIATED TRANSFER
SYNTAXES ON PAGE 83.

Note that DICOM requires that one or more reply message be sent in response to all DIMSE
messages received, depending on the DICOM service being performed.

MCdimseMessage dm;

try {

long timeout = 30000; // 30 second timeout

dm = assoc.read(timeout);

if (dm == null)

// Timeout!

// The MCdimseMessage just sent is returned

} catch (Exception e) { … }

The MCassociation readToStream method retrieves the next message sent by the network
partner and stores it with the instance of class implementing MCdataSink interface. The
readToStream method returns MCReadError status as a result of read operation:

MCfileDataSink fs = new MCfileDataSink(filename);

MCReadError rs;

try {

long timeout = 30000; // 30 second timeout

rs = assoc.readToStream(fs, timeout, filename);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

88© Copyright Merge Healthcare Solutions Inc. 2025

} catch (Exception e) { … }

The received message is read and stored through repeated calls of the receiveData() method of
MCdataSink interface. This method allows to handle the large data without affecting the application
memory footprint.

The current implementation of the read method does not support timeout values that are less than
one second. Any value that is less than 1000 and greater than zero will be rounded to 1000 (one
second). Subsequently any value greater than 1000 is rounded to the nearest thousand (second).

4.11.19. Releasing or Aborting the Association

The DICOM standard requires the association requester to release the association when no further
processing is required. This is done using the release method of the MCassociation class.

assoc.release();

At any time either association partner may abort the association. This is used only in abnormal
situations.

assoc.abort();

After calling release or abort, no other methods should be called for the association object.

When the network partner releases or aborts the association, the other application is notified by an
exception thrown by the read method.

MCdimseMessage dm;

try {

long timeout = 30000; // 30 second timeout

dm = assoc.read(timeout);

if (dm == null)

// Timeout!

// The MCdimseMessage just sent is returned

}catch (MCassociationReleasedStatus e) { … }

catch (MCassociationAbortedException e) { … }

catch (MCexception e) { … }

4.11.20.Association Properties

The MCassociation class contains several properties that can be used to retrieve information about
the association.

4.11.21.Application Context Name

The ApplicationContextName property contains the name of the application context in use by
the local and remote applications on this association connection. It is in the form of a DICOM
Unique Identifier.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

89© Copyright Merge Healthcare Solutions Inc. 2025

An application context is an explicitly defined set of application service elements, related options,
and any other information necessary for the interworking of application entities over the
association.

Currently there is only one DICOM Application Context Name that is defined for the DICOM
standard: "1.2.840.10008.3.1.1.1"

Refer to Annex A in Part 7 of the DICOM standard for more information.

4.11.22.TCP/IP Listen Port

The ListenPort property retrieves the port number that the association is using to listen for TCP/
IP connection requests.

4.11.23.MCapplication Object of the Local AE

The LocalApplication property retrieves the MCapplication object identifying the DICOM
application responsible for this MCassociation object.

4.11.24.Application Entity Title

Each DICOM application is assigned a application entity ID, known also as the application title. The
LocalApplicationTitle property retrieves the application title of the local application and the
RemoteApplicationTitle property retrieves the application title of the remote application

4.11.25.Implementation Class UID and Implementation Version

The identification of an implementation of the DICOM standard relies on two pieces of information:
the Implementation Class UID (required) and the Implementation Version Name (optional). The
DICOM standard requires that association requestors and acceptors notify each other of their
respective Implementation Class UID. The LocalImplementationClassUid property returns the
Implementation Class UID of the local application and the LocalImplementationVersion
property returns the Implementation Version of the local application. The
RemoteImplementationClassUid property returns the Implementation Class UID of the remote
application and the RemoteImplementationVersion property returns the Implementation
Version of the remote application.

4.11.26.Maximum PDU Sizes

During association negotiation Merge DICOM and the remote DICOM system exchanged the
maximum size of Protocol Data Units that each is willing to receive. Each system commits to send
TCP/IP data no larger than that negotiated for the receiver. The LocalMaxPDUsize property
returns the size of the largest PDU that the local system is willing to receive. The
RemoteMaxPDUsize property returns the size of the largest PDU that the remote system is willing
to receive.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

90© Copyright Merge Healthcare Solutions Inc. 2025

4.11.27.Proposed Context List

When an MCassociation object is constructed, an MCproposedContextList object is usually
provided to define the services that the local application is willing to perform. If no
MCproposedContextList was provided, Merge DICOM created an MCproposedContextList from
information defined in the mergecom.app file. The ProposedContextList property returns a
reference to the MCproposedContextList object used.

During association negotiation the DICOM association requestor proposes the services it wishes to
use. The association acceptor can then reject or accept each of the proposed services. The
NumberOfProposedContexts property returns the number of services proposed by the
association requestor.

4.11.28.Read Timeout Value

The ReadTimeout property returns the timeout value specified by the timeout parameter of the
last read method call for this association. If no read has been called yet, zero (0) will be returned.

4.11.29.Remote Host Name and Address

Merge DICOM applications communicate with each other using TCP/IP. The RemoteHostName
property returns the IP name of the remote application's host computer and the
RemoteIpAddress property returns the IP address of the remote application's host computer and
the RemotePort property retrieves the port number that the remote system is using to listen for
TCP/IP connections.

4.11.30.Association Role

MCassociation objects may be constructed as acceptors (those waiting for and responding to
DICOM association requests) or as requesters (those making DICOM association requests). The
Acceptor property returns true if this MCassociation object represents an acceptor association
and the Requester property returns true if this MCassociation object represents an requester
association.

4.11.31.Association State

For a DICOM association requester application, an association is considered active from the
moment the requester receives a successful return from the MCapplication requestAssociation
call until it calls the MCassociation release method or until the association is aborted by either the
local requester or remote acceptor application.

For a DICOM association acceptor application, an association is considered active from the
moment the acceptor calls its accept method until the association is released by the remote
requester or until the association is aborted by either the local acceptor or remote requester
application.

The Active property returns true if the association is currently active. Refer to the MCassociation
Active property description in the Assembly Windows Help File for more detailed information
about association states.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

91© Copyright Merge Healthcare Solutions Inc. 2025

4.12. Using the MCsopClass Class
The MCsopClass class encapsulates the properties of a DICOM service. Merge DICOM manages
instances of the MCsopClass for each service defined in the System Profile (mergecom.srv).
MCsopClass class has two static methods, getSopClassByName and getSopClassByUid, which
can be used to retrieve these Merge DICOM managed instances. These two methods take either
the service name, or a DICOM SOP Class UID. Both of these are defined in the System Profile
(mergecom.srv).

The MCsopClass has the following get methods: BaseClasses, Commands, Name, Number, Uid,
BaseClass, MetaClass, plus an overridden Equals method. See the sample code below.

MCsopClass sop1 = MCsopClass.getSopClassByUid
("1.2.840.10008.5.1.1.1");

MCsopClass sop2 = MCsopClass.getSopClassByName
("BASIC_FILM_SESSION");

if (!sop1.Equals(sop2))

System.Console.Out.WriteLine("They should be equal");

System.Collections.IList baseClasses = sop1.BaseClasses;

if (baseClasses != null)

System.Console.Out.WriteLine("? Not a meta sop");

System.Collections.BitArray commands = sop1.Commands;

if (!sop1.Name.Equals(sop2.Name))

System.Console.Out.WriteLine("? Should be equal");

if (!sop1.Uid.equals(sop2.Uid))

System.Console.Out.WriteLine("? Should be equal");

if (sop1.Number != sop2.Number)

System.Console.Out.WriteLine("? Should be equal");

if (sop1.BaseClass)

System.Console.Out.WriteLine("That's right");

if (!sop1.MetaClass)

System.Console.Out.WriteLine("That's right");

Earlier we saw how MCsopClass instances are used when creating new MCproposedContext
objects.

4.13. Using the MCvr class
The MCvr class encapsulates a DICOM Value Representation (VR). DICOM defines a set of valid
value representations for data elements encoded to the standard. The MCvr class contains a
number of staticly defined MCvr instances for each of the valid VRs. The static field names are:

MCvr name Value Representation used for …

vrAE Application Entity

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

92© Copyright Merge Healthcare Solutions Inc. 2025

vrAS Age String

vrAT Attribute Tag

vrCS Code String

vrDA Date

vrDS Decimal String

vrDT Date Time

vrFD Floating Point Single

vrFL Floating Point Double

vrIS Integer String

vrLO Long String

vrLT Long Text

vrOB Other Byte

vrOD Other Double

vrOF Other Float

vrOL Other Long

vrOW Other Word

vrPN Person Name

vrSH Short String

vrSL Signed Long

vrSQ Sequence of Items

vrSS Signed Short

vrST Short Text

vrTM Time

vrUC Unlimited Characters

vrUI Unique Identifier

vrUL Unsigned Long

vrUN Unknown

vrUR URI/URL

vrUS Unsigned Short

vrUT Unlimited Text

MCvr name Value Representation used for …

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

93© Copyright Merge Healthcare Solutions Inc. 2025

Several Merge DICOM class methods make use of MCvr class references. Most often, you will be
using one of the static values in the MCvr class, which encapsulate each of the standard DICOM
Value Representations.

The MCvr class provides some convenient methods. The ToString method is overridden to return
a 2-character string that represents this Value Representation. For example, using the MCvr field
vrSQ, vrSQ.toString returns "SQ".

The validateValue method can be used to validate the encoding of an attribute according to the
rules defined in DICOM.

A number of other properties are also defined for MCvr that describe the properties of a VR. These
properties are detailed in the Windows Help file.

4.14. Using the MCtag Class
An MCtag object identifies a DICOM attribute. All class methods that require an attribute identifier
use the MCtag object for that identification. Note that in most cases these routines also allow the
use of uint values to represent a DICOM tag.

As mentioned before, a DICOM tag is usually written as an ordered pair of two byte numbers. The
first two bytes are sometimes called a group number, with the last two bytes being called an
element number (e.g., (0010, 0010), (0038, 001C), ...).

The MCtag class addresses the fact that DICOM allows both private and non-private attributes. The
group number for private attributes must always be odd, while the group number for non-private
attributes must always be even. Private attributes belong to a private group, identified by a private
code string, and private groups may only have 254 elements, numbered 1 through 255.

4.14.1. Constructing Non-Private Tags

Non-private tags may be constructed using a 32-bit integer number, or using a 16-bit group number
plus a 16-bit element number.

MCtag tag;

try {

tag = new MCtag(0x00080010);

} catch (MCillegalArgumentException e) {}

or-

try {

tag = new MCtag(0x0008, 0x0010);

} catch (MCillegalArgumentException e) {}

The group and element numbers may be specified as two unsigned integers. An
MCillegalArgumentException will be thrown if the group number portion of the tag number is odd.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

94© Copyright Merge Healthcare Solutions Inc. 2025

4.14.2. Constructing Private Tags

Tags for private attributes are constructed by providing a private group code string in addition to the
private group number and element number.

MCtag tag;

try {

tag = new MCtag("Group1", (uint)0x0009, (uint)0x10);

} catch (MCillegalArgumentException e) {}

or-

try {

tag = new MCtag(0x00091010U, "Group1");

} catch (MCillegalArgumentException e) {}

The numbers may be specified as two unsigned integers. An MCillegalArgumentException will be
thrown if the group number was an even number, if the element number was greater than 0xFF, or if
the private group code string was empty.

4.15. Using the MCdataElement Class
The MCdataElement class is used to define DICOM data elements. This is most often used to
define data elements that are not defined in the data dictionary. DICOM data elements may be
"standard" (i.e. they are defined in the data dictionary) or "non-standard" (those not defined in the
data dictionary).

Merge DICOM allows you to define both private and non-private data elements, by simply using a
private or non-private MCtag object to identify the data element.

4.15.1. Constructing Standard Data Elements

Standard data elements are built using the following constructor.

MCdataElement de;

try {

MCtag tag = new MCtag(0x0008, 0x0010);

de = new MCdataElement(tag);

} catch (MCnotStandardElementException e) {}

An MCnotStandardElementException will be thrown if the data element is not defined in the
data dictionary.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

95© Copyright Merge Healthcare Solutions Inc. 2025

4.15.2. Constructing Non-Standard Data Elements

Since non-standard data elements are by definition not in the data dictionary, you must supply the
properties of data elements that are not recorded in the data dictionary. These properties must be
defined:

● The name of the data element. If name is not provided, the attribute will be named
"<UNKNOWN>" by the library. If provided, name must not be null and must have a length
between 0 and 30. If longer than 30 it will be truncated. If 0 (i.e. ""), the name will be reported as
blank in reports.

● The vr parameter specifies the Value Representation of the data element. It must be one of the
MCvr instances that are static members of the MCvr class. An exception will be thrown if an
invalid MCvr reference is provided. These pre-defined MCvr object references are available to
use:

vrAE, vrAS, vrCS, vrDA, vrDS, vrDT, vrIS, vrLO, vrLT, vrPN, vrSH, vrST, vrTM, vrUC, vrUR, vrUT, vrUI,
vrSS, vrUS, vrAT, vrSL, vrUL, vrFL, vrFD, vrUN, vrOB, vrOW, vrOL, vrOD, vrOF, vrSQ

● The data element's Value Multiplicity is specified by the n and m parameters. The following table
describes the effect of specifying zero, one or both of the n and m parameters:

Non-standard data elements are built using the following constructor.

MCdataElement de;

MCvr vr = vrDT;

ushort n = 1;// minimum number of values allowed

ushort m = 5; // maximum number of values allowed

String name = "My Private Data Element";

try {

MCtag tag1 = new MCtag(0x8014, 0x0010);

de = new MCdataElement(vr, tag1, n, m, name);

} catch (MCillegalArgumentException e) {}

An MCillegalArgumentException will be thrown if vr parameter was not a valid MCvr reference.

An MCillegalArgumentException will be thrown if n or m is less than 1, or if n > m.

4.16. Working with Attribute Sets
As mentioned above, the MCattributeSet class encapsulates different types of attribute sets used
by DICOM. Sub-classes of MCattributeSet are used to define those different types:

● MCcommandSet contains the attributes of a DIMSE message command set.

n specified m specified Value Multiplicity is

no no 1-many (no upper limit)

yes no must have exactly n values

yes yes n - m (at least n values; no more than m values)
Use Short.MAX_VALUE to specify no upper limit.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

96© Copyright Merge Healthcare Solutions Inc. 2025

● MCdataSet contains the attributes of a DICOM information object.

● MCitem contains the attributes of a DICOM item.

● MCfileMetaInfo contains the attributes of a DICOM file's meta information.

Your applications deal with network messages in Merge DICOM using MCdimseMessage objects,
and DICOM files using MCfile objects. MCdimseMessage objects contain command information
attributes (MCcommandSet) and data set attributes (MCdataSet). MCfile objects contain meta
information attributes (MCfileMetaInfo) and data set attributes (MCdataSet).

4.16.1. Constructing Message Objects

Network messages are encapsulated in MCdimseMessage objects.

When you call the MCassociation read method, Merge DICOM returns a newly constructed and
populated MCdimseMessage object.

When you use the MCdimseService class to send network messages (as opposed to using one of
the MCdimseService sub-classes provided by Merge DICOM Toolkit), you must construct an
MCdimseMessage object. You have several options available when you construct the new
MCdimseMessage:

4.16.2. Construct Message Using Pre-Populated Data Set

One form of the constructor creates a MCdataSet object and a MCcommandSet object that
contain all of the attributes of a DICOM message that will be used for the given serviceName and
command. References to the created attribute sets may be retrieved using the DataSet and
CommandSet properties. Normally you will only deal with the data set and the command set
attributes will be set automatically by Merge DICOM Toolkit.

MCdimseMessage dm;

uhort command = MCdimseService.C_STORE_RQ;

String serviceName = "STANDARD_CT";

dm = new MCdimseMessage(command, serviceName);

The library uses the serviceName parameter to reference the proper message info file along with
the data dictionary and builds a MCdataSet object containing all of the attributes that may be used
for that the service class.

The command parameter is used to inform Merge DICOM what values must be placed in the
MCcommandSet it constructs for you.

Exceptions will be thrown if either of the parameters in invalid.

4.16.3. Construct Message with an Empty Data Set

A second form of the constructor is used if the service and command are not yet known, or if there
is no need to validate the values that will be set. It creates an empty MCdataSet object as well as the
MCcommandSet object. The MCdimseMessage object is not associated with any particular DICOM
service or command. If the object is to be used to send a message to a network partner, or if the
validate method is to be called, the setServiceCommand method must be called first to
associate this message object with a given DICOM service and command.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

97© Copyright Merge Healthcare Solutions Inc. 2025

MCdimseMessage dm;

dm = new MCdimseMessage();

4.16.4. Construct Message Using Existing Data Set

A third form of the constructor creates a new MCdimseMessage object that references an existing
MCdataSet object for its data set, and constructs a new MCcommandSet object. If the data set has
not yet been assigned a service and command, the setServiceCommand method should be used
to do so before using this object to send a message to a network partner, or if the validate
method is to be called.

MCdimseMessage dm;

MCdataSet ds; // A non-null reference

dm = new MCdimseMessage(ds);

A common programming technique is to construct an empty MCdataSet object and use it when
setting attribute values (see below).

MCdimseMessage dm;

MCdataSet ds = new MCdataSet(); // empty data set

dm = new MCdimseMessage(ds);

In this case, the message info and data dictionary files are not accessed when the MCdataSet
object is constructed. The MCdataSet object contains no attributes and the setServiceCommand
method must be called to set the service and command for this data set before it can be used in a
message sent over the network. Since this approach avoids accessing the message info files, it is
more efficient. However, this approach also penalizes you in terms of runtime error checking. This is
discussed further later.

4.16.5. Convert an MCfile Object

A fourth form of the constructor creates a new MCdimseMessage object that shares the same
MCdataSet object as that contained in a specified file object.

MCdimseMessage dm;

MCfile file; // A non-null reference

dm = new MCdimseMessage(file);

If you will be using one of the sub-classes of the MCdimseService class to send network
messages, you will not be required to construct a MCdimseMessage object. Typically, those DICOM
service-class-specific classes require that you provide a data set (MCdataSet) object only.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

98© Copyright Merge Healthcare Solutions Inc. 2025

4.16.6. MCdimseMessage Properties

The MCdimseMessage class contains several methods that can be used to retrieve properties of
the DIMSE message.

4.16.7. Transfer Syntax Used

The TransferSyntax property returns an MCtransferSyntax object that identifies the transfer
syntax used to encode this message.

4.16.8. Contained Attribute Sets

MCdimseMessage objects contain references to MCcommandSet and MCdataSet objects. The
CommandSet property returns the MCcommandSet reference and the DataSet property returns the
MCdataSet reference.

4.16.9. Message Service and Command

The Command property returns the command currently assigned to this message and the
ServiceName property returns the current DICOM service name. The setServiceCommand
method is used to assign a specific DICOM service and command to the message.

4.16.10.MCdimseMessage Command Set Properties

Normalized DICOM service classes make use of the N-ACTION DIMSE service. That service
requests that a specific action be performed by the peer DIMSE service user. Each SOP class using
the N-ACTION service defines Action Type IDs that identify a specific service. The ActionTypeId
property can be used to get or set the Action Type ID that was specified in the DIMSE message. This
for attribute (0000,1008).

The AffectedSopClassUid property sets or gets the DICOM Affected SOP Class UID associated
with the DIMSE message. It is retrieved from attribute (0000,0002) in the message's command set.

The AffectedSopInstanceUid property sets or gets the DICOM "Affected SOP Instance UID"
associated with this DIMSE message. It is retrieved from attribute (0000,1000) in the message's
command set.

DIMSE services using N-GET operations use a command set field to provide an attribute tag for
each of the attributes applicable to the N-GET operation. The AttributeIdentifiers property
sets or gets an array of unsigned integer values, each of which is an attribute tag number. This will
set or get attribute (0000,1005) in the command set.

The DIMSE services that use C-GET or C-MOVE operations place the number of C-STORE sub-
operations completed in their response messages. The CompletedSubOperations property gets
or sets that value from attribute (0000,1021).

Many DIMSE services provide for a field to be returned in response messages that describes an
error that may occur while servicing a DIMSE request. The ErrorComment property sets or gets
that field from the command set attribute (0000,0902). Usually, the use of this attribute is optional.

Certain DIMSE services provide for sending an application-specific error code in response
messages. The ErrorId property sets or gets that value from the (0000,0903) attribute in the
command set.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

99© Copyright Merge Healthcare Solutions Inc. 2025

Normalized DICOM service classes reference events that are identified by application-specific
event IDs. The EventTypeId property sets or gets the Event Type ID from the command set for
attribute (0000,1002).

The DIMSE services that use C-GET or C-MOVE operations place the number of C-STORE sub-
operations that failed in their response messages. The FailedSubOperations property gets or
sets that value from attribute (0000,1022).

The DIMSE service provider (for example, Merge DICOM Toolkit) assigns a number to each DIMSE
request message. The MessageId property sets or gets that identifying number from the command
set attribute (0000,0110).

DIMSE response messages set an attribute in the command set that identifies which request
message is being responded to. The MessageIdBeingRespondedTo property gets that value from
attribute (0000,0120).

The MessagePriority property gets or sets the DICOM "Message Priority" of this DIMSE
message. It is retrieved from attribute (0000,0700) in the message's command set.

DIMSE C-MOVE request messages contain an attribute that provides the destination DICOM
Application Entity for which C-STORE sub-operations are being performed. The
MoveDestination property sets or gets that value from attribute (0000,0600).

C-STORE request messages contain an attribute the provides the DICOM AE Title of the DICOM AE
which invoked the C-MOVE operation from which a C-STORE sub-operation is being performed.
The MoveOriginator property sets or gets that value from attribute (0000,1030).

C-STORE request messages contain an attribute that provides the Message ID of the C-MOVE
request message from which the C-STORE sub-operation is being performed. The
MoveOriginatorMessageId property gets or sets that value from attribute (0000,1031).

Some DIMSE services place the data element tag number of the element or elements involved in
an error in their response messages. The OffendingElements property gets or sets these tag
numbers, as an array of unsigned integers, from the command set attribute (0000,0901).

The DIMSE services that use C-GET or C-MOVE operations place the number of C-STORE sub-
operations remaining to be sent in their response messages. The RemainingSubOperations
property sets or gets that value from attribute (0000,1020).

Normalized DIMSE services provide the SOP Class UID associated with a particular operation in
the request and response messages. The RequestedSopClassUid property sets or gets this
"Requested SOP Class UID" from attribute (0000,0003).

Normalized DIMSE services provide the SOP Instance UID for which a given operation occurred.
The RequestedSopInstanceUid property sets or gets this "Requested SOP Instance UID" from
attribute (0000,1001).

The ResponseStatus property gets the Response Status Code (0000,0900) from the message
command set.

The DIMSE services that use C-GET or C-MOVE operations place the number of C-STORE sub-
operations that generated warnings in their response messages. The WarningSubOperations
property sets or gets that value from attribute (0000,1023).

4.16.11. Constructing File Objects

Before you can use the DICOM media storage services provided by the MCmediaStorageService
class, you must construct an MCfile object that will encapsulate the DICOM file that will be read or
written.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

100© Copyright Merge Healthcare Solutions Inc. 2025

As discussed above, each instance of the MCfile object contains an MCdataSet object and an
MCfileMetaInfo object. The MCfile may be constructed with a pre-populated data set or with an
empty data set.

4.16.12.Construct with Pre-Populated Data Set

Two forms of the MCfile constructor create a MCdataSet object and a MCfileMetaInfo object that
contain all of the attributes of a DICOM file that will be used for the given serviceName and
command. References to the created attribute sets may be retrieved using the DataSet and
MetaInfo properties. Normally you will only deal with the data set and the file meta information
attributes will be set automatically by Merge DICOM Toolkit.

MCfile myFile;

ushort command = MCdimseService.C_STORE_RQ;

String serviceName = MCservices.STANDARD_CT;

myFile = new MCfile(command, serviceName);

or

String file = "MyFileName";

myFile = new MCfile(file, command, serviceName);

serviceName and command are used to access configuration information that describes the
attributes of the message. If such configuration information is not available, an empty file object is
created, and a warning message is logged. An exception is thrown if the command parameter is
invalid. The file parameter, if used, associates this object with a specific operating system file.

4.16.13.Construct with Empty Data Set

Two forms of the constructor are used if the service and command are not yet known, or if there is
no need to validate that values will be set only for attributes assigned to a given service/command
pair. It creates an empty MCdataSet object. The MCfile object is not associated with any particular
DICOM service or command. If the validate() method is to be called, the setServiceCommand
method must be called first to associate this file object with a given DICOM service and command.

MCfile myFile = new MCfile();

or-

String file = "MyFileName";

MCfile myFile = new MCfile(file);

4.16.14.Convert MCdimseMessage to MCfile

One form of the constructor converts an MCdimseMessage object (message) into a file object
associated with the specified file system (file). The data set contained in message will be used in
this object.

String fileName = "MyFileName";

MCdimseMessage message; // a non-null reference

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

101© Copyright Merge Healthcare Solutions Inc. 2025

myFile = new MCfile(message, fileName);

NOTE: The original MCdimseMessage and the new MCfile objects will be sharing the same
MCdataSet object.

4.16.15.Setting Data Set Values

If the command and serviceName parameters are not provided, it is not necessary to add attributes
to the data set before setting attribute values. If one of the set value methods of the contained
MCdataSet object is used for an attribute, the attribute will automatically be added to the data set
before the value is set. This is NOT THE CASE if the MCfile object is built when the command and
service are known. In that case the message IS associated with a given service/command pair and
attributes other than those associated with that service and command must be explicitly added to
the message before setting values for the added attributes.

4.16.16.Specifying the File Name

The fileName parameter specifies an operating system file that is related to this MCfile object. If
the fileName parameter is not specified the File property defaults to "UNSPECIFIED".

4.16.17. Constructing Item Objects

MCitem objects describe DICOM items used normally in sequence of items (SQ) attributes. They
are identified, in Merge DICOM Toolkit, by specific, configured item names.

MCitem item = new MCitem();

or-

String itemName = "Configured_Item_Name";

MCitem item = new MCitem(itemName);

If the first form of the constructor is used an "empty" MCitem object will be created. The attribute
list for the MCitem will initially be empty.

The second constructor form populates the MCitem's attribute list with attributes defined by the
itemName parameter. The itemName is used to access configuration information that describes the
attributes of the message. If the itemName is unknown to Merge DICOM an empty attribute list is
created and a warning message is logged.

4.16.18.Get/Set Item Name

You can use the ItemName property of the MCitem class to set or get the item name.

4.16.19.Constructing MCdataSet Objects

DICOM network services (MCdimseService classes) and file service (MCmediaStorageService
class) each deal with information objects. These objects are sets of attributes that provide
information about the real world entities being acted upon by the service. The MCdataSet class
encapsulates such an information object.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

102© Copyright Merge Healthcare Solutions Inc. 2025

The DICOM messages used in DIMSE services (MCdimseMessage class) contain a command set
object (MCcommandSet) and an MCdataSet object. The DICOM media storage service deals with
file objects (MCfile) that contains a set of file meta information (MCfileMetaInfo class) and an
MCdataSet object.

MCdataSet objects are related to specifiC/C++ DICOM service-command pairs (i.e. SOP classes).
Normally you construct new instances by providing the service name that identifies the DICOM
information object and the DIMSE command that will be used with the information object. By
providing the service and command, Merge DICOM can retrieve all of the attributes used for the
service and pre-populate the data set with those attributes. (Of course, no values are assigned to
the attributes yet - that is your job.)

ushort command = MCdimseService.C_STORE_RQ;

String serviceName = MCservices.STANDARD_CT;

MCdataSet ds = new MCdataSet(command, serviceName);

The command can be any of the valid constant values defined in the MCdimseService class. (Refer
to the Assembly Windows Help File.) The service name must be one of the services defined in the
Services Profile (normally mergecom.srv) file; if not, a warning message will be logged.

An MCillegalArumentException will be thrown if the command value is invalid. An
MCconfigurationError runtime error will be thrown if the library cannot access the
configuration files.

A common programming technique is to construct an empty MCdataSet object that initially
contains no attributes.

MCdataSet ds = new MCdataSet(); // empty data set

In this case, the message info and data dictionary files are not accessed when the MCdataSet
object is constructed. The MCdataSet object contains no attributes and the setServiceCommand
method must be called to set the service and command for this data set before it can be used in a
message sent over the network. Since this approach avoids accessing the message info files, it is
more efficient. However, this approach also penalizes you in terms of runtime error checking.

4.16.20.Retrieving Contained Attribute Sets

When your application needs to build or parse the attributes contained in MCdimseMessage
objects, it accesses the contained MCcommandSet or MCdataSet objects, using the
MCattributeSet methods inherited by those classes. Similarly, when your application needs to build
or parse the attributes contained in MCfile objects, it accesses the contained MCfileMetaInfo or
MCdataSet objects, using the MCattributeSet methods inherited by those classes. Both
MCdimseMessage and MCfile classes provide DataSet properties to retrieve the contained data
set object. The MCdimseMessage provides a CommandSet property to retrieve the contained
command set and the MCfile class provides a MetaInfo property to retrieve the contained file
meta info.

4.16.21.Using the MCattribute Class

New DICOM attributes can be defined by constructing a new MCattribute class object. An
MCdataElement object is used to construct the MCattribute.

de = new MCdataElement(new MCtag(0x00080010));

MCattribute myAttr = new MCattribute(de);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

103© Copyright Merge Healthcare Solutions Inc. 2025

The MCattribute class exists primarily to contain the properties of the DICOM attributes they
encapsulate. Properties of the MCattribute class allow you to retrieve the following properties.

● The number of values currently stored for the attribute (the Count property).

● The tag that identifies the attribute (the Tag property).

● The DICOM Value Representation for the attribute (the ValueRepresentation property).

● The values of the attribute.

● The keyword of the attribute.

int count = myAttr.Count;

MCtag tag = myAttr.Tag;

MCvr vr = myAttr.ValueRepresentation;

String keyword = myAt.getKeyword();

4.16.22.Adding Attributes to Attribute Set

Attributes may be added to an attribute set in two ways. The first method is by using the add method
of the MCattributeSet class. The second method is through the use of an indexer. The use of the
indexer is defined in the next section.

When using the add method of MCattributeSet, the attribute to be added can be identified by 1) a
unit reference or 2) by an MCtag reference. All forms of the add method return the MCattribute
added to the set. If the attribute already exists in the set, this attribute is returned.

MCattributeSet myAttrSet; // non-null reference

MCtag tag = new MCtag(0x0008, 0x0010);

MCattribute myAttr;

// All of the following accomplish the same thing

myAttr = myAttrSet.add(tag);

myAttr = myAttrSet.add(0x00080010);

If you are attempting to add a private attribute and there are already 240 private blocks in the
attribute's private group, an MCinvalidEncodingException will be thrown. If the MCtag
parameter does not identify an element in the data dictionary or the MCdataElement parameter is
not defined in the data dictionary, an MCnotStandardElementException will be thrown.

4.16.23.Using the MCattributeSet Indexer to Access MCattribute
Instances

The MCattributeSet contains a number of indexers for access attributes and values within an
attribute set. Two forms of the indexer are specifically for getting and setting MCattribute instances
within the MCattributSet. These forms require a uint or MCtag instance to indentify the attribute.
The following are the two forms of the indexer setting and getting MCattribute instances:

public MCattribute this[uint tag]

public MCattribute this[MCtag tag]

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

104© Copyright Merge Healthcare Solutions Inc. 2025

The following example shows how the indexers can be used to set and get MCattribute instances
from the attribute set.

MCtag tag = new MCtag(0x00080010);

MCattribute attrib = new MCattribute(tag);

MCattributeSet myAttrSet; // non-null reference

myAttrSet[tag] = attrib;

attrib = myAttrSet[0x00080010];

4.16.24.Removing Attributes from Attribute Set

A specific attribute may be removed from an attribute set using the removeAttribute method of
the MCattributeSet class. The attribute to be removed can be identified by 1) a uint tag reference
or 2) by an MCtag reference. The removeAttribute methods do not return a value.

MCattributeSet myAttrSet; // non-null reference

MCtag tag = new MCtag(0x0008, 0x0010);

// Both of the following accomplish the same thing

myAttrSet.removeAttribute(tag);

myAttrSet.removeAttribute(0x00080010);

The second form of the call will throw an MCattributeNotFoundException if the attribute is not
in the set.

4.16.25.Attribute Properties

The MCattribute class provides three methods to retrieve or set properties of the attribute. The
ValueRepresentation property retrieves the attribute's value representation, the Count property
returns the number of values assigned to the attribute, and the ValueLength property returns the
length in bytes of this value if it were encoded in a DICOM stream or file.

try {

MCattribute myAttr; // non-null reference

int count = myAttr.Count;

MCvr vr = myAttr.ValueRepresentation;

int length = myAttr.ValueLength;

} catch (MCattributeNotFoundException e) {…}

catch (MCincompatibleValueException e) {…}

catch (MCvrAlreadyValidException e) {…}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

105© Copyright Merge Healthcare Solutions Inc. 2025

4.16.26.Assigning Attribute Values from MCattribute

Each DICOM attribute may have zero or more values assigned to it, based on the Value Multiplicity
assigned to the attribute. You have several methods available to assign values to attributes in an
MCattribute object.

● setValue and addValue

● MCattribute[index]

● addEncapsulatedFrame

4.16.27.Assigning Attribute Values from MCattributeSet

The MCattributeSet class also has several convenience methods for assigning values to specific
attributes. These routines ensure an attribute has been added into the attribute set, and then set or
append the value. There are setValue and addValue routines, similar to the MCattribute class.

4.16.28.Difference between setValue, addValue and Indexer

The "setValue" methods first remove any existing values from the attribute and then append the
new value. The "addValue" method appends a value to the attribute.

The indexer can be used to set specific values if the attribute is multi-valued. The following example
shows the user of the indexer and the setValue and addValue methods.

try {

MCtag tag = new MCtag(0x000101001);

MCattribute myAttr = new MCattribute(tag);

myAttr[0] = new MCpersonName("Smith^John");

myAttr[1] = new MCpersonName("Smith^Jonathan");

myAttr.setValue(new MCpersonName("Smith^John"));

myAttr.addValue(new MCpersonName("Smith^Jonathan"));

} catch (MCattributeNotFoundException e) {…}

catch (MCincompatibleValueException e) {…}

catch (MCvrAlreadyValidException e) {…}

4.16.29.Assigning a NULL Attribute Value

DICOM allows attributes to have a NULL value (that is the value's length is zero). You can use the
setValue or addValue routines to assign a value to NULL:

MCattributeSet myAttrSet; // non-null reference

myAttrSet.addValue(0x00080010U, null);

myAttrSet.setValue(0x00080020U, null);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

106© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: Both of these methods may be used to set the first or only value of an attribute to NULL
(zero-length). The methods may be called to set subsequent values of multi-valued
attributes only if the attribute's value representation is a text type that allows the backslash
(\) character as a field delimiter in streamed messages. Attributes with the following Value
Representations may call this method to set values subsequent to the first value: AE, AS,
CS, DA, DS, DT, IS, LO, LT, PN, SH, TM, UI. An MCincompatibleVrException is thrown if
an attempt is made to set a value NULL and the attribute's Value Representation does not
allow it.

4.16.30.Assigning a Non-NULL Attribute

You can use the addValue or setValue method to assign non-NULL values. (We will discuss
setValue below.)

As discussed above, these methods are implemented in the MCattribute class and the
MCattributeSet class, where you must identify the tag that you're working on. This can be done
using an MCtag object or by supplying the actual DICOM tag as a uint. The MCattributeSet
implementation finds the appropriate MCattribute within the set, and then calls the corresponding
setValue or addValue method in the MCattribute class for convenience. All three methods allow you
to identify the attribute using an MCtag object.

While these methods allow you to specify the value using a variety of data types, the attribute's Value
Representation restricts the data type of the value parameter. The table below details which data
type may be used with each Value Representation.

Table 4.2: Permissible data types per Value Representation of the attribute.

Data Type May be used to set attributes with these VRs

MCdate DA

MCdateTime DT

MCtime TM

MCage AS

String AE, DS, IS, UI, CS, LO, LT, SH, ST, UT, DA, DT, TM, AS, PN, FL,
FD, AT, UL, SL, SS, US, SV, UV

MCpersonName PN

float FL, FD, UL, DS, IS

double FD, FL, UL, DS, IS

short SS, US, SL, UL, SV, UV, IS

ushort SS, US, SL, UL, SV, UV, IS

int SS, US, SL, UL, SV, UV, AT, IS

uint SS, US, SL, UL, SV, UV, AT, IS

long SS, US, SL, UL, SV, UV, AT, IS

ulong SS, US, SL, UL, SV, UV, AT, IS

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

107© Copyright Merge Healthcare Solutions Inc. 2025

MCattributeSet myAttrSet; // non-null reference

MCtag tag1 = new MCtag(0x00080020);

MCtag tag2 = new MCtag(0x00080030);

MCtag tag3 = new MCtag(0x00080052);

MCtag tag4 = new MCtag(0x00280010);

// the value can be any of the types shown in Table 4.2.

myAttrSet.setValue(tag1, new MCdate("20051109"));

myAttrSet.setValue(tag2, new MCtime("081401");

myAttrSet.putValue(tag3, "PATIENT");

myAttrSet.setValue(tag4, (ushort)256);

Merge DICOM will perform any reasonable conversion from the types listed in the table above to
the form necessary to encode it in the Value Representation of the attribute. If a type conversion is
not reasonable (e.g., from short to LT), then an MCincompatibleValueException will be thrown.
An MCinvalidEncodingWarning will be thrown if the value is invalid according to the rules for the
value representation. Note that this is just a warning - the value is encoded.

Note that each time the addValue method is called for an attribute, another value is added to the
attribute's list of values.

A default string encoder is implemented that will convert between Unicode and many of the DICOM
defined character sets. If you want to define a string encoder or decoder that is different than the
default implementation, you must use the MC.mcSetStringEncoder method to set your own
string encoder and decoder.

To set values for attributes with value representations of OB, OW, OL, OV, OD, OF use the setValue
call which includes MCdataSource as a parameter. The MCdataSource class is described further in
the following section. The setValue may also be used to set values for attributes of types SS, US,
UL, SL, UV, SV, AT, FL and FD.

4.16.31.Using MCdataSource Class to Assign Attribute Value

When setting the value of an attribute with a value representation of OB, OW, OL, OV, OD or OF (e.g.,
Pixel Data), you can create a class that implements the MCdataSource interface and then call the
setValue(MCdataSource, uint) method of MCattribute to assign the attribute's value. Pixel
Data can be very large and you can use this method to supply the data value a block at a time.

The callback class must provide a provideData method that is called by the library to retrieve
portions of the attribute's value. The library provides the provideData method which is a bool that is
true the first time the method is called to retrieve attribute values. The library also provides a
System.Object reference to the instance that is calling provideData. The provideData method is
required to return portions of the attribute's value, using an instance of the MCdata class.

byte[] OB, OW, OL, OV, OD, OF, UNKNOWN_VR

MCdataSource OB, OW, OL, OV, OD, OF, UNKNOWN_VR

MCitem SQ

Data Type May be used to set attributes with these VRs

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

108© Copyright Merge Healthcare Solutions Inc. 2025

For example, your application could define a MCdataSource class called MyPDSupplyCallback
whose purpose is to supply Pixel Data. The pseudo-code for this class follows:

class MyPDSupplyCallback : MCdataSource, IDisposable {

public String file = null;

private MCdata prevData = null;

private byte[] chunk = new byte[4096]; // re-use the

same buffer to supply data for more efficient usage of memory

public MCdata provideData(bool isFirst Object origin) {

// If prevData was previously returned, dispose it before
supplying next chunk.

// Due to garbage collection policy, you may see large amount of

// memory usage if not dispose the previous data promptly.

if (prevData != null)

{

prevData.Dispose();
prevData = null;

}

if (isFirst) {

// Open pixel data source (e.g., a file) here

…

if (openFailed)

throw new MCcallbackCannotComplyException();

}

// Read next chunk of pixel data from source

// and return it and its size in a MCdata object

…

if (readFailed)

throw new MCcallbackCannotComplyException();

// Data is read into chunk

// chunk = read in your data here;

// put number of bytes read in size

int size;

// set isLast to true if this is last of the data

bool isLast;

MCdata data = new MCdata(chunk, size);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

109© Copyright Merge Healthcare Solutions Inc. 2025

data.IsLast = isLast;

prevData = data; // remember the current MCdata object

return data;

}

public void Dispose()

if (prevData != null)

{

prevData.Dispose();

prevData = null;

}

}

}

The MCdataSource class is called by Merge DICOM only when triggered by the application. For
example, the application might use MyPDSupplyCallback to set the value of the
MCdicom.PIXEL_DATA attribute (7FE0, 0010) as follows:

MCattributeSet as; // non-null reference

uint length;

MyPDSupplyCallback cb = new MyPDSupplyCallback();

cb.file = "MypixelDataFile";

MCattribute attrib = as[MCdicom.PIXEL_DATA];

attrib.setValue(cb, length);

// after stream out or write out your pixel data

cb.Dispose(); // this will dispose last used MCdata

On making this call, the toolkit library will keep a reference to the MCdataSource instance. When the
data is required by the toolkit (if the attribute set is written to a file or to the network), it will
repeatedly call the provideData method of the callback class until it indicates that all of the pixel
data has been read in without any errors. If your callback class throws
MCcallbackCannotComplyException, the library will fail its current operation.

Supplying Pixel Data a block at a time is especially useful for very large Pixel Data and/or on
platforms with resource (e.g., memory) limitations. In this case, you would also want to set
LARGE_DATA_STORE to the value FILE in the Service Profile, and Merge DICOM Toolkit will store
the Pixel Data value in a temporary file.

It is recommended that you re-use the same buffer in provideData to reduce memory consumption
before garbage collection is due. Also, keeping the previous data supplied to the toolkit allows user
to control the prompt disposal of the data as shown in the example above. After the pixel data has

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

110© Copyright Merge Healthcare Solutions Inc. 2025

been streamed out, it is recommended that you dispose MyPDSupplyCallback object using
Dispose() method to release the last MCdata object. With this callback mechanism, the memory
usage in both native and managed code can be minimized for large pixel data.

If your application runs on a resource-rich system, you should set LARGE_DATA_STORE to the value
MEM in the Service Profile, and Merge DICOM Toolkit will keep the Pixel Data values in the message
object stored in memory rather than using temporary files. This should improve performance. Also,
in this case you may want your callback class to supply the Pixel Data in fewer big blocks (or one
large block).

Merge DICOM provides several implementations to the MCdataSource interface. The
MCfileDataSource class implements a data source that reads from a file. A file name is supplied
to the constructor, and the class will automatically supply the contents of this file. The
MCstreamDataSource class implements a data source that reads from a System.IO.Stream
derived instance. For example, an instance of the System.IO.FileStream class can be used to
read the file. Finally, the MCmemoryDataSink class also implements the MCdataSource interface.
This class also implements the MCdataSink interface, which is described in a subsequent section.
The MCmemoryDataSink class implements a data source where the data is supplied from memory.
The MCmemoryDataSink class constructor takes an MCdata instance in the constructor which
contains the actual data being supplied.

4.16.32.Retrieving Attribute Values

When your AE receives a DICOM message, it will most often need to examine the values contained
in the message attributes to perform an action (e.g., store an image, print a film, change state...). If
your application is a server, the message conveys the operation your server should perform and the
data associated with the operation. If your application is a client, the message may be a response
message from a server on the network resulting from a previous request message to that same
server.

Once you have received an MCattributeSet object (probably one contained in an
MCdimseMessage object), you can use the indexer for MCattributeSet to retrieve values. (Note
that you can also use a different form of the indexer to retrieve MCattribute objects, which in turn
have an indexer to retrieve values.) The indexers have the following forms:

public Object this[uint tag, int index];

public Object this [MCtag tag, int index];

public Object this [uint tag, int index, Object defaultValue];

public Object this [MCtag tag, int index, Object defaultValue];

Each of these methods return an Object representing the value. The tag to retrieve can be specified
as an MCtag instance or a uint containing the tag. The index parameter allows the user to specify the
specific value to get, if the attribute has a value of multiplicity greater than one. The index is zero
based. Two final forms are added as a convenience and allow a default value to be specified if the
attribute does not have a value or it is missing in the attribute set.

Each method returns an Object representing the value; the type of object returned is determined by
value representation of the attribute that is being retrieved. The methods return null if the

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

111© Copyright Merge Healthcare Solutions Inc. 2025

attribute's value was a DICOM NULL value (i.e. its value length was zero). The table below below
shows the data types that are returned for each DICOM Value Representation.

Table 4.3: Valid value type parameters for the various Value Representations

NOTE: If a value is retrieved which is not set, the indexer will throw an MCnoSuchValueException.

MCdimseMessage dm; // non-null reference

MCattributeSet as = dm.getDataSet();

try {

MCdate value = (MCdate)as[MCdicom. INSTANCE_CREATION_DATE, 0);

} catch (MCnoAttributesException e) {…}

catch (MCattributeNotFoundException e) {…}

catch (MCincompatibleValueException e) {…}

catch (MCnoSuchValueException e) {…}

The MCattribute class contains a number of routines that can do explicit conversion from the
internal encoding for VRs into other data types. These MCattribute methods are getIntValue,
getStringValue, getUIntValue, and getDoubleValue. These routines will convert the internal
Merge DICOM representation into the types specified in the routine name. See the Assembly
Windows Help File for further details on these methods.

Data Types Returned Value Representations

MCdate DA

MCdateTime DT

MCtime TM

MCage AS

String AE, DS, IS, UI, CS, LO, LT, SH, ST, UC, UR, UT

MCpersonName PN

float FL

double FD

short SS

ushort US

int SL

uint UL, AT

long SV

ulong UV

MCdataSink OB, OW, OL, OV, OD, OF, UNKNOWN_VR,

MCitem SQ

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

112© Copyright Merge Healthcare Solutions Inc. 2025

4.16.33.Using Callback Class to Retrieve Attribute Value

You shall use the IsBulk attribute's property to identify if the value is bulk. To retrieve the bulk value
you must use the readBulkData method or the readNextFrame method of MCattribute. In most
of the cases it is a value representation of OB, OW, OL, OV, OD or OF (e.g., Pixel Data). Pixel Data
tends to be very large and normally you use this method to read the data value a 'chunk' or block at
a time. This method is the complement to the setValue method described previously.

You must construct a callback class that implements the MCdataSink interface and then call
readBulkData to retrieve the attribute's value.

The callback class you provide must provide a receiveData method that is called by the library to
provide portions of the attribute's value. The library calls the receiveData method, passing an
instance of the MCdata class that contains a reference to the data being provided and a
System.Object reference to the origin of the data.

As an example, your application could define a MCdataSink class called MyPDStoreCallback
whose purpose is to store Pixel Data to an external data sink so that your application uses less
primary memory. Pseudo-code for this class follows:

class MyPDStoreCallback : MCdataSink {

public String file = null;

public bool isFirst = true;

public void receiveData (MCdata data, System.Object origin) {

if(isFirst) {

isFirst = false;

// Open pixel data sink (e.g., file) here

...

if(openFailed)

throw new MCcallbackCannotComplyException();

}

byte[] array = data.ManagedBuffer;

int size = data.Length;

// Store size bytes of the array in the pixel data sink.

...

if(storeFailed)

throw new MCcallbackCannotComplyException();

if(data.IsLast) {

// close the data sink here

}

return;

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

113© Copyright Merge Healthcare Solutions Inc. 2025

}

This callback is called by the Merge DICOM .NET Library only when triggered by your application.
For example, your application might use MyPDStoreCallback to retrieve the value of the
TAG_PIXEL_DATA attribute (7FE0,0010) as follows:

MCdataSet ds; // non-null reference

MyPDStoreCallback cb = new MyPDStoreCallback();

cb.file = "MypixelDataFile";

try {

MCattribute attrib = ds[MCdicom.PIXEL_DATA];

attrib.readBulkData(cb);

} catch (MCexception e) {…}

On making this call, the toolkit library will repetitively call the receiveData method of the
MyPDStoreCallback class until all the pixel data has been retrieved from the attribute without any
errors.

Storing or 'setting aside' Pixel Data a block at a time is especially useful for very large Pixel Data and/
or on platforms with resource (e.g., memory) limitations. In this case, you would also want to set
LARGE_DATA_STORE to the value FILE in the Service Profile, so that Merge DICOM Toolkit will also
maintain the pixel data value stored in the attribute set in a temporary file.

If your application runs on a resource rich system, you should set LARGE_DATA_STORE to the value
MEM in the Service Profile, and Merge DICOM Toolkit will keep the pixel data values in the attribute
set stored in memory rather than using temporary files. This should improve performance. Also, in
this case you may want your callback class to store the Pixel Data in fewer big blocks (or one large
block) and keep them in primary memory for rapid access.

Merge DICOM provides a number of implementations to the MCdataSink interface. The
MCfileDataSink class implements a data sink that writes to a file. A file name is supplied to the
constructor, and the class will automatically write the supplied data to this file. The
MCstreamDataSink class implements a data sink that writes to a System.IO.Stream derived
instance. For example, an instance of the System.IO.FileStream class can be used to write to a
file. Finally, the MCmemoryDataSink class also implements the MCdataSink interface. This class
implements a data sink where the data is stored in memory.

4.16.34.Retrieving Attribute Value Properties

You can obtain the length of an attribute's value by using the ValueLength property of the
MCattribute class. The length returned is the stream length of the attribute. It is the sum of all
lengths of all values if the attribute is multi-valued. If the VR is a text VR and the attribute is multi-
valued, the length also includes the numbers of separators.

If the attribute's value is a DICOM NULL, zero is returned.

If an attribute has a value representation of SQ, the number of items in the sequence is returned.

MCattributeSet as; // non-null reference

MCtag tag = new MCtag(0x0008, 0x0010);

uint length = as[tag].ValueLength;

Refer to the Assembly Windows Help File for the exceptions that may be thrown.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

114© Copyright Merge Healthcare Solutions Inc. 2025

You can use the Count property of the MCattribute class to retrieve the number of values that are
currently stored for an attribute. If no values are stored for the attribute zero will be returned. If the
attribute contains one NULL value, 1 will be returned.

MCattributeSet as; // non-null reference

MCtag tag = new MCtag(0x0008, 0x0010);

int values = as[tag].Count;

4.16.35.Listing an Attribute Set

You can create a formatted list of the attributes of an attribute set, along with their values by using
the list method of the MCattributeSet. The list method produces a report describing the
contents of the MCattributeSet (or one of its sub-classes). The report will be written to the
TextWriter provided, or to stdout, if a file is not provided.

NOTE: If the object contains an attribute with a Value Representation of SQ (sequence of items),
each item in the sequence will be listed. Each sequence of items is indented in the listing
four spaces to the right of its owning message or items.

MCattributeSet as; // a non-null reference

as.list();// list to the standard output stream

System.IO.StreamWriter writer = new StreamWriter("myFile");

as.list(writer); // list to myFile

4.16.36.Converting Attribute Set to Proprietary Schema XML
String

You can convert a list of attributes of an attribute set, along with their values into proprietary schema
XML string by using the writeToXML method of the MCattributeSet. The writeToXML method
creates an XML string describing the contents of the MCattributeSet. The XML buffer is written to
the stream identified by the stream object provided.

NOTE: If the object contains an attribute with a Value Representation of SQ (sequence of items),
each item in the sequence will be converted into its XML representation.

The following example shows how the writeToXML method is utilized at a high level.

MCdataSet ds; // a non-null reference

MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |
XmlOptExcludeSequences;

StreamWriter writer = new StreamWriter("myXMLFile");

// convert DICOM DataSet to an XML file

ds.writeToXML(writer, xmlOptions);

writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration and are available
for the Attribute Set to XML conversion.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

115© Copyright Merge Healthcare Solutions Inc. 2025

// Use the default settings

XmlOptDefault = 0x0

// Store bulk attributes (VR is OB or OW) in the XML

XmlOptIncludeBulks = 0x1

// Store Pixel Data buffer in the XML

XmlOptIncludePixelData = 0x2

// Do not store Sequence attributes in the XML

XmlOptExcludeSequences = 0x4

// Do not store Private attributes in the XML

XmlOptExcludePrivateAttributes = 0x8

// Use Base64 encoding for bulks and UN VR attributes

XmlOptBase64Binary = 0x10

4.16.37.Converting Proprietary Schema XML String to Attribute
Set

You can read attribute values from a proprietary schema XML string into an attribute set by using
the readFromXML method of the MCattributeSet.

The content of the attribute set is not cleared before processing XML attributes. The existing
attributes in the attribute set will be overridden if they are present in the XML string.

The following example shows how the readFromXML method is utilized at a high level.

StreamReader reader = new StreamReader("myXMLFile");

MCdataSet ds = new MCdataSet();

// convert an XML file into an attribute set

ds.readFromXML(reader);

reader.Close();

4.16.38.Converting Attribute Set to Native DICOM Model XML
String

You can convert a list of attributes of an attribute set, along with their values into XML string by using
the writeToXMLNative method of the MCattributeSet. The writeToXMLNative method creates a
Native DICOM Model (PS3.19) XML string describing the contents of the MCattributeSet. The XML
buffer is written to the stream identified by the stream object provided.

The following example shows how the writeToXMLNative method is utilized at a high level.

MCdataSet ds; // a non-null reference

MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |
XmlOptExcludeSequences;

StreamWriter writer = new StreamWriter("myXMLFile");

// convert DICOM DataSet to an XML file

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

116© Copyright Merge Healthcare Solutions Inc. 2025

ds.writeToXMLNative(writer, xmlOptions);

writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration and are available
for the Attribute Set to XML conversion.

// Use the default settings

XmlOptDefault = 0x0

// Store bulk attributes (VR is OB or OW) in the XML

XmlOptIncludeBulks = 0x1

// Store Pixel Data buffer in the XML

XmlOptIncludePixelData = 0x2

// Do not store Sequence attributes in the XML

XmlOptExcludeSequences = 0x4

// Do not store Private attributes in the XML

XmlOptExcludePrivateAttributes = 0x8

The Native DICOM Model provisions that bulk data can be replaced by a URI string instead of the
actual data. To allow the substitution at run time, a new interface MCbulkDataUriHandler is
introduced.

public interface MCbulkUriHandler

{

 object provideData(MCattributeSet attrSet, unit tag, MCvr vr,
string uri);

 string provideUri(MCattributeSet attrSet, unit tag, MCvr vr);

}

Following example shows how to implement this interface and calling an overloaded method of
writeToXMLNative to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler

{

 public string provideUri(MCattributeSet attrSet, unit tag, MCvr
vr)

{

if (tag == MCdicom.PIXEL_DATA)

return "http://xyz.net/pixeldatalocation"; // return your URI string

}

}

// call an overloaded method of writeToXMLNative

ds.writeToXMLNative(writer, xmlOptions, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data to the XML file
using based 64 encoded string.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

117© Copyright Merge Healthcare Solutions Inc. 2025

4.16.39.Converting Native DICOM Model XML String to Attribute
Set

You can read attribute values from an XML string into an attribute set by using the
readFromXMLNative method of the MCattributeSet.

The content of the attribute set is not cleared before processing XML attributes. The existing
attributes in the attribute set will be overridden if they are present in the XML string.

The following example shows how the readFromXMLNative method is utilized at a high level.

StreamReader reader = new StreamReader("myXMLFile");

MCdataSet ds = new MCdataSet();

// convert an XML file into an attribute set

ds.readFromXML(reader);

reader.Close();

To handle bulk Uri from a Native DICOM Model XML file, the MCbulkDataUriHandler interface is
used. Following shows how to implement this task:

class BulkDataUriHandler: MCbulkUriHandler

{

 public object provideData(MCattributeSet attrSet, unit tag, MCvr
vr, string uri)

 {

 if(tag == MCdicom.PIXEL_DATA)

 {

 // use parameter uri to retrieve your data

 // based on your data, create an array of datasize

 byte[] data = new byte[datasize];

 // populate your data array

 return data;

 }

 }

}

// call an overloaded method of readFromXMLNative
ds.readFromXMLNative(reader, new BulkDataUriHandler());

By default, if no Bulk URI handler is supplied and a bulk URI attribute is encountered in the XML file,
the toolkit will generate an empty attribute (tag with zero length) for the encountered tag.

4.16.40.Converting Attribute Set to DICOM JSON Model String

You can convert a list of attributes of an array of attribute set, along with their values into DICOM
JSON Model string by using the writeDataSetsToJSON method of the MCattributeSet. The

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

118© Copyright Merge Healthcare Solutions Inc. 2025

writeDataSetsToJSON method creates a DICOM JSON Model (PS3.18) string describing the
contents of the MCattributeSet. The API helps converting an array of data sets to a JSON file
containing an array of JSON objects. The JSON buffer is written to the stream identified by the
stream object provided.

The following example shows how the writeToJSON method is utilized at a high level.

MCdataSet[] dsa; // a non-null reference array of MCdataSet
StreamWriter writer = new StreamWriter("myXMLFile");

// convert DICOM DataSet(s) to an JSON file
dsa.writeDataSetsToJSON(writer);

writer.Close();

The DICOM JSON Model provisions that bulk data can be replaced by a URI string instead of the
actual data. To allow the substitution at run time, a new interface MCbulkDataUriHandler is
introduced.

public interface MCbulkUriHandler

{

object provideData(MCattributeSet attrSet, unit tag, MCvr vr, string
uri); string provideUri(MCattributeSet attrSet, unit tag, MCvr vr);

}

Following example shows how to implement this interface and calling an overloaded method of
writeDataSetsToJSON to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler

{

 public string provideUri(MCattributeSet attrSet, unit tag, MCvr
vr)

 {

 if(tag == MCdicom.PIXEL_DATA)

 return "http://xyz.net/pixeldatalocation"; // return your URI
string

 }

}

// call an overloaded method of writeDataSetsToJSON
ds.writeDataSetsToJSON(writer, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data to the JSON file
using based 64 encoded string.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

119© Copyright Merge Healthcare Solutions Inc. 2025

4.16.41.Converting DICOM JSON Model String to Attribute Set

You can read attribute values from a DICOM JSON Model string that containing multiple JSON
objects into an array of attribute set objects by using the readDataSetsFromJSON method of the
MCattributeSet.

The following example shows how the readDataSetsFromJSON method is utilized at a high level.

StreamReader reader = new StreamReader("myXMLFile");

MCdataSet[] dsa = ds.readDataSetsFromJSON(reader);

To handle bulk URI from a DICOM JSON Model file, the MCbulkDataUriHandler interface is used.
Following shows how to implement this task:

class BulkDataUriHandler: MCbulkUriHandler

{

 public object provideData(MCattributeSet attrSet, unit tag, MCvr
vr, string uri)

 {

 if(tag == MCdicom.PIXEL_DATA)

 {

 // use parameter uri to retrieve your data

 // based on your data, create an array of datasize

 byte[] data = new byte[datasize];

 // populate your data array

 return data;

 }

 }

}

// call an overloaded method of readFromXMLNative

dsa.readDataSetsFromJSON(reader, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied and a bulk URI attribute is encountered in the JSON
file, the toolkit will generate an empty attribute (tag with zero length) for the encountered tag.

4.16.42.8-bit Pixel Data

For DICOM's Implicit VR Little Endian transfer syntax, the pixel data attribute's (7fe0,0010) VR is
specified as being OW (independent of what the bits allocated and bits stored attributes are set to).
To reduce confusion, Merge DICOM Toolkit sets the VR of pixel data for the other non-encapsulated
transfer syntaxes to OW.

When retrieving or setting pixel data with a MCdataSink or MCdataSource class, the toolkit
assumes that the OW pixel data is encoded in the host system's native endian format as defined by

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

120© Copyright Merge Healthcare Solutions Inc. 2025

DICOM. The figure below describes how 8-bit pixel data is encoded in an OW buffer for both big and
little endian formats.

The DICOM standard specifies that the first pixel byte should be set to the least significant byte of
the OW value. The next pixel byte should be set to the most significant byte of the OW value. This
implies that on big endian machines, 8-bit pixel data is byte-swapped from the OB encoding
method. Note that .NET and Windows is in Little Endian format.

4.16.43.Encapsulated Pixel Data

Merge DICOM Toolkit supports the DICOM encapsulated transfer syntaxes. The method for
compression and decompression (JPEG, RLE, etc.) of encapsulated pixel data is specified in part 5
of the DICOM standard. Merge DICOM also supports compression and decompression for several
specific transfer syntaxes. The methods for this are discussed in subsequent section. Besides this
support, the MCattribute class also has several methods for dealing with encapsulated transfer
syntaxes.

There are several classes that can be used for compressing or decompressing data. See 4.17.1.
COMPRESSION AND DECOMPRESSION ON PAGE 121.

Encapsulated pixel data is dealt with in a similar manner as standard pixel data. MCdataSink and
MCdataSource classes are used. Merge DICOM .NET has the capability of encapsulating each
frame of data according to the encoding specified in Part 5 of the DICOM standard. The table below
contains a sample encoding of frames.

Table 4.4: Sample Encapsulated Pixel Data

Pixel Data Element

Basic Offset Table
with NO Item
Value

First Fragment (Single Frame) of
Pixel Data

Second Fragment (Single Frame) of
Pixel Data

Sequence Delimiter
Item

Item
Tag

Item
Length

Item
Tag

Item
Length

Item Value Item
Tag

Item
Length

Item Value Sequence
Delim. Tag

Item
Length

(FFFE,
E000)

0000
0000H

(FFFE,
E000)

0000
04C6H

Compressed
Fragment

(FFFE,
E000)

0000
024AH

Compressed
Fragment

(FFFE,
E0DD)

0000
0000H

4 bytes 4 bytes 4 bytes 4 bytes 04C6H bytes 4 bytes 4 bytes 024A H bytes 4 bytes 4 bytes

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

121© Copyright Merge Healthcare Solutions Inc. 2025

When encoding encapsulated data, each compressed fragment shown in the table above is set with
the addEncapsulatedValue method of MCattribute. This routine supplies an MCdataSource
which contains the encapsulated pixel data. When needed, Merge DICOM will retrieve data from the
source and encapsulate. In this case, it is assumed that the MCdataSource is supplying already
compressed data. addEncapsulatedValue can be called multiple times to add additional
compressed frames to an attribute.

When decoding encapsulated data, the getEncapsulatedFrame or getFrame methods of
MCattribute are used. These methods can be repeatedly called to retrieve each encapsulated
frame. Note that the compressed data is returned unless the decompressor is registered using
registerCompressor method for the given DICOM message.

4.17. Working with MCabstractMessage Derived Classes
The MCabstractMessage class is an abstract class that implements several routines that are
common between DIMSE messages (MCdimseMessage) and DICOM files (MCfile). These
routines include compression and validation of attribute sets.

4.17.1. Compression and Decompression

The MCabstractMessage derived classes (MCfile and MCdimseMessage) provide a duplicate
method, which can be utilized to do compression, decompression, or both. The duplicate method
will create a copy of the MCfile or MCdimseMessage that is encoded in a new transfer syntax. If the
transfer syntax of the source message is compressed, a decompressor must be supplied to the
duplicate method. If the result transfer syntax is compressed, a compressor must be supplied.

The MCcompression interface defines an interface for compressors and decompressors utilized
by Merge DICOM .NET. Merge DICOM supplies a number of compressors and decompressors that
implement this interface and are defined in the following sections. The duplicate method of
MCabstractMessage requires that the compressor and decompressor supplied to it implement the
MCcompression interface. The following example shows how the duplicate method is utilized at a
high level.

MCdimseMessage msg; // A non-null uncompressed message

MCdimseMessage resultMsg;

resultMsg = msg.duplicate(MCtransferSyntax.Rle, null, new
MCrleCompressor());

MCdimseMessage resultMsg2;

resultMsg2 = resultMsg.duplicate(MCtransferSyntax.JpegBaseline,

 new MCrleDecompressor(),

 new MCstandardCompressor());

The example starts with an uncompressed image, and creates a new message that is RLE
compressed with the duplicate method. It then calls duplicate again to decompress the RLE image
and recompress the image as JPEG Baseline.

The following section describes the compressors and decompressor supplied by Merge DICOM
and how they must be utilized with MCabstractMessage.duplicate.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

122© Copyright Merge Healthcare Solutions Inc. 2025

4.17.2. Merge DICOM Supplied Compressors and Decompressors

Merge DICOM supplies several implementations of compressors and decompressors. The table
below lists each of the Merge DICOM classes, if they implement compression or decompression
and what transfer syntaxes they support.

Table 4.5: Merge DICOM Supplied Compressor and Decompressors

For the JPEG Baseline, Jpeg Extended (Process 2 & 4), JPEG Lossless Non-Hierarchical Process 14,
JPEG 2000, and JPEG 2000 Lossless Only transfer syntaxes, Merge DICOM utilizes the Pegasus
libraries (from Accusoft) to do compression and decompression. The RLE transfer syntax is
supported directly in Merge DICOM Toolkit.

JPEG Baseline, JPEG Extended (Process 2 & 4), and JPEG Lossless Non-Hierarchical Process 14
can be compressed or decompressed at a maximum rate of 3 images (or frames) per second. For
JPEG 2000 Lossless and Lossy, a dialog will be displayed each time the compressor or
decompressor is used. Full licenses can be purchased from Accusoft (www.accusoft.com) and
configured in Merge DICOM to remove these compression and decompression limits. The licenses
can be configured in the mergecom.pro configuration file.

The MCtransferSyntax.JpegBaseline transfer syntax is UID 1.2.840.10008.1.2.4.50, JPEG Baseline
(Process 1): Default Transfer Syntax for Lossy JPEG 8 Bit Image Compression, and uses Pegasus
libraries 6420/6520. The table below details the photometric interpretation and bit depths
supported by the standard compressor and decompressor for this transfer syntax. When lossy
compressing RGB data, the standard compressor by default compresses the data into
YBR_FULL_422 format. The compressor can also compress in YBR_FULL format if the
COMPRESSION_RGB_TRANSFORM_FORMAT configuration option is set to YBR_FULL. The
Photometric Interpretation tag must be changed by the application after compressing RGB data.

Merge DICOM Class Type DICOM Transfer Syntaxes Supported

MCstandardCompressor Compressor JPEG Baseline
JPEG Extended (Process 2 & 4)
JPEG Lossless Non-Hierarchical Process 14
JPEG 2000
JPEG 2000 Lossless Only

MCrleCompressor Compressor RLE

MCstandardDecompressor Decompressor JPEG Baseline
JPEG Extended (Process 2 & 4)
JPEG Lossless Non-Hierarchical Process 14
JPEG 2000
JPEG 2000 Lossless Only

MCrleDecompressor Decompressor RLE

www.accusoft.com
www.accusoft.com

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

123© Copyright Merge Healthcare Solutions Inc. 2025

Similarly, the Photometric Interpretation tag should be changed back to RGB before
decompressing YBR_FULL or YBR_FULL_422 data.

Table 4.6: JPEG Baseline Supported Photometric Interpretations and Bit Depths

The MCtransferSyntax.JpegExtended2_4 transfer syntax is UID 1.2.840.10008.1.2.4.51, JPEG
Extended (Process 2 & 4): Default Transfer Syntax for Lossy JPEG 12 Bit Image Compression
(Process 4 only), and uses Pegasus libraries 6420/6520. The table below details the photometric
interpretation and bit depths supported by the standard compressor and decompressor for this
transfer syntax. When lossy compressing RGB data, the standard compressor by default
compresses the data into YBR_FULL_422 format. The compressor can also compress in YBR_FULL
format if the COMPRESSION_RGB_TRANSFORM_FORMAT configuration option is set to YBR_FULL.
The Photometric Interpretation tag must be changed by the application after compressing RGB
data. Similarly, the Photometric Interpretation tag should be changed back to RGB before
decompressing YBR_FULL or YBR_FULL_422 data.

Table 4.7: JPEG Extended Supported Photometric Interpretations and Bit Depths

The MCtransferSyntax.JpegLosslesHier14 transfer syntax is UID 1.2.840.10008.1.2.4.70, JPEG
Lossless, Non-Hierarchical, First-Order Prediction (Process 14 [Selection Value 1]): Default Transfer
Syntax for Lossless JPEG Image Compression, and uses Pegasus libraries 6220/6320. The table
below details the photometric interpretation and bit depths supported by the standard compressor
and decompressor for this transfer syntax. The standard compressor does not do a color
transformation to RGB data when compressing with JPEG_LOSSLESS_HIER_14. The Photometric
Interpretation tag should be left as RGB in this case.

Table 4.8: JPEG Lossless Supported Photometric Interpretations and Bit Depths

JPEG Baseline

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422

Bits Stored 8 8 8

Bits Allocated 8 8 8

Samples Per Pixel 1 3 3

JPEG Extended (Process 2 & 4)

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422

Bits Stored 8 10 12 8 8

Bits Allocated 8 16 16 8 8

Samples Per Pixel 1 1 1 3 3

JPEG Lossless Non-Hierarchical Process 14

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB
YBR_FULL

PALETTE COLOR

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

124© Copyright Merge Healthcare Solutions Inc. 2025

The MCtransferSyntax.Jpeg2000 transfer syntax is UID 1.2.840.10008.1.2.4.91, JPEG 2000 Image
Compression, and uses Pegasus libraries 6820/6920 for lossy or lossless. The table below details
the photometric interpretation and bit depths supported by the standard compressor and
decompressor for this transfer syntax.

Table 4.9: JPEG 2000 Lossy Supported Photometric Interpretations and Bit Depths

The MCtransferSyntax.Jpeg2000LosslessOnly transfer syntax is UID 1.2.840.10008.1.2.4.90, JPEG
2000 Image Compression (Lossless Only), and uses Pegasus libraries 6820/6920 for lossless. The
table below details the photometric interpretation and bit depths supported by the standard
compressor and decompressor for this transfer syntax.

Table 4.10: JPEG 2000 Lossless Supported Photometric Interpretations and Bit Depths

Special Notes

When using the standard compressor, all data needs to be right justified, i.e. bit 0 contains data, but
the highest bits may not. RGB and YBR must be non-planar (R1G1B1, R2G2B2, ... or Y1Y2B1R1,
Y3Y4B3R3, ...)

MCtransferSyntax.Jpeg2000 and MCtransferSyntax.Jpeg2000LosslessOnly will cause a irreversible,
or reversible color transformation when compressing RGB data. The Photometric Interpretation
MUST be changed from RGB to:

● YBR_ICT if MCtransferSyntax.Jpeg2000 is used with COMPRESSION_WHEN_J2K_USE_LOSSY =
Yes (Lossy color transform for lossy compression)

Bits Stored 2 to 16 8 1 - 16

Bits Allocated 8 or 16 8 8 or 16

Samples Per Pixel 1 3 1

JPEG 2000 (When used for Lossy)

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

YBR_ICT RGB YBR_FULL

Bits Stored 8 10 12 16 8 8 8

Bits Allocated 8 16 16 16 8 8 8

Samples Per Pixel 1 1 1 1 3 3 3

JPEG 2000 Lossless

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

YBR_RCT
YBR_FULL

RGB PALETTE
COLOR

Bits Stored 8 10 12 16 8 8 1 - 16

Bits Allocated 8 16 16 16 8 8 8 or 16

Samples Per Pixel 1 1 1 1 3 3 1

JPEG Lossless Non-Hierarchical Process 14

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

125© Copyright Merge Healthcare Solutions Inc. 2025

● YBR_RCT if MCtransferSyntax.Jpeg2000LosslessOnly or MCtransferSyntax.Jpeg2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = No (Lossless color transform for lossless
compression).

Similarly, on the decompression end, the Photometric Interpretation should be changed back to
RGB, but the Lossy Image Compression attribute should indicate it has been lossy compressed.

4.17.3. Validating Attribute Sets

Once your application has a populated message object, either one that you have built or one that
you have received and are about to parse, Merge DICOM Toolkit supplies DICOM Toolkit DICOM
message validation functionality. The MCabstractMessage derived classes (MCdimseMessage and
MCfile) and the MCdataSet class each provide a validate method that will validate the attribute
sets it contains against the DICOM Standard's specification for its service-command pair.

One of the files supplied with Merge DICOM Toolkit is the message.txt file. This file contains a
listing of all the messages supported by the toolkit and the parameters they are validated against.
message.txt is a useful guide in your application development because it specifies the attributes
that can make up the object instance portion of each message type (service-command pair) and is
often easier to use as a quick reference than paging through two or three parts of the DICOM
Standard. message.txt also specifies the contents of items and files (see 4.20. SEQUENCES OF
ITEMS ON PAGE 147 and 4.21. DICOM FILES ON PAGE 150). Remember though that the DICOM
Standard is the final word and that message.txt has its limitations as described further below.

The validate methods do not validate the attributes that make up the command portion of a
DICOM message. Command set attributes (attributes with a group number less than 0008) are also
not specified in message.txt. The Merge DICOM Toolkit Library sets as many of the command
group attributes as possible automatically. In some services, your application may need to set
command set attributes if you do not use one of the sub-classes of the MCdimseService class.

An excerpt of message.txt follows for the service-command pair
DETACHED_PATIENT_MANAGEMENT - N_GET_RSP as an illustration. For each attribute in the
message, at least one line of data is specified. This first line includes the tag, attribute name, value
representation, and value type. Additional lines may be included for the attribute to list conditions,
enumerated values, defined terms, and item names for attributes with a VR of SQ. You should refer
to the DICOM Standard (parts 3 and 4) for a detailed description of particular conditions and their
meanings.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

126© Copyright Merge Healthcare Solutions Inc. 2025

DETACHED_PATIENT_MANAGEMENT - N_GET_RSP

0008,0005 Specific Character set CS 1C
Condition: EXPANDED_OR_REPLACEMENT_CHARACTER_SET_USED
Defined Terms: ISO-IR 100, ISO-IR 101, ISO-IR 109, ISO-IR 110, ISO-IR144, ISO-IR 127, ISO-IR
126, ISO-IR 138, ISO-IR 148
0008,1110 Referenced Study Sequence SQ 2
Item Name(s): REF_STUDY
0008,1125 Referenced Visit Sequence SQ 2
Item Name(s):
0010,0010 Patient’s Name PN 2
0010,0020 Patient IDLO2
0010,0021 Issuer of Patient ID LO 3
0010,0030 Patient’s Birth Date DA 2
0010,0032 Patient’s Birth Time TM 3
0010,0040 Patient’s Sex CS 2
Enumerated Values: M, F, O
0010,0050 Patient’s Insurance Plan Code Sequence SQ 3
Item Name(s): PATIENTS_INSURANCE_PLAN_CODE
0010,1000 Other Patient IDs LO 3
0010,1001 Other Patient Names PN 3
0010,1005 Patient’s Birth Name PN 3
0010,1020 Patient’s Size DS 3
0010,1040 Patient’s Address LO 3
0010,1060 Patient’s Mother’s Birth Name PN 3
0010,1080 Military Rank LO 3
0010,1081 Branch of Service LO 3
0010,1090 Medical Record Locator LO 3
0010,2000 Medical Alerts LO 3
0010,2110 Contrast Allergies LO 3
0010,2150 Country of Residence LO 3
0010,2152 Region of Residence LO 3
0010,2154 Patient’s Telephone Numbers SH 3
0010,2160 Ethnic Group SH 3
0010,21A0 Smoking Status CS 3
Enumerated Values: YES, NO, UNKNOWN
0010,21B0 Additional Patient History LT 3
0010,21C0 Pregnancy Status US 3
Enumerated Values: 0001, 0002, 0003, 0004
0010,21D0 Last Menstrual Date DA 3
0010,21F0 Patient’s Religious Preference LO 3
0010,4000 Patient Comments LT 3
0038,0004 Referenced Patient Alias Sequence SQ 2
Item Name(s): REF_PATIENT_ALIAS
0038,0050 Special Needs LO 3
0038,0500 Patient State LO 3

While Merge DICOM validation is not foolproof, it is very useful and will catch many standard
violations. It validates the following:

● That the value assigned to an attribute is appropriate for that attributes VR.

● That all value type 1 attributes have a value, and that value is not null.

● That all value type 2 attributes have a value, and that value may be null.

● That a specified set of conditional attributes (value type 1C or 2C) are validated as value type 1 or
2 attributes when the specified condition is satisfied. Merge DICOM supports a number of
conditional functions that are straightforward to validate. Not all conditions can be validated by
the toolkit and those that cannot need to be checked by the application itself.

● That an attribute does not have too many or too few values for its specified value multiplicity.

● That an attribute that has enumerated values does not have a value that is not one of the
enumerated values. A warning is also issued if an attribute that has defined terms has a value
that is not one of those defined terms.

● That a non-private attribute is not included in the message that is not defined for that DICOM
message (service-command pair).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

127© Copyright Merge Healthcare Solutions Inc. 2025

As mentioned, Merge DICOM Toolkit does not capture all standard violations, and the DICOM
Standard itself should be considered the final word when validating a message. Important
limitations of Merge DICOM validation include:

● DICOM Part 3 specifies Information Object Definitions (IOD's) as being composed of modules.
Each module contains attributes. Only in the case of composite IOD's may an attribute be
specified in DICOM Part 3 as being contained in either a User Optional or Conditional Module.
Merge DICOM Toolkit treats all such attributes as being value type 3 (optional).

● Also, certain modules may be mutually exclusive (e.g., curve and overlay modules), in the case
of some composite IOD's (e.g., Ultrasound Image Object) used in storage services.

● For normalized services using the N-EVENT-REPORT command, the actual contents of an N-
EVENT-REPORT message are dependent on the Event Type ID being communicated. Merge
DICOM Toolkit treats all Event Type IDs identically when performing message validation; namely
it treats all attributes as type 3.

An example of the use of the validate method follows. The example assumes a MCdimseMessage
(msg) was just received and the intent is to validate the message.

MCdimseMessage msg; // non-null reference

bool validates;

validates = msg.validate(MCvalidationLevel.Errors_Only);

if (!validates)

{

MCvalidationError err = msg.getNextValidationError();

while (err != null)

{

System.Console.Out.WriteLine(err.ToString());

err = msg.getNextValidationError();

}

}

In this example, the application validates the MCdimseMessage object msg at the
MCvalidationLevel.Errors_Only level. MCvalidationLevel.Errors_And_Warnings
could be used to report both warnings and errors, while MCvalidationLevel.Full could be used
to report errors, warnings, and informational messages. If MCdimseMessage.validate returns false,
your application can use the getNextValidationError method to retrieve
MCvalidationError objects that describe the error. Each MCvalidationError instance has these
public properties:

● Tag — A unit identifying the DICOM tag in error

● AttributeSet — the MCattributeSet derived class containing the attribute in error

● ValueNumber — specifies which of the attribute's values was in error

● ErrorDescription — a String describing the error

● ErrorNumber — a number identifying the error. Refer to the MCvalidationError class in the
Assembly Windows Help File for the error numbers that may be returned.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

128© Copyright Merge Healthcare Solutions Inc. 2025

The ToString method in the MCvalidationError class provides a convenient way to display a
validation error. A sample string (that includes imbedded line feeds) follows:

It is on the initial call to the validate method that all the validation takes place and that the results of
the validation for the entire message are logged to the message log file. Subsequent calls to the
getNextValidationError method simply step through the results of the validation, passing additional
errors found back to the application. A sample log file report follows.

01-11 13:52:09.00 7919 MC3 T5: (0008,0005) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0008,0023) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0008,0033) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0010,1010) VE: [41Y] Invalid value
for this tag's VR

01-11 13:52:09.00 7919 MC3 T5: (0018,0010) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0015) VE: Required attribute has
no value

01-11 13:52:09.00 7919 MC3 T5: (0018,0020) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0021) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0022) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0023) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0050) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0080) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0081) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0082) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0084) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0085) VW: Invalid attribute for
service

Attribute tag: 0x00100010 (Patient's Name)

Dataset: Mergecom.MCdataSet

Value Number: 0

Description: Invalid value for this tag's VR

Error Number: 28

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

129© Copyright Merge Healthcare Solutions Inc. 2025

01-11 13:52:09.00 7919 MC3 T5: (0018,0091) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,1041) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,1060) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,1250) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,5101) VE: Required attribute has
no value

01-11 13:52:09.00 7919 MC3 T5: (0020,0032) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,0037) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,0052) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,0060) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0020,1040) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,1041) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0028,0006) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0028,0030) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0028,0034) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0028,1101) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0028,1102) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0028,1103) VI: Unable to check
condition

01-11 13:52:09.00 7919 MC3 T5: (0028,1201) VI: Unable to check
condition

Notice in this log file that all warnings and informational messages are also logged. This is always the
case, although the first violation returned to the application was an error because
MCvalidationLevel.Full was specified. The message log agrees in that the first VE (Validation
Error) logged is for the attribute Patient's Age (0010,1010). The log states that the message contains
"41Y" as the value for this attribute. Part 6 of DICOM clearly states that this attribute has a value
representation of AS (Age String) and part 5 states that for this VR the value should have a leading
zero and be represented as "041Y". There is also one other error flagged in this message. The
required attribute View Position (0018,5101) had no value.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

130© Copyright Merge Healthcare Solutions Inc. 2025

4.17.4. The Overhead of Validation

DICOM attribute set validation does involve processing overhead. The most significant overhead is
in the accessing of the message info files, and significantly less overhead is involved in actually
validating the contents of the message structure. It is important to understand that depending on
the way in which your MCdimseMessage, MCfile or MCdataSet object was created, this validation
overhead can occur at different points in your application; see the table below.

Table 4.11: Point of performance overhead associated with attribute set validation.

Message Object Construction Method Point at which message info file access overhead for
validation occurs

new MCdimseMessage
if command/service supplied

new MCdimseMessage()

new MCdimseMessage
if no command/service supplied

MCdimseMessage.validate()

NOTE: You must use setServiceCommand method
before validating and/or sending a message
created in this manner.

new MCdimseMessage(MCdataSet)
if command/service supplied when
constructing MCdataSet

new MCdataSet()

new MCdimseMessage(MCdataSet)
if no command/service supplied when
constructing MCdataSet

MCdimseMessage.validate()

MCdimseMessage = read::MCassociation MCdimseMessage validate()

new MCfile
if command/service supplied

new MCfile()

new MCfile
if no command/service supplied

MCfile.validate()

NOTE: You must use setServiceCommand method
before validating and/or sending a message
created in this manner.

new MCfile (MCdimseMessage)
if command/service supplied when
constructing MCdimseMessage

new MCdimseMessage()

new MCfile (MCdimseMessage)
if no command/service supplied when
constructing MCdataSet

MCfile.validate()

new MCdataSet
If command/service supplied

new MCdataSet()

new MCdataSet
If no command/service supplied

MCdataSet.validate()

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

131© Copyright Merge Healthcare Solutions Inc. 2025

When the attribute set is constructed by providing the service and command to be used, there is an
up-front performance cost but it provides additional validation as you set the value of attributes in
the message object. When the service and command are not known at construction time, the cost
occurs when the validate call is made.

Many times the validate method is selectively used in an application: as a runtime option or
conditionally compiled into the source code. Validation might only be used during integration
testing or in the field for diagnostic purposes. Reasons for this include performance since the
overhead associated with message validation may be an issue, especially for larger messages
having many attributes or on lower-end platforms. Also, validation can clutter the message log with
warnings and errors that may not be desirable in a production environment. Performance issues
related to message handling are discussed further under Message Exchange later in this document.

4.17.5. Validating Single Attribute

If you wish to validate only a single attribute, you may use the validateAttribute method of the
MCdimseMessage, MCfile or MCdataSet class. The validateAttribute method works exactly as
the validate method with the exception that you provide a tag parameter to identify the attribute use
wish to have validated.

MCdimseMessage msg; // non-null reference

bool validates;

validates = msg.validateAttribute(0x00100010,
MCvalidateLevel.Errors_Only);

if (!validates)

{

MCvalidationError err = msg.getNextValidationError();

while (err != null)

{

System.Console.Out.WriteLine(err.ToString());

err = msg.getNextValidationError();

}

}

4.17.6. Streaming Attribute Sets

When DICOM messages are exchanged over a network, they are in an encoded format specified by
the DICOM standard and the negotiated transfer syntax. Merge DICOM Toolkit calls this encoded
format a message stream and supplies powerful methods that allow your applications to work
directly with message streams.

When your application builds or parses attribute sets as described earlier, it works with the
MCattributeSet objects contained in MCdimseMessage or MCfile objects. These MCattributeSet
objects abstract and encapsulate the DICOM message and hides its details from the developer.
When you send a DICOM message over the network, Merge DICOM internally creates a DICOM
message stream that is passed over the network. This message stream is an encoded stream of
bytes that follows all the rules of DICOM.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

132© Copyright Merge Healthcare Solutions Inc. 2025

Merge DICOM Toolkit also supplies methods to generate and read DICOM message streams
directly (see the figure below). The methods are available in the MCdimseMessage class and the
MCattributeSet class. The streamOut method creates a message stream from the contents of an
MCdimseMessage object, while the streamIn method populates an MCdimseMessage object
from a message stream. Also, streamLength method is supplied to calculate the length of the
DICOM stream that would result from using the streamOut call. (The streamLength method is
also provided in the MCfile class to return the actual length of the streamed file object. And the
streamIn, streamOut and streamLength methods are also provided by the MCattributeSet
class, so any attribute set may be used to create a stream.)

The streamIn methods return the byte offset from the beginning of the stream to the next attribute
after the stop tag parameter.

A streamOut call could look like the following:

class MyStreamHandler : MCdataSink {

 ...

 public void receiveData(MCdata data, System.Object origin)

 {

 // Store the data described in data

 // as appropriate

 ...

 if(errorOccured)

 throw new MCcallbackCannotComplyException();

 }

}

MCdimseMessage msg;// non-null reference

MyStreamHandler streamHandler = newMyStreamHandler();

try{

 msg.streamOut(0x00080000, 0x7FDFFFFF,
MCtransferSyntax.ExplicitLittleEndian, streamHandler);

} catch (MCnoAttributesException e) {...}

 catch (MCillegalArgumentException e) {...}

 catch (MCcallbackCannotComplyException e) {...}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

133© Copyright Merge Healthcare Solutions Inc. 2025

This call converts the attributes from (0008,0000) through (7FDF,FFFF) in the MCdimseMessage
object identified by msg into a DICOM message stream using the explicit VR little endian transfer
syntax. The message stream will be encoded using the explicit VR little endian transfer syntax.

streamHandler is an instance of MyStreamHandler, a class that implements the MCdataSink
interface. The MCdataSink interface requires a receiveData method that receives and manages
the stream data a block at a time. See the API description in the Assembly Windows Help File for
further details.

The same kind of performance issues apply in the callback classes discussed when retrieving pixel
data. Namely, your settings of LARGE_DATA_STORE and OBOW_BUFFER_SIZE should take into
consideration the capabilities of your platform.

Message streams can be very valuable to your application for debugging and validation purposes.
By writing DICOM message streams out to a binary file, you have a compact and reproducible
representation of a message. You can directly examine the binary message stream to see how the
data would be sent over the network. Also, you can read this binary file in again later to reconstruct
the original message object. Once you have the message object you can use the usual toolkit
methods to examine or alter its contents.

4.17.7. Message to Proprietary Schema XML Conversion

The MCabstractMessage provides a writeToXML method which can be utilized to convert its
derived classes (MCfile and MCdimseMessage) to a proprietary schema XML string.

You can convert a list of attributes of an MCfile or MCdimseMessage, along with their values into an
XML string by using the writeToXML method of the MCabstractMessage. The writeToXML method
creates an XML string describing the contents of the MCfile or MCdimseMessage. The XML buffer
will be written to the stream identified by the stream object provided.

NOTE: If MCfile or MCdimseMessage objects contain an attribute with a Value Representation of
SQ (sequence of items), each item in the sequence is converted into its XML
representation.

The following example shows how the writeToXML method is utilized at a high level.

MCfile myFile; // a non-null file reference

MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |
XmlOptExcludeSequences; StreamWriter writer = new
StreamWriter("myFile");

// convert DICOM file to an XML file

myFile.writeToXML(writer, xmlOptions);

writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration and are available
for the MCabstractMessage to XML conversion:

// Use the default settings

XmlOptDefault = 0x0

// Store bulk attributes (VR is OB or OW) in the XML

XmlOptIncludeBulks = 0x1

// Store Pixel Data buffer in the XML

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

134© Copyright Merge Healthcare Solutions Inc. 2025

XmlOptIncludePixelData = 0x2

// Do not store Sequence attributes in the XML

XmlOptExcludeSequences = 0x4

// Do not store Private attributes in the XML

XmlOptExcludePrivateAttributes = 0x8

// Use Base64 encoding for bulks and UN VR attributes

XmlOptBase64Binary = 0x10

4.17.8. Proprietary Schema XML to Message Conversion

The MCabstractMessage provides a readFromXML method that can be utilized to read attribute
values from a proprietary schema XML string into MCabstractMessage's derived classes (MCfile
and MCdimseMessage).

The content of the message is not cleared before processing XML attributes. The existing attributes
in the message are overridden if they are present in the XML string.

The following example shows how the readFromXML method is utilized at a high level.

StreamReader reader = new StreamReader("myXMLFile");

MCfile file = new MCfile();

file.readFromXML(reader);

reader.Close();

4.17.9. Message to Native DICOM Model XML Conversion

The MCabstractMessage provides a writeToXMLNative method which can be utilized to convert
its derived classes (MCfile and MCdimseMessage) to a Native DICOM Model XML string (PS3.19).

You can convert a list of attributes of an MCfile or MCdimseMessage, along with their values into an
XML string by using the writeToXMLNative method of the MCabstractMessage. The
writeToXMLNative method creates an XML string describing the contents of the MCfile or
MCdimseMessage. The XML buffer will be written to the stream identified by the stream object
provided.

The following example shows how the writeToXMLNative method is utilized at a high level.

MCfile myFile; // a non-null file reference

MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |
XmlOptExcludeSequences; StreamWriter writer = new
StreamWriter("myFile");

// convert DICOM file to an XML file

myFile.writeToXMLNative(writer, xmlOptions);

writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration and are available
for the MCabstractMessage to XML conversion:

// Use the default settings

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

135© Copyright Merge Healthcare Solutions Inc. 2025

XmlOptDefault = 0x0

// Store bulk attributes (VR is OB or OW) in the XML

XmlOptIncludeBulks = 0x1

// Store Pixel Data buffer in the XML

XmlOptIncludePixelData = 0x2

// Do not store Sequence attributes in the XML

XmlOptExcludeSequences = 0x4

// Do not store Private attributes in the XML

XmlOptExcludePrivateAttributes = 0x8

The Native DICOM Model provisions that bulk data can be replaced by a URI string instead of the
actual data. To allow the substitution at run time, a new interface MCbulkDataUriHandler is
introduced.

public interface MCbulkUriHandler

{

 object provideData(MCattributeSet attrSet, unit tag, MCvr vr,
string uri);

 string provideUri(MCattributeSet attrSet, unit tag, MCvr vr);

}

Following example shows how to implement this interface and calling an overloaded method of
writeToXMLNative to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler

{

 public string provideUri(MCattributeSet attrSet, unit tag, MCvr
vr)

 {

 if(tag == MCdicom.PIXEL_DATA)

 return "http://xyz.net/pixeldatalocation"; // return your URI
string

 }

}

// call an overloaded method of writeToXMLNative

myFile.writeToXMLNative(writer, xmlOptions, new
BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data to the XML file
using based 64 encoded string.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

136© Copyright Merge Healthcare Solutions Inc. 2025

4.17.10. Native DICOM Model XML to Message Conversion

The MCabstractMessage provides a readFromXMLNative method that can be utilized to read
attribute values from a Native DICOM Model XML string into MCabstractMessage's derived classes
(MCfile and MCdimseMessage).

The content of the message is not cleared before processing XML attributes. The existing attributes
in the message are overridden if they are present in the XML string.

The following example shows how the readFromXMLNative method is utilized at a high level.

StreamReader reader = new

StreamReader("myXMLFile");MCfile file = new MCfile();

file.readFromXMLNative(reader);

reader.Close();

To handle bulk URI from a Native DICOM Model XML file, the MCbulkDataUriHandler interface is
used. Following shows how to implement this task:

class BulkDataUriHandler: MCbulkUriHandler

{

 public object provideData(MCattributeSet attrSet, unit tag, MCvr
vr, string uri)

 {

 if (tag == MCdicom.PIXEL_DATA)

 {

 // use parameter uri to retrieve your data

 // based on your data, create an array of datasize

 byte[] data = new byte[datasize];

 // populate your data array return data;

 }

 }

}

// call an overloaded method of readFromXMLNative

file.readFromXMLNative(reader, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied and a bulk URI attribute is encountered in the XML file,
the toolkit will generate an empty attribute (tag with zero length) for the encountered tag.

4.17.11. Message to DICOM JSON Model Conversion

The MCabstractMessage provides a writeToJSON method which can be utilized to convert its
derived classes (MCfile and MCdimseMessage) to a DICOM JSON Model string (PS3.18).

You can convert a list of attributes of an MCfile or MCdimseMessage, along with their values into a
DICOM JSON Model string by using the writeToJSON method of the MCabstractMessage. The

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

137© Copyright Merge Healthcare Solutions Inc. 2025

writeToJSON method creates a JSON string describing the contents of the MCfile or
MCdimseMessage. The JSON buffer will be written to the stream identified by the stream object
provided.

The following example shows how the writeToJSON method is utilized at a high level.

MCfile myFile; // a non-null file reference

StreamWriter writer = new StreamWriter("myFile");

// convert DICOM file to a JSON file

myFile.writeToJSON(writer);

writer.Close();

The DICOM JSON Model provisions that bulk data can be replaced by a URI string instead of the
actual data. To allow the substitution at run time, a new interface MCbulkDataUriHandler is
introduced.

public interface MCbulkUriHandler

{

 object provideData(MCattributeSet attrSet, unit tag, MCvr vr,
string uri);

 string provideUri(MCattributeSet attrSet, unit tag, MCvr vr);

}

Following example shows how to implement this interface and calling an overloaded method of
writeToJSON to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler

{

 public string provideUri(MCattributeSet attrSet, unit tag, MCvr
vr)

{

if (tag == MCdicom.PIXEL_DATA)

return "http://xyz.net/pixeldatalocation"; // return your URI
string

}

}

// call an overloaded method of writeToJSON

myFile.writeToJSON(writer, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data to the JSON file
using based 64 encoded string.

4.17.12. DICOM JSON Model to Message Conversion

The MCabstractMessage provides a readFromJSON method that can be utilized to read attribute
values from a DICOM JSON Model string into MCabstractMessage's derived classes (MCfile and
MCdimseMessage).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

138© Copyright Merge Healthcare Solutions Inc. 2025

The content of the message is not cleared before processing JSON attributes. The existing
attributes in the message are overridden if they are present in the JSON string.

The following example shows how the readFromJSON method is utilized at a high level.

StreamReader reader = new StreamReader("myXMLFile");

MCfile file = new MCfile();

file.readFromJSON(reader);

To handle bulk URI from a DICOM JSON Model file, the MCbulkDataUriHandler interface is used.
Following shows how to implement this task:

class BulkDataUriHandler: MCbulkUriHandler

{

public object provideData(MCattributeSet attrSet, unit tag, MCvr vr,
string uri)

{

 if (tag == MCdicom.PIXEL_DATA)

 {

// use parameter uri to retrieve your data

 // based on your data, create an array of datasize

 byte[] data = new byte[datasize];

 // populate your data array

 return data;

}

}

}

// call an overloaded method of readFromJSON

file.readFromJSON(reader, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied and a bulk URI attribute is encountered in the JSON
file, the toolkit will generate an empty attribute (tag with zero length) for the encountered tag.

4.18. Message Exchange (Network Only)
We have discussed how associations are managed as well as how messages objects are populated
and parsed. Now we discuss how these DICOM messages are exchanged with other application
entities over the network.

The exchange of DICOM messages between AEs only occurs over an open association. After the
DICOM client (SCU) application opens an association with a DICOM server (SCP), the client sends
request messages to the server application. For each request message, the client receives back a
corresponding response from the server. The server waits for a request message, performs the
desired service, and sends back some form of status to the client in a response message. This

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

139© Copyright Merge Healthcare Solutions Inc. 2025

process, along with the corresponding Merge DICOM Toolkit method calls, are pictured in the figure
below.

4.18.1. Reading Network Messages

The read method of the MCassociation class is always used to retrieve the next message available
on the network connection. It returns an MCdimseMessage object that encapsulates the DICOM
message. Its only parameter is a timeout value:

public MCdimseMessage read(long timeout);

The timeout parameter specifies, in milliseconds, how long your process will wait for a message
before the read call times out and returns control to your application code. The thread handling
your association will be blocked during this waiting period and the system processor will be
available for other threads. Setting timeout to 0 is equivalent to polling, since read returns
immediately, whether a message has been received or not. A timeout of -1 indicates wait forever, or
until a message arrives, before returning. An MCtimeoutException will be thrown if the time expires
before a message arrives.

4.18.2. Using the MCdimseService

To send request messages you use the sendRequestMessage method of the MCdimseService
class, and to send response messages you use the sendResponseMessage method. You should
note, however, that you will probably be using a sub-class of the MCdimseService class and those
derived classes usually provide other methods to send messages. This section describes the use of
the MCdimseService class directly.

You must relate each instance of the MCdimseService class with a specific association by passing
an MCassociation reference as a parameter to the class constructor:

MCassociation myAssoc; // a non-null reference

MCdimseService myService = new MCdimseService(myAssoc);

4.18.3. Using the sendRequestMessage Method

There are four forms of the MCdimseService sendRequestMessage method:

public void sendRequestMessage(MCdimseMessage msg)

public void sendRequestMessage(MCdimseMessage msg, String
affectedSopInstanceUID)

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

140© Copyright Merge Healthcare Solutions Inc. 2025

public void sendRequestMessage(String metaServiceName, MCdimseMessage
msg)

public void sendRequestMessage(String metaServiceName, MCdimseMessage
msg, String affectedSopInstanceUID)

At minimum, the sendRequestMessage call must provide a reference to an MCdimseMessage
object that encapsulates the message to be sent (the msg parameter).

Some DICOM SOP Classes require that you assign an Affected SOP Instance UID to the composite
message object being sent; in those cases, you must use the affectedSopInstanceUID
parameter, providing the UID.

The metaServiceName parameter is also optional. If it is null or it if is an empty string, it will be
ignored. Some DICOM services (e.g., the Basic Print Service) allow you to support multiple meta
services. Each meta service consists of a set of basic C/C++ DICOM services. In some cases a
DICOM application may support multiple meta services over the same association. When two of the
meta services include the same basic service, this metaServiceName parameter is used to tell
Merge DICOM which meta service to use when sending the message.

4.18.4. Using the sendResponseMessage Method

There are two forms of the MCdimseService sendResponseMessage method:

public void sendResponseMessage(MCdimseMessage requestMsg, short
statusCode)

public void sendResponseMessage(MCdimseMessage requestMsg,
MCdimseMessage responseMsg, short statusCode)

This sendResponseMessage method allows you to respond to a message received from the
remote application. It is called after a successful MCassociation.read call. The requestMsg
parameter identifies which DICOM message is being responded to.

The statusCode parameter provides the status of the requested operation and must be a valid
response code for the service involved. Response codes are defined in MCdimseSerivce. Many
DICOM services do not require a response of more than just a status. Others, however, (e.g.,
C_FIND_RSP) require the setting of several message attributes.

The responseMsg parameter, if provided, must have been constructed for the same service as the
requestMsg, and for an appropriate command. For example, if responding to a C-STORE request
message, the responseMsg would be constructed as follows:

responseMsg = new MCdimseMessage(MCdimseService.C_STORE_RSP,
requestMsg.ServiceName);

Response codes for specific C/C++ DICOM commands are described in the Assembly Windows
Help File and in Part 4 of the DICOM Standard. Constants for the various request and response
codes are defined in the MCdimseService class.

If responseMsg is not provided, Merge DICOM will create one automatically.

Some DICOM services require that values for certain command set attributes (i.e. group 0
attributes) be set. Merge DICOM automatically adds command set attributes when an
MCdimseMessage is constructed. With the exceptions listed below, you must set any command set
attribute values before sending the message. However, this method will set the following attribute
values for you - if you have not set them:

● The group length attribute (0000,0000) value is always set by Merge DICOM Toolkit.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

141© Copyright Merge Healthcare Solutions Inc. 2025

● If the message command requires it, the Affected SOP Class UID attribute (0000,0002) value is
set to the service's abstract syntax UID.

● The command attribute (0000,0100) value is always set by Merge DICOM Toolkit.

● The Response Message ID attribute (0000,0120) value is set to the message ID of the last
received Request message for this association.

● The Data Set Type attribute (0000,0800) value is always set by Merge DICOM Toolkit.

4.19. Using Attribute Containers
The MCattributeContainer and MCattributeContainerEx interfaces (referenced
MCattributeContainer for brevity) are the interfaces for classes that will provide methods for
the library to get and set a given attribute's value. A class which implements this interface is
registered with the library using the registerAttributeContainer method of the
MCapplication class. The library considers this interface a "container" for a specific attribute's value
and calls methods of the class to get or set the attribute's value. Such container classes are
registered only for attribute's that have values of great length, such as pixel data.

The methods of the MCattributeContainer class exhibit one significant difference from the
methods used in the MCdataSink and MCdataSource interfaces described earlier.
MCattributeContainer classes 'throttle' the data flow as the message object is communicated over
the network. Rather than storing attributes with large OB/OW/OL/OV/OD/OF values within the
message object itself, your application is responsible for maintaining the value of these attributes.

We will also see that MCattributeContainer objects affect accessing media files. See the discussion
of this in 4.21. DICOM FILES ON PAGE 150.

4.19.1. Using Attribute Container in Server Application

A server (SCP) application can register a MCattributeContainer object that will be called repetitively
as the attribute's value arrives on an association during a MCassociation.read call. By the time the
read method returns to the application, the attribute value will already have been handled by your
MCattributeContainer class. The MCattributeContainer class could be used by the server to treat
this large block of OB/OW/OL/OV/OD/OF data (usually pixel data) specially (e.g., store in a frame
buffer, filter through decompression hardware, write to disk...) without any overhead introduced by
the MCdimseMessage object.

4.19.2. Using Attribute Container in Client Application

A client (SCU) application can register a MCattributeContainer object that will be called repetitively
as the attribute's value is transmitted over an association during an MCdimseService class
sendRequestMessage or sendResponseMessage call. During either of these calls, the attribute
value will be handled by your registered MCattributeContainer object before these calls can return
to your application. The MCattributeContainer class can also be used by the client to specially
manage OB/OW/OL/OV/OD/OF data (e.g., read from a frame buffer, filter through compression
hardware or software, read from disk...) without any overhead introduced by the MCdimseMessage
object.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

142© Copyright Merge Healthcare Solutions Inc. 2025

4.19.3. MCattributeContainer and MCattributeContainerEx
Classes

The MCattributeContainer interface requires that your container class provide five methods that
will be called by the Merge DICOM library at different times. A sample class declaration follows:

public class MyContainer : MCattributeContainer{

...

public uint provideDataLength(MCattributeSet attribSet, MCtag tag)

{

}

public MCdata provideData(MCattributeSet attribSet, MCtag tag,
bool isFirst)

{

}

public void receiveDataLength(MCattributeSet attribSet, MCtag tag,
uint dataLength)

{

}

public void receiveData(MCattributeSet attribSet, MCtag tag,
MCdata data, bool isFirst)

{

}

public void receiveMediaDataLength(MCattributeSet attribSet,
MCtag tag, uint dataLength, uint dataOffset)

{

}

}

The MCattributeContainerEx interface extends MCattributeContainer interface adding a new
provideData method which allows to provide data from a seekable data stream with a specified
offset. A sample class declaration follows:

public class MyContainer : MCattributeContainerEx{

...

public uint provideDataLength(MCattributeSet attribSet, MCtag tag)

{

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

143© Copyright Merge Healthcare Solutions Inc. 2025

public MCdata provideData(MCattributeSet attribSet, MCtag tag,
bool isFirst)

{

}

public MCdata provideData(MCattributeSet attribSet, MCtag tag,
uint offset, bool isFirst)

{

}

public void receiveDataLength(MCattributeSet attribSet, MCtag tag,
uint dataLength)

{

}

public void receiveData(MCattributeSet attribSet, MCtag tag,
MCdata data, bool isFirst) {

}

public void receiveMediaDataLength(MCattributeSet attribSet,
MCtag tag, uint dataLength, uint dataOffset)

{

}

}

4.19.4. provideDataLength Method

The provideDataLength method is called by the library to request the data length of the attribute
identified by the tag parameter. The attribute set containing the attribute is identified by the
attribSet parameter. The library will call this method before it begins calling the provideData
method.

This method is required to return the length of the attribute's value. The returned data length must
be an even number. The hex value 0xffffffff (which means undefined length in DICOM) may be
returned if the attribute contains encapsulated data.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge DICOM will make no
further calls for this instance of the attribute.

public uint provideDataLength(MCattributeSet attribSet, MCtag tag)

{

uint length;

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

144© Copyright Merge Healthcare Solutions Inc. 2025

//If unable to get the attribute value's length

throw new MCcallbackCannotComplyException();

//Set length to the number of bytes contained

//in the attribute's value.

return length;

}

4.19.5. provideData Method

The provideData method is called by the library to request a portion of the attribute's value. If an
offset is given, the provideData method should use this offset to read from a data stream.The
attribute is identified by the attribSet and tag parameters.

The value is returned in an MCdata object that contains the data buffer (managed or unmanaged),
the Length property giving the amount of data in the buffer, and a bool indicator (IsLast). The
buffer must contain an even number of bytes and may be empty. The IsLast property of the
returned MCdata object must be set to true if this is the last portion of the value that will be
provided. Merge DICOM will no longer call provideData for this instance of the attribute after
IsLast is returned true. The Length property must be set to the number of significant bytes in
the data buffer.

isFirst is set by the library to true if this is the first request for the attribute's value.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge DICOM will make no
further calls for this instance of the attribute.

public MCdata provideData(MCattributeSet attribSet, MCtag tag, uint
offset, bool isFirst)

{

 Stream stream = null;

 byte[] array = new byte[4096];

 bool isLast = false;

 uint size = 0;

 if (unableToProvideData)

 throw new MCcallbackCannotComplyException();

 if (isFirst)

 {

 stream = new FileStream(this.fname, FileMode.Open,
FileAccess.Read, FileShare.Read);

 stream.Seek(offset, SeekOrigin.Begin);

 }

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

145© Copyright Merge Healthcare Solutions Inc. 2025

 // Read the next portion of the value into array

 // put length read into size

 if(thereIsNoMoreData)

 isLast = true;

 MCdata data = new MCdata(array,size);

 data.IsLast = isLast;

 return data;

}

4.19.6. receiveDataLength Method

The receiveDataLength method is called by the library to provide the callback class with the data
length (dataLength parameter) of the attribute identified by the attribSet and tag parameters.
The library calls this method before calling the receiveData method.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge DICOM will make no
further calls for this instance of the attribute.

public void receiveDataLength(MCattributeSet attribSet, MCtag tag,
uint dataLength)

{

if(dataLengthUnacceptable)

 throw new MCcallbackCannotComplyException();

mYlocalLength = dataLength;

}

4.19.7. receiveData Method

The receiveData method is called by the library to provide the callback with some or all of the
attribute's value. The library has set the data field of the MCdata object to a byte array containing all
or a portion of the attribute's value.

isFirst will be true if the library is presenting the first portion of the attribute's value. If this is the
last portion of the value that the library will present, the IsLast property of the MCdata object will
be true.

The data buffer in the MCdata object may have a length of zero if this is the last portion of the data
(i.e. MCdata.IsLast = true).

Note that this method is not called when processing the MCmediaStorageService
readFileBypassLargeData call the OB/OW/OL/OV/OD/OF data is left on the media. Instead,
the library calls the receiveMediaDataLength method (see below).

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

146© Copyright Merge Healthcare Solutions Inc. 2025

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge DICOM will make no
further calls for this instance of the attribute.

public void receiveData(MCattributeSet attribSet, MCtag tag, MCdata
data, bool isFirst)

{

 if (anyProblemOccurs)

 throw new MCcallbackCannotComplyException();

 if(isFirst) {

 // Perhaps open an output data sink

 }

 // Save the data

 if(data.IsLast) {

 // perhaps close the data sink

 }

}

4.19.8. receiveMediaDataLength Method

The receiveMediaDataLength method is called by the library when it is reading a file from media
while it is processing an MCmediaStorageService readFileBypassLargeData call. This
method provides the total size of the attribute's value and the byte offset of the attribute's value
from the beginning of the media file.

NOTE: The library calls this method instead of calling the receiveData method when it is
processing the MCmediaStorageService readFileBypassLargeData call.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge DICOM will make no
further calls for this instance of the attribute.

public void receiveMediaDataLength(MCattributeSet attribSet, MCtag
tag, uint dataLength, uint dataOffset)

{

if(anyProblemOccurs)

 throw new MCcallbackCannotComplyException();

// Perhaps save the dataOffset and dataLength

// so they can be used later to access the data

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

147© Copyright Merge Healthcare Solutions Inc. 2025

4.19.9. Registering Your MCattributeContainer

Each Application Entity registers its own MCattributeContainer objects. The MCapplication class
registerAttributeContainer method is used to register an MCattributeContainer object to be
used with the Application Entity:

MCapplication myApp; // a non-null reference

MyContainer myContainer = new MyContainer();

MCattributeContainer oldContainer;

oldContainer = myApp.registerAttributeContainer(new
MCtag(MCdicom.PIXEL_DATA), myContainer);

This call registers myContainer, an instance of the MyContainer class (which must implement the
MCattributeContainer interface). myContainer will handle the pixel data (7FE0,0010) attribute for
myApp. A single MCattributeContainer object can be multiply registered to handle many tags. Also, a
single MCattributeContainer object will handle both transmittal and reception of the data
associated with the tag(s). If the return value is null you know that there was not a previously-
registered attribute container for the attribute.

4.19.10.Releasing Your MCattributeContainer

To "de-register" your attribute container class, use the releaseAttributeContainer method of
the MCapplication class. The method releases the callback object that was registered for the
attribute identified by the MCtag parameter. The callback's methods will no longer be called when
the attribute's value is being received or when the attribute's value is required.

The callback's methods will still be called, however, for MCdimseMessage objects or MCfile
objects that were created before this method call was made.

4.20. Sequences of Items
The DICOM Value Representation SQ is used to indicate a DICOM attribute that contains a value
that is a sequence of items. Each item in the sequence is an attribute set (MCitem class). Each of
the attribute sets can also contain attributes that have a VR of SQ. This powerful capability allows
the nesting of attribute sets, or the definition of 'container' objects (such as folders, film boxes,
directories, etc.).

The figure below shows a DICOM message containing a sequence of items running two levels deep.
Note that these nested sequences are contained within the same Message Stream. Sequences of
items can also be contained in a DICOM file, and we will see that they are contained in DICOMDIR's.
An attribute whose value is a sequence of items is simply an attribute that has a potentially large and
complex value. Fortunately, Merge DICOM Toolkit allows your application to deal with sequences of

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

148© Copyright Merge Healthcare Solutions Inc. 2025

items an item at a time and hierarchically, as pictured in the figure below, and takes care of the
encoding of the sequence within the DICOM message stream.

Each item in a sequence is handled as a special derived sub-class of the MCattributeSet class,
called MCitem. All the MCattributeSet methods are inherited by the MCitem class.

Similar to the constructors for MCdataSet objects, there are two variations of the MCitem
constructor. You can create an "empty" item attribute set by providing no parameter to the
constructor. If you wish to have the item populated by Merge DICOM with specific attributes, you
supply an itemName parameter used to identify the item. If the itemName is unknown to Merge
DICOM a warning message is logged and an empty MCitem object is constructed.

MCitem emptyItem = new MCitem();

MCitem myItem = new MCitem("REF_FILM_BOX");

Available item names are listed in the message.txt file for attributes in messages having a VR of
SQ. The contents of each item are also listed in the message.txt file. Below are two excerpts of
message.txt, one showing a reference to the Referenced Film Box Item, and the other the
contents of that item.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

149© Copyright Merge Healthcare Solutions Inc. 2025

BASIC_FILM_SESSION - N_SET_RQ

0008,0005 Specific Character set CS 3
Defined Terms: ISO-IR 100, ISO-IR 101, ISO-IR 109, ISO-IR 110, ISO-IR144, ISO-IR 127, ISO-IR
126, ISO-IR 138, ISO-IR 148
0008,0012 Instance Creation Date DA 3
0008,0013 Instance Creation Time TM 3
0008,0014 Instance Creator UID UI 3
0008,0016 SOP Class UID UI 3
0008,0018 SOP Instance UID UI 3
2000,0010 Number of Copies IS 3
2000,0020 Print Priority CS 3
Enumerated Values: HIGH, MED, LOW
2000,0030 Medium Type CS 3
Defined Terms: PAPER, CLEAR FILM, BLUE FILM
2000,0040 Film Destination CS 3
Enumerated Values: MAGAZINE, PROCESSOR
2000,0050 Film Session Label LO 3
2000,0060 Memory Allocation IS 3
2000,0500 Referenced Film Box Sequence SQ 3
Item Name(s): REF_FILM_BOX

.

.

.

Item Name: REF_FILM_BOX

0008,1150 Referenced SOP Class UID UI 1
0008,1155 Referenced SOP Instance UID UI 1

To encode an item into an attribute of Value Representation SQ, treat the attribute as a multi-valued
attribute, where each value is an MCitem object. This means using an MCitem reference with the
MCattributeSet addValue, setValue or indexer. Similarly, the MCattributeSet indexer methods return
MCitem objects when you request the value of a sequence attribute.

The following sample code fragment gives an example of encoding a Pre-formatted Grayscale
Image Item into a sequence:

MCitem myItem = new MCitem("PREFORMATTED_GRAYSCALE_IMAGE");

MCdataSet ds; // non-null reference to the

// data set we are building

myItem[MCdicom.PIXEL_ASPECT_RATIO, 0] = "1";

myItem[MCdicom.PIXEL_ASPECT_RATIO, 1] = "1";

/* encode other item attributes here */

.

.

.

/* now add the item to the sequence */

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

150© Copyright Merge Healthcare Solutions Inc. 2025

ds[MCdicom.PREFORMATTED_GRAYSCALE_IMAGE_SEQUENCE, 0] = myItem;

.

.

.

4.21. DICOM Files
Maintaining a DICOM file set is a matter of maintaining various DICOM files and a single DICOM
directory file (DICOMDIR).

DICOM media files are encapsulated in the MCfile class. A sub-class of the MCfile class, the
MCdir class, encapsulates a special DICOM directory file, called the DICOMDIR. Just as DICOM
network messages (the MCdimseMessage class) contain a command set (MCcommandSet) and a
data set (MCdataSet), so the MCfile class contains a special file meta information attribute set (the
MCfileMetaInfo class) and a data set (MCdataSet).

The figure below demonstrates the attribute sets contained in DICOM network messages and
DICOM file objects.

4.21.1. Constructing New MCfile Instance

The Media Storage Service manipulates MCfile objects. There are several options available to
construct new instances of the MCfile class. As mentioned before, each MCfile instance contains
an MCdataSet object and an MCfileMetaInfo object. The MCfile may be constructed with a pre-
populated data set or with an empty data set.

It is important to realize that constructing an MCfile object does not create the physical DICOM
file out on the media; the write method of the MCmediaStorageService class described later does
that.

4.21.2. Construct MCfile Object with Pre-Populated Data Set

Two forms of the constructor create an MCfile object that contains all of the attributes of a DICOM
file that will be used for the given service and command. The attributes are maintained in a
MCfileMetaInfo object and an MCdataSet object. Normally you will only deal with the data set and
the file meta information attributes will be set automatically by Merge DICOM Toolkit.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

151© Copyright Merge Healthcare Solutions Inc. 2025

MCfile myFile = new MCfile(command, serviceName, "MyFileName");

or

MCfile myFile = new MCfile(command, serviceName);

serviceName and command are used to access configuration information that describes the
attributes of the message. If such configuration information is not available, an empty file object is
created, and a warning message is logged. The filename parameter, if used, provides the name of
the operating system file to be associated with this MCfile object.

4.21.3. Construct MCfile Object with Empty Data Set

Two forms of the constructor are used if the service and command are not yet known, or if there is
no need to validate that values will be set only for attributes assigned to a given service/command
pair. It creates an empty MCdataSet object. The resulting MCfile object is not associated with any
particular DICOM service or command. If the validate method is to be called, the
setServiceCommand method must be called first to associate this file object with a given DICOM
service and command.

MCfile myFile = MCfile("MyFileName");

or

MCfile myFile = new MCfile();

The filename parameter, if used, provides the name of the operating system file to be associated
with this MCfile object.

Performance Tuning

Just as when you construct an empty MCdimseMessage object for networking, when you construct
an empty MCfile object, the message info and data dictionary files are not accessed. This object
contains no pre-allocated attributes in the contained MCfileMetaInfo and MCdataSet objects, and
the setServiceCommand method must be called to set the service and command for this file
before it can be written to the file set. As in the case of networking, this approach is more efficient
but penalizes you in the area of run-time error checking.

4.21.4. Convert MCdimseMessage Object to MCfile Object

Another form of the constructor converts a network message object into a file object associated
with a specified file system file.

MCdimseMessage message; // a non-null reference

MCfile myFile = MCfile(message, "MyFileName");

The data set contained in message will be used in this object.

NOTE: The original MCdimseMessage and the new MCfile objects will be sharing the same
MCdataSet object. The filename parameter provides the name of the operating system file
to be associated with the MCfile object.

4.21.5. Accessing Service and Command Properties

It the service and command for the MCfile object were not specified when the object was
constructed, they can be provided later, using the setServiceCommand method. The service and

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

152© Copyright Merge Healthcare Solutions Inc. 2025

command must be set if you wish to use the validate method. The Command and ServiceName
properties can be used to retrieve these properties.

myFile.setServiceCommand("STANDARD_CT", MCdimseService.C_STORE_RQ);

String serviceName = myFile.ServiceName;

ushort command = myFile.Command;

4.21.6. File Meta Information

The File Meta Information (MCfileMetaInfo) encapsulated in the MCfile class contains identifying
information about the data set also encapsulated in a DICOM file. The meta information consists of
a fixed-length 128-byte file Preamble, a DICOM Prefix ("DICM"), followed by several DICOM
attributes providing the properties of the encapsulated data set. (Refer to Part 10 of the DICOM
standard for more details.) The contents of this object are maintained automatically by Merge
DICOM Toolkit, although the MetaInfo property of the MCfile class returns a reference to its
contained MCfileMetaInfo object. Using that reference, you can call the methods it inherits from
MCattributeSet.

// Get the file meta info attribute set

MCfileMetaInfo metaInfo = myFile.MetaInfo;

// Retrieve the attributes of the file meta info

foreach (MCattribute attr in metaInfo.Attributes) {

// Use MCtag toString method to list each tag

System.Console.Out.WriteLine(attr.Tag.ToString());

}

4.21.7. File Preamble

The Preamble property is provided to access the preamble portion of the file meta info. The
property can be used to get or set the preamble. This property is available in both the MCfile
container class and the MCfileMetaInfo class.

byte[] preamble = myFile.MetaInfo.Preamble;

// The same could be accomplished as follows:

byte[] preamble = myFile.Preamble;

4.21.8. Contained Data Set

The data set (MCdataSet) encapsulated in the MCfile class contains the DICOM information object
associated with the file. You can retrieve a reference to the contained MCdataSet object with the
DataSet property. Using that reference, you can call the methods it inherits from MCattributeSet.

// Get the data set attribute set

MCdataSet ds = myFile.DataSet;

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

153© Copyright Merge Healthcare Solutions Inc. 2025

// Retrieve the attributes of the data set

foreach (MCattribute attr in ds.Attributes) {

// Use MCtag toString method to list each tag

System.Console.Out.WriteLine(attr.Tag.ToString());

}

4.21.9. Resetting the MCfile Object

You can use the removeFileValues method to remove the values of each attribute in the file's
data set and meta info set. This is equivalent to calling the MCattributeSet removeValues method
for each attribute in the file's contained MCdataSet and MCfileMetaInfo objects. This method is
useful for applications that reuse an MCfile object and want to insure there are no attribute values
remaining from the last use of the object. Attributes with no values are skipped when streaming the
collection for network transfer or for writing a DICOM file.

myFile.removeFileValues();

4.21.10.File Validation

You can validate that the data set meets the requirements of the service/command pair associated
with the file by using the validate method of the MCfile object. (You could also use the validate
method of the contained MCdataSet object). You can also validate an individual attribute within the
data set using the validateAttribute method.

MCfile myFile; // non-null reference

bool validates;

validates = myFile.validateAttribute(MCdicom.PATIENTS_NAME,
MCvalidateLevel.Errors_Only);

if (!validates)

{

MCvalidationError err = myFile.g,etNextValidationError();

while (err != null)

{

System.Console.Out.WriteLine(err.ToString());

err = msg.getNextValidationError();

}

}

To understand the overhead involved in file validation, refer to 4.17.4. THE OVERHEAD OF VALIDATION
ON PAGE 130.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

154© Copyright Merge Healthcare Solutions Inc. 2025

4.21.11.MCfile Stream

Merge DICOM concatenates the contents of the MCfileMetaInfo object and the MCdataSet object
when streaming the MCfile object. We will discuss later how to use the MCmediaStorageService to
read and write the DICOM file streams. You may need to know ahead of time how large the
streamed file object will be before writing the object to media. The stream's size can be obtained
using the streamLength method.

uint length = myFile.streamLength();

4.21.12.File Transfer Syntax UID

You can use the TransferSyntax property to set the value of the DICOM "Transfer Syntax UID"
associated with this file. It is sets attribute (0002,0010) in the file's file meta information to the UID
string you provide.

myFile.MetaInfo.TransferSyntax =
MCtransferSyntax.ExplicitLittleEndian;

4.21.13.File System File Associated with MCfile Object

Whether or not you specify a file system file name when constructing the MCfile object, you can set
or get the name at any time using the FileName property:

myFile.FileName = "FileName";

String file = myFile.FileName;

4.21.14.Listing MCfile

The list method produces a report describing the contents of the File Meta Info and Dataset
contained in this MCfile. The report will be written to the stream identified by the stream object
provided. If no stream object is specified the report will be written to the system's standard output
(stdout).

If the object contains an attribute with a Value Representation of SQ (sequence of items), each item
in the sequence will be listed. Each sequence of items is indented in the listing four spaces to the
right of its owning message or items.

System.IO.StreamWriter writer = new StreamWriter("myFile");

myFile.list(writer); // list to myFile

myFile.list(); // list to stdout

4.21.15.Using the MCmediaStorageService Class

Analogous to the MCdimseService class that handles DICOM network message exchange, the
MCmediaStorageService class handles services dealing with DICOM media files. The
MCmediaStorageService provides methods to read and write DICOM files.

All the media interchange functionality of the DICOM Toolkit relies on methods that you supply to
interface with the particular physical medium and file system format on your target device. This

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

155© Copyright Merge Healthcare Solutions Inc. 2025

approach was chosen because of the wide variety of media and file system configurations allowed
by the DICOM Standard and the potentially unlimited combination of media devices, device drivers,
and file system combinations for which DICOM media interchange applications may be developed.

Similar to working with streams, if your application will read DICOM files, you must use a class that
implements the MCdataSource interface. If your application will write DICOM files, you must use a
class that implements the MCdataSink interface. These interfaces have been discussed in detail in
previous sections.

You will find that the DICOM Toolkit provides powerful DICOM media functionality by supplying your
application with:

● a greatly simplified way to deal with the complex encoding and decoding required within a
DICOM file.

● an API that is very consistent with that used for the maintenance of DICOM messages used in
network functionality; many of the encoding and decoding methods already described apply
equally to DICOM file attribute sets.

To perform all this functionality on your medium of choice, you need only supply the two file system
interface implementation, just discussed, and use the methods of the MCmediaStorageService
class.

4.21.16.Constructing MCmediaStorageService Object

Each MCmediaStorageService instance is associated with an application entity. It is necessary to
provide a reference to your AE's MCapplication object when constructing an instance of the
MCmediaStorageService.

MCapplication myApp; // non-null reference

MCmediaStorageService myMediaService = new
MCmediaStorageService(myApp);

4.21.17.Reading Files

To read in the contents of a DICOM file for analysis or parsing you use one or three methods
available in the MCmediaStorageService class for reading DICOM files. Each of the methods

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

156© Copyright Merge Healthcare Solutions Inc. 2025

passes a reference to a class that implements the MCdataSource interface. The callback class will
actually read the file stream from media.

The three methods are:

● readFile — This method calls your MCdataSource to retrieve the DICOM file stream. It
decodes the stream and populates the MCfileMetaInfo and MCdataSet attribute sets that are
contained in your MCfile object. If the stream contains an attribute for which an
MCattributeContainer instance has been registered, the attribute's value is passed on to the
MCattributeContainer, rather than having Merge DICOM store the value.

MCapplication myApp; // non-null reference

MCfile fileObj = new MCfile("FileName");

MCdataSource source = new MCfileDataSource(fileObj.FileName);

MCmediaStorageService service = new MCmediaStorageService(myApp);

try {

 service.readFile(fileObj, source);

} catch (Exception e) {...}

● readFileBypassLargeData —This method reads the file just as the readFile method does,
with one exception. If the stream contains an attribute for which an MCattributeContainer
instance has been registered, the attribute's value is NOT passed on to the
MCattributeContainer, but instead the values length and offset into the file is passed to the
receiveMediaDataLength method of the MCattributeContainer. This provides the opportunity
for substantial performance improvement. Note that if no MCattributeContainer is registered
for the OB/OW/OL/OV/OD/OF attribute, the attribute's value will be stored by Merge DICOM
Toolkit, as usual.

MCapplication myApp; // non-null reference

MCfile fileObj = new MCfile("FileName");

MCdataSource source = new MCfileDataSource(fileObj.FileName);

MCmediaStorageService service = new MCmediaStorageService(myApp);

try {

 service.readFileBypassLargeData(fileObj, source);

} catch (Exception e) {...}

● readFileUpToTag — This method retrieves the values of the file stream just as the readFile
method does, but it will stop requesting data when it has processed the last attribute whose tag
is <= the "last tag" parameter. It will return the file offset to the first byte of the first attribute
whose tag is > the "last tag" parameter.

This method can be used to increase performance for handling attributes of Value Representations
OB, OW, OL, OV, OD or OF. It is most useful when a file contains pixel data (7FE0, 0010) as its last
attribute and this pixel data is very large. In these instances you may wish to ignore the pixel data,
read it in later (using the returned file offset), or process it directly from the file using your own

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

157© Copyright Merge Healthcare Solutions Inc. 2025

special filters or hardware. This can be done by specifying MCdicom.PIXEL_DATA for "last tag"
parameter.

MCapplication myApp; // non-null reference

MCfile fileObj = new MCfile("FileName");

MCdataSource source = new MCfileDataSource(fileObj.FileName);

MCmediaStorageService service = new MCmediaStorageService(myApp);

try {

 service.readFileUpToTag(fileObj, MCdicom.PIXEL_DATA-1, source);

} catch (Exception e) {...}

The other way to handle the large pixel data (7FE0, 0010) is to use overloaded readFileUpToTag
method defined with parameter bypassOBOW. If bypassOBOW is set to true than the attribute will
be read, but its attributes value ignored. The above example in this case will look as following:

try {

 service.readFileUpToTag(fileObj, MCdicom.PIXEL_DATA, true,
source);

} catch (Exception e) {...}

You might use a callback mechanism to retrieve the attribute's value upon request later (see
4.16.33. USING CALLBACK CLASS TO RETRIEVE ATTRIBUTE VALUE ON PAGE 112).

See the Assembly Windows Help File for a detailed description of the use of these read methods.

4.21.18.Creating and Writing Files

When you have a populated MCfile object you can create a DICOM file stream by using the
writeFile method of the MCmediaStorageService class. This method utilizes the MCdataSink
class to present the file stream for writing to media.

If your application has one or more MCattributeContainer objects registered for OB/OW/OL/OV/
OD/OF attributes, the writeFile method retrieve an attribute's value from a callback if an
MCattributeContainer callback is registered for it.

The second parameter of writeFile specifies a byte padding number. The attribute (FFFC, FFFC)
will be added to the MCfile object and given a length such that the total length of the streamed file is
a multiple of the byte padding number. If 0 is specified, there will be no padding of the file stream.
The parameter must be an even number.

If the file contains "group length" attributes (i.e. attributes with tags of the form gggg0000: any group,
element zero), this method will automatically calculate the group length value when supply it to the
callback.

The byte stream will be formatted in the transfer syntax specified by the attribute transfer syntax
UID (specified by the MCdicom.TRANSFER_SYNTAX_UID (0002,0010) attribute in the file's Meta
Information set). (You can set this value using the TransferSyntax property of the MCfile class.)

Two group 2 attributes within the file meta information will be automatically filled in if you have
not set them yourself:

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

158© Copyright Merge Healthcare Solutions Inc. 2025

● The Implementation Class UID (0002,0012) will be filled in with the value set for the
IMPLEMENTATION_CLASS_UID configuration value in the mergecom.pro file.

● The Implementation Version Name (0002,0013) will be filled in with the value set for the
IMPLEMENTATION_VERSION configuration value in the mergecom.pro file.

The following example is taken from the StorageSCP sample application.

MCapplication myApp; // non-null reference MCdimseMessage msg; // a
network message just received MCfile fileObj = new MCfile(msg,
"MyFileName")

MCdataSink destination = new MCfileDataSink(fileObj.FileName);
MCmediaStorageService mediaService = new
MCmediaStorageService(myApp);

try {

 mediaService.writeFile(fileObj, 0, destination);

} catch (Exception e) {

 System.Console.Out.WriteLine("writeFile failed", e);

}

4.21.19.Saving Raw (Unparsed) Messages as DICOM Files

Performance Tuning

A common usage of the Merge DICOM Toolkit is to save incoming (received from network)
messages. When reading a DICOM message from network, attributes in a message are parsed,
validated before storing them in memory, and then later written out from memory objects to a
DICOM file. With a message that has many level of nested items, the parsing/creating of DICOM
attributes in memory have a significant impact in performance. Very often, the intention of the
Storage SCP application is to write out the received message content to a DICOM file without the
need to modify the attributes of the message. When such a case is needed, it is best to just save the
raw streamed content as quickly and efficiently as possible. The following code snippet shows how
to save an incoming message into a DICOM file without parsing: (For detail implementation, please
refer to samples\StorageSCP\StorageSCP.cs in the distribution folder.)

// To read message from the association and save the raw

 // content without parsing the message's dataset, use

 // MCassociation.readToTag() to read only the "group 0"

 // part of the message instead of using

 // MCassociation.read() to read the entire message content.

 msg = assoc.readToTag(30000,

 0x00010000, // (0001,0000) tag is just after group 0

 out error);

 // Add DICOM Group 2 elements to a new dummy MCfile object

 // using the group 0 elements of msg.

 MCfile fileObj = new MCfile();

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

159© Copyright Merge Healthcare Solutions Inc. 2025

 // Refer to addGroup2ElementsFromGroup0() in

 // samples\StorageSCP\StorageSCP.cs

 if(!addGroup2ElementsFromGroup0(msg, fileObj))

 {

 // error

 }

 // Create file sink with a file name to write

 MCfileDataSink sink = new MCfileDataSink(file.ToString());

 // Stream out the dummy fileObj that contains only metaInfo.

 // Transfer syntax must be ExplicitLittleEndian

 fileObj.MetaInfo.streamOut(
MCtransferSyntax.ExplicitLittleEndian, sink);

fileObj.dispose();

 // Continue to read data set from original message and

 // stream out directly

 MCReadError error = assoc.continueReadToStream(sink, msg);

 // Close file sink

 sink.close();

 // Dispose received message

 msg.dispose();

NOTE: Due to the raw saving technique, non DICOM compliant message will be saved as is and no
warning will be issued (due to no parsing of message).

4.22. DICOMDIR
As discussed earlier, in each DICOM File Set (containing many DICOM files) their must exist a
single DICOM File with the reserved File ID "DICOMDIR". This file contains identifying information
for the file set that most often includes a directory of the file sets contents. A media interchange
application would make use of and maintain the DICOMDIR to locate a particular file within the file
set for processing.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

160© Copyright Merge Healthcare Solutions Inc. 2025

4.22.1. Structure

A information object portion of a DICOMDIR file has a special structure that is described in Part 3
(PS 3.3) of the DICOM Standard. We described this structure earlier in this document (see the
figure in 2.4.3. THE DICOMDIR ON PAGE 41) as a hierarchy of directory records, where each
directory record may contain a set of related directory records. These directory records can have a
one-to-one relationship to a DICOM file within the file set described by the DICOMDIR. Directory
records do not have to reference a DICOM file, they can be used solely to contain information that
helps an application navigate down the directory hierarchy to locate the desired DICOM file.

As an example, the Root directory record might contain two Patient directory records and a Topic
directory record. One of the Patient directory records references multiple Series records and a Film
Session record for that Patient. Each of these Series records reference Image records for that
patient. It is these Image records that reference the DICOM file containing the image objects
acquired for the Patient whose directory hierarchy we have traversed. (See A. THE DICOMDIR
HIERARCHY ON PAGE 42 for a description of the allowed entity hierarchies).

This directory record hierarchy is encoded within the DICOMDIR as a single, potentially very
complex, sequence of items where each item is a directory record. Byte offset attributes within the
directory records are used to point to other directory records at the same level in the hierarchy, as
well as lower-level directory records. DICOM File IDs are encoded in the directory record if the
record references a particular DICOM file in the file set.

The key observation here is that rather than using nested Sequences of Items to encode the
DICOMDIR hierarchy, the standard chose to use a single, potentially very large, sequence of items
and byte offsets. The standard defines these byte offsets as being measured "from the first byte of
the file meta-information". As you might well imagine, the complexity of maintaining these byte
offsets accurately, as directory records are added to or removed from directory entities within the
DICOMDIR file, is very great and can be very cumbersome.

Fortunately, the Merge DICOM Toolkit supplies methods that make DICOMDIR maintenance much
simpler for your application. These methods are now described.

4.22.2. Constructing New MCdir Instance

To create a special type of DICOM file that contains a DICOMDIR directory, construct a new MCdir
object. The MCdir class is a subclass of the MCfile class since it is simply a form of a DICOM file.
The file name provided MUST refer to a file named "DICOMDIR".

MCdir myDICOMDIR = MCdir ("HERE/DICOMDIR");

When you construct an MCdir object, Merge DICOM creates an instance of the MCfile class that
has a service name of "DICOMDIR" and uses C_STORE_RQ for the command.

4.22.3. MCdirRecord Class

The MCdirRecord class represents a DICOMDIR record and is simply a container for a number of
public properties and methods:

● Parent — A property that returns the MCdirRecord instance for the parent record of this
directory record.

● RecordName — This property gets a String name assigned to the requested DICOMDIR record

● Directory — This property returns the MCdir that this directory record is contained within.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

161© Copyright Merge Healthcare Solutions Inc. 2025

● IsLast — A Boolean that is true if the record is the last child record of the parent record. This
property is not updated when new child records are added or removed to/from the parent
record.

● RecordItem — This property is the MCitem instance for the directory record.

● getChildCount() — This method returns a count of the number of child records.

● getFirstChild() — This method returns the MCdirRecord for the first child of this directory
record.

● getNextChild() — This method can be called repeatedly to get subsequent child directory
records.

● getReferencedRecordCount() — This method traverses all child directory records and
returns a count of these records.

● addChildRecord(String newItemName) — This method adds a child record.

● delete() — This method deletes the current directory record within the DICOMDIR.

● deleteChildren() — This method deletes all the child directory records below this record.

The following sections describe these methods and properties in further detail.

4.22.4. Navigating the DICOMDIR

The MCdirRecord class provides routines for traversing the DICOMDIR. The MCdir class has a
property, Root, which returns an MCdirRecord instance which is a placeholder for the parent of the
root directory records within the DICOMDIR. This directory record in turn can be used to navigate
through the root records of the DICOMDIR and the remainder of the DICOMDIR.

The first step in navigating a DICOMDIR usually involves getting the Root property root of the
DICOMDIR. From there the getFirstChild and getNextChild are used to traverse lower level
records referenced by a particular record. When working with a specific directory record, the
RecordItem property can be used to get the MCitem associated with a specific directory record.
This MCitem instance can be used to access the attributes within the directory record. The
following code sample shows the use of these routines.

MCdir dir; // Non-null reference

MCdirRecord rootRec = dir.Root;

MCdirRecord curRec;

curRec = rootRec.getFirstChild();

while (curRec != null)

{

if (curRec.RecordName.Equals("DIR_REC_PATIENT"))

{

MCitem item = curRec.RecordItem;

// Access patient directory record tags here

}

curRec = rootRec.getNextChild();

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

162© Copyright Merge Healthcare Solutions Inc. 2025

In the above example, the directory records below the root record could be traversed by calling the
getFirstChild and getNextChild routines.

Refer to the MCdirRecord and MCdir classes in the Assembly Windows Help File for further details
on traversing a DICOMDIR.

4.22.5. Adding and Deleting DICOMDIR Records

The addition and deletion of directory records are handled using the addChildRecord,
deleteChild, and delete methods. These calls are prototyped as follows:

public MCdirRecord addChildRecord(String newItemName);

public void deleteChildren();

public void delete();

When adding a directory record, you must supply a string identifying the directory record item type
(newItemName). For example, if you wished to add a Study record, newItemName would be a string
containing "DIR_STUDY". The method returns an MCdirRecord object encapsulating the newly
created directory record.

When deleting records using deleteChildren or delete no parameters are required. When a
directory record is deleted, all lower level directory entities (and the directory records contained
within them) are also freed. The deleteChildren deletes all children for the current directory record.
The delete method deletes the current record and all of the children of the directory record.

The Merge DICOM Toolkit updates and maintains all the byte offsets that are part of the DICOMDIR
structure automatically.

NOTE: All the changes to a DICOMDIR are made in memory and are not committed to media until
a writeFile call is made.

4.23. Memory Management
The Merge DICOM C library contains its own memory management routines that are optimized
for how it uses memory. They have been adapted to manage specific data structures that are
frequently allocated by the Merge DICOM C toolkit. These include but are not limited to data
structures for associations, messages, and tags. The memory management routines have the
characteristic that they do not actually "free" the memory that has been acquired. Instead, they
mark the data as being free and place the memory in a list for reuse later. These routines have been
optimized to quickly acquire and free memory being used by Merge DICOM Toolkit. They also allow
Merge DICOM to not depend on the memory management of a particular operating system.

These memory routines have also been extended for use with variable sized memory buffers.
Merge DICOM uses these routines to allocate buffers in sizes between 4 bytes and 28K. When an
allocation is requested, Merge DICOM will take the smallest buffer that will fit the bytes requested.
These buffers will be kept in Merge DICOM Toolkit's internal memory pool and never freed. For
allocations larger than 28K, Merge DICOM will simply use the 'C' functions malloc() and free().

The end result of these routines is that applications using Merge DICOM expand to the maximum
amount of memory used at one time. The total memory allocation will not shrink from this point. In
applications that repeatedly perform a consistent operation, the memory being used by Merge
DICOM should stabilize and not increase in size. As a result of these routines, the first time an
application performs a DICOM operation is typically slower than subsequent operations.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

163© Copyright Merge Healthcare Solutions Inc. 2025

When developing a DICOM application with Merge DICOM Toolkit, the most memory intensive
operation is dealing with image data. The following sections discuss various Merge DICOM
methods. A description is given of how these methods manage memory in conjunction with various
Merge DICOM configuration settings.

4.23.1. Assigning Pixel Data

The MCattribute.setValue method is used in conjunction with the MCdataSource interface to
assign OB, OW, OL, OV, OD or OF data. These value representations are used to store image data or
other large data elements. setValue is described in further detail elsewhere in this manual.

The MCdataSource implementation can pass data to the library in a single call, or in several
smaller chunks. When passed data, the library will allocate a buffer the size of the chunk
passed to it and copy the data into this buffer for storage.

Performance Tuning

The size of data returned by provideData will dictate how the image data is stored. If the data is
passed in chunks smaller than 28K, Merge DICOM Toolkit's internal memory management code will
be used. If the chunks are larger than 28K, malloc() will be used to allocate storage for the buffers.
If large images are being dealt with, it may be desirable to pass this data in chunks larger than 28K,
so the memory is freed after processing has been completed for the image. This will keep the
nominal memory usage of Merge DICOM lower. When passing data in chunks less than 28K, it is
recommended that sizes of 16K, 20K, 24K, or 28K be used. Using these size chunks will reduce the
overhead in storing the data.

The library can also be directed to store data in temporary files. The LARGE_DATA_STORE and
LARGE_DATA_SIZE configuration options in the mergecom.pro file dictate when data is stored in
temporary files. When the LARGE_DATA_STORE option is set to FILE, data elements that are larger
than configured by the LARGE_DATA_SIZE option are stored in temporary files. The size of buffer
returned by provideData does not have an effect on memory usage.

4.23.2. Using Attribute Containers

Merge DICOM also supplies a method to allow the user to manage image data through the use of
registered callback methods. The MCapplication class registerAttributeContainer method
associates a callback class with a DICOM attribute such as pixel data. These callbacks are limited to
attributes with the value representations of OB, OW, OL, OV, OD or OF. When encountered, the
attribute's data is passed to a method of the registered callback class instead of being stored within
Merge DICOM Toolkit. The callback is also used to supply the attribute's data. The size of data
elements to use in callbacks can also be specified. The CALLBACK_MIN_DATA_SIZE configuration
option can specify the minimum size or length required for the use of a registered callback class.

There are three models in which registerAttributeContainer can be used. First, it can be
used to seamlessly replace Merge DICOM Toolkit's memory management functions. Use of this
method can for the most part be hidden from the application. Secondly, the method can be used as
an interface to receive or supply data only when it is needed. When writing a network application,
the image data can be supplied to the user directly as it is read off the network. The data can also be
supplied when it is about to be written to the network. This functionality can also be used when
creating and reading DICOM files. Finally, registerAttributeContainer can be used to save an
image to disk as it is received over the network.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

164© Copyright Merge Healthcare Solutions Inc. 2025

4.23.3. Replacing Merge DICOM Toolkit's Memory Management
Functions

Performance Tuning

When using registerAttributeContainer to replace Merge DICOM Toolkit's memory
management functions, the user would still use the MCattribute readBulkData and setValue
methods to access the image. When requested, Merge DICOM will receive or supply the attribute's
value to the attribute container.

4.23.4. Accessing Data When Needed

When dealing with large multi-frame images, it is sometimes impractical to load the entire image
into memory at once. registerAttributeContainer can be used to access image data only
when needed. The memory requirements of an application can be greatly reduced by using this
functionality.

Performance Tuning

When reading messages from the network, the MCassociation read method supplies the user's
registered callback class with the image data. If the data does not need to be byte swapped into the
system's native endian, the amount of data supplied with each call is dictated by the PDU size of the
data received. When the data is byte swapped, the length of data is specified by the
WORK_BUFFER_SIZE configuration value. As the data is received, it would typically be written to disk
in this scenario. When the read method returns, the user is given the message read from the
network encapsulated in an MCdimseMessage object. The message object still contains a link to
the registered callback class. This link can be removed by calling the MCattributeSet
removeValues method for the registered attribute. The header data can then be examined and
later written to disk.

When sending data over the network, the MCdimseService class sendRequestMessage method
(or the equivalent method from one of the MCdimseService subclasses) will call the user's
registered callback class for the image data. The data can be supplied to Merge DICOM in any
length as required by the user's application. The data is typically read from disk at this point and
directly passed to Merge DICOM Toolkit. After sendRequestMessage receives the data, it byte
swaps the data if needed, and then writes it to the network.

This functionality is conducive to storing a message's header data separately from its image data.
Depending on system requirements, this may be an aid in quickly loading image data while
bypassing Merge DICOM Toolkit. The complete image file can be reassembled later using Merge
DICOM Toolkit.

4.23.5. Saving Received Images Directly to Disk

In conjunction with the registered callback class, data can also be stored directly to disk when it is
being read. The image's header data can be written to disk from within the registered callback. The
user must write the attribute tag, value representation if needed, and the length of the image data
attribute to the file. The image data is written to the file in subsequent calls to the user's registered
callback method.

Performance Tuning

When read is parsing a message being received, it will notify the user's registered callback class
when it has parsed the header information and determines the image data's length. The registered
callback's receiveDataLength method will be called, providing the length of the registered

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

165© Copyright Merge Healthcare Solutions Inc. 2025

attribute's value, as well as a reference to the MCattributeSet being populated. At this point, the user
can stream the header file to disk using the MCattributeSet streamOut method. As the image data
is received, it can be added to the end of this file.

Data can also be stored as DICOM files with this method. The message cannot be converted into a
file object at this point using the special form of the MCfile constructor as would normally done. So,
a separate MCfile object must be constructed to add the DICOM Part 10 Meta Header information.
This header can be written out from within the callback by using the streamOut method on the
contained MCfileMetaInfo object. After the end of the meta header, the message can be streamed
to disk with a call to streamOut in the transfer syntax specified in the Meta Header. As subsequent
image data is passed to the user's callback class, the data can be written to file. Because the endian
of the transfer syntax being written may be different than the endian of the system being used, there
may be a need for byte swapping of the pixel data in this implementation.

There is a potential risk with this implementation. Although the data elements after the pixel data in
the current definition of the DICOM image types are not widely used, future versions may add data
elements that will get wider acceptance among implementors.

4.24. DICOM Structured Reporting
The Merge DICOM Toolkit provides high-level functionality to handle DICOM Structured Report
(SR) Documents. This functionality provides a simple way for encoding and decoding SR
Document content by manipulating content items and their attributes instead of tags and values.

4.24.1. Structured Report Structure and Modules

The DICOM standard Part 3 defines the following generic types of SR Information Object
Definitions (IODs):

● Basic Text SR Information Object Definition — The Basic Text Structured Report
(SR) IOD is intended for the representation of reports with minimal usage of coded entries
(typically used in Document Title and headings) and a hierarchical tree of headings under which
may appear text and subheadings. Reference to SOP Instances (e.g., images or waveforms or
other SR Documents) is restricted to appear at the level of the leaves of this primarily textual
tree. This structure simplifies the encoding of conventional textual reports as SR Documents, as
well as their rendering.

● Enhanced SR Information Object Definition — The Enhanced Structured Report (SR)
IOD is a superset of the Basic Text SR IOD. It is also intended for the representation of reports
with minimal usage of coded entries (typically Document Title and headings) and a hierarchical
tree of headings under which may appear text and subheadings. In addition, it supports the use
of numeric measurements with coded measurement names and units. Reference to SOP
Instances (e.g., images or waveforms or SR Documents) are restricted to display at the leaf level
of this primarily textual tree. The Enhanced Structured Report (SR) IOD enhances references to
SOP Instances with spatial regions of interest (points, lines, circle, ellipse, etc.) and temporal
regions of interest.

● Comprehensive SR Information Object Definition — The Comprehensive SR IOD is a
superset of the Basic Text SR IOD and the Enhanced SR IOD which specifies a class of
documents (the content of which may include textual and a variety of coded information,
numeric measurement values, references to the SOP Instances and spatial or temporal regions
of interest within such SOP Instances). Relationships by-reference are enabled between
Content Items.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

166© Copyright Merge Healthcare Solutions Inc. 2025

There are more specific SR IODs defined in the DICOM, like Key Object Selection Document
and Mammography CAD SR. These IODs use the same method to encode data but differ in
constrains on the Content Item Types and their relationships. The figure below illustrates the typical
SR Document structure. The top level header is similar to the DICOM image IODs and consists of
the same Patient, Study and Series modules. The main difference from other IODs is the SR
Document Content Module. The attributes in this Module convey the content of an SR
Document.

The Document Content Module has a tree structure and consists of a single root Content Item
(Node 1) that is the root of the SR Document tree. The root Content Item conveys either directly or
indirectly, all of the other nested Content Items in the document. The hierarchical structuring of the
Content Tree is provided by recursively nesting Content Items. A parent (or source) Content Item
has an explicit relationship to each child (or target) Content Item, and is conveyed by the
Relationship Type. The figure below illustrates the relationship of SR Documents to Content Items

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

167© Copyright Merge Healthcare Solutions Inc. 2025

and the relationships of Content Items to other Content Items, as well as to the Observation
Context.

Each Content Item contains the following:

● A name/value pair, consisting of:

● a single Concept Name Code that is the name of a name/value pair or a heading; and

● a value (text, numeric, code, etc.);

● References to images, waveforms or other composite objects, with or without coordinates; and

● Relationships to other Items, either by-value through nested Content Sequences, or by-
reference.

NOTE: Some Content Item Types can have multiple values.

4.24.2. Content Item Types

The table below defines all possible Content Item Types that can be used in the SR Document
Content Module. The choice of which may be constrained by the IOD in which this Module is
contained. The Merge DICOM Toolkit Class column specifies the enumerated value used in the
Toolkit to identify the Content Item Type.

Table 4.12: SR Content Item Types

Item Type Merge DICOM Toolkit
Class

Concept Name Description

TEXT MCtextItem Type of text, e.g.
"Findings", or name of
identifier, e.g. "Lesion ID"

Free text, narrative description
of unlimited length. May also be
used to provide a label or
identifier value.

NUM MCnumItem Type of numeric value or
measurement, e.g.
"BPD"

Numeric value fully qualified by
coded representation of the
measurement name and unit
of measurement.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

168© Copyright Merge Healthcare Solutions Inc. 2025

CODE MCcodeItem Type of code, e.g.
"Findings"

Categorical coded value.
Representation of nominal or
non-numeric ordinal values.

DATETIME MCdateTimeItem Type of DateTime, e.g.
"Date/Time of onset"

Date and time of occurrence of
the type of event denoted by
the Concept Name.

DATE MCdateItem Type of Date, e.g. "Birth
Date"

Date of occurrence of the type
of event denoted by the
Concept Name.

TIME MCtimeItem Type of Time, e.g. "Start
Time"

Time of occurrence of the type
of event denoted by the
Concept Name.

UIDREF MCuidReferenceItem Type of UID, e.g. "Study
Instance UID"

Unique Identifier (UID) of the
entity identified by the Concept
Name.

PNAME MCpersonNameItem Role of person, e.g.
"Recording Observer"

Person name of the person
whose role is described by the
Concept Name.

COMPOSITE MCcompositeItem Purpose of Reference A reference to one Composite
SOP Instance which is not an
Image or Waveform.

IMAGE MCimageItem Purpose of Reference A reference to one Image.
IMAGE Content Item may
convey a reference to a
Softcopy Presentation State
associated with the Image.

WAVEFORM MCwaveformItem Purpose of Reference A reference to one Waveform.

SCOORD MCspatialCoordinatesIte
m

Purpose of Reference Spatial coordinates of a
geometric region of interest in
the DICOM image coordinate
system. The IMAGE Content
Item from which spatial
coordinates are selected is
denoted by a SELECTED
FROM relationship.

SCOORD3D MCspatialCoordinates3DIt
em

Purpose of Reference 3D spatial coordinates (x, y, z)
of a geometric region of
interest in a Reference
Coordinate System.

Item Type Merge DICOM Toolkit
Class

Concept Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

169© Copyright Merge Healthcare Solutions Inc. 2025

4.24.3. Relationship Types between Content Items

The table below describes the Relationship Types between Source Content Items and the Target
Content Items. The choice of which may be constrained by the IOD in which this Module is
contained. The Merge DICOM Toolkit Definition column specifies the enumerated value used in the
Toolkit to identify the Content Item Relationship.

Table 4.13: SR Relationship Types

TCOORD MCtemporalCoordDateTi
meItem
MCtemporalCoordTimeOf
fsetsItem
MCtemporalCoordPositio
nsItem

Purpose of Reference Temporal Coordinates (i.e. time
or event based coordinates) of
a region of interest in the
DICOM waveform coordinate
system. The WAVEFORM or
IMAGE or SCOORD Content
Item from which Temporal
Coordinates are selected is
denoted by a SELECTED
FROM relationship.

CONTAINER MCcontainerItem Document Title or
document section
heading. Concept Name
conveys the Document
Title (if the
CONTAINER is the
Document Root Content
Item) or the category of
observation.

CONTAINER groups Content
Items and defines the heading
or category of observation that
applies to that content. The
heading describes the content
of the CONTAINER Content
Item and may map to a
document section heading in a
printed or displayed document.

TABLE MCtableItem Purpose of the tabulated
data

Table of text, numeric or
datetime values.

Item Type Merge DICOM Toolkit
Class

Concept Name Description

Relationship Type Merge
DICOM Toolkit
Definition

Description

CONTAINS CONTAINS Source Item contains Target Content Item, e.g.
CONTAINER "History" {CONTAINS: TEXT: "mother had
breast cancer"; CONTAINS IMAGE 36}

HAS OBS
CONTEXT

HAS_OBS_CONTEXT Has Observation Context. Target Content Items shall
convey any specialization of Observation Context needed
for unambiguous documentation of the Source Content
Item.
e.g. CONTAINER: "Report" {HAS OBS CONTEXT: PNAME:
"Recording Observer" = "Smith^John^^Dr^"}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

170© Copyright Merge Healthcare Solutions Inc. 2025

4.24.4. Content Item Identifier

Content Items are identified by their position in the Content Item tree. They have an implicit order
as defined by the order of the Sequence Items. When a Content Item is the target of a by reference
relationship, its position is specified as the Referenced Content Item Identifier in the source

HAS CONCEPT
MOD

HAS_CONCEPT_MO
D

Has Concept Modifier. Used to qualify or describe the
Concept Name of the Source Content item, such as to
create a post-coordinated description of a concept, or to
further describe a concept.
e.g. CODE "Chest X-Ray" {HAS CONCEPT MOD: CODE
"View = PA and Lateral"}
e.g. CODE "Breast" {HAS CONCEPT MOD: TEXT "French
Translation" = "Sein"}
e.g. CODE "2VCXRPALAT" {HAS CONCEPT MOD: TEXT
"Further Explanation" = "Chest X-Ray, Two Views,
Posteroanterior and Lateral"}

HAS PROPERTIES HAS_PROPERTIES Description of properties of the Source Content Item.
e.g. CODE "Mass" {HAS PROPERTIES: CODE "anatomic
location", HAS PROPERTIES: CODE "diameter", HAS
PROPERTIES: CODE "margin", ...}.

HAS ACQ
CONTEXT

HAS_ACQ_CONTEXT Has Acquisition Context. The Target Content Item
describes the conditions present during data acquisition of
the Source Content Item.
e.g. IMAGE 36 {HAS ACQ CONTEXT: CODE "contrast
agent", HAS ACQ CONTEXT: CODE "position of imaging
subject", ...}.

INFERRED FROM INFERRED_FROM Source Content Item conveys a measurement or other
inference made from the Target Content Items. Denotes
the supporting evidence for a measurement or judgment.
e.g. CODE "Malignancy" {INFERRED FROM: CODE "Mass",
INFERRED FROM: CODE "Lymphadenopathy"...}.
e.g. NUM: "BPD = 5mm" {INFERRED FROM: SCOORD}.

SELECTED FROM SELECTED_FROM Source Content Item conveys spatial or temporal
coordinates selected from the Target Content Item(s).
e.g. SCOORD: "CLOSED 1,1 5,10" {SELECTED FROM:
IMAGE 36}.
e.g. TCOORD: "SEGMENT 60-200mS" {SELECTED FROM:
WAVEFORM}.

Relationship Type Merge
DICOM Toolkit
Definition

Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

171© Copyright Merge Healthcare Solutions Inc. 2025

Content Item. The figure below illustrates an SR content tree and identifiers associated with each
Content Item. The MCitemIdentifer class encapsulates the Content Item Identifer.

4.24.5. Observation Context

Observation Context describes who or what is performing the interpretation, whether the
examination of evidence is direct or quoted, what procedure generated the evidence that is being
interpreted, and who or what is the subject of the evidence that is being interpreted.

Initial Observation Context is defined outside the SR Document Content tree by other modules in
the SR IOD (i.e., Patient Module, Specimen Identification, General Study, Patient Study, SR
Document Series, Frame of Reference, Synchronization, General Equipment and SR Document
General modules). Observation Context defined by attributes in these modules applies to all
Content Items in the SR Document Content tree and need not be explicitly coded in the tree. The
initial Observation Context from outside the tree can be explicitly replaced.

If a Content Item in the SR Document Content tree has Observation Context different from the
context already encoded elsewhere in the IOD, the context information of that Content Item shall be
encoded as child nodes of the Content Item in the tree using the HAS OBS CONTEXT relationship,
i.e., Observation Context is a property of its parent Content Item.

The context information specified in the Observation Context child nodes (i.e. target of the HAS
OBS CONTEXT relationship) adds to the Observation Context of their parent node Content item,
and shall apply to all by-value descendant nodes of that parent node regardless of the relationship
type between the parent and the descendant nodes. Observation Context is encoded in the same
manner as any other Content Item. Observation Context shall not be inherited across by-reference
relationships.

Observation DateTime is not included as part of the HAS OBS CONTEXT relationship, and therefore
is not inherited along with other Observation Context. The Observation DateTime Attribute is
included in each Content Item which allows different observation dates and times to be attached to
different Content Items.

The IOD may specify restrictions on Content Items and Relationship Types that also constrain the
flexibility with which Observation Context may be described.

The IOD may specify Templates that offer or restrict patterns and content in Observation Context.

4.24.6. Structured Reporting Templates

Templates are patterns that specify the Concept Names, Requirements, Conditions, Value Types,
Value Multiplicity, Value Set restrictions, Relationship Types and other attributes of Content Items
for a particular application. SR Document templates are defined in the Part 16 of the DICOM
Standard. Part 17 of the DICOM also has some explanatory information on encoding SR

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

172© Copyright Merge Healthcare Solutions Inc. 2025

Documents. The Merge DICOM Toolkit SR Functions follow DICOM Templates structures and allow
straightforward encoding based on template tables.

SR Templates are described using tables of the form shown in the table below.

Table 4.14: SR Template Definition

a. Row Number

Each row of a Template Table is denoted by a row number. The first row is numbered 1 and
subsequent rows are numbered in ascending order with increments of 1. This number denotes a
row for convenient description as well as reference in conditions. The Row Number of a Content
Item in a Template may or may not be the same as the ordinal position of the corresponding node in
the encoded document. The Merge DICOM Toolkit does not use this number in any way.

b. Nesting Level (NL)

The nesting level of Content Items is denoted by ">" symbols, one per level of nesting below the
initial Source Content Item (of the Template) in a manner similar to the depiction of nested
Sequences of Items in Modules Tables in Part 3 of the DICOM. When it is necessary to specify the
Target Content Item(s) of a relationship, they are specified in the row(s) immediately following the
corresponding Source Content Item. The Merge DICOM Toolkit provides functions to add nested
(child) Content Items to the parent Content Item node. The following function shall be used to add a
child node with relationship.

public void AddChild(MCcontentItem childItem, MCrelationshipType
relationshipType)

c. Relationship with Source Content Item (Parent)

Relationship Type and Mode are specified for each row that specifies a target content item. The
Relationship Types are enumerated in the <Cross-reference>Table 4.13 on page 169.

Relationship Type and Mode may also be specified when another Template is included, either "top-
down" or "bottom-up" or both (i.e., in the "INCLUDE Template" row of the calling Template, or in all
rows of the included Template, or in both places). There shall be no conflict between the
Relationship Type and Mode of a row that includes another Template and the Relationship Type and
Mode of the rows of the included Template.

When the relationship is defined in a form as R-RTYPE, it means that Relationship Mode is "By-
reference "and Relationship Type is "RTYPE". For example, "R-INFERRED FROM". Merge DICOM
Toolkit provides the following functions to encode/decode references:

public void AddReference(MCitemRelationship reference)

public void RemoveReference(MCcontentItem targetItem)

public void RemoveReference(MCitemRelationship reference)

NL Rel with
Parent

VT Concept
Name

VM Req Type Condition Value Set
Constraint

1

2

3

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

173© Copyright Merge Healthcare Solutions Inc. 2025

public ReadOnlyCollection<MCitemRelationship> References

d. Value Type (VT)

The Value Type field specifies the SR Value Type of the Content Item or conveys the word
"INCLUDE" to indicate that another Template is to be included (substituted for the row). The Merge
DICOM Toolkit provides specific classes for each Content Item Type as it described above.

e. Concept Name

Any constraints on Concept Name are specified in this field as defined or enumerated coded
entries, or as baseline or defined context groups. Alternatively, when the VT field is "INCLUDE", the
Concept Name field specifies the template to be included. The Merge DICOM Toolkit uses the
MCbasicCodedEntry class to specify the Concept Name.

You will find that some of the Content Item types require Concept Name in the constructor and
some are not, because it is optional for those Content Item Types. In that case, the Concept Name
can be set by using the public property.

Templates define References to coded concepts take the following form:

EV or DT (ConceptNameValue, ConceptNameSheme, "ConceptNameMeaning")

For example, EV (T-04000, SNM3, "Breast") would mean that hardcoded values shall be used for
that Concept Name. Some template items don't have DT or EV abbreviation and just specify the
hardcoded values.

The following abbreviations are used in template definitions.

● EV Enumerated Value — Values for are provided in the brackets.

● DT Defined Term — Values are provided in the brackets.

● BCID Baseline Context Group ID — Identifier that specifies the suggested Context Group. The
suggested values can be found in the DICOM Part 16 and identified by a Context ID provided in
the brackets.

● DCID Defined Context Group ID — Identifier that specifies the Context Group for a Coded Value
that shall be used. The values can be found in the DICOM Part 16 and identified by a Context ID
provided in the brackets.

● BTID Baseline Template ID — Identifier that specifies a template suggested to be used in the
creation of a set of Content Items. The referenced template can be found in the DICOM Part 16
and identified by a Template ID provided in the brackets.

● DTID Defined Template ID — Identifier that specifies a template that shall be used in the
creation of a set of Content Items. The referenced template can be found in the DICOM Part 16
and identified by a Template ID provided in the brackets.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

174© Copyright Merge Healthcare Solutions Inc. 2025

f. Value Multiplicity (VM)

The VM field indicates the number of times that a Content Item of the specified pattern, or an
included Template may appear in this position. <Cross-reference>Table 4.15 on page 174 specifies
the values that are permitted in this field.

Table 4.15: Permitted Values for VM

g. Requirement Type

The Requirement Type field specifies the requirements on the presence or absence of the Content
Item or included Template. The following symbols are used:

● M — Mandatory. Shall be present.

● MC — Mandatory Conditional. Shall be present if the specified condition is satisfied.

● U — User Option. May or may not be present.

● UC — User Option Conditional. May not be present. May be present according to the specified
condition.

h. Condition

The Condition field specifies any conditions upon which presence or absence of the Content Item
or its values depends. This field specifies any Concept Name(s) or Values upon which there are
dependencies.

References may also be made to row numbers (e.g., to specify exclusive OR conditions that span
multiple rows of a Template table).

The following abbreviations are used:

● XOR — Exclusive OR One and only one row shall be selected from mutually-exclusive options.

NOTE: For example, if one of rows 1, 2, 3 or 4 may be included, then for row 2, the abbreviation
"XOR rows 1,3,4" is specified for the condition.

● IF — Shall be present if the condition is TRUE; may be present otherwise.

● IFF — If and only if. Shall be present if the condition is TRUE; shall not be present otherwise.

● CV — Code Value

● CSD — Coding Scheme Designator

● CM — Code Meaning

● CSV — Coding Scheme Version

Expression Definition

i (where 'i' represents
an integer)

Exactly i occurrences, where i>=1. e.g., when i=1 there shall be one occurrence of
the Content Item in this position.

i—j From i to j occurrences, where i and j are >=1 and j>i.

1—n One or more occurrences

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

175© Copyright Merge Healthcare Solutions Inc. 2025

i. Value Set Constraint

Value Set Constraints, if any, are specified in this field as defined or enumerated coded entries, or as
baseline or defined context groups.

The Value Set Constraint column may specify a default value for the Content Item if the Content
Item is not present, either as a fixed value, or by reference to another Content Item, or by reference
to an Attribute from the dataset other than within the Content Sequence (0040,A730).

j. Inclusion of Templates

A Template may include another Template by specifying "INCLUDE" in the Value Type field and the
identifier of the included Template in the Concept Name field. All of the rows of the specified
Template are in included in the invoking Template, effectively substituting the specified template for
the row where the inclusion is invoked. Whether or not the inclusion is user optional, mandatory or
conditional is specified in the Requirement and Condition fields. The number of times the included
Template may be repeated is specified in the VM field.

We recommend that you implement templates as a subroutine or function call. In that case, the
inclusion of the template will be implemented as a call to that template with passing parameters.
Some of the templates defined in DICOM Part 16 already have predefined parameters and they are
indicated by a name beginning with the character "$".

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

176© Copyright Merge Healthcare Solutions Inc. 2025

4.24.7. Overview of the Merge DICOM Toolkit SR Classes

In the figure above, there are two top level classes:

● MCstructuredReport — This class is encapsulating the Structured Report Content Module
and has utility functions for reading and writing content tree from DICOM datasets.

● MCcontentItem — This is a base class for all content item classes and encapsulates common
functionality for all of them.

Each Content Item type is implemented as a separate class with the specific data exposed as public
properties. All Content Item classes are implementing the MCserializableToDataSet interface
that is used by the Toolkit to read and write individual Content Items.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

177© Copyright Merge Healthcare Solutions Inc. 2025

The Merge DICOM Toolkit allows you to extend existing Content Item classes by providing your own
derived classes from existing types. For example, if you want to store the Content Item data in your
own format or save extra DICOM attributes that are not covered by the Toolkit classes. Once you
created your own extended class, you need to register it with the class factory that is responsible for
creating classes during reading data from DICOM datasets. By default, Toolkit will create a known
class per each Content Item Type according to TABLE 4.12: SR CONTENT ITEM TYPES ON PAGE 167.
The class factory is implemented in the MCstructuredReport class and can be updated by
calling the following function:

public void UpdateItemFactory(ContentItemType itemType, Type
classType)

NOTE: The class factory registration is not global and the registration shall be done per instance of
the MCstructuredReport class.

4.24.8. Encoding SR Documents

The creation of the SR document involves following steps:

1. Creating a new MCstructuredReport object.

2. Adding Content Items (nodes) to the tree based on the template definitions.

3. Creating a new dataset.

4. Saving SR Content to the dataset.

5. Adding Patient/Study/Series and other attributes required by the IOD definition,

6. Saving the result dataset object to a file.

To create a new SR, you need to know the IOD type you are creating and the templates that will be
used to generate the SR Document Content.

a. Key Object Selection Example

The Key Object Selection document is constrained by a single template. The following template is
taken from the DICOM Part 16.

TID 2010
KEY OBJECT SELECTION
Type: Non-Extensible

NL Rel with
Parent

VT Concept Name VM Req
Type

Condition Value Set
Constraint

1 CONTAINER DCID(7010) Key
Object Selection
Document Titles

1 M Root
node

2 > HAS
CONCEPT
MOD

CODE EV (113011, DCM,
"Document Title
Modifier")

1-n U

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

178© Copyright Merge Healthcare Solutions Inc. 2025

The code below generates a valid DICOM KO object and illustrates how the template is encoded
using the Merge DICOM Toolkit functions.

private MCdataSet CreateKO()

{

 MCcontentItem item;

 /*

 * Create a KEY OBJECT DOCUMENT

 * The template ID is 2010 and we used the "Best in Set"

 * context ID from the CID 7010.

3 > HAS
CONCEPT
MOD

CODE EV (113011, DCM,
"Document Title
Modifier")

1 UC IF Row 1
Concept Name =
(113001, DCM,
"Rejected for
Quality Reasons")
or (113010, DCM,"
Quality Issue")

DCID
(7011)

4 > HAS
CONCEPT
MOD

CODE EV (113011,
DCM, "Document
Title Modifier")

1 MC IF Row 1
Concept Name =
(113013, DCM,
"Best In Set")

DCID
(7012)

5 > HAS
CONCEPT
MOD

INCLUDE DTID(1204)
Language
of Content Item
and Descendants

1 U

6 > HAS OBS
CONTEXT

INCLUDE DTID(1002)
Observer
Context

1-n U

7 > CONTAINS TEXT EV(113012, DCM,
"Key Object
Description")

1 U

8 > CONTAINS IMAGE Purpose of
Reference shall
not be present

1-n MC At least one
of Rows 8, 9
and 10
shall be present

9 > CONTAINS WAVEFORM Purpose of
Reference shall
not be present

1-n MC At least one
of Rows 8, 9
and 10
shall be present

10 > CONTAINS COMPOSITE Purpose of
Reference shall
not be present

1-n MC At least one
of Rows 8, 9
and 10
shall be present

NL Rel with
Parent

VT Concept Name VM Req
Type

Condition Value Set
Constraint

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

179© Copyright Merge Healthcare Solutions Inc. 2025

 */

 MCsructuredReport sr = new MCstructuredReport("2010",
MCcontainerItem.Continuity.SEPARATE, new MCbasicCodedEntry("113013",
"DCM", "Best In Set"));

 /*

 * Skipping Row 2 and 3 of the template and encoding Row 4.

 * The code is taken from the CID 7012.

 */

 item = new MCcodeItem(new MCbasicCodedEntry("113015", "DCM",
"Series"), new MCbasicCodedEntry("113011", "DCM", "Document Title
Modifier"));

 sr.RootItem.AddChild(item, MCrelationshipType.HAS_CONCEPT_MOD);

 /*

 * Skipping Row 5 and 6 of the template and encoding Row 7.

 * The code is taken from the CID 7012.

 * The text value shall describe the image selection.

 */

 item = new MCtextItem("Doctor's comments on selection", new
MCbasicCodedEntry("113012", "DCM", "Key Object Description"));

 sr.RootItem.AddChild(item, MCrelationshipType.CONTAINS);

 /*

 * Adding an IMAGE from Row 8.

 * The values "1.2.3.4.1", "1.2.3.4.5.1" suppose to be an image
SOP Class

 * and SOP Instance.

 */

 item = new MCimageItem(new MCsopInstanceReference("1.2.3.4.1",
"1.2.3.4.5.1"));

 sr.RootItem.AddChild(item, MCrelationshipType.CONTAINS);

 /* Creating a new DataSet */

 MCdataSet dataSet = new MCdataSet(MCdimseService.C_STORE_RQ,

 "KEY_OBJECT_SELECTION_DOC");

 /* Saving SR Document contentent into the DataSet */

 sr.Write(dataSet);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

180© Copyright Merge Healthcare Solutions Inc. 2025

 /*

 * Adding other root level attributes

 */

 dataSet.setValue(MCdicom.SOP_CLASS_UID,
"1.2.840.10008.5.1.4.1.1.88.59");

 dataSet.setValue(MCdicom.SOP_INSTANCE_UID, "1.2.3.4.5.6.7.300");

 dataSet.setValue(MCdicom.STUDY_DATE, "19991029");

 dataSet.setValue(MCdicom.CONTENT_DATE, "19991029");

 dataSet.setValue(MCdicom.STUDY_TIME, "154500");

 dataSet.setValue(MCdicom.CONTENT_TIME, "154510");

 dataSet.setValue(MCdicom.ACCESSION_NUMBER, "123456");

 dataSet.setValue(MCdicom.MODALITY, "KO");

 dataSet.setValue(MCdicom.MANUFACTURER, "MERGE");

 dataSet.setValue(MCdicom.REFERRING_PHYSICIANS_NAME,
"Luke^Will^^Dr.^M.D.");

dataSet.setValue(MCdicom.REFERENCED_PERFORMED_PROCEDURE_STEP_SEQUENCE
, null);

 dataSet.setValue(MCdicom.PATIENTS_NAME, "Jane^Doo");

 dataSet.setValue(MCdicom.PATIENT_ID, "234567");

 dataSet.setValue(MCdicom.PATIENTS_BIRTH_DATE, "19991109");

 dataSet.setValue(MCdicom.PATIENTS_SEX, "F");

 dataSet.setValue(MCdicom.STUDY_INSTANCE_UID,
"1.2.3.4.5.6.7.100");

 dataSet.setValue(MCdicom.SERIES_INSTANCE_UID,
"1.2.3.4.5.6.7.200");

 dataSet.setValue(MCdicom.STUDY_ID, "345678");

 dataSet.setValue(MCdicom.SERIES_NUMBER, "1");

 dataSet.setValue(MCdicom.INSTANCE_NUMBER, "1");

 dataSet.setValue(MCdicom.PERFORMED_PROCEDURE_CODE_SEQUENCE,
null);

 MCitem item1 = new MCitem("HIERARCHICAL_SOP_INST_REF_MACRO");

 item1.setValue(MCdicom.STUDY_INSTANCE_UID, "1.2.3.4.5.6.7.100");

 MCitem item2 = new MCitem("HIERARCHICAL_SERIES_REF_MACRO");

 item2.setValue(MCdicom.SERIES_INSTANCE_UID, "1.2.3.4.5.6.7.200");

 MCitem item3 = new MCitem("REF_SOP");

 /* following UIDs are the same as used in the Row 8 item */

 item3.setValue(MCdicom.REFERENCED_SOP_CLASS_UID, "1.2.3.4.1");

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

181© Copyright Merge Healthcare Solutions Inc. 2025

 item3.setValue(MCdicom.REFERENCED_SOP_INSTANCE_UID,
"1.2.3.4.5.1");

 item2.setValue(MCdicom.REFERENCED_SOP_SEQUENCE, item3);

 item1.setValue(MCdicom.REFERENCED_SERIES_SEQUENCE, item2);

dataSet.setValue(MCdicom.CURRENT_REQUESTED_PROCEDURE_EVIDENCE_SEQUENC
E, item1);

 return dataSet;

}

4.24.9. Reading SR Documents

Reading SR Documents is done in a similar way to encoding, but in reverse sequence.

1. Reading a File or receiving a message object.

2. Reading root level attributes.

3. Creating a new MCstructuredReport object.

4. Reading SR Content from the dataset.

5. Traversing SR content tree and accessing Content Node attributes.

The following code illustrates a reading sequence for the Key Object Document generated above.

private void ReadKO(MCdataSet dataset)

{

 // Create a new SR instance and fill it from the dataset

 MCstructuredReport sr = new MCstructuredReport();

 sr.Read(dataset);

 // Print information from the root CONTAINER item

 Console.WriteLine("Document Title: " +
sr.RootItem.ConceptName.CodeMeaning);

 Console.WriteLine("Template Id: " + sr.RootItem.TemplateId);

 // Reading the first children as a CODE item

 if(sr.RootItem.Children[0] is MCcodeItem)

 {

 MCcodeItem codeItem = sr.RootItem.Children[0] as MCcodeItem;

 Console.Write(codeItem.ContentItemType + ": ");

 Console.WriteLine(codeItem.ConceptName.CodeMeaning + ": " +
codeItem.Code.CodeMeaning);

 }

 // Reading the next children as a TEXT item

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

182© Copyright Merge Healthcare Solutions Inc. 2025

 if(sr.RootItem.Children[1] is MCtextItem)

 {

 MCtextItem textItem = sr.RootItem.Children[1] as MCtextItem;

 Console.Write(textItem.ContentItemType + ": ");

 Console.WriteLine(textItem.ConceptName.CodeMeaning + ": " +
textItem.Text);

 }

 // Reading the next children as an IMAGE item

 if (sr.RootItem.Children[2] is MCimageItem)

 {

 MCimageItem imageItem = sr.RootItem.Children[2] as
MCimageItem;

 Console.Write(imageItem.ContentItemType + ": ");

 Console.WriteLine("Sop Class: " +
imageItem.SopReference.ReferencedSopClassUid + ", Sop Instance: " +
imageItem.SopReference.ReferencedSopInstanceUid);

}

4.25. Working with Merge DICOM Web Services
The DICOM standard introduces the mechanisms and specifications for Web services to access
and present DICOM objects through Http/Https protocols - Web Access of DICOM Persistent
Objects (WADO, see PS3.18 DICOM PS3.18 2015c Web Services).

The Merge DICOM Toolkit provides a flexible framework to handle WADO requests and DICOM
service responses for the Web clients. This functionality gives to the user a simple way to parse a
complex DICOM Http request into a set of toolkit DIMSE messages for DICOM service and then
convert DICOM service response into Http response message.

The Mergecom WADO framework supports WADO-RS, WADO-URI, WADO-WS, QIDO-RS, STOW-
RS and UPS-RS standards and provides interfaces for DICOM storage/retrieve services. It is built
on top of the Merge DICOM Toolkit and re-uses its architecture and base classes.

As an upper layer of the Merge DICOM Toolkit the WADO framework is released as a separate
Mergecomws.dll assembly, which requires the base Merge DICOM Toolkit assemblies and
configuration files. It is built using Windows .NET Framework 4.5.

4.25.1. Configuring WADO Http Controllers and MCwado Services

The Mergecom WADO framework uses Microsoft ASP.NET Web API 2.2 framework to handle Http
clients requests. There are six different types of MCcontrollers derived from
System.Web.Http.ApiController class. Each MCcontroller is designed to handle a specific type of
WADO request - WADO-RS, WADO-URI, WADO-WS, QIDO-RS, STOW-RS or UPS-RS.

Each of MCcontrollers is used for a specific Http service and has to be registered in
System.Web.Http.HttpConfiguration in HttpRoute collections with multiple URI templates. The
ASP.NET Web API framework will then route all the GET, POST, DELETE or PUT requests to the

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

183© Copyright Merge Healthcare Solutions Inc. 2025

specific methods of MCcontroller. The source code for MCcontrollers as well as an examples of URI
templates are provided in APPENDIX F. MERGECOM APICONTROLLER CLASSES ON PAGE 252.

The user is encouraged to implement their own ApiController classes that would match the
requirements of their Web service application.

Mergecom WADO framework uses a singleton MCwado class for initializing Mergecom DICOM
Toolkit, registering users DICOM services as well as conversion methods and WADO framework
configuration settings.

To initialize Merge DICOM Toolkit one of the overloaded Init static methods should be called at
application bootstrap:

/// <summary>Initializes <see cref="MCwado"/> singleton instance</
summary>

public static void Init()

/// <summary>Initializes <see cref="MCwado"/> singleton instance</
summary>

/// <param name="mergeInifile"><see cref="FileInfo"/> of MERGE.INI
file </param>

public static void Init(FileInfo mergeInifile)

/// <summary>Initializes <see cref="MCwado"/> singleton instance</
summary>

/// <param name="mergeInifile"><see cref="FileInfo"/> of MERGE.INI
file </param>

/// <param name="license">Mergecom Toolkit license</param>

public static void Init(FileInfo mergeInifile, string license)

MCwado class provides a set of static properties to register user DICOM services to handle DICOM
WADO requests/responses and convert them into HttpResponseMessage object - IMCservice
Service, IMCcache Cache, IMCdicomRenderer DicomRenderer, IMChttpConverter
HttpConverter and IMChttpResponder HttpResponder:

public static IMCservice Service { get; set }

public static IMCcache Cache { get; set }

public static IMCdicomRenderer DicomRenderer { get; set }

public static IMChttpConverter HttpConverter { get; set }

public static IMChttpRenderer HttpRenderer { get; set }

The IMCservice interface is used to access the DICOM service for storing and retrieving DICOM
objects, IMCcache is used to store and retrieve DICOM objects to/from the user cache storage,
IMCdicomRenderer interface is used to render DICOM service messages into different format or
TransferSyntax, IMChttpConverter provides a way to convert a DICOM service response into an
array of HttpContent data and IMChttpResponder is used to create a final
HttpResponseMessage.

The MCwado Settings property is a Dictionary<String,String> hosting the configuration
settings of the WADO framework.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

184© Copyright Merge Healthcare Solutions Inc. 2025

4.25.2. Constructing an MCrequest

MCrequest is a base class which is used to instantiate a DICOM service request. Its constructor
takes an HttpResponseMessage object, a request type and a list of DICOM request parameters as
constructor parameters:

/// <summary>Class constructor</summary>

/// <param name="httpRequestMessage"><see cref="HttpRequestMessage"/>
object</param>

/// <param name="requestType"><see cref="MCrequestType"/> of current
request</param>

/// <param name="parms">List of <see cref="MCrequestParameter"/> of
current request</param>

public MCrequest(HttpRequestMessage httpRequestMessage, MCrequestType
requestType, MCrequestParameter[] parms)

{

 HttpRequestMessage = httpRequestMessage;

 RequestType = requestType;

 Parameters = parms;

}

There are six types of MCrequest which are used for DICOM services - WadoURI, WadoRS,
WadoWS, Stow, Qido and UpsRS:

// <summary>WadoURI <see cref="MCrequestType"/></summary>

public static MCrequestType WadoURI = new MCrequestType { Name =
@"WADOURI" };

/// <summary>WadoRS <see cref="MCrequestType"/></summary>

public static MCrequestType WadoRS = new MCrequestType { Name =
@"WADORS" };

/// <summary>WadoWS <see cref="MCrequestType"/></summary>

public static MCrequestType WadoWS = new MCrequestType { Name =
@"WADOWS" };

/// <summary>Stow <see cref="MCrequestType"/></summary>

public static MCrequestType Stow = new MCrequestType { Name = @"STOW"
};

/// <summary>Qido <see cref="MCrequestType"/></summary>

public static MCrequestType Qido = new MCrequestType { Name = @"QIDO"
};

/// <summary>UpsRS <see cref="MCrequestType"/></summary>

public static MCrequestType UpsRS = new MCrequestType { Name =
@"UPSRS" };

/// <summary>Unknown <see cref="MCrequestType"/></summary>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

185© Copyright Merge Healthcare Solutions Inc. 2025

public static MCrequestType Unknown = new MCrequestType { Name =
@"UNKNOWN" };

The list of MCrequestParameter consists of WADO request parameters for that specific request
which might include DICOM attributes as well. Examples of MCrequest for different WADO request
types are given in Appendix F.

MCrequest class implements MCrequest.Submit() method to send a request to the DICOM
service which returns an HttpResponseMessage object as a result of the request. Internally,
MCrequest object accesses an MCwado singleton object to get a registered IMCservice and an
IMCcache interfaces for storing or retrieving DICOM objects, an IMCdicomRenderer interface to
render DICOM service response and an IMCHttpConverter interface to convert a DICOM service
response to an HttpResponseMessage object.

4.25.3. Using MCrequestParameter and MCrequestAttribute
Classes

The MCrequestParameter class is used to describe a WADO request parameter and populate the
internal data of WADO framework structures. It has the properties:

String Name { get; set; }

String RequestRequirement { get; set; }

where the latter defines if the WADO parameter is REQUIRED or OPTIONAL. The property:

IEnumerable<String> Values { get; set; }

contains a list of strings, which are a multi-string representation of the WADO parameter value.

Some of the WADO parameters (for instance, StudyInstanceUID, PatientName etc. in QIDO-RS
request) could be presented as DICOM attributes. For that purpose, MCrequestParameter
implements a property:

IEnumerable<MCrequestAttribute> Attributes { get; set; }

which is a list of MCrequestAttribute objects. Each MCrequestAttribute instance describes a
single DICOM attribute using properties:

public uint Tag { get; set; }

public String Item { get; set; }

public String Keyword { get; set; }

public IEnumerable<string> Values

public List<MCrequestAttribute> Children

where Tag is a DICOM attribute tag, Item is a user-defined alias, Keyword is a DICOM keyword,
Values represents multiple values encoded as string and Children is a set of child attributes in
case the attribute is a DICOM sequence. In case of a sequence attribute, the Values, property,
naturally, is empty.

The code fragment below shows how to create an MCrequestParameter with MCrequestAttribute,
describing a WADO studyInstanceUid request parameter:

string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

MCrequestAttribute attr = new MCrequestAttribute()

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

186© Copyright Merge Healthcare Solutions Inc. 2025

{

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

};

MCrequestParameter parm = new MCrequestParameter()

{

 Name = keyword,

 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

};

4.25.4. Implementing IMCservice and IMCcache Interfaces

The Mergecom WADO framework provides a mechanism to convert DICOM WADO Http requests
into Merge DIMSE request messages for a DICOM service. However, the implementation of the
DICOM service itself is out of the scope of the framework. To access a user DICOM service, the
Mergecom WADO framework provides interfaces which will have to be registered through
corresponding static properties of the MCwado singleton object:

/// <summary>Defines the method of DICOM service to retrieve and store
DICOM objects</summary>

public interface IMCservice

{

 /// <summary>Process WADO DICOM request to retrieve/store DICOM
data from/to DICOM service</summary>

 /// <param name="request">WADO request encoded as an array of <see
cref="MCabstractMessage"/> objects</param>

 /// <param name="xmlRequestParameters">XML <see cref="string"/>
encoded from the list of <see cref="MCparameter"/> of WADO request</
param>

 /// <param name="response">DICOM service response encoded as an
array of <see cref="MCabstractMessage"/></param>

 /// <param name="xmlResponseParameters">XML <see cref="string"/>
encoded from the list of <see cref="MCparameter"/> of WADO response</
param>

 /// <returns>Returns <c>True</c> if <c>DICOM</c> operation
succeeded</returns>

 bool DcmOperation(MCabstractMessage[] request, String
xmlRequestParameters, out MCabstractMessage[] response, out String
xmlResponseParameters);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

187© Copyright Merge Healthcare Solutions Inc. 2025

}

/// <summary>Defines the cache operations to store and retrieve the
results of <see cref="MCabstractMessage"/> WADO requests</summary>

public interface IMCcache

{

 /// <summary>Checks if WADO request exists in the cache storage</
summary>

 /// <param name="request"><see cref="MCabstractMessage"/> WADO
request encoded as an array of <see cref="MCabstractMessage"/></
param>

 /// <returns>Returns <c>True</c> if the request exists</returns>

 bool Exists(MCabstractMessage[] request);

 /// <summary>Removes WADO request from the cache storage</summary>

 /// <param name="request"><see cref="MCabstractMessage"/> WADO
request encoded as an array of <see cref="MCabstractMessage"/></
param>

 /// <returns>Returns <c>True</c> if remove operation was
successful</returns>

 bool Remove(MCabstractMessage[] request);

 /// <summary>Add WADO request and DICOM service response to the
cache storage</summary>

 /// <param name="request">WADO request encoded as an array of <see
cref="MCabstractMessage"/></param>

 /// <param name="response">DICOM service response encoded as an
array of <see cref="MCabstractMessage"/></param>

 /// <returns>Returns <c>True</c> if the operation was successful</
returns>

 bool Put(MCabstractMessage[] request, MCabstractMessage[]
response);

 /// <summary>Retrieves DICOM service response for given WADO
request</summary>

 /// <param name="request">WADO request encoded as an array of <see
cref="MCabstractMessage"/></param>

 /// <param name="response">DICOM service response encoded as an
array of <see cref="MCabstractMessage"/></param>

 /// <returns>Returns <c>True</c> if the operation was successful</
returns>

 bool Get(MCabstractMessage[] request, out MCabstractMessage[]
response);

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

188© Copyright Merge Healthcare Solutions Inc. 2025

Implementing Mergecom WADO interfaces allows to re-use the Merge DICOM Toolkit architecture
for DICOM store, find and retrieve operations. IMCservice and IMCcache methods require
MCabstractMessage objects as a request parameter. In addition, the IMCservice methods have
a String xmlRequestParameters parameter, which is an XML string encoded from the list of
MCrequestParameter for that specific request, including both DICOM and non-DICOM request
parameters.

The xmlParameters string could be decoded back to the list of MCrequestParameter objects
using the static MCrequestParameter method:

IEnumerable<MCrequestParameter> ParseXmlToParameters(String xml)

DICOM service response is represented by an array of MCabstractMessage objects and
xmlResponseParameters strings, which is used as necessary to describe the list of
MCrequestParameter returned for that specific service response.

The user is advised to look into the Mergecom WADO framework samples code as an example of
DICOM client and service implementation.

4.25.5. Using MCdicomResponse Class

MCdicomResponse encapsulates the results of the service response and converts it into an
HttpResponseMessage sent to Http client. On service response Mergecom WADO framework
instantiates an MCdicomResponse object using a public static method:

MCdicomResponse CreateInstance(MCrequestType type, IMCdicomRenderer
renderer, IMChttpConverter converter, IMChttpResponder responder);

where the parameters are MCrequestType and the instances of IMCdicomRenderer,
IMChttpConverter and IMChttpResponder interfaces. These interfaces could be registered
similar to IMCservice and IMCcache interfaces through the static methods of MCwado singleton
object and allow to user to convert DICOM service response messages into
HttpResponseMessage object with method:

void CreateHttpResponseMessage(MCabstractMessage[] response, string
xmlRequestParameters, string xmlResponseParameters)

This method takes DICOM service response messages, xmlRequestParameters string and
xmlResponseParameters string as a parameters, successively renders the DICOM service data
into binary streams using IMCdicomRenderer, converts the stream data into an array of
HttpContent data with IMChttpConverter interface and creates a multipart
HttpResponseMessage object from HttpContent data by using IMChttpResponder interface.

Once HttpResponseMessage object of MCdicomResponse is created it might be accessed
through the public method:

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

189© Copyright Merge Healthcare Solutions Inc. 2025

HttpResponseMessage GetHttpResponseMessage();

4.25.6. IMCdicomRenderer Interface and Rendering DICOM
Service Response

DICOM service response could be rendered to the different binary format or Transfer Syntax using
IMCdicomRenderer interface.

/// <summary>Defines the conversion operation of DICOM Service
response to an array of <see cref="Stream"/> objects</summary>

public interface IMCdicomRenderer

{

 /// <summary>Renders DICOM service response into <see
cref="Stream"/> objects using an array of <see cref="MCparameter"/></
summary>

 /// <param name="response">DICOM service response encoded as an
array of of <see cref="MCabstractMessage"/></param>

 /// <param name="xmlRequestParameters">XML string of <see
cref="MCparameter"/> used for WADO request</param>

 /// <param name="xmlResponseParameters">XML string of <see
cref="MCparameter"/> returned from DICOM service</param>

 /// <returns>An array of <see cref="Stream"/> objects generated
from DICOM service response</returns>

 Stream[] Render(MCabstractMessage[] response, String
xmlRequestParameters, ref String xmlResponseParameters);

}

The Render method takes an array of MCabstractMessage objects from DICOM service as a
parameter and returns an arrays of binary Stream data, which are used as an input for
IMChttpConverter.Convert method.

4.25.7. IMChttpConverter Interface and Creating HttpContent
Data.

IMChttpConverter interface is used to convert a rendered stream data into an array of
HttpContent objects. The interface itself has one method to implement:

/// <summary>Defines the conversion operation of rendered DICOM
streams into an array of <see cref="HttpContent"/> objects</summary>

public interface IMChttpConverter

{

 /// <summary>Converts an arrays of rendered DICOM streams to array
of <see cref="HttpContent"/> objects based on request and response
parameters</summary>

 /// <param name="streams">DICOM streams</param>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

190© Copyright Merge Healthcare Solutions Inc. 2025

 /// <param name="xmlRequestParameters">XML string of <see
cref="MCparameter"/> used for WADO request</param>

 /// <param name="xmlResponseParameters">XML string of <see
cref="MCparameter"/> returned from DICOM service</param>

 /// <returns>A <see cref="HttpResponseMessage"/> object generated
from DICOM service response</returns>

 HttpContent[] Convert(Stream[] streams, String
xmlRequestParameters, ref String xmlResponseParameters);

}

4.25.8. IMChttpResponder Interface and Constructing
HttpResponseMessage

Constructing the HttpResponseMessage object from HttpContent data returned by
IMChttpConverter.Convert is the final stage of the workflow. Mergecom WADO framework
uses the IMChttpResponder interface to generate a multipart HttpResponseMessage object
from an array of HttpContent. The interface itself has one method to implement:

/// <summary>Defines the construction of <see
cref="HttpResponseMessage"/> object from an array of <see
cref="HttpContent"/> objects</summary>

public interface IMChttpResponder

{

 /// <summary>Creates <see cref="HttpResponseMessage"/> object
from an array of <see cref="HttpContent"/> objects based on request
and response parameters</summary>

 /// <param name="contents">An array of <see cref="HttpContent"/>
objects</param>

 /// <param name="xmlRequestParameters">XML string of <see
cref="MCparameter"/> used for WADO request</param>

 /// <param name="xmlResponseParameters">XML string of <see
cref="MCparameter"/> returned from DICOM service</param>

 /// <returns><see cref="HttpResponseMessage"/> object</returns>

 HttpResponseMessage Response(HttpContent[] contents, String
xmlRequestParameters, ref String xmlResponseParameters);

}

Based on DICOM service architecture details, the user might implement his own rendering,
conversion and responder classes and register them as an IMCdicomRenderer,
IMCHttpConverter and IMChttpResponder interfaces using the MCwado singleton class. For
instance:

public class DicomRenderer : IMCdicomRenderer;

IMCdicomRenderer renderer = new DicomRenderer();

MCwado.DicomRenderer = renderer;

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

191© Copyright Merge Healthcare Solutions Inc. 2025

public class HttpConverter : IMChttpConverter ;

IMChttpConverter converter = new HttpConverter();

MCwado.HttpConverter = converter;

public class HttpResponder : IMChttpResponder;

IMChttpResponder responder = new HttpResponder();

MCwado.HttpResponder = responder;

On receiving the DICOM service response, the Mergecom WADO framework would create a
MCdicomResponse object and executes CreateHttpResponseMessage method which would
successively call the Render method of the registered IMCDicomRenderer interface, then the
Convert method of IMChttpConverter interface and finally the Response method of
IMChttpResponder interface. If an IMCDicomRenderer, IMCHttpConverter or
IMChttpResponder interfaces are not registered, the Mergecom WADO framework would use its
own MCdicomRenderer, MChttpConverter and MChttpResponder public classes.

As the MCdicomRenderer, MChttpConverter and MChttpResponder classes imply some
restrictions on the DICOM service implementation, the user is encouraged to implement his own
IMCdicomRenderer rendering, IMChttpConverter and IMChttpResponder conversion based
on the knowledge of DICOM service architecture.

192© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 5. Deploying Applications

There are several issues to consider when deploying a Merge DICOM based application. These
include deciding which Merge DICOM files are needed for your application, how to set important
configuration options to reduce problems in the field, and how to deal with potential UN VR
problems. The following sections describe these issues in further detail.

5.1. Merge DICOM Required Files
There are a number of files required by Merge DICOM applications. These files are described in the
table below.

Table 5.1: Files needed when deploying an application

File Description and Use

Mergecom.dll .NET Merge DICOM library wrapper. This library services your calls to the
Native Merge DICOM Toolkit Library.

Mergecom.Native.dll Native Merge DICOM Toolkit library.
(required for deployments on 32-bit Windows platforms)

Mergecom.Native64.dll Native Merge DICOM Toolkit library for 64-bit processes. (required for
deployments on 64-bit Windows platforms)

mc3adv.so Native Merge DICOM Toolkit library for 64-bit Linux platforms.

NOTE: It must be renamed to Mergecom.Native64.dll on deployment

Mergecomws.dll .NET Merge DICOM WADO library wrapper. This library services your calls to
DICOM WADO. Only present in the edition for 64-bit platforms.

picn20.dll
picn6220.dll
picn6320.dll
picn6420.dll
picn6520.dll
picn6820.dll
picn6920.dll

32-bit Pegasus libraries used for compression.
From: Accusoft (formerly Pegasus Imaging Corporation):
www.accusoft.com.
(required for deployments on 32-bit Windows platforms)

picx20.dll (Windows)
libpiclx20.so (Linux)
picx6220.ssm
picx6320.ssm
picx6420.ssm
picx6520.ssm
picx6820.ssm
picx6920.ssm

64-bit Pegasus libraries used for compression.
From: Accusoft (formerly Pegasus Imaging Corporation):
www.accusoft.com.
(required for deployments on 64-bit Windows and Linux platforms)

merge.ini Merge DICOM initialization file. This file contains logging configuration and
path names for the other configuration files.

www.accusoft.com
www.accusoft.com
www.accusoft.com
www.accusoft.com

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

193© Copyright Merge Healthcare Solutions Inc. 2025

5.2. Configuration Options
The majority of Merge DICOM Toolkit's configuration options can be used to solve interoperability
problems in the field. There are some options, however, that can be set before deploying a Merge
DICOM application to help reduce potential problems. These options are listed in the table below
with descriptions of how they can be set.

Table 5.2: Configuration options to consider when deploying an application

mergecom.pro Merge DICOM system profile. This file contains general run-time
configuration options.

mergecom.app Merge DICOM application profile. This file contains configuration
information about the services supported by the Merge DICOM application
and information about remote DICOM applications.

mergecom.srv Merge DICOM services file. This file contains information about the services
supported by Merge DICOM Toolkit.

mrgcom3.msg Merge DICOM message information file. This file contains validation
information for DICOM messages. This file is required if a non-empty
MCdataSet, MCitem, MCdimseMessage or MCfile object is constructed by
the application; or if any validate or validateAttribute is called; or if an MCdir
object is constructed.

mrgcom3.dct Merge DICOM data dictionary file.

File Description and Use

Configuration Option Description

ACCEPT_ANY_APPLICATION_TITLE When set to NO, Merge DICOM requires that the Application Entity
title sent in an association request match one of the registered
application titles for the SCP. When there is no match, the
association will be automatically rejected. Setting this option to YES
will eliminate some association negotiation problems in the field for
SCP applications.

ACCEPT_ANY_HOSTNAME When set to NO, Merge DICOM will attempt to resolve the IP
address of the SCU application into a hostname. If this resolution
cannot be done, the association will automatically be rejected.
Setting this option to YES will reduce configuration problems in the
field for SCP applications.

EXPORT_UN_VR_TO_MEDIA Setting this option to NO will cause UN VR attributes to not be
exported when writing DICOM Part 10 format files with the writeFile
or writeFileByCallback methods of the MCmediaStorageService
class. See the following sections for a further discussion of UN VR.

EXPORT_UN_VR_TO_NETWORK Setting this option to NO will cause UN VR attributes to not be
exported over the network when sending messages using the
MCdimseService class. See the following sections for a further
discussion of UN VR.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

194© Copyright Merge Healthcare Solutions Inc. 2025

5.2.1. UN VR

DICOM Supplement 14, Unknown Value Representation, became a part of the DICOM standard on
June 3, 1997. This supplement added a new value representation, UN, to the DICOM standard. It was
developed to fix two related holes in the DICOM standard:

When standard or private attributes were received in an implicit value representation (VR) transfer
syntax, and the user does not have a knowledge of the VR of the attributes, there is no way to
represent the VR for these attributes in an explicit VR transfer syntax.

Every time a new VR is added to the standard, there is no way to determine if the length field in
explicit value representation transfer syntaxes should be encoded as 2 bytes or 4 bytes, so a general
parser could not be properly written to handle future VRs.

The need for this supplement is mainly for use in "archive" systems. An "archive" will typically want
to preserve the private attributes contained within a message for later use. There also may be a
need to add support for new image objects with new VRs to an "archive" system without having to
change the software.

Unfortunately, the method that Supplement 14 specifies for encoding UN value representation
attributes is in some cases not compatible with older DICOM implementations. Versions previous to
2.2.2 of the Merge DICOM toolkit do not parse these attributes properly. The MCassociation read
method will fail and the association will be aborted if a UN VR attribute is received. This has
obviously caused a variety of interoperability problems in the field.

The typical DICOM scenario where UN VR can cause a DICOM communication failure is the
following: a modality exports a series of images to a PACS or "archive" system via the DICOM
storage service class. The images were encoded in the implicit VR little endian transfer syntax and
contain multiple private attributes. Later, a DICOM workstation decided to retrieve the images from
the "archive" or PACS system. The workstation does not yet support UN VR, however, the PACS or
"archive" system does. The workstation uses the DICOM query/retrieve service class to retrieve the
series of images. When the images are exported to the workstation with an explicit VR transfer
syntax, the workstation fails to parse the first image received when it encounters the first UN VR
attribute, and the association is automatically aborted by the workstation.

We have added several methods to solve this interoperability problem through the Merge DICOM
toolkit's configuration files. For SCU systems that are exporting UN VR tags to systems that cannot
handle them, the following can be done:

IMPLEMENTATION_CLASS_UID The Implementation Class UID is used to identify in a unique
manner a specific class of implementation. PS3.7 of DICOM states:
"(The Implementation Class UID) is intended to provide respective
(each network node knows the other's implementation identity) and
non-ambiguous identification in the event of communication
problems encountered between two nodes." PS3.7 of DICOM
further defines how this UID should be defined: "different
equipment of the same type or product line (but having different
serial numbers) shall use the same Implementation Class UID if
they share the same implementation environment (i.e., software)."

IMPLEMENTATION_VERSION The Implementation Version is intended to distinguish between
software versions of an implementation. It should be set to the
version of the Merge DICOM application.

Configuration Option Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

195© Copyright Merge Healthcare Solutions Inc. 2025

a. SCU Application Strategy

Configure the SCU to only use the Implicit VR Little Endian transfer syntax when exporting objects.
This can be done through the use of transfer syntax lists within the mergecom.app file or through
commenting out the UID definitions for the other transfer syntaxes within the mergecom.pro file.

Set the UNKNOWN_VR_CODE configuration option in the mergecom.pro file to 'OB'. This forces
unknown VR attributes to be encoded as OB instead of as UN. All implementations can handle OB
encoding. There are several drawbacks to this option. If the attributes are encoded as OB, it is
harder for these attributes to be converted back to their normal VR. Secondly, this option changes
all instances of the UN VR into OB. Systems that can handle the UN VR will now also receive these
attributes as OB.

Set the EXPORT_UN_VR_TO_NETWORK configuration option to 'No'. This will cause the Merge
DICOM toolkit to not export attributes encoded as UN VR to the network.

b. SCP Application Strategy

For SCP systems receiving UN VR tags when they cannot handle them, the following can be done:

Configure the SCP to only negotiate the Implicit VR Little Endian transfer syntax when receiving
objects.

With the help of these options, most UN VR problems in the field can be fixed simply by changing
configuration values with the Merge DICOM toolkit.

196© Copyright Merge Healthcare Solutions Inc. 2025

Appendix A. Frequently Asked Questions

This appendix lists some frequently asked questions by toolkit users.

1. It is inconvenient to set absolute paths for the various configuration options in the merge.ini and
mergecom.pro files that need them. Is there a way to make these pathnames configurable at
run-time?

Merge DICOM allows the placement of environment variables in these pathnames. This allows
setting of a root directory for these pathnames. The following is an example of how this
functionality is used in our configuration files:

MERGECOM_PRO = $(MERGE_ROOT)\mc3apps\mergecom.pro

In this example, MERGE_ROOT would be an environment variable.

A special macro "MC3INIDIR" is used to represent the directory where "merge.ini" is. It is used
like the environment variable with the difference that it is automatically resolved and does not
need to be set.

If MERGECOM_3_PROFILE, MERGECOM_3_SERVICES or MERGECOM_3_APPLICATIONS
contain relative paths with a prefix "$(MC3INIDIR)" or "%MC3INIDIR%", the toolkit considers
the path relative to the location of the "merge.ini" file.

For example:

MERGECOM_3_PROFILE = $(MC3INIDIR)../config/mergecom.pro

The path of the profile file is "../config/mergecom.pro" relative to the location of the "merge.ini"
file.

2. I am testing the sample applications for the first time and cannot get the client (SCU)
application to connect to the server (SCP) for any of the sample applications. The
MCapplication.requestAssociation method is throwing an exception. It appears as
though the connection is opening, but it is quickly dropped. Why is this happening?

As a security measure, the MCassociation.startListening method used in SCPs
attempts to determine the hostname of SCUs connecting to it. If it cannot determine the
remote hostname, it will drop the connection. The startListening method uses the local
system's host file or its configured domain name server to translate the SCU's IP address into
its hostname. By configuring the SCU's hostname in your local hosts file, this problem will be
eliminated. Also, the ACCEPT_ANY_HOSTNAME configuration value in the mergecom.pro file
disables this checking.

3. What can be done to reduce the memory requirements of the Merge DICOM Toolkit?

There are several methods for reducing the memory requirements of Merge DICOM Toolkit.
The first approach is to construct "empty" MCfile, MCdataSet and MCdimseMessage objects by
not specifying any service or command parameters. These constructors reduce memory by not
reading in all of the information needed for validation of messages and files, respectively. This
approach will also improve performance.

There are several configuration values that reduce Merge DICOM Toolkit's memory
requirements. The following describes each of these options:

● FORCE_OPEN_EMPTY_ITEM —This configuration option performs the same function as
constructing empty MCdimseMessage objects, except that it is for items. It is especially
useful for reducing the amount of memory used when creating large DICOMDIRs.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

197© Copyright Merge Healthcare Solutions Inc. 2025

● LARGE_DATA_STORE and LARGE_DATA_SIZE — These options control the ability of Merge
DICOM to store pixel data in temporary files instead of RAM. This functionality is enabled by
setting LARGE_DATA_STORE to FILE, and by adjusting LARGE_DATA_SIZE to the size of
data element that you want spooled to temporary file. Note, however, that this will decrease
performance.

4. What can be done to increase the performance of the Merge DICOM Toolkit?

There are several Merge DICOM configuration values that impact performance in different
ways. The following is a summary of these options:

● ELIMINATE_ITEM_REFERENCES — This option improves the performance of
removeMessageValues method in MCdimseMessage, clear method in MCattributeSet and
removeFileValues method in MCfile. This option will disable functionality within the toolkit
that causes the toolkit to search all currently open message objects for references to an
item that is being freed by one of these calls. This call is especially useful when your
application uses very large DICOMDIR files.

● PDU_MAXIMUM_LENGTH — This option sets the maximum sized PDU that the toolkit will
receive. If during association negotiation the maximum sized PDU of the system negotiating
with the toolkit application is larger than this value, the PDU size will be limited to this value.
Increasing this value increases the amount of data that is passed to the TCP/IP level. This
may increase network performance of the library.

● WORK_BUFFER_SIZE — This option specifies how the toolkit buffers data before storing it or
passing it to a user callback class. Setting higher values for this option will increase
performance.

● TCPIP_RECEIVE_BUFFER_SIZE — This option sets the TCP/IP receive buffer size. Higher
values for this buffer generally will increase the network performance of the toolkit for
server (SCP) applications. This value should also be slightly larger than the
PDU_MAXIMUM_LENGTH to increase performance. Setting this value to an even multiple of
the MSS (1460 bytes) will help increase performance on most platforms.

● TCPIP_SEND_BUFFER_SIZE — This option sets the TCP/IP send buffer size. Higher values
for this buffer generally will increase the network performance of the toolkit for client (SCU)
applications. This value should also be slightly larger than the PDU_MAXIMUM_LENGTH to
increase performance. Setting this value to an even multiple of the MSS (1460 bytes) will
help increase performance on most platforms

5. Which of the options listed above have the greatest impact on network performance?

The TCPIP_RECEIVE_BUFFER_SIZE and TCPIP_SEND_BUFFER_SIZE configuration options
have the greatest impact on network performance. Setting these properly directly increases the
network performance of Merge DICOM Toolkit.

6. I am sending 8-bit images with Merge DICOM Toolkit, however, after sending the data to
another system, the pixel data is byte swapped incorrectly. What is causing this problem?

The Merge DICOM Toolkit Users Manual contains the section "8-bit Pixel Data" (page X116X)
which describes this problem. This is typically only a problem on Big Endian machines. To
summarize the problem, on big endian machines, we expect 8-bit data to be byte swapped. We
do not look at the "bits allocated" and "bits stored" tags to determine that the pixel data itself is
8-bit data, we always treat pixel data (7fe0,0010) as OW. The pixel data must be assigned as
byte swapped.

7. I recently upgraded to a new release of the Merge DICOM Toolkit. Since this upgrade,
exceptions are being thrown by the MCattributeSet attribute encoding methods. This code
worked before the upgrade. What is causing these problems?

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

198© Copyright Merge Healthcare Solutions Inc. 2025

The Merge DICOM data dictionary changes from release to release. In some cases, the
identification number for a particular message type changes. When upgrading, if you do not
change all of the data dictionary files, this error will occur. The following files should be
upgraded with each release:

mergecom.srv

mrgcom3.msg

mrgcom3.dct

199© Copyright Merge Healthcare Solutions Inc. 2025

Appendix B. Unique Identifiers (UIDs)

UIDs provide the capability to identify many different types of items. The purpose of UIDs are to
guarantee the uniqueness of these different types of items. DICOM uses UIDs to uniquely identify
items such as SOP classes, image instances and network negotiation parameters. Part 5, Section 9
along with Annexes B and C of the DICOM Standard discusses how UIDs are composed, encoded
and registered.

B.1. Summary of UID Composition
A UID is composed of a number of numeric values as defined by ISO 8824. The following is a typical
example of a UID:

1.2.840.10008.2.45.1.12345

A UID is composed of two parts: a <root> and a <suffix> and has the following form:

UID = <root>.<suffix>

where <root> is assigned by a registration authority (e.g., ANSI) with the distinguishing component
being the organization ID. The <root> portion of the UID uniquely identifies an organization while
the <suffix> portion is used to uniquely identify a specific object within the scope of the
organization. While the <root> component of the UID stays constant, the <suffix> portion will
change in a manner that will provide uniqueness for objects that need UIDs.

NOTE: This implies that the organization is responsible for maintaining the uniqueness of the
<suffix>.

For example, using the UID above, <root> = 1.2.840.10008 and <suffix> = 2.45.1.12345.
Where the organization ID portion of the <root> (10008) distinguishes organizations from each
other.

NOTE: The above example is typical for UIDs obtained by ANSI during the time when the DICOM
standard was first released. The organization ID of 10008 has actually been assigned to
NEMA and is used as part of the <root> for DICOM standard UIDs such as SOP Classes,
Transfer Syntaxes, etc. For example, vendors creating images need to obtain their own
organization ID and cannot use 10008.

For future UIDs, ISO has developed a joint relationship with CCITT and has changed the <root>
structure. Therefore, new UIDs from ANSI will no longer be of the form 1.2.840.xxxxx. but are
currently assigned using the form, <root> = 2.16.840.1.10008. Where, of course, 10008 is the
organization ID.

B.2. Obtaining a UID
The <root> portion of the UID should be registered by an organization that guarantees global
uniqueness. The American National Standards Institute (ANSI) is the registration authority for the
United States. Other national registration authorities exist for nations throughout the world such as
IBN in Belgium, AFNOR in France, BSI in Great Britain, DIN in Germany, and COSIRA in Canada.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

200© Copyright Merge Healthcare Solutions Inc. 2025

B.2.1. Obtaining a UID from ANSI

ANSI is the registration authority for the US for organization names (i.e., <root>) under the global
registration process established by the International Standards Organization (ISO) and the
International Telegraph and Telephone Consultative Committee (CCITT). ANSI's registration service
conforms with CCITT X.660 and ISO/IEC 9834-1. The ANSI organization name registration service
assigns one name component to the hierarchy defined by CCITT and ISO/IEC.

An organization seeking registration may do so by submitting a Request for Registration application
form along with a fee (as of August 1996 the fee is $1,000) to the Registration Coordinator. The
Request for Registration application form can be obtained from ANSI by use of the following
information:

American National Standards Institute

11 West 42nd Street

New York, New York 10036

TEL: 212.642.4900

FAX: 212.398.0023

201© Copyright Merge Healthcare Solutions Inc. 2025

Appendix C. Writing a DICOM
Conformance Statement

Detailed below is a guideline for writing a DICOM conformance statement for your application.
Since the Toolkit is not an application, this section only gives an outline of the DICOM services it
supports. Responsibility for full DICOM conformance to particular SOP classes rests with the
application developer, since many of the requirements for such conformance lie outside the realm
of the Toolkit. For example, the high level behavior of Query/Retrieve service class SCUs and SCPs
as defined in Part 4 of the DICOM standard, is implemented by the application developer in
conjunction with the toolkit functionality.

C.1. Conformance Statement Sections

C.1.1. Implementation Model

The Implementation model consists of three sections:

● the Application Data Flow Diagram which specifies the relationship between the Application
Entities and the "external world" or Real-World activities.

● a functional description of each Application Entity.

● the sequencing constraints among them.

C.1.2. Application Data Flow

As part of the Implementation model, an Application Data Flow Diagram is included. This diagram
represents all of the Application Entities present in an implementation, and graphically depicts the
relationship of the AEs' use of DICOM to Real-World Activities as well as any applicable user
interaction.

The Merge DICOM Toolkit provides the core functionality required to facilitate data flow between
SCUs and SCPs.

Application conformance statements include a data flow diagram. An example is shown below for a
simple Storage Service Class SCP.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

202© Copyright Merge Healthcare Solutions Inc. 2025

a. Functional Definition of Application Entities (AE)

This section contains a functional definition for each individual, local Application Entity. It describes
in general terms, the functions that are performed by the AE, and the DICOM services used to
accomplish these functions. In this sense, "DICOM services" refers not only to DICOM Service
Classes, but also to lower level DICOM services, such as Association Services.

Application conformance statements are described in this section with a general specification of
functions to be performed by SCU or SCP.

C.1.3. Sequencing of Real World Activities

If applicable, this section will contain a description of sequencing as well as potential constraints on
real-world activities. These include any applicable user interaction as performed by all the AEs. A
UML sequence diagram that depicts the real-world activities as vertical bars, and shows events
exchanged between them as arrows, is strongly recommended.

Application conformance statements are included in this section along with any associated
sequence of real-world activities. For example, a Storage Service Class SCP might perform the
following real-world activities: store an image, modify it in some defined manner, act as a Storage
Service Class SCU and forward the modified image somewhere.

C.1.4. AE Specifications

The next section in the DICOM Conformance Statement is a set of Application Entity specifications.
There is one specification for the AE. Each individual AE specification has a subsection. There are
as many of these subsections as there are different AEs in the implementation. That is, if there are
two distinct AEs, then there are two subsections. The Merge DICOM Toolkit uses the
mergecom.app configuration file to read configuration parameters for each AE. The following
subsections are filled in for each AE:

Application Entity

● SOP Classes

● Association Policies

● General

● Number of Associations

● Asynchronous Nature

● Implementation Identifying Information

● Association Initiation Policy

● Activity

● Description and Sequencing of Activities

● Proposed Presentation Contexts

● SOP Specific Conformance for SOP Class(es)

● Association Acceptance Policy

● Activity

● Description and sequencing of Activities

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

203© Copyright Merge Healthcare Solutions Inc. 2025

● Accepted Presentation Contexts

● SOP Specific Conformance for SOP Class(es)

C.1.5. SOP Classes

Application conformance statements specify the DICOM SOPs which are supported by each
Application Entity. For SCP Entities, the initiation of associations. See 3.1.3. SYSTEM PROFILE ON
PAGE 54 and the "MC_Wait_For_Association" or "MC_Wait_For_Secure_Association" function in the
Merge DICOM Reference Manual. For SCU Entities, the list of supported SOP classes will
correspond to the services specified in "mergecom.app" for any SCPs to which the SCU wishes to
connect.

C.1.6. Number of Associations

The Merge DICOM Toolkit does not impose any limit on the number of simultaneous associations
that can be requested or accepted. The only limitation on the number of simultaneous associations
is imposed by the operating system and available resources. However, if your application enforces
this limit, it is defined here.

The MAX_PENDING_CONNECTIONS setting in the "mergecom.pro" file refers to the maximum
number of outstanding connection requests per listener socket. It does not limit the maximum
number of simultaneous associations.

C.1.7. Asynchronous Nature

Merge DICOM Toolkit does not currently support multiple outstanding transactions over a single
association.

C.1.8. Implementation Identifying Information

Application conformance statements specify the Implementation Class Unique Identifier (UID) for
the application, as well as the Implementation version name. These identifiers are taken from the
mergecom.pro configuration file under the following keys:

IMPLEMENTATION_CLASS_UID

IMPLEMENTATION_VERSION

This UID must follow the syntax rules specified in Part 5 of the DICOM standard.

a. Proposed or Accepted Presentation Contexts

Application conformance statements specify all presentation contexts that are used for association
negotiation. A presentation context consists of:

● an Abstract Syntax which is a DICOM service class name and unique identifier(UID);

● a transfer syntax name and UID. A transfer syntax represents a set of data encoding rules that
are specified in the "mergecom.pro" file. See 3.1.3. SYSTEM PROFILE ON PAGE 54.

● the role that the application will perform within the service class. The roles associated with a
particular service class are discussed in Part 4 of the DICOM standard.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

204© Copyright Merge Healthcare Solutions Inc. 2025

● any extended negotiation information used when creating associations. See the
"MC_Get_Negotiation_Info" function in the Merge DICOM Reference Manual.

● any rules that govern the acceptance of presentation contexts for the AE. This includes rules for
which combinations of Abstract/Transfer Syntaxes are acceptable, and rules for prioritization of
presentation contexts. Rules that govern selection of transfer syntax within a presentation
context are stated here. See 3.1.2. APPLICATION PROFILE ON PAGE 48. Also, see the
"MC_Get_Association_Info" function in the Merge DICOM Reference Manual to learn about the
presentation contexts that are queryable by an application program.

Refer to the table below for an example.

Table C.1: Example Presentation Context

Merge DICOM Toolkit uses mergecom.app configuration settings to specify presentation contexts
shown above.

C.1.9. SOP Specific Conformance

This section includes the SOP specific behavior, i.e., error codes, error and exception handling and
time-outs, etc. The information is described in the SOP specific Conformance Statement section of
PS 3.4 (or relevant private SOP definition).

C.1.10. Transfer Syntax Selection Policies

Merge DICOM Toolkit uses the following policy when selecting a transfer syntax:

● An SCU offers any transfer syntaxes which are defined in it's mergecom.pro file.

● The SCP prefers it's native byte ordering, and will prefer explicit over implicit VR.

C.2. Network Interfaces

Presentation Context Table

Abstract Syntax Transfer Syntax Role Extended

Name UID Name List UID List Negotiation

Computed
Radiography
Image Storage

1.2.840.10008.5.1.4.1.1.1 DICOM Implicit
VR Little Endian

1.2.840.10008.1.2 SCP None

DICOM Explicit
VR Little Endian

1.2.840.10008.1.2.1

DICOM Explicit
VR Big Endian

1.2.840.10008.1.2.2

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

205© Copyright Merge Healthcare Solutions Inc. 2025

C.2.1. Physical Network Interface

Merge DICOM Toolkit runs over the TCP/IP protocol stack on any physical interconnection media
supporting the TCP/IP stack.

C.2.2. IPv4 and IPv6 Support

Merge DICOM Toolkit supports both IPv4 and IPV6 protocols and is configurable in the system
profile.

C.2.3. Configuration

Refer to APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207 for complete configuration
information.

Applications reference four (4) configuration files. The first, merge.ini, is found through the
MERGE_INI environment variable. They are as follows:

● merge.ini — Specifies the names of the other three (3) configuration files and also contains
message logging parameters.

● mergecom.pro — Specifies run-time parameters for the application.

● mergecom.app — Defines service lists and applications on other network nodes to which
connections are possible.

● mergecom.srv — Service and sequence definitions.

C.2.4. AE Title/Presentation Address Mapping

Presentation address mapping is configured in the mergecom.app file. The Presentation Address
of an SCU/SCP application is specified by configuring the Listen Port in the mergecom.pro file, and
specifying the AE title for the SCU/SCP within the application itself.

C.2.5. Configurable Parameters

The mergecom.pro configuration file can be used to set or modify other lower-level communication
parameters. This includes time-outs and other parameters. Some information about supported
SOP classes is also stored here. Most parameters in this file should NEVER be changed. Doing
so may compromise DICOM conformance. Before modifying any parameters, such as time-out,
be sure to have a backup of the originally supplied mergecom.pro file. Also, before modifying other
parameters, you should consider contacting Merge Healthcare for advice.

C.2.6. PDU Size

● The maximum PDU size is configurable with a minimum of 4,096 bytes.

● Application conformance statements specify the chosen PDU (Protocol Data Units) size and
any general rules governing the initiation of associations. Please see the "System Profile"
section of the Merge DICOM Reference Manual for further information about configuring the
PDU size.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

206© Copyright Merge Healthcare Solutions Inc. 2025

C.3. Extensions/Specializations/Privatizations

C.3.1. Standard Extended/Specialized/Private SOPs

Application conformance statements list extended, specialized, or private SOPs that are supported.

C.3.2. Private Transfer Syntaxes

This section describes private transfer syntaxes that are listed in the Transfer Syntax Tables. See D.3.
SYSTEM PROFILE ON PAGE 223 in APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 207 for details.

207© Copyright Merge Healthcare Solutions Inc. 2025

Appendix D. Configuration Parameters

This appendix describes each configuration parameter in detail. Information contained in these
tables is the parameter names, descriptions and sections where it is contained. The parameters are
listed alphabetically and organized by the initialization file where they are used.

D.1. Initialization File
The following parameters are recognized by Merge DICOM in the initialization file.

Table D.1: Initialization file parameters

Name Section Description

BLANK_FILL_LOG_FILE MergeCOM3 This parameter informs the toolkit whether or not to
expand the log file to its maximum size on initialization.
Setting this value to "NO" will decrease the time spent
in the MC.mcInitialization call but increase the time
spent doing actual logging while the application is
running.
DEFAULT: YES

ERROR_MESSAGE MergeCOM3 This parameter instructs the toolkit to which destination
(File, Screen and/or Memory) to log error messages.

INFO_MESSAGE MergeCOM3 This parameter instructs the toolkit to which destination
(File, Screen and/or Memory or none) to log
information messages.

LOG_FILE MergeCOM3 This is the name of the Merge DICOM message log. The
file will be [re-]created by Merge DICOM Toolkit. This
parameter is ignored by embedded toolkits.
The path to the file can be specified using environment
variables (including the pseudo environment variable
MC3INIDIR which does not need to be set as the toolkit
will resolve it internally to the directory where the
merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
DEFAULT: ./merge.log

LOG_FILE_BACKUP MergeCOM3 This is a Boolean parameter that tells Merge DICOM to
create a backup of the log file before starting a new log.
If "ON", any existing log file is renamed with a file
extension of .Lnn where nn is an integer number
between 01 and 99.
DEFAULT: OFF.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

208© Copyright Merge Healthcare Solutions Inc. 2025

LOG_FILE_LINE_LENGTH MergeCOM3 This option specifies the number of characters that
occur on a line within the merge.log file.
DEFAULT: 78
MINIMUM: 16
MAXIMUM: 254

LOG_FILE_SIZE MergeCOM3 This is the number of lines which will be created for the
log file. If BLANK_FILL_LOG_FILE is set to YES, the file is
initialized to all binary zeros before the first message is
logged.
DEFAULT: 1000
MINIMUM: 100
MAXIMUM = 30720 (30 * 1024)

LOG_MEMORY_SIZE MergeCOM3 This is the number of lines of length equal to
LOG_FILE_LINE_LENGTH which will be created for the
memory log. Note that this option is ignored when using
the .NET Assembly.
DEFAULT: 1024.

MERGECOM_3_APPLICATIONS MergeCOM3 File containing the Merge DICOM application
configurations.
The path to the file can be specified using environment
variables (including the pseudo environment variable
MC3INIDIR which does not need to be set as the toolkit
will resolve it internally to the directory where the
merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.

MERGECOM_3_PROFILE MergeCOM3 File containing the Merge DICOM system profile
parameters.
The path to the file can be specified using environment
variables (including the pseudo environment variable
MC3INIDIR which does not need to be set as the toolkit
will resolve it internally to the directory where the
merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.

Name Section Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

209© Copyright Merge Healthcare Solutions Inc. 2025

MERGECOM_3_SERVICES MergeCOM3 File containing the Merge DICOM system service and
message definitions.
The path to the file can be specified using environment
variables (including the pseudo environment variable
MC3INIDIR which does not need to be set as the toolkit
will resolve it internally to the directory where the
merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.

NUM_HISTORICAL_LOG_FILES MergeCOM3 This parameter informs the toolkit of the number of
historical log files to keep. The valid range of number for
this parameter is 1 - 99. The historical log files are
named basename.L01 to basename.LXX where
basename.LXX is the latest log file. The basename is
determined by the LOG_FILE parameter. When the
maximum number of historical log files is met, the
oldest log file is deleted and the log files are renamed.
Note that a new log file is created each time the library is
initialized. This parameter is only used when
LOG_FILE_BACKUP is set to YES.

T1_MESSAGE MergeCOM3 This logging level is not used (internal tracking).

T2_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
the entire contents of messages sent or received over
the network. The format is similar to MC_List_Message's
output.

T3_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages relating to association negotiation.

T4_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages when incoming associations are
automatically rejected.

T5_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages relating to regular and extended validation.

T6_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages relating to configuration.

T7_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages relating to logging of command level
attributes in messages sent or received.

T8_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages relating to the streaming in and out of
messages and file objects.

T9_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to log
messages relating to PDU's sent and received. NOTE:
Receipt and transmission of P-DATA PDU's are logged;
not the actual PDU itself.

Name Section Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

210© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: The destination for the logging from the T2_MESSAGE to T9_MESSAGE trace levels can be
one or more of File, Screen and Memory or none.

D.2. Application Profile
The application profile is a configuration file that is application dependent. The application profile
does not set specific parameters. It sets parameters related to characteristics of your own
application entity.

This section will define how each parameter should be defined within the application profile.

D.2.1. Sections

The application profile contains the following sections.

Table D.2: Application profile section headings

WARNING_MESSAGE MergeCOM3 This parameter instructs the toolkit to which destination
(File, Screen and/or Memory or none) to log warning
messages.

Name Section Description

Section Description

<remote_application_title> Section describing a remote DICOM Application Entity title(s). The remote
Application Entity titles listed here must be 1 to 16 bytes in length with no
embedded spaces. Simply, this section is where you list the DICOM
applications you want to communicate with.

<service_list_name> List(s) of DICOM services that will be provided by the Application Entities
listed in the [<remote_application_title>] sections. The service names
listed here must be 1 to 33 bytes in length with no embedded spaces.
Simply, this section is where you list the services that are provided by the
remote DICOM applications.

<syntax_list_name> List(s) of DICOM transfer syntaxes that will be supported by the services
listed in the [<service_list_name>] sections. The transfer syntaxes must be
one of those listed in <Cross-reference>Table D.5 on page 221.

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

211© Copyright Merge Healthcare Solutions Inc. 2025

D.2.2. Parameters

The application profile contains the following parameters:

Table D.3: Application profile section headers

The SERVICE_LIST section of the Application Profile is used to describe the DICOM services that
will be negotiated by the listed Application Entity. The parameter values are text strings recognizable
by the Merge DICOM toolkit. These strings are defined in detail in message.txt. This file is located in
the mc3msg directory of your distribution. The following is a list of currently supported services:

Table D.4: Application profile parameters

Parameter Section Description

PORT_NUMBER <remote_application_title> This parameter is the TCP/IP port on which the remote
DICOM system listens for connections. The commonly
used port number is 104. This default value may be
overridden by the requestAssociation method of the
MCassociation class.

HOST_NAME <remote_application_title> This parameter is the name of the remote host as it is
known to your TCP/IP system. This default value may be
overridden by the requestAssociation method of the
MCassociation class. The parameters value must be 1 to
19 bytes in length with no embedded spaces. NOTE that
a numeric internet address may be used: e.g.,
192.204.32.1

SERVICE_LIST <remote_application_title> This parameter is the name of a section in the
application profile which provides a list of services for
which local applications will negotiate when attempting
to establish an association. This is a default list; another
list may be specified in the requestAssociation method
of the MCassociation class. The parameters value
names must be 1 to 33 bytes in length with no
embedded spaces.

Merge DICOM Toolkit Service Parameter DICOM Service Class

ACQUISITION_CONTEXT_SR Storage

ADVANCED_BLENDING_PRESENTATION_STATE Storage

ARTERIAL_PULSE_WAVEFORM Storage

AUDIO_WAVEFORM_REAL_TIME_COMMUNICATION Storage

AUTOREFRACTION_MEASUREMENTS Storage

BASIC_ANNOTATION_BOX Print Management

BASIC_COLOR_IMAGE_BOX Print Management

BASIC_FILM_BOX Print Management

BASIC_FILM_SESSION Print Management

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

212© Copyright Merge Healthcare Solutions Inc. 2025

BASIC_GRAYSCALE_IMAGE_BOX Print Management

BASIC_PRINT_IMAGE_OVERLAY_BOX Print Management

BASIC_STRUCTURED_DISPLAY Storage

BODY_POSITION_WAVEFORM Storage

BREAST_IMAGING_RPI_QUERY Relevant Patient Information Query

BREAST_PROJ_PRESENT Storage

BREAST_PROJ_PROCESS Storage

BREAST_TOMO_IMAGE_STORAGE Storage

C_ARM_PHOTON_ELECTRON_RADIATION Storage

C_ARM_PHOTON_ELECTRON_RADIATION_RECORD Storage

CARDIAC_RPI_QUERY Relevant Patient Information Query

CHEST_CAD_SR Storage

COLON_CAD_SR Storage

COLOR_PALETTE_FIND Query/Retrieve

COLOR_PALETTE_GET Query/Retrieve

COLOR_PALETTE_MOVE Query/Retrieve

COLOR_PALETTE_STORAGE Storage

COMPOSITE_INST_RET_NO_BULK_GET Query/Retrieve

COMPOSITE_INSTANCE_ROOT_RET_GET Query/Retrieve

COMPOSITE_INSTANCE_ROOT_RET_MOVE Query/Retrieve

COMPOSITING_PLANAR_MPR_VOLUMETRIC_PS Storage

COMPREHENSIVE_3D_SR Storage

CONFOCAL_MICROSCOPY_IMAGE Storage

CONFOCAL_MICROSCOPY_TILED_PYRAMIDAL_IMAGE Storage

CONTENT_ASSESSMENT_RESULTS Storage

CORNEAL_TOPOGRAPHY_MAP Storage

CT_DEFINED_PROCEDURE_PROTOCOL Storage

CT_PERFORMED_PROCEDURE_PROTOCOL Storage

DEFINED_PROCEDURE_PROTOCOL_FIND Query/Retrieve

DEFINED_PROCEDURE_PROTOCOL_GET Query/Retrieve

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

213© Copyright Merge Healthcare Solutions Inc. 2025

DEFINED_PROCEDURE_PROTOCOL_MOVE Query/Retrieve

DEFORMABLE_SPATIAL_REGISTRATION Storage

DERMOSCOPIC_PHOTOGRAPHY_IMAGE Storage

DETACHED_INTERP_MANAGEMENT Results Management

DETACHED_PATIENT_MANAGEMENT Patient Management

DETACHED_RESULTS_MANAGEMENT Results Management

DETACHED_STUDY_MANAGEMENT Study Management

DETACHED_VISIT_MANAGEMENT Patient Management

DICOMDIR Media Storage

DISPLAY_SYSTEM Display System Management

ELECTROMYOGRAM_WAVEFORM Storage

ELECTROOCULOGRAM_WAVEFORM Storage

ENCAPSULATED_CDA Storage

ENCAPSULATED_MTL Storage

ENCAPSULATED_OBJ Storage

ENCAPSULATED_STL Storage

ENHANCED_CONTINUOUS_RT_IMAGE Storage

ENHANCED_CT_IMAGE Storage

ENHANCED_MR_COLOR_IMAGE Storage

ENHANCED_MR_IMAGE Storage

ENHANCED_PET_IMAGE Storage

ENHANCED_RT_IMAGE Storage

ENHANCED_US_VOLUME Storage

ENHANCED_XA_IMAGE Storage

ENHANCED_XRAY_RADIATION_DOSE_SR Storage

ENHANCED_XRF_IMAGE Storage

EXTENSIBLE_SR Storage

G_P_PERFORMED_PROCEDURE_STEP_RETIRED Study Management

G_P_SCHEDULED_PROCEDURE_STEP_RETIRED Study Management

G_P_WORKLIST_RETIRED Basic Worklist Management

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

214© Copyright Merge Healthcare Solutions Inc. 2025

GENERAL_AUDIO_WAVEFORM Storage

GENERAL_RPI_QUERY Relevant Patient Information Query

GENERIC_IMPLANT_TEMPLATE Storage

GENERIC_IMPLANT_TEMPLATE_FIND Query/Retrieve

GENERIC_IMPLANT_TEMPLATE_GET Query/Retrieve

GENERIC_IMPLANT_TEMPLATE_MOVE Query/Retrieve

GRAYSCALE_PLANAR_MPR_VOLUMETRIC_PS Storage

HANGING_PROTOCOL Hanging Protocol Storage

HANGING_PROTOCOL_FIND Hanging Protocol Query/Retrieve

HANGING_PROTOCOL_GET Hanging Protocol Query/Retrieve

HANGING_PROTOCOL_MOVE Hanging Protocol Query/Retrieve

IMAGE_OVERLAY_BOX_RETIRED Print Management

IMPLANT_ASSEMBLY_TEMPLATE Storage

IMPLANT_ASSEMBLY_TEMPLATE_FIND Query/Retrieve

IMPLANT_ASSEMBLY_TEMPLATE_GET Query/Retrieve

IMPLANT_ASSEMBLY_TEMPLATE_MOVE Query/Retrieve

IMPLANT_TEMPLATE_GROUP Storage

IMPLANT_TEMPLATE_GROUP_FIND Query/Retrieve

IMPLANT_TEMPLATE_GROUP_GET Query/Retrieve

IMPLANT_TEMPLATE_GROUP_MOVE Query/Retrieve

IMPLANTATION_PLAN_SR_DOCUMENT Storage

INSTANCE_AVAIL_NOTIFICATION Instance Availability Notification

INTRAOCULAR_LENS_CALCULATIONS Storage

INVENTORY Storage

INVENTORY_CREATION Storage Management

INVENTORY_FIND Query/Retrieve

INVENTORY_GET Query/Retrieve

INVENTORY_MOVE Query/Retrieve

KERATOMETRY_MEASUREMENTS Storage

KEY_OBJECT_SELECTION_DOC Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

215© Copyright Merge Healthcare Solutions Inc. 2025

LEGACY_CONVERTED_ENHANCED_CT_IMAGE Storage

LEGACY_CONVERTED_ENHANCED_MR_IMAGE Storage

LEGACY_CONVERTED_ENHANCED_PET_IMAGE Storage

LENSOMETRY_MEASUREMENTS Storage

MACULAR_GRID_THIICKNESS_VOLUME Storage

MAMMOGRAPHY_CAD_SR Storage

MEDIA_CREATION_MANAGEMENT Media Creation Management

MODALITY_WORKLIST_FIND Modality Work list

MR_SPECTROSCOPY Storage

MULTI_CHANNEL_RESPIRATORY_WAVEFORM Storage

MULTIPLE_VOLUME_RENDERING_VOLUMETRIC_PRESENTATION_STATE Storage

OPHT_VIS_FIELD_STATIC_PERIM_MEAS Storage

OPHTHALMIC_AXIAL_MEASUREMENTS Storage

OPHTHALMIC_OCT_BSCAN_VOLUME_ANALYSIS Storage

OPHTHALMIC_OCT_EN_FACE_IMAGE Storage

OPHTHALMIC_TOMOGRAPHY_IMAGE Storage

OPM_THICKNESS_MAP Storage

PARAMETRIC_MAP Storage

PATIENT_RADIATION_DOSE_SR Storage

PATIENT_ROOT_QR_FIND Query/Retrieve

PATIENT_ROOT_QR_GET Query/Retrieve

PATIENT_ROOT_QR_MOVE Query/Retrieve

PATIENT_STUDY_ONLY_QR_FIND_RETIRED Query/Retrieve

PATIENT_STUDY_ONLY_QR_GET_RETIRED Query/Retrieve

PATIENT_STUDY_ONLY_QR_MOVE_RETIRED Query/Retrieve

PERFORMED_IMAGING_AGENT_ADMINISTRATION_SR Storage

PERFORMED_PROCEDURE_STEP Study Management

PERFORMED_PROCEDURE_STEP_NOTIFY Study Management

PERFORMED_PROCEDURE_STEP_RETRIEVE Study Management

PLANNED_IMAGING_AGENT_ADMINISTRATION_SR Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

216© Copyright Merge Healthcare Solutions Inc. 2025

PRESENTATION_LUT Print Management

PRINT_JOB Print Management

PRINT_QUEUE_MANAGEMENT Print Management

PRINTER Print Management

PRINTER_CONFIGURATION Print Management

PROCEDURAL_EVENT_LOGGING Application Event Logging

PROCEDURE_LOG Storage

PRODUCT_CHARACTERISTICS_QUERY Query/Retrieve

PROTOCOL_APPROVAL Storage

PROTOCOL_APPROVAL_FIND Query/Retrieve

PROTOCOL_APPROVAL_MOVE Query/Retrieve

PROTOCOL_APPROVAL_GET Query/Retrieve

PULL_PRINT_REQUEST Print Management

RADIOPHARMACEUTICAL_RADIATION_DOSE_SR Storage

RAW_DATA Storage

REAL_WORLD_VALUE_MAPPING Storage

REFERENCED_IMAGE_BOX Print Management

RENDITION_SELECTION_DOCUMENT_REAL_TIME_COMMUNICATION Storage

REPOSITORY_QUERY Query/Retrieve

RESPIRATORY_WAVEFORM Storage

ROBOTIC_ARM_RADIATION Storage

ROBOTIC_ARM_RADIATION_RECORD Storage

ROUTINE_SCALP_ELECTROENCEPHALOGRAM_WAVEFORM Storage

RT_BEAMS_DELIVERY_INSTRUCTION Storage

RT_BRACHY_APP_SETUP_DELIVERY_INSTR Storage

RT_CONVENTIONAL_MACHINE_VERIFICATION Verification

RT_ION_MACHINE_VERIFICATION Verification

RT_PATIENT_POSITION_ACQUISITION_INSTRUCTION Storage

RT_PHYSICIAN_INTENT Storage

RT_RADIATION_RECORD_SET Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

217© Copyright Merge Healthcare Solutions Inc. 2025

RT_RADIATION_SALVAGE_RECORD Storage

RT_RADIATION_SET Storage

RT_SEGMENT_ANNOTATION Storage

SC_MULTIFRAME_GRAYSCALE_BYTE Storage

SC_MULTIFRAME_GRAYSCALE_WORD Storage

SC_MULTIFRAME_SINGLE_BIT Storage

SC_MULTIFRAME_TRUE_COLOR Storage

SEGMENTATION Storage

SEGMENTED_VOLUME_RENDERING_VOLUMETRIC_PRESENTATION_STATE Storage

SIMPLIFIED_ADULT_ECHO_SR Storage

SLEEP_ELECTROENCEPHALOGRAM_WAVEFORM Storage

SPATIAL_FIDUCIALS Storage

SPATIAL_REGISTRATION Storage

SPECTACLE_PRESCRIPTION_REPORT Storage

STANDARD_BASIC_TEXT_SR Storage

STANDARD_BLENDING_SOFTCOPY_PS Storage

STANDARD_COLOR_SOFTCOPY_PS Storage

STANDARD_COMPREHENSIVE_SR Storage

STANDARD_CR Storage

STANDARD_CT Storage

STANDARD_CURVE Storage

STANDARD_DX_PRESENT Storage

STANDARD_DX_PROCESS Storage

STANDARD_ECHO Verification

STANDARD_ENCAPSULATED_PDF Storage

STANDARD_ENHANCED_SR Storage

STANDARD_GRAYSCALE_SOFTCOPY_PS Storage

STANDARD_HARDCOPY_COLOR Storage

STANDARD_HARDCOPY_GRAYSCALE Storage

STANDARD_IO_PRESENT Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

218© Copyright Merge Healthcare Solutions Inc. 2025

STANDARD_IO_PROCESS Storage

STANDARD_IVOCT_PRESENT Storage

STANDARD_IVOCT_PROCESS Storage

STANDARD_MG_PRESENT Storage

STANDARD_MG_PROCESS Storage

STANDARD_MODALITY_LUT Storage

STANDARD_MR Storage

STANDARD_NM Storage

STANDARD_NM_RETIRED Storage

STANDARD_OPHTHALMIC_16_BIT Storage

STANDARD_OPHTHALMIC_8_BIT Storage

STANDARD_OVERLAY Storage

STANDARD_PET Storage

STANDARD_PET_CURVE Storage

STANDARD_PRINT_STORAGE Storage

STANDARD_PSEUDOCOLOR_SOFTCOPY_PS Storage

STANDARD_RT_BEAMS_TREAT Storage

STANDARD_RT_BRACHY_TREAT Storage

STANDARD_RT_DOSE Storage

STANDARD_RT_IMAGE Storage

STANDARD_RT_ION_BEAMS_TREAT Storage

STANDARD_RT_ION_PLAN Storage

STANDARD_RT_PLAN Storage

STANDARD_RT_STRUCTURE_SET Storage

STANDARD_RT_TREAT_SUM Storage

STANDARD_SEC_CAPTURE Storage

STANDARD_US Storage

STANDARD_US_MF Storage

STANDARD_US_MF_RETIRED Storage

STANDARD_US_RETIRED Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

219© Copyright Merge Healthcare Solutions Inc. 2025

STANDARD_VIDEO_ENDOSCOPIC Storage

STANDARD_VIDEO_MICROSCOPIC Storage

STANDARD_VIDEO_PHOTOGRAPHIC Storage

STANDARD_VL_ENDOSCOPIC Storage

STANDARD_VL_MICROSCOPIC Storage

STANDARD_VL_PHOTOGRAPHIC Storage

STANDARD_VL_SLIDE_MICROSCOPIC Storage

STANDARD_VOI_LUT Storage

STANDARD_WAVEFORM_12_LEAD_ECG Storage

STANDARD_WAVEFORM_AMBULATORY_ECG Storage

STANDARD_WAVEFORM_BASIC_VOICE_AUDIO Storage

STANDARD_WAVEFORM_CARDIAC_EP Storage

STANDARD_WAVEFORM_GENERAL_ECG Storage

STANDARD_WAVEFORM_HEMODYNAMIC Storage

STANDARD_XRAY_ANGIO Storage

STANDARD_XRAY_ANGIO_BIPLANE Storage

STANDARD_XRAY_RF Storage

STEREOMETRIC_RELATIONSHIP Storage

STORAGE_COMMITMENT_PULL Storage Commitment

STORAGE_COMMITMENT_PUSH Storage Commitment

STUDY_COMPONENT_MANAGEMENT Study Management

STUDY_CONTENT_NOTIFICATION Study Content Notification

STUDY_ROOT_QR_FIND Query/Retrieve

STUDY_ROOT_QR_GET Query/Retrieve

STUDY_ROOT_QR_MOVE Query/Retrieve

SUBJ_REFRACTION_MEASUREMENTS Storage

SUBSTANCE_ADMIN_LOGGING Storage

SUBSTANCE_APPROVAL_QUERY Storage

SURFACE_SCAN_MESH Storage

SURFACE_SCAN_POINT_CLOUD Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

220© Copyright Merge Healthcare Solutions Inc. 2025

SURFACE_SEGMENTATION Storage

TOMOTHERAPEUTIC_RADIATION Storage

TOMOTHERAPEUTIC_RADIATION_RECORD Storage

TRACTOGRAPHY_RESULTS Storage

UPS_EVENT_SOP Unified Procedure Step Management

UPS_EVENT_SOP_TRIAL_RETIRED Unified Procedure Step Management

UPS_PULL_SOP Unified Procedure Step Management

UPS_PULL_SOP_TRIAL_RETIRED Unified Procedure Step Management

UPS_PUSH_SOP Unified Procedure Step Management

UPS_PUSH_SOP_TRIAL_RETIRED Unified Procedure Step Management

UPS_QUERY_SOP Unified Procedure Step Management

UPS_WATCH_SOP Unified Procedure Step Management

UPS_WATCH_SOP_TRIAL_RETIRED Unified Procedure Step Management

VARIABLE_MODALITY_LUT_SOFTCOPY_PRESENTATION_STATE Storage

VIDEO_ENDOSCOPIC_IMAGE_REAL_TIME_COMMUNICATION Storage

VIDEO_PHOTOGRAPHIC_IMAGE_REAL_TIME_COMMUNICATION Storage

VISUAL_ACUITY_MEASUREMENTS Storage

VL_WHOLE_SLIDE_MICROSCOPY_IMAGE Storage

VOI_LUT_BOX Print Management

VOLUME_RENDERING_VOLUMETRIC_PRESENTATION_STATE Storage

WAVEFORM_ANNOTATION_SR Storage

WIDE_FIELD_OPHTHALMIC_PHOTO_3D_COORDINATES Storage

WIDE_FIELD_OPHTHALMIC_PHOTO_STEREOGRAPHIC_PROJ Storage

XA_DEFINED_PROCEDURE_PROTOCOL Storage

XA_PERFORMED_PROCEDURE_PROTOCOL Storage

XA_XRF_GRAYSCALE_SOFTCOPY_PS Storage

XRAY_3D_ANGIO_IMAGE Storage

XRAY_3D_CRANIO_IMAGE Storage

XRAY_RADIATION_DOSE_SR Storage

BASIC_COLOR_PRINT_MANAGEMENT (META_SOP) Print Management

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

221© Copyright Merge Healthcare Solutions Inc. 2025

Transfer syntax lists are contained in the service lists. The following is a list of the currently
supported transfer syntaxes.

Table D.5: Transfer Syntax List Parameters

BASIC_GRAYSCALE_PRINT_MANAGEMENT (META_SOP) Print Management

DETACHED_PATIENT_MANAGEMENT_META (META_SOP) Print Management

DETACHED_RESULTS_MANAGEMENT_META (META_SOP) Results Management

G_P_WORKLIST_MANAGEMENT_META_RETIRED (META_SOP) Basic Worklist Management

PULL_STORED_PRINT_MANAGEMENT (META_SOP) Print Management

REF_COLOR_PRINT_MANAGEMENT (META_SOP) Print Management

REF_GRAYSCALE_PRINT_MANAGEMENT (META_SOP) Print Management

STUDY_MANAGEMENT (META_SOP) Study Management

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Transfer Syntax Parameter Description

IMPLICIT_LITTLE_ENDIAN Implicit VR Little Endian: Default Transfer Syntax for DICOM

IMPLICIT_BIG_ENDIAN Implicit VR Big Endian

ENCAPSULATED_UNCOMPRESSED_ELE Encapsulated Uncompressed Explicit VR Little Endian

EXPLICIT_LITTLE_ENDIAN Explicit VR Little Endian

EXPLICIT_BIG_ENDIAN Explicit VR Big Endian

RLE Run length Encoding

DEFLATED_EXPLICIT_LITTLE_ENDIAN Deflated Explicit VR Little Endian

JPEG_BASELINE JPEG Baseline (Process 1): Default Transfer Syntax for
Lossy JPEG 8 Bit Image Compression

JPEG_EXTENDED_2_4 JPEG Extended (Process 2 & 4): Default Transfer Syntax for
Lossy JPEG 12 Bit Image Compression
(Process 4 only)

JPEG_EXTENDED_3_5 JPEG Extended (Process 3 & 5)

JPEG_SPEC_NON_HIER_6_8 JPEG Spectral Selection, Non-Hierarchical
(Process 6 & 8)

JPEG_SPEC_NON_HIER_7_9 JPEG Spectral Selection, Non-Hierarchical
(Process 7 & 9)

JPEG_FULL_PROG_NON_HIER_10_12 JPEG Full Progression, Non-Hierarchical
(Process 10 & 12)

JPEG_FULL_PROG_NON_HIER_11_13 JPEG Full Progression, Non-Hierarchical
(Process 11 & 13)

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

222© Copyright Merge Healthcare Solutions Inc. 2025

JPEG_LOSSLESS_NON_HIER_14 JPEG Lossless, Non-Hierarchical (Process 14)

JPEG_LOSSLESS_NON_HIER_15 JPEG Lossless, Non-Hierarchical (Process 15)

JPEG_EXTENDED_HIER_16_18 JPEG Extended, Hierarchical (Process 16 & 18)

JPEG_EXTENDED_HIER_17_19 JPEG Extended, Hierarchical (Process 17 & 19)

JPEG_SPEC_HIER_20_22 JPEG Spectral Selection, Hierarchical (Process 20 & 22)

JPEG_SPEC_HIER_21_23 JPEG Spectral Selection, Hierarchical (Process 21 & 23)

JPEG_FULL_PROG_HIER_24_26 JPEG Full Progression, Hierarchical (Process 24 & 26)

JPEG_FULL_PROG_HIER_25_27 JPEG Full Progression, Hierarchical (Process 25 & 27)

JPEG_LOSSLESS_HIER_28 JPEG Lossless, Hierarchical (Process 28)

JPEG_LOSSLESS_HIER_29 JPEG Lossless, Hierarchical (Process 29)

JPEG_LOSSLESS_HIER_14 JPEG Lossless, Hierarchical, First-Order Prediction
(Process 14 [Selection Value 1]): Default Transfer Syntax for
Lossless JPEG Image Compression

JPEG_2000_LOSSLESS_ONLY JPEG 2000, Lossless

JPEG_2000 JPEG 2000, Lossless or Lossy

JPEG_LS_LOSSLESS JPEG LS Lossless

JPEG_LS_LOSSY JPEG LS Lossy (Near-Lossless)

JPEG_2000_MC_LOSSLESS_ONLY JPEG 2000 Part 2 Multi-component Image Compression
(Lossless Only)

JPEG_2000_MC JPEG 2000 Part 2 Multi-component Image Compression

HEVC_H265_M10P_LEVEL_5_1 HEVC/H.265 Main 10 Profile / Level 5.1

HEVC_H265_MP_LEVEL_5_1 HEVC/H.265 Main Profile / Level 5.1

JPIP_REFERENCED JPIP Referenced

JPIP_REFERENCED_DEFLATE JPIP Referenced Deflate

MPEG2_MPHL MPEG2 Main Profile @ High Level

MPEG2_MPML MPEG2 Main Profile @ Main Level

MPEG4_AVC_H264_HP_LEVEL_4_1 MPEG-4 AVC/H.264 High Profile / Level 4.1

MPEG4_AVC_H264_BDC_HP_LEVEL_4_1 MPEG-4 AVC/H.264 BDcompatible High Profile / Level 4.1

MPEG4_AVC_H264_HP_LEVEL_4_2_2D MPEG-4 AVC/H.264 High Profile / Level 4.2 For 2D Video

MPEG4_AVC_H264_HP_LEVEL_4_2_3D MPEG-4 AVC/H.264 High Profile / Level 4.2 For 3D Video

MPEG4_AVC_H264_STEREO_HP_LEVEL_4_2 MPEG-4 AVC/H.264 Stereo High Profile / Level 4.2

Merge DICOM Transfer Syntax Parameter Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

223© Copyright Merge Healthcare Solutions Inc. 2025

D.3. System Profile
The System Profile is used to define system-wide parameters. These parameters apply across all
associations with other DICOM application entities. The location of this file is provided by the
MERGECOM_3_PROFILE parameter of the [MergeCOM3] section of the MERGE.INI file.

The following are a few notes to keep in mind concerning the System Profile:

You must specify your own unique DICOM Implementation Class UID and place it in this file along
with an optional Implementation Version. These need to be documented in your DICOM
conformance statement.

There are several exception options specified at both the association and DIMSE levels of DICOM
communication. You should not have to modify these options in normal circumstances and doing
so could make your application non DICOM conformant.

The DICOM Upper Layer section network time-outs can be modified. This is useful on slower or
less-predictable networks (e.g., WAN's).

The section of the System Profile dealing with transport parameters is important. This is where you
specify the TCP/IP listen port for a DICOM server (SCP) application, along with the number of
simultaneous associations your server will support over this port.

SMPTE_ST_2110_20_UNCOMPRESSED_PRO
GRESSIVE_ACTIVE_VIDEO

SMPTE ST 2110-20 Uncompressed Progressive Active
Video

SMPTE_ST_2110_20_UNCOMPRESSED_INTE
RLACED_ACTIVE_VIDEO

SMPTE ST 2110-20 Uncompressed Interlaced Active Video

SMPTE_ST_2110_30_PCM_DIGITAL_AUDIO SMPTE ST 2110-30 PCM Digital Audio

PRIVATE_SYNTAX_1 Private transfer syntax 1 with the characteristics specified
by the PRIVATE_SYNTAX_1_LITTLE_ENDIAN,
PRIVATE_SYNTAX_1_EXPLICIT_VR, and
PRIVATE_SYNTAX_1_ENCAPSULATED configuration
options.

PRIVATE_SYNTAX_2 Private transfer syntax 2 with the characteristics specified
by the PRIVATE_SYNTAX_2_LITTLE_ENDIAN,
PRIVATE_SYNTAX_2_EXPLICIT_VR, and
PRIVATE_SYNTAX_2_ENCAPSULATED configuration
options.

Merge DICOM Transfer Syntax Parameter Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

224© Copyright Merge Healthcare Solutions Inc. 2025

TABLE D.6: [ASSOC_PARMS] SECTION OF SYSTEM PROFILE PARAMETERS ON PAGE 224 through TABLE
D.11: [TRANSPORT_PARMS] SECTION OF SYSTEM PROFILE PARAMETERS ON PAGE 245 define how
each parameter should be defined within the system profile.

Table D.6: [ASSOC_PARMS] section of system profile parameters

Name Description

ACCEPT_ANY_APPLICATION_TITLE † If set to YES, the remote system need not specify a
correct DICOM application title when requesting an
association. If set to NO a correct application title must
be used. When this value is set to YES, the toolkit will
report the remote application as connecting to the first
application registered.
DEFAULT: NO

ACCEPT_ANY_CONTEXT_NAME † If set to YES, the remote system need not specify the
LOCAL_APPL_CONTEXT_NAME when requesting an
association. If set to NO, the correct context name must
be used.
DEFAULT: NO

ACCEPT_ANY_HOSTNAME If set to YES, the toolkit will not check if applications
connecting to an SCP can have their hostname
resolved through the SCP's hostfile or domain name
server. If set to NO, the toolkit will automatically reject
associations from unknown hosts.
DEFAULT: NO

ACCEPT_ANY_PRESENTATION_CONTEXT † If set to YES, the toolkit will not validate that the
presentation context ID contained in a message's PDU
header information matches the ID of the presentation
context negotiated for the type of message contained in
the PDU. If set to NO, the toolkit will abort associations
when these values do not match.
DEFAULT: NO

ACCEPT_DIFFERENT_IC_UID † If set to NO, the remote system must specify the local
IMPLEMENTATION_CLASS_UID when requesting an
association. If set to YES, a different implementation
class UID may be used.
DEFAULT: YES

ACCEPT_DIFFERENT_VERSION † If set to NO, the remote system must specify the local
IMPLEMENTATION_VERSION when requesting an
association. If set to YES, a different implementation
version may be used.
DEFAULT: YES

ACCEPT_LEAP_SECOND Is set to YES, the value of seconds in an attribute with
VR equal to DT or TM can be in the range "00" to "60". If
set to NO, the valid range is "00" to "59".
DEFAULT: NO

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

225© Copyright Merge Healthcare Solutions Inc. 2025

ACCEPT_LIST_OF_APPLICATION_TITLES List of AE titles which the remote system might use
when requesting an association. The parameters line
should contain all AE titles separated by one of
predefined delimiters: ',' '\' '/' ';'. The length of each AE
title cannot exceed 16 characters.
Example: ACCEPT_LIST_OF_APPLICATION_TITLES =
MERGE_STORE_SCP/MERGE_STORE_SCU/
MERGE_STORE_RQ
DEFAULT: <none>

ACCEPT_MULTIPLE_PRES_CONTEXTS If set to YES, SCP applications will allow multiple
presentation contexts to be negotiated for a single
DICOM service. If set to NO, an SCP will only accept a
single presentation context for a DICOM service.
DEFAULT:YES

ACCEPT_RELATED_GENERAL_SERVICES This parameter sets the Merge DICOM Toolkit behavior
in regard to support for DICOM Supplement 90.
Supplement 90 defines a method for association
requestors to specify the generalized version of a SOP
Class. When set to YES, Merge DICOM Toolkit will allow
association acceptors to accept a presentation context
whose generalized SOP Class is supported; however,
the customized SOP Class is not specifically supported.
DEFAULT: NO

ACCEPT_STORAGE_SERVICE_CONTEXTS This parameter sets the Merge DICOM Toolkit behavior
in regard to support for DICOM Supplement 90. When
set to YES, Merge DICOM Toolkit will accept any
presentation context which is defined as a Storage
Service Class SOP Class.
DEFAULT: NO

ALLOW_EMPTY_PDV_LENGTH The DICOM standard specifies that PDVs shall not be
sent without any content in the fragment. The toolkit
however can send and accept empty PDVs. To enforce
the standard requirement, this setting should be set to
No.
DEFAULT: YES

AUTO_ECHO_SUPPORT If set to YES, the toolkit automatically handles C-ECHO
requests when the application doesn't explicitly include
STANDARD_ECHO in its supported service list. If set to
NO, the toolkit rejects C-ECHO requests when the
application doesn't explicitly include
STANDARD_ECHO in its supported service list.
DEFAULT: YES

DEFLATED_EXPLICIT_LITTLE_ENDIAN_SYNT
AX

This value defines the UID of the Deflated Explicit VR
Little Endian transfer syntax.
DEFAULT: 1.2.840.10008.1.2.1.99

ENCAPSULATED_UNCOMPRESSED_ELE_SYNTAX This value defines the UID of the Encapsulated
Uncompressed Explicit VR Little Endian transfer syntax.
DEFAULT: 1.2.840.10008.1.2.1.98

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

226© Copyright Merge Healthcare Solutions Inc. 2025

EXPLICIT_BIG_ENDIAN_SYNTAX This value defines the UID of the Explicit VR Big Endian
transfer syntax. This transfer syntax has been retired by
the DICOM standard.
DEFAULT: 1.2.840.10008.1.2.2

EXPLICIT_LITTLE_ENDIAN_SYNTAX This value defines the UID of the Explicit VR Little
Endian transfer syntax.
DEFAULT: 1.2.840.10008.1.2.1

HTJ2K_SYNTAX This value defines the UID of the High-Throughput
JPEG 2000 Image Compression transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.203

HTJ2K_LOSSLESS_ONLY_SYNTAX This value defines the UID of the High-Throughput
JPEG 2000 Image Compression (Lossless Only) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.201

HTJ2K_LOSSLESS_RPCL_SYNTAX This value defines the UID of the High-Throughput
JPEG 2000 with RPCL Options Image Compression
(Lossless Only) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.202

HARD_CLOSE_TCP_IP_CONNECTION This parameter specifies how TCP/IP connections are
closed by the toolkit. When set to YES, TCP/IP
connections are instantaneously closed with an RST
packet. When set to NO, TCP/IP connections are closed
gracefully with a FIN packet. Note, that in the NO case
the toolkit must wait for an operating system dependent
amount of time for the response to the FIN packet.
DEFAULT: YES

IMPLEMENTATION_CLASS_UID The DICOM Implementation Class UID (as specified in
your DICOM conformance statement).

IMPLEMENTATION_VERSION The Implementation Version Number (as specified in
your DICOM conformance statement).

IMPLICIT_BIG_ENDIAN_SYNTAX The Implicit VR Big Endian transfer syntax is not defined
by the DICOM standard. This value is provided to supply
compatibility with private implementations.
DEFAULT: <none>

IMPLICIT_LITTLE_ENDIAN_SYNTAX The Implicit VR Little Endian transfer syntax is the
default network transfer syntax of the DICOM standard.
The Implicit VR Little Endian transfer syntax must
always be defined.
DEFAULT: 1.2.840.10008.1.2

JPEG_2000_LOSSLESS_ONLY_SYNTAX This value defines the UID for JPEG 2000, Lossless
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.90

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

227© Copyright Merge Healthcare Solutions Inc. 2025

JPEG_2000_MC_LOSSLESS_ONLY_SYNTAX This value defines the UID for JPEG 2000 Part 2 Multi-
component Image Compression (Lossless Only)
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.92

JPEG_2000_MC_SYNTAX This value defines the UID for JPEG 2000 Part 2 Multi-
component Image Compression transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.93

JPEG_2000_SYNTAX This value defines the UID for JPEG 2000 transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.91

JPEG_BASELINE_SYNTAX This value defines the UID for JPEG Baseline (Process
1) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.50

JPEG_EXTENDED_2_4_SYNTAX This value defines the UID for JPEG Extended (Process
2 & 4) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.51

JPEG_EXTENDED_3_5_SYNTAX This value defines the UID for JPEG Extended (Process
3 & 5) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.52

JPEG_EXTENDED_HIER_16_18_SYNTAX This value defines the UID for JPEG Extended,
Hierarchical (Process 16 & 18) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.59

JPEG_EXTENDED_HIER_17_19_SYNTAX This value defines the UID for JPEG Extended,
Hierarchical (Process 17 & 19) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.60

JPEG_FULL_PROG_HIER_24_26_SYNTAX This value defines the UID for JPEG Full Progression,
Hierarchical (Process 24 & 26) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.63

JPEG_FULL_PROG_HIER_25_27_SYNTAX This value defines the UID for JPEG Full Progression,
Hierarchical (Process 25 & 27) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.64

JPEG_FULL_PROG_NON_HIER_10_12_SYNTAX This value defines the UID for JPEG Full Progression,
Non-Hierarchical (Process 10 & 12) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.55

JPEG_FULL_PROG_NON_HIER_11_13_SYNTAX This value defines the UID for JPEG Full Progression,
Non-Hierarchical (Process 11 & 13) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.56

JPEG_LOSSLESS_HIER_14_SYNTAX This value defines the UID for JPEG Lossless, Non-
Hierarchical, First-Order Prediction (Process 14,
Selection Value 1) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.70

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

228© Copyright Merge Healthcare Solutions Inc. 2025

JPEG_LOSSLESS_HIER_28_SYNTAX This value defines the UID for JPEG Lossless,
Hierarchical (Process 28) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.65

JPEG_LOSSLESS_HIER_29_SYNTAX This value defines the UID for JPEG Lossless,
Hierarchical (Process 29) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.66

JPEG_LOSSLESS_NON_HIER_14_SYNTAX This value defines the UID for JPEG Lossless, Non-
Hierarchical (Process 14) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.57

JPEG_LOSSLESS_NON_HIER_15_SYNTAX This value defines the UID for JPEG Lossless, Non-
Hierarchical (Process 15) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.58

JPEG_LS_LOSSLESS_SYNTAX This value defines the UID for JPEG LS Lossless transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.80

JPEG_LS_LOSSY_SYNTAX This value defines the UID for JPEG LS Lossy (Near
Lossless) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.81

JPEG_SPEC_HIER_20_22_SYNTAX This value defines the UID for JPEG Spectral Selection,
Hierarchical (Process 20 & 22) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.61

JPEG_SPEC_HIER_21_23_SYNTAX This value defines the UID for JPEG Spectral Selection,
Hierarchical (Process 21 & 23) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.62

JPEG_SPEC_NON_HIER_6_8_SYNTAX This value defines the UID for JPEG Spectral Selection,
Non Hierarchical (Process 6 & 8) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.53

JPEG_SPEC_NON_HIER_7_9_SYNTAX This value defines the UID for JPEG Spectral Selection,
Non Hierarchical (Process 7 & 9) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.54

JPIP_REFERENCED_DEFLATE_SYNTAX This value defines the UID for JPIP Referenced Deflate
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.95

JPIP_REFERENCED_SYNTAX This value defines the UID for JPIP Referenced transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.94

LICENSE The Merge DICOM Toolkit license number that was
supplied when the toolkit was purchased.

LOCAL_APPL_CONTEXT_NAME The DICOM Application Context Name (UID) (as
specified in the DICOM Standard).
DEFAULT: 1.2.840.10008.3.1.1.1

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

229© Copyright Merge Healthcare Solutions Inc. 2025

MPEG2_MPHL_SYNTAX This value defines the UID for MPEG2 Main Profile @
High Level transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.101

MPEG2_MPML_SYNTAX This value defines the UID for MPEG2 Main Profile @
Main Level transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.100

MPEG4_AVC_H264_BDC_HP_LEVEL_4_1_SYNT
AX

This value defines the UID for MPEG-4 AVC/H.264 BD
compatible High Profile / Level 4.1 transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.103

MPEG4_AVC_H264_HP_LEVEL_4_1_SYNTAX This value defines the UID for MPEG-4 AVC/H.264 High
Profile / Level 4.1 transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.102

MPEG4_AVC_H264_HP_LEVEL_4_2_2D_SYNTA
X

This value defines the UID for MPEG-4 AVC/H.264 High
Profile / Level 4.2For 2D Video transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.104

MPEG4_AVC_H264_HP_LEVEL_4_2_3D_SYNTA
X

This value defines the UID for MPEG-4 AVC/H.264 High
Profile / Level 4.2For 3D Video transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.105

MPEG4_AVC_H264_STEREO_HP_LEVEL_4_2_S
YNTAX

This value defines the UID for MPEG-4 AVC/H.264
Stereo High Profile /Level 4.2 transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.106

PDU_MAXIMUM_LENGTH * The maximum size of Protocol Data Units that can be
received by this Merge DICOM Toolkit implementation.
This value will also place a limit on how large PDU values
being sent can be. Setting this so that a PDU fits within
an even multiple of the default TCP/IP MSS (Maximum
Segment Size) of 1460 will optimize network
performance. Note that 6 bytes for the PDU header
must be added to the configured maximum PDU size
when calculating a multiple of the MSS.
Note also to see the TCPIP_SEND_BUFFER_SIZE and
TCPIP_RECEIVE_BUFFER_SIZE configuration values
for improving performance.
Example: (1460*44)-6 = 64234 PDU Size
DEFAULT: 64234
MINIMUM: 4K
MAXIMUM: NONE

PRIVATE_SYNTAX_1_ENCAPSULATED When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 1 as having its pixel data tag
(7fe0,0010) being encoded as undefined length in the
same manner as the JPEG and RLE transfer syntaxes
are encoded.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

230© Copyright Merge Healthcare Solutions Inc. 2025

PRIVATE_SYNTAX_1_EXPLICIT_VR When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 1 as being encoded in explicit VR
format.
DEFAULT: YES

PRIVATE_SYNTAX_1_LITTLE_ENDIAN When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 1 as being encoded in little
endian format.
DEFAULT: YES

PRIVATE_SYNTAX_1_SYNTAX The unique identifier (UID) Merge DICOM Toolkit will
use to identify private transfer syntax 1. When this value
is set to "<none>", private transfer syntax support is shut
off.
DEFAULT: <none>

PRIVATE_SYNTAX_2_ENCAPSULATED When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 2 as having its pixel data tag
(7fe0,0010) being encoded as undefined length in the
same manner as the JPEG and RLE transfer syntaxes
are encoded.
DEFAULT: NO

PRIVATE_SYNTAX_2_EXPLICIT_VR When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 2 as being encoded in explicit VR
format.
DEFAULT: YES

PRIVATE_SYNTAX_2_LITTLE_ENDIAN When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 2 as being encoded in little
endian format.
DEFAULT: YES

PRIVATE_SYNTAX_2_SYNTAX The unique identifier (UID) Merge DICOM Toolkit will
use to identify private transfer syntax 2. When this value
is set to "<none>", private transfer syntax support is shut
off.
DEFAULT: <none>

RLE_SYNTAX This value defines the UID of the RLE Lossless transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.5

SMPTE_ST_2110_20_UNCOMPRESSED_INTERL
ACED_ACTIVE_VIDEO_SYNTAX

This value defines the UID for SMPTE ST 2110-20
Uncompressed Interlaced Active Video transfer syntax.
DEFAULT: 1.2.840.10008.1.2.7.2

SMPTE_ST_2110_20_UNCOMPRESSED_PROGRE
SSIVE_ACTIVE_VIDEO_SYNTAX

This value defines the UID for SMPTE ST 2110-20
Uncompressed Progressive Active Video transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.7.1

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

231© Copyright Merge Healthcare Solutions Inc. 2025

† These options allow for non-standard DICOM operations. Such exceptions, if used,
should be noted in your DICOM conformance statement.
* Performance tuning.

Table D.7: [DIMSE_PARMS] section of system profile parameters

SMPTE_ST_2110_30_PCM_DIGITAL_AUDIO_S
YNTAX

This value defines the UID for SMPTE ST 2110-30 PCM
Digital Audio transfer syntax.
DEFAULT: 1.2.840.10008.1.2.7.3

Name Description

INITIATOR_NAME † The DICOM standard has retired the old ACR/NEMA Initiator Name
attribute in command messages. To generate such an attribute in
command messages, specify an initiator name. <none> means do not
put initiator name in messages.
DEFAULT: <none>

RECEIVER_NAME † The DICOM standard has retired the old ACR/NEMA Receiver Name
attribute in command messages. To generate such an attribute in
command messages, specify a receiver name. <none> means do not
put receiver name in messages.
DEFAULT: <none>

SEND_ECHO_PRIORITY † The DICOM standard has retired the message priority attribute in echo
command messages. To generate such an attribute in command
messages, specify YES. To NOT use message priority in echo
messages, specify NO.
DEFAULT: NO

SEND_LENGTH_TO_END † The DICOM standard has retired the old Group-Length-To-End
attribute in command messages. To generate such an attribute in
command messages, specify YES. If you do not want to generate
Group Length To End, specify NO.
DEFAULT: NO

SEND_MSG_ID_RESPONSE † The DICOM standard has retired the message ID attribute in response
command messages. To generate such an attribute in command
messages, specify YES. To NOT use message ID in response mes-
sages, specify NO.
DEFAULT: NO

SEND_RECOGNITION_CODE † The DICOM standard has retired the old Recognition Code attribute in
command messages. To generate such an attribute in command
messages, specify YES. If you do not want to generate such an
attribute, specify NO.
DEFAULT: NO

SEND_RESPONSE_PRIORITY † The DICOM standard has retired the message priority attribute in re-
sponse messages. To generate such an attribute in response
messages, specify YES. To NOT use message priority in response
messages, specify NO.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

232© Copyright Merge Healthcare Solutions Inc. 2025

† These options allow for non-standard DICOM operations. Such exceptions, if used,
should be noted in your DICOM conformance statement.

SEND_SOP_CLASS_UID † Certain DICOM service classes demand that the affected SOP class
UID be present in the message. To prevent the library from ensuring
that this is done, specify NO. To ensure that Affected SOP class UID is
present, specify YES.
DEFAULT: YES

SEND_SOP_INSTANCE_UID † Certain DICOM service classes demand that the affected SOP
instance UID be present in the message. To prevent the library from
ensuring that this is done, specify NO. To ensure that Affected SOP
instance UID is present, specify YES.
DEFAULT: YES

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

233© Copyright Merge Healthcare Solutions Inc. 2025

Table D.8: [DUL_PARMS] section of system profile parameters

† These options allow for non-standard DICOM operations. Such exceptions, if used,
should be noted in your DICOM conformance statement.

Table D.9: [MEDIA_PARMS] section of system profile parameters

Name Description

ARTIM_TIMEOUT The number of seconds to use as a time out waiting for an association
request or waiting for the peer to shut down an association.
DEFAULT: 30

ASSOC_REPLY_TIMEOUT The number of seconds to wait for a reply to an associate request.
DEFAULT: 15.

CONNECT_TIMEOUT The number of seconds to wait for a network connect to be accepted.
DEFAULT: 15.

INACTIVITY_TIMEOUT The number of seconds to wait in between packets of data received
over the network after the initial packet of data in a message is
received. Used by the MC_Read_Message() and
MC_Read_To_Stream functions.
DEFAULT: 15.

INSURE_EVEN_UID_LENGTH † Set to NO, if odd-length UIDs in PDU's should NOT be padded with a
NULL to ensure even length unique Ids. Set to YES to ensure even
UIDs in PDUs.
DEFAULT: NO

RELEASE_TIMEOUT The number of seconds to wait for a reply to an associate release.
DEFAULT: 15.

WRITE_TIMEOUT The number of seconds to wait for a network write to be accepted.
DEFAULT: 15.

Name Description

DICOMDIR_STREAM_STORAGE When set to yes, DICOMDIRs read in leave their directory records in-
ternally in "stream" format and are not parsed until the directory
record is referenced. This can greatly reduce memory usage when
reading in large DICOMDIRs when the entire DICOMDIR is not
referenced.
Default: NO

EXPORT_GROUP_LENGTHS_TO_M
EDIA*

When set to NO, do not write group length attributes with
MC_Write_File() and MC_Write_File_By_Callback().
DEFAULT: YES

EXPORT_PRIVATE_ATTRIBUTES
_TO_MEDIA

When set to NO, disable the exporting of private attributes in files writ-
ten with the MC_Write_File() and
MC_Write_File_By_Callback() functions.
DEFAULT: YES

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

234© Copyright Merge Healthcare Solutions Inc. 2025

* Performance tuning.

Table D.10: {MESSAGE_PARMS] section of system profile parameters

EXPORT_UN_VR_TO_MEDIA When set to NO, disable the exporting of attributes with a VR of UN in
files written with the MC_Write_File() and
MC_Write_File_By_Callback() functions.
DEFAULT: YES

EXPORT_UNDEFINED_LENGTH_S
Q_IN_DICOMDIR*

When set to NO, DICOMDIRs written with MC_Write_File() are
created with their sequence attributes having defined lengths. Setting
this option to Yes will increase performance.
DEFAULT: YES

Name Description

ALLOW_COMMA_IN_DS_FL_FD_STRINGS When set to Yes, a comma or a period will be allowed
in the value passed to
MC_Set_Value_From_String() for attributes with
a VR of DS, FL or FD. When set to No, only a period will
be acceptable as a decimal separator. Note that the
toolkit will always ensure that DS attributes use a
period decimal separator when streaming to the
network or to a file, regardless of current locale
settings.
DEFAULT: NO

ALLOW_INVALID_LENGTH_FOR_VR When set to 'Yes', data values of fixed length value
representations (SS, US, AT, SL, UL, SV, UV, FL, FD)
with incorrect length, according to DICOM, will not
cause an MC_INVALID_LENGTH_FOR_VR error on
DICOM data reading.
DEFAULT: YES

ALLOW_INVALID_PRIVATE_ATTRIBUTES When reading messages or file objects, this
parameter specifies if private attributes encoded in an
invalid format should be ignored or parsed.
DEFAULT: NO

ALLOW_INVALID_PRIVATE_CREATOR_CODES When reading messages or file objects, this
parameter specifies if private creator codes encoded
with invalid characters should be ignored or parsed.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

235© Copyright Merge Healthcare Solutions Inc. 2025

ALLOW_OUT_OF_RANGE_BITS_JPEG_LOSSLESS During decompression of JPEG lossless images, the
Pegasus decompressor may discover that the original
compressor had failed to mask off the out-of-range
bits for the image bit depth. However, if all other
lossless JPEG computations are correct, the original
image, including such incorrect out-of-range bits, can
be losslessly recovered. The Pegasus decompressor
will return a warning status, along with the fully
decoded image.
If this flag is set by the application, the out-of-range
bits in output pixels will not be masked off, but
returned in the decoded image. Without this flag, out-
of-range bits will be masked off to keep pixel values in
range.
DEFAULT: NO

ATT_00081190_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0008,1190) Retrieve URL
was changed from UT to the newly introduced UR. For
backward compatibility, this parameter specifies that,
when reading messages or file objects, the attribute is
expected to have the old UT value representation.
DEFAULT: NO

ATT_00287FE0_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0028,7FE0) Pixel Data
Provider URL was changed from UT to the newly
introduced UR. For backward compatibility, this
parameter specifies that, when reading messages or
file objects, the attribute is expected to have the old
UT value representation.
DEFAULT: NO

ATT_0040E010_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0040,E010) Retrieve URI
was changed from UT to the newly introduced UR. For
backward compatibility, this parameter specifies that,
when reading messages or file objects, the attribute is
expected to have the old UT value representation.
DEFAULT: NO

ATT_0074100A_USE_ST_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0074,100A) Contact URI
was changed from ST to the newly introduced UR. For
backward compatibility, this parameter specifies that,
when reading messages or file objects, the attribute is
expected to have the old ST value representation.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

236© Copyright Merge Healthcare Solutions Inc. 2025

CALCULATE_DEFINED_LENGTH_FOR_CB This parameter is applied when a registered callback
function expects the data length to be provided to it
and the data length is undefined. If the parameter is
set to No, the undefined length will be passed as is to
the callback function. If the parameter value is Yes,
the toolkit will calculate the actual value of the data
length before passing it tot the callback function.
DEFAULT: NO

CALLBACK_MIN_DATA_SIZE When using the
MC_Register_Callback_Function() call to store
large data such as pixel data, this option specifies the
minimum size of value for which the callback function
should be used. This option was specifically added so
pixel data contained in icons are not managed with a
callback function.
DEFAULT: 1

COMPRESSION_ALLOW_FRAGS Configuration Parameter for
MC_Standard_Compressor. The Pegasus libraries
allow compressed image data to be returned as it
continues to compress more image data. This may
result in an image frame having one or more
fragments. This is perfectly legal, however some
viewers may not be able to display the image if they do
not support multiple fragments per frame.
DEFAULT: YES

COMPRESSION_CHROM_FACTOR Configuration Parameter for
MC_Standard_Compressor. Values 0 through 255.
The chrominance compression factor is used to
adjust the default chrominance quantization table
values. When ChromFactor is 32, the default
chrominance quantization table values are used as is.
A value of 255 corresponds to high compression, low
quality.
DEFAULT: 32

COMPRESSION_J2K_LOSSY_QUALITY Configuration Parameter for
MC_Standard_Compressor. When JPEG_2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes, and
COMPRESSION_J2K_LOSSY_USE_QUALITY = Yes, a
quality can be specified. Valid values are 1 to 10, 1
being highest quality image.
DEFAULT: 1

COMPRESSION_J2K_LOSSY_RATIO Configuration Parameter for
MC_Standard_Compressor. When JPEG_2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes, and
COMPRESSION_J2K_LOSSY_USE_QUALITY = No, a
ratio can be specified. The compressor attempts to
reduce the image size to 1/
COMPRESSION_J2K_LOSSY_RATIO.
DEFAULT: 10

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

237© Copyright Merge Healthcare Solutions Inc. 2025

COMPRESSION_J2K_LOSSY_USE_QUALITY Configuration Parameter for
MC_Standard_Compressor. When JPEG_2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes, this
indicates which metric should be used for lossy
compression, ratio or quality.
DEFAULT: YES

COMPRESSION_LUM_FACTOR Configuration Parameter for
MC_Standard_Compressor. Values 0 through 255. 0
is the highest quality, giving a quantization table of all
1's. 32 corresponds to the standard quantization
tables. For values between 0 and 128, the standard
tables are scaled linearly. For values between 128 and
255, the standard tables are scaled non-linearly and
the compression increases (and the quality
decreases) by a very large amount.
DEFAULT: 32

COMPRESSION_RGB_TRANSFORM_FORMAT This parameter allows the user to select the output
format when doing Lossy JPEG compression of RGB
images. The value can be set to YBR_FULL or
YBR_FULL_422 to specifiy what photometric
interpretion Merge DICOM Toolkit should compress
into when compressing RGB images.
DEFAULT: YBR_FULL_422

COMPRESSION_USE_HEADER_QUERY If set to YES, it instructs the toolkit to give precedence
to the image parameters (rows, columns, etc.) from
the JPEG header, in case disagreement is suspected
between the DICOM header the JPEG header. If set to
NO, the DICOM header will be used.
DEFAULT: NO

COMPRESSION_WHEN_J2K_USE_LOSSY Configuration Parameter for
MC_Standard_Compressor. When JPEG_2000 is
used as a transfer syntax, this could mean either lossy
or lossless compression. This parameter specifies the
intended syntax.
DEFAULT: NO

CREATE_OFFSET_TABLE This parameter specifies if an offset table is created
when MC_Duplicate_Message() is used to
compress a DICOM message or file. It also specifies if
an offset table is created when the
MC_Set_Encapsulated_Value_From_Function(
) and
MC_Set_Next_Encapsulated_Value_From_Func
tion() routines are used.
DEFAULT: YES

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

238© Copyright Merge Healthcare Solutions Inc. 2025

DECODER_TAG_FILTER Specifies the list of tags to be ignored when reading
DICOM files or messages. The values are separated by
commas and can be specified in different formats:
Single tag, e.g.: 00080020
Tag range, e.g.: 00080020-000800FF
Single group, e.g.: G0020
Group range, e.g: G0020-G0022
All private as: PRIVATE
All ranges are inclusive, meaning that G0020-G0022
will filter groups 20 and 22.
DEFAULT: (empty)

DECODER_PRIVATE_TAG_WHITELIST Specifies the list of private tags to be allowed during
reading DICOM files or messages. The values are
separated by commas and can be specified in
different formats:
Single tag, e.g.: 00090001
Tag range, e.g.: 00090000-000900FF
Single group, e.g.: G0021
Group range, e.g.: G0021-G0025
All ranges are inclusive, meaning that G0021-G0025
will allow all private groups in the range including 21
and 25.
DEFAULT:(empty)

DEFLATE_ALLOW_FLUSH Allows deflate to flush data occasionally to limit
buffering.
DEFAULT: YES

DEFLATE_COMPRESSION_LEVEL Allows the compression level of deflate to be
specified when using deflated explicit VR little endian
transfer syntax. 0 is no compression, 1 is fastest, and 9
compresses best.
DEFAULT: -1

DESIRED_LAST_PDU_SIZE This parameter allows the user to configure the length
of the last PDU sent. This allows for interoperability
with other DICOM implementations that may be
intolerant with either a zero or two byte final PDU
length. The default value used is 8.
Note: Starting with release 3.5.1, this configuration
option has a limited effect.

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

239© Copyright Merge Healthcare Solutions Inc. 2025

DICTIONARY_ACCESS This parameter specifies whether or not the DICOM
dictionary is to be loaded into memory or accessed
from the dictionary file. FILE means access
information directly from the dictionary file. MEM
means load the dictionary into memory and access it
there.
Note: Starting with the 3.5.1 Merge DICOM Toolkit
release, dictionary access is always memory based
and can no longer be file based. This option is now
ignored.
DEFAULT: MEM

DICTIONARY_FILE This parameter specifies the name (path) of the
DICOM dictionary. An absolute or relative path may be
specified.
Note: This parameter is ignored if the dictionary has
been pre-compiled.
The path to the file can also be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally to
the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
DEFAULT: ../mc3msg/mrgcom3.dct

DUPLICATE_ENCAPSULATED_ICON When duplicating to an encapsulated transfer syntax,
this configuration value specifies whether an ICON
IMAGE SEQUENCE should also be encapsulated.
DEFAULT: NO

ELIMINATE_ITEM_REFERENCE * This parameter specifies the behavior of the
message/item/file handling functions
MC_Free_Message(), MC_Empty_Message(),
MC_Free_Item(), MC_Empty_Item(),
MC_Free_File() and MC_Empty_File(). If this
parameter is set to YES, the above functions will
search for references in every currently open object to
delete when they encounter an item to free within an
object.
DEFAULT: NO.

EMPTY_PRIVATE_CREATOR_CODES If set to NO, private creator codes contained in
messages are not emptied when the
MC_Empty_Message() or MC_Empty_File()
function calls are made.
DEFAULT: YES

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

240© Copyright Merge Healthcare Solutions Inc. 2025

EXPLICIT_VR_TO_UN_FOR_LENGTH_GT_64K If set to YES, the toolkit will allow encoding in explicit
VR of data elements whose VR is none of OB, OW, OL,
OV, OD, OF, SQ or UT and whose value length exceeds
65534 bytes by effectively changing the VR to UN (as
per CP-1066).
If set to NO, the attempt to encode such date
elements will result in an
MC_INVALID_LENGTH_FOR_VR error.
DEFAULT: NO

EXPORT_EMPTY_PRIVATE_CREATOR_CODES If set to NO it prevents the toolkit from exporting
private creator data elements which don't have any
private attributes in the private block. If set to YES,
exporting private creator data elements with empty
private blocks is allowed.
DEFAULT: YES

EXPORT_GROUP_LENGTHS_TO_NETWORK * When set to NO, do not export group length attributes
when using the MC_Send_Request_Message(),
MC_Send_Request(),
MC_Send_Response_Message() and
MC_Send_Response() functions
DEFAULT: YES

EXPORT_PRIVATE_ATTRIBUTES_TO_NETWORK When set to NO, disable the exporting of private
attributes in messages written to the network with the
MC_Send_Request_Message(),
MC_Send_Request(),
MC_Send_Response_Message() and
MC_Send_Response() functions.
DEFAULT: YES

EXPORT_UN_VR_TO_NETWORK When set to NO, disable the exporting of attributes
with a VR of UN in messages written to the network
with the MC_Send_Request_Message(),
MC_Send_Request(),
MC_Send_Response_Message() and
MC_Send_Response() functions.
DEFAULT: YES

EXPORT_UNDEFINED_LENGTH_SQ * If YES, messages transferred over the network or
written to disk have their sequence attributes
encoded as undefined length. This increases
performance of the library.
DEFAULT: NO

FLATE_GROW_OUTPUT_BUF_SIZE * The size that the output buffer of deflate or inflate
should grow to when its size is insufficient. An Info
message is logged each time the buffer grows.
DEFAULT: 1024

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

241© Copyright Merge Healthcare Solutions Inc. 2025

FORCE_OPEN_EMPTY_ITEM * When set to YES, the MC_Open_Item() function will
act similar to the MC_Open_Empty_Message()
function. The up-front performance cost of the
MC_Open_Item() function will be reduced, but the
amount of validation done when adding tags to the
item is reduced. Setting this value to YES will also
improve the performance of the DICOMDIR directory
functions. This configuration value does not have any
effect on embedded platforms.
DEFAULT: NO

IGNORE_JPEG_BAD_SUFFIX Configuration Parameter for
MC_Standard_Decompressor to deal with lossless
JPEG images whose suffix have been invalidly written
according to the JPEG specification. These images
have a 16-zero-bit suffix following a -32768 prefix
where the JPEG spec says the suffix is omitted
following a -32768 prefix. The following are the valid
settings:
-1 = Default, fail on these images
0 = Ignore when user detects such images
1 = Let the toolkit detect and ignore automatically

LARGE_DATA_SIZE Defines "Large Data" to the toolkit. "Large Data" is
defined as an attribute value which has a length of
LARGE_DATA_SIZE or more.
DEFAULT: 200.

LARGE_DATA_STORE This parameter specifies where "Large Data" values
should be stored. FILE means store the values in
temporary files. MEM means store the values in
memory.
Note: Embedded systems should ignore this
parameter and always use MEM.
DEFAULT: MEM

LIST_SQ_DEPTH_LIMIT Limit the depth of sequences listing. This parameter
should be set to the maximum number of levels any
sequence should be listed.
DEFAULT: is 0 - means do not limit the listing of
sequences

LIST_UN_ATTRIBUTES If No, attributes with Unknown VR will not be listed by
MC_List_Message() and T2 logging option.
DEFAULT: YES

LIST_VALUE_LIMIT Limit the size of listed values by
MC_List_Message() or T2 logging option. This
parameter should be set to the maximum number of
lines to be printed for any attribute in the list.
DEFAULT: 0 - means show the whole value.

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

242© Copyright Merge Healthcare Solutions Inc. 2025

MSG_FILE_ITEM_OBJ_TRACE This parameter allows the tracking of the creation,
referencing and freeing of message, file and item
objects. This option can be used if the user suspects a
memory leak in their application from not freeing one
of these object types. The logging is done at the T1
trace level which must be enabled in the merge.ini file.
DEFAULT: NO

MSG_INFO_FILE This parameter specifies the name (path) of the
DICOM message information file. An absolute or
relative path may be specified.
The path to the file can also be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally to
the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
Note: This parameter is ignored if the message
database has been pre-compiled.
DEFAULT: ../mc3msg/mrgcom3.msg

NULL_TYPE3_VALIDATION This parameter specifies how the toolkit will validate a
single NULL value in a type 3 attribute with VM > 1.
Valid values are ERR, WARN and INFO.
DEFAULT: ERR

OBOW_BUFFER_SIZE This parameter specifies the number of bytes of
"Large Data" that should be buffered before they are
written to disk. This value is only used when the
parameter LARGE_DATA_STORE is set to FILE.
DEFAULT: 4096

PEGASUS_DISP_REG_NAME When using your own Pegasus license to remove the
3 frames/second limitation, this should have the
company name that was used to generate your
Pegasus license.

PEGASUS_DISP_REGISTRATION When using your own Pegasus license to remove the
3 frames/second limitation, this should have the
registration code that goes with the Pegasus
dispatcher.

PEGASUS_NUMBER_OF_THREADS Certain Pegasus opcodes can operate in a
multithreaded manner. Use this setting to specify the
number of threads to be used by the opcode.
DEFAULT: 1

PEGASUS_OP_*_NAME When using your own Pegasus license to remove the
3 frames/second limitation, this should have the
company name that was used to generate your
Pegasus license.

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

243© Copyright Merge Healthcare Solutions Inc. 2025

PEGASUS_OP_*_REGISTRATION When using your own Pegasus license to remove the
3 frames/second limitation, this should have the
registration code that goes with its respective
PEGASUS_OP_*_NAME.

PEGASUS_OPCODE_PATH This parameter specifies the directory where Pegasus
opcode DLLs are to be loaded from. The opcode DLL
refers to files like picn6220 and not the dispatcher
DLL picn20. If the option is empty, the SSM/DLL is
loaded from the same directory as the dispatcher
DLL. If these files are not found, opcode SSM/DLL is
loaded using the directory order Windows uses when
loading DLLs. The SSM/DLL is loaded from the
current directory if '.' is specified.
DEFAULT: (empty)

REJECT_INVALID_VR This parameter specifies whether or not to reject
invalid VR values in DICOM messages. If set to Yes,
the parsing is aborted and the data set is rejected with
a status of MC_INVALID_VR. This is useful in some
scenarios when invalid attribute VR and length can
result in runaway read/copy operations which may
lead to crashes.
DEFAULT: NO

RELEASE_SQ_ITEMS If set to NO, existing item IDs will not be freed when
setting a null value or an empty value or a new value to
a sequence attribute. Setting it to YES will allow
sequence items that have no other references to be
freed.
DEFAULT: NO

REMOVE_PADDING_CHARS When set to Yes, Merge DICOM Toolkit will remove
space padding characters from all text based
attributes. This removal will occur when the attribute
is encoded with one of the MC_Set_Value...
functions, or when the attribute is read with one of the
streaming or network read functions.
DEFAULT: NO

REMOVE_SINGLE_TRAILING_SPACE If set to YES, the toolkit will strip a single trailing
padding space character from an attribute value of
string type. Otherwise it will not.
DEFAULT: YES

RETURN_COMMA_IN_DS_FL_FD_STRINGS When set to Yes, Merge DICOM Toolkit will return a
comma character as a decimal separator in a value
when MC_Get_Value_To_String() is called for an
attribute with a VR of DS, FL, or FD. When set to No, a
period will always be returned for the decimal
separator. Note that DS values will always be properly
encoded with a period in DICOM message objects.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

244© Copyright Merge Healthcare Solutions Inc. 2025

TEMP_FILE_DIRECTORY This parameter specifies the directory in which
temporary files should be created. This parameter is
used only if LARGE_DATA_STORE = FILE. An absolute
or relative path may be specified.
The path to the directory can also be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally to
the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
DEFAULT: ./

TOLERATE_INVALID_IN_DEFAULT_CHARSET This parameter specifies if non-ASCII characters are
to be tolerated in the default repertoire. When set to
Yes, the validation of the attribute/message will not be
enforced, but a warning message will still be logged.
DEFAULT: YES

UN_VR_CODE VR Code to use for attributes with unknown VRs. This
may be set to 'OB' if an implementation does not
understand 'UN'.
DEFAULT: UN
VALID VALUES: UN, OB

UPDATE_GROUP_0028_ON_DUPLICATE When set to Yes, the group 0028 attributes within a
message will be updated when duplicating a message
or file with MC_Duplicate_Message() and the
standard compressor or decompressor. The
Photometric Interpretation will be updated as
appropriate, and the Lossy Image Compression, Lossy
Image Compression Ratio and Lossy Image
Compression Method tags will be updated if Lossy
Image Compression was applied to the image.
DEFAULT: NO

USE_FREE_DATA_CALLBACK When set to Yes, all registered callback functions
registered with MC_Register_Callback_Function
are called with the FREE_DATA callback type when
the memory associated with the callback is to be
freed, because the enclosing message, file, or item is
being freed.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

245© Copyright Merge Healthcare Solutions Inc. 2025

* Performance tuning

Table D.11: [TRANSPORT_PARMS] section of system profile parameters

WORK_BUFFER_SIZE * This parameter specifies the amount of data that is
buffered in the toolkit before being stored internally or
passed to a user's callback function. This option
impacts the MC_Message_To_Stream(),
MC_Stream_To_Message(),
MC_Send_Request_Message(),
MC_Send_Request(),
MC_Send_Response_Message(),
MC_Send_Response(), MC_Read_Message(),
MC_Read_To_Stream(), MC_Open_File(),
MC_Open_File_Bypass_OBOW(),
MC_Open_File_Upto_Tag(), MC_Write_File()
and MC_Write_File_By_Callback() functions.
Setting this option to values larger than 28K will in
most cases cause the toolkit to use the operating
system's memory management scheme instead of
the toolkit's internal mechanism.
DEFAULT: 28K

Name Description

CAPTURE_FILE This parameter specifies the base name to use for capture files.
(Capture files are generated if the NETWORK_CAPTURE value is
set to Yes.) If only one capture file is requested (see
NUMBER_OF_CAP_FILES), the capture file will have the name
specified. If more than one is requested, nnn will be appended to
the base file name specified (e.g. merge001.cap)
DEFAULT: merge.cap (in the current directory)
Note: Use of this parameter is deprecated.

CAPTURE_FILE_SIZE This parameter specifies the maximum size (in kilobytes) that
capture files are allowed to grow (capture files are generated if the
NETWORK_CAPTURE value is set to Yes). If more than one capture
file is requested (see NUMBER_OF_CAP_FILES), each file
generated will have this maximum size. If a value less than 1 is
specified only one capture file of unlimited length will be generated.
DEFAULT: 0
Note: Use of this parameter is deprecated.

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

246© Copyright Merge Healthcare Solutions Inc. 2025

IP_TYPE This parameter specifies the preferred IP type for network
communications. When set to IPV4, Merge DICOM Toolkit will
attempt to utilize only IPV4 network connections. When set to IPV6,
Merge DICOM Toolkit will attempt to use only IPV6 network
connections. When set to AVAILABLE in an SCP, Merge DICOM
Toolkit will prefer IPV6 if it is enabled in the operating system over
IPV4. If IPV6 is used, the socket is put into dual stack mode, if
supported by the operating system, to accept connections from
both IPV4 and IPV6. When set to AVAILABLE in an SCU, Merge
DICOM Toolkit will use the available type of IP networking.
DEFAULT: AVAILABLE
VALID VALUES: AVAILABLE, IPV4, IPV6

MAX_PENDING_CONNECTIONS This parameter specifies the maximum number of open listen
channels. Its value is used as the second argument of a TCP
listen() call.
DEFAULT: 5

NETWORK_CAPTURE This parameter specifies whether or not network data should be
captured in files suitable to be read by the MergeDPM utility. Use
these parameters to customize the network capture:
CAPTURE_FILE
CAPTURE_FILE_SIZE
NUMBER_OF_CAP_FILES
REWRITE_CAPTURE_FILES
DEFAULT: NO
Note: Use of this parameter is deprecated.

NUMBER_OF_CAP_FILES This parameter specifies the number of capture files to generate
(capture files are generated if the NETWORK_CAPTURE value is set
to Yes). Each capture file generated will have maximum size
specified by CAPTURE_FILE_SIZE. If CAPTURE_FILE_SIZE is less
than 1 (unlimited size) this parameter's value is ignored.
DEFAULT: 1
Note: Use of this parameter is deprecated.

REWRITE_CAPTURE_FILES This parameter specifies whether or not the capture files should be
rewritten when all files have reached the maximum size specified by
CAPTURE_FILE_SIZE (capture files are generated if the
NETWORK_CAPTURE value is set to Yes). If Yes is specified, the
oldest file will be rewritten. If No is specified and all requested files
have been written (see NUMBER_OF_CAP_FILES), no more data
will be captured.
DEFAULT: YES
Note: Use of this parameter is deprecated.

TCPIP_DISABLE_NAGLE This parameter specifies if the Nagle Algorithm should be used
when sending packets at the TCP/IP level. Most operating systems
enable this by default. It allows small segments of data to delay
sending a fixed amount of time to possibly be combined with other
small segments and be sent as one larger packet. Disabling this
may cause high network traffic.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

247© Copyright Merge Healthcare Solutions Inc. 2025

* Performance tuning

D.4. Service Profile
The Service Profile is generated by Merge OEM and contains DICOM standard services and
commands and is a useful reference (along with the message.txt file mentioned previously) to
find the Merge DICOM names for the standard DICOM services and items. It is used by the library to

TCPIP_LISTEN_PORT This parameter specifies the TCP/IP port on which server
applications are to listen for associate requests.
DEFAULT: 104

TCPIP_RECEIVE_BUFFER_SIZE * This parameter specifies the TCP/IP receive buffer size for each
connection. Note that the maximum values for this constant and
TCPIP_SEND_BUFFER_SIZE are operating system dependent. If
the values of these options are set too high, a message will be
logged to the toolkit's log files, although no errors will be returned
through the toolkit's API.
Larger values for these constants will greatly improve network
performance on networks with minimal network activity. Note that
for optimum performance, these values should be at least slightly
larger than the PDU_MAXIMUM_LENGTH configuration value.
Note also that setting these values to an even multiple of the TCP/IP
MSS (Maximum Segment Size) of 1460 bytes can help increase
performance.
Note, also that some operating systems such as Linux have auto-
tuning of TCP/IP buffer sizes implemented when an explicit TCP/IP
Send and Receive buffer size are not set. These options can be set
to zero to disable Merge DICOM Toolkit's setting of each buffer size.
DEFAULT: 131400
MAXIMUM: Operating System dependent

TCPIP_SEND_BUFFER_SIZE * This parameter specifies the TCP/IP send buffer size for each
connection. Note that the maximum values for this constant and
TCPIP_RECEIVE_BUFFER_SIZE are operating system dependent. If
the values of these options are set too high, a message will be
logged to the toolkit's log files, although no errors will be returned
through the toolkit's API.
Larger values for these constants will greatly improve network
performance on networks with minimal network activity. Note that
for optimum performance, these values should be at least slightly
larger than the PDU_MAXIMUM_LENGTH configuration value.
Note also that setting these values to an even multiple of the TCP/IP
MSS (Maximum Segment Size) of 1460 bytes can help increase
performance.
Note, also that some operating systems such as Linux have auto-
tuning of TCP/IP buffer sizes implemented when an explicit TCP/IP
Send and Receive buffer size are not set. These options can be set
to zero to disable Merge DICOM Toolkit's setting of each buffer size.
DEFAULT: 131400
MAXIMUM: Operating System dependent

Name Description

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

248© Copyright Merge Healthcare Solutions Inc. 2025

negotiate the proper SOP Class UIDs and to access the binary dictionary and message information
files when creating instances of message objects and validating messages.

In most cases, it will not be necessary to modify the Service Profile. However, if you are using an
extended toolkit to create your own private services, you will need to add specifications for these
private services to the Service Profile. See the Merge DICOM Toolkit: Extended Toolkit Manual for
further details.

The location of the Service Profile is provided by the MERGECOM_3_SERVICES parameter of the
[MergeCOM3] section of the MERGE.INI file.

Remember, the Service Profile is GENERATED by the Merge DICOM Profile Database Utilities at
Merge OEM. Unless you are absolutely confident about changes being made, DO NOT CHANGE
THE CONTENTS OF THIS FILE.

The Service Profile contains the following sections.

Table D.12: Service profile parameters

Name Description

[SERVICE_TABLE] List of service names and numbers. This list registers every service available to an
Application Entity. The parameters associated with [SERVICE_LIST] are
NUMBER_OF_SERVICES_SUPPORTED (the number of service names that will be
listed immediately following NUMBER_OF_SERVICES_SUPPORTED) and one
entry for each supported service.

[<service_number>] One section number for each of the above services registered in
[SERVICE_TABLE]. Each section contains a Service Name, a DICOM SOP Class
UID for the Service, a flag that tells whether it is a BASE or META Service (SOP)
and a list of commands supported for that service.

[ITEM_TABLE] One item name and number for each DICOM item that can be encoded in an
attribute of Value representation SQ (Sequence of Items).

249© Copyright Merge Healthcare Solutions Inc. 2025

Appendix E. Proprietary Schema XML
Structure

The Merge DICOM Toolkit provides an API to convert a DICOM message, file or attribute set into a
proprietary schema XML string. The following displays the basic structure of the XML string.

E.1. Base64 Encoding of Bulks and Attributes with VR
UN

<?xml version="1.0" encoding="utf-8"?>

<DcmFile>

 <FileMetaInfo Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ">

 <Attribute Tag="00020001" VR="OB" Name="File Meta Information
Version" Length="2">AAE=</Attribute>

 <Attribute Tag="00020002" VR="UI" Name="Media Storage SOP Class
UID" Length="25">...</Attribute>

 <Attribute Tag="00020003" VR="UI" Name="Media Storage SOP Instance
UID" Length="29">...</Attribute>

 <Attribute Tag="00020010" VR="UI" Name="Transfer Syntax UID"
Length="19">1.2.840.10008.1.2.1</Attribute>

 <Attribute Tag="00020016" VR="AE" Name="Source Application Entity
Title" Length="15">MERGE_STORE_SCP</Attribute>

 </FileMetaInfo>

 <DataSet Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ"
TransferSyntax="1.2.840.10008.1.2.1">

 <Attribute Tag="00080008" VR="CS" Name="Image Type"
Length="24">ORIGINAL\SECONDARY\OTHER</Attribute>

 <Attribute Tag="00080016" VR="UI" Name="SOP Class UID"
Length="25">1.2.840.10008.5.1.4.1.1.7</Attribute>

 <Attribute Tag="00080020" VR="DA" Name="Study Date"
Length="8">20020717</Attribute>

 <Attribute Tag="00080030" VR="TM" Name="Study Time"
Length="6">123429</Attribute>

 <Attribute Tag="00080060" VR="CS" Name="Modality" Length="2">OT</
Attribute>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

250© Copyright Merge Healthcare Solutions Inc. 2025

 <Attribute Tag="00081111" VR="SQ" Name="Referenced Performed
Procedure Step Sequence" Length="1">

 <Item>

 <Attribute Tag="00081150" VR="UI" Name="Referenced SOP Class
UID" Length="23">1.2.840.10008.3.1.2.3.3</Attribute>

 <Attribute Tag="00081155" VR="UI" Name="Referenced SOP
Instance UID"
Length="44">2.16.840.1.113669.4.960070.844.1026926027.44</Attribute>

 </Item>

 </Attribute>

 <Attribute Tag="00090010" VR="LO" Name="Private Creator Code"
PCode="PrivateCode" Length="11">SAMPLE PCODE</Attribute>

 <Attribute Tag="00091010" VR="LO" Name="Private" PCode="SAMPLE
PCODE" Length="6">Value1</Attribute>

<Attribute Tag="00091015" VR="UN" Name="Private" PCode="SAMPLE PCODE"
Length="6">INAgNAEy</Attribute>

.....

 <Attribute Tag="00100010" VR="PN" Name="Patient's Name"
Length="28">Last^First</Attribute>

 <Attribute Tag="7FE00010" VR="OW" Name="Pixel Data"
Encoding="Base64" Length="262144">HQAABgMAAAIHBAM.....</Attribute>

 </DataSet>

</DcmFile>

E.2. Default Encoding of Bulks and Attributes with VR
UN

<?xml version="1.0" encoding="utf-8"?>

<DcmFile>

 <FileMetaInfo Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ">

 <Attribute Tag="00020001" VR="OB" Name="File Meta Information
Version" Length="2">00 01</Attribute>

 <Attribute Tag="00020016" VR="AE" Name="Source Application Entity
Title" Length="15">MERGE_STORE_SCP</Attribute>

 </FileMetaInfo>

 <DataSet Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ"
TransferSyntax="1.2.840.10008.1.2.1">

 <Attribute Tag="00080008" VR="CS" Name="Image Type"
Length="24">ORIGINAL\SECONDARY\OTHER</Attribute>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

251© Copyright Merge Healthcare Solutions Inc. 2025

 <Attribute Tag="00080016" VR="UI" Name="SOP Class UID"
Length="25">1.2.840.10008.5.1.4.1.1.7</Attribute>

 <Attribute Tag="00081111" VR="SQ" Name="Referenced Performed
Procedure Step Sequence" Length="1">

 <Item>

 <Attribute Tag="00081150" VR="UI" Name="Referenced SOP Class
UID" Length="23">1.2.840.10008.3.1.2.3.3</Attribute>

 <Attribute Tag="00081155" VR="UI" Name="Referenced SOP
Instance UID"
Length="44">2.16.840.1.113669.4.960070.844.1026926027.44</Attribute>

 </Item>

 </Attribute>

<Attribute Tag="00090010" VR="LO" Name="Private Creator Code"
PCode="PrivateCode" Length="11">SAMPLE PCODE</Attribute>

 <Attribute Tag="00091010" VR="LO" Name="Private" PCode="SAMPLE
PCODE" Length="6">Value1</Attribute>

<Attribute Tag="00091015" VR="UN" Name="Private" PCode="SAMPLE PCODE"
Length="6">20 20 20 20 20 30y</Attribute>

 <Attribute Tag="7FE00010" VR="OW" Name="Pixel Data"
Encoding="Base64" Length="262144">06 00 04 00 04 00 02 00 03.....</
Attribute>

 </DataSet>

</DcmFile>

252© Copyright Merge Healthcare Solutions Inc. 2025

Appendix F. Mergecom ApiController
Classes

Mergecom WADO controller classes are derived from System.Web.Http.ApiController and
implement the Http Get and Post methods following the specifications of the DICOM standard.

MCcontroller

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Web.Http;

namespace Mergecomws.Web

{

 /// <summary>Abstract class inherited from <see
cref="ApiController"/></summary>

 public abstract class MCcontroller : ApiController

 {

 /// <summary>"MCCONTROLLER"</summary>

 public static readonly String MCCONTROLLER = "MCCONTROLLER";

 /// <summary>"MCQIDOCONTROLLER"</summary>

 public static readonly String MCQIDOCONTROLLER =
"MCQIDOCONTROLLER";

 /// <summary>"MCSTOWCONTROLLER"</summary>

 public static readonly String MCSTOWCONTROLLER =
"MCSTOWCONTROLLER";

 /// <summary>"MCWADORSCONTROLLER"</summary>

 /// <summary>"MCUPSCONTROLLER"</summary>

 public static readonly String MCUPSCONTROLLER = "MCUPS";

 public static readonly String MCWADORSCONTROLLER =
"MCWADORSCONTROLLER";

 /// <summary>"MCWADOURICONTROLLER"</summary>

 public static readonly String MCWADOURICONTROLLER =
"MCWADOURICONTROLLER";

 /// <summary>"MCWADOWSCONTROLLER"</summary>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

253© Copyright Merge Healthcare Solutions Inc. 2025

 public static readonly String MCWADOWSCONTROLLER =
"MCWADOWSCONTROLLER";

 /// <summary>Gets <see cref="MCcontroller"/> name, might be
"MCCONTROLLER",

/// "MCQIDOCONTROLLER", "MCSTOWCONTROLLER", "MCWADORSCONTROLLER",

/// "MCWADOURICONTROLLER" or "MCWADOWSCONTROLLER"</summary>

 public String Name { get; protected set; }

 /// <summary>Class constructor</summary>

 public MCcontroller() : base()

 {

 Name = MCCONTROLLER;

 }

 }

}

MCwadoRsController

using System;

using System.Collections.Generic; using System.Linq;

using System.Net.Http; using System.Text;

using System.Threading.Tasks; using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecom;

using Mergecomws.Dicom;

namespace Mergecomws.Web

{

 /// <summary>Implements Http Get methods for DICOM WADO-RS
requests</summary>

 public class MCwadoRsController : MCcontroller

 {

 /// <summary>Class constructor</summary>

 public MCwadoRsController() : base()

 {

 Name = MCcontroller.MCWADORSCONTROLLER;

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

254© Copyright Merge Healthcare Solutions Inc. 2025

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpGet]

 public HttpResponseMessage Get(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.WadoRS).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("study")]

 public HttpResponseMessage Get(HttpRequestMessage request,

 String studyInstanceUid)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

255© Copyright Merge Healthcare Solutions Inc. 2025

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.WadoRS,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <param name="seriesInstanceUid">SeriesInstanceUID
parameter</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("series")]

 public HttpResponseMessage Get(HttpRequestMessage request,

 String studyInstanceUid,

 String seriesInstanceUid)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

256© Copyright Merge Healthcare Solutions Inc. 2025

 keyword =
MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SERIES_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { seriesInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.WadoRS,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <param name="seriesInstanceUid">SeriesInstanceUID
parameter</param>

 /// <param name="sopInstanceUid">SopInstanceUID parameter</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("instance")]

 public HttpResponseMessage Get(HttpRequestMessage request,

 String studyInstanceUid,

 String seriesInstanceUid,

 String sopInstanceUid)

 {

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

257© Copyright Merge Healthcare Solutions Inc. 2025

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 keyword =
MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SERIES_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { seriesInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 keyword = MCwado.DicomKeywords[MCdicom.SOP_INSTANCE_UID];

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SOP_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { sopInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

258© Copyright Merge Healthcare Solutions Inc. 2025

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.WadoRS,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <param name="seriesInstanceUid">SeriesInstanceUID
parameter</param>

 /// <param name="sopInstanceUid">SopInstanceUID parameter</
param>

 /// <param name="frameList">SimpleFrameList parameter</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("frames")]

 public HttpResponseMessage Get(HttpRequestMessage request,

 String studyInstanceUid,

 String seriesInstanceUid,

 String sopInstanceUid,

 String frameList)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

259© Copyright Merge Healthcare Solutions Inc. 2025

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 keyword =
MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SERIES_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { seriesInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 keyword = MCwado.DicomKeywords[MCdicom.SOP_INSTANCE_UID];

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SOP_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { sopInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 keyword = MCwado.DicomKeywords[MCdicom.SIMPLE_FRAME_LIST];

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

260© Copyright Merge Healthcare Solutions Inc. 2025

 string[] frames = (!String.IsNullOrEmpty(frameList)) ?
frameList.Split(new char[] {','}) : null;

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SIMPLE_FRAME_LIST,

 Keyword = keyword,

 Values = frames };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.WadoRS,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="uri">URI for bulk data</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bulkdata")]

 public HttpResponseMessage Get(HttpRequestMessage request, Uri
uri)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 MCrequestParameter parm = new MCrequestParameter() {

 Name = "bulkdata",

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Values = new string[] { uri.OriginalString }

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

261© Copyright Merge Healthcare Solutions Inc. 2025

 };

 parms.Add(parm);

 return new MCrequest(request,

 MCrequestType.WadoRS,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <param name="metadata">Metadata parameter, might be null</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("metadata")]

 public HttpResponseMessage Get(HttpRequestMessage request,

 String studyInstanceUid,

 object metadata)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter()

 {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

262© Copyright Merge Healthcare Solutions Inc. 2025

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.WadoRS,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bind")]

 public HttpResponseMessage
Get([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

 {

 return request.Submit();

 }

 }

}

MCwadoRsController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCwadoRsBulkdata",

 routeTemplate: "api/{controller}/bulkdata/{uri}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "bulkdata" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsStudy",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "study" }

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

263© Copyright Merge Healthcare Solutions Inc. 2025

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsMetaData",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
metadata",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "metadata" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsSeries",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
series/{seriesInstanceUid}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "series" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsInstance",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
series/{seriesInstanceUid}/instances/{sopInstanceUid}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "instance" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsFrames",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
series/{seriesInstanceUid}/instances/{sopInstanceUid}/frames/
{FrameList}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "frames" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsGet",

 routeTemplate: "api/{controller}/{wadors}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "get" }

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

264© Copyright Merge Healthcare Solutions Inc. 2025

);

config.Routes.MapHttpRoute(

 name: "MCwadoRsBind",

 routeTemplate: "api/{controller}/bind/{wadors}",

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER,
action = "bind" }

);

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

MCwadoUriController

using System;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecomws.Dicom;

namespace Mergecomws.Web

{

 /// <summary>Implements Http Get methods for DICOM WADO-URI
requests</summary>

 public class MCwadoUriController : MCcontroller

 {

 /// <summary>Class constructor</summary>

 public MCwadoUriController() : base()

 {

 Name = MCcontroller.MCWADOURICONTROLLER;

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

265© Copyright Merge Healthcare Solutions Inc. 2025

 [HttpGet]

 public HttpResponseMessage Get(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.WadoURI).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bind")]

 public HttpResponseMessage
Get([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

 {

 return request.Submit();

 }

 }

}

MCwadoUriController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCwadoUriRoute",

 routeTemplate: "api/{controller}",

 defaults: new { controller = MCcontroller.MCWADOURICONTROLLER,
action = "get" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoUriBind",

 routeTemplate: "api/{controller}/bind/{wadouri}",

 defaults: new { controller = MCcontroller.MCWADOURICONTROLLER,
action = "bind" }

);

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

266© Copyright Merge Healthcare Solutions Inc. 2025

MCwadoWsController

using System;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecomws.Dicom;

namespace Mergecomws.Web

{

 /// <summary>Implements Http Get methods for DICOM WADO-WS
requests</summary>

 public class MCwadoWsController : MCcontroller

 {

 /// <summary>Class constructor</summary>

 public MCwadoWsController() : base()

 {

 Name = MCcontroller.MCWADOWSCONTROLLER;

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpPost]

 public HttpResponseMessage Post(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.WadoWS).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

267© Copyright Merge Healthcare Solutions Inc. 2025

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bind")]

 public HttpResponseMessage
Post([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

 {

 return request.Submit();

 }

 }

}

MCwadoUriController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCwadoUriRoute",

 routeTemplate: "api/{controller}",

 defaults: new { controller = MCcontroller.MCWADOURICONTROLLER,
action = "get" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoUriBind",

 routeTemplate: "api/{controller}/bind/{wadouri}",

 defaults: new { controller = MCcontroller.MCWADOURICONTROLLER,
action = "bind" }

);

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

MCwadoWsController

using System;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecomws.Dicom;

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

268© Copyright Merge Healthcare Solutions Inc. 2025

namespace Mergecomws.Web

{

 /// <summary>Implements Http Get methods for DICOM WADO-WS
requests</summary>

 public class MCwadoWsController : MCcontroller

 {

 /// <summary>Class constructor</summary>

 public MCwadoWsController() : base()

 {

 Name = MCcontroller.MCWADOWSCONTROLLER;

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpPost]

 public HttpResponseMessage Post(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.WadoWS).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bind")]

 public HttpResponseMessage
Post([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

 {

 return request.Submit();

 }

 }

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

269© Copyright Merge Healthcare Solutions Inc. 2025

MCwadoWsController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCwadoWsRoute",

 routeTemplate: "api/{controller}/{wadows}",

 defaults: new { controller = MCcontroller.MCWADOWSCONTROLLER,
action = "post" }

);

config.Routes.MapHttpRoute(

 name: "MCwadoWsBind",

 routeTemplate: "api/{controller}/{action}/{wadows}",

 defaults: new { controller = MCcontroller.MCWADOWSCONTROLLER,
action = "bind" }

);

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

MCqidoController

using System;

using System.Collections.Generic; using System.Linq;

using System.Net.Http; using System.Text;

using System.Threading.Tasks; using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecom;

using Mergecomws.Dicom;

namespace Mergecomws.Web

{

 /// <summary>Implements Http Get methods for DICOM QIDO-RS
requests</summary>

 public class MCqidoController : MCcontroller

 {

 /// <summary>Class constructor</summary>

 public MCqidoController() : base()

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

270© Copyright Merge Healthcare Solutions Inc. 2025

 {

 Name = MCcontroller.MCQIDOCONTROLLER;

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpGet]

 public HttpResponseMessage Get(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.Qido).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("studyinstanceuid")]

 public HttpResponseMessage Get(HttpRequestMessage request,
String studyInstanceUid)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

271© Copyright Merge Healthcare Solutions Inc. 2025

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.Qido,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <param name="seriesInstanceUid">SeriesInstanceUID
parameter</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("seriesinstanceuid")]

 public HttpResponseMessage Get(HttpRequestMessage request,

 String studyInstanceUid,

 String seriesInstanceUid)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { studyInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 keyword =
MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

272© Copyright Merge Healthcare Solutions Inc. 2025

 attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.SERIES_INSTANCE_UID,

 Keyword = keyword,

 Values = new string[] { seriesInstanceUid }

 };

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.Qido,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bind")]

 public HttpResponseMessage
Get([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

 {

 return request.Submit();

 }

 }

}

MCqidoController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCqidoRoute",

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

273© Copyright Merge Healthcare Solutions Inc. 2025

 routeTemplate: "api/{controller}",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "get" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoStudies",

 routeTemplate: "api/{controller}/studies",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "get" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoSeriesA",

 routeTemplate: "api/{controller}/series",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "get" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoSeriesB",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
series",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "studyinstanceuid" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoInstancesA",

 routeTemplate: "api/{controller}/instances",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "get" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoInstancesB",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
instances",

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

274© Copyright Merge Healthcare Solutions Inc. 2025

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "studyinstanceuid" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoInstancesC",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/
series/{seriesInstanceUid}/instances",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "seriesinstanceuid" }

);

config.Routes.MapHttpRoute(

 name: "MCqidoBind",

 routeTemplate: "api/{controller}/bind/{qido}",

 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action
= "bind" }

);

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

MCstowController

using System;

using System.Collections.Generic; using System.Linq;

using System.Net.Http; using System.Text;

using System.Threading.Tasks; using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecom;

using Mergecomws.Dicom;

namespace Mergecomws.Web

 {

 /// <summary>Implements Http Post methods for DICOM STOW-RS
requests</summary>

 public class MCstowController : MCcontroller

 {

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

275© Copyright Merge Healthcare Solutions Inc. 2025

 /// <summary>Class constructor</summary>

 public MCstowController()

 {

 Name = MCcontroller.MCSTOWCONTROLLER;

 }

 /// <summary>Http Post method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpPost]

 public HttpResponseMessage Post(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.Stow).Submit();

 }

 /// <summary>Http Post method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <param name="studyInstanceUid">StudyInstanceUID
parameter</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("studyinstanceuid")]

 public HttpResponseMessage Post(HttpRequestMessage request,

 String studyInstanceUid)

 {

 List<MCrequestParameter> parms = new
List<MCrequestParameter>();

 string keyword =
MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() {

 Item = keyword,

 Tag = MCdicom.STUDY_INSTANCE_UID,

 Keyword = keyword, Values = new string[] {
studyInstanceUid }

 };

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

276© Copyright Merge Healthcare Solutions Inc. 2025

 parms.Add(new MCrequestParameter() {

 Name = keyword,

 RequestRequirement =
MCrequestParameter.Requirements.REQUIRED,

 Attributes = new List<MCrequestAttribute> { attr }

 });

 return new MCrequest(request,

 MCrequestType.Stow,

 parms.ToArray<MCrequestParameter>()

).Submit();

 }

 /// <summary>Http Post method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [ActionName("bind")]

 public HttpResponseMessage
Post([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

 {

 return request.Submit();

 }

 }

}

MCstowController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCstowRoute",

 routeTemplate: "api/{controller}",

 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action
= "post" }

);

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

277© Copyright Merge Healthcare Solutions Inc. 2025

config.Routes.MapHttpRoute(

 name: "MCstowStudy",

 routeTemplate: "api/{controller}/studies",

 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action
= "post" }

);

config.Routes.MapHttpRoute(

 name: "MCstowStudyInstance",

 routeTemplate: "api/{controller}/studies/{studyInstanceUid}",

 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action
= "studyinstanceuid" }

);

config.Routes.MapHttpRoute(

 name: "MCstowBind",

 routeTemplate: "api/{controller}/bind/{stow}",

 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action
= "bind" }

);

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

MCupsController

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.ModelBinding;

using Mergecom;

using Mergecomws.Dicom;

namespace Mergecomws.Web.Controller

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

278© Copyright Merge Healthcare Solutions Inc. 2025

{

 /// <summary>Implements Http Post, Get, Put and Delete methods for
DICOM UPS-RS requests</summary>

 public class MCupsController : MCcontroller

 {

 /// <summary>Class constructor</summary>

 public MCupsController()

 {

 Name = MCcontroller.MCUPSCONTROLLER;

 }

 /// <summary>Http Post method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpPost]

 [ActionName("post")]

 public HttpResponseMessage Post(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.UpsRS).Submit();

 }

 /// <summary>Http Get method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpGet]

 [ActionName("get")]

 public HttpResponseMessage Get(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.UpsRS).Submit();

 }

 /// <summary>Http Put method</summary>

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

279© Copyright Merge Healthcare Solutions Inc. 2025

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpPut]

 [ActionName("put")]

 public HttpResponseMessage Put(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.UpsRS).Submit();

 }

 /// <summary>Http Delete method</summary>

 /// <param name="request"><see cref="HttpRequestMessage"/>
object</param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpDelete]

 [ActionName("delete")]

 public HttpResponseMessage Delete(HttpRequestMessage request)

 {

 return new MCrequest(request,
MCrequestType.UpsRS).Submit();

 }

 /// <summary>Http Post method</summary>

 /// <param name="request"><see cref="MCrequest"/> oject</
param>

 /// <returns><see cref="HttpResponseMessage"/> object</
returns>

 [HttpPost]

 [ActionName("bind")]

 public HttpResponseMessage
Post([ModelBinder(typeof(MCrequestBinder))] MCrequest request)

{

 return request.Submit();

 }

 }

}

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

280© Copyright Merge Healthcare Solutions Inc. 2025

MCupsController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

 name: "MCupsPost",

 routeTemplate: "api/{controller}/{action}/{upsrs}",

 defaults: new { controller = MCcontroller.MCUPSCONTROLLER, action
= "post" }

);

config.Routes.MapHttpRoute(

 name: "MCupsUpdate",

 routeTemplate: "api/{controller}/{action}/{upsrs}/{uid}",

 defaults: new { controller = MCcontroller.MCUPSCONTROLLER, action
= "post", uid = RouteParameter.Optional }

);

config.Routes.MapHttpRoute(

 name: "MCupsCancel",

 routeTemplate: "api/{controller}/{action}/{upsrs}/{uid}/
{cancel}",

 defaults: new { controller = MCcontroller.MCUPSCONTROLLER, action
= "post", uid = RouteParameter.Optional, cancel =
RouteParameter.Optional

);

config.Routes.MapHttpRoute(

 name: "MCupsSuspend",

 routeTemplate: "api/{controller}/{action}/{upsrs}/{uid}/
{subscribers}/{aetitle}/{suspend}",

 defaults: new

 {

 controller = MCcontroller.MCUPSCONTROLLER,

 action = "post",

 uid = RouteParameter.Optional,

 subscribers = RouteParameter.Optional,

 aetitle = RouteParameter.Optional,

 suspend = RouteParameter.Optional

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

281© Copyright Merge Healthcare Solutions Inc. 2025

 });

config.Routes.MapHttpRoute(

 name: "MCupsSearch",

 routeTemplate: "api/{controller}/{action}/{upsrs}",

 defaults: new { controller = MCcontroller.MCUPSCONTROLLER, action
= "get" }

);

config.Routes.MapHttpRoute(

 name: "MCupsRetrieve",

 routeTemplate: "api/{controller}/{action}/{upsrs}/{uid}",

 defaults: new { controller = MCcontroller.MCUPSCONTROLLER, action
= "get", uid = RouteParameter.Optional }

);

config.Routes.MapHttpRoute(

 name: "MCupsPut",

 routeTemplate: "api/{controller}/{action}/{upsrs}/{uid}/{state}",

 defaults: new { controller = MCcontroller.MCUPSCONTROLLER, action
= "put", uid = RouteParameter.Optional, state =
RouteParameter.Optional }

);

config.Routes.MapHttpRoute(

 name: "MCupsDelete",

 routeTemplate: "api/{controller}/{action}/{upsrs}/{uid}/
{subscribers}/{aetitle}",

 defaults: new

 {

 controller = MCcontroller.MCUPSCONTROLLER,

 action = "delete",

 uid = RouteParameter.Optional,

 subscribers = RouteParameter.Optional,

 aetitle = RouteParameter.Optional

 });

Merge DICOM Toolkit 5.20.0 .NET/C# User’s Manual

282© Copyright Merge Healthcare Solutions Inc. 2025

config.Services.Add(typeof(ModelBinderProvider), new
MCrequestBinderProvider());

283© Copyright Merge Healthcare Solutions Inc. 2025

Appendix G. Json.NET License

The Merge DICOM Toolkit supports conversion from an attribute set to a DICOM JSON Model and
vice-versa by using an open source library: Json.NET.

The original copyright notice of the Json.NET software is below:

The MIT License (MIT)

Copyright (c) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

	.NET/C# User’s Manual
	Chapter 1. Overview
	1.1. The DICOM Standard
	1.2. The Merge DICOM Toolkit
	1.3. Development Platform Requirements
	1.4. Assembly Structure
	1.5. Documentation Roadmap
	1.6. Conventions

	Chapter 2. Understanding DICOM
	2.1. General Concepts
	2.2. Networking
	2.3. Messages
	2.4. Media Interchange
	2.5. Conformance

	Chapter 3. Using the Merge DICOM Toolkit
	3.1. Configuration
	3.2. Message Logging
	3.3. Utility Programs

	Chapter 4. Developing DICOM Applications
	4.1. Library Import
	4.2. Library Constants
	4.3. Exception Handling
	4.4. Library Initialization
	4.5. Releasing the library
	4.6. Getting the Assembly Version
	4.7. Releasing Native Memory
	4.8. Using the Merge DICOM log file
	4.9. Capturing Log Messages in Your Application
	4.10. Registering Your Application
	4.11. Association Management (Network Only)
	4.12. Using the MCsopClass Class
	4.13. Using the MCvr class
	4.14. Using the MCtag Class
	4.15. Using the MCdataElement Class
	4.16. Working with Attribute Sets
	4.17. Working with MCabstractMessage Derived Classes
	4.18. Message Exchange (Network Only)
	4.19. Using Attribute Containers
	4.20. Sequences of Items
	4.21. DICOM Files
	4.22. DICOMDIR
	4.23. Memory Management
	4.24. DICOM Structured Reporting
	4.25. Working with Merge DICOM Web Services

	Chapter 5. Deploying Applications
	5.1. Merge DICOM Required Files
	5.2. Configuration Options

	Appendix A. Frequently Asked Questions
	Appendix B. Unique Identifiers (UIDs)
	B.1. Summary of UID Composition
	B.2. Obtaining a UID

	Appendix C. Writing a DICOM Conformance Statement
	C.1. Conformance Statement Sections
	C.2. Network Interfaces
	C.3. Extensions/Specializations/Privatizations

	Appendix D. Configuration Parameters
	D.1. Initialization File
	D.2. Application Profile
	D.3. System Profile
	D.4. Service Profile

	Appendix E. Proprietary Schema XML Structure
	E.1. Base64 Encoding of Bulks and Attributes with VR UN
	E.2. Default Encoding of Bulks and Attributes with VR UN

	Appendix F. Mergecom ApiController Classes
	Appendix G. Json.NET License

