IBM Curam Social Program Management
Version 7.0.2

Curam Web Client Reference Manual

.||I




Note

Before using this information and the product it supports, read the information in “Notices” on page
298

Edition

This edition applies to IBM® Clram Social Program Management v7.0.2 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

LiSt Of FiSUIeS....cuiiuiieiieiieiieiiiiiiieiieiieiienienieiescencsecsessassassessassascsscascssssssssssassassascas Vi

(IES3 oY =1 ] =3 -SRI )¢

Chapter 1. Clram web client reference......cccccceeeeeeereenierreneereencereenecerenneeeenseesenneeesd

CUTam WED CLIENT OVEIVIBW....cciieeieieeiecieeiestteie sttt e teete s e e tesbe e te s e e tesss e beestesseessesssessesssessesnsesseensessanns 1
User iNterface MeETadala...ccii ittt e st e s sate e s sate e s s ste e s steessseaessnsaesans 1
AppLlication USEr INTEITACE OVEIVIEW......uiiiiciiiee et ettt et e e e e etee e e e e sbee e e s e ebaeeeseessaeeeeennseesessnnnsens 4
CUFAM AP PLICATIONS. .. veeeteeeieeetee et eeee ettt eeteeeteeeeteeeteeeeeeeteeeteeeebeeeaseeeseeeaseeseeeseeenseeaseeenseenseeenseenseennsean 6
PaBE CONTEXT. . ettt ettt e e et e e e et e e e e bt e e e e e areeeeeenseee e e s nnreeeesesreteeeeenreaeeaan 8
P aZE APPEAIANCE. ..ceiieeiteee ettt ettt ettt e e e ettt e e ettt e e st e e se b bt e e e e artee e e e nrtte e e e nteee e e e nreeeeeaanneeeeenan 8
JAY o] o] L Tot=N o] a I ee] 0} 4 Fo] 1T o IS oSSR 9
D=0t a0} VY]] = SRR 9

L] o O =T ) T2V =T FoT o] o 1T o | USSR 9
Outline of the Client DEVElOPMENT PrOCESS........uuiiiiiiciiieeecitee e eectte e e e eetre e e et e e e s e srae e e e e sbaee e e e enreeeeean 9
(010 ] = I N 1<) 2= 11 =1 T o OO OO P U RRTRPPPRR 10
CDEJ ProjeCt FOLAEr StrUCTUIB. ittt iiiiiie ettt e ettt e e cetre e s e sttre e e e st ree e e e e aaee e e s e abee e e s eanstaeeesensseneseennsenens 10
JAY o] o] Tot=Nu o] a 6o aa] o ToT L= o1 €TSS 12
(070 paT ool aT=T o} AN o ] - Ut €T USSR 13
PAY o] o] 1To=N o] o I o Tox=1 L= TSR 14
U1l [T T= =T a 1Y oY o] Tor-\ 4 o] s PO OO 14
1Y 0] 1) 40 1 T=Y o S5 S 20
LOLUTS] (oY a aT4=1 1 o ] TP 24

(o Tor- 1174= | { o] SO TSR URRUPPRROPRRIOt 38
NUMDEIS ottt ettt e sttt e sttt e st e e s saee e s aae e s seae s seae s sbaesassaesansaessbaesnssaessssaesnnseesnnsns 38
FIlE ENCOAING. . iiiiiiiiieiieieiee ettt st s et e s st e s st e s sate e ssate e seateesssteessateessataesasseesassaesnntaesasseesnnseesnnseesns 38
[0 Tor= 1 L= OSSR RRPRP 39
UIM EXTErNAliZEA STINES..ciiiiiiiiieiieieeiciee sttt sste e seieeessiee e sbee e sbee e ssbeeesbeeesabeeesaseessaseessnseessseessnsens 40
JavaScript EXtErnalized STFNES.....uui ittt sttt s e e s te e s s e e s sbe e s s beessabaessaseess 40
B Fo Yot o] o] o 1= T 1= T PSRRI RPRPPRRTNE 41
Infrastructure Widget Properti€s FileS.... ittt essee e ssaae e sseaesnee 42
(01BN oY o LU (ot E T o] o] o 1=T o =T TR 44
ApplicationConfigUration. ProPEITIES. ... .uiiiiiiieierrte ettt ee s s e e st e e s sbee e sbee s sbeeesnnees 44
FAY o] o] LTot=N o] o B TiVATo [N 17 [T o T T SS 44
Tabbed Configuration ArtifaCTS....cuiiiciiieiieeeie ettt be e s e e s s be e s sbeeesabaeesaraeens 45
RUNTIME MBS SAZES. ceiivtiiiiiieeiiteeiite st e sete e s eitee sttt e st teesssteesssteessteesasteesasteesassaesassaesasseesasseesnssaesassaenan 45

UIM RETEIENCE . ittt ettt et e st e s s ate e s sabe e e sa e e e s sateesssbeesesteesasteesassaesnssaesnssaesnnsaesnsseesnnee 45
Creating UIM DOCUMENTS. .. .uiiiiiieriiteeiiteesite st e st e ssaeessteesssbeessabaesssbaesssseessssaessnseesssseesssseessseesssees 45
UTIM DOCUM BN Ty PO i iiiiiiiiieeeeeitetttttttt e es s e s e e e s e e e e eeeeeeet et tar e e s s e s s s s aassasasssssssssasseeeeseeesesneeeesnsssssnnnn 45
UIM PaZES. .ttt ettt ettt ettt et e e e s e s ettt e e e e e e e e s e s nnser e et e e eeeeeesae e nreareeneeeeaeaennn 46
UIM VIBWS . tieiieesette sttt st e st e st e s s te e e st e s s be e e s beeesabaeesabeeesabeeessbeeeaaseeesabeeesnseeeanseeesnseeesnsenesssessnsens 46
UIM Page Field LeVEL ValidationS.....ciuciiiecieieiieeeiieeeiteesite sttt e st seee e s iae e ssaeessraeessaeesasaeesannaens 46
EXEEINALIZEA STIINES.cii ittt sttt s e e st e e s b ee e s bba e s abeessaeeessseesssaesnnsaesnneeas 46
UIM Reference for PAges and VIEWS......civciiiiiiieiiiieeiiieesiiee st e sttt e ssieeessaeeesssseesssseesssseessseesssseessnseess 46
UIM ReferenCe fOr WidZETS. . uiiiciiiicieieciieeete ettt sttt ste e s be e s s be e s s be e s sbae s sabae s sabaesnaneas 98
DyNamic UIM CroSS RETEIENCE. ....cuiiiceiiiee ettt ettt eeetre e e e ttee e e e e aee e e e snbae e e e e nssaeeesennsaneanans 114
Dynamic UIM System INitialiZation.......ccc.ueeei it ectee e e vee e e s eente e e e e e aa e e e s eanees 114

Py oYo]ITor-\uTo] ol 6feTa) TN 1 - LuTo] o TSR 115
(00e] a1 1= {0 =N o] T 1] (=T PSR OPTSPRSPR 116
LA LY o R o LT=Y o) o o] 0= =TSSR 117
FAY o] o] LTo%= X o] o 1TSS 117
Configuring Smart Navigator search targets and KEYyWOrdsS........covcvieieveeieieeiniieineeenieeeeieesseee e 128



Y= Toa A To] aT=] g (ol Ul A o U s 1] VST 142
Lo T PSR 144
Tab @CTIONS MEBNU.ciiiiiiiiiiiieie ettt sttt e e st e s s te e s ste e s ssbaessstaesssbaessssaessssaesnssaessseesns 152
B ol gV T =1 (o] o TSP 157
OpeNINg tabs aNd SECTIONS. ... .uiiiiiiercriecceeeee et e s sate e s ab e e s sabeesssbe e s sbeessaeaessraens 163
Working with the CUram USEr iNTEITACE......ucciieeieceeree et se e st te e e s teetesreenteeneas 166
Prerequisites for configuring the user iNterface.....ccoociiviiiiiiiiecec e 166
Creating @ SimMpPLe aPPLlICATION....iii ittt e e s sbe e e sbe e s s sbee e sbee e sbaeesbaeeeas 166
AddiNg @ SHOMTCUL PANEL .c.eeiiiiieeeeeee e ee e s sbee e s sate e ssate e ssaeeessneaas 171
AdAING 1D CONTENT. ettt st e e te e s s ae e s s be e e s baeesbaeesabaeessaeesaseeennes 175
Configuring MOdal dialogS.....civcuiiiiiieiiiieeeiee ettt e e st e s s sbae e sbaessbeeessaeessaeesane 179
AddING 1D NAVIZATION ...ttt sttt s e e s s bt e e s be e e sbe e e s ba e e ete e e s baeenbaeena 187
WOTKING WITH LISTS..uiiiiiiiiiiiiieeeiee sttt sr e e s st e st e e s st e e e s abeeesabeeessbaeesssaesssseeesasaens 188
SESSION MANAEEIMENT. . itiiiiiteeiiee ettt ettt et e sttt e sttt essbte e s steesasteesstaesstaesassaesssaessseesasseesnsseessssaenn 191
SESSION OVEIVIEW. ..utiiitieeiiuieeieieesetteesetteesereeesasteesaseessaseessaseessstesssseesssseesssseesssseesssseesssseesssseesssseessssens 191
B ol 2 =T] (o] ¢ VAT o O PRSPPI 192
SESSION CONTIGUIATION...ccutiiieiieieite ettt st e sttt e s bt e e s bt e e s bt e e ssaeesseeessaeesasaaesaseeessseean 192
SESSION TIMEOUL WaAINING.cieetiiiiieeiiieeiiieeeeiee st e sttt e sstee sttt essateesssteesasteesssseesssseesasseessssaesnsseessseesas 193
Tab SESSION LIMITAtIONS...uiiiiiiiieiieieieeete ettt e e e e s be e e s bee e s beeesssaeessaeesasaaesaseeesssaenn 199
Browser Specific SESSION ManNagemMENT....cccciiiiiiiiiiiierteeete sttt saee e s sare e s sreeesaeeesaeeees 199
BroOWSEr MANaZEMENT.... .ttt ettt ettt e e ettt e e s e b et e e e e s et e e e e e nneee e e s nneeeeeeanreeeeeanneeeas 199
(0] o) 410 F= 1l =] o1V T £ YUY o] oo o SR 199
Configuring Browser Back, Refresh, and Close Button Behavior.........ccoeveeiviiiiiniienniiennieeeseeeeee, 202
DOMAIN-SPECITIC CONTIOLS....eiiiiiiiee et e e e et e e e e e e abe e e e e s nbeeeeeensteaeessnseaeeesnnsenens 203
DTS ettt et et et e e e et e e et et et e e et e e e e e b e te e e e n bt e e e e e nrtee e e e neteeeeenraeeeanan 203
B LT T 0 T3 PP 204
Yo =T oA A e (=T Y=Y =Tt o] TS 205
Y=Y LT o AT o I N {3 ST 205
LT T (T =T Tot =T a1 (o U 207
RULES TIEES . uteiitieeiciiee ittt scte ettt ste e st e e st e e st e e sbe e s sbeeesabaeesabaeesaseeesasaessabaeessseesaasaessssaessseesssseesnnses 208
MEETING VIBW. . utiiiiiieieiieieite ettt ettt sttt e et e e st e e s bt e e s be e s e baeessbeeeasbeeessbaeessbeeeesseeesnseeesnseeessenesnssaesnnens 214
04 0=V {3 RO PPRRUPPRRUR 216
HEATMAD WIdBEE . i i iiieieiieicite ettt ettt st e e s te e s st e e s s abe e s s abeeesabaesssbaesssbaessssaeesnseesnnee 221
WVOTKFLOW . ettt ittt ettt ettt e s st e s st e e s e ate e s eateessateesesteesensaesassaesnssaessnsaesnssaesnnsaesnnee 222
EVIAENCE VIBW..utiiiiiiiciiee ettt ettt sttt s te e st e s s bee s sbee s s bt e e s bt e e sabeeesabeeesabaessabaeesasaesssseesnasens 227
(02111 oo - 1 RSP 230
Payment STatEMENT VIBW....uei ittt e e e tee e s e et ee e s e e ste e e s esnntaeessenseeeseennseneananns 234
BatCh FUNCLION VIBW..eiiiiiiiiiieiiee ettt sttt sttt et s e s st e e s be e s s ba e s s baeesabaeesabaeesssaeesnsaeenn 235
AATESSES. .evttieiieeetie ettt et e e et e e st e e s bt e e s be e e s bee e e ba e e st e e e s tae e e bae e e bae e e bae e e bee e e baeeebaeeebaeenbaeenaee 235
SCNEAULE VIBW ittt ettt ettt et s et e st e e st e e e st a e e s abeeesbaeesasaeesasaeessaeesaseeennseeenn 236
= Te T ol =W}t (o oI €] o TU o TSRS 237
POP U PaZES. ittt ettt et e e et e e e e bt e e e e s r et e e e e ne e e e e e bt e e e e neete e e e enreaeeeeannee 237
ABENAA PLAYE e eeiiiiiieeeciiee ettt ettt ettt e st e e st ae e s bt e e s ate e s b e e e s bt e e s aate e e ste e s atee e sbaeenbeesannaenan 244
LOCALIZED_MESSAGE DOMAIN....tiiiiiitiiiiinieeiteeieeciee st eeteseesbeesmeesreesseesreesseesaeeesbeesaeesreesneesnnens 250
Decision Assist: DecCiSion Matrix WIdZet.......civciiiiiiiiiiieiiienecees ettt see s s iee s e s bee s 251
Custom Data Conversion and SOMING........cieuiiiriiieriieeeiieesiieesseeesseeesseeesseeessaeeessseeessseeessseassnssaessnsens 251
Data Conversion and SOrting OPEratioNS.......c.uivriierrieerrieersieessseessseeessreesssreeessreeessseesssseesssseesssees 251
Data CoNVEISION LifE CYCL. . i iiiiieiecieee ettt eectre e e rrre e e e s ee e e e e enbee e e e snbtaeeesennseneesennsenesannn 253
The Domain Hierarchy and DOmain PLUS=iNS......ccccutiiiiiiriiieniieesnieessieessieessveessveesseeessreessseessanes 253
OVerview 0f DOMAIN PLUS=INS.....uiiiiiiiiiiei ittt scte s ste s siee s s sree s s saee s sbee s saee s ssbaesssbaessbaessaseessaseessnnes 255
Domain PLUZ=IN CONfIGUIATION....c.uiiieiieieiieieite ettt ettt s e e s be e e s sbe e e sbeeesbaeesbaeesaseeesnseeenn 257
Out-0f-the-BoX DOMAIN PLUS-INS....ciiiiiiriiiiriiieriitessie et e st ssre e st essreessbeesssbeessabeessaseessasaessaseas 259
o] gl S{=T o To] o { [ a= SO PRSPPI 269
Java ObjeCt REPIrESENTATIONS. .. .ciiiiciiie e ccctieee et e e e e e esrree e e e earee e e s seabeeeeesesteseesennssneeesanne 272
CUSTOMIZAtION GUIAELINES. . uiiiiiieieiie ettt ettt s ee e s s te e s s be e ssate e ssaeeesssteesnssaesnnsaesnnes 273
FA¥a A VZ=Y o =To I o o1 ox TR SR 283

(O a1 T o T=Y T o BTV =] Fo o o 1T o SRS 285



SINGLe SOUICE DEVELOPMENT. ... ettt ettt ee e s eee s s eaee e st e e sbee e sbee e sbeeesbeeesasens 285

Integrated LOCALIZAtioN....iccuiiiiiee ittt ettt ee e s see e st e e s bee e s aee e s ree e saee e s aeaesneas 285
JANE) (o] aF= Aol CT=T g =T =\ o] FO OSSPSR 285
ACCESSING ThE HELP Page..ci ittt et te e s ate e s ste e ssate e s seeesssteesaneaesans 285
ACCESSIDILITY FEATUIES. ... etiiie ettt eectre e e re e e e et e e e e bt ee e e eesasteeeeeensteeessenseeeesennsseeeenan 285
ELemMENTS Of ONLING HELP..uuiiiieeieee ettt trre e e et e e e e e be e e e e ebr e e s s e eabaeeeeeensseeeeeenseneesanns 285
Adding or Updating Help CONTENT ..ottt sre e s e s e s 286
Maintaining DYNamMIC UIM PagesS.....c.uiiiiiiiiiiieiiiieeiiee st ssite e st e ssite e ssateesssteessaseessssaessseesssseessssaesnnseenas 287
Working in a Development ENVIFONMENT.......iiiiiiiiiiieriieeceiee st sereesere e sseeessaeeessseeessseeesneeesnns 287
WOrKing in @ RUNNING SYSTEML.ciuiiiiiiiiiiiieeeite ettt ettt s e e ssbte e sbae e sbeeesssaeesssaeessaaesaseeessseenn 289
Unsupported Features in DYNamiC UIM... ...ttt eettee e e vree e e e sntte e e s seanteee s s nsae e e e e nnreeas 290
A TSRS 290
A I 8 R 291

L0 S I 1 o PSP 291
S R 292
I S 292
(010 1AV 17 11 1 RS 292
ACTION _SET ittt este ettt e te et e st e et e st e e te e bt e s te e beesste e seesnseenseesssesnseessaesnseessaesnseasseeenseasenns 293

WV ID GET . iiitieeiieeteeete et et e e e et e st e e bt e e te e beeesee s beessee s seesseeense e seessseasseessseenseessseenseesseeensaesseeenseassenans 293
ACTION_CONTROL.c.uttieieecieieieecteeseeesteestessteesseessseesseesseesseessseesseesssesssessssesssessssessseesssssssesssessnsesssees 293
LIN K e ete e ettt et e e te et e st e e te e ste e e te et e e e s te e st eesee e seeasee e seeaseeeaseeaseeeaseeaseeenseenseeease e reeente e beeenaeeteenneeereanns 294
INLINE_PAGE.... it i cttectieeieeiteeste et e te e te et este et e e e see e teesseesseesseeesseesseesaseesseesssesnseessseenseesseesnseanseesneenn 295
MENU . oottt te et e e s e et e s te e s be e e ee e beeesee e beeaseessseeaseesaseessaessseanseessseenseessaeenseesneeansansseeansennseennes 295
SERVER_INTERFACE.... ..ttt cterteeieectte et et esteesteesteesteesseesnte e seessseenseessessnseesasesnseeseesnseassessnsesnseennes 295
INFORMATIONAL. c.ttetteettectte et st te e e et eeteesteesseessteessee e seesseessseesseessseasseessseenseesssesnseesssssnsessseesnsensns 296
UIM SUPPOIT iN UNIVEISAL ACCESS...uiiiiieiiiieeieeiiteeeeeitteeeesiitteeeeestteeesesssteseeesassteeessassssessassssessesssssesessnnes 296
0] 0NN o] oY) o A T U AN U 296

1 0 4o - PP " | -
TN (oY o] oV ol o] g Y[ =T = [ 1 299
TrAAEMAIKS ..ttt ettee ettt ettt ettt e et e e s bt e e e bt e e s bt e e sbeeesabteesbeessasteesasaeesasaesssaeessaeessaeesasaeesnseeesnn 299



List of Figures

vi

R e Y Lol ) I o= T o] o TSP 3
2. Application USEr INTEIfACE OVEIVIEW...c...uiiiciiiecciie ettt ettt et e st e e s tee s sate e s sbee e sbee s nsaesnnsaeenssaenan 4
IR TaaY o LAY o] o] L Tot= N T a =1 o] o 1 L= TSR 7
A, WebD ClIeNT FOLABT STIUCTUI ..ottt ettt et e st e s st e e s s be e ssbeessbeessaseesnsaesanseenn 10
5. Default Preview Values for Domain DefinitioNS......c.ceviirviiriiiniieiiienieeieertesieesee e sre s sane s 19
6. eXtErNal-ClIENT INVOCATION...c.tiiietieeeceeeete et ee e e e e e e e s et e e seeessstaeesaeeeensseesnnseesnnses 20
7. Configuring an APPLICATION LOCALE.......uiiiii et sree e s e st br e e e s s abeee e s sebaaeesensraneeenas 24
I N Y: T ol o] (=l ol o] o 1= T A=Yl o TSRS 26
9. A Sample IMage.ProPerties FilB. .t iiiiiiieriieeerieeere et e ettt e e sre e e s e e s s e e e s reessabeessaseeesaseessnseessnses 26
10. A Sample ImageMapConfig. XML ILE......uiii i st e e s e e re e e s e snbae e e s e raaae s 27
10, Error_Page SECTION EXAMPLE...c.ciii i ccieectee ettt et eette e setee e s etee e s tee e ssbee e s sbeeesbaeesnbaeesbeeesnseessnseesnnses 31
12. Error_Page Section Example with one default Page.....c.ccivciieiiiiiiiiiecece e 31
13. Multiple Select SECION EXAMPLE... ...ttt ettt e s s e ettr e e s e sere e e s e eabaeessenbaneesensssenesanns 31
14. Disable Collapsible ClUSTEIrs EXAMPLE.....ccciiicciieeiieeeiee et e et e ecteeeste e s sae e e sare e e sateeesateessasee s sseesnnseesnaees 31
15. Append Colon SECHION EXAMIPLE...ciiccciiieieecieee e ceteee e eeereee e eeeree e e e ectre e e e s eebeeee s e nbraeeeesssaseseessssesssenssesenan 31
16. AdMIN SECTION EXAMPLE....eeiiiiiiciiee et e e s s e e e e s e et e e s e sabee e e s snbaeeeesasstaeessassenessenssenens 32
17. Static Content Base URL EXAMPLE......cic ittt ettt etee e ete e s ste e s svae s savaeesbaeesbaeesnsaeesnsaeannns 32
18. RelatiVe URL EXAMPLE..cccceiiiei it cttee s eettte ettt e e e e te e e e e bre e e e e taae e e e s sbeeeeesnsaseeesnstasesesnsssaeenesssnens 32
O AT R - U= LY A ==Y 1 0] o] (=TSRRI 32
20. RESPONSE HEBAUEIS. .. .eiicuiiiiciieceiee et eetee et e e et e e e e e e e te e e e teeeeteeesateeeesteeeestaeessseesassaeeansaeesntesasssaessnseennnes 33
21. Field Error INAiCators EXAMPLE.......uiiiicciiiieececiiee e cecteee ettt e e e e ttee e e e tte e e e e e atte e e s e anbaeeesennsaseesenssaeesnnnsnes 33
22. Security Check on Page Load EXAMPLE.....uiii et ccciiteesectte e s eetvte e s e rvtee s s esveee e s e svsae e s e snraeeessnnenns 34
23. Enable Select All Check-boX EXamMPLE.....cciciiiiiiiiiciie ettt ettt sete e s te e s e ae e seateeestaesetaeesnsaeesnsaeannes 34
24, Transfer ListS MA@ EXAMPLE....uuuei ittt e reee e et e e e e etre e e e s s nrae e e senraaeesennbaaseeennssnaesnnns 34
25, Hide CONAITIONAL LINKS..ceiiiiiieiieieiteeeiteeeite ettt ssite e st e e s bee e s sbeeessbeeessaeeessbaesssaeessseesnnsaesnnsaesnnsens 34
26. DiSable AUTO COMPLETE...ii ittt rre e re e e e e e s bae e et te e e ate e e saeessbaesseaeeseesensesennees 34
A A Yol o 1o F- T 00T o) 1= (U] =1 1o o FOR TP 35
28. Sample Pagination CoNfigUIAtioN.......cccuiieeiiciiieeecccte et e s crre e e e e ertr e e s ssaar e e s senbaeeesesnssaeesssnnsens 35
29. Extract from curam-config. XML File (L) ....cccueeoiieiieeieeeeeeie ettt ettt re e st eebe e taesabe e aeesaeeenreas 36
30. Extract from curam-config. XML File (2)...uueeuieiieeieeeecte ettt ettt e et e e e eeenns 36
31. Sample address-CoONfIG. XML FIlE..cii it e e s e e e s e e e e e e s esbeaeesssssaaeessnnsaneeean 37
A ool Y T == T o T o o 1= o 1Y 2SR 41
33. ConNECtiON TYPES EXAMPLE.....uiiiiiiiieee ettt ceeree e e ree e e e e cbee e e e s tre e e s e ssaeeeeessntaeeesennsaaeeesnnssasaannns 48
34. Example Configuration for File DOWNLOA..........uiiiiiciiiieicciiee sttt escree e e ssvre e e s seveaee s seensaeeesennnes 49
35. Example of @ FOOTER_ROW iN @ LiSt...ccuuiicciiieiiieeeiieeeieeeeieeseieeeeteessteesetee e s veeesnvaessntaessteessnsasesnsassnnens 69
36. Example JSP SCRIPTLET AcCesSiNg @ TEXTHELPET ...cii ittt 74
37. Example JSP SCRIPTLET RedireCting t0 @ Page.....cciiicciiieiiciiieeeccitee et eevtre e e evtee e s esavee e s e s avaeeeean 74
38. Example JSP_SCRIPTLET Redirecting and Accessing a TeXtHEIPE ... .ccccveeecieeccieecciee et 75
39. Example of @ DYNAMIC LABEL.....uuei ittt ettt eertee e e eette e e e e tre e e e e aba e e e seeabaaeeeesansaeeesennsaneenan 76



40. Example of DYNamiC MENU Data......ccveeiieiiiieeeceiiieeeeeciieee e eeireee e eeerree e s e tseeeessensaseesesnssasesessssssssessssesesns 86
471. Example of a DYNAMIC Menu Configuration File......iiuuiieiiiciiieeecciiieeeeeitee e scitee e s sctree s seeeaee s s s envnneeeean 86
42. Example of an INTEGRATED_CASE Menu Configuration Fil€........c.ccecuervierneeniienieinienieenienieenieeseeeeees 87
43. Example of the IN_PAGE_NAVIGATION Menu in UIM. ...t ertrre e e e tre e e e snae e e e s 87
44, An example of Wizard-type MeENU UIM.. ...ttt rere e s e s sree e s s savee e e s sevtaee s sesnsaaeesennnes 88
45, Example of the required properties in the resource store property file......ccceeevieeieceiicciecccieeceecciees 89
46. Sample TEMPLAte DELAILS......uuieiiecciiee ettt er e e e eeeare e e e e tbe e e e searaeeesensaaeeeesassseeessssessenannes 103
A7, MULTISELECT EXAMPLE...iiiittiiieeiiieieecieeetesiteesee st esteessteesseessseesseessseessessssesssessssesssessssesnsessssesseessessnses 110
48. Application User INTErface OVEIVIEW....c.uiicciiieiieeeciieecieeecteessteessteessteesssreesssseessssaesssseessssasesssessnsseens 115
L YT 1 0] o] (T o] o JE PSR 127
50. CT_APPLICATIONCODE.CEXutiittiittieteeiteeseeesieeseesssessseesssessseesssesssessssesssessssssssesssessssesssessssesssesssesssesssees 128
571. Application User INterfaCe OVEIVIEW.....cccuuiiiciieiciieeccte ettt eetee e tee e etee e tee e s bee s sbae s s aaeessbaeesaseeennes 139
52, SIMPLEVWOIrKSPACESECION.SEC. . iiiiiiiieee ettt eeectteeeeecttee e e esetreeeeeetaeeeeesssaeeesessaeeeeesssasesasassaseessnsseesenan 141
53, SIMPLESNOITCULPANEL SS . iiiiicciieee ettt e s et e s s e br e e e s eabaee e s s s abeaeeseesraeeeesnsenes 144
54. Application User INterfaCe OVEIVIEW.....cccuuiiiciieiiiie ettt ettt etee e etee e tee s vee e sbee s s aee e sabaessnsaeennes 145
TSRS 120101 ET =1 oI = Lo TSR 151
56. FILE_DOWNLOAD Configuration from curam-=Config.Xml.......ccccviureririiieeeiiiiiieeeecireeeeccrneeeeeeveneseeenens 157
NS0T 01 C=Y K T=Y o TU TN oL o T TSP 157
58, SIMPLENAVIGATION.NAV...iiiiiiiiiiee ittt eree et e st e ste e e ste e s see e s saee e sssteessseeessseeesseeesseeessseessseessseessnnees 162
SR Y[ na] o1 =YY o] o JE=1 o o PSPPI 167
YO RSl 0] t=Y Y o] o 5 FoTa  T=t T ond o] o -] T o3RRI 168
LN Y1007 t=T T a g L= = o TR RN 168
LY Y1 a a1 o] (=1 T 0 L= TR U 1 PSR 169
63, USEIS.AMXuutiiutiiiuiieiieenteeieesteeteesteste et e steebeesabesbeesatessbaesatesabaesatesabeenseesabeeseesaseensaesaseenseesssesnseenssennses 169
64, CT_APPLICATION _CODE.CEXutttttiiiiiiiecciiiiteiteeeeeseeeeeeeersteeeseeesessesssennsssssasessessesessasnsssssnassesesesesasnnnnnnnns 170
L ST aa] o E=T Ay o] o J- T o] o JS USSP 171
66. SIMPLEAPPWOIrKSPACESECHION.SEC .. uiiieiieieiieeeieeeeteeeeteeesteeesteeesteessteeeeteeessteeeessaeesssaeesssesssnsessssesanns 172
67, SIMPLES O CULPANEL.SSP. . uiiiieieiiiiee ettt e e esrre e e ee e tre e e e e s abeeeeesabaeeeeesnbsaeeeesssseesesnssseeesannes 172
68, SIMPLESEAICN.TAD. ... et e e s s e tr e e s et ae e e e e et ba e e e e e nbraeeseabaaaeeenanees 173
69. PEISON SEAICN PAE.....iiicuiiiiiiieciteceiee ettt e te et e s et e e s ve e e s bee s e bae e s baeesbeeeassaeeessaeaasseeeansaeessseeeaseeesnnees 173
A0 BT a1 C=3 Y= Ut od TV T o o TSR 174
A Y1201 01 (=T o= T Yo i -1 o JO USRS 176
72, SIMPLEPErsSONCONTEXE.UIM .. uiiiiiiieieiieecteeeeteeeeteeeeteeee e e eeteeesteeesaseeesssaessssaessssaessssaessssaeasssesesssesesseennn 176
ST 20101 C=T R=T Yo TV T o TSR 178
2T a1 o C=T =T Yo ) T U] o TR 180
75, CreateEmMPLlOYMENTS.UIM ... et tee e ete e e e te e e e tee e sbeeeebaeesbaeeensaeeensaeesnsaeesnsaeeanes 181
76. CreateEmMploymentWizard. proPertiEs.... . iiieeieciieeeeeccireeeeeecree e e e ecreee e e e srreee s essraeeseesssseeeessnssesessnns 182
77. CreateEmploymentWizard_pageOne.UiM.........eciiciiieeicciiee s eciiee s secieee s e s sraeeeseeseeeessesnvreessesnsenessennnnes 184
78. CreateEmploymentWizard _pageTWo.UiM ... e eeeecieeeeieeeeieeeseessteeesteessveesssreessraesssaeessseesssesssnses 186
VA BT 120101 C=T R=T Yo T =L o R 187
o O YT aa] o] (=] Rd=T Yo 0] A= VA £ = PP 188
IS 0] o (SIS T=Y: Ul o AU Ty PSSP 189
82, SIMPLESEAICN.UIM....iiiiiiciiee ettt eeerte e e e e ete e e e eetrreeeeeeasaaeeeessssaeeeeestaaeeeesnssaaeesassesessesssens 190

vii



viii

83. Customizing the date fOrMAL......ccciiiiciiice e e s e e s e e e s te e s s be e e saeeeenaeas 203
84. Customizing the Date-Time fOrMATL......cuiiiciiiee e s e e s s e ae e s s e sabreeeeeenarnnas 204
85. Selection List ON an INSEIt Page....ccciiiiciieeieieeciieeeiteee e estreeestre e e e e e e stae e e taeessaeessaeessaeesnssaesnsseessseean 206
86. Selection List 0N @ MOAIfY PABE.....ciccuiiiiiiiieiieieiieeete sttt ee s see s rae s ee e s ree e s sbee e ssnee e s ste s s neeesnneeas 206
87. Enabling multiple selection in curam-=Config. XMLl ....c.uueiiiiiiiieiieiiieeccccee et sree e e s saeaee e ea 207
88. Sample RulesDecCisioNCONTiIg. XML FIlE.....ccciii ittt e s te e s aee e s eate e s atee s reaeeans 210
89. Example of Decision ID Sourced from @ BEaN......ccccccuiiieiieciiiieececiiee e eccteee e eetee e sereee e s eraaeeeesansaeeeeas 211
90. Example of Rules Tree Items wWith SUMMAIY FLAaG......cciiiiiiiiiiiieeeccceee et svare e s evvee e e 212
91. Sample RULESEItOrCONTIG. XML File...ciiiuiiiiiiiecciieecieeete ettt e et e e rre e s aae e s ab e e e saseeesnnaeens 213
92. Example of Decision ID Sourced from @ BEaAN......cccuueeiieciiieececcrtee e cecrtee e ecirre e e e reee e eeerrae e eeensaeeeeeanns 214
93. Sample Horizontal Bar Chart XML........ueii e cccciieesecciiree s seiree s s eite e e s e savee e s s saveaes s enasaaeesesnsaaeessnnnenes 220
DL, WOTKFLOW. e nteeiteeiteeteeite ettt ettt ettt e s et st e e s at e st e e s beesab e e bt e sabe e baesstesabeesabesabaenssesssaensaesasesnsaennes 223
05, CalenNdar XML STMBaAIM ... .uiiiciieieieeeiieeeeieesereessteessteessteessteesssseesssseeesssaesssseesssseesassaesassaeessseessseesssseennn 231
96. CalendarConfig. XML EXAMIPLE...uiii i iieee et eeccttee e cctee e eeire e e s e etar e e s e s ttee e s seabeeessenbaeessesssnaeesssssenneenn 233
97. A Sample PaymentStatement.properties FilE.. ..ttt ae e e 234
98. Address Configuration in curam CONIZ XML, .cccuiiieiiiieiiieeiieeeee et see e aae e s reeessbeeesseeeas 235
99. UIM EXample Of SChEAULE VIBW........uuiiiiiiiiee ettt cetre e cttte e s e s tee e e e s savae e e s seavtae e s sesaaeeesennsaneeeean 237
100. Pop-uUp Configuration EXAMPLE.....c.uieiciieieiieeciieectee et e et e estee s tee s teessreessnsaessssaesssseessssaeessseesnsseenn 238
101. Opening a Pop-up from an INSEIt Page.....c.uiicciiiieiiiieiieeeiiecete ettt ete st e s svee e ssse e s s ree e s baeesssaeesneeeas 242
102. Opening a Pop-up from @ MOAifY PAge......ciccciiiiiieiiiieeccciieesecieee s esveee e e svtee e s e sveae e s sessaaeessssnsennessnnns 243
103. Supplying Parameters t0 @ POP-UP PagB....cccii ittt ettt see et vee e ve e s s vee e s vae e s vae e areas 243
104, MULLIPLE POP-UP DOMAINS...cctiieeieiiiieeeeeiiieeeeeeireeeeeeeisreeeeesisreeeesessaeeesesssseeeessssssssssssssasesssasssseessssssnes 244
105. UIM to Use Multiple POP-UP WINAOWS........ciiiiiiiiieeiecieeeecciiieescecvtee e s esvtee e s e ssavaeeessenveneessensssnesssnsssnnas 244
RO eI 0o T o [ o] == YT o] L= PP 250
107. Sample DomMain CoNfiGUIAtION.....uiiiiiieiieereeeereeesee e te s ree et e e s ree e s bee e sbeeesbee e s beeesseeesseeessenssnnees 258
108. CUSTOM EXCEPTION CLaSS...iiiiiiiiieiieiiiiieeieiitiee e eectte e e e eettr e e s seitree s s s eateeeesesnssaeeesesseaessennseaesssssseneessnssenes 271
109. CUSTOM MESSAZEE CAtALOG.....ueeecuiiiiiiieiiiieeciteeeee e ee e st e e s tee e s ee e e tae e s sbeessbaeeessaeessbaeesnseeessseeesnseessnnees 271
120. Throwing @ CUSTOM EXCEPTION...ccuiiiicieeiciiecciee sttt esee e sete e seiee e seree e sbee e sbeeesbeeesbeeesseeessseessnseessnseessnses 272
111, Throwing MULLIPLE EXCEPIIONS. ..uvii ittt st rre e e e stee e s e s eabee e e s seabee e e s sertaeeseennsaeessennsennas 272
112. Custom Formatting for CUrTENCY VAlUES......cccuieecuiieeiie et ecieeeteeseteessteessteesete e s veesssteeesnseessnnaeens 274
113. Configuration for CUStOM FOrMatting.......ccecuiiiriieieiieieieeeite et see s see e siee e ree e s sree e s saeeesneeesnneas 274
114. Custom Formatting WithoUt GrOUPING......cccccviieiieiiieeecccieee e eccite e e e scrre e e s seveeee s sertaeessensaeessssnssneesennnes 275
115. Custom Parsing for CUITENCY VAlUES........ciiciiiieiee ettt sete e see e e ette e s sate e e svae s svae e s ereeeebeeesnses 276
116. Custom Validation for Odd NUMDEIS.....cccuiiiciiiiiieecite ettt sre e s sae e s re e s sbeessnseeeas 277
117. Custom Validation Failure MESSAZE. ...c.cccuiiiiieiiiieeeeccitee e cctee e sctre e s s stre e s s e saee e e s esareee s senbaaeesenasanneas 277
118. Configuration for Custom ValidatioNn.......c.eeicieeieiiiieieeccee ettt e e e s reee e saeaessaeaeennes 277
129, Sorting StriNgs NUMEIICALLY....eiiiciiiieiit ittt ettt see e s see e s ate s s saee e e aeeessseeeesseeeenneeesnnens 278
120. SOrting FOrMAtted VAlUES......uuviiiciiiee ettt sttt e s e tte e e s e ete e e s e e abe e e s seabaaessenasseeesennseneeean 279
D271, SOMING ZEI0 DALES..ceicuiiieciieeeieeeeteeeetee et eeste e e e te e eetteeeeteesesteeesstaeesstaeaasteeasssaeaassaesnstassnssessnstessnssesanns 280
122. Configuration for CUSTOM SOMTING.....cuiiicieiiiiee it eseee e eete e ssee e seree s st e e sbe e e sbee e sbeeesbeeessbeeesaseeesnseeesnses 280
DA B AUy (o] o T = T g (=T oo T A1 ¥ =R 281
124, Custom Pattern Match Failure MESSAZE.....ccuiiicieiiiieecteecte ettt eee s tee s vee e stee e s tee e s vae e s vae e neeas 281
125. Custom Default Date-TimMe VAlUE.......cocciiiiciiieiie ettt cetee st et e st e s re e s e e s see e s sare e s s te s s s sseesnneeas 282



List of Tables

L. ENVIFONMENT VATIaDLES. .ottt ettt e s be e s sbe e s saba e s sabaessabaeesabaessnbaeessaesnnee 15
2. Pagination CoONfiguration OPtiONS.....iiiciiiiiiiicciee ettt et e eete e e e e e e te e s eateeesateeeebeeeensaeesnsaesansaeanns 35
3. Placeholders used in Frequency Pattern SELECION......ccuiiii ettt e cree e e e re e e e e e raae e e 43
4. Properties used for the Frequency Pattern SELECTON . ... s rae e e s aaee e 44
5. Attributes of the ACTION_CONTROL ELEMENT.....ciiciiiiiiinieiiiinierieenteeteeseesreesieesresbeesaresbeesaeesabeesaaesases 50
6. Child Elements of the ACTION_CONTROL EL@MENT....uuuuiiiiiiiiiiiiiiciiteeee e eeeccivnrere e e e e e e e e e e asarneeees 52
7. Attributes of the ACTION _SET ELEMENT...uuuueeeeeeeee ettt e e e e e e e e e e e eeeeeeseeesesssaseaees 53
8. Child Elements of the ACTION _SET ELEMENT....uuuuiiiiiiiiieeiiieeeeetiriree e e e e e e e e e e s asasaareeeeee s 54
9. Attributes of the CLUSTER ELEMENT......cciciiiiiieeicieeeiee ettt s sste e sere e ssaee e seate e seaeeesseeessseeessneaesseessaneessans 54
10. Child Elements of the CLUSTER ELE@MENT......cciiiiiiiiieiiieeeteecte ettt see e st see e s vee s svae s sree e 56
11. Attributes of the CONDITION ELEMENT.....cccuiiiiiriiririerteeiterte et et st eeeste st e st e sbeesaeesabeesbaesaseesaesaneen 60
12. Child Elements of the CONDITION ELEMENT......ciiiciiiiiieieieeete et see et te e st e e sre e e sve e s saae e e 60
13. Child Elements of the CONNECT ELEMENT.....cciiiiiiiiiiiiieerieeeeiee sttt e ssee e seate e ssabe e s beesssseessneaesnee 61
14. Attributes of the CONTAINER ELEMENT...ccc.iiiiiiiiiieeieerte ettt ettt st s sae e sbe et esabe s beesanesneenes 61
15. Child Elements of the CONTAINER ELEMENT....ciciiiiiiiiiiieeiiecrie st sttt re e s re e s re e s e e sssaeesssneeeas 62
16. Attributes of the DETAILS _ROW EL@MENT...uuueieiiiii ittt e e e e e e e et e e e e e e e e e e e e seessaabaasaaaes 63
17. Child Elements of the INFORMATIONAL ELEMENT...cciiiiiiiiieiciee ettt et ete e eee e evre e eeree e svee e evae e e 63
18. Attributes of the DESCRIPTION ELEMENT.....cciiciiiiiieiriieieieeeeiteeeiee st e s svee s te e s ste s s ste e e saae e s saeeessnaeeenaeas 63
19. Child Elements of the DESCRIPTION ELEMENT..cccccuiiiiiiiiiieiie ettt sttt s s 64
20. Attributes Of the FIELD @LEMENT....cccuiiciiiiiiriieteeieeeesteet sttt st sbe bt e b sbe e s it e sbeesaaesaseensaesane 64
21. Child Elements of the FIELD ELEMENT.......ciiiiiiiieiiieeiieecte ettt e e s e s s e e e sarae e sbaeesanaeeas 67
22. Child Elements of the FOOTER_ROW EL@MENt....ueiiiiiiiiiiiiiiieieeeeeeeeeeeeeeseeee e e e e et e e e e e e e e e e e e eeeesaesaaeaaaes 69
23. Attributes of the IMAGE ELEMENT.....ccciiiiiiiiiieieeiterteeie ettt et st e et st s bt e sabesbeesaaesabeesaaesasesnnas 69
24, Attributes of the INCLUDE ELEMENT.......uiiiiiiieieeecieeeie et et e st sste e s siee e s sae e s saeeessaseeesbe e s ssaesssseessnns 70
25. Attributes of the INITIAL ELEMENT....cii ittt ettt ettt sre e s sbe e s sbe e s sbe e s saba e s sabeessabaeesasaesnnne 70
26. Child Elements of the INFORMATIONAL ELEMENt...ccuuiiiiiiiiiieecteecte ettt vae e e 71
27. Attributes of the INLINE_PAGE ELEMENT......coo ettt e e e ee s e sssaarr e e e eeee s 71
28. Child Elements of the INLINE_PAGE EL@MENT....uuuuuueeeeeeeeeee ettt e e e e e e e e e e e aeeneees 72
29. Attributes Of the IS _FALSE ELEMENT.....ciiiiiiiiieiieeeeeeeee ettt e e e e e et b e e e e e e e e sesssssssssseneeeeeeas 73
30. Attributes of the IS_TRUE ELEMENT ...ttt e e e e e e e s e sabsbae e e e e e e e e e s ee s ssnnneens 73
31. Child Elements of the LABEL ELEMENT...cccuiiiiiiiiitietecett ettt ste e s st e s sae e ssaee s 76
32. Attributes of the LINK ELE@MENT.....ciiiiiiiiiiiectceeetes ettt ettt ettt ssbe e saaesabeesae e sabesnsae e 77
33. Child Elements of the LINK ELEMENT....cccciiiiiiiieieeeieeeieeeete sttt es e ste e s s e e e s saa e e sbae e s baeeessaeessneeens 80
34. Attributes Of the LIST ELEMENT....ci ittt ettt et e e st e e seate e sate e sateesnteesaneeesanee 81
35. Child Elements of the LIST ELEMENT....ccciiiiiriiiiiiiieeieeeieete ettt st sbeesteesabeesaeesabeesbaesaseensaesasenn 83
36. Attributes of the MENU ELEMENT.......uiiiiiiicie ettt e st e st e s ee e s sare e ssaeaessseeesssseesnnes 85
37. Child Elements of the MENU ELEMENT.......ciiiiiiiiieieeeeettese ettt st et s e s e s e e e 86
38. Properties in the wizard defining rE@SOUICE......c.uiiiciii et e e e re e e e e e areas 89
39. Attributes of the PAGE ELEMENT.......iiiiiiieieecte ettt sttt e et e s e s s e e e s e e s s e e e s beeesnneas 90



40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

Child Elements of the PAGE ELEMENT.....e ittt e e e e e e e e e s e e e e et e e e te s e s s saaa e aaaanaaanns 91

Attributes of the PAGE_PARAMETER ELeMENT. ..ottt 92
Attributes of the PAGE_TITLE ELEMENt.....cccciiiiiiiiiirieiiteeieeiteste et este st esieeste e ieesaresbeesanesbeessaesaseenees 93
Child Elements of the PAGE_TITLE ELE@MENT......ccoiiiiiieieeeeee ettt ceeeeararee e e e e e e e s e e e anenns 93
Attributes Of the SCRIPT ELEMENT....coiiiiiieeteeett ettt e st e s be e s s ae e ssabe e s saraesnaeas 94
Attributes of the SERVER _INTERFACE ELEMENT....cooooiiiieiiiieieeeeieeetttteeeee et e e e e e e e esesannnns 95
Attributes of the SOURCE ELEMENT....iiciiiiciie ittt sttt see e seree e s eree s s eree e sereessbeeesbeesssneeesaseessases 96
Child Elements of the TAB_INAME EL@MENT......uuuuuiiieeeeeeeece ettt ss e e e e e e e e e e e eeeeeeeeeees 97
Attributes of the TARGET ELEMENT...cuiiiiiiiiieeteceete ettt sttt sar e s saae s e e saaesanes 97
Attributes Of the TITLE ELEMENT......uii ittt sttt ee e sbee e s e s s be e e s e e e sbae e sareaesaneas 97
Child Elements of the TITLE ELEMENT ..ottt ettt st sare e s saa e ssbee e snaee s 98
Child Elements of the VIEW ELEMENT.....c.ciiiiiiiiiiiiterteeieeteeie ettt sttt sar e st saaesabeesaae e 98
Attributes of the WIDGET ELEMENT....cic ittt ettt ette st e s e e s te e s sae e s be e s sabe e e sbeessaseeennns 99
Child Elements of the WIDGET ELE@MENT.....cciiiiiiiiiiiieieiieeetee ettt ettt e s ste e s sareessareessaeaesenee 100
Attributes of the WIDGET_PARAMETER ELEMENT.....cccciiiiiiiecciiieciteeeite et e eteeesteeeeveeesvaeeevaeesvaeeens 100
Child Elements of the WIDGET_PARAMETER EL@MENT.....cooiiireiiiiiieee ettt 101
Parameters to the EVIDENCE_COMPARE Widet....ccoiouiiiieiciiee ettt e setee e s vae e e s 101
Parameters t0 the FILE _EDIT Wit .uiiiiieieiieieieeeeieeectee et e ssteeeste e s teesstee s nsae s asae s nsaessnsaeennseeas 103
FILE_EDIT Widget Configuration SEttings SUMMAIY......ccccveirciieiriieeriiieesireeessreeesreeessseeesseeessseeessseeenns 104
Parameters t0 the FILE_UPLOAD WidGEt.....ciiiiuiiieeecciieee ettt s sesitte e s s evee e s s eavtee e s ssvteee s seneaeesssnnnanesenas 107
Parameters to the FILE_DOWNLOAD WidZET.....cccouiiiiiiiieiiecciee ettt setee st e st esevte e ssveeessateessaree e 109
Parameters to the MULTISELECT WidZET....cicciiiiiieiiieeicieeeeieeeeteeesiee st e e ste e s ste e s sae e ssnee e ssaeeessseeesneas 111
Parameters t0 the SINGLESELECT WidZET.....uuuiiiiiciiieeecciieee ettt eecttee e ecttre e s sveee s s esvaee e s esveae e s s snnns 112
Parameters to the RULES_SIMULATION_EDITOR WidgEt....cccouitieuriiiiiieeieeeeieeecreeeereeeevee e veeeeveeens 113
0010117 = (] =Y o] T ST 1= SR 116
Attributes of the application ELEMENT.....coo it e e e e e s e svraee s e nees 118
Supported Child Elements of the application ElemMent.........c.eeeiieiiieeciie e 119
Supported child elements of the application-menu element.........ccccoviereeeiiiiieicciiie e 120
Attributes of the application-search elemMENTt.......ccuviiii i 121
Supported child elements of the application-search element........cccccvieeciiicciiiccieecceece e, 121
Supported child elements of the search-pages element........ccocvviveiiiciinicenccee e 122
Attributes of the search-page lEMENT.......coo i e rrre e s e eaeaee e eas 122
Attributes of the further-options EleMENT........c.ui i e 123
Attributes of the SeCtion-ref lEMENT. ...t e e 123
Attributes of the timeout-WarNing ElEMENT.......ccciiiii e s e e e s e e e s e sarees 123
Attributes of the SECLION ELEMENT....c.c.iiiiiiiiiieeteteee ettt sttt sab e s be e saaesbeesasesabeenes 140
Supported Child Elements of the section ELeMENT.........oooiiiii et 140
Attributes of the tab ElemMENT.. ... ettt 141
Attributes of the shortcut-panel-ref elemMENt.......c..o e 141
Attributes of the section-shortcut-panel ELement...........oooviiieecciiie et 142
Supported Child Elements of the section-shortcut-panel Element.........cooocoveiiiciieeiiccveee e 142
Attributes of the NOAE ELEMENT.....cccii ittt st be e s b sbeesasesareen 143
Attributes of the tab-Config ELEMENT.....ccociiiieeee e et e s e e s ee e s 146



83. Supported Child Elements of the tab-config Element.......ccuviviiiiiiiiiniiicceececee e 146
84. Attributes of the page-param ELEMENT.......coi e e s e e e e s e beaee e e e 147
85. Attributes of the MeNnU EleMENT ..ot sbe e s a e e e e st eas 147
86. Attributes of the CONTEXT ELEMENT.......ii i e s e e s ree e s neas 147
87. Attributes of the Navigation ELEMENT..........uii i e s st e s s s ree e e s e saaaeeeeean 148
88. Attributes of the smart-panel ElEMENt.........oi it eseare e seaeeeeans 149
89. Supported child elements of the tab-refresh element.........ccueeieeciiieiiccciiice e, 150
90. Attributes of the onload/oNSUDMIt ELE@MENTS....uuueeeiiiiiee e e e e e e eeeaaaes 150
91. Attributes of the MeNU-bar €leMENT........c.iiiiiriie ettt et e sbeesbesnbees 152
92. Supported child elements of the menu-bar element.........c.eeee i e 152
93. Attributes of the MeNnU-IteM ELEMENT....cc.cii et seaee e saaeesans 153
94. Attributes of the SUDMENU ELEMENT......c.ciiiiiiiieee et sae s be e 154
95. Supported child elements of the submenu element.........ccociieiiciei i, 154
96. Attributes of the menu-separator ElEMENT..........uvii i srre e e e e areeeeen 155
97. Supported child elements of the loader-registry element........cccceecieeeiiieeccieeccee e, 155
98. Attributes of the loader ELEMENT.......ccciiiiciiicciee ettt eseree e s ree e sbee e snaeesnaeesans 155
99. Attributes of the NaVIgation ELEMENT.........oi e e e s erae e e s e rane e e eeanes 158
100. Supported child elements of the navigation elemMent.........cccviieiiiecieeciieccece e 158
101. Supported child elements of the Nodes elemMENTt..........cooiiiii e 159
102. Attributes of the navigation-group ElEMENT.........uviii ittt e aree e e e e arees 159
103. Supported child elements of the navigation-group element.........ccecveeeeiieecciieccceeecee e 159
104. Attributes of the navigation-page ElEMENT ... e e 160
105. Supported child elements of the loader-registry element.........cccveciiiiiicciiiee e 161
106. Attributes of the loader ELEMENT.......coii it st ae e st 161
107.Tab OPENING RULES....ciiiiiiieiieeee ettt ettt e st e et e s s e e s s be e e ssbe e e abaeesaseeesssaeessseeessseeessseessnsens 165
108. Files required to create an application and corresponding build targets.......ccocceeeccieeeiccciveeecccneenn. 170
109. Files required to add a shortcut panel and corresponding build targets......cccccceeeveeecceeecveeecieeenen. 175
110. Files required to add tab content and corresponding build targets.......ccccveeieerceeircieiecieeecee e 179
111. Files required to add modal dialogs and corresponding build targets.......ccccceveeeviieeicccvieeeieccieeeeeas 187
112. Files required to add tab navigation and corresponding build targets.......ccocceeeieeecieeccieeecieecceeens 188
113. Files required to add an expandable list and a list actions menu, and corresponding build targets.191
114. Attributes of the CONFIG @LEMENT ...ttt ettt ettt e s e e e s e e e sbaeessaeens 218
115, Attributes for CONFIG ElEMENT......cociiiiieiieiieeie ettt ettt ettt e st e ste e bt e sabesbeesabessbeesaaesasesnseenns 222
SN T o TU =T R0 ) - TN o e =R 224
1 R AN (] o 10 =Y =Y T T F (= TSP 225
118. Attributes of Workflow CONFIG €lemMENt......ccccieriiriiinieriiienienieeniee sttt sieesteesreesasesbeesiaesaveeseas 226
129, EVENT attributes iN SCHEMA...ci ittt e e s ebee e s sbee e sbee e s sbee e sbeeesnneas 231
120. SINGLE_DAY_EVENT attributes in SChEM@.....cciiiiiiiiiiiieeeeeeeeeeeeteeeeee et eeeee e e e e eaee e 232
1271, Calendar VIEW TYPE VALUES........iii ettt ectee st sete e s te e s aaee s staeesssae s ssaessssaesnsseesssaessssaesnnseenn 232
122. Parameters Passed to Event DesCription Pages.......ccuiiiiiiiieiiieeiiieecsieessieessreessveessvee e svee s sveesssneas 233
123. Address FOrmat CONTIGUIATIONS. .....cicccuiieeeicciiee et e e st e e sesrte e e s e stbr e e s e esabeee e s e nbeaeessnsennesssnnnns 236
124. Attributes of the POPUP_PAGE €lEMENT........civ ittt e eeesrras e e e e e e e sesesssssannnes 238
125. Child elements of the POPUP_PAGE €leMENt......uveiiiiiiiiiiitteeeeee ettt 239

xi



xii

126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
1309.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

Attributes of the PLAYER LEMENT......ouuueieeeieeeeee ettt e s e e s s e e e e e e e seeeeeeseessssssees 246

Attributes Of the PAgE ELEMENT.. ... e e e e s e et ae e e e s nrae e e e s aneees 249
Behavior of the Abstract PLUZ-iN ClasSSES......ccccuiiiiieieiiieeiieeeiieeerieeesreeesteeesaeessaveeesraeessnseeesaaeeenneeas 259
Out-0f-the-BoX CONVEITEI PLUS=INS..cccciiiiiiieeiiieeciiee ettt et sste e st e ssre e s sae e ssase e s seeessnseesnseesnnseens 260
Behavior of the FOrmat OperationS......ucuieee et eetre e serree e s e stbee e s e sabaee s s eeavaaeesessneneas 261
Behavior of the Parse Operations........cueccciieiiieeeciee ettt et e s vee s e e s bee s s bee e sabaeesasaeesnneas 263
Behavior of the Pre-Validate Operations..........ccucciiieiiiciiiieeeecieeeeeecreee e eecreee e eeerreeeesersaeeeeesnseeeeesnnns 265
Out-0f-the-BoxX COmMPArator PLUZ=INS.......cciiiiiieeieiiiieeeieciieee e seiree s eecrteessesaeeeessssveeessssnsenessensssneesenas 266
Collation StreNGth SUMMAIY......cccciiiicie ettt et e et e e e te e e s tee e s taeessteeeestaeesnsaeesnsaeans 268
Out-of-the-Box Default Value PLUS=INS.......ccciiiiiiiieiieieiieceiee ettt sere e st essre e s te e s ssea e s ssseesssneeennee 268
Classes Used for Java Object REpreSentations.......cciicciiieeiiciiiee st eccire e s eeire e s eevree e s e evaeeeseeaenes 272
UNSUPPOITEA PAGE FEATUIES.....uiiiciiieeitiieccitiecteeeciteeestteessteestteesseteesssseesstaesssteessseessseesssessnsssesnnseen 290
UNSUpPOorted PAGE_TITLE FEATUIES.....uuiii e cettee e cectee e eectree e eeestree e e e e ereee e seebaaeeesenssaaeesensnaeeesnnns 291
UNSUPPOIrted CLUSTER FEATUIES....iiiiiiciieei ettt ettt et e s e ttee e s e stae e e s s savee e s s eabeeeesesnseaeessnnsenesenas 291
UNSUPPOIEA LIST FEALUMES. . ciiiieiieieeeeieeceieeceteecete e setteesetteesetee e ssveeeesseesssbeeseseeesseeesseessnseeesseesnnsees 292
UNSUPPOIrTEA FIELD FEATUIES. . uiiiiiiiiiieeieiiteeececcttteeeeecrte e e e eeiteee e e ttreeeeessnsaeseeenssaeeesensaseeessnsseseesennssnes 292
Unsupported CONTAINER FEATUIES....cccuuiieiieciieeeicetieeeceiitee s s eccitee e s s e svaee e e s searaeeessenntaeesssnseneesennssnaesens 293
UNsupported ACTION _SET FEAtUMES....cicciieeciieeeciteeeitee ettt e sctteestaeeeteeeeteeeesbaeesbaeessaeessaeessaeessaeeans 293
UNSUPPOrted WIDGET FEAtUIES ... uiieeieeiiieeee ettt ee e eetttee e eette e e e tre e e e e sreeeeeenbaaeeesnsaeeeeennssaeeeesnsseeeas 293
Unsupported ACTION_CONTROL FEATUIES....uciiiiiiieeeeeiiteeeeecitreeseeteeesesssrteeeessnseseessssssasessssssnessennnes 294
UNSUPPOIEA LINK FEALUMES....ciiciiieiieeeciie ettt eetteeetee e stee e s tee s e tee e s tee s staeesnaeeesnsaeesasaeasnsaeenssasesnsaeenses 295
Unsupported INLINE_PAGE FEATUIES.......uuiiiieciieeecectrteeeeectte e e eectttee e e estreee e eeettraeeeennseeessennsaaeesennsseeens 295
UNSUPPOIrTEd MENU FEATUIES. ... eeiieeicciiie ettt e eette s eertte e s s eevtee e s e s vaee e s e sabaee e s sabtaeeseenssanessennssnnesann 295
Unsupported SERVER_INTERFACE FEAtUIES.....cccviieiieietieeeieeeeieeeetteeesteeesvaeessraeessaeessaesssneassneans 296
UIM QN the UNIVEISAl ACCESS....uviiieiiiieiieieiiteeieeseitteessteesssteeesteeessseeesseeesssaessssseesseeesssseesssseessseeessseeenn 296



Chapter 1. Curam web client reference

Provides a reference for the Ciram web client application. The Ciram web client has an HTML user
interface that is generated by a middle-tier web application. It conforms to the Java EE architecture and is
driven by JavaServer pages and servlet technology that is based on the Apache Struts framework. This
HTML user interface uses standard browser and Web 2.0 technologies, including JavaScript and
cascading style sheets.

Related concepts

Working with the Curam user interface

Use this information to develop user interface elements with the Cram Client Development Environment
for Java. User interface elements that can be created with the Ciram Client Development Environment for
Java include shortcut panels, tabs, modal dialogs, tab navigation, and lists.

Curam web client overview

User

© Copyright IBM Corp. 2012, 2018

Learn about the concepts and terminology that are related to the Ciram Client Development Environment
(CDEJ).

A basic understanding of Java EE development environments, XML and Web technologies such as
Hypertext Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS) and JavaScript
is helpful, but not required.

« Curam web application development is simplified by describing pages and applications in terms of their
content and flow rather than the graphical look-and-feel and layout of the content.

« User interface metadata (UIM) consists of definitions in XML format that describe the contents, and, to a
certain extent, the layout, of one of the main elements in the Cliram user interface, a UIM page.

« An application is a collection of user interface elements, predominantly based on UIM pages, combined
to create specific content for a particular user or role.

« Graphical layout options available to a developer are restricted to enforce a consistent user interface
across the whole application.

interface metadata

User interface metadata (UIM) is an XML language that describes the contents and layout of one of the
main elements in the Clram user interface, a UIM page.

UIM limits the variety of interface layout options that are available to developers, and defaults user
interface characteristics based on the known formats of server interfaces. Consequently, the UIM is kept
simple and the user interface layout has an enforced consistency across the whole application.

The developer creates the UIM page definitions in files with a . uim extension, with each file
corresponding to a single page.

Individual pages are made up from different elements such as page titles, labels, buttons, and links as
well as the most important element, the data content. UIM focuses on defining elements rather than how
they are graphically laid out. The CDEJ provides the tools to generate client screens from UIM definitions.

Page content metadata

Users can display and enter server data in the main content area of an application. Page content metadata
is used to create the content area. The basic unit of data is a field. Each field is either an output or input
parameter of a server interface.

Various XML elements correspond to the user interface elements such as PAGE, FIELD, CLUSTER, LIST,
ACTION_CONTROL, ACTION_SET and so on. The CONNECT element is an important construct that allows
fields to be associated with parameters to server interfaces. As well as mapping fields, connections can



also map page parameters and static text. The latter is not stored directly in the UIM, but is externalized
in a property file which facilitates easier language localization of user interfaces.

Other XML elements, such as PAGE_PARAMETER and SERVER_INTERFACE, do not have visual
representations in a UIM page but are important to the functionality of the page. A server interface is a
method that has been implemented using the Ciram Server Development Environment (SDEJ). Each UIM
page can be associated with one or more server interface methods. Each method is associated with either
the initialization phase or the process phase. When the UIM page is first opened, the initialization phase
methods are executed. Typically an initialization phase method uses page parameters as input
parameters, and the resulting server data is mapped to output fields on the screen.

The process phase is initiated when an action control of type Submit is selected by the user. Data from
input fields on the screen are mapped to input parameters of process phase server methods and the
methods are invoked. After execution of process phase methods, the flow of control is determined by the
Submit action, which can specify a link to a new target page, or by the default action which returns to the
same page.

The following example shows an extract of UIM used to create the content area. The extract displays how
the major elements that make up a screen of content area, such as clusters and lists, are represented in
UIM.

2 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<PAGE PAGE_ID="Person_search">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticTextl"/>
</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="ACTION"
CLASS="Person_fo"
OPERATION="search"
PHASE="ACTION" />

<CLUSTER NUM_cCOLS="2"
TITLE="Cluster.Title.SearchCriteria">

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="referenceNumber"/>
</CONNECT>
</FIELD>

<FIELD CONTROL="SKIP"/>
</CLUSTER>

<CLUSTER NUM_cOLS="2"
TITLE="Cluster.Title.AdditionalSearchCriteria">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="forename"/>
</CONNECT>
</FIELD>

. more <FIELD> elements...
<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL LABEL="ActionControl.Label.Search"
IMAGE="SearchButton"
TYPE="SUBMIT">
<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="ActionControl.Label.Reset"
IMAGE="ResetButton">
<LINK PAGE_ID="Person_search"/>
</ACTION_CONTROL>

</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">

<FIELD LABEL="Field.Title.Name" WIDTH="44">

<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="personName" />

</CONNECT>

</FIELD>

... more <FIELD> elements...

</LIST>

</PAGE>

Figure 1: Page UIM Example . i
Curam web client reference 3



Related reference

UIM Reference
Learn about the Cliram User Interface Meta-data (UIM) format used to specify the contents of the Clram

web application client pages.

Application user interface overview
The application user interface contains elements that are implemented through user interface metadata.
Other topics in the section describe how each of the user interface elements can be configured in an

application.

Home

Male
Bom 9/26/1364, Age 51

[ o James Smith
O 107, Patc Tarace P, U, 12345 (6]

@ 1555307mss
=
Home EI [ rdPowe.. | C RF w. Advice v
Eigme / = Quick Notes v
Sensitivity Special Interest
ed Public Office Registration Date 1172001
ction Payment Details v
Currency US Dolar Method Of Payment Check
Payment Frequency Recur every 1week(s) on Monday Next Payment Date 21372016
Comments s
Clear
Pending Applicat v Gurrent Gase: -
553 Social Assistance 9/13/2018
Issues and Proceedings tab
Home Edgibility Evidence Care and Protection Issues Proceedings Financial Transactions Ry al 1t Conta ministrator Applicz mpliar Par De Time Limi
Special Cautions Special Cautions vew. | C GG
A Curent  Previous
Investigations
o > Behavioral Alert Escape Threat 9/13/2016 -
lssue Cases

Delete..

Figure 2: Application user interface overview

The following list describes the user interface elements with cross-references to the numbered
annotations in the previous figure.

Application banner (1)

An application is defined to present a specific view of the data for a user or user role. The application
banner provides the user with the context of the application they are currently accessing. The banner
also include a number of application links, such as Help, Logout and Preferences, and an application

search facility.
Application name (1.1)

A name is defined for an application.
Welcome message (1.2)

A welcome message is displayed.

4 IBM Curam Social Program Management: Curam Web Client Reference Manual



Application menu (1.3)

The application menu forms part of the application banner, and allows for the optional addition of up
to three links. You can add a link to the application help, a link to logout from the application and a link
to open the user preferences dialog.

Application search (1.4)
The application search element provides a search function.
Application sections (2)

An application contains a number of sections that allow quick and easy access to some of the more
common tasks and activities performed by a user.

Application tab (3)

Content in a section is displayed in a tab, and each section can open multiple tabs, where each tab
represents a business object or logical grouping of information. A tab can also be described as a
logical grouping of UIM pages.

Tab title bar (4)

The tab title bar contains text that identifies the current tab.
Tab actions menu (5)

The actions menu provides actions associated with the business object represent by the tab.
Tab context panel (6)

A tab contains a context panel, which contains context information associated with the data displayed
in the tab. This context information is always available when working with the data on the tab.

Section shortcut panel (7)

Each section can optionally have a section shortcut panel, which is collapsed by default. When
expanded the shortcut panel provides quick links to open content, in the form of UIM pages, and
perform actions within the section. The content in the section shortcut panel is organized into
categories of menu items. The section shortcut panel contains section shortcut categories (7.1), each
of which contains quick links in the form of section shortcut menu items (7.1.1).

Content area tab navigation bar (8)

A tab comprises of one or more pages of information, represented by UIM pages. These pages can be
navigated using a navigation bar, which contains navigation tabs linking to single pages or sets of
pages. Where a navigation tab links to a set of pages, a page group navigation bar is displayed.

Page title (9)

A title can be defined for a whole UIM page.
Page action control (10)

An action control can be associated with a UIM page. See Action controls (19).
Refresh button (11)

An action control that refreshes the user interface content.
Print button (12)

An action control that can be used to print user interface content.
Help button (13)

An action control that displays help content in a new window.
In-page navigation tabs (14)

A page can contain several tabs of information.

Curam web client reference 5



Page content area (15)
The page content area displays the currently selected UIM page.
Page group navigation bar (16)

Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with the
first one selected by default.

Fields (17)

Fields are visually organized into clusters and lists on a UIM page. There may be zero or more of each
on a page. Clusters and lists can have a title which describes the type of data displayed.

Clusters (18)

A cluster is a rectangular area that displays fields in a tabular format. A cluster can have one or more
columns of fields, and fields can be displayed with or without an associated label. Fields can be read-
only, or they may be editable. If editable, they appear as a control such as a text area, drop-down
menu, or check-box. The figure shows an example of two configured clusters in the page content area,
each with a configured title.

Action controls (19)

Action controls, displayed as buttons, are used to submit form data, to link to related pages, or to
open a modal dialog. Action controls can be organized into action sets which are associated with
clusters, lists, or the UIM page (see element 10 in the figure). Individual action controls can also be
associated with a single field in a cluster or a column in a list. When an action control is used to link to
another page it can also send parameters to the target page which are normally used as keys to
retrieve server data that populates the target page. By default action controls appear at the top and
bottom of the widget they are associated with.

Smart panel (20)

The smart panel displays extra contextual information, such as quick notes that relate to a case, or
advice that was given to a client.

Lists (21)

A list is used to display rows of repeating or indexed fields. As in clusters, fields can have associated
labels which are displayed as column headings in the list. A list action menu (21.1) is displayed at the
end of the row for each list item and contains all the actions that are associated with the list item.

Related concepts

Curam applications

When a user logs into the Clram application they are presented with a view that is specific to their role,
which an application. An application in the Clram user interface is a collection of user interface elements,
mainly based on UIM pages, combined to create specific content for a particular user or role.

Related reference

Application Configuration

An application in the Cdram user interface is a collection of user interface elements, based on UIM.pages,
that are combined to create specific content for a particular user or role. Develop Clram web client
applications by configuring application configuration files.

Curam applications

When a user logs into the Cliram application they are presented with a view that is specific to their role,
which an application. An application in the Curam user interface is a collection of user interface elements,
mainly based on UIM pages, combined to create specific content for a particular user or role.

In addition to defining the layout of the screen, an application controls the flow between pages available
in the application. Within an application, links to other pages are available from a section shortcut panel,
the tab navigation bar and page group navigation bar, in addition to links on the page displayed in the
content area.

6 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Activating any of these links will result in accessing a new page in the content area, or opening a new page
in a modal dialog. For new pages in the content area, the application definition is used to determine what
tab the page belongs to and what section the relevant tab belongs to. The page is then opened in the
context of the relevant section and tab.

Applications are defined in an XML format using a number of different files. For example, an application is
defined using an XML file with the extension . app. Each section referenced in the application is defined
using an XML file with the extension . sec and any tabs referenced by the section are defined using an
XML file with the extension . tab.

In the following example, an application configuration . app file creates an application containing two
sections, in addition to an application banner with a quick search facility:

<?xml version="1.0" encoding="UTF-8"7?>
<ac:application
id="SimpleApp"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:application-search>
<ac:search-pages>
<ac:search-page type="SAS01"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>
<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />
</ac:search-pages>
<ac:further-options-1link
description="Search.Furthexr.Options.Link.Description"
page-id="Person_search" />
</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Figure 3: Sample Application .app File

The separation of configuration into multiple files allows for reuse of different elements across multiple
applications. For example, a common inbox section can be defined and referenced by multiple
applications.

Related concepts

Application user interface overview

The application user interface contains elements that are implemented through user interface metadata.
Other topics in the section describe how each of the user interface elements can be configured in an
application

Related reference
Application Configuration

Curam web client reference 7



An application in the Cdram user interface is a collection of user interface elements, based on UIM.pages,
that are combined to create specific content for a particular user or role. Develop Cliram web client
applications by configuring application configuration files.

Page context
UIM pages are displayed in different contexts within an application. The context the UIM page is displayed
in may result in different behavior for some of the elements.
The main contexts that UIM pages are displayed in are outlined in the following list:
- Content Area

The content area is where the main content for an application is displayed. When a UIM page is
displayed in the content area it will automatically contain a refresh, help and print button within its title
bar. Refer to user interface element 15 of “Application user interface overview” on page 4 to see an
example of a configured content area.

Note: The Clram application does not support the web browser File > Print functionality. A print button
is provided for printing the contents of the Content Area only.

- Context Panel
A context panel displays a specific kind of UIM page that displays common information for the tab that

is always viewable. Refer to user interface element 6 of “Application user interface overview” on page 4
to see a configured example of context panel.

- List Dropdown Panel

A list dropdown panel displays a UIM page when a list row is expanded in a list. Expanded rows are a
supported feature of lists. Refer to user interface element 21 of “Application user interface overview”
on page 4 to see unexpanded list items (toggle buttons) in a list. Refer to “LIST” on page 81 for more
information.

- Modal Dialog

A modal dialog displays a UIM page in a dialog window, displayed above the main content. While the
dialog is open, the parent content cannot be accessed. See “Modal Dialogs” on page 80 for more
information.

« Smart Panel

A smart panel, is an optional panel that can be added to the right of the content area in a tab and
displays a UIM page. For more information see “Tab smart-panel element” on page 148. Refer to see
user interface element 20 of “Application user interface overview” on page 4 to see an example of a
configured smart panel in an application.

Page appearance

In the Curam client development, the application and page metadata provide limited scope to specify the
position and layout of user interface elements.

Note the position and layout of the following features:

« The application banner, sections, and tabs are in fixed positions.
« Clusters and lists flow from top to bottom on a page.
- Fields are automatically positioned within the previous user interface elements.

Some control is allowed through attributes of the various elements, but sensible defaults are provided for
all these attributes to minimize the situations where they must be used. Refer to user interface element
19 of “Application user interface overview” on page 4 to see how action controls are aligned to the center
of a cluster. The action controls were aligned by configuring the ALIGNMENT attribute of the ACTION_SET
element in “Page content metadata” on page 1.

8 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Application controller JSP

A single JavaServer Pages (JSP) file, AppController.do, renders the Ciram client on the browser.
Therefore, the URL in the browser always ends with AppController.do. The URL does not change as
the user navigates between separate pages within the Ciram application. Therefore, the browser back
button is not supported.

It is still possible to request the URL of a specific page in the browser. In this scenario, on receipt of the
request, the browser is automatically redirected to AppController.do, which loads the requested
page. See “Direct browsing” on page 9 for details.

Direct browsing

You can access a page directly by typing its full URL into the browser's navigation bar, for example, http://
host:port/Curam/en_US/SomePage.do. The process by which the page is loaded depends on whether the
page is associated with a tab.

If you access a page directly, the session and its associated tabs will first be restored, then a request will
be sent for the specified page. The page will then be loaded in it's associated section and tab. However, if
this page is not associated with a tab, it will be loaded in the currently selected tab. In the case of a new
session, this will be the Home tab.

Tabs changed in this way can be returned to their default state by closing and reopening the tab where
possible. For the Home tab; logging out and back into the application will restore the Home tab to the
user's default home page. See “Tab Restoration” on page 192 for more information about tab restoration
and session management.

Web Client Development

Use this information to understand the structure of the Ciram web client application project, including
related files in the Clram server project, and how to develop, build and deploy the application.

The Clram CDEJ translates files specified in UIM (User Interface Meta-data) format into the JavaServer
Pages (JSP) that will be deployed on your web application server. These UIM files are supported by
various properties files, configuration files, and others. Collectively, these files are called the application's
artifacts.

Your Curam web client application project can be divided into various functional components for ease of
development. With this system, application changes and updates can be introduced by dropping in a new
component that will automatically override the artifacts of another component, where appropriate. The
location and purpose of these artifacts and components will be described in detail in this chapter.

Outline of the Client Development Process

Much of the client development process is driven by executing specific build scripts. The following is an
outline of the typical steps in the process:

1. Install the Curam Application and the Curam CDEJ. Directions to the installation guide are provided in
“CDEJ Installation” on page 10.

2. The installer creates both an server application and client application project on your file system
containing all the source files. These files will include the application configuration files, the XML-
based User Interface Metadata (UIM) for all your pages, any images and other resources that the
application requires.

3. Create and edit your source files (UIM and application configuration files) or customize existing files.

4. Deploy your application to an application server. During development, this might be a server
embedded in your integrated development environment.

5. Once deployed, you can test your application using a web browser, for example using the following
URL:

http://localhost:9080/'server_name'/AppController.do

Clram web client reference 9



CDEJ Installation

To install the Ciram CDEJ, follow the instructions contained in the Curam Installation Guide. The installer
will install the Cdram CDEJ and the Clram Application project ready for further development and
customization. The Ciram Application is divided into two major parts: the server application that defines
the business entities and business logic of the application, and the web client application that defines
how this information is presented to the user.

In this manual, the folders into which parts of the application and the infrastructure are installed will be
referred to using placeholders, as the actual locations will vary depending on where they are installed and
whether or not you are developing the Ciram Application, additional applications or samples.

<app-dir>
The top-level application folder containing both the server application and the client application
<client-dir>

The folder containing the web client application. Typically this is a folder called webclient within the
<app-dir> folder.

<server-dir>
The folder containing the server application. Typically this is a folder called EJBSexrver within the
<app-dizr> folder.

<cdej-dir>
The folder containing the Caram CDEJ, the tools and infrastructure required to build and run web
client applications. Typically this is a folder called CuramCDEJ.

<sdej-dir>
The folder containing the Caram SDEJ, the tools and infrastructure required to build and run server

applications. Typically this is a folder called CuramSDEJ. More information on this folder can be found
in the Cudram Server Developers Guide

For example, if you have installed the Ciram Application into the folder C: /Curam, then the <app-dir>
placeholder refers to this folder, the <client-dir> placeholder refers to the C: /Curam/webclient
folder, the <server-dir> refers to the C: /Curam/EJBServer folder, and the <cdej-dir> refers to the
C:/Curam/CuramCDEJ folder.

CDEJ Project Folder Structure

A Curam web client application project is organized into a folder structure that is recognized by the Cliram
CDEJ when the application is built. “CDEJ Project Folder Structure” on page 10, shows an outline of this
folder structure for the project and the list that follows describes each folder within this structure in more
detail. The base folder of this structure is the <client-dir> folder.

<client-dir>
+ build
+ bean-doc
+ buildlogs
+ components
+ core
+ <custom>
+ Images
+ javasource
+ WebContent
+ JavaSource
project
+ WebContent
+ <locale>
+ Previews
+ WEB-INF

Figure 4: Web Client Folder Structure

+

10 IBM Curam Social Program Management: Ciram Web Client Reference Manual



build
Temporary generated artifacts. The only contents of interest are the generated reference
documentation for the facade server interfaces.

build/bean-doc
Generated reference documentation for the facade server interfaces in HTML format. These are
regenerated each time the application model changes. See “Server Interface Reference” on page 17
for more details.

buildlogs
Log files generated from each build. See “Build Logs” on page 17 for more details.
components
The top-level folder for the application components. Each sub-folder of this folder contains a separate

application component. See “Application Components” on page 12 for more information on
application components.

components/core
The pre-defined core Curam application component artifacts that provide the core functionality. These
artifacts should not be modified directly. To change them, you should create new artifacts in another
component which will then override the core artifacts.

components/<custom>
One or more extra application components containing artifacts that add additional application
functionality or customize existing functionality.

components/<custom>/Images
Arbitrary custom resources that you want to deploy with your application. Files and folders within this
folder will be copied to the top-level WebContent folder during the build process.

components/<custom>/javasource
Javasource code and properties files used to add extra functionality to an application or to define
externalized strings used across many application pages. There are a number of different
customizations that can be applied to files within this directory. These include updates to control one
or more of the data conversion or sorting operations. Please refer to “Custom Data Conversion and
Sorting” on page 251 for more details on these customizations. This javasouzce directory is
optional, however if this directory is added, the webclient/.classpath file must be updated to
reference this new source directory. This ensures that the changes in this directory are recompiled
when a client build is run within the specified development environment. The following is an entry in
the webclient/.classpath file, (where <custom> represents the name of a custom directory):

<classpathentry kind="src" path="components/<custom>/javasource"/>

components/<custom>/WebhContent
Arbitrary custom resources that you want to deploy with your application. Files and folders within this
folder will be copied to the top-level WebContent folder during the build process.

JavaSource
Contains the Initial_ApplicationConfiguration.properties file, thatis describedin
“Application Configuration Properties” on page 20.

project
Configuration files used when customizing the application deployment descriptors. See “Customizing
the Web Application Descriptor” on page 23 for more details.

WebContent
The generated web application files. This contains the generated JSP files and other application
artifacts that can be used to start and test an application in the development environment. When an
application is to be deployed outside of the development environment, many of the files in this folder
are packaged in the application EAR file. See “Deployment” on page 20 for more details.

WebContent/<locale>
The generated JSP files for each locale supported by the application are placed in folders named after
the locales. For example, for American English pages there will be a folder named en_US. These JSP
files are generated as necessary when the application is built, so they will be replaced automatically if
deleted or out of date with respect to the corresponding UIM file. The JSP files are placed in sub-

Curam web client reference 11



folders of the locale folder using the first two letters of the page ID as the sub-folder name. This
reduces the likelihood that an option provided by some application server software to pre-compile the
JSP files will fail when trying to pre-compile too many JSP files at the same time.

WebContent/Pxreviews
Generated HTML files providing a rough preview of what each corresponding JSP will look like when
the application is running. These previews can be viewed directly in a web browser without running
the application. See “Page Previews” on page 18 for more information.

WebContent/WEB-INF
The standard folder which must exist in every Java EE web application. No files in this folder will be
served by the web container, the files are only used internally by the web client application. It
contains a classes folder that contains all the compiled Java class files and properties files required
by the application. In a Ciram web application project, this includes the classes and properties files
from the component specific javasource folders and the properties file from the <client-dir>/
JavaSouzxce directory. It also contains a 1ib folder that contains all required library classes
packaged in JAR files. The CDEJ supplies all the JAR files required for this folder and they are copied
during the build process. You should not modify any files in this folder.

In addition to the web client folders, there are a number of folders in the <server-dir> project that are
relevant to web client application development. The <sexrver-dir> project maintains a similar structure
to the web client, specifically in relation to the component folder.

components/<component-name>/clientapps
Application configuration artifacts. These are the XML configuration files for defining applications,
sections, tabs, etc. For more information see “Application Configuration” on page 115.

components/<component-name>/tab
Application configuration artifacts pre-defined in the Ciram application. XML configuration files
shipped with the core and other out-of-the-box components will exist in this folder. These should not
be modified. To change these you should create new artifacts in the clientapps folder in another
component, which will then override these artifacts.

Application Components

Component Folders

Curam web client applications are organized into collections of artifacts called components. Each
component has its own folder below the <client-dir>/components folder. The core component is
always present. This contains all of the artifacts needed for the core functionality of the Clram reference
application. The name of the component folder is used as the name of the component.

A component does not necessarily define a discrete part of an application; rather it defines an additional
customization layer of an application. By adding new components, it is possible to selectively replace
pages in the core application, add new pages, change the appearance of the application and alter various
settings. It should never be necessary to edit files within the core application, thereby ensuring that when
the core application is upgraded, the core changes do not overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you to organize your artifacts as
you see fit. Artifacts in a component must have unique file names and the folder structure does not affect
this. For example, you cannot place two UIM files with the same name within the same component, even
though they would be in different folders. Likewise, a UIM file in one component is considered equivalent
to a UIM file in another component, even if the folders within the components containing these UIM files
have different names. Technically, a component represents a single namespace for artifacts and the folder
structures within the components are mostly ignored.

The only exception to the requirement to use unique file names for artifacts is within the optional
WebContent folder within a component. Within this folder, you can place arbitrary files in an arbitrary
folder structure that you want to deploy with your application. The files will be copied to the main
<client-dir>/WebContent folder during the build process and the folder structure will be preserved,
so files in different folders may share the same name.

12 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Component Order

There can be any number of application components, but they are processed in a strict component order.
This order determines the priority that will be given to artifacts that share the same name but appear in
different components. This is fundamental to the manner in which Cdram web client applications are
customized.

The component order is defined by the CLIENT_COMPONENT_ORDER environment variable. This is a
comma-separated list of component names. Use only commas; do not use spaces. You must place the
component with the highest-priority first in the list and continue in descending order of priority. The core
component always has the lowest priority and is implicitly assumed to be at the end of the list; you do not
need to add it explicitly.

For example, setting the component order to "MyComponentOne,MyComponentTwo" will give the highest
priority to artifacts in the MyComponentOne folder within <client-dir>/components, a lower priority
to artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the core folder. Any
component folder not listed in the component order will not be included in the build and a warning will be
displayed to indicate that these components have been ignored. If you do not set the component order at
all, the default component order will include all components in alphabetical order.

Note: The SERVER_COMPONENT_ORDER order, used for the <server-dir> project, will always include
all component folders existing in the components folder. If they are omitted from the
SERVER_COMPONENT_ORDER environment variable, they will automatically be added to the end of the
component order in alphabetical order. For more information consult the Ciram Server Developers Guide.

Localized Components

Localized components contains translated artifacts for the base components and are of the format
"<component name>_<locale>". It is not necessary for these to be added to the
CLIENT_COMPONENT_ORDER environment variable as the tooling that processes this environment
variable will prepend any available components that match entries in the LOCALE_LIST environment
variable. Localized components are matched both on complete locale entry and on the two-character,
lower-case language code. Localized components are prepended before the base component in the
complete component order.

Component Artifacts

Components contain a number of artifacts that are used to build an application. All the artifacts in a single
component have the same priority in the component order. The artifacts in one component may be used
to customize the artifacts in a lower-priority component, or they may be entirely new artifacts that extend
the application. The main type of artifacts are as follows:

UIM Pages
UIM pages are the principal artifacts of a web client application. Each UIM page describes a web page
that users will see when accessing the web client application with their web browsers. The files for
these artifacts use the . uim extension.

UIM Views
UIM views define portions of a page that may be re-used by many UIM pages. The files for these
artifacts use the . vim extension.

Properties Files
Properties files store the natural language text for a page separately from the pages, views and page
groups. When applications are localized into different languages, there will be a separate properties
file for each language (or locale, see “Application Locales” on page 14). This allows a single UIM
page, view or page group to be defined for all of the supported languages.

Note: UIM properties files do not support any form of visual layout or formatting capabilities such as
using carriage returns or inserting HTML elements.

Application Configuration Files
Application configuration files define the layout of the user interface and how UIM pages are grouped
into sections and tabs. The files for these artifacts are defined using the

Curam web client reference 13



extensions .app, .sec, .tab, .nav, .mnu, and . ssp. Note, these files are located in the <server-
dir> project. See “Application Configuration” on page 115 for details.

Image Files
Images file referenced from your UIM pages or views can be added to your component's Images sub-
folder. See “Images” on page 26 for details.

Configuration Files
Configuration files are used to alter the behavior or appearance of the application or of elements of
the application. There are a variety of different configuration files that can be used for different
purposes.

Custom Resources
Custom resources are arbitrary files that you want to deploy with your application. For example, you
may want to customize the appearance of a page to reference you own image file for a logo; this image
file is a custom resource.

Application Locales

A locale describes a user's language, country and determines what the user will see in the pages they
access via their web browser. While the data will largely remain the same (other than in the details of the
formatting of numbers and dates) the labels for the data will appear in the appropriate language. Locales
are specified using a simple identifier that contains a two-character, lower-case language code optionally
followed by an underscore character and a two-character, upper-case country code. For example, "en"
indicates the English language, and "en_US" indicates the regional variation of the English language
appropriate for the United States of America. This regional variation may help to identify differences in the
dialect or usage of the language, American English in this example, but it may also affect the way dates
and numbers are formatted.

The language and country codes have been standardized and support for any specific locale is determined
by the Java Runtime Environment (JRE) that you are using for you application and whether you have
localized your application appropriately for that locale. Consult the documentation provided by the vendor
of your JRE for details on the support locales and see “Localization” on page 38 for full information on

the procedure for localizing a Ciram web client application.

Before building a Clram application that may have been localized for a number of locales, you need to
specify what locales you want to include. To do this, you set the LOCALE_LIST environment variable to a
comma-separated list of the locale codes. Use only commas, do not use spaces. For example, "en_US,es"
specifies the American English locale and the Spanish locale (with no regional variation). The first locale in
the list is treated as the default locale.

Certain operations, such as the generation of page previews (see “Page Previews” on page 18), are only
performed for the default locale.

Improving Build Performance: The Cliram CDEJ performs most of the translation work for the
application's locales during the build process; from a single UIM file it will produce one JSP file for each
locale in the locale list. If your application supports many locales, you may find it convenient when
developing the application to omit some of the locale codes from the locale list, as this will improve the
build performance. You can replace the locales when you want to view or test all of the localized pages.

Building an Application

Build Targets

The client application is built using Apache Ant build scripts. These build scripts define ordered
sequences of processing steps called targets. To invoke a target, you open a command prompt window
and change to the <client-dir> folder and then pass the name of the target to the command you use
to start Apache Ant. Typically this command is called build or appbuild. The name depends on the
script provided for your application, but it will be referred to as build in this manual. For example, to
build the web client application, the command is buildclient . You can run more than one target at a
time by passing the target names separated by space characters. For example, buildcleanclient will

14 IBM Curam Social Program Management: Ciram Web Client Reference Manual



first clean all the generated output that may be present before building the full web client application
again.

The following build targets are available for Ciram client projects:

client
Builds the client application. See “Full and Incremental Builds” on page 16 for further details.

clean
Deletes all of output generated by the other build targets. See “Full and Incremental Builds” on page
16 for further details.

beandoc
Generates reference documentation for the fagcade server interfaces. See “Server Interface
Reference” on page 17 for further details.

client-with-previews
Builds the client application and also generates previews of the pages in HTML format in the
<client-dir>/WebContent/Previews folder. See “Page Previews” on page 18 for further
details.

uimgen
Generates skeleton UIM pages from the fagade server interface definitions. See “UIM Generator Tool”
on page 19 for further details.

A number of environment variables affect the build process for a web client application. Some have been
introduced already and others are explained elsewhere, but all are shown below. When you install the
Curam Application, the build command will set most of these for you, as they mostly refer to files and
folders that will be in fixed locations relative to where you installed the application. However, for a new
application, or if you are modifying the build command, you may need to confirm that these are set
correctly.

Table 1: Environment Variables

Name Required Description

CURAMCDEJ Yes The location of the installed Ciram CDEJ
infrastructure. This is the same as the value
of the <cdej-dir> placeholder used in
this manual. See “CDEJ Installation” on

page 10 for details.

CLIENT_DIR Yes The location of your web client application.
This is the same as the value of the
<client-dir> placeholder used in this
manual. See “CDEJ Installation” on page
10 for details.

CLIENT_PROJECT_NAME Yes Defines the name of the application being
built. This name is used as a base name for
many generated artifacts, for example, for
Java package names. The name is defined
in the UML model. For the installed Ciram
Application, the value should be "Curam".

LOCALE_LIST Yes Defines the locales that will be supported
by the application. See “Application
Locales” on page 14 for details.

Curam web client reference 15



Table 1: Environment Variables (continued)

Name Required Description

CLIENT_COMPONENT_ORDER No Defines the prioritized order of the
application's components. See
“Component Order” on page 13 for details.
This is not required, but it is highly
recommended that you set it explicitly. By
default, all components will be processed
in alphabetical order.

ENCODING No Defines the character encoding that will be
used to interpret files that do not explicitly
define an encoding. By default, the
system's default character encoding will be
used. See “File Encoding” on page 38 for
details.

MULTIPLE_VALIDATION_ERRORS No Controls the number of errors that are
reported during the build process before
the build terminates. See “Error Reporting”
on page 17 for details.

Related Build Targets

The server application is built using Apache Ant build scripts, in the same way as the client application is
built. The application configuration files are located in the <server-dir> project and as a result, the
targets for processing these are part of the server project. The following targets are used to process the
client application configuration files:

inserttabconfiguration
Combines and imports the client application configuration files onto the database. See “Configuration
files” on page 116 for more details.

database
The last step of the database target is to call the inserttabconfiguration target. For more
information the database target see the Curam Server Developers Guide.

Full and Incremental Builds

Theclient build target will generate a complete web client application. If no previous build output is
present, running this target will build the entire application. This is called a full build. Subsequently, on
running this target, the build scripts will compare your source files to the previously generated output files
to detect what you have changed and will update the minimum number of output files possible. This is
called an incremental build. An incremental build is performed automatically as long as the output of a
previous build is present and is much faster than a full build. To perform a full build again, you must first
run theclean target to remove all of the outputs from the previous build.

warning: Building after Upgrading

If you upgrade your Clram application or Ciram CDEJ, you must perform a full build by first running
theclean target. Failure to do this could result in unpredictable behavior during the build process or when
then application is running.

Platform Specific Setting: When executing theclient build target from a text-only interface (e.g., using a
terminal emulator to access a UNIX machine), -Djava.awt.headless=true must be added to
theANT_OPTS environment setting.

16 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Dependency Checking

For most changes that you make, you need only run the incremental build, as the changes will be detected
automatically and only the dependent output files will be updated. However, some changes are not
detected and you may need to run a full build for your changes to take effect. In particular, if you change a
setting in the curam-config.xml configuration file that affects the build process (typically by affecting
the appearance of the pages in a way that is applied at build-time), then you will need to perform a full
build manually, as the changes will not be detected automatically.

Dependency checking will identify changes to server interfaces used by UIM pages. Server interfaces are
defined in the application's UML model and more information can be found in “Server Interface
Reference” on page 17. Only changes to interface properties, not their underlying domain types, are
recognized in an incremental build. For example, changing a code-table name will not be detected by
dependency checking and a clean build will be required.

Build Logs

Every time you run theclient target to build the application, all of the messages produced by the build
scripts are written to a file in the <client-dir>/buildlogs folder. The files created are named for the
date and time on which the build was started. If errors occur during a build, you may find it easier to
review them by reading the log file instead of scrolling through messages at the command prompt.

Error Reporting

One of the main steps performed by the client target is the generation of the JSP files from the UIM files.
This process will check the validity of your UIM files as they are processed. The validity of the UIM files is
determined in a number of steps:

1. They must contain well-formed XML and must not attempt to include VIM files that do not exist.

2. They must conform to the XML schema for UIM and to some additional context-sensitive rules that
cannot be defined in the XML schema.

3. They must refer only to externalized strings that exist in their associated properties files.

4. They must meet a number of other requirements related to the connections made to the properties of
server interfaces. For example, the property names must be unambiguous, or an address field must be
the only field in a cluster.

Normally, the processing will stop when the first error occurs and the indicated problem must be fixed
before the build can be executed again. However, for the errors detected in the second step, the schema
and schema-related validation errors, there is an option to continue processing as far as possible after an
error occurs to allow you to locate and fix more than one error at a time. Errors reported during the other
steps will always stop the build immediately.

To allow multiple validation errors to be reported during a build, set the MULTIPLE_VALIDATION_ERRORS
environment variable to true. If not set, the default value is false and the build will terminate after the
first validation error occurs.

The number of errors reported is limited by the number of UIM files being validated at one time. The
validation is typically performed on files in groups of one hundred, so this option will cause all of the
validations errors in the current group to be reported before the build is terminated. No further groups will
be processed after a group containing files with validation errors has been encountered.

Server Interface Reference

When developing UIM pages, you will need to know details about the fagade server interfaces and their
properties so that you can select the information that you want to display on each page. This information
is all defined in the application's UML model, but, for your convenience, you can generate simple
reference documentation in HTML format to make the information more easily accessible.

Thebeandoc target generates this reference documentation for all of the available facade server
interfaces ("classes"), creating many HTML files in the <client-dir>/build/bean-doc folder. To view
the documentation, open the index. html file created in that folder in a web browser. This document
provides links to alphabetical lists of all classes, all operations on those classes, all domain definitions

Curam web client reference 17



used by properties of those operations, and all code-tables referenced by any of those domain definitions.
Each of these lists provides further links for cross-references or providing more details. Viewing a class
will display a list of its operations and selecting an operation will show a list of its properties.

In UIM, you do not have to use the full property name; you can use only part of the ending of the name as
long as it is unambiguous. In the reference documentation for each operation, both the full property name
and the shortest, unique ending of the property name are given. This will help you to choose a name that
is short and readable, but that will not cause any build errors later.

Beside many of the class, operation, and property names, you will see a Copy button. Clicking this button
will copy the name to the clipboard, allowing you to paste it into your UIM file. For property names, the
shortest unique name is copied. Copying to the clipboard using the Copy button only works in Microsoft
Internet Explorer. In other browsers, you will have to select the text and use the normal copying
commands.

Enabling the clipboard action from Internet Explorer 11
The clipboard action is built around the browser access to the Windows operating system clipboard object
and is supported by Internet Explorer only. The clipping function does not work with any other browser.

About this task

If you are using Internet Explorer configuration defaults, you are asked if you want to allow clipboard
access each time you select the Copy link on a page. To use clipboard without being asked each time if
you want to allow clipboard access, you can configure change Internet Explorer security settings for the
appropriate zone.

Procedure

1. Start Internet Explorer.
2. Select Tools > Internet Options and click the Security tab.

3. Select the zone, the zone is normally Intranet, but you might have to change it in the Internet and
Trusted sites zones.

4. Select Custom Level and then the Advanced tab.
5. Scroll to the Allow clipboard access option.
6. Select Allow > OK

Results
You can copy content directly to the clipboard without being asked if you want to allow clipboard access.

Note: If you want to enable clipboard access for IBM Curam only, restrict the setting to the site you are
working with. Therefore, list the site in the zone where you also change the clipboard access. Select the
zone that contains the site and select Sites. Alternatively, click Advanced on the Intranet zone to get the
same list.

When the list is displayed, type in the IP address your site (for example: https://11.222.333.444:1010/
Curam or https://oursite.ourorg.com:1010/Curam) and select Add. This action adds the additional
security and the zone settings; the clipboard access is applied to the white-listed sites only.

Page Previews

Page previews are produced by running theclient-with-previews build target. This will generate static
HTML pages for the default locale that can be opened in a browser to give you an impression of what the
page will look like when the application is running. The HTML pages are located in the <client-dir>/
WebContent/Previews folder. You do not need to start a server to view the pages. The pages display a
default value for each field but do not support any user-interaction (buttons, links, pop-ups, etc. do not
function). The preview page represents only the main content area of the page (the part specified in UIM)
and not the sidebar or page header or footer.

18 IBM Curam Social Program Management: Ciram Web Client Reference Manual


https://11.222.333.444:1010/Curam
https://11.222.333.444:1010/Curam
https://oursite.ourorg.com:1010/Curam

The default values for the fields are defined by associating a default value with the domain definition of
the field. These default values are used only for the preview pages and are defined in the domain-
defaults.xml filein <client-dir>/components/cozre. Overriding this file in other components is
not currently supported so it must be modified in place.

The file uses a simple XML format, a sample of which is shown below. The root element is
DOMAIN_DEFAULTS. This element contains one DOMAIN element for each domain definition for which a
default value is to be defined. The DOMAIN element requires a NAME attribute specifying the domain
name, and a DEFAULT attribute specifying the default value for that domain.

<DOMAIN_DEFAULTS>
<DOMAIN NAME="MY_DOMAIN" DEFAULT="My value"/>
<DOMAIN NAME="YOUR_DOMAIN" DEFAULT="Your value"/>
</DOMAIN_DEFAULTS>

Figure 5: Default Preview Values for Domain Definitions

When generating preview pages, if there is no default value defined for a domain, a warning message will
be displayed. These warnings will not prevent the preview page from being generated and a fall-back
value will be used in the generated page (for example, "[field-value]"). Note that fields that have a
complex domain value are not parsed or processed in the normal manner. Most of these are simply
replaced by an image of the typical output and no default value is required. Complex fields like this are
described in “Domain-Specific Controls” on page 203.

UIM Generator Tool

The UIM Generator tool provides a user interface for automatically generating a UIM page for a particular
server interface.

To start the UIM Generator tool:
1. Open a command prompt and change to the <client-dizr> folder.
2. Run builduimgen .

3. The first time you run the UIM Generator you will be asked to locate a ServerAccessBeans. xml file.
This file is generated by theclient target and can be found in the <client-dir>/build folder.

Once the UIM Generator has started, you should see a screen containing the following:
« A File menu containing options to view your current configuration settings and to exit the application.
« Atree on the left hand side which lists all the server interfaces in the application.

- Two options, Display Phase and Action Phase, which determine when the selected server interface is
called in the generated page.

- A Make Page button which generates the UIM for the current settings.
To generate a page perform the following;:

1. Select the interface you wish to test from the tree (e.g. Register-Person.read).

2. Select the phase in which the interface should be called, for example, Action. Action phase pages call
the interface when the page is submitted. Data can be entered for each input field and a button is
generated to submit the page.

3. Click the Make Page button and you will be asked to specify a location for the generated UIM. You can
change the default name if you wish. The location should be in the appropriate component folder of
your application.

A UIM file and a properties file are generated. The labels for each field are given defaults based on the
name of the server interface property associated with the field.

External Client Applications

Due to the webclient directory containing a mix of components that are targeted for different EAR
packaging, it can be difficult to use the single development environment and component order to develop
and test these.

Curam web client reference 19



To allow for this a build targetexternal-client will allow for creation of an environment and building of the
components specified for an EAR entry in the deployment_packaging.xml.

The target requires a parameter-Dapp which should refer to the name of an EAR entry within the
deployment_packaging.xml.

build external-client -Dapp=SamplePublicAccess

Figure 6: external-client invocation

The build target will copy the components specified for this EAR entry to awebclient\build\apps
\<app name> directory and here will both build the project and create the relevant Eclipse project
configuration files to allow for the project directory to be imported into Eclipse and development-type
testing to be performed on these external client applications.

Deployment

Overview

A detailed description of the deployment procedure is provided in the Cliram Deployment Guide
appropriate for your application server and operating system. However, there are a number of
configuration settings available in your web client application project prior to deployment. These settings
are described below.

Application Configuration Properties

The ApplicationConfiguration.properties file defines the most important application
configuration settings. The file needs to be located in the curam/omega3 subfolder of the <client-
dir>/JavaSource folder. When you create a new application, this folder contains a sample file named
Initial_ApplicationConfiguration.properties. You need to copy this file and rename it to
ApplicationConfiguration.properties and change the settings to match your requirements. For
the installed Cdram application, this process is done for you already, but you might still want to change
other settings.

The properties that can be set in this file are described in the as follows:

dateformat
dateformat=M d yyyy

The format that is used by the Clram date selector widget for entry and display of date fields.
The value of can be set to one of the following formats:

« Day-month-year order-d M yyyy (the default), dd MM yyyy.
« Month-day-yearorder-M d yyyy, MM dd yyyy.
« Year-month-day order -yyyy M d,yyyy MM dd.

In these formats, d represents the day number, dd represents the two-digit day number (padded with
a leading zero if necessary), M represents the month number, MM represents the two-digit month
number (padded with a leading zero if necessary), and yyyy represents the four-digit year. An
uppercase letter M is used for the month, as the lowercase letter m is used in Java applications to
represent the minute value when formatting times. Using MMM or MMMM to represent the month name is
not supported. The formats are specified by using a space character as a separator. The actual
separator character that you want to use is specified separately.

dateseparator
dateseparator=/

The date separator character that is applied to the specified date format. The value can be set to one
of the following characters: forward slash (/) (the default), period (.), comma (,), or dash (-).

timeformat
timeformat=HH mm

20 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The value of timeformat can be settooneofh m s a,h m a,H m,hh mm a, HH mm, hhmm a, or
HHmm. Where not specified, HH mm is used as the default.

timeseparator
timeseparator=:

The value of timeseparator can be set by using either a colon (:) or period (.). Where not specified,
the colon (:) is used as the default.

serverConnectionType
serverConnectionType=single

Do not change this value.

addressFormatType
addressFormatType=US

Default address format for addresses in the application.

addressDefaultCountryCode
addressDefaultCountryCode=US

Default, application-wide country code for addresses. This code must match an entry on the server
application's Country code table.

uploadMaximumSize
uploadMaximumSize=-1

Maximum file upload size in bytes. Files that exceed this size are rejected. This limit needs to be set to
match the allocated storage in the database for fields that contain uploaded files. This limit cannot be
tailored to suit different database fields. The value -1 indicates no maximum limit.

uploadThresholdSize
uploadThresholdSize=1024

The maximum size in bytes of an uploaded file before a temporary file is created on the server to
reduce the memory processor usage of storing the data as it is being processed. By default, the
uploaded files are written to temporary disk storage if they exceed 1024 bytes.

uploadRepositoryPath
uploadRepositoryPath=c:/temp

Temporary files that are created during file upload are written to this location if they exceed the
upload threshold size. By default, files are written to the Java system temporary folder (as defined by
the Java system property property java.io.tmpdir).

use.synchronizer.token
use.synchronizer.token=true

Whether to use a synchronizer token to prevent accidental resubmission of forms due to use of the
browser's Back button. The value can be set to true (default) or false.

synchronizer.token.timeout
synchronizer.token.timeout=1800

A synchronizer token expires if its associated form is never submitted. Values are specified in
seconds. The default value for this property is 1,800 seconds.

errorpage.stacktrace.output
errorpage.stacktrace.output=false

The value of this property is true or false, where false is the default value.

Use stacktrace output in the development environment for debugging purposes. When the value of
this property is true, the Java exception errors are output into the HTML error pages.

You must set the property value to false in a production environment. The HTML error pages that
contain the Java exception stack trace are not included in the IBM Curam Social Program
Management application malicious code and filtering checks. Therefore, if you set the property to

Curam web client reference 21



trueina production environment, the HTML error pages could potentially make the application more
susceptible to injection attacks such as cross-site scripting and link injection.

dbtojms.credentials.getter
dbtojms.credentials.getter=curam.sample.CredentialsGetter

Specifies the name of the class that is used to obtain credentials to be used for triggering a DBtoJMS
transfer. If not specified, a default set of credentials is used for this operation. For more information
about DBtoJMS and how to use this property, see the Security Considerations section of the Curam
Batch Processing Guide.

modal.dialogs.minimum.height
modal.dialogs.minimum.height=200

Specifies the minimum required height for a modal dialog in pixels. The parameter is used when the
calculated height of the modal dialog is less than the minimum required height or the specified height
is less than the minimum required height. The default value of 100 pixels applies if this parameter is
not set.

tabSessionUpdateCountThreshold
tabSessionUpdateCountThreshold=10

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. After the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of 1 causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts.

The default is every 10 updates.
For more information, see “Session Management” on page 191.

tabSessionUpdatePeriodThreshold
tabSessionUpdatePeriodThreshold=120

Specifies the number of seconds that must elapse since the last time session data was persisted from
the web tier to the database before a new update triggers another write. A value of zero (or a negative
or invalid value) disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information, see “Session Management” on page 191.

resourceCacheMaximumsSize
resourceCacheMaximumSize=160060000

Specifies the size of the application resource store cache. By default, the cache is limited to 16 MB
(approx.) in size. When that limit is reached, the least recently used resources are ejected from the
cache to make room for newly requested resources that are not already in the cache. The size of the
cache is specified in bytes.

Note: A single resource is not cached if it exceeds the size limit for the cache.

dynamicUIMInitModelOnStart
dynamicUIMInitModelOnStart=false

Indicates whether the Dynamic Clram User Interface Metadata (UIM) system needs to initialize the
required information on the application model during startup or when it is first required for a Dynamic
UIM page. The default value is true and it needs to be set to false to cause the model to be
initialized when it is first required by a Dynamic UIM page.

For more information, see “Dynamic UIM System Initialization” on page 114.

sanitize.link.parameter
sanitize.link.parameter=true

Enables protection from link injection attacks. The default value is false.

22 IBM Curam Social Program Management: Ciram Web Client Reference Manual



When the value of this property is set to true, any parameters in the request URL within the Clram
application that are built with this value are validated for security vulnerabilities. If tracing is enabled,
any parameters in which possible security vulnerabilities are detected are logged and, to maintain
security, the request is terminated at a specially created error page.

curam.progress.widget.enabled
curam.progress.widget.enabled=true

Enables the Progress Spinner widget. The default value is true.

When the value of this property is set to true, and the loading of content in any panel or modal dialog
takes longer than 2 seconds, a progress spinner will appear to indicate that the system is busy.

curam.progress.widget.threshold
curam.progress.widget.threshold=2000

Specifies the time offset in milliseconds for the progress spinner to be displayed. The default value is
2000 milliseconds (or 2 seconds).

This property specifies how long the progress spinner should wait before being displayed. If the page
content loads within this period, the progress spinner will not be shown.

Related reference

Optimal Browser Support
Learn about optimal browser support and how to notify the user when they are using a sub-optimal
browser with the Cdram application.

Tracing

As described in “Localization” on page 38, the file CDEJResouzrces.properties defines properties for
localizing certain features of the application. It also contains the setting to enable tracing of server
function calls on the web-tier. Add the following property to enable this tracing:

TraceOn=true

When enabled, the inputs to and outputs from all server function calls will be written to "Standard Out"?.

Customizing the Web Application Descriptor

The web application descriptor that is defined in a file named web . xml is a standard Java EE web
application file. A Ciram web application contains various settings that a developer may wish to change,
for example, server connection settings and the session time-out. The default settings can be seen in the
following files based on the environment you are running the application from:

Development Environment
<cdej-dir>/1lib/curam/web/WEB-INF/web.xml

IBM WebSphere® Application Server
<cdej-dir>/ear/WAS/war/WEB-INF/web.xml

WebLogic Application Server
<cdej-dir>/ear/WLS/war/WEB-INF/web.xml

Customizing the web . xm1 file is done differently depending on whether you are changing the version of
the file to be included in the Cliram EAR file or the version to be used at development time (e.g. in Apache
Tomcat).

Customizing the web . xml for development time can be done by creating a custom version of the
web . xml file in the WebContent/WEB-INF directory of a particular component, e.g. custom. Where
multiple versions of web . xml exist in different components, the version in the highest precedence
component, based on CLIENT_COMPONENT _ORDER, will be used.

The web . xml used within a Cdram EAR file can be customized using the deployment_packaging.xml
file located in the Curam Server project/config directory. It is possible to specify a custom web . xml

1 Due to classloader issues with Log4j, the web-tier does not currently provide a configurable logging system
in the same way as the server-tier.

Curam web client reference 23



using the custom-web-xml property. For more information on customizing web . xm1 at runtime please
consult the Curam Deployment Guide for the relevant Application Server.

When customizing web . xml, the existing security, filter and servlet settings should not be modified.

The server and port settings in ApplicationConfiguration.properties are now obsolete and no
longer need to be specified. They are now automatically configured as context-paramelementsin
web.xml when the Clram EAR file is created. The server and port values are set according to the values
specified in the AppServer.properties files (see the Ciram Server Deployment Guides for more
information), with the exception of the web . xml used at development time. The development web . xm1,
located in <cdej-dir>/1ib/curam/web/WEB-INF/web.xml, has the server and port set to localhost
and 900 respectively.

To change or add a locale, locate the init-param elements of the ActionServlet and duplicate them,
changing the value of the param-name element as appropriate so it is in the form config/<locale-
code>. See the example below.

<init-param>
<param-name>config/en</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>

Figure 7: Configuring an Application Locale

By default the web.xml for both WebSphere and WebLogic application servers is configured to enforce
secure http (https), i.e. a secure SSL connection between the web client and the server. This can be
modified by changing thetransport-guarantee from CONFIDENTIAL to NONE. Note, this does not disable
access to the Curam web client over https, but enables additional access via http. Please refer to the
Curam Security Handbook for further details.

Customizing the 404 or Page Not Found error response.

The 404 or Not Found error message is a HTTP standard response code indicating that the client was able
to communicate with the server, but the server could not find what was requested. The default web.xml
files for WebSphere, and WebLogic specify a default error page for the Ciram application when an HTTP
404 error is thrown by the application server. The following is the error message displayed on that default

page:

- The page you have requested is not available. One possible cause for this is that you are not licensed for
the necessary Curam module - if that is the case, you can use the User Interface administration screens
to remove these links.

This message may be customized by adding a HTTP404Exrroxr . properties file into the <client-
dir>/components/<component_name>/ folder of the application and overriding the error.message
property specified in that file.

Customization

Overview

A Curam web client application can be customized without modifying the original components or their
artifacts. This makes it easier to upgrade a base application while preserving your custom changes to that
application. In this section you will see how the customization process works and how you can modify or
extend a base application.

Customizations are applied according to the component order. The changes that you make to customize
an application should be made in a separate component from the application's original components. The
Curam Application will be installed with a number of components (the core component and a number of
other add-on components). To make customizations, create a new component folder containing a new
sub-folder called components. Add that component's hame to the component order (see “Component
Order” on page 13). You will always want to add your component name to the beginning of the
component order to give it the highest priority when artifacts are being selected at build-time. You can

24 IBM Curam Social Program Management: Ciram Web Client Reference Manual



add more that one custom component, but you must decide what their relative position in the component
order should be.

To begin with, your custom component will be an empty folder. You make your customizations by adding
artifacts (e.g., UIM pages, configuration, files, etc.) to this component folder. You can create arbitrary sub-
folders to help you organize these artifacts. You can customize an application by adding new artifacts,
overriding existing artifacts, or merging new content with existing artifacts.

Adding New Artifacts

You can add new artifacts to extend a base application. To add a new artifact, you simply create the new
file in your component folder. The file name of the artifact should not be the same as the file name of an
artifact in another component. If it is, the artifact will override another artifact or be merged with one. All
types of artifacts can be added to an application in this manner, note artifacts added to the WebContent
sub-folder will always override other delivered artifacts, as described in Section “Custom Resources” on
page 37.

Overriding or Merging Artifacts

Some types of artifacts can be overridden (effectively replaced) by adding an artifact with the same file
name as an artifact in another component to your custom component. When building the application, the
artifact in the highest priority component will be selected and the others ignored. Not all types of artifacts
are overridden so completely. Other types of artifacts are merged with the same named artifacts in the
lower priority components. The content of all of the artifacts is combined and, where the content is
related, the content from the highest priority component is selected. The customized artifacts only need
to share the same file name, they do not have to share the same relative folder location, though you may
find it advantageous to organize them in a similar manner.

For example, for UIM files that share the same name, the file in the highest priority component will be
selected and the others ignored; but for properties files that share the same name, all of the properties
are merged together and, where the files contain properties with the same key name, the value of the
property from the file in the highest priority component will be used. When building an application, the
artifacts in the components are not modified. The selection and merging of artifacts is performed in
temporary locations, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in the sections below.

Externalized Strings

All string values in UIM documents and JavaScript must be externalized. This aids maintenance and
allows the application to be localized. JavaScript, UIM pages and UIM views can reference externalized
strings.

The syntax of a properties file is simple. Each line contains a name=value pair, where the name is an
arbitrary name for the string (it should not contain the "=" character), and the value is the localized string
value. Blank lines and lines beginning with a "#" character are ignored. “Externalized Strings” on page 25
contains an example. The syntax is defined by the java.util.Properties class provided with your
Java Runtime Environment; you can consult the API documentation for that class for more details.

It is worth noting that the property value will be reproduced in the final application page exactly as you
have typed it in the properties file. The value can contain any character from any language and it does not
matter if that character is reserved in XML, HTML or anywhere elseit will be safely processed and
displayed as you intended in the application.

If you find that you need to enter a character in a property value that you cannot generate from the
keyboard, the only one way to do it is to use the Unicode value of that character in a Unicode escape
sequence a backslash and a "u" followed by the four-digit hexadecimal character code. For example, if you
want to enter a non-breaking space, the corresponding Unicode escaped sequence is "\u00a0". An
example of this is included in the sample properties file below.

Curam web client reference 25



{## Main Titles
MyPage.Title=My First Page
Cluster.User.Title=User Details

{## Field labels
Field.FirstName.Label=First Name
Field.Surname.Label=Surname

i# Other
Separator=\uG0a0

Figure 8: A Sample Properties File

As you can see, using "." characters is a useful way to add some structure to the properties in the file,
though it is not a requirement.

When customizing an application, you can customize properties independently of pages and views by
adding the appropriately named properties file to your custom component and defining the externalized
string properties. You do not need to add the corresponding page or view file to your component and you
do not need to redefine any of the properties that you do not want to change.

Images

All references to icons or other graphics within a UIM document are externalized in a manner similar to
normal strings. The Image . properties file (you can include one in each component, if you wish) uses
the same format as the string properties files to associate image references with image file names. The
image files should be stored in the component's Images sub-folder and can be organized into a folder
structure below this folder if desired. Most web browsers will support images in the portable network
graphics (PNG) format, the graphics interchange format (GIF), and the joint photographic experts group
(JPEG) format.

The Image.properties file simply associates a key with a path to the corresponding image file
specified relative to the component folder. A sample of this file is shown below. To use these images, the
key is used as the value of the IMAGE attribute on the ACTION_CONTROL element in the UIM page.

Button.Ok=Images/ok.gif
Button.Cancel=Images/cancel.gif
MyPage.Title.Icon=Images/bluedot.gif

Figure 9: A Sample Image.properties File

The entries in the Image.properties file in the core component can be overridden individually or in
total by creating an Image.properties file in your custom component and overriding the properties as
required. You can override the image files themselves by creating files in your custom component with the
same names as the files in the core component.

If you need to localize your images for different languages, you can add several Image.properties files
using a different locale code as the file name suffix. See “Locales” on page 39 for details on locale code
suffixes. Each properties file should define the same keys, but the image files can be different for each
locale. If only some of the images need to be localized, the common images can be defined in the default
Image.properties file (the one without the locale code suffix) and only properties for the localized
images in the other properties files.

Image Mapping

Images can also be used within the Clram application to represent different values of displayed fields
instead of presenting the value as text. For example, a typical boolean value of txue or false could be
represented by two images of, say, a green check mark and a red X.

The mapping between values and images is stored in the ImageMapConfig.xml file. There is no need to
specify this in any way in UIM. If you use a property with a domain listed in the ImageMapConfig.xml
file, it will automatically be displayed as an image.

26 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<map>
<domain name="MY_BOOLEAN">
<locale name="en">
<mapping value="true"
image="Images/ValuesToImages/true.gif"
alt="True"/>
<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="False"/>
</locale>
<locale name="f1">
<mapping value="true"
image="Images/ValuesToImages/true.gif"
alt="Vrai"/>
<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="Pas Vrai"/>
</locale>
</domain>
</map>

Figure 10: A Sample ImageMapConfig.xml file

In the example, a field with domain type MY_BOOLEAN has been assigned an image mapping. Note that
you should specify an image mapping for each available locale even if the images used are identical. This
is because the alternative text ("alt text") attached to the image will be different for different locales. This
text is important for accessibility reasons (users who have visual difficulties might use an audio browser,
for example, which will read out the "alt text").

ImageMapConfig.xml files in different components are merged with all unique image mappings
preserved. If the same value in the same locale is mapped in two ImageMapConfig. xml files in two
different components, the mapping from the higher priority component prevails.

CuramlLinks.properties

The UIM LINK element allows links to other client pages to be specified indirectly. The PAGE_ID_REF
attribute is a key into the CuramLinks. properties file that returns the actual ID of the linked page.

Many links can point to the same page reference. The advantage of using a page reference is that all the
links can be updated by changing a single entry in this file.

Each component can have its own CuramLinks.properties file. During generation, these individual
files will be merged. As usual, if a particular key is present in more than one CuramLinks.properties
file, the component priority order is used to decide which value is retained.

XML Runtime Configuration Files

There are a few miscellaneous XML files that are used by the running client application. To change any of
these files, copy the original file into the custom component sub-directory and modify the copied file. The
default files can be found in <cdej-dir>/1ib.. The client generators will use the xml file from the
highest priority as specified by the CLIENT_COMPONENT_ORDER environment variable. The following is a
list of these files:

- CalendarConfig.xml

« DynamicMenuConfig.xml

e ICDynamicMenuConfig.xml
« MeetingViewConfig.xml

« RatesTableConfig.xml

e RulesDecisionConfig.xml
* RuleskEditorConfig.xml

Curam web client reference 27



Further details on the customization of these configuration files are given in “Domain-Specific Controls”
on page 203.

Login Pages

A default login page is supplied, called logon. jsp and located in the 1ib/curam/web/jsp directory of
the Curam Client Development Environment. This can be overridden by placing a copy, with the required
changes, inawebclient/components/<custom component>/WebContent folder. However, there
are some guidelines that should be followed.

Firstly, the following JavaScript should be included in the head section of the page:

<jsp:include page="no-dialog.jsp"/>
<script type="text/javascript"
src="$ipageScope.pathl}/CDEJ/jscript/curam/util/Logon.js">
//script content</script>
<script type="text/javascript"'>
curam.util.Logon.ensureFullPagelogon();
function window_onload() {
document.loginform.j_username.focus();
return true;

</script>
This prevents the login page from being loaded in a dialog window.

Secondly, if it is desired to use the j_security_check login mechanism, the form submitted from the
page should have an action attribute of j_security_check, a user name input with the name attribute
j_username and a password input with the name attribute j_passwozrd.

The Curam Server Developers Guide contains details of some common customizations to the 1logon. jsp
file to support an external user client application and automatic login.

The styling of 1ogon. jsp can be customized in the usual way. Simply add relevant CSS to any . css file in
the custom component.

JavaScript Files

The UIM SCRIPT element allows events on the page to trigger JavaScript functions. You can simply
provide a path to the JavaScript file that is relative to your component folder. For example, if you have a
JavaScript file in a sub-folder of your component folder: MyComponent/scripts/myScript.js, you
can just refer to this in the SCRIPT tag as follows:

<SCRIPT SCRIPT_FILE="scripts/myScript.js" ...>
The paths you have specified will be fully preserved during application generation.

JavaScript allows HTML and CSS to be queried and manipulated. The underlying HTML and CSS source
code used to style the Curam application is not documented. No guarantees are made about its stability
across Curam releases. Therefore, custom JavaScript may have to be updated in line with changes to
HTML structure.

A number of JavaScript APIs for use in the custom JavaScript code are provided within the Cdram
application. They are documented in the following location in your CDEJ installation: CuramCDEJ\doc
\Javascript\index.html. Use of any other Ciram JavaScript APIs, discovered through web
developer tools for example, is not supported. The same is true of the JavaScript APIs and functions of
third party frameworks used within the Cliram application. While there is nothing prevent a developer
using these, using them means the code will be impacted by changes to the Ciram application in future
releases.

Using the techniques described above to add new JavaScript files to the custom component, new third
party APIs could be added to Curam pages. This is at the customers discretion, as no guarantees can be
made on third-party APIs that have not been used and verified within the Cdram application.

28 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Cascading Stylesheets

Stylesheets (* . css) define the appearance (colors, fonts, etc.) of the client pages when viewed in a web
browser. Default stylesheets are provided for the Clram client application. It should never be necessary
to edit these files, you can view them in the WebContent/WEB-INF/css folder. Instead, you can
override particular styles or add new styles by creating new CSS files in one of your application
components. Any CSS file located in the component/<some-component> folder (or sub-folder) will be
automatically concatenated into the custom. css file. The custom. css file is included on all pages in
the Curam client application.

The underlying HTML and associated CSS used to style the Ciram user interface can easily be viewed in a
variety of ways, such as using developer tools like the Internet Explorer Developer Toolbar. An example of
customization would be to view the CSS used to apply a color to a field's label. The same CSS style can
then be added to your custom CSS file and a different color specified. For example, assuming the HTML
and CSS has been analyzed and the CSS rule . field.label applies the label color, the following CSS
could be used to override the default:

.field .label
color: red;

ky

This will take precedence over the Clram style because custom CSS is included on the page after Ciram's
default CSS. Another customization technique would be to create a new rule that is an extension of a
Curam rule. Continuing the above example, a developer analyzes the HTML and sees that within the
Curam application a span element is generated as a child of the .1abel element. It is possible to create a
new rule that is specific to this span, even if Ciram has not done so. The complete customization will now
look like this:

.field .label %
color:red;

%
.field .label spani
color:blue;

ky

The underlying HTML and CSS source code used to style the Clram user interface is not documented
(hence the use of developer tools to view it). No guarantee is made about its stability across Clram
releases. Therefore, customizations as described above or any customization based on analysis of the
Curam application's underlying HTML and CSS may be lost as new releases are taken on. The
customizations may have to be re-applied by analyzing the HTML and CSS again.

Note: Some UIM elements support the STYLE tag which allows specific styling to be added to any
instance of that element. This styling will always override that included in . CSS files. For more
information, see “UIM Reference” on page 45.

Application Specific CSS

CSS can be specific to the application being viewed. The id of the application (. app file) currently being
viewed is added as a class on the BODY element of each HTML page, allowing application specific styling
to be added to that page.

For example, a System Administrator views the SYSADMAPP application. The following is an example of
CSS specific to that application:

.SYSADMAPP .field .label {
color:red;
%

Media Specific CSS

CSS can be specific to the type of media being used to view the web page. So, for example, it is possible to
have some styles that only apply when a page is printed and others that only apply on-screen. It is
possible to include CSS specific to a media using the following pattern:

Curam web client reference 29



<STYLE type="text/css">
@media print %
BODY {font-size: 10pt; background: white;}
§

@media screen §
BODY {font-size: medium;}?

%
</STYLE>

Browser Specific CSS

CSS can be specific to the browser used to view the web page. Internet Explorer specific CSS files can be
created in any folder in a component. A naming convention is used to distinguish between versions of
Internet Explorer. Specifically, the following suffix is used:

_ie.css
This file will be included in all versions of Internet Explorer.

Note that developers should continue to strive to use the same CSS on all browsers. Internet Explorer
specific styling should only be used as a last resort.

Application Configuration Files

The application configuration files for defining application, section and tabs can be added to the
<server-dir>\components\<component-name>\clientapps directory, where <component-
name> is a custom component. Sub-folders are supported within the clientapps folder. Any artifacts
added to this directory will override files of the same name in the <server-dir>\components
\<component-name>\tab directory. The tab directory contains files that are shipped with existing
components within the Cliram application and these files should not be modified.

Note: The OOTB Curam application uses fragments of configuration artifacts that are merged into single
files at build time, this is not supported for custom application configuration artifacts. (i.e.) you should not
have a tab folderin EJBSexrver\components\custom.

When customizing application configuration files that ship with the Curam application, the XML
configuration file and.properties file should always be customized as a unit. For example, a change to the
SimpleApp.properties file, associated with the SimpleApp.app file, should result in adding both
SimpleApp.app and SimpleApp.properties to the clientapps folder. These files should be based on the
merged version of the files. The inserttabconfiguration target can be used to get a development
copy of the merged file. See the Curam Server Developer Guide for more information.

There are a few general rules and best practices when working with the application configuration files:

- The id attribute on the root element of each configuration file must match the name of the file. E.g.
SimpleApp.app must have an id of SimpleApp.

« The id attributes should not contain the period (.) or underscore (_) characters.

« Localizable text should be added to a . properties file which matches the name of the configuration
file. E.g. SimpleApp.app will have a corresponding SimpleApp.properties.

 Properties files can be re-used across configuration files. E.g. Person.nav and Person.tab can share
the same Person.properties file.

« Ensure when developing the XML files to add the proper namespace information. This will allow for
validation. For example:

<ac:application
é)éc:application>

General Configuration

30 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Overview

The curam-config.xml file contains a number of general-purpose configuration options that affect the
appearance or behavior of the web client application. Each of the following sections describe in detail the
main elements of this configuration file.

POPUP_PAGES
See “Pop-up Pages” on page 237.

MULTIPLE_POPUP_DOMAINS
See “Pop-up Pages” on page 237.

ERROR_PAGE

If an error occurs at run-time, the user will be redirected to a page defined here. Depending on the error
cause, two types of error page could be provided for reporting system or application failure (or a default
page for reporting both kind of errors could be configured instead).

<ERROR_PAGE TYPE="SYSTEM" PAGE_ID="CuramSystemError"/>
<ERROR_PAGE TYPE="APPLICATION" PAGE_ID="CuramError"/>

Figure 11: Error_Page Section Example

<ERROR_PAGE PAGE_ID="CuramError"/>

Figure 12: Error_Page Section Example with one default page

Please note: when overriding the ERROR_PAGE setting it is not possible for a custom configuration to
define an ERROR_PAGE element without a TYPE attribute if a low priority component defines an
ERROR_PAGE element with a TYPE attribute. In that case, the custom component needs to use a TYPE
attribute and must override both supported types of error page to get the desired effect
MULTIPLE_SELECT

Domains which should display as multiple select list boxes in forms are specified here. The MULTIPLE
attribute, if true, allows multiple selection in the list.

<MULTIPLE_SELECT>
<DOMAIN NAME="PRIMARY_ID" MULTIPLE="tzue"/>
<DOMAIN NAME="OTHER_ID" MULTIPLE="true"/>
</MULTIPLE_SELECT>

Figure 13: Multiple Select Section Example

FILE_DOWNLOAD_CONFIG

See “File Downloads” on page 49.

ENABLE_COLLAPSIBLE_CLUSTERS

Set to false to disable collapsible clusters. By default this value is set to true.
<ENABLE_COLLAPSIBLE_CLUSTERS>false</ENABLE_COLLAPSIBLE_CLUSTERS>
Figure 14: Disable Collapsible Clusters Example

APPEND_COLON

Set to true to automatically append colons to FIELD and CONTAINER labels within CLUSTER elements.
<APPEND_COLON>true</APPEND_COLON>

Figure 15: Append Colon Section Example

ADDRESS_CONFIG

See “Domain-Specific Controls” on page 203.

Curam web client reference 31



ADMIN

The ADMIN element can contain any number of CODETABLE_UPDATE, TAB_CONFIG_UPDATE and
RESOURCE_UPDATE elements. The PAGE_ID attribute of these elements specifies the page that will clear
the relevant caches whenever its submit action is called.

<ADMIN>
<CODETABLE_UPDATE PAGE_ID="CodeTableAdmin" />
</ADMIN>
<TAB_CONFIG_UPDATE PAGE_ID="ApplicationConfigAdmin"/>
<RESOURCE_UPDATE PAGE_ID="publishResourceChanges"/>

Figure 16: Admin Section Example

Please note: The caches are only cleared for the current instance of the web application. Other instances
will have to be restarted to receive the code table updates. This feature applies at development time only.

STATIC_CONTENT_SERVER

This option specifies a base URL for static content such as images, CSS files and JavaScript files. The
option enables the relocation of static content to a separate server to allow for performance
optimizations.

<STATIC_CONTENT_SERVER>
<URL>http://www.myserver.com/staticresources/</URL>
</STATIC_CONTENT_SERVER>

Figure 17: Static Content Base URL Example

The forward slash at the end of the URL in the example is optional. It is also possible to use a relative URL.

<STATIC_CONTENT_SERVER>
<URL>/CuramStatic/</URL>
</STATIC_CONTENT_SERVER>

Figure 18: Relative URL Example

Note: A full build is required to pick up this setting.

Where this option is used, the static content can be packaged using the zip-static-content target available
in the webclient project. This target will create a zip file, StaticContent.zip, in the webclient
\build directory. The StaticContent. zip file will contain all relevant static content to be relocated
when the STATIC_CONTENT_SERVER setting is enabled. The -Dstatic.content.zip setting can be used to
overwrite the default zip location. All content in the zip is stored under a root folder called WebContent.

build zip-static-content -Dstatic.content.zip=<myzipfile.zip>
Figure 19: Zip Target Example

The following content is included in the zip file:
« WebContent/*x/x.html

« WebContent/**/*.htm

« WebContent/CDEJ/**/*.png

« WebContent/CDEJ/*x/%.gif

» WebContent/CDEJ/*x/*.jpg

« WebContent/CDEJ/*x/*.jpeg

« WebContent/CDEJ/*x/*x.1ico

« WebContent/CDEJ/*x/%.css

« WebContent/CDEJ/**/*.js

« WebContent/CDEJ/*x/*.svg

« WebContent/CDEJ/jscript/**/*.*

32 IBM Curam Social Program Management: Ciram Web Client Reference Manual



WebContent/CDEJ/themes/**/x.*
WebContent/Images/**/x.*
WebContent/genImages/**/*.%
WebContent/themes/xx/%.%

The relocation of static content to a separate server allows for specific cache control response headers to
be set for this content. Setting a cache control response header provides an instruction to the browser to
cache this content for a period of time; the aim of which is to reduce network traffic and improve
performance. The Expires and Cache-control headers are generally recommended to encourage the
browser to cache static content.

Expires: Thu, 15 Apr 2010 20:00:00 GMT
Cache-control: max-age=86400

Figure 20: Response Headers

Note: The Expires value must match the specific formatting above to be recognized. The max-age
attribute value is in seconds.

When the above headers are set the browser will cache the content until the max-age value is reached or
the Expires date is reached. When cached, no request will be made to the server.

It is worth noting that there are exceptions to this, which can be browser dependent. A key exception is on
a user triggered refresh (F5); Internet Explorer and Chrome will both perform conditional requests for all
content in this instance, regardless of the freshness of the content in the cache. A conditional request is a
request to determine if the resource has been modified and will usually result in a 304 response, which
will be faster than a full resource request (200 response).

FIELD_ERROR_INDICATOR

This option indicates if field level error indicators are to be displayed when an error occurs. The error
message is the alt text of the image and is available as a tool-tip when the mouse is hovered over the
image. The feature only applies to text input and date-time fields. Also, this feature only applies to web-
tier generated messages (data-type validation, mandatory fields etc.), it does not apply to messages
generated from server side code since there is no way to associate a server exception with a client side
field.

<FIELD_ERROR_INDICATOR>true</FIELD_ERROR_INDICATOR>

Figure 21: Field Error Indicators Example
Please note if the FIELD_ERROR_INDICATOR element is not specified, it defaults to FALSE.

SECURITY_CHECK_ON_PAGE_LOAD

All server functions used on a Clram screen are checked for authorization rights when the page is initially
loaded. If a user fails authorization for any of the server functions, an authorization error message will be
displayed and the user will be prevented from viewing the page. For example, if a user has authorization
rights to access the DISPLAY phase server function, but not the ACTION phase, they will not be able to
view the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml, which is true by default, indicates
that authorization checks should be performed before the page is loaded to ensure the user has access
rights to all server functions referenced by SERVER_INTERFACE elements on the UIM page.

Setting the SECURITY_CHECK_ON_PAGE_LOAD attribute to false will disable this initial authorization
check and defer authorization to the point at which the server function is invoked. As a result, on an edit
page for example, a user would require authorization rights for the DISPLAY phase server function at a
minimum. If they did not have authorization rights for the ACTION phase server function, the page will
display, but the user will receive an authorization error message when the page is submitted.

To set SECURITY_CHECK_ON_PAGE_LOAD, and disable authorization on page load, add the following to
the curam-config.xml file:

Curam web client reference 33



<SECURITY_CHECK_ON_PAGE_LOAD>false</SECURITY_CHECK_ON_PAGE_LOAD>
Figure 22: Security Check on Page Load Example

Please note if the SECURITY_CHECK_ON_PAGE_LOAD element is not specified, it defaults to TRUE.

There is no security risk associated with this change, but the change has implications for auditing. When
the authorization check is performed on page load, by default authorization failures are not added to the
AuthorisationLog database table. This behavior can be modified by setting
curam.enable.logging.client.authcheck to true using the Property Administration screens.

When the authorization check is deferred to the invocation of the server function, i.e.
SECURITY_CHECK_ON_PAGE_LOAD is false, authorization failures are always logged. It is not possible to
control or disable this behavior. As a result, the risk is that the AuthorisationLog database table will be
filled with noise in the form of authorization failures that are valid failures based on usage.

ENABLE_SELECT_ALL_CHECKBOX

The multi-select check-box WIDGET described “The MULTISELECT Widget” on page 109 displays a
column of check-boxes used to select items in a LIST. The following configuration setting causes a
check-box to be displayed in the column header that can be used to select or de-select all of the check-
boxes at once.

<ENABLE_SELECT_ALL_CHECKBOX>true</ENABLE_SELECT_ALL_CHECKBOX>
Figure 23: Enable Select All Check-box Example

Please note if the ENABLE_SELECT_ALL_CHECKBOX element is not specified, it defaults to FALSE.

TRANSFER_LISTS_MODE

When set to true all multiple selection controls in an application are displayed as Transfer List widgets.
<TRANSFER_LISTS_MODE>true</TRANSFER_LISTS_MODE>

Figure 24: Transfer Lists Mode Example

Please note if the TRANSFER_LISTS_MODE element is not specified, it defaults to FALSE.

HIDE_CONDITIONAL_LINKS

When set to true all conditional links that evaluate to false are not displayed. When set to false all
conditional links that evaluate to false are displayed as disabled links.

<HIDE_CONDITIONAL_LINKS>true</HIDE_CONDITIONAL_LINKS>
Figure 25: Hide Conditional Links

Please note if the HIDE_CONDITIONAL_LINKS element is not specified, it defaults to TRUE.

DISABLE_AUTO_COMPLETE

When set to true auto complete on all input fields is disabled. When set to false auto complete on all
input fields is enabled.

<DISABLE_AUTO_COMPLETE>true</DISABLE_AUTO_COMPLETE>
Figure 26: Disable Auto Complete

Please note if the DISABLE_AUTO_COMPLETE element is not specified, it defaults to FALSE.

SCROLLBAR_CONFIG

The SCROLLBAR_CONFIG element allows a vertical scrollbar to appear on a LIST or CLUSTER element
after a maximum height is reached. It can contain two or less ENABLE_SCROLLBARS elements. The
ENABLE_SCROLLBARS element has the following attributes:

34 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« TYPE : Specifies the element in which vertical scrollbars are to be enabled. Can only be set to LIST or
CLUSTER.

e MAX_HEIGHT : Specifies the maximum height a CLUSTER or LIST can reach before a vertical scrollbar is
displayed.

<SCROLLBAR_CONFIG>
<ENABLE_SCROLLBARS TYPE="LIST" MAX_HEIGHT="150" />
<ENABLE_SCROLLBARS TYPE="CLUSTER" MAX_HEIGHT="100" />
</SCROLLBAR_CONFIG>

Figure 27: Scrollbar Configuration

Please note if the SCROLLBAR_CONFIG element is not specified no LIST or CLUSTER element will display
a vertical scrollbar.

PAGINATION

This element configures the LIST pagination options for the whole application. Individual lists can
override the global settings.
<PAGINATION ENABLED="true">

<DEFAULT_PAGE_SIZE>15</DEFAULT_PAGE_SIZE>

<PAGINATION_THRESHOLD>15</PAGINATION_THRESHOLD>
</PAGINATION>

Figure 28: Sample Pagination Configuration

Table 2: Pagination configuration options

Option Name Required Default Description

ENABLED No true Enables the ability to page through lists
displayed in Cdram pages. Any LIST longer than
the configured minimum size will display only
the first "page" of data and the pagination
controls will be displayed below the list.

DEFAULT_PAGE_SIZE |No 15 Specifies the page size the list will get by
default. The page size can be then changed at
runtime by the user.

PAGINATION_THRESHO |No Based on Specifies the minimum list size at which

LD the pagination will be enabled. For shorter lists
DEFAULT_P | there will be no pagination, even if otherwise
AGE_SIZE | pagination is switched on.

value.

Customizing Configuration Settings

The core component contains a copy of the curam-config.xml file, but you are free to augment and
override the settings by including your own curam-config.xml file in your custom component. All of the
individual curam-config.xml files will be merged into one at generation. The effect of this merging
depends on each particular setting.

Some entries are global settings for the application and so must only appear once in the final output.
These entries are as follows:

« HELP

« ERROR_PAGE
APPEND_COLON
ADMIN

Curam web client reference 35



« POPUP_PAGES/CLEAR_TEXT_IMAGE
« MULTIPLE_POPUP_DOMAINS/CLEAR_TEXT_IMAGE
« STATIC_CONTENT_SERVER

If you define one of these in a custom component, it will completely override that of the core component.
The other entries will be merged. This applies to the following elements:

MULTIPLE_POPUP_DOMAINS
POPUP_PAGES
MULTIPLE_SELECT
FILE_DOWNLOAD_CONFIG
PAGINATION

» ADDRESS_CONFIG

Note, however, that particular address formats can be overridden. So, for example, if the core component
had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"
LABEL="Core.Label.Address.1"
MANDATORY="tzrue" />
<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Core.Label.Address.2" />
<ADDRESS_ELEMENT NAME="CITY"
LABEL="Core.Label.City" />
<ADDRESS_ELEMENT NAME="STATE"
LABEL="Core.Label.State"
CODETABLE="AddressState"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Core.Label.zZip" />
</ADDRESS_FORMAT>

Figure 29: Extract from curam-config.xml File (1)

and if your custom component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"
LABEL="Custom.Label.Address.1"
MANDATORY="tzrue" />
<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />
<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />
<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />
</ADDRESS_FORMAT>

Figure 30: Extract from curam-config.xml File (2)

then it is the second one (i.e., the custom definition) that will appear in the final merged curam-
config.xml file. This is because both address formats have the same name ("US").

Dividing the Configuration File

The curam-config.xml file can be divided into manageable chunks. If you like, you can take one part of
the configuration and save it in a file with a different name. Taking the previous address format
configuration as an example, you can create a file with the following contents:

36 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<APP_CONFIG>
<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_US"
ADDRESS_FORMAT_NAME="US">
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"
LABEL="Custom.Label.Address.1"
MANDATORY="tzrue" />
<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />
<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />
<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />
</ADDRESS_FORMAT>
</ADDRESS_CONFIG>
</APP_CONFIG>

Figure 31: Sample address-config.xml File

You would then save this with a file name that ends with -config.xml anywhere within your component,
say, address-config.xml. Note that the file must have the same APP_CONFIG root element as the full
curam-config.xml file. As long as you follow these conventions, all of your configuration files will be
merged into a single address-config. xml file at build time.

Configuration File Names: Two naming patterns are used for most configuration files. Some use the
pattern XConfig.xml and others X-config.xml, where "X" is some prefix. For example,
ImageMapConfig.xml and address-config.xml. The former pattern indicates a standalone
configuration file that is not related to other configuration files. The latter pattern indicates that the file is
really just part of the curam-config. xml file.

Custom Resources
Arbitrary files can be included in the web application by doing the following:

1. At the root of a component, created a folder called WebContent, for example <client-dir>/
components/MyComponent/WebContent.

2. Place files in this folder using any folder structure you wish.

3. When you run the client build target these files will be copied directly to the <client-dir>/
WebContent which represents the root of the web application. The folder structure will be maintained
during the copy.

warning:

Before making use of this functionality care should be taken to understand the effects. It is advised to
firstly view the generated WebContent folder (located webclient/WebContent) and to be aware of
what files exist in it. Placing a similar file in the WebContent folder of a component will overwrite the

currently existing file in the generated WebContent folder.

Files included in the application in this way take precedence over the merging and overriding process as
described in previous sections for other resources. For example, if you include a CSS file in this way, the
contents of the file will not be included in the CSS overriding process described in “Cascading
Stylesheets” on page 29.

The copying of custom resources occurs after other source artifacts are built and merged, so it is possible
to replace existing resources. Care should be taken in this case. For example, it would be possible to have
a component with a file in WebContent/WEB-INF/struts-config.xml that would completely replace
the Struts configuration file generated by the client build and therefore break the application.

Curam web client reference 37



It is also important to note that the files placed in a WebContent folder within a component are
completely ignored during the build process and are not processed. They are merely copied across. For
example, if you have JavaScript properties file in the WebContent folder of your component it will not be
processed.

Finally, when multiple components have a WebContent folder they are copied based on component
priority, but the copy is time-stamp based. The copy command always uses verbose output for these files
so the developer can see exactly what files are being copied.

Localization

Use this information to learn about the various files that need to be updated when translating a Clram
application into a new language.

To simplify the translation process, the language-specific parts of the application are separated out from
the application code.

Numbers

Numbers are language-specific and so a Cliram application treats numbers in a locale-specific manner
depending on the preferred language of the user. For example, a decimal number can be represented as
7,99 or 7.99 depending on whether the user's locale is French or English.

File Encoding

OO0TB Curam supports the development of applications localized into many languages. The Curam CDEJ
generators support files encoded in the various character encodings appropriate for those languages.
Definition of the encoding for a file is dependent on the type of file and the following sections describe
how to set the encoding for the different types of supported files.

XML Files

Declare the encoding for XML format files explicitly within the first line of the XML file. The following
example shows the format of the XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

The previous example tells the XML parser that the file uses UTF-8 encoding. If you omit the XML
declaration, the parser assumes UTF-8 encoding by default. UTF-8 encoding is based on the Unicode
standard, and covers most modern languages and many other languages.

Ensure that the XML declaration matches the actual file encoding. The declaration identifies the encoding
but it does not determine the encoding. If you change the declaration, the file encoding does not change
automatically. If you use a specialized XML editor application, then it will probably recognize the
declaration and change the file encoding for you. However, plain-text editors do not change the file
encoding, so you must ensure that you select the correct encoding in your editor before you save the file.

It is highly recommended that you use UTF-8 encoding for XML files.

Java properties files

For Java properties files (used in the application, for example, to define the text strings that appear on
client screens), there is no equivalent of the explicit XML declaration. The client generator must assume
an encoding for the client properties files. The assumption the generator makes is that Java properties
files are encoded in the default system encoding of the machine that the build is running on. This is a
reasonable assumption given that the files themselves were likely created on the same machine or a
machine of similar type in the same country. On a Microsoft Windows machine in Western Europe, for
example, the system encoding is probably Cp1252, the Windows variant of ISO-8859-1. This encoding
will handle the accented characters of Western European languages but does not cover, say, Cyrillic or
Chinese characters.

38 IBM Curam Social Program Management: Ciram Web Client Reference Manual



If, for some reason, you are building on a machine that does not share its system encoding with the files
that are being processed, you must indicate this by setting the ENCODING environment variable. For
example, to build a Chinese language web client application on an English language Microsoft Windows
machine, you might choose to save your properties files in the UTF-8 encoding, so you would set the
ENCODING environment variable to UTF-8. During the build, you can see that the generator overrides its
normal default setting:

System encoding is Cpl252.
Using encoding UTF-8 to read properties files.

The Java Runtime Environment will always assume that properties files use the ISO-8859-1 encoding.
This is not very helpful if you want to create properties files using the UTF-8 encoding for localization to,
say, Chinese. To overcome this limitation, the Ciram CDEJ will automatically translate properties files
from your preferred encoding (either the system default encoding, or the encoding specified via the
ENCODING environment variable) into the encoding required by Java. This is performed automatically
during the build process and your original properties files will not be affected.

Troubleshooting: Where a properties file has been saved in UTF-8 encoding, and this does not match the
system encoding, build failures can occur. The build failure will report a PageGenerationException,
where the build could not find a property even though the property exists in the relevant file. This happens
where the properties file has been saved by a UTF-8 editor which adds the Byte Order Mark (BOM) at the
beginning of the file. The property reported in the error will be the first property in the file. To resolve the
issue the file should be saved in the correct encoding, ensuring the BOM character has been removed.

Note: The properties files shipped by default with Ciram use ISO-8859-1 encoding, and where necessary
use Unicode characters.

Non-XML Files

The non-XML files in the Ciram Reference Application are encoded in the ASCII encoding. ASCII has the
useful property of being a subset of most other common file encodings. This means you do not generally
need to convert the English language files that ship with the OOTB Curam application in a new encoding in
order to build them in a different language environment.

Locales

A Java locale identifier has three parts:

Language
A lower-case, two-letter, ISO-639 code.

See http://www.unicode.org/onlinedat/languages.html.

Country
An upper-case, two-letter, ISO-3166 code.

See http://www.unicode.org/onlinedat/countries.html.

Variant
A vendor-specific or browser-specific code.

The language code is required, but the other parts are optional. The individual parts are separated by an
underscore character. Some examples of valid locales are: "en" (English language), "en_US" (English
language for the United States), zh_HK (Chinese language for Hong Kong). This system is used within the
Curam application to identify locales. Most locale-specific information in the application are contained in
properties files.

Non JavaScript property files

When localizing an application (see “JavaScript property files” on page 40 for details on localizing
JavaScript), you will need to create new properties files for each locale. The files for the default locale are
named simply as SomeFile.properties. The files for other locales are identified by appending the
locale identifier to the end of the file name after a separating "_" (underscore) character (i.e., between the

Curam web client reference 39


http://www.unicode.org/onlinedat/languages.html
http://www.unicode.org/onlinedat/countries.html

name of the page and the . properties extension). For example, SomeFile_es.properties would be
the name of the Spanish language version of SomeFile.properties.

It is useful to note that if a particular property is not found by the application in
SomeFile_es.properties, the properties file for the default locale, i.e. SomeFile.properties, will
be searched. This is particularly handy in the case of Image.properties, described below, where only
some of your images contain text and thus need to be localized. Properties for the other images can be
defined once in the default locale properties file and they will be picked up in all locales.

Once done adding localized . propexrties files, update the LOCALE_LIST environment variable as
appropriate (this variable defines the list of locales the client will be built for), for example, set it to
"en,es" for a default English language application and a Spanish language application. See “Application
Locales” on page 14 for more details on this setting.

The merging of localized properties files from different components happens in exactly the same way as it
does for default locale properties files. See “Externalized Strings” on page 25 for more details on the
merging of properties files.

JavaScript property files

When localizing JavaScript files in the application, you will need to create new JavaScript property files for
each locale. The files for the default locale are named simply as x. js.properties. The files for other
locales are identified by appending the locale identifier - after a separating "_" (underscore) character -
between the . js extension and the . properties extension. For example,
SomeJSFile.js_es.propexrties would be the name of the Spanish language version of

SomeJSFile. js.properties file. This file will be automatically processed by a client build. Similar to
the non JavaScript property files, if a particular property is not found by the application in
SomeJSFile.js_es.propexrties file, then the property from the default properties file
(SomeJSFile.js.properties) will be used.

UIM Externalized Strings

As described in “Externalized Strings” on page 25, all string values in UIM files are externalized
to .properties files.

If MyPage.uimis the UIM file, then MyPage.properties is the corresponding properties file. To add
localized properties files, please see “Locales” on page 39.

The strings are stored in a properties file in the same folder as the page or view file. This file must have
the same name as the page or view file but with the extension . properties. For example, if the page is
stored in a file called MyPage . uim, the strings will be stored in the file MyPage.properties in the same
folder. Similarly, views will see the . vim extension changed to .properties.

While UIM documents in the highest priority component override those in all other components,
properties files in different components are merged together. Individual properties override those with
the same property name defined in lower priority components. Also, when a UIM page includes a UIM
view (a . vimfile), all of the properties defined for both the page and the view are merged and the
properties for the page override those defined for the view where they share the same property name.
These two merging steps happen separately with the component order applied first for each properties
file and the page-view order applied on the resulting properties. A property defined for a page will
override a property of the same name defined for a view, even if the property for the view was defined in a
higher priority component.

JavaScript Externalized Strings

As described in “Externalized Strings” on page 25, all string values in JavaScript files should be
externalized to JavaScript property files (. js.properties files).

By convention the name of the resource file for your JavaScript must be derived from name of the.js file
itself. For example if your JavaScript file is called SomeJSFile.js then related localizable resources should
be placed in SomeJSFile.js.properties file. A *.js.properties file can be placed anywhere in the component
directory, but by convention it should be in the same directory as the related *.js file.

40 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The exception to this is that a *.js file within a WebContent directory cannot have its associated

* js.properties file within the same directory. The associated *.js.properties file must be placed within a
directory outside of the WebContent directory. To add localized JavaScript properties files, please see
“Locales” on page 39.

JavaScript Properties files with the same name across all components will be merged together during
processing. Any property with the same name will be overwritten by the highest component in the
component order.

The use of placeholders within a property value is supported. The placeholders must be in the format %ns
or '%ns"' where n represents an integer from 1...n, and n must be within a defined range. The range is
defined by the number of of placeholders used within a property value. For example, if there are three
placeholders within a property value then the placeholders must be numbered from 1 to 3 (e.g. %1s,
%2s, %3s) and anything outside of this range is not supported.

Accessing properties in JavaScript
There are three requirements for accessing a JavaScript property.

/] 1.

dojo.requirelocalization("curam.application"”, "SomeJSFile");

/] 2.
dojo.require("curam.util.ResourceBundle");
var bundle = new curam.util.ResourceBundle("SomeJSFile");

/] 3.
var localizedMessage = bundle.getProperty("myPropertyKey");
var localizedMessageWithSubstitutions

= bundle.getProperty("my.sub.key", ["a", "b"]);

curam.application is the default package into which all localizable resources are placed by the Curam
infrastructure. SomeJSFile is derived from the name of the related JavaScript properties file.

Figure 32: Accessing a property

1. Load the resources using dojo.requireLocalization().

Refer to comment 1 in “Accessing properties in JavaScript” on page 41 for an example of this.
2. Create an instance of the curam.util.ResourceBundle object.

This is required in order to be able to access the localized resources. Refer to comment 2 in “Accessing
properties in JavaScript” on page 41 for an example of this.

3. Access a property

The getProperty () method can be used to access a property on the instantiated ResourceBundle.
Refer to comment 3 in “Accessing properties in JavaScript” on page 41 for an example of how to get a
property and a substituted (2 substitutions) property respectively.

Image.properties

The Image.properties file (see “Images” on page 26) can be localized as per other properties files,
please see “Locales” on page 39 for more information on localizing properties files. Once the localized
properties file is created, place this beside the Image . properties file.

It is useful to note that if the application does not find a particular property in a localized properties file, it
will check the default locale properties file. This is generally true for all properties files but it is particularly
useful in the case of Image.properties. You might find that some of yourimages can be used no
matter what language is displayed, whereas other images contain text and thus must be altered. It is only
these latter images that need to be mentioned in the localized properties file.

Curam web client reference 41



Infrastructure Widget Properties Files

The following is a list of . properties files associated with Infrastructure widgets, e.g. the
AgendaPlayer.properties file is associated with the AgendaConfig. xml file, which defines the
Agenda Player widget.

« AgendaPlayer.properties

« BarChart.properties

« Calendar.properties

« ComparedEvidence.properties

« DateTimeSelector.properties

e DecisionMatrixAddMessage.properties
- DisplayEvidence.properties

« EvidenceComparison.properties

« EvidenceReview.properties

« EvidenceTabContainer.properties

« FrequencyPatternSelector.properties
e GanttChart.properties

« IEGPlayer.properties

- Logon.properties

« MeetingView.properties

« PaymentStatement.properties

« RatesTable.properties

e Rules.properties

« TypicalPictureEditor.properties

e Workflow.properties

e FileEdit.properties

Note: The names of the properties files associated with infrastructure widgets are reserved names and

must not be used for the name of any other client properties file. No warning is printed to the console in
this scenario, therefore care must be taken when naming other properties files.

To customize a widget properties file, create a new version under the webclient/components/custom
component folder, where the default content for the file can be found in the corresponding sample widget
properties file located in the <cdej-dir>/doc/defaultproperties/ folder. For each entry in Clram's
version of the file you wish to change, add a corresponding entry to your custom file. These properties
files can be localized as per “Locales” on page 39.

Frequency Pattern Selector Localization
The Frequency Pattern Selector infrastructure widget is used to construct frequency patterns such as:
the first day of every 1 month(s)

This sentence is made up of fixed text from its associated FrequencyPatternSelector.properties
file as well as values selected by a user from an input field and two drop-downs in the widget, refer to this
example frequency pattern in “Frequency Pattern Selector” on page 205.

Because of the grammar differences between different languages, the construction of this example
frequency pattern sentence can be dramatically changed in other languages, like the values selected by a
user can be re-ordered in it. Therefore, the placeholders are introduced to represent these user selected
values so that we can localize every frequency pattern as "whole" into every single property in the
properties file.

42 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Here is the property entry from the FrequencyPatternSelector.properties for this example

frequency pattern:

Text.monthly.freq.type.two= The %ordinal¥% %dayOfWeekExtended
of every %monthInterval% month(s)

The strings %ordinal®, %dayOfWeekExtended% and %monthIntexrvaldin this property entry are the
placeholders that map to the values that will be selected from two drop-downs and one input field in the
widget. The detailed explanation of these three placeholders will be covered later in a table.

In order to use these placeholders properly, you need to stick to the following two rules:

« The placeholders control the layout of the widget

Any change of the location of a placeholder in a localized text for a certain frequency pattern would
cause the change of the layout of this frequency pattern to be displayed on the Frequency Pattern

Selector widget.

« The placeholders that can be used for every frequency pattern are fixed

You could not change, add or reduce placeholders used for a certain frequency pattern. It will cause this

widget failing to work.

A description of all these placeholders used in the properties file of this widget is listed as follows:

Table 3: Placeholders used in Frequency Pattern Selector

Placeholder Name

Description

%dayInterval®

A day interval. It maps to an input field where you can enter a
number for a day interval for a frequency pattern.

%weekInterval%

A week interval. It maps to an input field where you can enter
a number for a week interval for a frequency pattern.

%dayOfiWeek?

A set of days in a week. It maps to a collection of check boxes
where you can multi select the days in a week for a frequency
pattern.

%dayOfWeekExtended®

It is an extension of the values represented by %dayOfiWeek
%, which also includes the weekday, weekend day and day
value. It maps to a drop-down where you can select one of
those day values for a frequency pattern.

%monthIntervalf%

A month interval. It maps to an input field where you can
enter a number for a month interval for a frequency pattern.

%ordinalf%

an ordinal, e.g. first, second. It maps to a drop-down where
you can select an ordinal for a frequency pattern.

%dayIntervalOnef%,
%dayIntervalTwo?

Two day intervals in a frequency pattern. They should be used
together and map to two input field where you can enter a
number for a day interval respectively for a frequency pattern.

%ordinalOne%, %ordinalTwo%

Two ordinals in a frequency pattern. They should be used
together and map to two drop-downs where you can select an
ordinal respectively for a frequency pattern.

%monthOfYear%

A month in a calendar year. It maps to a drop-down where
you can select a month for a frequency pattern.

Clram web client reference 43



As stated in the second rule above, the placeholders used for every frequency pattern are fixed. So you
need to take care that you have used them properly when localizing the properties in this widget
properties file. As long as you keep this in mind, the customization of this widget properties file is also no
difference from other infrastructure widgets. The following table lists all the properties and the
placeholders they contain for every frequency pattern sentence displayed on the Frequency Pattern
Selector.

Table 4: Properties used for the Frequency Pattern Selector

Property Name Placeholders it contains
Text.daily.freq.type.one %dayInterval?%
Text.daily.freq.type.two None.
Text.weekly.freq.type %weekInterval®, %dayOftWeek?
Text.monthly.freq.type.one %dayInterval%%, %monthInterval?
Text.monthly.freq.type.two %ordinal¥, %dayOfWeekExtendedy%,
9%monthInterval%%
Text.bimonthly.freq.type.one %dayIntervalOne%, %dayIntervalTwo%
Text.bimonthly.freq.type.two %ordinalOnef%, %ordinalTwo%, %dayO0fWeek?
Text.yearly.freq.type.one %monthOfYear¥%, %dayInterval
Text.yearly.freq.type.two %ordinalf%, %dayOfWeekExtendedy,
%monthOfYeary

CDEJResources.properties

This properties file can be localized as per “Locales” on page 39. Images defined in this file can also be
customized per locale.

Related reference

Optimal Browser Support

Learn about optimal browser support and how to notify the user when they are using a sub-optimal
browser with the Ciram application.

ApplicationConfiguration.properties

This properties file does not, in itself, need to be localized but there are a couple of settings within this file
which are related to the localization of date and address formatting. See “Application Configuration
Properties” on page 20 for details.

Application-wide Menu

The contents of the application-wide menu (that normally appears in the top-right of the screen) are
defined in curam-config.xml. It is possible to put the text that will appear on screen directly into this
file, in the LABEL attribute of the LINK element. That approach, however, is not suitable if the application
should be viewable in multiple languages, so the application will first check if the LABEL attribute is
actually a key into the CDEJResources.properties file. If it finds the key, it will use the corresponding
value in the menu. To localize the menu, therefore, simply include the same key in the localized version of
CDEJResources.propexrties. This properties file can be localized as per “Locales” on page 39.

44 1BM Curam Social Program Management: Ciram Web Client Reference Manual



Tabbed Configuration Artifacts

Each tabbed configuration artifact will have a corresponding properties file for any text that may be
localizable. To localize this text for a specific language, you must add the locale-specific properties file
beside its associated tabbed configuration artifact in your <custom> component. These properties file can
be localized as per “Locales” on page 39.

Runtime Messages

The Cdram CDEJ runtime messages can be localized or customized by creating a
RuntimeMessages.properties file within the component folder, i.e. the <client-dir>/
components/<component_name> folder. The default content for this file can be found in the <cdej-
dir>/doc/defaultproperties/ folder. Any messages present in this file will override the
corresponding messages from the RuntimeMessages.properties shipped with the Ciram CDEJ. The
standard file naming convention for Java properties files can be used to add locale-specific messages. For
example, to create a Spanish version, a file RuntimeMessages_es.properties would be created.

Itis not necessary to copy all of the messages into the custom message catalog when customizing only
some of them. Only the messages that are customized need to be defined in the custom message catalog;
the other messages will be loaded from the default message catalog.

When resolving error messages, the custom message catalog is checked first and all the locale fall-backs
are applied. If a message is not found, then the default message catalog (from the Ciram CDEJ) is
checked. Therefore, a message in a custom message catalog will take precedence over one in a default
catalog even if the locale of the default catalog is more specific.

When customizing a message, the message argument placeholders cannot be changed. The message
argument placeholders have the form %ns where n is the argument number. The message arguments can
be moved around and their order changed, but no new arguments may be added and none may be
removed.

UIM Reference

Learn about the Ciram User Interface Meta-data (UIM) format used to specify the contents of the Clram
web application client pages.

UIM is an XML dialect and all UIM files are well-formed XML. The Cliram CDEJ will translate UIM files into
JSP files that can be deployed to your web application server.

Creating UIM Documents

You can use any text editor to write UIM documents, but it is usually easier if a specialized XML editor is
used. The CDEJ includes an XML Schema file defining the syntax of a UIM document and when this is
combined with a schema-aware XML editor, you will have access to many time-saving facilities such as
auto-completion, syntax checking, etc.

UIM Document Types

When creating UIM documents, there are four root elements that are valid: PAGE, VIEW, PAGE_GROUP and
APPLICATIONS. These root elements are used to create the two types of UIM document:

PAGE
This defines a UIM page that will be translated into a JSP page. The file name must be the same as the
value of the PAGE_ID attribute of the root element. The file extension to use is . uim. UIM pages can
be organized arbitrarily into sub-folders within a component folder for convenience in managing a
large number of files. Ultimately, all UIM pages are generated into JSP pages in a single folder, so the
PAGE_ID attribute of the PAGE element and consequently the file names of all the . uim files must be
unique within a component.

Curam web client reference 45



VIEW
This defines a portion of a page that can be included into a PAGE element in another UIM document.
This allows common sequences of elements to be reused. The file name is not restricted. The file
extension to use is . vim. Like UIM pages, views can be organized into an arbitrary folder structure
within a component folder, but the file names must be unique within that component.

UIM Pages

“Curam web client overview” on page 1 covered the basic concepts behind UIM pages and what clusters,
lists, action sets, action controls, containers, and fields are, so this information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML Schema definition of UIM. However,
this order is only imposed when editing using a schema-aware XML editor. The JSP generator does not
check the ordering at present. The order in which elements are presented in the child element tables in
this reference is the order in which the elements should be used in the UIM documents unless otherwise
indicated. There is no specific ordering for attribute values.

UIM Views

A PAGE element can contain an INCLUDE element anywhere at the top level that allows commonly used
fragments of UIM to be inserted at that point during translation. The included elements are defined in a
UIM document called a view. The view document uses VIEW as the root element. Elements included from
a view must be valid in the context in which they have been included. For example, a PAGE element that
already contains a PAGE_TITLE element, cannot include a view that also defines a PAGE_TITLE
element. Similarly, the schema rules governing the order of elements in a page must be observed when
elements are included from a view.

Views are similar to pages in what they can contain, the only differences are as follows:

« Aview cannot contain an INCLUDE element to include another view.
« Aview does not have any PAGE_ID attribute, this is defined in the page that includes the view.

All other elements that are valid in a PAGE element at the top level, are also valid in a VIEW.
When including views, the name of the view file must be specified. Regardless of where in the component
the file including the view is, only the name of the view file is required, not its path.

UIM Page Field Level Validations

Field level validation appear in a cluster above the fields. The validation messages do not appear in the
same order as the fields are displayed.

UIM Pages

“Curam web client overview” on page 1 covered the basic concepts behind UIM pages and what clusters,
lists, action sets, action controls, containers, and fields are, so this information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML Schema definition of UIM. However,
this order is only imposed when editing using a schema-aware XML editor. The JSP generator does not
check the ordering at present. The order in which elements are presented in the child element tables in
this reference is the order in which the elements should be used in the UIM documents unless otherwise
indicated. There is no specific ordering for attribute values.

Externalized Strings

All string values and image references in UIM documents must be externalized, i.e., the actual values are
stored in files separated from the UIM. This aids maintenance and allows the application to be localized.

See “Externalized Strings” on page 25 for details on externalizing strings.

UIM Reference for Pages and Views

46 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Introduction

This section describes the PAGE and VIEW elements and all of the child elements that they can contain
with the exception of WIDGET elements. These are treated in the next section.

Most elements have a list of attributes that can be used in any order. Some attributes are optional and
have default values when omitted. Others can have one of a range of values. Boolean attributes can only
have the values true and false (case-sensitive).

Many elements can have child elements and these are listed in the order in which they must be added and
include details on their cardinality. Cardinalities use "0" to indicate that the element is optional, "1" to
indicate that it can appear only once, and "n" to indicate that it can be appear any number of times. The
"."indicates the range of the cardinality. For example, "0..1" indicates that the element can appear zero or
one times in this location, i.e., it is optional, while "1..n" indicates that an element must appear at least

once, but can appear any number of times thereafter.

Connection Types

UIM pages use connections for associating components on a page with actual data. The connection type
is reflected in the connection tag name and is roughly equivalent to data direction. The three types of
connection available are SOURCE, TARGET and INITIAL (see “SOURCE” on page 96, “TARGET” on page
97, and “INITIAL” on page 70, respectively).

Connection endpoints are further distinguished by the setting of the NAME attribute. The value of this
attribute may be the name of the server interface used, TEXT, CONSTANT ,or JSCRIPT_REF or PAGE.
These values designate objects which supply or consume data. JSCRIPT_REF can only be a TARGET
connection with either PAGE or a server interface defined in the DISPLAY phase, as the SOURCE
connection. TEXT or CONSTANT can only be used when TARGET has a server interface defined in the
ACTION phase.

Curam web client reference 47



<PAGE PAGE_ID="APage">
<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title.Static"/>
</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY_SI"
CLASS="sourceClass"
OPERATION="xead"
PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION_SI"
CLASS="targetClass"
OPERATION="modify"
PHASE="ACTION/>

<PAGE_PARAMETER NAME="P_PARAM" />

<CONNECT>
<SOURCE NAME="CONSTANT"
PROPERTY="From.Constants.Props"/>
<TARGET NAME="ACTION_SI"
PROPERTY="aProperty"/>
</CONNECT>

<ACTION_SET BOTTOM="true" TOP="false">
<ACTION_CONTROL TYPE="SUBMIT" LABEL="Button.Submit">
<LINK PAGE_ID="APage">
<CONNECT>
<SOURCE NAME="DISPLAY_SI" PROPERTY="PARAM"/>
<TARGET NAME="PAGE" PROPERTY="P_PARAM"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

<CLUSTER NUM_COLS="1" SHOW_LABELS="false">
<FIELD LABEL="Label.Text">
<CONNECT>
<SOURCE NAME="DISPLAY_SI" PROPERTY="sourceField"/>
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION_SI" PROPERTY="targetField"/>
</CONNECT>
</FIELD>
</CLUSTER>
</PAGE>

Figure 33: Connection Types Example

Most frequent is a connection to a server interface. Here, the NAME attribute corresponds to an existing
(i.e. declared on the page) SERVER_INTERFACE NAME attribute value (DISPLAY_STI and ACTION_ST in
the example above).

A value of TEXT means data is sourced from a properties file. The PROPERTY attribute in this case
contains the name of an externalized string in a page-specific property file. In the example, the file
APage.uim has a page title which references the Page.Title.Static property in the associated
APage.properties file.

A value of CONSTANT provides similar functionality to TEXT but the externalized string is component-
specific rather than page-specific and is sourced from a file called Constants.properties. In the
example, there is a page level connection to a From.Constants.Props property.

A connection might also source its data from a page parameter (i.e., a variable declared on a page,
P_PARAM in the example). In this case PAGE is used as the value of the NAME attribute.

48 IBM Curam Social Program Management: Ciram Web Client Reference Manual



There are limitations and restrictions on the use of the various connection types in various contexts. The
UIM element descriptions below detail these limitations where they arise.

ACTION CONTROL

The ACTION_CONTROL element defines a link (text based), button or file download link that the user can
activate on a page.

Cancel Button

An UIM action control with TYPE of ACTION and no explicit link specified ('previous' control further in the
text) implicitly leads to the page which linked to it and had the "SAVE_LINK=true" specified in UIM for that
link. This type of action is used for the Cancel Button.

However, as no page history is memorised and supported, only a single implicit transfer back is possible.
Therefore in a situation when consecutive screens contain 'previous' controls, only the 'previous' control
on the last screen would correctly pass the flow back with the subsequent attempt to get to the page
before it will result in an error.

The screen flow with 'previous' controls is not recommended in the content pane of the tabbed v6
application as it breaks usability, however it could still be used in the modal wizard type flows or other
contexts not bound to the tabbed navigation (like nested pages). Therefore, if such a screen flow contains
more than one consecutive "previous" controls, they must explicitly link to the page to go to when clicked.

File Downloads

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD results in the generation of a hyperlink on
the page. Clicking on the hyperlink invokes a special FileDownload servlet included in the Cdram CDEJ
that returns the contents of a file from the database. The FileDownload servlet is configured with the
server interface to call to get the file contents and the parameters to pass to identify that file. The
configuration is performed in the curam-config. xml file. A single server interface can be configured for
each page of the application that includes file download action controls. An example configuration is
shown in “File Downloads” on page 49, below:

A WIDGET with the TYPE set to FILE_DOWNLOAD can also be used to generate a hyperlink to download a
file. You should use the ACTION_CONTROL element when the hyperlink text is the fixed LABEL value. The
FILE_DOWNLOAD WIDGET allows the hyperlink text to be a dynamic value retrieved from a server
interface property.

<APP_CONFIG>
<FILE_DOWNLOAD_CONFIG>
<FILE_DOWNLOAD PAGE_ID="FileDownload"
CLASS="curam.interfaces.FilePkg.File_read_TH">
<INPUT PAGE_PARAM="fileID" PROPERTY="key$fileID"/>
<FILE_NAME PROPERTY="dtls$fileName"/>
<FILE_DATA PROPERTY="dtls$fileData"/>
</FILE_DOWNLOAD>
</FILE_DOWNLOAD_ CONFIG>
</APP_CONFIG>

Figure 34: Example Configuration for File Download

Each configuration for downloading files is contained in a FILE_DOWNLOAD element within the
FILE_DOWNLOAD_CONFIG element inthe configuration file. There should be one FILE_DOWNLOAD
element for each page that contains file download action controls.

The FILE_DOWNLOAD element takes two attributes: PAGE_ID for the identifier of the page containing the
action controls to which this configuration will be applied, and CLASS containing the name of the server
interface that will be called by the FileDownload servlet when the generated hyperlink is invoked.

The FILE_DOWNLOAD element can contain zero or more INPUT elements specifying the key values to set
before the server interface is called. These INPUT elements associate page parameters with properties of
the server interface. The PAGE_PARAM attribute specifies the name of the page parameter whose value
will be used as a key value, and the PROPERTY attribute specifies the key property of the server interface

Curam web client reference 49



that must be set to identify the file. The page parameters are set by the LINK element within the
ACTION_CONTROL, as you will see below.

The other three elements, FILE_NAME and FILE_DATA, and CONTENT_TYPE all have PROPERTY
attributes that indicate the properties of the server interface that will contain the name of the file, the
contents of the file, and the content type of the file respectively, after the server interface is called. This
data is returned to the client in response to the activation of the hyperlink and the user's browser will
present them with the download dialog box prompting them to save or open the file.

Where property names are specified, the names must be written in full and cannot be abbreviated like
they can in UIM documents.

Attributes
The ACTION_CONTROL element has the following attributes. The LABEL attribute must be present.

Table 5: Attributes of the ACTION_CONTROL Element

Attribute Name Required Default Description

LABEL See above. A reference to an externalized string containing
the label text for this action control. If the TYPE
is ACTION, this will be the text of the hyperlink.
If the TYPE is SUBMIT, this will be caption of
the submit button.

LABEL_ABBREVIATIO |No A reference to an externalized string containing
N the label abbreviation text for this action
control. This label abbreviation is placed only on
table headersina LIST.

TYPE No ACTION The type of action control to create. There are
six types: ACTION (the default) defines a link to
another page, SUBMIT forwards the page's form
data to the action phase for processing,
DISMISS closes a pop-up page,
SUBMIT_AND_DISMISS combines a submit
with closing a pop-up page (see “Pop-up
Pages” on page 237 for details on working with
pop-up pages), FILE_DOWNLOAD defines a link
that triggers the download of a file from the
server, and CLIPBOARD places a predefined
value to the system clipboard. Please note, the
CLIPBOARD type control is only functional in
Internet Explorer as it relies on the JavaScript
specific to that browser.

STYLE No The class name of the CSS style to use when
formatting the action control. Supported by
action controls in action sets only.

CONFIRM No Use the CONFIRM attribute of
ACTION_CONTROL to force a confirmation
dialog when the action control is activated.

The value of the CONFIRM attribute is a
reference to the confirmation message in the
page properties file.

50 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 5: Attributes of the ACTION_CONTROL Element (continued)

Attribute Name

Required

Default

Description

DEFAULT

No

false

If there is more than one submit action on a
page, it is useful to specify which one is
executed when the user hits the Enter key. This
is especially recommended when the
submitting action controls are contained within
the different action sets as in this case the
default action could be different than the first
submit action declared on the page. The default
action can be specified by setting this attribute
to true. Note that only one submit action on a
page can have a DEFAULT value of true.

ACTION_ID

No

A custom identifier for action controls of TYPE =
SUBMIT. It is used in conjunction with
ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE element to inform the
server side code which action control was used
to make the server call.

This attribute is only valid on action controls of
TYPE = SUBMIT.

The value of this attribute among the action
controls within the page must be unique.

The value of this attribute must be in the format
suitable for the domain associated with the
property specified in the
ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE.

This attribute must be either specified on all
action controls within the page or not specified
on any of them.

If this attribute is specified then the
ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE must also be specified.

IMAGE

No

The value of this attribute refers to an
externalized string which maps to a specific
icon or graphic in the application. An action
control with this attribute can only be used
within a CONTAINER element.

ALIGNMENT

No

RIGHT

When contained in a page level ACTION_SET of
a Modal Dialog, the ALIGNMENT attribute is
supported. This will define the individual
horizontal alignment of the action control. It can
be set to LEFT or RIGHT. The default is to right
aligned.

Child Elements

The ACTION_CONTROL element can contain the following child elements:

Curam web client reference 51



Table 6: Child Elements of the ACTION_CONTROL Element

Element Name

Cardinality / Description

LINK

0..1. An action control with a TYPE of ACTION that has no
LINK element will create a link to the previous page in the
history that had SAVE_LINK set to true on the link that led to
this page (this is typically used for Cancel buttons). However
this type of ACTION_CONTROL should not be present on a page
that is directly referenced by any tabbed configuration artifact.
Also, if this type of ACTION_CONTROL is preceded by another
ACTION_CONTROL of the same type in the page history, there
is the potential of a circular reference between these pages.

An action control with a TYPE of SUBMIT that has no LINK
element will submit the field values to the action phase and
then return to the previous page in the history that had
SAVE_LINK setto true on the link that led to this page.

An action control with a TYPE of FILE_DOWNLOAD only
requires a link if it must provide the page parameter values
specified in the INPUT elements of its configuration. Each
CONNECT element in the link can contain a SOURCE element to
specify the value and a TARGET element specifying the page
parameter to which to map the value. The PROPERTY attribute
value of the page parameter must match the PAGE_PARAM
attribute value of the INPUT element in the configuration.

CONNECT

0..1. A CONNECT element specifying a single SOURCE end-
point. As a direct child it is used only for an action control with
a TYPE of CLIPBOARD. Such an action control places
predefined textual data into the system clipboard when
clicked.

Text to be copied to clipboard can be sourced from the server,
the request or a properties file.

The CONNECT element used can only contain a SOURCE
element with a NAME property of PAGE, TEXT or the name of a
server interface defined within the page.

SCRIPT

0..n. A script element associated with an action control. For a
detailed description of this element see “SCRIPT” on page
93.

SCRIPT elements are not supported on ACTION_CONTROL
elements with a type of CLIPBOARD.

CONDITION

0..1. Affects whether or not the ACTION_CONTROL is
displayed.

When linking to another page, the link must specify all page parameters declared on the target page.

ACTION SET

The ACTION_SET element groups a number of ACTION_CONTROL elements together. Depending on the
context in which the action set is defined, the action controls will be displayed in differing ways.

At the page level, action controls are displayed at the left side of the page title bar, see the Page Level
Action Control in User Interface Element 10 of “Application user interface overview” on page 4. If the

52 IBM Curam Social Program Management: Ciram Web Client Reference Manual




action set contains two or less action controls, then each link is displayed side by side with a new item
icon to the left of it. The SEPARATOR child element has no affect.

If three or more action controls exist at the page level, then a drop down menu will display each action
control as a menu item. In this case, the SEPARATOR element inserts a gray separator into the drop down
menu at the position indicated in the UIM file.

At the list level, all action controls will be displayed in a menu drop down. The SEPARATOR element
inserts a gray separator into the drop down menu.

For action sets defined at the cluster or list level, the action controls can be displayed above and/or below
the element with which the action set is associated and are aligned horizontally.

In all scenarios, conditional links that evaluate to false will not display if HIDE_CONDITIONAL_LINKS
attribute is set to true, otherwise the conditional link displays but is disabled.

Attributes
The ACTION_SET element has the following attributes:

Table 7: Attributes of the ACTION_SET Element

Attribute Name Required Default Description

TOP No true Defines whether the action controls will be
displayed above the associated element.
Can be set to true (the default) or false.

BOTTOM No true Defines whether the action controls will be
displayed below the associated element.
Can be set to true (the default) or false.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the set
of action controls with respect to the
associated element. Can be set to LEFT,
RIGHT, CENTER, or DEFAULT The value
DEFAULT corresponds to the CSS class
ac_default in curam_common.css. The
default is to be left aligned. In addition, for
a page level ACTION_SET in a Modal
Dialog, LEFT, RIGHT and DEFAULT values
are supported.

TYPE No DEFAULT Defines the location of the action set. This
can be set to LIST_ROW_MENU or
DEFAULT.

LIST_ROW_MENU is applicable where the
ACTION_SET is contained within a LIST.
It indicates that the action set should be
displayed as a list actions menu within
each list row entry.

Note: An ACTION_SET of type LIST_ROW_MENU should not be used to open a “Using the Pop-up Page”
on page 242.

Child Elements
The ACTION_SET element can contain the following child element:

Clram web client reference 53



Table 8: Child Elements of the ACTION_SET Element

Element Name

Cardinality / Description

ACTION_CONTROL

1..n. See the description of ACTION_SET 's parent element to
see what ACTION_CONTROL elements are valid in each

context.
CONDITION 0..1. Affects whether or not the ACTION_SET is displayed.
SEPARATOR 0..n. allows the for ability to add a visual separator between
action controls that display in the page action drop down
menu.
CLUSTER

The CLUSTER element defines a group of input and/or output fields containing data from any data source
(server interface property values, externalized string values, or page parameter values) and supplying
data to other data targets (server interface properties, or page parameters). Clusters generally show the
fields with labels to the left and these label/field pairs in a number of columns. Clusters can also include
other clusters and lists in place of fields to allow more complex layouts.

Attributes

The CLUSTER element has the following attributes:

Table 9: Attributes of the CLUSTER Element

Attribute Name

Required

Default

Description

TITLE

No

A reference to an externalized string containing
the title string for this cluster.

NUM_COLS

No (see the
note in the
description)

The number of columns to display in the
cluster, where a cluster column includes both
the label and the field.

Note: The NUM_COLS attribute is required in
the case where a cluster contains a field
element that has the ADDRESS_DATA domain
data type. The NUM_COLS attribute is optional
for all other domain data types.

TAB_ORDER

No

COLUMN

Indicates the order to layout elements in a
multi-column cluster. The elements can be
ordered by ROW or COLUMN (default). Please
note, if a CLUSTER has NUM_COLS setto 2 or
above and is going to contain a mix of LIST
and FIELD elements, the TAB_ORDER must be
set to ROW.

SHOW_LABELS

No

true

Can be set to true (the default) to show labels
beside the field values or false to show no
labels at all.

54 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 9: Attributes of the CLUSTER Element (continued)

Attribute Name

Required

Default

Description

LAYOUT_ORDER

No

LABEL

Labels can be displayed to the left or to the
right of their associated fields. Set the attribute
value to LABEL to show labels to the left (this
is the default behavior). Set the attribute value
to FIELD to show labels to the right.

WIDTH

No

100

The percentage of the width of the containing
area that the cluster should occupy.

STYLE

No

The class name of the CSS style to associate
with this cluster for formatting.

DESCRIPTION

No

A reference to an externalized string that
provides more details about the cluster than
the title alone. This will be displayed below the
title on the page.

LABEL_WIDTH

No

The percentage of the width of a cluster
column that the label should occupy. By
default, the web browser will determine the
widths as appropriate.

This attribute has an effect even if
SHOW_LABELS is set to false. It is possible,
say, to use action controls in place of text
labels. You might want to control the width of
these action control columns and you can do
that by setting the LABEL_WIDTH attribute.
The specified width will be applied to every
other column. Whether this starts with the first
or second column depends on the
LAYOUT_ORDER attribute.

The LABEL_WIDTH attribute will not apply to
codetable hierarchy fields when
SHOW_LABELS is set to false or the FIELD
attribute CONFIG has a value of
CT_DISPLAY_LABELS. See the CONFIG
attribute in “FIELD” on page 64 for more
information on code table hierarchies.

Clram web client reference 55



Table 9: Attributes of the CLUSTER Element (continued)

Attribute Name

Required Default Description

BEHAVIOR

No EXPANDED | Collapsible clusters can be initially displayed
expanded or collapsed on a page. Set the
attribute value to EXPANDED to display a
collapsible cluster fully expanded. Set the
attribute to COLLAPSED to display a collapsible
cluster collapsed. To remove the collapsible
functionality from a cluster set the attribute to
NONE. Note that this attribute is only
applicable when the property
ENABLE_COLLAPSIBLE_CLUSTERS is not set
oris setto truein curam_config.xml. For
details see “General Configuration” on page
30. This feature is currently not supported on
clusters containing Charts, Evidence Review
Widgets, Evidence Comparison Widgets, or
Evidence Tab Containers.

SUMMARY

No A reference to an externalized string containing
the summary of this cluster. The SUMMARY
attribute describes the purpose and/or
structure of a cluster.

SCROLL_HEIGHT

No Specifies in pixels the desired maximum height
of a scrollable cluster.

Child Elements

The CLUSTER element must contain one of the following elements; ACTION_SET, FIELD, WIDGET,
CONTAINER, CLUSTER or LIST.

Table 10: Child Elements of the CLUSTER Element

Element Name Cardinality / Description

CONDITION 0..1. Affects whether or not the cluster is displayed.

TITLE 0..1. The TITLE element will be displayed above the CLUSTER.

DESCRIPTION 0..1 The “DESCRIPTION” on page 63 element has the same behavior as
the DESCRIPTION attribute but allows the description to be built up from a
number of sources. If both are specified, this element takes precedence
over the corresponding attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any type.
The action controls will be displayed above or below the entire cluster.

FIELD 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

WIDGET 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

56 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 10: Child Elements of the CLUSTER Element (continued)

Element Name Cardinality / Description

CONTAINER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

CLUSTER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

LIST 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

Dynamic Conditional Clusters

Up until now UIM supported the CONDITION element but only in the context of static data. For more
information, see “CONDITION” on page 60. The term "static" data referred to the fact that the data
which evaluated whether a cluster on a page was displayed or hidden, could only come from previous
page(s) not from any fields on the current page. UIM now supports the CONDITION element within the
context of dynamic data, otherwise known as dynamic conditional clusters. A new attribute is supported
on the CONDITION element to mark a conditional cluster as being dynamic, for more information, see
“Attributes” on page 60.

The fundamental concept of a dynamic conditional cluster is that input field controls within one cluster on
a page can control whether another cluster is displayed or not at runtime. In essence the way in which
this works is that the input field controls are mapped to a JavaScript function for a cluster. When the
JavaScript function is evaluated at runtime, the selected value of the input field controls can be accessed
to determine whether the cluster should be displayed or not.

There are three potential sources of data for dynamic conditional clusters. One source of data is dynamic
and comes from user interactions with input field controls on that page. The two other sources of data are
static in nature and come from page connections and server interface connections.

For dynamic data the following input field controls can be used to control the behavior of a dynamic
conditional cluster:;

1. Drop Down Lists.

These can be populated from a code table, for more information, see “Populated from a Code-Table”
on page 205. Alternatively they can be populated from a display phase server interface, for more
information, see “Selection Lists” on page 205.

2. Radio Button Group,

For more information, see “Radio Button Group” on page 237.
3. Check box Fields.
Single check box fields based on the SVR_BOOLEAN domain are supported

Data from a page connection or display phase server interface connection can be used in addition to
dynamic data, to evaluate whether a dynamic conditional cluster gets displayed or not. For more
information, see “Connection Types” on page 47 . For more information about display phase server
interfaces, see “Attributes” on page 95. In order for data from a page connection to control a dynamic
conditional cluster, there needs to be a source page connection mapped to a JSCRIPT_REF target
connection. In order for data from a display phase server interface connection to control a dynamic
conditional cluster, there needs to be a display phase server interface connection mapped to a
JSCRIPT_REF target connection

Only data types derived from the following underlying domains are supported:

« CURAM_BOOLEAN
« SVR_DATE

Clram web client reference 57



. SVR_DATETIME

« THREE_FIELD_DATE
« CURAM_TIME

« SVR_DOUBLE

« SVR_FLOAT

« SVR_INTS

. SVR_INT16

« SVR_INT32

« SVR_INT64

« SVR_CHAR

« SVR_STRING

« FREQUENCY_PATTERN

A dynamic conditional cluster can be displayed when a page is initially loaded (without any user
interaction) if the data that controls the cluster evaluates to true within the configured JavaScript. When a
user interacts with a input field control and selects a particular value from it, it is the raw value that will be
immediately passed to a configured JavaScript function which can be used to evaluate whether the
cluster will be displayed or hidden. When data is submitted to the server, regardless of whether it's source
is static or dynamic, it is the raw value that will be sent. For example, a raw boolean value will be sent for
boolean data, a raw unformatted string will be sent for frequency pattern data, a raw integer value will be
sent for integer data, e.t.c

Data entered into the fields of a dynamic conditional cluster will only be submitted to the server if the
cluster is displayed. If the cluster is hidden when the data is submitted, then default values will be
submitted to the server. For example, for input field controls with integer data, the raw value '0' will be
submitted. For input fields with string data, the raw the raw value " will be submitted e.t.c. If a user
changes their selection value to display a cluster that was previously hidden, any data entered into the
fields within the cluster will be reset to the default value. Dynamic conditional clusters can also be pre-
populated with initial values when the cluster in initially loaded. Initial data that has been specified in
fields contained within dynamic conditional clusters will only be submitted to the server if that cluster is
shown. However if a user changes their selection value to display a cluster with initial data that was
previously hidden, the initial data will be displayed again to the user.

There are guidelines for configuring dynamic conditional clusters within the application:

« Nested dynamic conditional clusters are supported but it is recommended that there should be a limit
of three nested levels deep, otherwise the performance and responsiveness of the page may be
impacted.

Additionally when configuring nested dynamic conditional clusters, the value of the CONTROL_REF
attribute on each field must be unique and the value of each EXPRESSION attribute must be unique. For
more information on the CONTROL_REF, see “Attributes” on page 64. For more information on
EXPRESSION see “Attributes” on page 93.

 Multiple fields can control a single dynamic conditional cluster and the opposite is also true where one
field can control multiple dynamic conditional clusters.

« A controlling field in VIM referenced in a UIM Page can control a dynamic conditional cluster present in
that UIM page. The opposite also holds true where a controlling field in a UIM can control a dynamic
conditional cluster present in a referenced VIM.

The following are unsupported for dynamic conditional clusters:

« Only the three aforementioned input field controls are supported for dynamic data. No other input field
controls are supported.

« When configuring static data for dynamic conditional clusters, only single values are supported, not lists
of values.

« Mandatory fields within dynamic conditional clusters are not supported.

58 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« When configuring the values of the CONTROL_REF and EXPRESSION attributes, please ensure that it is
not a JavaScript reserved word, otherwise a JavaScript error will occur.

Configuring Conditional Clustering

As stated static data can be configured to control dynamic conditional clusters by configuring a page
connection or display phase server interface connection as a SOURCE connection and JSCRIPT_REF as
the TARGET connection.

The value of the PROPERTY attribute on the JSCRIPT_REF target connection will be transformed in to a
JavaScript variable with the same name and which can be referenced as
curam.dcl.getField('PROPERTY_VALUE') , where PROPERTY_VALUE refers to the value of the PROPERTY
attribute on the JSCRIPT_REF target. Likewise the value of the CONTROL _REF attribute will be
transformed into a JavaScript variable with the same name and which can be referenced as
curam.dcl.getField('CONTROL_REF_VALUE'), where CONTROL_REF_VALUE refers to the value of the
CONTROL _REF attribute. The curam.dcl.getField() function gets the value from a data source as described
above. See more information on this function within the JavaScript documentation.

The following steps are required to configure dynamic conditional clusters:

1. Configure the SCRIPT_FILE attribute of the PAGE element to configure the JavaScript file that contains
the configured JavaScript functions. For more information, see “Attributes” on page 93

2. The following example shows how to configure static data from a page connection and display server
interface connection respectively.

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="paraml"/>
<TARGET NAME="JSCRIPT_REF" PROPERTY="staticRefl"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="stringFieldl">
<TARGET NAME="JSCRIPT_REF" PROPERTY="staticRef2">
</CONNECT>

3. To configure a field that will control a dynamic conditional cluster, add the CONTROL _REF attribute on
the appropriate FIELD element. The following example shows this.

<FIELD LABEL="Field.lLabel" CONTROL_REF="widgetRefl">
<)#iéLD>
4. At the cluster level, set the TYPE attribute to DYNAMIC on the CONDITION element. For more
information, see “Attributes” on page 60. An example of the setting is as follows:

<CLUSTER TITLE="Cluster.Title" ... />
<CONDITION TYPE="DYNAMIC">
<SCRIPT EXPRESSION="displayClusterl"/>
</CONDITION>
</CLUSTER>

5. The recommended location for the JavaScript file that is referenced by the SCRIPT_FILE attribute
and which contains the function to evaluate whether the cluster(s) are displayed or not. It should be
located in the same location as the UIM page or an appropriate jscript directory that contains other
JavaScript files. Any variables referenced by curam.dcl.getField() must refer to a JSCRIPT_REF
property value or the value of a CONTROL_REF attribute or a JavaScript error will occur. The following

Curam web client reference 59



example shows how a JavaScript function consumes the data configured and may be evaluated to
display or hide a cluster.

function displayClusterl1() {

// fieldl is the value defined in the CONTROL_REF attribute

if(curam.dcl.getField('staticRefl') == true &&
curam.dcl.getField('staticRefl') == 'Astring' &&
curam.dcl.getField('widgetRefl') == 'A_CODE_TABLE_VALUE')

1

%
return curam.dcl.CLUSTER_HIDE;

ky

return curam.dcl.CLUSTER_SHOW; ;

CONDITION

The CONDITION element represents the condition under which an ACTION_SET, ACTION_CONTROL,
LIST, ora CLUSTER is displayed. If a condition evaluates to true, then the parent element will be
displayed; if the condition evaluates to false, then the parent element is not displayed with the following
exception: an ACTION_SET or ACTION_CONTROL element will display disabled links if the condition
evaluates to false and the HIDE_CONDITIONAL_LINKS attribute on the PAGE element orin the
curam_config.xml file has been set to false. Conditional ACTION_SETS and ACTION_CONTROLS are
mutually exclusive from one another and therefore the CONDITION element should be set for either one
(depending on the requirements) but not both.

Finally, if the condition equates to false for those conditional action sets or action controls which appear
as drop down menu items, then a single disabled menu item titled, 'No Contents' is displayed (upon
selecting the drop down menu icon).

Attributes
The CONDITION element has the following attributes:

Table 11: Attributes of the CONDITION element

Attribute Name Required Default Description

TYPE No Configuring the TYPE to
be DYNAMIC enables
cluster be dynamically
displayed depending on
input from the current
UIM page.

Child Elements

The CONDITION element must contain either an IS_TRUE element or an IS_FALSE element. It must not
be empty and it must not contain more than one element.

Table 12: Child Elements of the CONDITION Element.

Element Name Cardinality / Description

IS_TRUE 0..1 If the property referenced by the IS_TRUE element
returns true then the condition is true.

IS_FALSE 0..1 If the property referenced by the IS_FALSE element
returns false then the condition is true.

60 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 12: Child Elements of the CONDITION Element. (continued)

Element Name

Cardinality / Description

SCRIPT

0..1 This is used to configure a JavaScript function that
evaluates a Dynamic Conditional Cluster.

For Agenda Player specific use, see “Agenda Player” on page 244

CONNECT

The CONNECT element defines a data connection between two connection end points such as server
interface bean properties, page parameters, screen controls, localized string values, etc.

Attributes

The CONNECT element has no attributes.

Child Elements

The CONNECT element must contain at least one of the child elements from the table below, but the
details of how these elements are used depends on the context in which the CONNECT element is defined.
See the specific parent or child element's description for more details.

Table 13: Child Elements of the CONNECT Element

Element Name

Cardinality / Description

INITIAL 0..1. This element is only valid in CONNECT elements contained
within FIELD elements.
SOURCE 0..1. Within a FIELD element, the SOURCE is the source of the
value displayed in the field control (unless INITTIAL is used).
TARGET 0..1. Within a FIELD element, the TARGET is the property to
which the value in the field control will be assigned.
CONTAINER

The CONTAINER element groups FIELD, ACTION_CONTROL and IMAGE elements so that they can be
used in a single cell of a CLUSTER or LIST element.

Attributes

The CONTAINER element has the following attributes:

Table 14: Attributes of the CONTAINER Element

N

Attribute Name Required Default Description

LABEL No A reference to an externalized string that
should be used as the associated label for
this container.

LABEL_ABBREVIATIO |No A reference to an externalized string

containing the associated label abbreviation
text for this container. This label abbreviation
is placed only on table headers ina LIST.

Clram web client reference 61



Table 14: Attributes of the CONTAINER Element (continued)

Attribute Name Required Default Description

WIDTH No 100 The percentage of the width of the field value
cellin the cluster or list that the container
should occupy.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the
elements within the container. Can be set to
LEFT, RIGHT, CENTER, or DEFAULT. The
value DEFAULT corresponds to the CSS class
default in curam_common.css. Currently the
default is to be left aligned.

SEPARATOR No A reference to an externalized string to use as
the separator between the elements within
the container.

STYLE No A CSS class to be applied to this container.

Child Elements

The CONTAINER element can contain the following child elements. It must contain at least one element.

Table 15: Child Elements of the CONTAINER Element

Element Name Cardinality / Description

FIELD 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

IMAGE 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

ACTION_CONTROL 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

WIDGET 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

DETAILS_ROW

The DETAILS_ROW element is used within a LIST element to enable each row to be expanded to show
more details about the row. Child elements of DETAILS_ROW define the content that is displayed when
the row is expanded. Currently only the INLINE_PAGE element is supported as a child.

When a page containing a list with expanded rows is submitted to self or refreshed after a dialog submit,
the rows will be re-expanded after the page loads again. This functionality is based on page parameters to
the corresponding INLINE_PAGE and the following limitations apply:

« The INLINE_PAGE must take page parameters and they must uniquely identify each row within the list.

- The functionality is supported for pages submitted to self or refreshed after a dialog submit. In all other
cases all rows after refresh are reset to default - collapsed.

- If the list contains duplicate items, only the first of them will retain the expanded state after refresh.

- If an edit operation in a dialog changes values that are used in the INLINE_PAGE parameters, this row
will be collapsed after refresh.

62 IBM Curam Social Program Management: Ciram Web Client Reference Manual




- If an expanded row is expandable conditionally and it is no longer expandable after the page is
refreshed, its state will be always set to collapsed.

Note that DETAILS_ROW element is not allowed in a list using the SCROLL_HEIGHT attribute.

Attributes
The DETAILS_ROW element has the following attribute.

Table 16: Attributes of the DETAILS_ROW Element

Attribute Name Required Default Description
MINIMUM_EXPANDED_ | No 30px Specifies minimum height in pixels of an
HEIGHT expanded row for this list. To be used for in-line

pages that are expected to contain nested lists
with long actions menus which would not fit to
the default expanded row height.

Child Elements
The DETAILS_ROW element contains the following child elements.

Table 17: Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

INLINE_PAGE 1..1 This defines the page to be shown when the list row is
expanded. Currently this is the only supported element, hence
it's 1..1 cardinality.

CONDITION 0..1. Affects whether or not the details row is displayed.

DESCRIPTION

The DESCRIPTION element defines the description associated with a PAGE_TITLE, CLUSTER or LIST
element. ADESCRIPTION is constructed by concatenating a number of connection sources together.
Attributes

The DESCRIPTION element has the following attributes:

Table 18: Attributes of the DESCRIPTION Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the separator
between the elements within the container.

Child Elements

The DESCRIPTION element can contain child elements as follows:

Clram web client reference 63



Table 19: Child Elements of the DESCRIPTION Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings in a properties file.

FIELD

The FIELD element specifies a data value to be displayed in a CLUSTER, a value to be retrieved from the
user via an input control in a CLUSTER, or a list of data values to be displayed in a LIST column. FIELD
elements can also be aggregated within CONTAINER elements so that they fill a single cell of a CLUSTER
or LIST element.

Please note that, when the FIELD element is used to display a code table hierarchy either on an edit or
ready-only page, the following should apply:

 For an edit page, only one FIELD element is needed to display a code table hierarchy with a domain
definition inherited from CODETABLE_CODE that has the code table name set to the lowest level code
table in a hierarchy. The CDEJ infrastructure automatically determines its code table hierarchy and then
displays however many dropdowns it has, i.e. if it is a three level hierarchy, then the three levels are
displayed.

« For a read-only page, however only the lowest level code table value is displayed on the screen by the
same way using a single FIELD element as the edit page. And the CDEJ infrastructure does not support
on displaying its full hierarchy.

Attributes
The FIELD element has the following attributes:

Table 20: Attributes of the FIELD element

Attribute Name Required Default Description

LABEL No A reference to an externalized string that
needs to be used as the associated label for
this field. The LABEL attribute is mandatory
when a CONNECT element exists that
contains a TARGET.

LABEL_ABBREVIATION [No A reference to an externalized string that
contains the associated label abbreviation
text for this field. This label abbreviation is
placed only on table headers ina LIST.

DESCRIPTION No A reference to an externalized string that is
displayed below the label text.

64 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 20: Attributes of the FIELD element (continued)

Attribute Name

Required

Default

Description

ALT_TEXT

No

A reference to an externalized string that is
used as the alternate text for the field. This
reference is applicable only when the field
has a target connection, that is, it is an
input field. If this attribute is added to a
mandatory input field, the text Mandatozry
is appended to the externalized string. If
this attribute is not specified, the LABEL is
used. Browsers that are supported by the
Curam application display alternate text
when the mouse is hovered over the input
control.

WIDTH

No

Specifies the width of the field value within
its cluster or list cell.

WIDTH_UNITS

No

PERCENT

The units in which the width is interpreted.
This measurement can be PERCENT to
indicate the percentage of the space
available to the field, or CHARS to indicate
the number of visible characters the field
needs to accommodate.

HEIGHT

No

For input fields that resolve to a text input
control, this input specifies the number of
visible lines of text that the control displays.
For input fields that resolve to a selection
list, this value specifies the number of
entries that are initially displayed. For
example, a scrollable selection list is
displayed instead of a drop-down selection
list.

ALIGNMENT

No

DEFAULT

Defines the horizontal alignment of the field
value. Can be set to LEFT, RIGHT, CENTER,
or DEFAULT. The value DEFAULT
corresponds to the CSS class default in the
curam_common.css. Currently the default
is to be left-aligned. In a CLUSTER, only
input fields are aligned. In a LIST, all fields
are aligned.

USE_DEFAULT

No

true

If set to true (the default) and the field has
no SOURCE connection, then if a sensible
default value for the field can be
determined automatically, it is displayed.

For example, numeric fields display a zero,
string fields are empty, and date fields
defaults to the current date.

Clram web client reference 65



Table 20: Attributes of the FIELD element (continued)

Attribute Name

Required

Default

Description

USE_BLANK

No

false

If the field source is a code-table-based
property, or a server interface list property,
it is displayed in a list. If this attribute is set
to txue, an extra blank value is added to
the top of the list.

CONTROL

No

DEFAULT

The CONTROL attribute can take one of a
number of values:

« DEFAULT - The field behaves in the
standard fashion.

« SUMMARY, DYNAMIC,
DYNAMIC_FULL_TREE, and FAILURE -
These settings apply only to rules fields.
For more information, see “Rules Trees”
on page 208.

» SKIP - Indicates that the field is only
present to occupy space in a CLUSTER to
balance the layout. No label or value is
displayed. However, the label background
still is presented.

» TRANSFER_LIST - Enables a list on a
page to be displayed as a transfer list
widget. This mode is only applicable and
supported for list controls with multiple
selection capability.

« CT_HIERARCHY_HORIZONTAL - Displays
a list as a horizontal code table hierarchy.

« CT_HIERARCHY_VERTICAL - Displays a
list as a vertical code table hierarchy. For
more information on code table
hierarchies, see the Curam Server
Developers Guide.

CONFIG

No

Identifies configuration details for this
FIELD instance. This attribute can be used
only with a FIELD whose CONTROL
attribute is for a widget that supports
configuration. For example, if the CONTROL
attribute is DYNAMIC for a FIELD of the
RESULT_TEXT domain then the CONFIG
attribute needs to match an IDon a
configelementinthe
RulesDecisionConfig.xml file. For
more information on configuration, see
“Dynamic Rules View” on page 208.

CT_DISPLAY_LABELS : Displays labels for
each code table in a code table hierarchy. .
For more information on code table
hierarchies, see the CONTROL attribute in
“FIELD” on page 64.

66 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 20: Attributes of the FIELD element (continued)

Attribute Name Required Default Description

INITIAL_FOCUS No false AFIELD element, whose INITIAL_FOCUS
attribute is set to true, gets focus when
the page is displayed. In other words, the
cursor is placed in that field ready for data
entry. If no FIELD requests the initial focus,
the cursor is placed in the first input field on
the page. It is not allowed to have more
than one FIELD with the INITIAL_FOCUS
attribute set to true specified on a page.

PROMPT No false This attribute is used to configure a
placeholder value in the field that is
associated with a Date Selector, if the field
is blank. On focus, the placeholder text
disappears to allow for data entry.

CONTROL REF No This setting is used to configure Dynamic
- Conditional Clusters. The purpose of the
CONTROL_REF is to set the controlling
input. If something is selected, a cluster
becomes visible. The CONTROL _REF
attribute is set to an identifier that is
evaluated by the JavaScript.

Child Elements

The FIELD element can contain the following child elements:

Table 21: Child Elements of the FIELD Element

Element Name Cardinality / Description

CONNECT 0..3. A field can contain up to three CONNECT elements. The SOURCE connection
defines the initial value for the field (this will be the static value shown if there is
no target end-point, or the initial value of an input control if there is a target
end-point). The TARGET end-point defines the property that will be set from the
field value during the action phase. If a TARGET end-point is specified the
SOURCE end-point can only be from a server interface property. This is because
domain information is required to correctly format the value for display in the
input control.

If an INITIAL end-pointis used and the property is not a list value, it specifies
the visible value of the field (which will be read-only). The SOURCE value will be
hidden, and the pair of values can only be changed via a pop-up search page.
The TARGET end-point will be supplied with the hidden value.

If an INITIAL end-pointis used and the property is a list value, it specifies the
visible values in a drop-down list. The INITIAL element's HIDDEN_PROPERTY
specifies the corresponding list of hidden values that will be supplied to the
TARGET end-point. In this instance, the SOURCE end-point specifies one of the
hidden values in the list that should be used as the initial list selection (the
corresponding visible value is displayed).

Clram web client reference 67



Table 21: Child Elements of the FIELD Element (continued)

Element Name Cardinality / Description

LINK 0..1. Only valid for output fields (those with no TARGET connection end-point).
The value of the output field will be used as the text for the hyperlink specified
by this LINK element.

If the field is based on a domain which requires a pop-up window then the LINK
element can be used to supply parameters to the pop-up page. In this case the
LINK element must not have a PAGE_ID attribute specified. See “Using the
Pop-up Page” on page 242 for further details.

LABEL 0..1. Allows the label for a FIELD to constructed from a number of sources. If
both a LABEL attribute and LABEL child element are specified, the element
takes precedence. See “LABEL” on page 76 for more details.

SCRIPT 0..n. A script file associated with this FIELD that contains JavaScript code to be
activated in response to the specified event on the field control. See “SCRIPT”
on page 93 for more details and limitations on this element usage.

FOOTER_ROW

The FOOTER_ROW element is used to define a single footer row at the end of a list. A list can have multiple
footer rows.

A FOOTER_ROW element may only contain FIELD elements. The number of FIELD elements must match
the number of columns in the parent list.

There are two CSS classes associated with footer row fields. A FIELD with a TEXT SOURCE connection is
output with the footerheader CSS class. All other SOURCE connections are output with the
footervalue CSS class. Both of these classes are defined in curam_common. css and can thus be
customized.

Spanning column widths are supported through the use of skip fields. For instance, if one normal field and
two skip fields are used in a FOOTER_ROW element, this normal field will span three columns. Example
code is shown below.

68 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<LIST TITLE="List.Title.One" DESCRIPTION="List.Description.One">
<FIELD LABEL="Field.Title.BankId" WIDTH="40">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Name" WIDTH="35">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$date"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.VersionNo" WIDTH="25">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$total"/>
</CONNECT>
</FIELD>

<FOOTER_ROW>
<FIELD CONTROL="SKIP"/>
<FIELD WIDTH="40" LABEL="Field.Title.Footer" >
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Entitlement"/>
</CONNECT>
</FIELD>
<FIELD>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>
</CONNECT>
</FIELD>
</FOOTER_ROW>
</LIST>

Figure 35: Example of a FOOTER_ROW in a List.

Attributes
The FOOTER_ROW element has no attributes.

Child Elements
The FOOTER_ROW element contains the following child elements.

Table 22: Child Elements of the FOOTER_ROW Element

Element Name Cardinality / Description

FIELD 1..n Each FOOTER_ROW must contain the same number FIELD
elements as there are columns in the parent LIST.

IMAGE
The IMAGE element inserts an image into a CONTAINER.

Attributes

The IMAGE element has attributes as follows:

Table 23: Attributes of the IMAGE Element

Attribute Name Required Default Description

IMAGE Yes A reference to an entry in the
Image.properties file.

Clram web client reference 69



Table 23: Attributes of the IMAGE Element (continued)

Attribute Name Required Default Description

LABEL Yes The entry in the UIM's associated properties file
which is used as the alternate (or "alt") text of
the image.

STYLE No A CSS style to associate with the image.

Child Elements

The IMAGE element has no child elements.

INCLUDE

The INCLUDE element indicates that the elements within an external UIM view document should be
included at this position in the page.

Attributes
The INCLUDE element has attributes as follows:

Table 24: Attributes of the INCLUDE Element

Attribute Name Required Default Description

FILE_NAME Yes The file name of the UIM view document to be
included. No path to the file should be specified.
The file name alone is sufficient to identify the
document.

Child Elements
The INCLUDE element has no child elements.

INITIAL

This element is only valid within a CONNECT element contained in a FIELD element. Use of this
connection type is described in further detail in the following sections:

« For pop-up pages see “Pop-up Pages” on page 237
- For selection lists populated from server interface properties see “Selection Lists” on page 205

Attributes
The INITIAL element has the following attributes:

Table 25: Attributes of the INITIAL Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value.

PROPERTY Yes The source of the data to be displayed
in the visible field. This can be a list or a
non-list field type.

70 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 25: Attributes of the INITIAL Element (continued)

Attribute Name Required Default Description

HIDDEN_PROPERTY No The source of the list data that has a
one-to-one mapping (based on the list
indexes) to the list property specified in
the PROPERTY attribute.

Child Elements

The INITIAL element contains no child elements.

INFORMATIONAL

The INFORMATIONAL element is used to display informational messages returned from the server. These
are different to error messages in that the server call completes successfully. The messages are created
in server side code using the SDEJ Informational Manager API (see the Ctiram Server Developers Guide for
more details). This API allows a developer to assign messages to an output list field(s). This field must
then be referenced using child CONNECT elements. The message will be displayed at the top of the page
in the same area as error messages and this may not be on the page on which the INFORMATIONAL
element was defined. It could be on the following page or on the parent page in the case of modal dialogs.
Finally, messages will never be displayed within the context panel of the application, but will instead will
always be displayed within the main content area of the page.

Attributes
The INFORMATIONAL element has no attributes.

Child Elements
The INFORMATIONAL element contains the following child elements.

Table 26: Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

CONNECT 1..n Each CONNECT element specifies a single SOURCE end-
point. This is a field of a bean which contains informational
messages.

INLINE PAGE

The INLINE_PAGE element is used to display the contents of one UIM page in-line in another. Currently
this is only supported within the DETAILS_ROW element of a LIST to support displaying extra content
when a list row is expanded.

Attribute
The INLINE_PAGE element has the following attributes:

Table 27: Attributes of the INLINE_PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes The ID of the UIM page to display.
Circular dependencies must not be
introduced. If a page is used inline, it is
not allowed for it to be mapped to a tab
at the same time.

Clram web client reference 71



Table 27: Attributes of the INLINE_PAGE Element (continued)

Attribute Name Required Default Description

URT_SOURCE_NAME No The name of the SERVER_INTERFACE
instance to use as the source of the URI.
This attribute is paired with
URI_SOURCE_PROPERTY. Note that a
URI can only be sourced from a server
interface. This attribute cannot be used
to specify page parameters or
properties files as a source for the URI.
The server interface reference must be
called during the "display-phase" and
the parent ACTION_CONTROL must be
of type ACTION when this property is
used.

URI_SOURCE_PROPERTY No The name of the property to use as the
source of the URI.

Child Elements
The INLINE_PAGE element contains the following child elements.

Table 28: Child Elements of the INLINE_PAGE Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on this element define the parameters to be
exported to the page targeted by the INLINE_PAGE elements
PAGE_ID attribute. The CONNECT should contain both a
SOURCE and a TARGET element and the TARGET element
should have the NAME attribute set to PAGE and the PROPERTY
attribute set to the name of the page parameter.

Restrictions on usage

The UIM page opened in an expanded row is intended for only viewing additional information about the
row. It should not be used for editing information about that row. Instead a modal dialog should be
launched from the page when an edit is required.

As these pages are for viewing information only, the following rules/restrictions should be noted for these
"in-line" pages.
- The "in-line" pages displayed in an expanded row must not be used for editing information.

« The "in-line" pages displayed in an expanded row should not display very complex widgets that require
a "full screen". This includes the following domain specific controls and UIM elements:

— Decision Assist: The Decision Matrix Widget
— Decision Assist: Typical Picture Editor Widget
— Decision Assist: Evidence Review Widget

— Agenda Player

— Batch Function View

— The Rules Simulation Editor

— The Rates Table

— The Meeting View Widget

72 IBM Curam Social Program Management: Ciram Web Client Reference Manual



— The FILE_EDIT WidgetL @
— The Calendar
— Rules Trees

Note: There are no validations in place for these restrictions and it is the responsibility of the developer to
ensure they don't use unsupported widgets in an expandable list.

IS_FALSE

A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element evaluates to true
when the referenced property value is false.

Attributes
The IS_FALSE element has the following attributes:

Table 29: Attributes of the IS_FALSE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value.

PROPERTY Yes The name of the property being
accessed. It must be a Boolean value.

See “Attributes” on page 73 for more details on the use of this element to access the values of action-
phase server interface properties.

Child Elements

The IS_FALSE element contains no child elements.

IS TRUE

A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element evaluates to true
when the referenced property value is true.

Attributes
The IS_TRUE element has the following attributes:

Table 30: Attributes of the IS_TRUE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value.

PROPERTY Yes The name of the property being
accessed. It must be a Boolean value.

In the majority of cases the NAME and PROPERTY combination will reference a display-phase server
interface property. However when a page submits to itself using an ACTION_CONTROL with a child LINK
element that has the PAGE_ID set to THIS (e.g., a search page), properties of the action-phase server
interface can be referenced. When the page is first displayed the action-phase server interface will not be
in scope and the property is treated as if its value is false. When the page is submitted, the action-phase
server interface will be in scope and the referenced property will be evaluated as normal.

Clram web client reference 73



Child Elements

The IS_TRUE element contains no child elements.

JSP SCRIPTLET

The JSP_SCRIPTLET element defines JSP scriptlet code that should be inserted into the page at that
point relative to any other LIST or CLUSTER elements. Any TextHelper beans declared by a
SERVER_INTERFACE element to be in the DISPLAY phase are available to the scriptlet by getting the
attribute of the page context with the same name as the NAME attribute of the SERVER_INTERFACE
element. An example is shown in “JSP SCRIPTLET” on page 74 below.

<SERVER_INTERFACE NAME="MyBeanName" CLASS="MyClass"
OPERATION="getMyData" />

<JSP_SCRIPTLET>
<! [CDATA[
curam.omega3.texthelper.TextHelper th =
pageContext.findAttribute ("MyBeanName");
String myValue = th.getFieldValue("myPropertyName");
out.print("VALUE: " + myValue);
1>
</JSP_SCRIPTLET>

Figure 36: Example JSP SCRIPTLET Accessing a TextHelper

As the code within the JSP_SCRIPTLET element may contain reserved XML characters?, you can either
replace these characters with the appropriate XML character entity or enclose the contents of the
element in the CDATA ("character data") block as shown above which will prevent the XML parser from
trying to interpret the contents of the block.

A common use of the JSP_SCRIPTLET element is to write code that redirects the current page to another
page. Other uses are not recommended and patterns such as system parameter manipulation, the
creation of logic for display purposes and the addition of JavaScript to such pages should be avoided.
“JSP SCRIPTLET” on page 74, below, shows an example of how to use JSP_SCRIPTLET for redirection
purposes.

<PAGE PAGE_ID="Activity_resolveAttendeeHome">
<JSP_SCRIPTLET>
<! [CDATA[
curam.omega3.request.RequestHandler rh
= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);
String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory
.getUserPreferences(pageContext.getSession())
.getLocale() + "/";
String url = context + "UserCalendarPage.do?"

+ "startDate=&calendarViewType=CVT3";
url += "&" + rh.getSystemParameters();
response.sendRedirect (response.encodeRedirectURL (url));

11>
</JSP_SCRIPTLET>
</PAGE>

Figure 37: Example JSP SCRIPTLET Redirecting to a Page

This demonstrates the API used to access the system parameters that control an application's ability to
return to previous pages. The information about the previous page is stored in the system parameters
accessible via the RequestHandler. getSystemParameters () method. By adding the system
parameters, any Cancel button on the following page will return to the expected page when clicked. The
RequestHandlerFactory. getRequestHandlexr () method is passed the JSP request object and will

2 The reserved charactersin XMLare" ' "," " ", "&"," <", and " > ". The respective XML character entities
are " &apos; ", " &quot; ", " &amp; ", " &1t; ",and " &gt; ".

74 1BM Curam Social Program Management: Ciram Web Client Reference Manual



return the appropriate request handler. The system parameters should be appended to the redirect URL
and just require a separating "&" character as they are already formatted in name = value pairs.

When using a JSP_SCRIPTLET to redirect to another page, the JSP_SCRIPTLET should be the only child
element of the PAGE element. When this is the case, no HTML content will be generated for the page: it
will not be displayed, so no HTML is required. If other elements are present, then HTML content will be
generated. This can include the page header, navigation menus, footer, title, etc. If this HTML content
exceeds the size of the buffer on the web container serving the page, then the content will be transmitted
to the web browser. Once any content is transmitted in this way, the redirect operation will have no effect.
Therefore, ensuring that the page contains a single JSP_SCRIPTLET element and no other elements will
ensure that the redirect operation works as expected.

If you need to access a TextHelper instance from a JSP scriptlet that redirects to another page, then you
cannot use the SERVER_INTERFACE element to declare the TextHelper as shown in “JSP SCRIPTLET” on
page 74, as this extra element would cause HTML content to be generated. Instead, you must declare the
TextHelper instance within the scriptlet code as shown below.

It should be noted that, when using JSP_SCRIPTLET, there is limited error handling capability. Thus,
code should not make calls to secured server interface methods. Instead, the target page of any
JSP_SCRIPTLET should be secured appropriately.

<PAGE PAGE_ID="Activity_resolveApplicationHome">
<JSP_SCRIPTLET>
<! [CDATA[
curam.omega3.request.RequestHandler rh
= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);
String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory
.getUserPreferences(pageContext.getSession())
.getLocale() + "/";
String activityID = request.getParameter("ID");
String eventType = request.getParameter("TYPE");
String url = context;

curam.interfaces.ActivityPkg.Activity_readDescription_TH
th = new curam.interfaces.ActivityPkg
.Activity_readDescription_TH();
th.setFieldValue(
th.key$activityDescriptionKey$activityID_idx,
activityID);
th.callServer();

String description = th.getFieldValue(
th.result$activityDescriptionDetails$description_idx);
if (eventType.equals("AT1")) %

url = "Activity_viewUserRecurringActivityPage.do?";
t else {
url = "Activity_viewUserStandardActivityPage.do?";

§
url += "activityID=" + activityID;
url += "&description="
+ curam.omega3.request.RequestUtils.escapeURL(
description);
url += "&" + rh.getSystemParameters();
response.sendRedirect (response.encodeRedirectURL (url));
11>
</JSP_SCRIPTLET>
</PAGE>

Figure 38: Example JSP_SCRIPTLET Redirecting and Accessing a TextHelper
When adding parameters to the parameter list, care must be taken if the parameter value may contain

non-ASCII characters. Values containing non-ASCII characters must be escaped before they are added to
the parameter list to ensure that the characters are preserved correctly. The RequestUtils.

Curam web client reference 75



escapeURL (String) method can be used to perform the escaping. An example of the Java code to
perform this escaping is shown in the example above. Code following that pattern should be included
within your JSP scriptlet.

Attributes
The JSP_SCRIPTLET element has no attributes.

Child Elements

The JSP_SCRIPTLET element contains no child elements. The body of the element must only contain the
JSP scriptlet code to be inserted into the page.

LABEL

The LABEL element can be used as a child element of FIELD to construct a label by concatenating
multiple values. An example of the field and label data is shown in “LABEL” on page 76, below.

<CLUSTER TITLE="Cluster.Title">
<FIELD>
<LABEL>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Label.Text" />
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="personName" />
</CONNECT>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Label.Separator" />
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dateOfBirth" />
</CONNECT>
</LABEL>

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fieldName"/>
</CONNECT>
</FIELD>
</CLUSTER>

Figure 39: Example of a Dynamic LABEL

Attributes
The LABEL element has no attributes:

Child Elements

The LABEL element can contain the following child elements.

Table 31: Child Elements of the LABEL Element
Element Name Cardinality / Description
CONNECT 1..n. A CONNECT element specifying a single SOURCE end-point.
Action-phase server interfaces cannot be used in the SOURCE end-
point.
LINK

The LINK element specifies the page to go to after an action phase. Alternatively, a LINK element can
specify any external web page or certain resource. Links can contain CONNECT elements to map values to
parameters to be added to the link.

76 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Attributes

The LINK element has the following attributes. Note that the PAGE_ID, PAGE_ID_REF, URL, URI, and
URI_REF attributes are mutually exclusive as well as the pair of attributes URI_SOURCE_NAME and

URI_SOURCE_PROPERTY.

Please note that attributes that have the ability to link to external web pages or resources (i.e mailto:
links) will have their link back functionality stripped away. This link back functionality keeps a link to the
previous page. An example of where this is needed is with cancel buttons where if they are used, the page
will link back to the previous page. In order to keep this, the link will have to be to an internal Curam page.
In order to mark a link as being a link to an internal Curam page, the keyword '‘curam:' needs to be added

before the link text.

Table 32: Attributes of the LINK Element

Attribute Name

Required

Default

Description

PAGE_ID

No

The unique identifier of the page to be
opened. This is the value of the PAGE_ID
attribute of the PAGE element in the required
UIM page document.

If this attribute is set to the PAGE_ID of the
current page, the page will be re-opened with
all the input fields reset to their default state.

If the link is on an action control with a TYPE
set to SUBMIT and this attribute is set to the
value THIS, the link will return to the current
page after the action phase and the input
fields will not be reset to their default state.
This is useful for search pages where the
search criteria need to be preserved.

PAGE_ID_REF

No

A PAGE_ID can alternatively be specified by
reference to an entry in the
CuramlLinks.properties file. This allows
many links to refer to the same target page yet
all can be updated by changing the entry in
the CuramLinks.properties file.

URL

No

It is recommended to use the new URT
attribute which is described below. The URL
attribute is maintained for backward
compatibility.

URI

No

Rather than link to another page in the
application, the URT attribute allows the
creation of a link to any URI whatsoever. This
can be used to link to pages or other
resources completely outside of the
application. Parameters must be supplied by
CONNECT elements within the LINK to ensure
correct encoding.

Curam web client reference 77



Table 32: Attributes of the LINK Element (continued)

Attribute Name

Required

Default

Description

URI_REF

No

A URI (or URL) can alternatively be specified
by reference to an entry in the
CuramLinks.properties file. This allows
many links to refer to the same target yet all
can be updated by changing the entry in the
CuramLinks.properties file. The file can
be placed in any component in the
application.

URI_SOURCE_NAME

No

The name of the SERVER_INTERFACE
instance to use as the source of the URI. This
attribute is paired with
URI_SOURCE_PROPERTY. Note that a URI can
only be sourced from a server interface. This
attribute cannot be used to specify page
parameters or properties files as a source for
the URI. The server interface reference must
be called during the "display-phase" and the
parent ACTION_CONTROL must be of type
ACTION when this property is used.

URI_SOURCE_PROPERTY

No

The name of the property to use as the source
of the URL.

OPEN_NEW

No

false

When set to true, this flag indicates that the
linked page should be opened in a new
window. When set to false (the default) the
linked page will be opened in the current
window. This setting is only supported for
links to external sites.

SAVE_LINK

No

true

This attribute indicates that the page
containing the link should be returned to if an
action control on the target page is configured
to return to the previous page. An action
control without a LINK child element will
return the user to the previous page. If there is
a sequence of pages and any one of them
needs to go back to a "starting" page, then
each page in the sequence should set this
attribute to false so that subsequent pages
do not return to their immediate previous
page in the chain.

SET_HIERARCHY_RETUR
N_PAGE

No

false

This attribute is no longer used but has been
retained in the UIM schema to avoid upgrade
impact.

USE_HIERARCHY_RETUR
N_PAGE

No

false

This attribute is no longer used but has been
retained in the UIM schema to avoid upgrade
impact.

78 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 32: Attributes of the LINK Element (continued)

Attribute Name

Required

Default

Description

HOME_PAGE

No

If this attribute is set to true, the link will
take a user directly to their home page. During
development the home page can be
configured by setting the "application code"
field of the Cdram "users" table. This value of
this field corresponds to an entry on the
APPLICATION_CODE code-table. At runtime,
the Curam Administration application allows
the home page to be set when creating or
editing a user.

Note, that in the development environment
Java EE security is not enabled. Therefore,
since a user name is not available the home
page link cannot be displayed.

OPEN_MODAL

No

"false"

If this attribute is set to true, the link will
open the referenced page in a new window.
The new window is modal, meaning that while
it is open the parent window cannot be
accessed. When a user navigates from the
original page in the modal dialog, either by
submitting a form or clicking a link, the modal
dialog is closed, and the parent page that
spawned it is sent to the new location.

DISMISS_MODAL

No

"true"

If this attribute is set to false, the link will
open the referenced page in the same pop-up
window, modal or normal depending on what
the browser supports.

WINDOW_OPTIONS

No

"width=800

height=450

The size of each modal dialog is configurable
using this parameter. The value of the
attribute is a comma separated list of name
value pairs. The currently supported options
are width and height, both of which take an
integer value, which is translated directly to a
pixel value. Any other parameters will cause
an exception to be thrown. This attribute
should only be set when OPEN_MODAL is set to
true on the same LINK tag.

Child Elements

The LINK element can contain the following child elements:

Curam web client reference 79



Table 33: Child Elements of the LINK Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on a link define the parameters to be
exported to the page targeted by the link. The CONNECT should
contain both a SOURCE and a TARGET element and the TARGET
element should have the NAME attribute set to PAGE and the
PROPERTY attribute set to the name of the page parameter.
Any type of SOURCE element can be used except the TEXT.
Also, in the scenario where the LINK is inside an
ACTION_CONTROL with TYPE = SUBMIT, the SOURCE must
have an ACTION phase bean, a page parameter or a
CONSTANT. The reason being the URL is generated in the
action class and the DISPLAY bean is not accessible at the
stage.

CONDITION 0..1. Affects whether or not the link is displayed.

Modal Dialogs

A Modal Dialog is similar to a Pop-up Page, in that it opens a dialog box to display a page on top of the
main application content. However, modal dialog is different in a number of ways.

« When a modal dialog is open, its parent page cannot be accessed. The parent page is grayed-out and
ignores any user action.

- Changing the page in the Modal Dialog, either by submitting a form or by clicking a hyperlink, causes it
to close, and the parent page to be changed to the changed page, with the following exceptions

— If the page linked to has the same id as the current modal page (e.g. a 'save & new' button/link), then
the page will be refreshed within the same modal window

— If the link clicked has the attribute DISMISS_MODAL set to false, the page linked to will opened
within the same modal window

— If the link clicked has the attribute OPEN_MODAL set to true, it will open in a new modal window

« The usage of Modal Dialogs is different to that of Pop-up pages. It is considerably less complex,
consisting of using either one or two optional attributes on the LINK tag.

Using Modal Dialogs

A LINK tag is made to open in a Modal Dialog, rather than the default action of opening a new page in the
same window, by setting the OPEN_MODAL attribute to true.

<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true" />
Note in the example the use of the OPEN_MODAL attribute on the LINK tag.

Setting OPEN_MODAL on a LINK that is inside an ACTION_CONTROL of type SUBMIT has no effect. Setting
OPEN_MODAL =true on a link implies also having DISMISS_MODAL =false on that link, and setting
DISMISS_MODAL =true onitis ignored. Setting DISMISS_MODAL =false implies OPEN_MODAL =false, so
there is no need to set it.

Configuring Modal Dialogs

Modal Dialogs can be individually configured by setting the WINDOW_OPTIONS attribute on a LINK tag
which has the OPEN_MODAL attribute set to true. Multiple options can be set via this attribute, which is
formatted as a comma separated list of name value pairs. The currently supported parameters are

- width - sets the width of the Modal Dialog, measured in pixels. This parameter takes an integer value.
« height - sets the height of the Modal Dialog, measured in pixels. This parameter takes an integer value.

80 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true"
WINDOW_OPTIONS="width=600,height=500" />

Note in the example above the use of the WINDOW_OPTIONS attribute. The values specified for width and
height are simple integers and do not have any alphabetic characters appended. A default width of 600
pixels is used if no width parameter is specified. If no height parameter is specified the height will be
automatically calculated to accommodate the page contents. If an unsupported parameter is placed in
the WINDOW_OPTIONS, a build time exception will be thrown.

If the WINDOW_OPTIONS attribute is also specified on the PAGE element of the page a LINK points to, it
will take precedence over the value specified on the LINK itself.

The minimum required height for modal dialogs can be configured using the property
modal.dialogs.minimum.height thatis located in the ApplicationConfiguration.properties
file.

Controlling Modal Dialogs from custom JavaScript

Modal Dialogs can be controlled by custom JavaScript using the provided curam.util.UimDialog API.
For details see the full API documentation in HTML format, accessible by opening <cdej-dir>\doc
\JavaScript\index.html in a Web browser.

Loading custom non-UIM pages in a Modal Dialog

Custom non-UIM pages must hook into a specific set of API functions in order to work correctly in a Modal
Dialog. These functions are provided by the curam.util.Dialog API. The details are available in the
full API documentation: <cdej-dir>\doc\JavaScript\index.html.

LIST

The LIST element defines the layout of a control used to display lists of data. Each field or action control
becomes a column and data values are then tabulated.

List attributes

The LIST element has the following attributes:

Table 34: Attributes of the LIST Element

Attribute Name Required |Default Description

TITLE No A reference to an externalized string containing
the title string for this list. See also note below.

STYLE No The class name of the CSS style to associate
with this list for formatting.

DESCRIPTION No A reference to an externalized string that
provides more details about the list than the
title alone. This will be displayed below the title
on the page.

SORTABLE No true Lists can be sorted by clicking on the
appropriate headers. This is set by default to be
enabled without the use of the attribute. This
attribute allows this feature to be controlled
with false disabling the feature and true
enabling it.

Clram web client reference 81



Table 34: Attributes of the LIST Element (continued)

Attribute Name

Required

Default

Description

SUMMARY

No

A reference to an externalized string containing
the summary of this list. The SUMMARY attribute
describes the purpose and/or structure of a list.

SCROLL_HEIGHT

No

Specifies in pixels the desired fixed height of a
scrollable list. A vertical scrollbar is provided
once the list exceeds the scroll height. The
scrollbar is only applied to the list body and the
list's column headers remain fixed Scroll height
is independent of the list contents and therefore
an empty list will still be set to the height
specified.

BEHAVIOR

No

Optional attribute which controls the display
and behavior of the toggle button used to
expand or collapse the list.

Three value options are available for this
attribute:

= NONE which prevents the toggle button from
being displayed in the list header.

= EXPANDED : the toggle button is displayed and
the list is initially expanded.

« COLLAPSED : the toggle button is displayed
and the list is initially collapsed.

When the BEHAVIOR is not set for a list, its
default value of EXPANDED is implied.

Note that this attribute is only applicable when
the property
ENABLE_COLLAPSIBLE_CLUSTERS is not set
oris setto truein curam_config.xml. For
details see “General Configuration” on page 30.

PAGINATED

No

true

Enables the ability to page through lists
displayed in Clram pages. Any LIST longer than
the configured minimum size will display only
the first "page" of data and the pagination
controls will be displayed below the list.

DEFAULT_PAGE_SIZE

No

Based on the
global
configured
value, usually
15.

Specifies the page size the list will get by
default. The page size can be then changed at
runtime by the user.

82 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 34: Attributes of the LIST Element (continued)

Attribute Name Required |Default Description

PAGINATION_THRESHO |No Based on the [ Specifies the minimum list size at which

LD global pagination will be enabled. For shorter lists
configured there will be no pagination, even if otherwise
value, usually | pagination is switched on.
same as
DEFAULT_PAG
E_SIZE.

Note: Lists on search pages now display the number of items found as a result of the search. The number
of items will be displayed beside the list title.

The text used to display the number of items can be customized by setting the following property in the
CDEJResources.properties file, for example:

record.number.message=Items found:
The actual number of items will be displayed after the text.

This feature only applies to search pages and must be enabled by adding the following to the curam-
config.xml file:

<LIST_ROW_COUNT>true</LIST_ROW_COUNT>

Child Elements

The LIST element can contain the following child elements. It must contain at least one
ACTION_CONTROL, FIELD, or CONTAINER element. SOURCE connections can be made to list or non-list
properties. Within a table all list properties must belong to the same list structure defined in the server
interface model. This ensures that they are all the same length. The number of rows in the list will be
equal to the number of elements in the list properties. The value of a non-list property is simply repeated
on each row.

Table 35: Child Elements of the LIST Element

Element Name Cardinality / Description
TITLE 0..1. The TITLE element will be displayed above the LIST.
DESCRIPTION 0..1 The “DESCRIPTION” on page 63 element has the same behavior

as the DESCRIPTION attribute but allows the description to be built
up from a number of sources. If both are specified, this element takes
precedence over the corresponding attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any
type. The action controls will be displayed above and/or below the
entire list.

FIELD 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can be

freely intermingled. Only output fields can be used (i.e., fields with no
target connection.)

CONTAINER 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can be
freely intermingled. Within the container, only output fields can be
used (i.e., fields with no target connection.)

CONDITION 0..1. Affects whether or not the list is displayed.

Clram web client reference 83



Table 35: Child Elements of the LIST Element (continued)

Element Name Cardinality / Description
FOOTER_ROW 0..n. This should be defined after all other child elements.
LIST_CONNECT 0..n. This should be defined after all other child elements. The only

supported child elements are SOURCE and TARGET. The SOURCE
connection must be a display phase bean.

Editable Lists
This section describes editable lists.

Up until now UIM only supported read only lists, where FIELD elements within a list could only have
SOURCE connections. UIM now supports FIELD elements within a list that have SOURCE and TARGET
connections, otherwise known as editable lists. FIELD elements that have only a TARGET connection with
no SOURCE connection are not supported. The reason for this is that only Clusters that have input fields
should be used for creating business data within the application.

There are essentially two distinct types of editable lists:
1. Editable Lists controlled by checkbox

If the first field within a list has both connections and it has SVR_BOOLEAN as it's underlying domain,
the first column in the list will be displayed as a check box. When a user selects the check box on a
particular row, the other editable columns within that row can be edited (their value updated).

If a user does not select a check box, then the other editable columns within that row are disabled and
cannot be edited. The key point, is that within a Check Box Controlled Editable List, all the editable
columns are controlled by the first column - the check box column.

2. Editable Lists

If the first field within a list has both connections and it does not have SVR_BOOLEAN as it's underlying
domain then it will be treated as a normal editable list, where all of the editable columns are
decoupled from one another. Even if there is a check box column within the list (not the first column), it
cannot control whether the other editable lists are editable or not.

A mixture of read only fields and editable fields are permitted within a list but suffice to say that the read
only columns cannot be updated.

Within editable lists it is possible to submit hidden values (per list row) to the server that are not visible
within the list. The LIST_CONNECT element is supported within a LIST element in order to facilitate this.
For more information, refer to “Child Elements” on page 83 . For example in the context of a person
object, if there was an editable list on a page that displayed details about the person, there may be the
need to submit the persons ID (unique identifier) to the server as a hidden field without displaying it to
the user. In this case a single LIST_CONNECT element could be configured within the list to pass the
unique id for each person (each row represents a single person).

Only the following data types are supported on fields within editable lists:
« CURAM_BOOLEAN,

« THREE_FIELD_DATE,

« SVR_DOUBLE,

« SVR_FLOAT,

« SVR_INTS,

« SVR_INT16,

« SVR_INT32,

« SVR_INT64,

« SVR_CHAR, and

84 IBM Curam Social Program Management: Ciram Web Client Reference Manual



SVR_STRING.

MENU

The MENU element is used to define six types of menus in a Curam client application. The menu types are:

STATIC: The menu is made up of ACTION_CONTROL elements that will appear on the page menu. The
ACTION_CONTROL elements must have the TYPE of ACTION.

NAVIGATION : The menuis made up of ACTION_CONTROL elements that will be appended to the
"Navigation" menu. The ACTION_CONTROL elements must have the TYPE of ACTION.

DYNAMIC : The menu is driven by XML data constructed on the server application.

INTEGRATED_CASE : The menu is driven by XML data constructed on the server application. This menu
is specific to the Ciram-style Integrated Case user interface and is rendered as a set of of tabs.

IN_PAGE_NAVIGATION : The menuis made up of ACTION_CONTROL elements that will appear on the
in-page-navigation menu at the top of the main content area.

WIZARD_PROGRESS_BAR : This is another specific type of menu rendered as a button bar on the top of
the content area in a modal dialog for displaying a sequence of related pages in the wizard manner. The
menu is driven by a resource stored in the server application.

Attributes

The MENU element has the following attribute:

Table 36: Attributes of the MENU Element

Attribute Name

Required

Default

Description

MODE

No

STATIC

The type of menu to create. The mode can be

STATIC (the default), NAVIGATION, DYNAMIC,
INTEGRATED_CASE, IN_PAGE_NAVIGATION
or WIZARD_PROGRESS_BAR.

Static, navigation and in-page-navigation
menus contain one or more ACTION_CONTROL
elements that represent links to other pages.
The static menu normally appears just above
the main content area of the page. Navigation
menu items will be appended to the navigation
menu, normally on the left of the page. In-
page-navigation menu items appear at the top
of the main content area and the wizard
progress bar appears at the top of the modal
dialog content area.

Dynamic menus of both types (DYNAMIC and
INTEGRATED_CASE) are created from data
retrieved from the server and contain a single
CONNECT element specifying a SOURCE end-
point to a server interface property.

Child Elements

The MENU element can contain the following child elements. Note that the ACTION_CONTROL and
CONNECT elements are mutually exclusive.

Curam web client reference 85



Table 37: Child Elements of the MENU Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. Only action controls with a TYPE of ACTION can be used.
CONNECT 1. A CONNECT element specifying a single SOURCE end-point.

DYNAMIC and INTEGRATED_CASE type menus

The data for both DYNAMIC and INTEGRATED_CASE menu's are driven by the same XML format. An
example of the menu data sent by the application server is shown below.

<DYNAMIC_MENU>
<LINK PAGE_ID="CaseHome"
DESC="2:fieldl:curam.omega3.myMessages:info_menul: ()"
TYPE="case" >
<PARAMETER NAME="caseID" VALUE="1234" />
</LINK>
<LINK PAGE_ID="ProductHome"
DESC="2:fieldl:curam.omega3.myMessages:info_menu2: ()"
TYPE="product" >
<PARAMETER NAME="productID" VALUE="5678" />
<PARAMETER NAME="caseID" VALUE="1234" />
</LINK>
</DYNAMIC_MENU>

Figure 40: Example of Dynamic MENU Data

All the menu links are contained within the DYNAMIC_MENU root element. Each entry on the menu is
specified by a LINK element. The LINK element has the following attributes:

« PAGE_ID : Specifies the target page for the link.

« DESC : Specifies the server message catalog entry to be looked up and used as the text for the link. The
Curam SDEJ provides an API to create the string representation of a message catalog entry shown in
the example above. Consult the Caram Server Developers Guide for details on using message catalogs.

« TYPE : specifies a value that is looked up in appropriate menu configuration file (described below) to
identify the icon that should be associated with the link.

Each LINK element can contain a number of PARAMETER elements that specify additional parameters
that will be added to the link from the menu. The PARAMETER element has the following attributes:

« NAME : The parameter name.
« VALUE : The parameter value.

The configuration files for the DYNAMIC and INTEGRATED_CASE menu's are DynamicMenuConfig.xml
and ICDynamicMenuConfig.xml respectively. The following are examples each configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<DYNAMIC_MENU_CONFIG>
<SEPARATOR IMAGE="Images/separator.gif"
TEXT="Dyn.Menu.Separator"/>
<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>
<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>
</DYNAMIC_MENU_CONFIG>

Figure 41: Example of a DYNAMIC Menu Configuration File

86 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<?xml version="1.0" encoding="UTF-8"?>
<INTEGRATED CASE_MENU_CONFIG>
<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>
<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>
</DYNAMIC_MENU_CONFIG>

Figure 42: Example of an INTEGRATED_CASE Menu Configuration File

The differences to note are the root elements, DYNAMIC_MENU_CONFIG and
INTEGRATED_CASE_MENU_CONFIG, and the SEPARATOR element which is not used in an
INTEGRATED_CASE because of its very specific look and feel.

The SEPARATOR element describes an image or a piece of text used to separate the menu items and has
the following attributes:

« IMAGE : Specifies an image to use as the separator.

« TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is mandatory. If an
image is specified this will be used as the alternate text for the image, if not, then the text will be
displayed.

The LINK element has the following attributes.

« TYPE : This must match the TYPE attribute of the LINK element returned from the server application.
- IMAGE : Specifies an image to use in the link. This attribute is mandatory.

« TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is mandatory. It will
be used as the alternate text for the image.

The IN_PAGE_NAVIGATION type menu

The in-page navigation menu, see User Interface Element 9 of “Application user interface overview” on
page 4, allows for the addition of a set of links which will be displayed as tabs embedded within a UIM
page. Each UIM page in the set must define the same MENU element. The currently selected UIM page,
aka tab, is identified by the STYLE="in-page-current-1link" attribute. This will differ on each of the
UIM pages in the set and should be set on the ACTION_CONTROL that matches the UIM page the MENU is
contained in.

<PAGE PAGE_ID="InPageNav">
<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Title.Text"/>
</CONNECT>
</PAGE_TITLE>
<MENU MODE="IN_PAGE_NAVIGATION">
<ACTION_CONTROL LABEL="Label.pagel">
<LINK PAGE_ID="Pagel" SAVE_LINK="false"/>
</ACTION_CONTROL>
<ACTION_CONTROL
LABEL="Page2.Label"
STYLE="in-page-current-link" >
<LINK PAGE_ID="Page2" SAVE_LINK="false" />
</ACTION_CONTROL>
</MENU>

</PAGE>
Figure 43: Example of the IN_PAGE_NAVIGATION menu in UIM

WIZARD_PROGRESS_BAR menu

The wizard progress menu bar is inserted on a page by including a MENU element which has a MODE
attribute set to WIZARD_PROGRESS_BAR. It binds a number of pages, allowing for the sequential
navigation through them. For instance, in a modal dialog which contains a wizard progress menu bar,

Curam web client reference 87



pages can be navigated through by clicking the previous or next button. At the same time, the wizard
progress menu bar presented on the top of it will indicate its progress.

The UIM wizard pages
There are some specifics regarding the UIM pages used with the WIZARD_PROGRESS_BAR menu:

« The wizard pages should open in the modal dialog. The wizard progress bar functionality should not be
used in standard non-modal UIM pages.

« Each page in the wizard flow is implemented as standard UIM with a wizard progress bar widget placed
at the top of each page.

« The pages should have action controls for advancing through the wizard (back and forward buttons as
required by the scenario). The LINK elements of these action controls should have DISMISS_MODAL
attribute set to false (except for the controls supposed to close the wizard). Additionally, the
SAVE_LINK attribute should also be set to false.

<PAGE PAGE_ID="Sample_PageOne">
<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>
<SOURCE
NAME="DISPLAY" PROPERTY="resourceID" />
</CONNECT>
</MENU>
<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle" />
</CONNECT>
</PAGE_TITLE>
<SERVER_INTERFACE
CLASS="WizardSample"
NAME="DISPLAY" OPERATION="getResourceID"
PHASE="DISPLAY" />
<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL
LABEL="ActionControl.Label.Cancel"/>
<ACTION_CONTROL
LABEL="ActionControl.Label.Next">
<LINK PAGE_ID="Sample_PageTwo"
SAVE_LINK="false"
DISMISS _MODAL="false"/>
</ACTION_CONTROL>
</ACTION_SET>

</PAGE>
Figure 44: An example of wizard-type menu UIM

In the example above the connection in the MENU provides the identifier of the server-side resource
describing this wizard (see below).

Wizard menu configuration

The text required by the wizard progress bar items come from a property resource whose identifier must
be provided to the wizard progress bar menu.

88 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Number.Wizard.Pages=2

Sample_pageOne.Wizard.Item.Text=Child
Sample_pageOne.Wizard.Page.Title=Step 1: Child Details
Sample_pageOne.Wizard.Page.Desc=Capture some details
Wizard.PageID.1l=Sample_pageOne

Sample_pageTwo.Wizard.Item.Text=Parent
Sample_pageTwo.Wizard.Page.Title=Step 2: Parent Details
Sample_pageTwo.Wizard.Page.Desc=Capture some details 1
Wizard.PageID.2=Sample_pageTwo

Figure 45: Example of the required properties in the resource store property file

Table 38: Properties in the wizard defining resource

Property Name

Description

Number.Wizard.Pages

The value of this property defines the number of items to be
rendered for the wizard progress bar. The value must be a
numeric whole number greater than zero.

<PagelID>.Wizard.Item.Text

Defines the text to be displayed within the wizard progress bar
item for each page of the wizard. There must be one of these
properties defined for each page in the wizard. The property is
uniquely identified for each wizard page by the <PageID>
prefix which represents the actual identifier of that UIM page
in the wizard flow.

<PagelD>.Wizard.Page.Title

Defines the title to be displayed within the wizard progress bar
for the current page of the wizard. There must be one of these
properties defined for each page in the wizard. The property is
uniquely identified for each wizard page by the <PageID>
prefix which represents the actual identifier of that UIM page
in the wizard flow.

<PagelD>.Wizard.Page.Desc

Defines the description to be displayed within the wizard
progress bar for the current page of the wizard. There must be
one of these properties defined for each page in the wizard.
The property is uniquely identified for each wizard page by the
<PagelD> prefix which represents the actual identifier of that
UIM page in the wizard flow.

Wizard.PageID.<PageNum>

Defines the position of the page within the wizard flow. The
widget uses this information to style the bar items correctly.
There must be one of these properties defined for each page in
the wizard. This property is uniquely identified for each wizard
page by the <PageNum> suffix which represents the position
of each page within the list of wizard menu pages.

The order of the properties declaration in the resource is important as the associated menu widget will
draw the wizard items for the progress bar in that order. The page title and description are added by the

widget for the current page of the wizard.

PAGE

The PAGE element is the root element of a UIM document that describes the data to be included in a

generated JSP page.

Clram web client reference 89



Attributes

The PAGE element has the following attributes:

Table 39: Attributes of the PAGE Element

Attribute Name Required

Default

Description

PAGE_ID Yes

An identifier for the page used when
referencing the page from LINK elements.
This identifier must be unique within a project.
The file name of the document must be the
same as the value of this attribute and have
the extension .uim.

POPUP_PAGE No

false

Indicates that this page is a pop-up that will
be opened from a parent page. Pop-up pages
do not include the side-bar, header and footer
of standard pages. The value can be set to
true or false. The attribute must only be
used for pages configured according to “Pop-
up Pages” on page 237 (i.e., search pop-up
pages).

SCRIPT_FILE No

The name of the script file containing the
JavaScript functions that are specified in the
ACTION attribute of any SCRIPT elements on
the page. If no SCRIPT_FILE attribute is set
on a particular SCRIPT element within a
FIELD or ACTION_CONTROL the PAGE script
file is used by default. The script file should be
added in a component. If another script file
has the same name in another component, the
version in the highest priority component will
be used. Each SCRIPT can specify its own
script file if required, or share this common
script file.

APPEND_COLON No

Set to true to automatically append colons to
FIELD and CONTAINER labels within
CLUSTER elements. This overrides the value
of the APPEND_COLON element in the curam-
config.xml file for that individual page (see
“APPEND_COLON” on page 31).

WINDOW_OPTIONS No

"width=700

height=auto
-calculated"

The size of the page when displayed in a
modal dialog is configurable using this
parameter. The value of the attribute is a
comma separated list of name value pairs.
The currently supported options are width
and height, both of which take an integer
value, which is translated directly to a pixel
value. Only a width needs to be specified
however as the height will be dynamically
calculated. Any other parameters will cause
an exception to be thrown.

90 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 39: Attributes of the PAGE Element (continued)

Attribute Name

Required

Default Description

TYPE

No

DEFAULT Used to define specific types of UIM pages.
Two types are supported, DETAILS and
SPLIT_WINDOW.

SPLIT_WINDOW enables the use of frames
within the page. If the attribute is not present
or is set to DEFAULT then frames are not used.
See “Agenda Player” on page 244 for an
example of use.

DETAILS defines a UIM page that will be used
as a context panel page. For more information
see “Context panel UIM” on page 150.

HIDE_CONDITIONAL_LI
NKS

No

TRUE Set to true to hide conditional links that
evaluate to false. Set to false to show a
disabled conditional link that evaluate to false.
This overrides the value of the
HIDE_CONDITIONAL_LINKS elementin the
curam-config.xml file for that individual
page (see “APPEND_COLON” on page 31).

Child Elements

The PAGE element can contain child elements as follows:

Table 40: Child Elements of the PAGE Element

Element Name

Cardinality / Description

INCLUDE 0..1. This element can be used before any other child element
of a PAGE element.

PAGE_TITLE 0..1. This does not apply to context panel UIM pages. In this
case, the PAGE_TITLE element is mandatory. See “Context
panel UIM” on page 150 for more information.

DESCRIPTION 0.1

SHORTCUT_TITLE 0.1

SERVER_INTERFACE

page 95 for more information.

0..n. Multiple SERVER_INTERFACE elements are supported,
however it is recommended that only one
SERVER_INTERFACE with the PHASE attribute set to ACTION
is defined per PAGE element. See “SERVER INTERFACE” on

INFORMATIONAL

0.1

MENU

0..2. The page can contain one optional static and one
optional dynamic menu as well as append extra items to the
navigation menu.

Curam web client reference 91



Table 40: Child Elements of the PAGE Element (continued)

Element Name Cardinality / Description

ACTION_SET 0..1. In this context, the action set defines the set of action
controls that will appear around the page's main content
area.

PAGE_PARAMETER 0..n

CONNECT 0..n. In this context, the connections can copy values directly

from the properties of source server interfaces to properties
of the target server interfaces. Each CONNECT element should
contain both a SOURCE and a TARGET element.

JSP_SCRIPTLET 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be preserved in
the generated page.

CLUSTER 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be preserved in
the generated page.

LIST 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be preserved in
the generated page.

SCRIPT 0..n. A script associated with the PAGE that will be activated
in response to the specified event. See “SCRIPT” on page 93
for more details.

Where a page is configured to contain a large number of scrollable list and cluster elements
(approximately 15), it may cause JSP compile issues in Weblogic. This is due to a Weblogic system
limitation in how big a page can be rendered at run time. To overcome this restriction, arrange the display
of the required scrollable lists and clusters over a number of pages.

PAGE_PARAMETER

The PAGE_PARAMETER element declares a parameter to the current page. Once a parameter is declared,
it can be used as the source of a connection by setting the connection source bean NAME attribute to
PAGE.

Attributes
The PAGE_PARAMETER element has the following attributes:

Table 41: Attributes of the PAGE_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the parameter to use in SOURCE
connection end-points.

Child Elements
The PAGE_PARAMETER element contains no child elements.

92 IBM Curam Social Program Management: Ciram Web Client Reference Manual



PAGE TITLE

The PAGE_TITLE element defines the title that appears at the top of a page's main content area. A title is
constructed by concatenating a number of connection sources together. These can include localized

strings and data from server interfaces.

Note: The PAGE_TITLE element defines the text for the tab title bar where the UIM page is used as a
context panel page. See “Context panel UIM” on page 150 for more information.

Attributes

The PAGE_TITLE element has the following attributes:

Table 42: Attributes of the PAGE_TITLE Element

Attribute Name Required

Default

Description

DESCRIPTION No

A reference to a localized string that provides a
more detailed description of the page than the
title alone. This will be displayed with the title in
the page's main content area.

STYLE No

The name of the CSS class to use when
displaying the title on the page.

ICON No

A reference to an entry in the
Image.properties file specifying the image
file to use beside the title in the main content
area.

Child Elements

The PAGE_TITLE element can contain child elements as follows:

Table 43: Child Elements of the PAGE_TITLE Element

Element Name

Cardinality / Description

CONNECT

1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings from a properties file.

DESCRIPTION

0..1 The “DESCRIPTION” on page 63 element has the same

behavior as the DESCRIPTION attribute but allows the
description to be built up from a number of sources. If both are
specified, this element takes precedence over the
corresponding attribute.

SCRIPT

The SCRIPT element defines an exit point to allow the invocation of a script (JavaScript) in response to an
event. Scripts are supported for pages, read-write fields and action controls. These elements are not
applicable and not supported for fields within a LIST or read-only fields.

Attributes
The SCRIPT element has the following attributes:

Clram web client reference 93



Table 44: Attributes of the SCRIPT Element

Attribute Name Required

Default

Description

EVENT Yes

The JavaScript name of the event as defined in
the W3C HTML recommendations.

JavaScript events are valid within the PAGE,
FIELD or ACTION_CONTROL elements, with the
exception of FIELD elements withina LIST or
read-only FIELD elements.

Note that the ONCLICK event will be ignored for
ACTION_CONTROL with a TYPE of CLIPBOARD
(for further information see “ACTION CONTROL”

on page 49.).

In addition, please note that by default when a
link is clicked in the Cdram application the link
is processed by Curam specific code. If you are
adding some scripting to a link and do not want
this default processing to occur, the event
should be stopped using the JavaScript APIs
available.

ACTION Yes

The JavaScript to be invoked if the event occurs.
This must be a function call including
parameters, if any. For example;
someFunction() or
someFunction(someParam) where
someParam may be a global variable defined in
script file.

SCRIPT_FILE No

The name of the script file containing the
JavaScript functions that are specified in the
ACTION attribute of the SCRIPT element. If no
SCRIPT_FILE attribute is set on a particular
SCRIPT element withina FIELD or
ACTION_CONTROL the PAGE script file is used
by default. The script file should be added in a
component. If another script file has the same
name in another component, the version in the
highest priority component will be used. If not
specified, the SCRIPT will expect to find the
functions in the page-level script file specified
with the PAGE element's SCRIPT_FILE
attribute.

EXPRESSION No

The name of the a JavaScript function identifier
(excluding the parenthesis) that will be used to
evaluate whether a dynamic conditional cluster
will be displayed or not. The name should
ideally reflect the encapsulated logic within the
function.

Child Elements

The SCRIPT element contains no child elements.

94 1BM Curam Social Program Management: Ciram Web Client Reference Manual




SERVER INTERFACE

The SERVER_INTERFACE element defines a server interface to which other elements of the page can

connect.

Attributes

The SERVER_INTERFACE element has the following attributes:

Table 45: Attributes of the SERVER_INTERFACE Element

Attribute Name

Required

Default

Description

NAME

Yes

A unique name for this instance of the server
interface on this page.

CLASS

Yes

The name of the server interface class.

OPERATION

Yes

The name of the server interface operation on
the class.

PHASE

No

DISPLAY

The phase of the page in which the server
interface is called. This can be DISPLAY (the
default) or ACTION. Server interfaces set to the
DISPLAY phase are called as the page is
displayed (i.e., the execution of the JSP page).

Server interfaces set to the ACTION phase are
only called in response to the activation of an
ACTION_CONTROL with a TYPE of SUBMIT. It is
recommended that only one
SERVER_INTERFACE is set to the ACTION
phase per PAGE.

ACTION_ID_PROPE
RTY

No

Specifies a name of the server access bean
property that will be populated with
ACTION_ID of the action control used to make
the server call. The value of this attribute must
be a valid property name of the corresponding
server access bean. The use of shorthand
notation is allowed (for example specify
theProperty instead of the fully qualified
dtls$theProperty).

This attribute is only valid on server interfaces
with PHASE = ACTION and must be specified on
all server interfaces within the page or not
specified on any of them.

If multiple server interfaces specify
ACTION_ID_PROPERTY with different domains
the value of ACTION_ID on all action controls
within the page must be suitable for all of the
domains. Failing to comply with this rule will
lead to error at runtime when the corresponding
action control is activated.

If this attribute is specified then the
ACTION_ID attribute of ACTION_CONTROL
element must also be specified.

Curam web client reference 95



Note: It is technically possible to specify multiple SERVER_INTERFACE elements set to the ACTION
phase. However, this is not recommended. Each SERVER_INTERFACE is essentially a separate
transaction and when an invocation fails, no further invocations of other server interfaces are made and
completed transactions are not rolled back.

For example, three SERVER_INTERFACE elements are defined, each set to the ACTION phase. When the
page is executed, the first server interface invocation succeeds and the second fails. In this scenario, the
third server interface is never invoked and the action of the first will not be rolled back.

Child Elements
The SERVER_INTERFACE element contains no child elements.

SOURCE

The SOURCE element defines the source end-point of a data connection. The source can be the value of a
server interface property, the value of a parameter to the page (which must be declared via the
PAGE_PARAMETER element), or the value of an externalized string.

Attributes
The SOURCE element has the following attributes:

Table 46: Attributes of the SOURCE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance to
use as the source of the property value, or PAGE, if
the source is the value of a page parameter, or
TEXT (or CONSTANT) if the source is the value of
an externalized text string. TEXT or CONSTANT can
only be used when TARGET has a server interface
defined in the ACTION phase.

PROPERTY Yes The name of the server interface property, the
name of the input page parameter, or the string
reference to the externalized string whose value is
required.

Child Elements

The SOURCE element contains no child elements.

TAB_NAME

The TAB_NAME element defines the text used for the tab in the tab bar, where the UIM page is used as a
context panel UIM page. The text is constructed by concatenating a number of connection sources
together. These can include localized strings and data from server interfaces.

This element only applies where the TYPE attribute of the PAGE element is set to DETAILS. See “Context
panel UIM” on page 150 for more information.

Child Elements

The TAB_NAME element can contain child elements as follows:

96 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 47: Child Elements of the TAB_NAME Element

Element Name

Cardinality / Description

CONNECT

1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings from a properties file.

DESCRIPTION

0..1 The “DESCRIPTION” on page 63 element has the same
behavior as the DESCRIPTION attribute but allows the
description to be built up from a number of sources. If both are
specified, this element takes precedence over the
corresponding attribute.

TARGET

The TARGET element defines the target end-point of a data connection. The target can be the value of a

server interface property or the value of a

Attributes

parameter to be exported from the page.

The TARGET element has the following attributes:

Table 48: Attributes of the TARGET Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance
to use as the target of the property value, or
PAGE, if the target is the value of a page
parameter.

PROPERTY Yes The name of the server interface property, or
the name of the output page parameter whose
value is to be set.

Child Elements

The TARGET element contains no child elements.

TITLE

The TITLE element defines the title that appears at the top of a CLUSTER or LIST element. ATITLE is
constructed by concatenating a number of connection sources together. These can include localized

strings and data from server interfaces.

Attributes

The TITLE element has the following attributes:

Table 49: Attributes of the TITLE Element

Attribute Name Required

Description

SEPARATOR No

A reference to an externalized string to use as the separator
between the elements within the container.

Curam web client reference 97



Child Elements

The TITLE element can contain child elements as follows:

Table 50: Child Elements of the TITLE Element

Element Name

Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings in a properties file.

VIEW

The VIEW element is the root element of a UIM document that defines elements to be included in a UIM
page document. A view cannot include other views using the INCLUDE element.

Attributes

The VIEW element has no attributes.

Child Elements

The VIEW element can contain child elements as follows:

Table 51: Child Elements of the VIEW Element

Element Name

Cardinality / Description

PAGE_TITLE

See the PAGE element.

SHORTCUT_TITLE

See the PAGE element.

SERVER_INTERFACE

See the PAGE element.

MENU

See the PAGE element.

ACTION_SET

See the PAGE element.

PAGE_PARAMETER

See the PAGE element.

CONNECT

See the PAGE element.

JSP_SCRIPTLET

See the PAGE element.

CLUSTER See the PAGE element.
LIST See the PAGE element.
SCRIPT See the PAGE element.

UIM Reference for Widgets

Introduction

Widgets are used when the handling of data in the client application is too complicated to do with the
automatic domain definition recognition of the FIELD element. Widgets allow several different sources of
data to be connected to a control that can then supply data to several different targets.

98 IBM Curam Social Program Management: Ciram Web Client Reference Manual




There are a number of predefined types of WIDGET element. Each type of WIDGET can contain one or
more WIDGET_PARAMETER elements. The configuration of these WIDGET _PARAMETER elements depends
on the type of the widget. These are described in the sections below.

Most widget types can only be defined within CLUSTER elements (exceptions to this are described below).
There may also be restrictions on how many widgets of a particular type can be included in a single UIM
document.

WIDGET

The WIDGET element is used to define the type of widget to include and it holds the WIDGET_PARAMETER
elements that configure the widget.

Attributes
The WIDGET element has the following attributes:

Table 52: Attributes of the WIDGET Element

Attribute Name Required Default Description
TYPE Yes The type of WIDGET. This can be one of the
following:

+ EVIDENCE_COMPARE

« FILE_EDITL@

« FILE_UPLOAD

e MULTISELECT

* SINGLESELECT

* RULES_STMULATION_EDITOR
« FILE_DOWNLOAD

« IEG_PLAYER

LABEL No A reference to an externalized string that
should be used as the associated label string
for this widget.

WIDTH No The width of the control specified in the
appropriate units.

WIDTH_UNITS No PERCENT The units in which the width is interpreted. This
can be PERCENT to indicate the percentage of
the space available to the widget, or CHARS to
indicate the number of visible characters wide
the widget will be.

HEIGHT No 1 A HEIGHT value that may be used by the
widget.
ALIGNMENT No DEFAULT Defines the horizontal alignment of the widget.

Can be set to LEFT, RIGHT, CENTER, or
DEFAULT. The value DEFAULT corresponds to
the CSS class default in curam_common.css.
Currently the default is to be left aligned.

Curam web client reference 99



Table 52: Attributes of the WIDGET Element (continued)

Attribute Name

Required

Default

Description

HAS_CONFIRM_PAGE

No

false

Attribute to be used only on widget of type of
MULTISELECT. Used to specify that the widget
selection data is to be submitted to the
confirmation page. Can be true or false. See
“Confirmation Pages” on page 112.

Child Elements

The WIDGET element can contain the following child element:

Table 53: Child Elements of the WIDGET Element

Element Name

Cardinality / Description

WIDGET_PARAMETER

1..n. The parameters depend on the type of widget.

WIDGET_PARAMETER

The WIDGET_PARAMETER element is used to define the properties of an individual widget. In particular,
the WIDGET_PARAMETER elements allow connections to be made between named properties of the
widget and various source and target data end-points.

Attributes

The WIDGET_PARAMETER element has the following attribute:

Table 54: Attributes of the WIDGET_PARAMETER Element

Attribute Name

Required

Default

Description

NAME

Yes

The name of the property on the WIDGET that
this element configures.

Child Elements

The WIDGET_PARAMETER element can contain the following child element:

100 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 55: Child Elements of the WIDGET_PARAMETER Element

Element Name Cardinality / Description

CONNECT A WIDGET_PARAMETER can be connected in one of two ways
depending on the specification for the particular WIDGET. The
first way is similar to that of FIELD elements:

1..n. The parameter can contain multiple CONNECT elements.
Usually (the FILE_DOWNLOAD WIDGET is an exception to this)
aWIDGET_PARAMETER contains up to three CONNECT
elements, SOURCE, TARGET, and INITIAL connection end-
points. The valid types of source or target depend on the
individual parameter.

The second way to connect a parameter is similar to the
CONNECT elements in a LINK element.

1..n. CONNECT elements that each connect a SOURCE end-
point to a TARGET end-point.

The EVIDENCE_COMPARE Widget

The EVIDENCE_COMPARE widget displays the differences between two sets of evidence. These
differences are high-lighted using the following colors: evidence items that have changed are shown in
red; new items are shown in green; deleted items are shown in gray.

This widget should be the sole element in a CLUSTER. Its TYPE should be set to EVIDENCE _COMPARE and
its WIDGET_PARAMETER elements should be set as follows:

Table 56: Parameters to the EVIDENCE_COMPARE Widget

Parameter Name Required Description and Connections

OLD_EVIDENCE Yes This parameter must include a single
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point should specify a
property of the EVIDENCE_TEXT domain
that contains the original evidence.

NEW_EVIDENCE Yes This parameter must include a single
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point should specify a
property of the EVIDENCE_TEXT domain
that contains the new evidence.

(deprecated) The FILE_EDIT Widget

The FILE_EDIT widget allows a user to edit a Microsoft Word document on their local computer and then
save it to the IBM Cldram database. A document can be created automatically from a template where the
template details can be set before the document is presented to the user for editing.

The FILE_EDIT widget uses either a Java applet to manage the interaction between the user's browser
and Word (for the browsers which support Java) or the Native Messaging API for Chrome.

In either case only the source and target documents and the template details are required. If key details,
or other data, are required by the server interfaces that handle the document, these should be provided
by page parameters and page-level connections.

Clram web client reference 101



NOTE: the Chrome Native Messaging API solution requires a separate installation/configuration which is is
detailed in the appropriate documentation. See “(deprecated) User Machine Configuration for the Native
Messaging version” on page 106

Once the page with the FILE_EDIT widget loads, it immediately launches the File Edit Control
Panel in the modal dialog. This panel displays the informational messages about the editing session
initialization and other background events as well as error messages if there are any. It does also allow for
some minimal interaction with the application server.

The Control panel modal dialog can be closed up to the point that the Microsoft Word application
initializes correctly and the document opens. Thereafter, the close option is not available because closing
the Word application will end the process.

Once the document loads and is ready for editing, it is automatically saved locally and displays along with
the corresponding notification in the Word status bar and also the Windows task bar (if so configured, see
the “(deprecated) FILE_EDIT Widget Configuration” on page 104). The user can now edit the document
and save it as they wish.

Each document Save operation within the Word application triggers the notification message in the
application status bar and from the Windows task bar to notify the user that their changes are saved
locally but not to the database. In order to save the interim versions of their document back to the
database the user has the possibility to go back to the browser where there is the Commit changes
buttoninthe File Edit Control Panel. The button is initially disabled. It will be enabled once the
document is saved in the Word application. Once the user presses this button, the current document
version is passed back to the server and saved to the database. The user is notified of the result of this
interim save in the panel and the Commit changes button is disabled again until the next Save
operation in Word.

Because of the specific invocation of the server interfaces by the FILE_EDIT widget, it is not permitted to
use any property of the ACTION phase server interface in a SOURCE connection of the submit button's
LINK element.

After the user finishes editing the document, they finish the editing session by closing either the
document being edited (if there are multiple documents open) or the Word application itself. At this stage
the application in the browser displays the final save confirmation dialog asking if the user wants to save
their final changes to the server or discard them.

NOTE: The dialog is only displayed if it has been configured, see “(deprecated) FILE_EDIT Widget
Configuration” on page 104.

Please note, that if there were interim saves as above described, the database will contain the latest
committed copy of the document even if the user chooses Cancel at this stage. However it is also
possible to discard all the changes altogether if there were no interim changes and the user decides not to
save them.

Once the final save(or cancel) is performed, the application transfers the user to the page that it has been
configured to go to as specified by the ACTION_CONTROL of TYPE="SUBMIT" in the UIM page containing
the FILE_EDIT widget. If there is no page specified, this "landing" page is assumed to be the last visited
page.

There are circumstances where this "landing" page is not available. In this case the application performs a
search to identify which page should be opened first based on configuration. Once a page is identified, it is
used as the landing page, potentially changing the tab if necessary.

The FILE_EDIT widget can be used as follows: the WIDGET element should have the TYPE attribute set
to FILE_EDIT. Two WIDGET_PARAMETER elements are required:

102 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 57: Parameters to the FILE_EDIT Widget

Parameter Name Required Description and Connections

DOCUMENT Yes Defines the source document (usually a
template) and the target to which to write
the saved document. The parameter
must contain a CONNECT element with a
SOURCE set from a DISPLAY phase sever
interface and a TARGET set from an
ACTION phase sever interface. Both
fields should be Word documents.

The data-type for both the source and
target document must be SVR_BLOB.

DETAILS Yes The template details that should be set in
the document before presenting it to the
user for editing. The parameter must
contain a CONNECT element with a
SOURCE set from a DISPLAY phase sever
interface. The details are in XML format,
described below.

The data-type for the template details
must be SVR_BLOB.

The template details must be provided in a simple XML format. An example of the format is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<FIELDS>
<FIELD NAME="personName" VALUE="John Smith"/>
<FIELD NAME="AddresslLinel" VALUE="1 Main Street"/>
<FIELD NAME="AddressLine2" VALUE="Newtown"/>
<FIELD NAME="AddressLine3" VALUE="Erehwon"/>

</FIELDS>

Figure 46: Sample Template Details

It is recommended that your XML uses UTF-8 encoding to handle multi-byte characters. To preserve the
correct encoding it is important that any code that manipulates the XML honors the encoding of the
document. If the encoding is not honored, this can lead to characters being displayed incorrectly when
opened in Microsoft Word.

Each FIELD element identifies the name of a field in the document template and the value to which it
should be set.

Note: The data content that is passed to the document template to populate the field values is limited to
only alphanumeric characters. Any other characters might not be displayed correctly in the rendered
document. In particular, new line characters are not supported.

While editing the document in Word, the user can not navigate to another browser page (which the modal
File Edit Control Panel and absence of the closing button there would prevent) or close the
browser. If the user attempts to close the originating browser window in the middle of the editing session,
the browser warning is displayed notifying the user of the consequences.

If the user chooses to remain on the page, they can proceed with the editing or end the session by closing
Word application/the document being edited. If, however, they choose to leave the page, the editing
session will be terminated, and the document or Word application (if it was the only document open)
closes along with the browser; the user changes are not saved in this case, however any saved interim
changes before this termination happens are persisted in the database.

Clram web client reference 103



(deprecated) FILE_EDIT Widget Configuration

There are some configuration settings which allow for the bigger flexibility as regards the widget usage or
the widget solution itself. They are summarized in the table below.

Table 58: FILE_EDIT Widget Configuration settings summary

Setting Name

Location
(.properties file)

Requ
ired

Defa
ult
value

Description

fileedit.chrome.messagi
ng.enabled

ApplicationCon
figuration

Yes

fals

Allows for using the Native
Messaging API for Chrome
browser (starting from Chrome 29
which introduces this technology).
In order to use the solution the
user's machine should have the
Native Messaging solution parts
installed and configured as
described in the appropriate
documentation. See “(deprecated)
User Machine Configuration for the
Native Messaging version” on page
106

If this is set to false, which is the
default value, the applet based
solution will be used for any
browser including Chrome which
should work as long as Java is
supported by the Chrome version
used.

Note that there could be further
restrictions imposed by Chrome in
order to enable and use the Java
plug-in which they intend to drop
soon; these restrictions are beyond
IBM control and the user should
take the necessary measures to
have the supported JRE and
browser plug-in installed and
properly enabled as described in
the “(deprecated) User Machine
Configuration for the Applet
version” on page 105.

fileedit.save.autoconfi
rm

CDEJResouzrces

No

Can be set to either true or false
if added and replaces the final save
confirmation dialog with the
predefined action for either saving
the latest changes automatically or
discarding them if set to true or
false correspondingly. The
confirmation dialog is not displayed
in this situation.

104 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 58: FILE_EDIT Widget Configuration settings summary (continued)

Setting Name

Location
(.properties file)

Requ
ired

Defa
ult
value

Description

fileedit.taskbar.messag
es

CDEJResouzrces

No

Can be set to either true or false
values; prevents from the Word
status messages being duplicated
by the Window task bar notification
messages. If set to false, no task
bar notification will be displayed,
while setting it to true or not
having that property in
CDEJResources.properties at
all would cause the task bar
notification messages to be
displayed.

Please keep in mind that
suppressing the additional task bar
notification could affect the
accessibility of the FILE_EDIT
widget.

fileedit.log.on

CDEJResouzrces

Yes

fals

Can be set to either true or false
values; when set to true, it causes
the log (service) messages to be
displayed inthe File Edit
Control panel dialog in addition to
the regular status messages.

These log messages do not have
value to the end user and therefore
are not translated (display in
English). Turning on the logging
should not normally be needed but
might be useful when reporting or
tracing the problems with the
widget.

(deprecated) User Machine Configuration for the Applet version

The applet version of the FILE_EDIT widget is used for the browsers which support the Java plug-in.
Google announced dropping the Java plug-in support for Chrome browser. While the applet based
solution will work in this until the plug-in is working (if properly allowed to run and the application is
configured accordingly, see “(deprecated) FILE_EDIT Widget Configuration” on page 104), this is

expected to be just a temporary situation and therefore the Native Messaging Bridge version of the
FILE_EDIT widget is generally recommended to be used in Chrome, see “(deprecated) User Machine

Configuration for the Native Messaging version” on page 106.

On first use of a new version of the integration applet the user will be presented with a pop up dialog
window to confirm if the code from publisher "International Business Machines Corporation" should be
allowed to run. The checkbox "Always trust the content from this publisher" should be selected and dialog
confirmed, which will ensure the widget executes successfully and the prompt is not displayed again on
subsequent uses. New versions of the widget will be downloaded to the user's machine automatically
when the Clram application is upgraded to a new version.

Clram web client reference 105



When a user attempts to edit a Word document, execution of the integration applet may be blocked
depending on security settings of the Java browser plugin on that particular machine. This causes the
editing session to fail. If you experience these kind of issues issues, please check the following:

« Microsoft Word (supported version) should be installed on the user's machine.
« Word installation should be working as expected on the user's machine when started manually.
« The Web browser Popup blocker feature on the user's machine should be disabled.

 For supported browsers other than Internet Explorer if you are getting a message about the missing
Java plugin even though it is installed on the machine, verify the following option is enabled:Control
Panel -> Java -> Advanced -> Default Java for browsers-> Mozilla family

« Generally if you are getting message about the missing Java plugin even though it is installed on the
machine, check if a slide-down message is displayed in the small popup window that opens when you
attempt to edit a Word document. If so, then confirm that you want to always run code from this
publisher and reload the application in the browser.

Note to users of Windows 7 or higher: Word integration is currently only supported for non-Administrator
users. You may experience issues if the user is logged into Windows as Administrator or if Internet
Explorer is started in administration mode.

Please also note that Chrome browser requires the opposite: it should be launched with Administrator
privileges for the FILE_EDIT applet to initialize successfully. This is only required when running Word
integration in Chrome for the first time.

If you are using this feature in an environment supporting the TLS v1.2 protocol you will need to utilize an
operating system, browser, and JDK environment with compatible support for the client, in conjunction
with the application being hosted on a compliant server (e.g. WebSphere configured for SP800-131a). The
specific steps for configuring the client environment are dependent on the operating system, browser, and
JDK you are using, but all must support TLS v1.2. Assuming a TLS v1.2-configured server environment
and all the required software that supports TLS v1.2 is installed on the client, you must configure the
browser to use the appropriate JDK and to utilize the TLS v1.2 protocol.

Additional security dialog pops up on the first run of the applet asking user's permission for the website to
access and control the Java application published by the "International Business Machines Corporation".
The check box "Do not show this again for this app and web site" should be selected and the permission
confirmed by clicking the "Allow" button in the dialog.

(deprecated) User Machine Configuration for the Native Messaging version

When running the Word Integration in Chrome, a different underlying technology is used (if configured,
see “(deprecated) FILE_EDIT Widget Configuration” on page 104), therefore the user should not be
presented by any additional dialogs.

However the Native Messaging technology used requires additional installation on the users machine
which should normally be handled by the system administrator.

If these installations are missing the user will be notified in the File Edit Control Panel and could
return to the application from there. If the required additions are installed but the Word application is
missing on the machine, the user will also be notified.

Otherwise using the FILE_EDIT widget in Chrome should not be different.

The FILE_UPLOAD Widget

The FILE_UPLOAD widget is a type of widget through which users can specify a file on a local computer to
be uploaded to the server. Usually, the widget is displayed as a text field with a Browse button beside it.
The user can click the button to open a file dialog box and select a file for upload.

Button appearance: The button is created by the browser. Therefore, the actual appearance of the button
can vary depending on the browser that is being used. The normal widget attributes WIDTH and
WIDTH_UNITS do not apply to the FILE_UPLOAD widget. Some browsers do not permit the width of the
file name entry box to be set for security reasons. For example, if the width is set to zero width, the file
name entry box could be hidden while it was still active.

106 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Also, because the FILE_UPLOAD widget uses browser-specified controls, the text on the button is
displayed in whatever locale the browser is set to, regardless of the locale that is configured in the

application.

File Size Validation: There are settings to limit the maximum size of a file that is allowed to be uploaded.
The validations for these settings are carried out on the server side after the file is fully uploaded to a
temporary directory. Therefore, it should be kept in mind that large files could be uploaded consuming a
large amount of disk space. We recommend checking the file upload folder at intervals to ensure disk

space usage meets requirements.

There are three application-level configuration settings for the FILE_UPLOAD widget. These control how
the web-server handles the incoming files. Default settings are already present, but the default values can
be overridden by adding configuration settings to the ApplicationConfiguration.properties file.
The settings follow the same name = value format of all the other entries there. The settings are as

follows:

uploadMaximumSize

This is the maximum size of a file that can be uploaded to the server. The number is specified in bytes.
If the number is negative, there is no limit to the file size. By default, the value is -1 (no limit).

uploadThresholdSize

This is maximum number of bytes of the file's content that the web-server will hold in memory while
the file is being uploaded. Once the number of bytes uploaded exceeds this limit, the web-server will
begin to store the file on disk to save memory. By default, the value is 1024.

uploadRepositoryPath

This is the path to the folder on the disk in which the files will be stored as they are uploaded if they
exceed the threshold size. By default, the value is the JVM defined temp folder, so this folder must be
present on your system. If it is not on your system, you can create it or explicitly set the
uploadRepositoryPath to a folder of your choice.

The WIDGET element should have the TYPE attribute set to FILE_UPLOAD. The widget supports the
following WIDGET_PARAMETER elements:

Table 59: Parameters to the FILE_UPLOAD Widget

Parameter Name Required Description and Connections

CONTENT Yes This parameter indicates the target connection for
the actual content of the uploaded file.
A single CONNECT element with a TARGET that
connects to a property of an ACTION phase server
interface is required.

FILE_NAME No This parameter represents the name of the file to be

uploaded. The parameter can be set to provide a
default name for the file to be uploaded, and can also
supply the name of the file chosen by the user.

If present, the parameter can include CONNECT
elements for either or both end-points: a SOURCE
end-point for the initial name of the file, and a
TARGET end-point for the file that was actually
chosen. The SOURCE end-point can specify a
property of a DISPLAY phase server interface. The
TARGET end-point can specify a property of an
ACTION phase server interface.

Note: Many browsers do not allow a default value for
the name of a file to be uploaded. In this case, setting
a SOURCE connection will have no effect.

Clram web client reference 107



Table 59: Parameters to the FILE_UPLOAD Widget (continued)

Parameter Name Required Description and Connections

CONTENT_TYPE No This parameter indicates the target connection for
the content type of the uploaded file. The content
type describes the format of the uploaded data. For
example, a simple text file would have a content type
of "text/plain" and a Microsoft Word document would
have a content type of "application/msword".

A single CONNECT element with a TARGET that
connects to a property of an ACTION phase server
interface is required.

ACCEPTABLE_CONTENT_TYPES |No An HTML page only allows certain types of content to
be uploaded by default, where the actual default
types depend on the browser. This parameter can
specify the types of content that the page accepts.
The value of the parameter must be a comma-
separated list of content types. If a page contains
more than one FILE_UPLOAD widget, the acceptable
content types of all the widgets are pooled together
and define what is acceptable for the page. This
feature is a consequence of a limitation in the HTML
specification.

A single CONNECT element with a SOURCE that
connects to a CONSTANT property is allowed.

File Upload Widget Considerations
File Upload Considerations in Chrome.

In Chrome, if the file upload widget is used adjacent to another field, once selected, the longer file name
once selected might overlap with the label of that other field. To avoid this issue, do not have a file upload
adjacent to another field, or allow for enough space in between the fields.

The FILE_DOWNLOAD Widget

A WIDGET with the TYPE set to FILE_DOWNLOAD results in the generation of a hyperlink on the page.
Clicking on the hyperlink invokes a special FileDownload servlet included in the Cdram CDEJ that
returns the contents of a file from the database. The FileDownload servlet is configured with the server
interface to call to get the file contents and the parameters to pass to identify that file. The configuration
is performed in the curam-config. xml file. A single server interface can be configured for each page of
the application that includes a file download widget. An example configuration is shown in “File
Downloads” on page 49.

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD can also be used to generate a hyperlink to
download a file. You should use the ACTION_CONTROL element when the hyperlink text is a fixed value
retrieved from the page's corresponding properties file. The FILE_DOWNLOAD WIDGET allows the
hyperlink text to be a dynamic value retrieved from a server interface property.

The FILE_DOWNLOAD widget can also be utilized within the Actions menu of the Context Panel. The menu
item TYPE must be set to FILE_DOWNLOAD. The menu item PAGE - ID must match the PAGE_ID attribute
of the FILE_DOWNLOAD widget configuration. The file identifier must be available as a page parameterin
the respective.tab file for the menu. This page parameter must match the PAGE_PARAM attribute of the
FILE_DOWNLOAD widget configuration.

The WIDGET element should have the TYPE attribute set to FILE_DOWNLOAD. The widget supports the
following WIDGET_PARAMETER elements:

108 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 60: Parameters to the FILE_DOWNLOAD Widget

Parameter Name Required Description and Connections

LINK_TEXT Yes This parameter indicates the source connection for
sourcing content of the link text which will appear on
the screen.

A single CONNECT element with a SOURCE that
connects to a property of a DISPLAY phase server
interface is required. If you want to use a fixed text
value, you should use an ACTION_CONTROL with the
TYPE set to FILE_DOWNLOAD instead of a WIDGET.

PARAMS No This optional parameter supplies the FileDownload
servlet with the necessary parameters.

The parameter can include CONNECT elements with a
SOURCE end-point for the page parameter supplying
avalue for the FileDownload servlet, and a TARGET
end-point for specifying the servlet parameter to
supply the value to. The SOURCE end-point should
refer to a parameter on the page declared by a
corresponding PAGE_PARAMETER element. The
TARGET end-point can specify a parameter whose
name corresponds to a configured FileDownload
servlet parameter name. Thus both end-points
should have a NAME attribute set to PAGE.

The MULTISELECT Widget

The MULTISELECT widget allows you to specify that the first column in a LIST should contain a check-
box on each row and to allow several rows to be selected. A "Select All" feature can be enabled which
displays a check-box in the column header. See “ENABLE_SELECT_ALL_CHECKBOX” on page 34 for
further details.

Each check box can represents multiple entities in the row. For each check box that is selected, the fields
on that row will be compiled intoa" | " delimited string and each row will be tab delimited and passed as
a page parameter when a specific type of page link is activated.

The UIM document in “The MULTISELECT Widget” on page 109 is an example of a page with multiple
rows with check boxes. When the form is submitted, a single string, containing multiple fields for each
selected row, is passed to the in$tabbedString field on the target page. Following the UIM is a detailed
description of each relevant part of the UIM that implement this functionality.

Clram web client reference 109



<PAGE PAGE_ID="MultiSelectWidgetTest"
xsi:noNamespaceSchemalLocation="CuramUIMSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<SERVER_INTERFACE NAME="DISPLAY" CLASS="MyBean"
OPERATION="Display" PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION" CLASS="MyBean"
OPERATION="Submit" PHASE="ACTION"/>

<LIST TITLE="List.Title">
<ACTION_SET BOTTOM="false">
<ACTION_CONTROL TYPE="SUBMIT">
<LINK PAGE_ID="MultiSelectWidgetResult">
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="in$tabbedString" />
<TARGET NAME="PAGE"
PROPERTY="referenceNumTabString" />
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>
<CONTAINER LABEL="List.Multiselect.Header" WIDTH="5"
ALIGNMENT="CENTER">
<WIDGET TYPE="MULTISELECT"
HAS_CONFIRM_PAGE="true">
<WIDGET_PARAMETER NAME="MULTI SELECT_SOURCE">
<CONNECT>
<SOURCE PROPERTY="personID" NAME="DISPLAY"/>
</CONNECT>
<CONNECT>
<SOURCE PROPERTY="caseID" NAME="DISPLAY"/>
</CONNECT>
</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_TARGET">
<CONNECT>
<TARGET PROPERTY="in$tabbedString" NAME="ACTION"/>
</CONNECT>
</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI SELECT_INITIAL">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="out$tabString"/>
</CONNECT>
</WIDGET_PARAMETER>
</WIDGET>
</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber" WIDTH="35">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Forename" WIDTH="30">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Surname" WIDTH="30">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="surname"/>
</CONNECT>
</FIELD>
</LIST>
</PAGE>

Figure 47: MULTISELECT Example

110 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The main points to note in the above UIM example are:

« The WIDGET of TYPE equal to MULTISELECT is a child node of a CONTAINER element. The container's
label will be used as the column header unless the select all check box is enabled in curam-
config.xml. See “ENABLE_SELECT_ALL_CHECKBOX” on page 34 for further details.

« Up to three WIDGET_PARAMETER elements are allowed within the WIDGET element.
MULTI_SELECT_SOURCE and MULTI_SELECT_TARGET are mandatory and MULTI_SELECT_INITIAL
is optional.

« The MULTI_SELECT_SOURCE can have multiple CONNECT elements, each with one SOURCE element.
Each SOURCE is added to the " | " delimited string. If only one SOURCE element is specified the string
will not contain any " | " delimiters. Then each select row will be delimited by a tab character.

e« The MULTI_SELECT_TARGET element must contain only one CONNECT element with only one TARGET
element. This TARGET element specifies the field on the action phase bean that the " | " and tab-
delimited string will be assigned to when the page is submitted.

« The MULTI_SELECT_INITIAL contains only one CONNECT element with a single SOURCE element. This
contains a" | " and tab-delimited string which specifies the rows that are selected when the page is
loaded.

« Inthe LIST element the ACTION_SET has one ACTION_CONTROL element.

« Optional HAS_CONFIRM_PAGE attribute is used to indicate that the page with MULTISELECT widget
submits to a confirmation page, where user selection is re-displayed for confirmation. See
“Confirmation Pages” on page 112

Below is an example of the delimited string passed as a parameter to the specified page.
101 |casel21 102 | casel22 103 |casel23

NOTE: The MULTISELECT widget does not support the list pagination feature and all it's items will be
displayed within one scrollable list. See “PAGINATION” on page 35 and “LIST” on page 81 for more
details on pagination support.

Table 61: Parameters to the MULTISELECT Widget

Parameter Name Required Description and Connections

MULTI_SELECT_SOURCE Yes This parameter can include multiple
CONNECT elements that must specify a
SOURCE end-point.

The SOURCE end-point must be a list
property containing the key data for the
row.

MULTI_SELECT_TARGET Yes This parameter must include one
CONNECT element that must specify a
TARGET end-point.

The TARGET end-point must be a string
property containing the key data for
selected rows.

MULTI_SELECT_INITIAL No This parameter must include one
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point must be a string
property containing the key data for the
rows that are initially check when page is
loaded.

Clram web client reference 111



Confirmation Pages

MULTISELECT widget has a specific mechanism allowing for confirming user selection on a separate page.
This confirmation page is supposed to re-display values selected by an user on the MULTISELECT widget
offering a choice to review these values and confirm them or re-visit the previous page to refine the
selection.

Confirming user selection can become a problem where there is a lot of selected values from a big
MULTISELECT widget to be passed to the confirmation page. There are request length limitations in place,
so in order to pass bigger amounts of data possible in this case different request mechanism (request
forwarding) has to be used.

MULTISELECT widget with the selection to be confirmed is specified by HAS_CONFIRM_PAGE optional
attribute on the WIDGET element. The attribute is to be set to true. It is only valid for a widget of TYPE of
MULTISELECT.

Some things to keep in mind with confirmation pages:

« As request forwarding is used to carry the data in this case, the URL for the confirmation page will not be
displayed with the forwarding page URL shown instead.

« Even though the mentioned attribute is set on a MULTISELECT widget, the setting applies to the whole
page (as there is only one form per page). So, in case where multiple submit buttons exist on a page
with MULTISELECT widget to be confirmed, a confirmation step should be assumed for all of these
buttons (i.e., there is no way to have a submit with confirmation and another without confirmation on
that page).

« The confirmation is to be the immediate step carried out on submitting the form with user selection; no
resolve page should be used in the middle.

- Itis recommended to have a read-only page for user selection confirmation, allowing user to cancel and
return to the previous page if the selection is to be refined.

The SINGLESELECT Widget

The SINGLESELECT widget allows you to specify that the first column in a LIST should contain a radio
button on each row. This widget functions in same way as the MULTISELECT widget, except you are
limited to selecting a single item via radio buttons instead of check boxes. See “The MULTISELECT
Widget” on page 109 for further details.

NOTE: The SINGLESELECT widget does not support the list pagination feature and all it's items will be
displayed within one scrollable list. See “PAGINATION” on page 35 and “LIST” on page 81 for more
details on pagination support.

Table 62: Parameters to the SINGLESELECT Widget

Parameter Name Required Description and Connections

SELECT_SOURCE Yes This parameter must include multiple
CONNECT elements that must specify a
SOURCE end-point.

The SOURCE end-point must be a list
property containing the key data for the
rows to be displayed.

SELECT_TARGET Yes This parameter must include one
CONNECT element that must specify a
TARGET end-point.

The TARGET end-point must be a string
property containing the key data for
selected row.

112 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 62: Parameters to the SINGLESELECT Widget (continued)

Parameter Name

Required

Description and Connections

SELECT_INITIAL

No

This parameter must include one
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point must be a string
property containing the key data for the
row that is initially checked when page is
loaded.

The RULES_SIMULATION_EDITOR Widget

The RULES_SIMULATION_EDITOR widget is used to edit or create data used when simulating the
execution of a rule-set. The widget generates clusters of fields that correspond to the fields of Rules Data
Objects (RDO). A normal cluster is used to display the fields of a basic RDO and a multi-column cluster is
used for a list RDO. A standard list is not used, as a list RDO with many fields would result in a list that had
too many columns to be displayed on the screen.

The user can enter or modify values on the page corresponding to the RDO fields and, for list RDO s
displayed in a multi-column cluster, press a button to create additional columns for field values.

The WIDGET element should have the TYPE attribute set to RULES_SIMULATION_EDITOR. The

parameters to the widget are as follows:

Table 63: Parameters to the RULES_SIMULATION_EDITOR Widget

Parameter Name

Required

Description and Connections

VALUES

Yes

The simulation data values. A previous
set of values can be displayed and edited
or a new set of values can be created.

The parameter should contain a CONNECT
element with a SOURCE set to a DISPLAY
phase bean field containing the values
and a TARGET set to an ACTION phase
bean field that will receive the edited
values. If the SOURCE has no values set,
the editor will create them.

META_DATA

Yes

The simulation meta-data. The meta-
data contains details about the structure
of the RDO s necessary to generated the
input fields.

The parameter should contain a CONNECT
element with a SOURCE set to a DISPLAY
phase bean field containing the meta-
data.

Clram web client reference 113




Table 63: Parameters to the RULES_SIMULATION_EDITOR Widget (continued)

Parameter Name Required Description and Connections

ADD_BUTTON_CAPTION Yes The caption to use on the button
displayed at the bottom of each multi-
column cluster and used to add a new
column of extra data to a list RDO. If an
image is also specified, this caption is
used as the "alt" text of the image.

The parameter should contain a CONNECT
element with a SOURCE that gets a
localized string from a TEXT source.

ADD_BUTTON_IMAGE No The path to the image file to use if an
image button is to be used in place of a
standard button. The path is relative to
the WebContent folder.

The parameter should contain a CONNECT
element with a SOURCE that gets a
localized string from a TEXT source.

The widget should be placed in a CLUSTER element. The clusters for the RDO s will be rendered within
that cluster. The SHOW_LABELS attribute should be set to false. The LABEL_WIDTH attribute of the
CLUSTER element will be inherited by the clusters that are generated by the widget, so it can be used to
control the layout. An ACTION_CONTROL element in the cluster or on the page should be added to save
and process the simulation data created by the widget in the usual manner.

When a widget is not supplied with any simulation data values, it will display empty fields. For list RDO s, a
single empty column of fields will be displayed; values can be entered and more columns added as
needed. If values are supplied, they will be displayed. In a multi-column cluster, pressing the defined
"add" button will add a single empty column to the right of any existing columns. All other empty columns
will be removed at this time, so deleting the values in one or more columns has the effect of removing
those columns from the multi-column cluster.

The IEG_PLAYER Widget
Consult the Curam Intelligent Evidence Gathering (IEG) guide for details.

Dynamic UIM Cross Reference

Dynamic UIM as its name implies, is UIM that is cached in the resource store - rather than static UIM
(described in earlier sections) which resides on the file system - so that the server and client do not have
to be rebuilt in order for a page to be displayed in an application. All string values in dynamic UIM
documents must be externalized in properties files, which must also be cached in the resource store.

When creating a dynamic UIM document, only the PAGE element is a valid root element. All the UIM
features (elements and attributes) referenced in “UIM Reference for Pages and Views” on page 46 are
supported for dynamic UIM, except for those which are listed in “Unsupported Features in Dynamic UIM”

on page 290.

Refer to “Maintaining Dynamic UIM Pages” on page 287 on details about how to maintain dynamic UIM
pages in the Resource Store.

Dynamic UIM System Initialization

There are two ways in which the Dynamic UIM system can be initialized; when the application is started,
or the first time that there is a request for a Dynamic UIM page in the running application. By default the
Dynamic UIM system is initialized when the application is started. In order to override the default

114 IBM Curam Social Program Management: Ciram Web Client Reference Manual



initialization of the Dynamic UIM system - so that it is initialized when a Dynamic UIM page is first
requested - a configuration setting can be added to the ApplicationConfiguration.properties
file. This setting follows the same name = value format of all the other entries there. It should be set as
follows:

dynamicUIMInitModelOnStart
This value should be set to false in order to override the default setting.

If a developer intends to access dynamic UIM pages in the application, then the default initialization of
the dynamic UIM system must be used. Otherwise, if the developer is not using dynamic UIM pages and
finds their Tomcat start-up time is too slow, the default initialization of the dynamic UIM should be
overridden, as described above.

Application Configuration

An application in the Cdram user interface is a collection of user interface elements, based on UIM.pages,
that are combined to create specific content for a particular user or role. Develop Ciram web client
applications by configuring application configuration files.

An application comprises of an application banner and one or more application sections. Each section,
contains an optional section shortcut panel and one or more tabs. A tab represents a business object or
logical grouping of information. In the following figure, the features of an application user interface are
numbered and are cross-referenced by subsequent topics in the section. Subsequent topics outline how
to develop an application by using the relevant XML configuration files.

US Dolar Method Of Payment Check

Recur every 1week(s) on Monday Next Payment Date 9/13/2016

y -
3 al Ass 13720

Issues and Proceedings tab
Home  Eigiblty  Evdece  CareandProtection lssues and Proces FranclTransactions ~ Referals  ClentCortact  Admiistration  Applcations  Complance  Paricipant Detals  Time Limits

Special Cautions New. | C Q@

Current  Previous
ppess > Behavioral Alert Escape Threat °/13/2016
tssue Cases

b Safety Alert Violent Offender History 9/14/2018 21.1

Figure 48: Application User Interface Overview

Related concepts
Curam applications

Clram web client reference 115



When a user logs into the Clram application they are presented with a view that is specific to their role,
which an application. An application in the Ciram user interface is a collection of user interface elements,
mainly based on UIM pages, combined to create specific content for a particular user or role.

Application user interface overview

The application user interface contains elements that are implemented through user interface metadata.
Other topics in the section describe how each of the user interface elements can be configured in an
application.

Related reference
UIM Reference

Learn about the Cliram User Interface Meta-data (UIM) format used to specify the contents of the Clram
web application client pages.

Configuration files
Configure applications, sections, tabs and related elements in XML-based configuration files.
The configuration files are in the <server-dir>\components\<component-name>\clientapps

directory. See “Application Configuration Files” on page 30 for more information about the clientapps
directory, and best practices for working with application configuration files.

Each configuration file has a specific extension and an associated schema file detailing the supported
attributes. The following table provides a summary of the file extensions and related schema files.

Table 64: Configuration Files

File Schema File Description

Extensi

on

.app application-view.xsd Configuration file to define an application,

including the application banner, referenced
sections and application search.

.sec section.xsd Configuration file to define the referenced tabs and
section shortcut panel in a section.

.SSp section-shortcut-panel.xsd Configuration file to define the contents of a
section shortcut panel.

tab tab.xsd Configuration file to define a tab, including the
context panel and referenced navigation and
actions menu.

.nav navigation.xsd Configuration file to define the content of a tab
navigation bar.

.mnu menubar.xsd Configuration file to define the content of a tab
actions menu.

The schema files are all located in the <sdej-dir>\1ib directory and can be used during development
for validation in any XML editor.

The configuration files for applications, sections and tabs are processed as part of the database target
and stored on the database for use at runtime. A standalone target, inserttabconfiguration, is also
available for processing the configuration files only. This command is useful during development because
it is more efficient than the full database target. For more information on these targets please consult the
Curam Server Developers Guide.

The inserttabconfiguration validates all the configuration files, ensuring that they conform to the
XML schema, in addition to ensuring that all mandatory elements and attributes are specified. All files are
processed before the build fails, listing all validation errors.

116 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Web client properties
Configure the title that is displayed in the browser tab in the CDEJResouzrces.properties file. The

CDEJResources.propexrties file contains values for properties that are used throughout the web
client.

The core file is located in ¥CURAM_DIR%\CuramCDEJ\doc\defaultproperties\curam
\omega3\il18n. %CURAM_DIR% is the Curam installation directory, which by default is C: \IBM\Cuzram
\Development.

This properties file can be localized as per Locales. Images defined in this file can also be customized per
locale.

Customizing the CDEJResources.properties file
To customize the CDEJResources.properties file, use the procedure that is outlined in the following task.

Procedure

1. Create a custom copy in the custom component, for example, webclient\components\custom.
2. Include only the properties that are being overridden.

Configuring the browser title
To customize the browser title, configure the properties that are outlined in the following task.

Procedure
- Add the properties from the following list to the custom CDEJResouzces.Properties file:

browser.tab.title
Defines the application name that is used in the browser tab title.

browser.tab.title.separator
Defines the text that is used to separate the page title and application name strings.

browser.tab.title.application.name.first
Controls whether the browser tab title displays the application name before the current page title.

Applications

An application is a particular view of the Ctram client defined for a specific user or role. The application
definition file details the application banner and a reference to the sections that are part of the
application.

An application banner provides the user with the context of the application they are currently accessing.
The banner contains the following elements:

« The name of the application. Refer to User Interface Element 1.1 in “Application Configuration” on
page 115 to see an example of an application name configured in the User Interface.

« The role of the user that this application is intended for.

« A welcome message for the user. Refer to User Interface Element 1.2 in “Application Configuration” on
page 115 to see an example of a welcome message configured in the User Interface.

« An application menu, which includes links to the User Preferences dialog, application help, the about
box, and to logout of the application. Refer to User Interface Element 1. 3 in “Application Configuration”
on page 115 to see an example of an application menu configured in the User Interface.

« A configurable application logo, which defaults to the IBM logo, placed at the far right of the application
banner. It can be customized or removed.

« A quick search facility for the application. Refer to User Interface Element 1.4 in “Application
Configuration” on page 115 to see an example of an application search configured in the User Interface.

The application search is an optional addition to the application banner which provides a quick search
facility. The application search supports:

Curam web client reference 117



« A text entry field where the user can enter their search criteria.

« An optional search type combo box, which lists the types of object which can be searched on.

« A search button to trigger the actual search.

« An optional link to more search options.

Refer to User Interface Element 1.4 in “Application Configuration” on page 115 to see an example of a

fully configured application search in the User Interface. This example has both the optional search type
combo box, and optional link with more search options enabled

Application definition
An application is defined by creating an XML file with the extension .app in the clientapps directory.

The root XML element in the . app file is the application element and the attributes allowed on this
element are defined in the following table. The application banner is configured by using these attributes.

Table 65: Attributes of the application Element

Attribute Description

id Mandatory.

The unique identifier for the application, which must match the name of
the file. This id matches to an APPLICATION_CODE entry and is used to
determine the application to display for a particular user.

See “Associate an application with a user” on page 128 for more
information.

title Optional.

The text for the title that will be displayed as part of the application
banner. The attribute must reference an entry in the associated
properties file.

sub-title Optional.

The text for the subtitle that will be displayed as part of the application
banner. The attribute must reference an entry in the associated
properties file.

user-message Optional.

The text for the welcome message that will be displayed as part of the
application banner. The attribute must reference an entry in the
associated properties file.

The text can contain a placeholder, %user-full-name, which will be
replaced with the users full name. The full name is determined based on
the FirstName and Surname fields on the Users database table.

hide-tab-container Optional.

When set to true, this indicates that there is only one section in the
application and the section tab should not be displayed. The default is
false.

header-type Optional.

This indicates that an additional header is to be used and what type of
content will be provided. The values supported are static and dynamic.

See “Application optional header” on page 126 for more information.

118 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 65: Attributes of the application Element (continued)

Attribute

Description

header-source

Optional.

A reference to the source that will be used as an additional header. The
value of this depends on the value of header-type. For static content,
the attribute should reference a filename of a file in the resource store.
For dynamic content, the attribute should reference a custom widget.

See “Application optional header” on page 126 for more information.

logo Optional.
A reference to the path of an image, e.g. CDEJ/themes/v6/images/large-
application-logo.png or an image name, e.g. large-application-logo.png,
where the named image is stored in the application resource store. This
is used to configure a custom application logo displayed at the far right
of the application banner. The custom application logo will only be
displayed when the attribute logo-required is set to true, otherwise
this setting is ignored.
Note: Only images with the same height as the default IBM logo (26
pixels in the internal application and 61 pixels in the external
application) are supported.

logo-alt-text Optional.

The alternative text for the custom application logo specified by the
attribute 1logo. It is only used when the custom application logo is
displayed on the application banner. Otherwise, the setting for this
attribute is ignored.

logo-required

Optional.

When set to true, in conjunction with the 1ogo attribute, the referenced
custom application logo is displayed. When set to false, the application
logo is not displayed on the application banner.

Context

Optional.

The unique textual value that allows for specifying the content shaping
rules for the particular application. The value matches an entry in the
ApplicationContext table and is used by the context-aware page objects
and widgets to determine the relevant content. For more information,
see Application Context.

The application element supports the child elements detailed in “Application definition” on page 118.

Table 66: Supported Child Elements of the application Element

Element

Description

section-ref

1..n.

The application must contain a minimum of one section-ref
element. Each section-ref element references a section to be
included in the application. See “Application section-ref element” on
page 123 for more information.

Clram web client reference 119



Table 66: Supported Child Elements of the application Element (continued)

Element

Description

application-menu

Optional.

Allows for the optional addition of links to the application banner. The
links supported include the user preferences editor, application logout
and help. See “Application application-menu element” on page 120 for
more information.

application-search

Optional.

Allows for the optional addition of a quick search facility on the
application banner. See “Application application-search element ” on
page 121 for more information.

timeout-warning

Optional.

Allows for the optional addition of a session timeout modal dialog. See
“Application timeout-warning element” on page 123 for more
information.

Application application-menu element
The application menu forms part of the application banner, and allows for the optional addition of up to
three links; specifically a link to the application help, a link to log out of the application and a link to open

the user preferences dialog.

Each link is defined as a child element of application-menu element and the supported elements are

detailed in the following table.

Table 67: Supported child elements of the application-menu element

Element Description

preferences Optional.
Defines a link to the user preferences dialog. This dialog allows a user to
configure customizations for the application view.
The title of the preferences link is defined using the supported title
attribute. The value of the title attribute should be a reference to an
entry in the associated properties file.

help Optional.
Defines a link to the general help for the Ciram application.
The title of the help link is defined using the supported title attribute.
The value of the title attribute should be a reference to an entry in the
associated properties file.

logout Optional.
Defines a link to allow a user to end their session and logout of the
application.
The title of the logout link is defined using the supported title
attribute. The value of the title attribute should be a reference to an
entry in the associated properties file.

120 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Application application-search element
To define the application search, use the application-search element.

Refer to user interface element 1.4 in “Application Configuration” on page 115 to see an example of a
fully configured application search in the user interface.

In its simplest form, the application-search element requires two attributes, which are used when only
one type of search is available and no combination box is to be displayed:

Table 68: Attributes of the application-search element

Attribute Description

default-search-page Optional.
A reference to the UIM page that is displayed when users click Search.

When this attribute is used, it is assumed that there is only one type of
search and no search type combination box is displayed.

initial-text Optional.

The text to be displayed in the field as a prompt. This text describes
what type of information can be provided for the search, for example,
Enter a participant reference number.

The attribute must reference an entry in the associated properties file.

quick-search Optional

Enables the Smart Navigator feature (quick-search="true") when added
to the element application-search of the x. app files.

quick-search cannot be used when the attribute default-search-page is
enabled. However, if you want default-search-page enabled with quick-
search, then you must add quick-search by using the search-pages child
element within the application-search element.

To allow POST, PUT and DELETE API calls to proceed, add the string
property curam.rest.refererDomains to the database properties table.
Give curam.rest.refererDomainsa value that matches or partially
matches the domain name that is sent in the request referrer header.
For example, setting curam.rest.refererDomains to ibm.com allow
requests from any domain that ends in ibm.com. For more information,
seeCuram REST configuration properties.

The application-search element supports two child elements that are used for more complex style
searches, as shown in the following table.

Table 69: Supported child elements of the application-search element

Element Description

search-pages Optional.

Defines multiple types of search. See “search-pages” on page 122 for
more information.

further-options-link Optional.

Defines a link to a more advanced search page. See “further-options-
link” on page 123 for more information.

Clram web client reference 121



search-pages

The search-pages element is used when multiple search types are required, for example, Person, Case, or
types of search. Other search types are Person Surname and Person Reference Number. Each search
type is listed in a combination box and a different prompt is displayed in the field depending on the
selected entry in the combination box.

The search-pages element supports the child elements that are detailed in table 3.

Table 70: Supported child elements of the search-pages element

Element Description

search-page 1..n.

Defines a single search type. The attributes of the search-page element
are defined in Table 71 on page 122.

Note: Where the search-pages element is used to define multiple types of search, the initial-text and
default-search-page must not be specified.

Table 71: Attributes of the search-page element

Attribute Description

type Mandatory.

The unique identifier for the type of search, it is passed as a parameter
(searchType) to the UIM page that is started when the application search
is performed.

description Mandatory.

The text to be displayed for the search option in the combination box.
The attribute must reference an entry in the associated properties file.

page-id Mandatory.

A reference to a UIM page that is displayed when a user clicks Search.

initial-text Mandatory.

The text to be displayed as a prompt in the field when that business
object is selected in the combination box. The attribute must reference
an entry in the associated properties file.

default Optional.

A Boolean indicating whether this entry is the default entry to be
selected in the combination box. Only one, entry has the default
specified as true.

Note: Blank values are not allowed in the search type combination box, so if the user requires a generic
search (for example, across all business objects), they must provide configuration data for this search. For
example, a business object of "All" linked to a page that searches across all the business objects that are
defined.

Search pages are linked by using a reference to the UIM page to be opened when a user clicks Search is
clicked. The UIM pages that are defined for a search can expect a number of parameters to be passed to
them and used as part of the search:

« searchText

The search text that a user enters in the field.
« searchType

122 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The selected search type. searchType is only applicable where multiple search types are defined.

For more information on creation of UIM pages, see “UIM Reference” on page 45

further-options-link

In addition to multiple search types, the application search also supports a link to a more advanced
search page. This search is specified by using the further-options-link element, which requires the
attributes that are listed in table 5:

Table 72: Attributes of the further-options element

Attribute Description

description Mandatory.

The text of the link. The attribute must reference an entry in the
associated properties file.

page-id Mandatory.

A reference to a UIM page that is displayed when the link is clicked. This
UIM page requires no page parameters.

Related reference
Curam REST configuration properties

Application section-ref element
An application must reference a minimum of one section, and up to a maximum of five sections, by using
the section-ref element.

See “Sections” on page 139 for more information.

Table 73: Attributes of the section-ref element

Attribute Description

id Mandatory.

The id of a section configuration file (. sec).

Application timeout-warning element
Define the session timeout warning by using the timeout-warning element.

Inits simplest form, the timeout-warning element does not require any mandatory attributes. If
attributes are omitted default values will be used.

A browser session is timed from when data was most recently sent to or received from the server. In
some cases, a user might enter much data into the application without realizing that the current session
has timed out. When the user does initiate a server call, for example to submit the entered data, the
browser prompts the user to reauthenticate to the application. Therefore, the user loses all the data that
the user had entered into the application. To prevent users from losing data when their session times out,
you can configure a session timeout warning.

Table 74: Attributes of the timeout-warning element

Attribute Description

title Optional.
Configures the title on the session timeout warning dialog.

A reference to a property within the associated properties file. This value
is used to display the title on the timeout warning dialog.

Clram web client reference 123



Table 74: Attributes of the timeout-warning element (continued)

Attribute Description

user-message Optional.
Configures the main user message on the session timeout warning
dialog.

A reference to a property within the associated properties file. This value
is used to display the main user message within the timeout warning
dialog.

quit-button Optional.
Configures the text on the quit button of the session timeout warning
dialog.

A reference to a property within the associated properties file. This value
is used to display the text on the quit button within the timeout warning
dialog.

continue-button Optional.
Configures the text on the continue button of the session timeout
warning dialog.

A reference to a property within the associated properties file. This value
is used to display the text on the continue button within the timeout
warning dialog.

width Optional.
Configures the width of the session timeout warning dialog.

A reference to the width of the timeout warning dialog, in pixels.

height Optional.
Configures the height of the session timeout warning dialog.

A reference to the height of the timeout warning dialog, in pixels.

timeout Optional.

Configures the period of time in seconds that the user has to take action
within the timeout warning dialog.

A reference to the period of time in seconds that the user has to take
action within the dialog before the session expires. The countdown timer
displayed within the modal will start at this value and countdown to 0:0
until the session times out.

Application context

The application context parameter is specified and configured at the user application level and used by
infrastructure, context-aware tags, and renderers to shape the final output (content) according to the
application specifics. Application Context ensures batch reusability of UIM pages where most of the page
flow and business logic can be shared by separate applications with only content variations across them.

Configuring application context and code tables

The only part of the infrastructure that is context-aware at the moment is the code table infrastructure.
The following text describes how to configure the application context and code table infrastructure to
achieve the code table content appropriate for the current application context.

124 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Application context is added as an attribute in the required application view, x . app file. An example of
root element is as follows:

<ac:application xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ac="http://www.curamsoftware.com/curam/util/
client/application-config"
id="SampleApp"
logo="SampleApp.logo"
logo-alt-text="SampleApp.logoAltText"
curam-logo="SampleApp.curamLogo"”
title="SampleApp.title"
subtitle="SampleApp.subtitle"
user-message="SampleApp.UserMessage"
context="AppCTX1">

The parameter has the following characteristics:

« Optional.

« Is code table code from the ApplicationContext code table.

« Must be made known to the infrastructure as described in the sample XML.

To set up the new application context value into the system, it must be declared in the ApplicationContext
code table by adding or editing the appropriate ApplicationContext. ctx file. The table fragment with
the new context value can be declared in the component under design, as this code table is merged by
using the same rules as other code tables the Clram application

The sample XML for the ApplicationContext code table addition.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.util.codetable">
<codetable java_identifier="ApplicationContext" name="ApplicationContext">
<code default="true" java_identifier="Samplel” status="ENABLED"
value="AppCTX1">
<locale language="en" sort_order="0">
<description>Sample Application Context 1</description>
<annotation></annotation>
</locale>
</code>
<code default="true" java_identifier=“Sample2” status="ENABLED"
value="AppCTX2">
<locale language="en" sort_order="0">
<description>Sample Application Context 2</description>
<annotation></annotation>
</locale>
</code>
</codetable>
</codetables>

The description part is used for display and explanatory purposes. The code must match both the setting
in the related application view (the ‘context’ attribute in the sample .app) and the code tables views that
support this application context.

Code table Views that use the Application Context

The context parameter is supported by the code table infrastructure and displays the different set of
codes relevant in the active context.

A view is created for a code table that contains the code table codes and values specific for a particular
application context. The example context-aware code table describes two such views with different sets
of code table codes, one for an application context of "AppCTX1" and the other with an application context
of "AppCTX2".

Curam web client reference 125



If an application has a specified context (for example, "AppCTX1") and the example context-aware code
table is accessed, the infrastructure ensures that only the code table codes for that particular context (for
example, "cvall”, "cval2" and "cval5") are returned when that code table is accessed within that
application. If no context is specified for that application, all of the codes for that code table are returned.

Sample XML of the context-aware code table.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="sample.package’>
<codetable java_identifier="SAMPLE"” name="“SampleCodes">
<code default="true" java_identifier="" status="ENABLED" value="cvall”>
<locale language="en" sort_order="0">
<description>Description 1</description>

<annotation/>
</locale>
z/code>
m<code default="false" java_identifier="" status="ENABLED" value="cval7">

<locale language="en" sort_order="0">
<description>Description 7</description>
<annotation/>
</locale>
</code>

<views>
<view context="AppCTX1"” default_code=*“cval5">
<code value=*“cvall”/>
<code value=*“cval2"/>
<code value="cval5"/>
</view>
<view context="AppCTX2" default_code=*cval3”>
<code value="cval2"/>
<code value=*“cval3"/>
</view>
</views>

</codetable>
</codetables>

A code table might specify as many views for different contexts provided the contexts are properly
introduced in the ApplicationContext code table. For more details on code table views and the meta data
elements and attributes, see Code Table Files.

Related reference
Code Table Files

Application optional header

You can specify a custom header in addition to, or instead of, the application banner. Define the optional
header by using the header-type and header-souzrce attributes on the application element.
Define the optional header as either a static HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optional attributes of the
applications element, as listed in “Application definition” on page 118, should be omitted.

The header-type attribute is restricted to the values static or dynamic. Setting a static value indicates
that a HTML fragment is to be placed within the header. In this instance, the header-souzrce attribute
should reference a file that is stored in the resource store. This file must be stored with a content type of
text/xml.

If the header-type attribute is set to dynamic, the header-souzrce attribute should reference the
custom widget to be used to display the content. This reference will be the same as that specified with

126 IBM Curam Social Program Management: Ciram Web Client Reference Manual



the relevant styles-config.xml. For more information on creating and referencing custom widgets
please consult the Curam Custom Widget Development Guide.

Whether a custom widget or HTML fragment is used it must always start with a <div> element.

Application example
An example shows an application that is stored in a file called SimpleApp.app.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:application-search>
<ac:search-pages>
<ac:search-page type="SAS01"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>
<ac:search-page type="SAS02"
description="Search.Pexrson.Gender.Description”
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />
</ac:search-pages>
<ac:further-options-1link
description="Search.Further.Options.Link.Description"
page-id="Person_search" />
</ac:application-seaxch>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>
Figure 49: Simple.app
Note: In the above example a namespace, ac has been declared and all elements are prefixed with the

namespace. This is recommended practice. Consult “Application Configuration Files” on page 30 for more
information.

The SimpleApp.app should have a corresponding SimpleApp. properties file, which details the
localizable content. For example:

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=Clram

SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference

help.title=Help

logout.title=Logout

Search.Person.LastName.Description=Surname
Search.Person.LastName.InitialText=Enter surname to search for
Search.Person.Gender.Description=Gender
Search.Person.Gender.InitialText=Enter gender to search for
Search.Further.Options.Link.Description=Advanced Search

Curam web client reference 127



In the above example, the Clram logo image is referencing the default logo image shipped with the
Curam Client Development Environment (CDEJ). A custom logo can be added to the Images folder in the
component and referenced directly as Images/my-custom-logo.png.

Note: In the properties file for the SimpleApp.app example, the G in Ciram is added using the Unicode
escape sequence. An alternative approach is to add the U directly and ensure the file is saved in the UTF-8
format. Both approaches are supported for the application configuration files.

Associate an application with a user
Map a user to the application and the home page that will be displayed when the user initially logs on. The
home page is the initial page, which is displayed in its associated tab.

To map a user to an application and to a home page, configure the following mapping:
« APPLICATIONCODE field on the Users database table

maps to

« an entry in the APPLICATION_CODE codetable

maps to

- the id attribute of an application

When a user logs in, the value of the APPLICATIONCODE field in the Usexs database table is used to
determine both the application and home page to display.

The value field of the code table entry must match the name of the application (.app) file to use and the
description field of the code table entry indicates the name of the UIM page to be displayed as the
home page. The following example shows a subset of a code table definition:

<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">
<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">
<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>
</locale>
</code>
</codetable>

Figure 50: CT_APPLICATIONCODE.ctx

Note: For more information on code tables see the Curam Server Developers Guide.

In this example, a code table entry SimpleApp has been defined, with a description of SimpleHome. The
code SimpleApp, matches the id of the SimpleApp.app example. The description, SimpleHome,
indicates the UIM page to be displayed as the home page. This page must be associated with the relevant
application. For more details on how to associate pages with an application, see “Opening tabs and
sections” on page 163.

Configuring Smart Navigator search targets and keywords

Configure search targets and keywords for Smart Navigator. Then, bind keywords to search target
implementations by using Guice injection. You can also delete or disable keywords that you no longer
need, or you can modify keywords to suit your own search needs. Finally, you can override the default
search targets so that users can access the custom search target implementation that you create.

128 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Creating search targets
Create search targets so that Smart Navigator can search for people by name, date of birth, or reference
number.

Before you begin

Before you create a search target, you need to create keywords that represent your search target. Your
search target is triggered only when the user types one of the keywords that are linked to your search
target. See Creating search keywords for more information.

Adding keywords

You can combine additional search targets with the person search by adding keywords. Whenever the
keyword is identified, the search also triggers its related search target. Search targets can return any
object type, linking to any page in the application. The destination page can be a modal dialog or a tab.
The standard product comes with a set of initial search targets: All case types, person evidence, person
eligibility and person financial transactions. You can add more search targets as part of a customization.

Create the search target java implementation
After you create a new search target, you must create the search target java implementation.

All search targets must implement the curam.appsearch.target. TargetObjectSearch interface by using the
following methods:

- List<TargetObjectDtls> searchTargetObject(final ApplicationSearchPersonDtls person) performs the main
search operation and returns search results in a list of TargetObjectDtls objects.

« TargetType getSearchTargetType() returns the search target type, which can have two states:
REQUIRES_PERSON or NO_REQUIREMENT.

— REQUIRES_PERSON The search target is called if a person was found in the search only, otherwise the
search target is not run. REQUIRES_PERSON searches for objects related to a person such as cases,
evidence and eligibility.

— NO_REQUIREMENT The search is always executed regardless of whether a person is found.

- String getSIDName(); returns a SID that is used to check whether the user has access to the search
results. String getSIDName(); is set to the display facade method signature that is used on the page that
the search results link to. For example, this method in a search target that searches integrated cases
returns “IntegratedCase.readCaseDetails1", which is the facade display-phase method that is used on
the home page of an integrated case.

« String getIcon(); returns a URL to an icon that the search results should have. getlcon(); is optional, if no
icon is configured, a default icon is displayed.

Example search target

The following example of a search target lists all integrated cases of a person:

public class PersonIntCaseSearch implements TargetObjectSearch {

@Override

public List<TargetObjectDtls> searchTargetObject(final
ApplicationSearchPersonDtls person)

throws AppException,InformationalException 1§

CaseSearchHelper helper = new CaseSearchHelper();
List<TargetObjectDtls> references =
new Arraylist<TargetObjectDtls>();

references = helper.searchForCases(person,

CASETYPECODE . INTEGRATEDCASE,
ApplicationSearchConstants.kIntSearchKeyCustom);

Curam web client reference 129



return references;

ky

@Override
public TargetType getSearchTargetType() 1

return TargetType.REQUIRES_PERSON;
§

@Override
public String getSIDName() 4

return "IntegratedCase.readCaseDetailsl"”;

§
@Override
public String getIcon() i

return PersonCaseSearch.kIcon;
%
%

Creating search keywords
You can either create search keywords using code tables, or create search keywords using the Cliram
administration system. Using the administration system is the simpler method.

Creating search keywords using code tables
If the keywords defined in the AppSearchTargetKeyword code table are not sufficient for your search
implementation, you can add keywords to a new or existing search target category code table.

Code tables
Use the following code tables to work with search target keywords:

- AppSearchTarget. The parent code table that defines the search target category.

« AppSearchTargetKeyword This is the child of AppSearchTarget. AppSearchTargetKeyword defines the
keywords.

Code tables are defined in: \CEFBase\EJBServer\components\ApplicationSearch\codetable
\CT_AppSearchTarget.ctx

You can add keywords to a new or existing search target category code table.

If you are implementing a new search target that uses its own set of keywords, you must add a
corresponding entry to AppSearchTarget. AppSearchTarget defines search targets categories and links
search target implementations to specific keywords. Each entry in AppSearchTarget has corresponding
keyword entries in AppSearchTargetKeyword code table.

Example code tables

The following example shows an entry in AppSearchTarget:

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="T_CASE">
<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>

130 IBM Curam Social Program Management: Ciram Web Client Reference Manual



</locale>
</code>

The following fields bind keywords to search target implementations:

- java_identifier="CASE" - the name that generated Java™ accessor variable has in the source code. This
sample entry corresponds to APPSEARCHTARGET.CASE variable in Java.

 value="T_CASE" - the value that links the search target category to the keywords in
AppSearchTargetKeyword child code table.

The following example shows the corresponding keyword entry in AppSearchTargetKeyword:

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="AK_CASE"
parent_code="T_CASE">
<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>
</locale>
</code>

The field "parent_code" must match the "value" field in the AppSearchTarget code table to link a keyword
entry to a search target category and then to a search target implementation.

In this code table "java_identifier field" is not used in the application by default, but it must be unique
within the code table. “java_identifier field" has no link to entries in AppSearchTarget.

The "description” field contains the actual text keyword that a user enters during the search, "description”
must be locale-specific.

In the example, keyword "Case" is linked to the "CASE" search target category by matching “parent_code"
value "T_CASE" in AppSearchTargetKeyword to the "value" field value in AppSearchTarget.

You can link multiple keywords in AppSearchTargetKeyword to a single search target category in
AppSearchTarget by having the same “parent_code" values. For example, you can link keywords

"outcome", "plan”, "outcome plan" to the same search target that searches for outcome plans.

After you create both code table entries, run the build server command to generate the new variables
in Java. You can then bind search target category and its corresponding keywords to a Java search target
implementation.

Creating search keywords using the administration system
As an alternative to creating search keywords in AppSearchTargetKeyword, you can also add keywords in
the administration system.

About this task

Add keywords using the IBM® Clram Social Program Management administration system.

Procedure

1. Log into the IBM® Clram Social Program Management application as Sysadmin.
2. Go to Shortcuts and browse to Application Data > Code Table.

3. Enter "Application Search Target Keyword" in the Name field and click Search, this search returns one
result: "Application Search Target Keyword".

4. Select New Item from the list action menu of the "Application Search Target Keyword" search result.

Curam web client reference 131



5. Type in the item name and Technical ID. Item name is actual keyword that a user would enter in the
search, for example "investigation case". "Technical ID" can be set to any unique string.

6. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the
AppSearchKeywords hierarchy link.

7. Under Codetables, expand the Application Search Target Keyword.

8. Find the newly added keyword in the list and select Change parent code from its list action menu, this
action opens a dialog with all of the parent codes available in a drop-down list. These codes are the
items in the parent AppSearchTarget code table.

9. Select the category that you want to link the new keyword to and click Save. For example, selecting
"Investigation case" links the new keyword to the investigation case search target by using the
"Investigation Case" entry in AppSearchTarget code table.

10. Click Publish > Yes.

Results
The new keyword is now recognized by the application search.

Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection.

ApplicationSearchModule

You need to implement a new module class to bind a target search type category from AppSearchTarget
code table to a Java search target implementation. This class extends AbstractModule class.

Example ApplicationSearchModule:

public class ApplicationSearchModule extends AbstractModule {

@Override
protected void configure() {

final MapBinder<String, TargetObjectSearch> mapBinder =
MapBinder
.newMapBinder (binder (), String.class, TargetObjectSearch.class);

mapBinder.addBinding (APPSEARCHTARGET.CASE) .to(PersonCaseSearch.class);

§
This class creates a Guice binding between the AppSearchTarget code table entry and the search target
Java implementation.
An example is as follows:

« A MapBinder object of the type <String, TargetObjectSearch> is created in the "configure()" method.

« The "mapBinder.addBinding(APPSEARCHTARGET.CASE).to(PersonCaseSearch.class)" method is called,
where:

— "APPSEARCHTARGET.CASE" argument is the "java_identifier" value from CT_AppSearchTarget.ctx code
table entry, "APPSEARCHTARGET" is the code table identifier.

— PersonCaseSearch.class is the search target java implementation.

A Guice binding is added between APPSEARCHTARGET.CASE search target category and the
PersonCaseSearch.class java search target implementation.

132 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Example AppSearchTarget code table entry
The AppSearchTarget code table entry that is being bound in the example ApplicationSearchModule:

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="T_CASE">
<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>
</locale>
</code>

Add new module classes to MODULCLASSNAME . dmx

You must add new module classes to a MODULCLASSNAME . dmx file in the corresponding project "data"
directory so that the Cliram application can use its bindings.

An example entry in MODULECLASSNAME . dmx:

<row>
<attribute name="moduleClassName">
<value>curam.appsearch.target.ApplicationSearchModule</value>
</attribute>
</row>

Note: The "value" field reflects both the package and the class name. When you complete this process,
you must rebuild your database.

Now every time a keyword that is linked to "T_CASE" in the AppSearchTargetKeyword code table is entered
in the search and the logic calls the PersonCaseSearch.class search target implementation.

Deleting or disabling keywords

You can delete or disable search keywords you no longer need. You can delete keywords from the
database, or you can disable them, in which case they are ignored by the application search. You can also
disable a search target by removing all of its associated keywords.

Deleting keywords

Delete keyword entries in "Application Search Target" code table by removing their corresponding XML
entries from \EJBServer\components\ApplicationSearch\codetable
\CT_AppSearchTarget.ctx.

Use any text editor to search for and remove keyword entries, then you must rebuild your database.

Disabling keywords

Note: This procedure disables keywords, but if you rebuild the database, the keywords' state reverts to
default and it is not ignored by the application. To permanently delete a keyword, you must edit
CT_AppSearchTarget.ctx.

To disable keywords, take the following steps:

1. Log in to the IBM Curam Social Program Management application as Sysadmin.
2. In the Shortcuts menu, browse to Application Data > Code Table.

3. Enter "Application Search Target Keyword" in the Name field and click Search, this search return one
result: "Application Search Target Keyword".

Curam web client reference 133



4. Expand the "Application Search Target Keyword" item to display all of the keywords that are defined.

5. Locate the keyword that you want to delete in the list, expand its action menu, and select Hide. The
Shown field changes to "No" on this item.

6. Click Publish > Yes.

The keyword is now ignored by the application search.

Disabling a search target
Disable a search target by removing all of its associated keywords.

If you delete or disable all of the keywords that are linked to a search target, this search target is longer
used. To avoid error situations, edit the CT_AppSearchTarget. ctx file, and remove all of the entries
that have parent_code as a value of the search target that is no longer needed. You must rebuild your
database for these changes to take effect.

You can also disable keyword entries as described in the Disabling keywords section. You can use either
CT_AppSearchTarget.ctx file orthe AppSearchKeywords code table hierarchy as a reference to
view the associated parent_code.

Modifying keywords

You can modify keyword entries in the Application Search Target code table either by editing their
corresponding XML entries in CT_AppSearchTarget. ctx file, or by editing the Application Search
Target Keyword code table using the administration system.

Modifying keywords in CT_AppSearchTaxrget.ctx
You can modify keyword entries in the Application Search Target code table by editing their corresponding
XML entries in CT_AppSearchTarget.ctx.

CT_AppSearchTarget.ctxis located in \EJBServer\components\ApplicationSeazrch
\codetable. You can edit CT_AppSearchTarget. ctx with a text editor to modify the keyword entries.
The field description is the actual keyword text that is expected to be input by the user in the application
search. You can change this field to any text string. When you have finished your edits, you must rebuild
your database.

Keyword example:

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="AK_CASE"
parent_code="T_CASE">
<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>
</locale>
</code>

Modifying keywords by using the administration system
You can modify keyword entries in the Application Search Target code table by editing the Application
Search Target Keyword code table using the administration system.

About this task

This procedure modifies keywords, but if you rebuild the database, the keywords' state reverts to default.
To permanently modify a keyword, you must edit CT_AppSearchTarget.ctx.

134 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Procedure

1. Login to the IBM Curam Social Program Management application as Sysadmin.
2. In the Shortcuts menu, browse to Application Data > Code Table.

3. Enter "Application Search Target Keyword" in the Name field and click Search. This search returns one
result: "Application Search Target Keyword".

4. Expand the "Application Search Target Keyword" item to display all of the keywords that are defined.

5. Locate the keyword that you want to modify, expand its action menu, and select Edit. "Item name" is
the keyword text that is expected to be used in the application search.

6. Click Publish > Yes.

Results
The keyword is modified with the changes you made.

Overriding default search targets

You can override the default search targets so that users can access the custom search target
implementation that you create. If you override the default targets, all of the keywords that are associated
with the default search target call the custom search target instead.

Default search targets
The default search targets are as follows:

» PersonCaseSearch searches for person's cases

PersonIntCaseSearch searches for person's integrated cases

PersonPDCaseSearch searches for person's product delivery cases
 PersonlnvCaseSearch searches for person's investigation cases
PersonEligibilitySearch searches for links to person's eligibility pages
PersonEvidenceSearch searches for links to person's evidence pages

PersonEvidenceSearch links to person's financial pages

Creating the search target implementation

To use a custom implementation instead of a default search target, you must first create the search target
implementations. For more information, see Creating search targets.

Note: You cannot use a custom search type category code table, instead you can add or modify keywords
that are linked to existing default categories. For more information, see Creating search keywords and
Modifying keywords.

Linking the new keyword to the corresponding parent category

You now link the new keyword to the corresponding parent category code table by giving it the "parent”
attribute that matches “value" attribute of the search target category entry.

Example parent entry in CT_AppSearchTarget.ctx:

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="T_CASE">
<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>

Curam web client reference 135



</locale>
</code>

Example of a linked keyword child entry in CT_AppSearchTarget.ctx:

<code
default="false"
java_identifier="CASECUSTOM"
status="ENABLED"
value="AK_CUST"
parent_code="T_CASE">
<locale
language="en"
sort_order="1">
<description>Custom case keyword</description>
<annotation/>
</locale>
</code>

Adding a Guice binding

When you create the search target implementation, you must add a Guice binding. For more information,
see Binding keywords to search target implementations. However, instead of using the standard binding to
a code table entry, you must bind the new target implementation to a specific key value to override a
default target.

Example of binding a custom search target for a case search:

public class ApplicationSearchModule extends AbstractModule {

@Override
protected void configure() {

final MapBinder<String, TargetObjectSearch> mapBinder =
MapBinder
.newMapBinder (binder (), String.class, TargetObjectSearch.class);

mapBinder.addBinding (ApplicationSearchConstants.kElegSearchKeyCustom) .to(Pers
onCaseSearch.class);

5
5

Each default target has a predefined key value that is used when you create a binding. The following
predefined key values are located in ApplicationSearchConstants class:

[ **
* Key for overriding Case search target linked to T_CASE code table entry
*/

public static final String kCaseSearchKeyCustom = "custCs";

[ **

* Key for overriding Eligibility search target linked to T_ELGBLTY code
table

* entry

*/

public static final String kElegSearchKeyCustom = "custEls";

136 IBM Curam Social Program Management: Ciram Web Client Reference Manual



[ **

* Key for overriding Evidence search target linked to T_EVD code table
* entry

*/

public static final String kEvdSearchKeyCustom = "custEvds";

[ **

* Key for overriding Financial search target linked to T_FIN code table
* entry

*/

public static final String kFinSearchKeyCustom = "custFins";

[ **

* Key for overriding Integrated case search target linked to T_INTCASE
code

* table entry

*/

public static final String kIntSearchKeyCustom = "custInts";

[ **

* Key for overriding Investigation case search target linked to T_INVESTIG

* code table entry
*/

public static final String kInvSearchKeyCustom = "custInvs";

[ **

* Key for overriding Product Delivery case search target linked to
T_PDCASE

* code table entry

*/

public static final String kPDSearchKeyCustom = "custPDs";

[ **
* Key for overriding Application case search target linked to T_APP
* code table entry

*/
public static final String kAppCaseSearchKeyCustom = "custApps";

[ **
* Key for overriding Outcome plan search target linked to T_OUTPLAN
* code table entry

*/

public static final String kOutcomeSearchKeyCustom = "custOps";

If the variables in ApplicationSearchConstants class are not accessible, you can use their text string
values in the binding:

Example if the same binding that uses a text string value:

protected void configure() %

final MapBinder<String, TargetObjectSearch> mapBinder =
MapBinder
.newMapBinder (bindexr (), String.class, TargetObjectSearch.class);

mapBinder.addBinding("custCs").to(PersonCaseSearch.class);

ky

After you add the binding, the default search target is overridden and keywords that are linked to this
default search target call the new search target implementation.

Related reference
Creating search targets

Curam web client reference 137



Create search targets so that Smart Navigator can search for people by name, date of birth, or reference
number.

Creating search keywords using code tables
If the keywords defined in the AppSearchTargetKeyword code table are not sufficient for your search
implementation, you can add keywords to a new or existing search target category code table.

Modifying keywords

You can modify keyword entries in the Application Search Target code table either by editing their
corresponding XML entries in CT_AppSearchTarget. ctx file, or by editing the Application Search
Target Keyword code table using the administration system.

Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection.

Overriding the person search
Overriding a person search works differently to overriding default search targets. For more information,
see Overriding default search targets.

Extending the curam.smartnavigator.target.impl.PersonSearchImpl class

To override the Person search, you must first create a class that extends
curam.smartnavigator.target.impl.PersonSearchImpl! class. The new class contains the following methods
that can be overridden:

= public List<SearchPersonDtls> searchPersonByNameAndDateOfBirth(final String[] names, final Date
date); method searches for people by their names and a date of birth. By default, date of birth
parameter is optional and is ignored if set to "null".

« public List<SearchPersonDtls> searchPersonByIDAndDateOfBirth(final String alternatelD, final Date
date); method searches for people by their ID and a date of birth. By default, date of birth parameter is
optional and is ignored if set to "null".

« public String getSIDName(); method returns SID name string in the same way as in a normal
TargetObjectSearch implementation.

Extending rather than implementing the class enables default methods to be used when you want to
override all of the methods that are not required. For example, you can have a custom method to search
people by ID, and still be able to use the default searchPersonByNameAndDateOfBirth method. Only
methods that you want to customize need to be implemented in the new Person search implementation.

138 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Modifying product URLs
TBS

Enabling and disabling Smart Navigator
TBS

Setting the preferred tabs
TBS

Sections

An application can contain one or more application sections, where a section is a collection of tabs and an
optional section shortcut panel. A section shortcut panel supports quick links to open tabs and dialogs
within a section.

James Smith

1074, Park Terrace, Fairfield, Midway, Utah, 12345
Male
Bom 9/26/1364, Age 51

@ 15

US Dollar

Currency

Payment Frequency Recur every 1 week(s) on Monday

Comments

Issues and Proceedings tab

ecial Cautions Special Cautions

Incidents Current F'ﬁvm.v,

Investigations

Appeals > Behavioral Alert

lssue Cases
> Safety Alert

Figure 51: Application User Interface Overview

Methed Of Payment

Next Payment Date

Escape Threat

Violent Offender History

Complance  Particpant Detals

EX

- [ AddPicture. ce v-;;. Advice v
[0

= Quick Notes -

112001

Gheck

913/2016

9/13/2018

Compiance  Particpant Detals  Time Limits

9/13/2018

9/14/2016 m

Delete..

Refer to user interface element 2 in the previous figure to see sections configured in the user interface.
The section that is open is a lighter shade of color than the other sections.

It is recommended that a maximum of five sections be used, each representing a different set of activities
that can be performed by a user. The following list outlines the five recommended types of sections:

Home

The Home section is intended to contain only one tab, with a single page that acts as a home page for
the user. The home page should provide a summary of significant information and quick links to

common activities.
Workspace

The Workspace section is where the majority of tasks relating to the user role will be performed.

Clram web client reference 139



Inbox
The Inbox section represents the area of the application where the user can access the work currently
allocated to them.

Calendar
The Calendar section contains a calendar of the users activities and schedules.

Reports
The Reports section contains a number of reports relevant for the particular user.

Section definition
A section is defined by creating an XML file with the extension . sec in the clientapps directory.

The root XML element in the . sec file is the section element and the attributes allowed on this element
are defined in the following table.

Table 75: Attributes of the section Element

Attribute Description

id Mandatory.

The unique identifier for the section, which must match the name of the
file. This is used when referenced from an application (. app)
configuration file.

title Mandatory.

The text for the title that will be displayed on the section tab. The
attribute must reference an entry in the associated properties file.

hide-tab-container Optional.

When set to true, this indicates that there is only one tab in the section
and the tab bar should not be displayed. The default is false.

default-page-id Optional.

A reference to a UIM page that should be opened by default when the
section is opened. The UIM page referenced must be directly associated
with a tab. For more information on associating pages with tabs, consult
“Tabs” on page 144.

This attribute ensures that an anchored default tab is always open when
the section is opened. An anchored tab does not contain an option to
close it.

Note: The default-page-id attribute must not be used on the "Home" or first section of an application.
The user's home page, and its associated tab are opened automatically when a user logs into an
application. See “Associate an application with a user” on page 128 for more information.

The section element supports the child elements detailed in the following table.

Table 76: Supported Child Elements of the section Element

Element Description

tab 1..n.

A reference to a tab to be included in this section. See “Section tab
element” on page 141 for more information.

140 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 76: Supported Child Elements of the section Element (continued)

Element Description

shortcut-panel-ref Optional.

A reference to the section shortcut panel to be included in this section.
See “Section shortcut-panel-ref element” on page 141 for more
information.

Section tab element

A section is a collection of tabs. To associate a tab with a section, use the tab element. A section must
define at least one tab element and tabs must only ever be referenced by one section in any application.
Therefor tabs can be reused in different sections, as long as the section is included in a separate
application.

The attributes of the tab element are detailed in the following table.

Table 77: Attributes of the tab element

Attribute Description

id Mandatory.

The id of a tab configuration file (. tab). See “Section tab element” on
page 141 for more information.

Section shortcut-panel-ref element
Use the shortcut-panel-ref element to define the section shortcut panel to add to a section.

Specify only one shortcut-panel-ref per section. See “Section shortcut panel” on page 142 for more
information.

The attributes of the shortcut-panel-ref element are detailed in the following table.

Table 78: Attributes of the shortcut-panel-ref element

Attribute Description

id Mandatory.

The id of a section shortcut panel (. sec). See “Section shortcut panel”
on page 142 for more information.

Section example
An example shows a section that is stored in a file called SimpleWorkspaceSection.sec.

<?xml version="1.0" encoding="UTF-8"?>
<sc:section
id="SimpleWorkspaceSection"
title="SimpleWorkspaceSection.title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>
<sc:tab id="Person" />

<sc:tab id="Employer" />
<sc:tab id="Case" />

</sc:section>

Figure 52: SimpleWorkspaceSection.sec

The SimpleWorkspaceSection. sec should have a corresponding
SimpleWorkspaceSection.properties file, which details the localizable content. For example:

Clram web client reference 141



SimpleWorkspaceSection.title=Workspace

Section shortcut panel
Each section can optionally contain a section shortcut panel which provides quick links to open content
and perform actions within the section. The menu items in the shortcut panel can be divided into
categories.

Refer to User Interface Element 7 of “Application Configuration” on page 115 to see an example of a
configured section shortcut panel.

When a section is first opened, the section shortcut panel is collapsed by default. The double arrow
beside the title of the shortcut panel can be used to expanded, and subsequently collapse, the panel.

Menu items in a shortcut panel which open modal dialogs are identified by an ellipses (...), which indicates
that further actions are required. Refer to User Interface Element 7.1.1 of “Application Configuration” on
page 115 to see an example of a configured menu item in an expanded category of a shortcut panel.

Section shortcut panel definition
A section shortcut panel is defined by creating an XML file with the extension .ssp in the clientapps
directory.

The root XML element in the . ssp file is the section-shortcut-panel element and the attributes
allowed on this element are defined in the following table.

Table 79: Attributes of the section-shortcut-panel Element

Attribute Description

id Mandatory.

The unique identifier for the section shortcut panel, which must match
the name of the file. This is used when referenced from a section (. sec)
configuration file.

title Mandatory.

The text for the title that will be displayed for the sections shortcut
panel, both when it is expanded and when it is collapsed. The attribute
must reference an entry in the associated properties file.

The section-shortcut-panel element supports the child elements detailed in the following table.

Table 80: Supported Child Elements of the section-shortcut-panel Element

Element Description

nodes Mandatory.

Groups together multiple child node elements. See “Section shortcut
panel node element” on page 142 for more information.

Section shortcut panel node element
Use the node element to represent menu items and categories that are used within the shortcut panel.

There are three supported types of node element and the type attribute is used to define this:

- group

A group node in a shortcut panel represents a category and is used to categorize a number of menu
items as described in “Section shortcut panel” on page 142. "Registration" are defined using node Each
category is defined using node elements of type group. This type of node supports child node elements
of type leaf and separator.

« leaf

142 IBM Curam Social Program Management: Ciram Web Client Reference Manual




A leaf in a shortcut panel is a menu item within a category, which can open a page in an existing or new
tab, or open a modal dialog3. Where a menu item opens a modal dialog, an ellipsis is appended to the
text displayed to indicate more information is required.

- separator

A separator can be used to add extra space between menu items within a node of type group (i.e. a

category).

The attributes supported by the node element are detailed in the following table.

Table 81: Attributes of the node element

Attribute

Description

id

Mandatory.

The identifier for the node. This must be unique within the . ssp file.

type

Mandatory.

The type of node, where three types are supported:
« group

* leaf

 separator

title

Mandatory.

The text for the title of the node. The attribute must reference an entry
in the associated properties file.

Note: This is not required where the type is specified as separator.

page-id

Optional.

A reference to the UIM page to be displayed when the menu item is
selected. This is only applicable for node elements with a type of leaf.

open-as

Optional.

Where set, this attribute indicates the UIM page to be displayed when
the menu item is selected should be opened as a modal dialog. The only
value supported is modal.

This is only applicable for node elements with a type of leaf.

append-ellipsis

Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to the menu item which opens in a modal dialog should be
disabled. The default is true. The attribute is applicable only where the
type attribute is leaf and the open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not
been set will not add the ellipsis to the menu item.

3 A modal dialog is a UIM page opened in a new window, where the parent window cannot be accessed while
it is open. Consult “Modal Dialogs” on page 80 for more information.

Clram web client reference 143



Section shortcut panel example
An example shows a section shortcut panel that is stored in a file called SimpleShortcutPanel.ssp

<?xml version="1.0" encoding="UTF-8"?>

<sc:section-shortcut-panel
id="SimpleShortcutPanel"
title="SimpleShortcutPanel.Title">

<sc:nodes>
<sc:node id="Searches" type="group"
title="Searches.Title">
<sc:node id="PersonSearch" type="leaf"
page-id="Person_search"
title="PersonSearch.Title" />

</éé;node>
<sc:node id="QuickLinks" type="group"
title="QuickLinks.Title">

</sc:node>
<sc:node id="Registration" type="group"
title="Registration.Title">
<sc:node id="RegisterEmployer" type="leaf"
page-id="Employer_register"
title="RegisterEmployer.Title"
open-as="modal"/>

;éé:node type="separator" id="separator"/>
</§é;node>
</sc:nodes>
</section-shortcut-panel>
Figure 53: SimpleShortcutPanel.ssp
The SimpleShortcutPanel. ssp should have a corresponding SimpleShortcutPanel.properties
file, which details the localizable content. For example:

SimpleShortcutPanel.Title=Shortcuts Panel
Searches.Title=Searches
PersonSearch.Title=Person Search
QuickLinks.Title=Quick Links
Registration.Title=Registration
RegisterEmployer.Title=Register an Employer

Tabs

A tab typically represents a business object, for example, a Case or a Participant, though it can also be
used to represent a logical grouping of information.

The following figure shows an annotated example of a configured tab in an application.

144 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Born 9/26/1964, Age 51

@ 155534755 Q) James@curamsoftware.com

o[ o ommar Tansa P o 0 SmartPanel
o (5] Cojomm _c&O(E] .
Home / v Quick Not =
Sensitivity T — Special Interest
Preferred Public Office Midway Head Office™ Registration Date 200
Receive Deduction Payment Détails v
US Dolar Method Of Payment Check
Recur every 1week(s) on Monday Next Payment Date 9/13/2016
y -
A 13720
Issues and Proceedings tab
H Eiiblty  Evidence lssues and Proces Reterrals i o 2 T
Special Cautions Special Cautions e CRGE
Current  Previous
fooese > Behavioral Alert Escape Threat 9/13/2016
tssue Cases
> Safety Alert Viclent Offender History 9/14/2018 m

Figure 54: Application User Interface Overview

The following list describes the annotated tab elements that are in the previous figure:

Tab Title Bar (4)
The title bar contains text to identify the current tab.

Tab Actions Menu (5)
The actions menu provides actions associated with the business object represent by the tab. The
actions can be a mix of menu items and other menus, each of which links to a page that will be
displayed in the tab content area or a modal dialog.

Tab Context Panel (6)
The context panel is typically used to present summary information about the business object. The
summary information is available for every page that is displayed in the content area. The context
panel can be collapsed and expanded to provide more space for the tab content area.

Tab Content Area
A tab comprises of one or more pages of information. The pages are displayed in the content area and
can be navigated using the navigation bar.

Navigation Bar (8)
The navigation bar contains a number of navigation tabs, each of which link to a page or set of
pages that are part of the tab. The navigation bar can be used to separate the business object
information into logical groupings of pages.

Page Group Navigation Bar (16)
Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with
the first one selected by default.

Page Content (15)
Selecting a navigation tab or page group entry will display the corresponding UIM page content
within the content area.

Clram web client reference 145



Smart panel (20)
A smart panel is an optional panel, displaying a UIM page, that is added to the right of the content
area in a tab. It can be collapsed and expanded, and is collapsed by default. In addition, the size of the
smart panel can be increased and decreased when it is expanded.

A tab supports the ability to dynamically enable or disable, and hide or show, entries in the tab actions
menu, the tab navigation bar and the page group navigation bar. The dynamic content is updated based on
configured refresh events. A refresh event updates the specified part of the tab based on the submission
of a modal dialog page or when a specific UIM page is loaded in the content area.

Related reference

Tab tab-refresh element

The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

Tab definition
A tab is defined by creating an XML file with the extension . tab inthe clientapps directory.

The root XML element in the . tab file is the tab-config element and the following table shows the
required attributes.

Table 82: Attributes of the tab-config Element

Attribute Description

id Mandatory.
The identifier for the tab, which must match the name of the file.

The id attribute is used to reference the tab configuration from section
configuration files (. sec). See “Section tab element” on page 141 for
more information.

The tab-config element supports the child elements that are shown in the following table. See the
child topics for more information.

Table 83: Supported Child Elements of the tab-config Element

Element Description

page-param 0..n.

Defines a parameter required when opening a tab.

menu Optional.

A reference to the actions menu configuration.

context Mandatory.

A reference to the UIM page to be used as the tab context panel, or
alternatively details of the tab name and title.

navigation Mandatory.

A reference to the tab navigation configuration, or alternatively the name
of the UIM page that will be opened in this tab.

smart-panel Optional.

A reference to the UIM page to be used for the smart panel.

tab-refresh Optional.

Defines what part of a tab should refresh under what circumstances.

146 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Tab page-param element

The page-param element allows for multiple page parameters to be defined for a tab. Each page
parameter that is defined maps to the name of a name-value pair. The name-value pair is passed to all
UIM pages that are opened from both the tab actions menu and the navigation bar.

Page parameters are also used to identify unique instances of a tab. For example, a tab is defined for a
Person object. Two instances of this tab can be opened, one for James Smith and one for Linda Smith. The
instances are uniquely identified by the page parameter, id, which has been defined for the tab. The id
parameter maps to the unique id for the person and will be different for both James Smith and Linda
Smith.

Table 84: Attributes of the page-param Element

Attribute Description

name Mandatory.

A unique identifier for the page parameter.

Related reference

Opening tabs and sections
You can open new sections and tabs by using several methods.

Tab menu element
The menu element contains a reference to the tab action menu configuration which is maintained in a
separate .mnu configuration file.

The following table shows the attributes of the menu element.

Table 85: Attributes of the menu element

Attribute Description

id Mandatory.

A reference to the id of a tab action menu configuration file (.mnu).

Related reference

Tab actions menu
The tab actions menu is a drop-down menu in the tab title bar. Each menu item corresponds to a tab-
specific action.

Tab context element
The context element defines a context panel by referencing a UIM page which forms the content of the
context panel.

The context element is mandatory. If no context panel is to be defined, then a tab name and tab title
must be specified.

The tab title bar and tab name can be populated with data using either the context panel UIM page or
using the tab-name and tab-title attributes in the . tab file. Where the context panel UIM page is used
only to add content to the tab name and tab title, the height attribute should be set to zero.

Table 86: Attributes of the context element

Attribute Description

page-id Optional.

A reference to the UIM page that will be used for the content of the
context panel. If this is not specified, the tab-name and tab-title
attributes must be specified.

Clram web client reference 147



Table 86: Attributes of the context element (continued)

Attribute Description

tab-name Optional.

The text that will be displayed in the tab bar. The attribute must
reference an entry in the associated properties file.

tab-title Optional.

The text that will be displayed in the tab title bar. The attribute must
reference an entry in the associated properties file.

height Optional.

The pixel height of the context panel. This is only relevant if a page-1id
attribute has been specified to define a context panel.

The default value if not specified is 150 pixels.

Related reference
Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

Tab navigation element
The navigation element defines what pages are opened within a tab.

A single page can be defined using the page-id attribute, or multiple pages can be defined using a
reference to the tab navigation configuration file (. nav).

Note: The navigation element is mandatory and one of either page-id or id must be specified.

Table 87: Attributes of the navigation element

Attribute Description

page-id Optional.

A reference to the UIM page that will be opened in the tab. When a link
to this UIM page is selected, it will automatically trigger the page to be
opened in a new tab.

id Optional.

A reference to a tab navigation configuration file (. nav).

Related reference

Tab navigation

The various UIM pages are grouped as part of a tab that can be navigated to within a tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

Tab smart-panel element
The content of the smart panel is defined by a UIM page, referenced by the page-id attribute.

Similar to the context panel, the UIM elements that can be used are limited. Refer to User Interface
Element 20 of “Tabs” on page 144 for an example of a smart panel configured in an application.

148 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 88: Attributes of the smart-panel element

Attribute Description

page-id Mandatory.
A reference to the UIM page that will be displayed in the smart panel of
the tab.

title Mandatory.

The text for the title that will be displayed for the smart panel, both
when it is expanded and when it is collapsed. The attribute must
reference an entry in the associated properties file

width Optional.

The initial width of the smart panel when it is expanded. The default
value if this attribute is not set is 250 pixels.

collapsed Optional.

Boolean indicating if the smart panel should be expanded or collapsed
by default. The default value if this attribute is not set is true.

Related reference
Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

By default, only the content area of a tab is refreshed when a modal dialog is submitted. When a modal
dialog is either closed or canceled without an action being performed, the content area is not refreshed.

The tab actions menu, tab navigation and context panel can all be refreshed based on two events. The
first event is when a specific UIM page is loaded in the content area, and the second event is when a UIM
page is submitted from a modal or the content area. The following list describes how each element of a
tab is refreshed:

Tab Actions Menu
Refreshing the tab actions menu results in updating the entries in the menu that can be dynamically
disabled or hidden. See the related link for more information about dynamic support.

Tab Navigation
Refreshing the tab navigation results in updating the entries in the tab navigation bar and page group
navigation bar that can be dynamically disabled or hidden. See the related link for more information
about dynamic support.

Context Panel
Refreshing the context panel reloads the UIM page that is displayed in the context panel.

Content Area
Refreshing the content area reloads the UIM page that is displayed in the content area. This refresh
option is available for use only where a modal dialog has been opened from the list drop-down panel
of a nested expandable list.

By default only the parent of a list drop-down panel is updated when the modal dialog is submitted.
Where the list drop-down panel exists in a nested expandabile list, this will result in the parent list
reloading and not the entire content area.

The two different type of refresh events can be configured by using the child elements that are detailed in
the following table.

Clram web client reference 149



Table 89: Supported child elements of the tab-refresh element

Element Description

onload 1..n.

Defines a refresh event, where when the specified page is loaded in the
content area, the defined parts of the tab are updated.

onsubmit 1..n.

Defines a refresh event, where when the specified page is submitted
from a modal or in the content area, the defined parts of the tab are
updated.

onsubmit/onload

The onsubmit and onload elements both require the same set of attributes, as described in the
following table.

Table 90: Attributes of the onload/onsubmit Elements

Attribute Description

page-id Mandatory.

A reference to the UIM page to associate with the refresh event.

context Optional.

Boolean indicating if the context panel should be update when the
specified page is loaded or submitted.

menu-bar Optional.

Boolean indicating if the tab actions menu should be updated when the
specified page is loaded or submitted. See the related link for more
information about dynamic support.

navigation Optional.

Boolean indicating if the tab navigation should be updated when the
specified page is loaded or submitted. See the related link for more
information about dynamic support.

main-content Optional.

Boolean indicating if the main content area should be updated when the
specified page is loaded or submitted.

This type of refresh event must only be used for modal dialogs that are
opened from a list dropdown panel in a nested expandable list.

Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

This type of UIM page can only use a subset of existing UIM elements, as indicated in the following list:

150 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« SERVER_INTERFACE can only be used with a DISPLAY phase
« ACTION_CONTROL can only be used with an ACTION type
« The following elements are not supported:
— MENU
— SHORTCUT_TITLE
— JSP_SCRIPTLET
— DESCRIPTION
— INFORMATIONAL
— SCRIPT
— INCLUDE
- VIEW
Note: These same limitations apply to the smart panel UIM pages, but are not enforced.

A mandatory TAB_NAME element is required for context panel UIM pages, which allows for dynamic
information to be added to the tab name. Additionally, a mandatory PAGE_TITLE element is required to
add information to the tab title bar.

Related reference
TAB_NAME
PAGE TITLE

Tab example configuration file
An example is provided of a tab configuration file.
The following example shows a tab configuration file named SimpleTab. tab.

<?xml version="1.0" encoding="UTF-8"?>
<tc:tab-config
id="SimpleTab">

<tc:page-param name="concernroleid"/>
<tc:menu id="SimpleMenu"/>

<tc:context page-id="SimpleDetailsPanel"
tab-name="simple.tab.name" />

<tc:navigation id="SimpleNavigation"/>

<tc:smart-panel page-id="SimpleSmartPanel"
title="smart.panel.title"
collapsed="txrue"
width="300" />

<tc:tab-refresh>
<tc:onload page-id="SimpleHome" navigation="true"/>
<tc:onsubmit page-id="ModifySomething"
context="true" menu-bar="true"/>
</tc:tab-refresh>

</tc:tab-config>

Figure 55: SimpleTab.tab

The SimpleTab. tab file should have a corresponding SimpleTab. properties file, which details the
localizable content, for example:

simple.tab.name=Simple Tab
smart.panel.title=Smart Panel

Curam web client reference 151



Tab actions menu

The tab actions menu is a drop-down menu in the tab title bar. Each menu item corresponds to a tab-
specific action.

The menu items support opening UIM pages in the content area of a tab, or alternatively opening a modal
dialog to perform some action - these are identified by an ellipses (...). Additionally, it is possible to
download a file directly from a menu item.

The tab actions menu also supports the ability to dynamically hide and show items, and enable and
disable items in the menu. Refer to User Interface Element 5 of “Tabs” on page 144 for an example of a
tab actions menu configured in an application. The menu items that are dynamically hidden are disabled
in the menu.

Tab actions menu definition
Define a tab actions menu by creating an XML file with the extension .mnu in the clientapps directory.

The root XML element in the .mnu file is the menu-bar element and the attributes allowed on this
element are defined in the following table.

Table 91: Attributes of the menu-bar element

Attribute Description

id Mandatory.

The unique identifier for the menu, which must match the name of the
file. The identifier is used when a menu is included in a tab configuration
by using the menu element.

A menu definition can be reused and referenced by multiple tab configurations. The menu itself
comprises of menu items and submenus, which are used to group menu items. The child elements
outlined in the following table are used to define the structure of the menu. See the child topics for more
information.

Table 92: Supported child elements of the menu-bar element

Element Description

menu-item 0..n.

Defines a single entry in the menu, which links to a UIM page that can be
opened in a modal dialog or in the content area of a tab.

submenu 0..n.

Defines a grouping of menu items, which form a sub menu.

menu-separator 0..n.

Defines a separator line between entries in the menu.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change
the state of the menu-items.

Tab actions menu menu-item element
An action entry in the tab actions menu is defined by the menu-item element.

The attributes of the menu-item element are defined in the following table.
A menu-itemcan do the following actions:

« Open a UIM page in the content area of a tab.

152 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« Open a UIM page in a modal dialog.
- Download afile.

Menu items which open modal dialogs are identified by an ellipsis (...), which indicates that further actions
are required.

Table 93: Attributes of the menu-item element

Attribute Description

id Mandatory.

The unique identifier for the menu-item, which must be unique within
the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the menu-itemis selected.

title Mandatory.

The text that will be displayed for the menu-item. The attribute must
reference an entry in the associated properties file.

open-as Optional.

Where set, this attribute indicates that the UIM page to be displayed
should be opened as a modal dialog. The only value supported is modal.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to menu-item s which open in a modal dialog should be
displayed. The default is true. The attribute is applicable only where the
open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not
been set will not add the ellipsis to the menu-item.

window-options Optional.

Defines the height and width of a modal dialog opened from the menu-
item. This is only applicable where the open-as attribute is set to
modal.

The format for the attribute is:

width=<pixel value>,height=<pixel value>
For example:
window-options="width=500,height=300"

The height portion of the window-options is optional and if not
specified, the height of the dialog will be automatically calculated.

dynamic Optional.

Boolean indicating that the menu-item can be dynamically disabled or
hidden. For more information see the related link.

visible Optional.

Boolean indicating if the menu-itemis hidden or visible. The default is
true.

Clram web client reference 153



Table 93: Attributes of the menu-item element (continued)

Attribute Description

type Optional.

Defines a menu-item that downloads a file when selected. The only
value supported is FILE_DOWNLOAD. For more information see the
related link.

description Optional.

Defines text which forms a description for the menu-item. This is used
for administration purposes only. The attribute must reference an entry
in the associated properties file.

Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

File download menu item
A menu-itemcan reference a FILE_DOWNLOAD configuration by using the type="FILE_DOWNLOAD"
attribute.

Tab actions menu submenu element
A submenu is a group of menu items and is defined by using the submenu element.

The attributes of the submenu element are defined in the following table.

Table 94: Attributes of the submenu element

Attribute Description

id Mandatory.

The unique identifier for the submenu, which must be unique within the
configuration file.

title Mandatory.

The text that will be displayed for the submenu. The attribute must
reference an entry in the associated properties file.

description Optional.

Defines text which forms a description for the submenu. This is used for
administration purposes only. The attribute must reference an entry in
the associated properties file.

The submenu element allows for further submenus to be defined, in addition to including menu items and
menu separators. Use the supported child attributes that are defined in the following table:

Table 95: Supported child elements of the submenu element

Element Description

menu-item 0..n.

Defines a single entry in the submenu, which links to a UIM page that
can be opened in a modal dialog or in the content area of a tab.

154 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 95: Supported child elements of the submenu element (continued)

Element Description

submenu 0..n.

Defines a further sub grouping of menu items.

menu-separator 0..n.

Defines a separator between entries in the submenu.

Tab actions menu menu-separator element
A tab actions menu, including associated submenus, can include a line separator to divide the entries in
the menu.

Define a line separator by using a menu-separator element. The attributes of the menu-separator are
outlined in the following table.

Table 96: Attributes of the menu-separator element

Attribute Description

id Mandatory.

The unique identifier for the menu-separatoxr.

Tab actions menu loader-registry element
The loader-registry element defines a list of loader implementations that is used to dynamically
enable or disable, and to hide or show the menu items in the tab actions menu.

The following table shows the supported child elements of the loader-registry element.

Table 97: Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to
dynamically set the visibility and enabled state of the menu items.

Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Tab actions menu loader element
The loader element defines a single loader implementation that will dynamically set the state of the
menu items in a tab actions menu.

The following table shows the attributes of the 1oader element.

Table 98: Attributes of the loader Element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicMenuStateloader interface.

Clram web client reference 155



Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

The Java loader implementation registered in the navigation configuration will be called when the tab is
first loaded and based on the refresh options configured for a tab. The refresh options are configured in
the tab configuration file (. tab).

A menu item can be specified as dynamic in the menu configuration file (. mnu) by adding
dynamic="true" to the relevant menu-item element.

Where the dynamic attribute is set, a loader-registry is then required and should define the fully
qualified classname which implements the curam.util.tab.impl.DynamicMenuStateloader
interface.

The DynamicMenuStateloader interface requires one method, 1oadMenuState, to be implemented.
The loadMenuState method is passed the following parameters:

- alist of menu item identifiers
« a set of name-value page parameters pairs
The loader implementation must decide which menu items to disable or hide. The method returns an

object that represents the state of a given menu bar. A state must be set for all identifiers in the list. For
more information on this interface, consult the Java Documentation.

Note: The list of menu item identifiers passed to the loadMenuState method are only those that have
been identified as dynamic by the dynamic attribute on the menu-item element.

Related reference

Tab tab-refresh element

The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

File download menu item
A menu-itemcan reference a FILE_DOWNLOAD configuration by using the type="FILE_DOWNLOAD"
attribute.

The following sample code shows an example of using the FILE_DOWNLOAD element in the curam-
config.xml file:

<mc: menu-item id="filedownloadItem" title="some.text.title"
type="FILE_DOWNLOAD" page-id="FileDownload"/>

The page-1id attribute must match the page-1id attribute specified for the FILE_DOWNLOAD element.

When configuring the FILE_DOWNLOAD element in curam-config.xml, only the parameters defined for
the tab can be used as values for the PAGE_PARAM attribute of the INPUT element.

The following example shows a fragment of the FILE_DOWNLOAD configuration from the curam-
config.xml file. In this example, the £i1eID page parameter must be specified as a page-param
element in the tab configuration file (. tab).

Note also that the PAGE_ID attribute value of FileDownload matches the page-1id attribute in the
example above.

156 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<FILE_DOWNLOAD CLASS="some.pkg.readFile"
PAGE_ID="FileDownload">
<INPUT PAGE_PARAM="fileID"
PROPERTY="key$fileID"/>
<FILE_NAME PROPERTY="result$name"/>
<FILE_DATA PROPERTY="result$contents"/>
<CONTENT_TYPE PROPERTY="result$contentType"/>
</FILE_DOWNLOAD>

Figure 56: FILE_ DOWNLOAD Configuration from curam-config.xml

Related reference
File Downloads

Tab actions menu example configuration file
An example is provided of a tab actions menu configuration file.

The following example shows an example tab actions menu configuration file named SimpleMenu.mnu.

<?xml version="1.0" encoding="UTF-8"?>
<mc:menu-bar
id="SimpleMenu"

<mc:loader-registry>
<mc:loader class="some.pkg.SimpleMenuStatelLoader"/>
</mc:loader-registry>

<mc:submenu id="Person">

<mc:menu-item id="dynamicLink"
title="dynamiclLink.title"
page-id="SomeDynamicContent"
dynamic="true"/>

<mc:menu-separator id="separatorl"/>

<mc:menu-item id="simplelLink"
title="simplelLink.title"
page-id="SimplePage" />

</mc:submenu>

<mc:menu-item id="OpenModal"
title="openmodal.title"
page-id="DoSomethingInModal"
open-as="modal"
window-options="width=600"/>

</mc:menu-bar>

Figure 57: SimpleMenu.mnu

The SimpleMenu.mnu should have a corresponding SimpleMenu.properties file, which details the
localizable content, for example:

dynamicLink.title=Some Dynamic Link
simplelink.title=A Simple Link
openmodal.title=0pen a Modal

Tab navigation
The various UIM pages are grouped as part of a tab that can be navigated to within a tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

The following list describes the tab navigation components:

Curam web client reference 157



Navigation Bar
The navigation bar contains a number of tabs, each of which can map to a single UIM page or
alternatively a set of UIM pages. The tabs in the navigation bar are referred to as navigation tabs.
Refer to User Interface Element 8 of “Tabs” on page 144 for an example of a navigation bar configured
in an application.

Page Group Navigation Bar
Where a navigation tab maps to a set of UIM pages, these UIM pages are displayed as a page group
navigation bar. Each link in the page group navigation bar is referred to as a navigation page. Refer to
User Interface Element 16 of “Tabs” on page 144 for an example of a page group navigation bar
configured in an application.

Selecting a navigation tab or navigation page will result in displaying the relevant UIM page in the content
area of the tab. For navigation tabs that have a page group navigation bar, the first navigation page in the
page group navigation bar is selected when the navigation tab is selected.

If a user selects a subsequent navigation page and then changes to a different navigation tab, the
selected navigation page is remembered when the user returns to the original navigation tab and the page
is reloaded.

The tab navigation configuration defines when new tabs are opened and determines what UIM page is
associated with what tab.

Tab navigation definition
Tab navigation is defined by creating an XML file with the extension .nav in the clientapps directory.

The root XML element in the . nav file is the navigation element and the attributes allowed on the
element are defined in the following table.

Table 99: Attributes of the navigation element

Attribute Description

id Mandatory.

The unique identifier for the navigation configuration, which must match
the name of the file. The identifier is used when a navigation
configuration is included in a tab configuration, using the navigation
element.

The child elements outlined in the following table are used to define the structure of the navigation. For
more information, see the child topics.

Table 100: Supported child elements of the navigation element

Element Description

nodes Mandatory.

Groups navigation pages and navigation tabs together.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change
the state of the navigation tabs and navigation pages.

Tab navigation nodes element
The nodes element groups together the elements that represent navigation tabs and navigation pages.

The elements are outlined in the following table.

158 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 101: Supported child elements of the nodes element

Element

Description

navigation-page

1..n.

Defines a navigation tab that has no page group navigation bar.

navigation-group

1..n.

Defines a navigation tab which contains a page group navigation bar.
This element groups together navigation-page elements that form
the page group navigation bar.

Tab navigation navigation-group element
The navigation-group element defines a navigation tab that contains a page group navigation bar.

The attributes of the element are outlined in the following table.

Table 102: Attributes of the navigation-group element

Attribute

Description

id

Mandatory.

The unique identifier for the navigation-group, which must be
unique within the configuration file.

title

Mandatory.

The text that will be displayed for the navigation tab in the navigation
bar. The attribute must reference an entry in the associated properties
file.

dynamic

Optional.

Boolean indicating that the navigation tab can be dynamically disabled
or hidden.

visible

Optional.

Boolean indicating if the navigation tab is hidden or visible. The default
is true.

description

Optional.

Defines text which forms a description for the navigation tab. This is
used for administration purposes only. The attribute must reference an
entry in the associated properties file.

The navigation-group element groups together navigation-page elements to form the page group
navigation bar. The first navigation-page element defined indicates the UIM page to display the first
time a navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab, will remember the previously

selected navigation page.

Table 103: Supported child elements of the navigation-group element

Element

Description

navigation-page

1..n.

Defines the set of navigation pages that are grouped together to form
the page group navigation bar.

Clram web client reference 159




Related reference

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation navigation-page element
A navigation-page element can represent both a navigation tab and navigation page.

If the navigation-page element is defined as a child element of the nodes element, it represent a
navigation tab which is part of the navigation bar. If the navigation-page element is defined as a child
element of the navigation-group element, it represent a navigation page which is part of the page
group navigation bar.

The attributes of the navigation-page element are outlined in the following table.

Table 104: Attributes of the navigation-page element

Attribute Description

id Mandatory.

The unique identifier for the navigation-page, which must be unique
within the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the navigation tab or
navigation page is selected.

title Mandatory.

The text that will be displayed for the navigation tab or navigation page.
The attribute must reference an entry in the associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab or navigation page can be
dynamically disabled or hidden.

visible Optional.

Boolean indicating if the navigation tab or navigation page is hidden or
visible. The default is true.

description Optional.

Defines text which forms a description for the navigation tab or
navigation page. This is used for administration purposes only. The
attribute must reference an entry in the associated properties file.

Related reference

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation loader-registry element
The loader-registry element defines a list of loader implementations that are used to dynamically
enable or disable, and hide or show both the navigation pages and navigation tabs.

The following table shows the supported child elements of the loader-registry element.

160 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 105: Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to
dynamically set the visibility and enabled state of the navigation pages
and navigation tabs.

Related reference

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation loader element
The loader element defines a single loader implementation that will dynamically set the state of the
navigation pages and navigation tabs.

The following table shows the attributes of the 1oader element.

Table 106: Attributes of the loader element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicNavStateloader interface.

Related reference

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Dynamic support is implemented through a combination of the dynamic attribute of the navigation-
page and navigation-group elements, the loader-registry element and a Java loader
implementation.

The Java loader implementation registered in the menu configuration will be called when the tab is first
loaded and based on the refresh options configured for a tab. The refresh options are configured in the tab
configuration file (. tab).

A navigation tab and navigation page can be specified as dynamic in the navigation configuration file
(.nav) by adding dynamic="true" to the relevant navigation-page or navigation-group
elements.

Where a dynamic attribute is set, a loader-registzry is then required and should define the fully
qualified classname which implements the curam.util.tab.impl.DynamicNavStateloader
interface.

The DynamicNavStateloader interface requires one method, loadNavState, to be implemented. The
loadMenuState method is passed the following parameters:

« Alist of navigation-group and navigation-page identifiers
« A set of name-value page parameters pairs

Clram web client reference 161



The loader implementation must decide which items to disable or hide. The method returns an object that
represents the state of the navigation tabs and navigation pages. A state must be set for all identifiers in
the list. For more information on this interface, consult the Java Documentation.

Note: The list of navigation identifiers passed to the loadNavState method are only those that have
been identified as dynamic by the dynamic attribute on the navigation-page or navigation-group
elements.

In addition, a navigation-page and navigation-group element cannot use the same identifier. The
identifiers must be unique for all elements within the file.

Related reference

Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

Tab navigation example configuration file
An example tab navigation configuration file is provided.

The following example shows an example tab navigation configuration file named
SimpleNavigation.nav

<?xml version="1.0" encoding="UTF-8"?>
<nc:navigation
id="SimpleNavigation"

<nc:loader-registry>
<nc:loader class="some.pkg.SimpleNavStatelLoader"/>
</nc:loader-registry>

<nc:nodes>
<nc:navigation-page id="Home"
page-id="Home"
title="Home.Title"/>

<nc:navigation-group id="Background"
title="Background.Title">
<nc:navigation-page id="Addresses"
page-id="ParticipantAddressList"
title="Addresses.Title"/>
<nc:navigation-page id="PhoneNumbers"
page-id="ParticipantPhoneNumbers"
title="Phone.Title"/>
</nc:navigation-group>

<nc:navigation-page id="Identity"
title="Identity.Title"
page-id="ParticipantIdentity"
dynamic="true"/>
</nc:nodes>

</nc:navigation>

Figure 58: SimpleNavigation.nav

The SimpleNavigation.nav should have a corresponding SimpleNavigation.properties file,
which details the localizable content. For example:

Home.Title=Home
Background.Title=Background
Addresses.Title=Addresses
Phone.Title=Phone Numbers
Identity.Title=Identity

162 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Opening tabs and sections
You can open new sections and tabs by using several methods.
« A section can be opened directly by clicking the relevant section tab control.
- Atab can be opened directly by clicking the relevant tab control.
« Any link in the application has the potential to open a new tab.

- A section can be opened when a new tab is opened that is associated with any section except the
current section.

Opening a section or tab by clicking the relevant tab control is straightforward. To open a tab that is
already open, but not in focus, the tab control is selected and focus is given to the tab.

Opening a section by clicking the relevant section tab control will give focus to that section. Any tabs
already open in that section will then be accessible.

When a section is opened (directly) for the first time, it may contain no tabs or may result in the automatic
opening of a default tab, depending on the section configuration.

Opening a section or tab as a result of selecting a link is more complicated. When a link is selected, before
the relevant UIM page is opened, the Curam client will automatically determine if it should be opened in a
new tab and if that tab should be opened in a new section. This is determined based a number of factors
that will be detailed in the following sections.

Using links to open tabs and sections

One of the actions that can trigger opening a new tab or new section is selecting a link to a UIM page.
There are many different ways in the Ciram application to open a UIM page and many different contexts
in which a UIM can be displayed.

A UIM page can be displayed in the following areas of an application:
« Acontent area

« Atab context panel

« Atab smart panel

- A modal dialog

« Alist dropdown panel

A UIM page in any of these contexts can define links to another UIM page. There are different types of
links:

 Page level actions menu (content area only)

Modal button bar (modal dialog only)
« Buttons

Hyperlinked text
List actions menu

In addition to links on a UIM page, a UIM page can be opened via the following actions:

Selecting an entry in the tab actions menu

- Selecting a link in the section shortcut panel
« Selecting a navigation bar tab

« Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be defined in a UIM page, see
the related link. For the purposes of this section, selecting a link will apply to any action that can open a
new UIM page.

Related reference
UIM Reference

Curam web client reference 163



Learn about the Cliram User Interface Meta-data (UIM) format used to specify the contents of the Clram
web application client pages.

Page to tab and tab to section associations
A page is associated with a tab based on the navigation configuration for the tab. A tab is associated with
a section through the section configuration file.

Page to tab associations

The navigation for a tab is configured using the navigation element in the tab configuration file (. tab)
and also, if defined, the navigation configuration file (. nav).

Where no tab navigation is defined for a tab, the navigation element defines a single UIM page (via the
page-id attribute) that will result in opening the tab. A link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using a page-1id attribute in the navigation
configuration file (. nav) is considered to be associated with the tab. This means that a link to any of these
referenced UIM pages will result in opening the relevant tab.

The page to tab association must be unique. This means that a page can be referenced only once by the
navigation configuration for a tab. As a result, a navigation configuration cannot be re-used across
multiple tabs.

There are a number of exceptions to this rule, but they are limited:

« The same UIM page can be referenced by more than one navigation configuration file (. nav), where the
page is only ever linked-to from within the context of the tab.

This means that any links to the UIM page are always within the same tab. For example, a Notes UIM
page is referenced by both the Person and Employer tabs. The only link to the Notes UIM page is from
the page group navigation bar. The Notes UIM page is never referenced from a shortcut panel or linked
by a UIM page that is not displayed within the context of the Employer or Person tabs.

« The same UIM page can be referenced by more than one navigation configuration for a tab, where the
tabs are included in different application configurations (. app).

« A navigation configuration file (. nav) can be reused by two tabs, where the tabs are included in two
different application configurations (. app).

Resolve Pages: Because of the way in which the Curam client application handles resolve pages and
opening new tabs, it is recommended not to use resolve pages in a navigation configuration. A resolve
page is a specific type of UIM page that contains only a JSP_SCRIPTLET element.

When a link to a resolve page is selected, the Clram client recognises that it is a resolve page and
executes the content of the JSP_SCRIPTLET. The resulting UIM page that the JSP_SCRIPTLET redirects
to is then used to determine what tab the page should be opened in.

Tab to section associations

A tab is associated with a section by listing it through the tab element in the section configuration file
(.sec).

When a new tab is opened as a result of selecting a link, the tab is opened in the associated section and
focus is given to that section and tab.
Related reference

Tab navigation
The various UIM pages are grouped as part of a tab that can be navigated to within a tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

JSP SCRIPTLET

164 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Tab and section page parameters
The client determines if a new tab is opened based on the page to tab to section association. In addition,
existing open tabs, and values of the parameters that are passed to a tab, are also considered.

Two instances of the same tab can be opened, where each instance is identified by the page parameters
that have been provided. For example, James Smith and Linda Smith are uniquely identified by their
concern role ID. The concern role ID is defined as a page parameter for the Person tab.

When a link to James Smith is selected, a new tab is opened showing the details for James Smith. A
subsequent link to Linda Smith is selected and a new instance of the same tab configuration is opened,
displaying Linda Smiths details.

When a link is selected, the Clram client application automatically determines what tab, and section, it is
associated with. It then compares this information, along with the page parameters to determine what
action to take.

The rules for opening tabs are detailed in the following table.

Note: The parameters passed when a link is selected must match the names of the page parameters
defined in the tab configuration file.

Where not all required page parameters are provided, the behavior of those tabs within the application is
not guaranteed. Any extra parameters provided will be ignored and not passed to the tab.

Table 107: Tab Opening Rules

Page to Tab Association Page Parameter Values Action

Page maps to current tab Match Page opens in current tab

Page maps to current tab Differ Page opens in new instance of tab

Page maps to existing open Differ Page opens in a new instance of existing
tab tab

Page maps to existing open Match Page opens in existing tab

tab

Page maps to new, unopened | N/A Page opens in new tab

tab

Limitations: There are a number of limitations and notes to be aware of when designing UIM pages to
open in new tabs.

« Links in a modal dialog obey dialog rules first and only obey the rules for opening a tab when the dialog
is closing.
« Alink defined to open a modal dialog ignores the tab rules.

- Links in a tab navigation bar and page group navigation bar will always open within the context of the
current tab.

« A submit link within the content area cannot open a new tab, even if the UIM page is configured to be
associated with a different tab.

- If a UIM page is configured to be associated with a tab then the same page cannot be used as
INLINE_PAGE in expandable lists.

Tab ordering
A default tab ordering is configured in the application that applies when you open a new tab. You can
change the default tab ordering.

The default behavior when opening a new tab in the application is that the tab opens at the end of the tab
list. This behavior can be changed to open new tabs next to the tab where the request was made. This is
known as tab ordering.

Clram web client reference 165



The Application property curam.environment.enable.sequential.tabs controls tab ordering. The
default value for the tab ordering is set to false.

Related concepts
Configuring Application Properties

Working with the Ciram user interface

Use this information to develop user interface elements with the Cliram Client Development Environment
for Java. User interface elements that can be created with the Ciram Client Development Environment for
Java include shortcut panels, tabs, modal dialogs, tab navigation, and lists.

The topics show how to create a simple client application, and then expand the application with more
complex features.

Related concepts

Curam web client reference

Provides a reference for the Cdram web client application. The Cliram web client has an HTML user
interface that is generated by a middle-tier web application. It conforms to the Java EE architecture and is
driven by JavaServer pages and servlet technology that is based on the Apache Struts framework. This
HTML user interface uses standard browser and Web 2.0 technologies, including JavaScript and
cascading style sheets.

Prerequisites for configuring the user interface

Before you start configuring the Ciram user interface, ensure that you have an understanding of the
necessary development environments.

You must have an understanding of development using both the Ciram Client Development Environment
for Java (CDEJ) and the Clram Server Development Environment for Java (SDEJ).

In addition, it is useful to have a basic understanding of Java Platform, Enterprise Edition (Java EE)
development environments, Extensible Markup Language (XML), and web technologies such as Hypertext
Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS), and JavaScript.

It is assumed that the necessary steps to install the Curam application and the related third-party tools
have been completed.

Creating a simple application

The topics in the following section describe how to create a simple application that has a single section
and a single page of content.

The simple application contains the following items:
« Application name

« Application subtitle

« Welcome message

« Application menu

« Section

- Tab

After the Curam application and the related third-party tools have been installed, two main projects are
used for development, the EJBServer project and the webclient project. To create a simple
application, you must create and modify files in the following directories:

- webclient\components\component-name\
« EJBServer\components\component-name\clientapps
« EJBServer\components\component-name\codetable

166 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« EJBServer\components\component-name\Data_Manager
« EJBServer\project\config

In each of the previous examples, component-name is the name of the custom component that is used to
store customer-specific content to the Clram application.

Defining an application
Define a simple application that will contain a single section. An application is a particular view of the
Curam client that is defined for a specific user or role.

Define an application by using an XML configuration file with the extension .app. The .app files, are in
the EJBServer\components\component-name\clientapps directory, where component-name is a
custom component.

<?xml version="1.0" encoding="I1S0-8859-1"?>
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:section-ref id="SimpleAppHomeSection"/>
</ac:application>
Figure 59: SimpleApp app

The SimpleApp.app XML configuration file requires a corresponding SimpleApp.properties file that
details the localizable content for the application, as shown in the following example:

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=C\uBGOFAram

SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout

The SimpleApp.app XML configuration file configures the following elements in the application banner
of the application:

« An application name (title)

« An application subtitle (subtitle)

« A welcome message (user-message)

« An application menu (application-menu)

Adding a section to an application
Add a section to an application, where an application can define between one and five sections. You can
configure each section to display multiple object tabs.

The SimpleApp.app application file references one section by using the SimpleAppHomeSection id
attribute. The id attribute refers to a section configuration file, which is an XML configuration file with the
extension . sec. Similar to the SimpleApp.app file, you must add the . sec file to the EJBServer
\components\component-name\clientapps directory, and the id attribute must match the name of
the file.

The following figure shows an example section file, SimpleAppHomeSection.sec.

Curam web client reference 167



<?xml version="1.0" encoding="I1S0-8859-1"?>
<sc:section
id="SimpleAppHomeSection"
title="Section.Home.Title"
hide-tab-container="true">

<sc:tab id="SimpleHome"/>

</sc:section>

Figure 60: SimpleAppHomeSection.sec

The SimpleAppHomeSection. sec file has a corresponding SimpleAppHomeSection.properties
file that details the localizable content, for example:

Section.Home.Title=Home

The title attribute defines the name of the section tab. In addition, because only one tab is defined for
the section, which is SimpleHome, the hide-tab-container attribute is used to hide the object tab
bar.

Adding a tab to a section
Add a tab to section, where a tab represents a business object, for example, a case or a participant.
However, a tab can also represent a logical grouping of information.

The SimpleAppHomeSection. sec file references one tab by using the id SimpleHome. The id refers
to a tab configuration file, which is an XML configuration file with the extension . tab. Similar to the . app
and . sec files, the tab configuration file is added to the EJBSexrver\components\component-name
\clientapps directory. The id attribute must match the name of the file.

<?xml version="1.0" encoding="I1S0-8859-1"?>
<tc:tab-config
id="SimpleHome">

<tc:context tab-name="home.tab.name"
tab-title="home.tab.name"/>

<tc:navigation page-id="SimpleHome" />

</tc:tab-config>

Figure 61: SimpleHome.tab

The SimpleHome. tab file has a corresponding SimpleHome.properties file that details the
localizable content, for example:

home.tab.name=Home

The tab-title attribute defines what is displayed on the tab title bar. As the object tab bar is turned off
in the . sec file, the tab-name attribute is ignored.

SimpleHome. tab references a single UIM page by using the page-id attribute of the navigation
element.

Add a UIM page to a tab

Add a Curam user interface meta-data (UIM) format page to a tab. In a UIM page, you define page content
by using files that have the extension .uim. The . uim files are in the webclient\components
\component-name directory.

The SimpleHome. tab file references the SimpleHome UIM page.

168 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<?xml version="1.0" encoding="UTF-8"?>

<!-- This is a sample home page. -->
<PAGE PAGE_ID="SimpleHome">

<PAGE_TITLE>
<CONNECT><SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>
</CONNECT>
</PAGE_TITLE>
</PAGE>
Figure 62: SimpleHome.uim
The SimpleHome.uim file has a corresponding SimpleHome.properties file that details the
localizable content, for example:
PageTitle.StaticText=Simple Home

The SimpleHome. uim file defines a UIM page that has no main content and only a page title,
PAGE_TITLE. The content includes the following items that are common to most UIM pages:

- Tab title

Page title
Refresh button
Print button
Help button

Associating a user with an application
After you create the content for a simple application, create and link a user to the application.

A user exists as an entry on the Users database tab. Create a user by using a dmx file and adding the file
to the EJBServer\components\component-name\Data_Manager directory.

<table name="USERS">

<row>
<attribute name="USERNAME">
<value>simple</value>
</attribute>

<attribute name="ROLENAME">
<value>SUPERROLE</value>

</attribute>

<attribute name="APPLICATIONCODE">
<value>SimpleApp</value>

</attribute>

<attribute name="DEFAULTLOCALE">
<value>en</value>

</attribute>

<attribute name="FIRSTNAME">
<value>Simple</value>
</attribute>
<attribute name="SURNAME">
<value>User</value>
</attribute>
</row>

</table>

Figure 63: Users.dmx

Curam web client reference 169



You must reference the Users.dmx file in the datamanager_config.xml file thatis in the EJBServer
\project\config directory, for example:

<entry name="components/custom/Data_Manager/USERS.dmx"
type="dmx" base="basedir"/>

When the entry is referenced from the Usexrs. dmx file, it is included in the database when the database
target is executed.

The previous Usexs.dmx file example shows the creation of a single user who is named simple with a
password of passwoxrd. The APPLICATIONCODE field links the user to a particular application by
referencing a code table entry in the APPLICATION_CODE code table. When a user logs on, the value of
the APPLICATIONCODE field in the Users database table is used to determine both the application and
the user's home page. The value of the code matches the name of the application . app file to use. The
description of the code value indicates the name of the UIM page to be displayed as the home page. The
home page is displayed when a user first logs on.

The following example shows a CT_APPLICATION_CODE.ctx file thatis in the EJBServer
\components\component-name\codetable directory:

<?xml version="1.0"?>
<codetables package="curam.util.testmodel.codetable">
<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">
<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">
<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>
</locale>
</code>
</codetable>
</codetables>

Figure 64: CT_APPLICATION_CODE.ctx

The example defines a SimpleApp code with a description of SimpleHome. The SimpleApp code
matches the id of the SimpleApp.app application. The description, SimpleHome, maps to the
SimpleHome.uim file.

Build targets required to create a simple application
To create a simple application requires several files to be added and modified, which requires several
build targets to be executed.

The following table summarizes the files that are added and modified when you create a simple
application, and the build targets that process each of the files.

Table 108: Files required to create an application and corresponding build targets
File Location Build target
SimpleApp.app and associated EJBServer\components\ inserttabconfiguration
properties file component-name

\clientapps
SimpleAppHomeSection.sec and [EJBServer\components\ inserttabconfiguration
associated properties file component-name

\clientapps
SimpleHome.tab and associated EJBServer\components\ inserttabconfiguration
properties file component-name

\clientapps
SimpleHome.uim and associated webclient\components\ client
properties file component-name\

170 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 108: Files required to create an application and corresponding build targets (continued)

File Location Build target

Users.dmx EJBServer\components\ database
component-name
\Data_Manager

datamanager_config.xml EJBServer\project\config |database
CT_APPLICATION EJBServer\components\ server
_CODE.ctx component-name\codetable

Note: The inserttabconfiguration targetis included in the database target.

After all build targets have been completed and the server and client applications have been started, the
application can be accessed by using the following URL:

http://localhost:9080/ " 'servexr_name'/AppController.do
To view the simple application, log on as the simple user, with the password passwozrd.

Adding a shortcut panel

Extend a simple application to include a new section that contains an example of a shortcut panel. A
shortcut panel provides quick links to open content and to perform actions within the section.

The new section will be named Workspace and will contain the following items:
 Shortcut Panel

« Group Node

- Leaf Node

» Workspace Section

Search Tab

Adding a section
Add a section that includes a shortcut panel to a simple application.

The following example shows a simple app file that includes a workspace section in addition to a home
section.

<ac:application
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:section-ref id="SimpleAppHomeSection"/>
<ac:section-ref id="SimpleAppWorkspaceSection"/>
</ac:application>

Figure 65: SimpleApp.app

The workspace section is defined in the SimpleAppWorkspaceSection. sec file, which defines a
structure with two tabs. A shortcut panel has also been added to the section by including a shortcut-
panel-ref element, as shown in the following example.

Curam web client reference 171



<sc:section
id="SimpleAppWorkspaceSection"
title="Section.Home.Title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

<sc:tab id="SimpleSearch"/>
<sc:tab id="SimplePerson"/>

</sc:section>

Figure 66: SimpleAppWorkspaceSection.sec

The corresponding . propexrties contains the localizable content for the section:

Section.Home.Title=Workspace

Defining the contents of a section shortcut panel
A section shortcut panel provides quick links to open content and perform actions within the section.
Users can expand and collapse the shortcut panel as required

Configure the contents of a shortcut panel in an XML configuration file that has an extension of . ssp and a
corresponding properties file. The following example shows an example SimpleShortcutPanel.ssp
file:
<sc:section-shortcut-panel
id="SimpleShortcutPanel"
title="Panel.Title">
<sc:nodes>
<sc:node type="group" title="Group.Title" id="UI">
<sc:node type="leaf" id="search" page-id="SimpleSearch"
title="Link.Title.Search"/>
</sc:node>
</sc:nodes>

</sc:section-shortcut-panel>

Figure 67: SimpleShortcutPanel.ssp

The corresponding . propexrties contains the localizable content for the shortcut panel:

Panel.Title=Shortcuts
Group.Title=Quick Links
Link.Title.Search=Person Search

The structure of the section shortcut panel consists of nodes of two different types, which are group and
leaf nodes. The type is configured through the type attribute. Group nodes allow for logical grouping of
leaf nodes. Each leaf node represents a link that is displayed on the section shortcut panel.

Both group and leaf nodes have a title attribute that allows the configuration of the text to be
displayed. Additionally, leaf nodes must specify a page-id attribute that configures the target page of the
link.

The SimpleShortcutPanel. ssp file defines a group node and a leaf node, where the group node
contains the leaf node that in turn contains a hyperlink to the search tab. Clicking the hyperlink link
causes the search tab to be opened

Defining a search tab
Define a search tab in a section that contains a single page where users can search for a person.

The following example shows the configuration of the search tab in a section.

172 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<tc:tab-config
id="SimpleSearch">

<tc:context tab-name="search.tab.name"
tab-title="search.tab.title"/>
<tc:navigation page-id="SimpleSearch"/>
</tc:tab-config>

Figure 68: SimpleSearch.tab

The corresponding . properties contains the localizable content for the tab:

search.tab.name=Search
search.tab.title=Person Search

Define the Search Page
The Person Search page has two distinct areas, a cluster that allows the user to enter search criteria
and a list to display the results of a search.

Figure 69 on page 173 shows a screen shot of the page to search a person (hamed as Person Seaxrch)
below.

Figure 69: Person Search Page

1. Cluster
2. Action Control
3. List

The following is the UIM code for the page:

Curam web client reference 173



<PAGE PAGE_ID="SimpleSearch">

<SERVER_INTERFACE NAME="ACTION" CLASS="PersonFacade"
OPERATION="advancedSearch" PHASE="ACTION"/>

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>
</CONNECT>
</PAGE_TITLE>

<CLUSTER TITLE="Cluster.Title.Search" NUM_COLS="2">
<FIELD LABEL="Field.Label.LastName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="key$dtls$lastName" />
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Gender">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="key$dtls$gender"/>
</CONNECT>
</FIELD>
<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Search"
TYPE="SUBMIT">
<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>
</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.Results">
<CONTAINER LABEL="Container.Label.Actions">
<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</CONTAINER>
<FIELD LABEL="Field.Label.FirstName">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="firstName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.LastName">
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="result$dtls$dtls$lastName" />
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Title">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="title"/>
</CONNECT>
</FIELD>
</LIST>
</PAGE>

Figure 70: SimpleSearch.uim

The following are the main elements of note on this UIM page:

174 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« The SERVER_INTERFACE element defines which server interface method is called by the server when
the form is submitted.

- The CLUSTER defines the cluster on the page that contains two fields that allow the user to enter the
search criteria. These are mapped to the input parameters of the server interface method. Refer to User
Interface Element 1 in Figure 69 on page 173.

« An ACTION_CONTROL element defines the action control on the page that allows the search to be
submitted. Refer to User Interface Element 2 in Figure 69 on page 173.

- The LIST defines the list on the page that contains the results of a submitted search. For each result a
row is displayed which displays the person's details, and an ACTION_CONTROL which defines a link to
that person's home page. Refer to User Interface Element 3 in Figure 69 on page 173. Selecting this link
will open the person tab which will be defined next.

The corresponding . properties should contain the localizable content for the search page:

PageTitle.StaticText=Person Seazrch

Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Control.Label.View=View

Container.LlLabel.Actions=Actions

Cluster.Title.Search=Search Criteria
List.Title.Results=Results
Control.Label.Search=Search

Build targets required to add a shortcut panel
To add a shortcut panel requires several files to be added and modified, which requires several build
targets to be executed.

Table 109: Files required to add a shortcut panel and corresponding build targets

File Location Build target

SimpleApp.app and associated
properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleWorkspaceSection.se
o
and associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSeazrch.uimand
associated properties file

webclient\components\
component-name\

client

Adding tab content

Extend a simple application to add more complex structured tabs to a section, including a context panel

and a content area.

In a section, configure a person tab that displays details about a person and whose content includes a
context panel and a content area that displays a person page.

Defining a person tab

A person tab contains a single page that displays the details of a person.

The following example shows the configuration of the person tab and the context panel. The configuration
requires a parameter to be passed to the tab when it is opened, as defined by the page -param element.

Curam web client reference 175



<tc:tab-config>
<tc:page-param name="personID"/>
<tc:context page-id="SimplePersonContext"/>
<tc:navigation page-id="SimplePerson"/>

</tc:tab-config>
Figure 71: SimplePerson tab

The corresponding . properties file contains the localizable content for the person tab:

no.property.required=true

Defining a context panel

A context panel is displayed at the top of the tab's content area and provides important contextual
information. If configured, the context panel is always displayed regardless of the information that is
displayed in the page below it.

Define a context panel by using a UIM page. Some limitations apply to the UIM that you can use. The
following example shows the UIM code for the context panel that is defined in the person tab:

<PAGE PAGE_ID="SimplePersonContext" TYPE="DETAILS">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>
</CONNECT>
</PAGE_TITLE>

<TAB_NAME>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Tab.title"/>
</CONNECT>
</TAB_NAME>

<PAGE_PARAMETER NAME="personID"/>

<CLUSTER>
<FIELD LABEL="Field.Label.ContextPanelFor">
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</FIELD>
</CLUSTER>

</PAGE>

Figure 72: SimplePersonContext.uim

Note the following elements and attributes in the example:
TYPE attribute
Can specify that a UIM page is intended as a context panel.

TAB_NAME element
Defines the content that is used as the name of the tab.

PAGE_TITLE element
Defines the tab title.

PAGE_PARAMETER element
Must match the page-param value that is specified in the tab configuration.

In the example, the context panel contains only one single field that outputs the unique identifier of the
person.

176 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The corresponding . properties file contains the localizable content for the context panel:

PageTitle.StaticText=Person Context Panel
Tab.title=Person Tab

Field.Label.ContextPanelFor=Context Panel for user with ID:

Defining a person page
Configure a person page that is displayed in the content area of a person tab.

The following example shows the UIM that is required to display a person page in a person tab:

Curam web client reference 177



<PAGE PAGE_ID="SimplePerson">
<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<SERVER_INTERFACE NAME="DISPLAY"
CLASS="PersonFacade"
OPERATION="readPerson" />

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="DISPLAY" PROPERTY="key$personID"/>
</CONNECT>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.LastName">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="lastName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Title">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="title"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Gender">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="gender"/>
</CONNECT>
</FIELD>
</CLUSTER>
<CLUSTER TITLE="Cluster.Title.ContactDetails" NUM_COLS="2">
<FIELD LABEL="Field.Label.Email">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="email"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.PhoneNumber">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="phoneNumber"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Address">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="address"/>
</CONNECT>
</FIELD>
</CLUSTER>
</PAGE>

Figure 73: SimplePerson uim

This UIM is similar to what has been previously defined.

The corresponding . properties should contain the localizable content for the page:

178 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Page.Title=Person Home Page

Cluster.Title.Details=Details
Cluster.Title.ContactDetails=Contact Details

Field.Value.Welcome=Field Value
Field.Label.Welcome=Field Label
Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Field.Label.Email=Email
Field.Label.PhoneNumber=Phone Number
Field.Label.Address=Address

Build targets required to add tab content
To add tab content requires several files to be added and modified, which requires several build targets to
be executed.

Table 110: Files required to add tab content and corresponding build targets

File Location Build Target
SimpleSearch.tab and EJBServer\components\ inserttabconfiguration
associated properties file component-name\clientapps

SimpleSearch.uimand webclient\components\ client

associated properties file component-name\

SimplePerson.tab and EJBServer\components\component - inserttabconfiguration
associated properties file name\clientapps

SimpleContextPerson.ui |webclient\components) client

m and associated properties | component-name\

file

SimplePerson.uimand webclient\components\ client

associated properties file component-name\

Configuring modal dialogs

A modal dialog is a window that is displayed in the user interface where users can view or edit certain
types of data in the application. Configure modal dialogs and the content that is displayed in them. You
can also configure a wizard progress bar that displays a sequence of modal dialogs to create a wizard that
can be used to edit more complex data or a larger set of data.

Modal dialogs are widely used for editing data in the Clram application because they facilitate the
transactional editing of data. The user is forced to either submit changes or cancel them, and ambiguity is
avoided by preventing users from switching context while they configure a particular set of data.

The topics in this section demonstrate how to extend the application to add an employment history modal
dialog for a person. The modal dialog will contain the following items:

« Title bar
« Close button
« Action controls

The user cannot switch focus back to the parent interface until the modal dialog is closed, either by
submitting it or canceling it.

Clram web client reference 179



Opening a modal dialog
Add page level action controls to a page that open modal dialogs.

For this example, the person page that was defined in “Defining a person page” on page 177 will be
extended. The extended page will contain two action controls, one of which opens a basic modal dialog
and another that opens a wizard progress bar.

The following example shows the extended SimplePerson.uim file.

<PAGE PAGE_ID="SimplePerson">

<ACTION_SET>
<ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
<LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
<ACTION_CONTROL LABEL="Control.Label.CreateEmploymentWizard">
<LINK PAGE_ID="CreateEmploymentWizard_pageOne"
OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

</PAGE>

Figure 74: SimplePerson uim

The corresponding . properties file is extended to include the label properties for the action controls:

Control.Label.CreateEmployment=Add Employment History
Control.Label.CreateEmployment=Add Employment in Wizard

Defining the content of the modal dialog
Define the content of a modal dialog. The content of a modal dialog is a standard UIM page, although it is
styled differently when it is displayed by the browser.

The key features of the modal dialog that is defined in the following example are outlined in the following
list:

« The title is displayed in the title bar of the window.
« The action controls are displayed in a bar at the bottom of the window.
« The user can click the close button on the title bar to close the window without submitting changes.

The following example shows the UIM code for the modal dialog:

180 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<PAGE PAGE_ID="CreateEmployments" WINDOW_OPTIONS="width=250">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

<SERVER_INTERFACE NAME="ACTION"
CLASS="EmploymentFacade"
OPERATION="createEmployment"
PHASE="ACTION"/>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">
<FIELD LABEL="Field.Label.EmployerName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="employerName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.JobTitle">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.FromDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fromDate"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.ToDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="toDate"/>
</CONNECT>
</FIELD>
</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.lLabel.Save" TYPE="SUBMIT">
<ACTION_CONTROL LABEL="Control.lLabel.Cancel" TYPE="SUBMIT"/>
</ACTION_SET>

</PAGE>

Figure 75: CreateEmployments.uim

Note the WINDOW_OPTIONS attribute of the PAGE element. In the example, the width is set to 250.
Because the height is not set, it is automatically calculated when the dialog is displayed.

The corresponding . propexrties file contains the localizable content for the modal dialog:

Curam web client reference 181



Page.Title=Create Employment
Cluster.Title.Details=Details
Field.Value.Welcome=Here's the details panel for a person

Control.Label.Save=Save
Control.Label.Cancel=Cancel

Field.Label.PersonID=Person ID
Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title
Field.Label.FromDate=From
Field.Label.ToDate=To

Adding a wizard progress bar

In scenarios where users need to edit a more complex set of data or a larger set of data, you might want
to split the data modifications over several windows. In the Ciram application, you configure a wizard
progress bar to create a wizard.

A modal dialog that is configured within a wizard includes the following items:

Wizard progress bar
Indicates the sequence of pages in the wizard, and highlights the current page in the sequence

Step title
Indicates the title of the current page in the sequence.

Step description
Describes the content of the current page

To illustrate the use of a wizard, the example in this section shows how to add an employment history to
the application by splitting the data entry over a sequence of two pages.

Defining the wizard progress bar configuration file
Define the wizard configuration in the CreateEmploymentWizard.properties file

The following example shows the configuration file for the wizard progress bar. The wizard has two pages
and the configuration specifies the text that is displayed in the progress bar, the step title, and the step
description for each page.

Number.Wizard.Pages=2

CreateEmploymentWizard_pageOne.Wizard.Item.Text=Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Title=

Step 1: Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Desc=

Capture some details about Employer
Wizard.PageID.l1l=CreateEmploymentWizard_pageOne

CreateEmploymentWizard_pageTwo.Wizard.Item.Text=Employment Dates
CreateEmploymentWizard_pageTwo.Wizard.Page.Title=Step 2:
Employment Period
CreateEmploymentWizard_pageTwo.Wizard.Page.Desc=
Record the time person worked for employer
Wizard.PageID.2=CreateEmploymentWizard_pageTwo

Figure 76: CreateEmploymentWizard.properties

To load the wizard configuration file into the data, add the following lines to the AppResouzce . dmx file:

182 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<row>
<attribute name="resourceid">

<value>1</value>

</attribute>

<attribute name="localeIdentifier">
<value/>

</attribute>

<attribute name="name">
<value>CreateEmploymentWizard</value>

</attribute>

<attribute name="contentType">
<value>text/plain</value>

</attribute>

<attribute name="contentDisposition">
<value>inline</value>

</attribute>

<attribute name="content">
<value>./blob/CreateEmploymentWizard.properties</value>

</attribute>

<attribute name="internal">
<value>1</value>

</attribute>

<attribute name="lastWritten">
<value>2008-06-13-19.29.40</value>

</attribute>

<attribute name="versionNo">
<value>1</value>

</attribute>

<attribute name="category">
<value>RS_PROP</value>
</attribute>
</Tow>

Defining wizard pages

An example shows how to configure a UIM file to define the content of a wizard for adding employment
history for a person. The wizard contains two pages, where the first page requires the user to enter
employer details and the second page requires the user to enter dates.

The following example shows the UIM that implements the first page of the wizard:

Curam web client reference 183



<PAGE PAGE_ID="CreateEmploymentWizard_pageOne">

<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>
<SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
</CONNECT>
</MENU>

<SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
OPERATION="validateEmployerAndJobTitle" PHASE="ACTION"/>

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

<PAGE_PARAMETER NAME="personID"/>

<CLUSTER TITLE="Cluster.Title.Details">
<FIELD LABEL="Field.Label.EmployerName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="employerName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.lLabel.JobTitle">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>
</CONNECT>
</FIELD>

</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Next" TYPE="SUBMIT">
<LINK PAGE_ID="CreateEmploymentWizard_pageTwo"
DISMISS_MODAL="false">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="employerName"/>
<TARGET NAME="PAGE" PROPERTY="employerName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="jobTitle"/>
<TARGET NAME="PAGE" PROPERTY="jobTitle"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>
</PAGE>

Figure 77: CreateEmploymentWizard_pageOne.uim
The wizard progress bar items are added to the page by including a MENU element with the attribute
MODE="WIZARD_PROGRESS_BAR". The element references a property that is named Wizaxrd, which is

defined in the Constants.properties file as CreateEmploymentWizard. The Wizard property
associates the page with the wizard progress bar configuration file that is loaded into the database.

184 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The corresponding . properties file for the first page of the wizard includes the localizable content for
the page:

Page.Title=Create Employment
Cluster.Title.Details=Details

Control.Label.Next=Next

Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title

The following example shows the UIM that implements the second page of the wizard:

Curam web client reference 185



<PAGE PAGE_ID="CreateEmploymentWizard_pageTwo">

<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>
<SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
</CONNECT>
</MENU>

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

<PAGE_PARAMETER NAME="employerName"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="employerName"/>
<TARGET NAME="ACTION" PROPERTY="employerName"/>
</CONNECT>

<PAGE_PARAMETER NAME="jobTitle"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="jobTitle"/>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>
</CONNECT>

<SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
OPERATION="createEmployment" PHASE="ACTION"/>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

<FIELD LABEL="Field.Label.FromDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fromDate"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.ToDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="toDate"/>
</CONNECT>
</FIELD>
</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Save" TYPE="SUBMIT">
<LINK PAGE_ID="Employments" DISMISS_MODAL="TRUE">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID" />
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

</PAGE>
Figure 78: CreateEmploymentWizard_pageTwo.uim

186 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The corresponding . properties file includes the localizable content for the page:

Page.Title=Create Employment
Cluster.Title.Details=Details

Control.Label.Save=Save

Field.Label.FromDate=From

Field.Label.ToDate=To

Build targets required to add modals and wizard progress bars
To add modal dialogs and wizard progress bars requires several files to be added and modified, which
requires several build targets to be executed.

Table 111: Files required to add modal dialogs and corresponding build targets
File Location Build target
SimplePerson.uimand webclient\components\ client
associated properties file component-name\
CreateEmployments.uim webclient\components\ client
and associated properties file |component-name\
CreateEmployments webclient\components\component-name\ client
Wizard_pageOne.uimand
associated properties file
CreateEmployments webclient\components\ client
Wizard_pageTwo.uimand component-name\
associated properties file
CreateEmploymentsWizard [EJBServer\components\ client
.properties component-name\Data_Manager\scripts
\blob
APPRESQOURCES. DMX EJBServer\components\ client
component-name\Data_Manager\scripts

Adding tab navigation

Add navigation features to a tab. An example shows how to modify a person tab to include a navigation
bar.

The modified person tab will contain a content area navigation bar within one navigation tab, and a page
group navigation bar with two navigation pages.

Defining a navigation bar
Configure a tab file to contain a navigation bar in the content area. Then, configure a nav file to include a
navigation group with two navigation pages.

To configure a tab to contain a navigation bar in the content area, it is necessary to include the id of the
navigation bar configuration in the navigation element of the tab.

The following example shows the modified version of a SimplePerson.tab file.

<tc:tab-config
id="SimplePerson">
<tc:page-param name="personID"/>

<tc:context page-id="SimplePersonContext" height="60"/>
<tc:navigation id="SimplePersonNav"/>
</tc:tab-config>

Figure 79: SimplePerson Tab

Curam web client reference 187



Define the navigation bar configuration by using an XML configuration file with the extension . nav. Similar
to other tab configuration artifacts, the . nav files are in the EJBSexrver\components\component-
name\clientapps directory, where component-name is a custom component.

The following example shows the contents of the SimplePersonNav. nav file. It defines one navigation
group, with two navigation pages.

<nc:navigation id="SimplePersonNav">
<nc:nodes>
<nc:navigation-group id="PersonHome" title="PersonHome"
description="Person Details Group">
<nc:navigation-page id="SimplePerson" page-id="SimplePerson"
title="PersonDetails.Title"/>
<nc:navigation-page id="Employments" page-id="Employments"
title="EmploymentHistory.Title"/>
</nc:navigation-group>
</nc:nodes>
</nc:navigation>

Figure 80: SimplePersonNav.nav

The corresponding . properties file contains the localizable content for the page:

PersonHome.Title=Person Home
EmploymentHistory.Title=Employment History
PersonDetails.Title=Person Details

Build targets required to add tab navigation
To add a navigation bar to a tab requires several files to be added and modified, which requires several
build targets to be executed.

Table 112: Files required to add tab navigation and corresponding build targets

File Location Build target
SimplePersonNav.nav EJBServer\components)\ inserttabconfiguration
and component-name\clientapps

associated properties file

SimplePerson.tab and EJBServer\components\ inserttabconfiguration
associated properties file component-name\clientapps

Working with lists
Extend a person search page to add an expandable list and a list actions menu.

The examples in this section show how to add an expandable list and a list actions menu to the person
search page that is defined in “Define the Search Page” on page 173.

Defining an expandable list
Add an expandable list to a person search page. In an expandable list, users can see more information
than is displayed in a simple list, without having to navigate away from the page that contains the list.

In an expandable list, expand each row by clicking a toggle control. In the expanded state, a page that is
relevant to the row is displayed. Note the following key points:

- Atoggle control is added to the start of each row that enables the row to be expanded and collapsed. It
is possible to expand more than one row at a time and the size of the content area adjusts
automatically.

« Page level action sets are displayed as buttons in a page.

The following SimpleSearch.uim example shows a person search page UIM file that has been modified
to include an expandable list.

188 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<PAGE PAGE_ID="SimpleSearch">

<SERVER_INTERFACE NAME="ACTION"
CLASS="PersonFacade"
OPERATION="advancedSearch"
PHASE="ACTION" />

<LIST TITLE="List.Title.Results">
<DETAILS_ROW>
<INLINE_PAGE PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</INLINE_PAGE>
</DETAILS_ROW>

</LIST>
</PAGE>

Figure 81: SimpleSearch.uim
A new element, the DETAILS_ROW, has been added to the LIST element. The DETAILS_ROW element

defines the inline page that is displayed when a row is expanded, including the parameters that are
passed to the page for each row.

Defining a list actions menu
Add a list actions menu to a person page. A list actions menu contains a set of actions that are associated
with a particular row.

A list actions menu icon is displayed at the end of each row. Clicking the icon expands the list actions
menu. The list actions menu contains one or more menu items, which are defined by action controls.

The following SimpleSearch.uim example shows a person search page UIM file that has been modified
to include a list actions menu.

Curam web client reference 189



<PAGE PAGE_ID="SimpleSearch">

<LIST TITLE="List.Title.Results">

<ACTION_SET TYPE="LIST_ROW_MENU">
<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
<LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
<ACTION_CONTROL
LABEL="Control.Label.CreateEmploymentWizard">
<LINK PAGE_ID="CreateEmploymentWizard_pageOne"
OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

<!-- Removing Actions Column -->
<!--<CONTAINER LABEL="Container.Label.Actions">
<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</CONTAINER>-->

</LIST>
</PAGE>

Figure 82: SimpleSearch.uim

Note the following points:

« An ACTION_SET that contains the three action controls has been added to the list.

« The attribute TYPE has been set to LIST_ROW_MENU to indicate that the action controls that are in this
set are to be displayed on a list actions menu.

« Because the View action control has been added to the list actions menu, the column that contains it is
no longer necessary, and therefore the corresponding UIM code has been commented out.

190 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Localizable labels for the new action controls are in the corresponding . properties file content, for
example:

Control.Label.CreateEmployment=Create Employment
Control.Label.CreateEmploymentWizard=Create Employment Wizazxd

Build targets required to add lists and list actions
To add and expandable list and list actions menu requires several files to be added and modified, which
requires several build targets to be executed.

Table 113: Files required to add an expandable list and a list actions menu, and corresponding build

targets

File Location Build target
SimpleSearch.uimand webclient\components\component-name\ client
associated properties file

Session Management

Learn how browser sessions are handled in the Cliram application. A browser session can be defined as a
continuous period of user activity in the web browser, where successive events are separated by no more
than 30 minutes.

The following are common examples of when a Ciram browser session is started or finished:

« A session starts when a user first logs into the application.
- As long as the user is actively using the browser, the session remains active.

If the browser is left inactive for a period of time, the session will timeout. In this case, the user will be
required to log back in and a new session is started.

The default timeout is 30 minutes, but this can be configured using the application server's
configuration settings. See the Ciram Deployment Guide for more information on application server
configuration.

- The user can explicitly logout, using the logout link in the application banner. The session is terminated
in this case and logging back in will start a new one.

« The browser is shutdown and a new browser instance is started. In this case, a new session is started
and the user will be required to log in.

Session Overview

There is a maximum limit on the number of tabs that can be opened per section of an application. The
system administrator can configure this limit by updating the curam.environment.max.open.tabs
property in the system administration application. The default value for the maximum limit of open tabs
per section of an application is set to fifteen.

If a user requests to open a tab and the number of open tabs reaches the maximum limit within the
current section then an informational modal dialog will be displayed immediately after the tab is initially
opened (before content in the tab is displayed). As instructed in this modal dialog, existing open tabs
within the current section should be closed before any new tabs can be opened in an application. If the
information displayed in the informational dialog is ignored and the user attempts to open more tabs
within the current section of an application, the requested tabs will not be opened and an error modal
dialog will be displayed instructing that new tabs can only be opened after existing open tabs within the
current section of the current application are closed. An error modal dialog can simply be dismissed by
clicking on the button on the bottom of the dialog.

The message and title of both the dialog can be customized by customizing by adding the
GenericModalError.js.propexrties file within the custom component. For more information on
localizing JavaScript property files, consult “Java properties files” on page 38.

Clram web client reference 191



The text on the button can be customized by changing the value of the Text. Ok property in
CDEJResources.properties. For more information on localizing CDOEJResources.properties,
please see “CDEJResources.properties” on page 44.

The current set of open tabs for a particular user is restored each time the user logs out of the application
and logs back in. In addition, if the browser is refreshed (e.g. using the F5 button), the currently open tabs
are also restored. There are two exceptions to this:

« If the the system administrator has decreased the maximum limit of tabs that can be opened within a
section of an application since the termination of the last session then only the new maximum number
of tabs within each section will be restored. An error dialog will be displayed informing the user that the
maximum limit of open tabs has been exceeded.

- If the system administrator has updated the tab configuration to remove tabs from sections via the User
Interface administration screens, then the removed tabs will not be restored.

The browser session plays an important role in the expected behavior when restoring tabs, and this
chapter will detail how browser sessions interact with the restoration of tabs. In addition, a number of
configuration options for the tab restoration feature are detailed.

Tab Restoration

The list of currently open tabs per user is stored temporarily in the web tier, associated with the browser
session, and more permanently on the database so that it can be restored after a user logs out of the
application.

The data is persisted from the web tier to the database intermittently. As a result, there are cases where
the last few changes to the open tabs may not be restored when the user logs in. This is most likely to
happen where the session times out or the browser is restarted.

The behavior of tab restoration is different depending on whether it was the result of a browser refresh
(F5) or the start of a new session (i.e. the user has logged in).

« Browser Refresh

If the browser is refreshed, tabs are restored to their current state from the web tier session data, for
the current user. No tab changes will be lost.

— The tab that was last selected for the current user in the selected section will remain the selected
tab.

— The selected tab for the current user in other sections will revert to the first tab in those sections.

— The expanded or collapsed states of the shortcut panel, smart panel and page contents for the
current user are not restored.

« New Session

When a new session starts, usually requiring the user to login, the tabs are restored to their current
state using the session data stored on the database.

— The "Home" tab is restored as the selected tab.
— The selected tab in other sections will revert to the first tab in those sections.

— The expanded or collapsed states of the shortcut panel, smart panel and page contents are not
restored.

— If no previous tab session data is available, only the "Home" tab is opened.

Note: See “Direct browsing” on page 9 for a special case of tab restoration, where pages are directly
accessed through the browser navigation bar.

Session Configuration

Each time a new tab is opened, a tab is closed or the content area of a tab is updated, the information is
stored in the web tier. The tab session data is persisted from the web tier to the database intermittently.

192 IBM Curam Social Program Management: Cdram Web Client Reference Manual



How often the data is persisted can be configured using the following options, which can be set in the
ApplicationConfiguration.propexrties file.

- tabhSessionUpdateCountThreshold

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. Once the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of one causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts. The

default is every 10 updates.

- tabSessionUpdatePeriodThreshold

Specifies the number of seconds that must have elapsed since the last time session data was persisted
from the web tier to the database before a new update will trigger another write. A value of zero (or a
negative or invalid value) disables writing based on update periods. The default value is 120 seconds, or
2 minutes.

The properties work together based on which value is reached first. In other words, if the update count
threshold (tabSessionUpdateCountThreshold) is not reached, but the update period threshold
(tabSessionUpdatePeriodThreshold) has been reached, a write will occur, and vice versa.

If the update count threshold is set to one, the update period threshold is ignored. The reason for this is
that writes will happen on every update, so there is no need to write based on a time period.

Note: Tab session data is persisted to the database when the user logs out, regardless of the value of the
current update count and update period. The exception to this is if both the update count threshold and
the update period threshold are set to zero.

Each user account has one persistent tab session database record for an application. The same user
logging in to the application from different browser sessions will cause some interference and
unpredictability in what data is persisted across sessions.

The interference and unpredictability of the persisted data, when multiple users are using the same login
ID, is most likely encountered in a testing environment. It is recommended that the
tabSessionUpdatePeriodThreshold and tabSessionUpdateCountThreshold properties are set to zero for
testing environments to prevent this. Setting both properties to zero ensures that the tab session data is
only persisted for the length of a browser session and not across sessions, i.e. login and logout.

It is also recommended that these settings are used where an "external" application is deployed and the
external users all share the same generic user account.

Session Timeout Warning

A browser session is timed from when data was most recently sent to or received from the server. In
some cases, a user might enter much data into the application without realizing that the current session
has timed out. When the user does initiate a server call, for example to submit the entered data, the
browser prompts the user to reauthenticate to the application. Therefore, the user loses all the data that
the user has entered into the application. To prevent users from losing data when their session times out,
a system administrator can configure a session timeout warning.

Before a browser session times out, a session timeout warning dialog is displayed to users at a configured
time. The dialog contains a timer that indicates the remaining period before the session times out. Users
can either reset the session timeout and continue working in the application, or end the session and quit
the application.

In IBM Curam Social Program Management, the session timeout warning is enabled by default. Default
configuration values are defined for the session timeout warning in properties.

Curam web client reference 193



Session timeout warning default values
The session timeout warning uses default values that are defined in the
ApplicationConfiguration.properties file and in the CDEJResources.properties file.

CDEJ resources properties

You can configure the default values of the following properties that are defined in the
CDEJResources.propexrties file:

timeout.warning.modal.title
Configures the title that is displayed on the timeout warning modal dialog. The default value is
Timeout Warning.

timeout.warning.modal.user.message
Configures the message that is displayed to the user before the session expires. The default value is
You will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

timeout.warning.modal.expired.user.message
Configures the message that is displayed to the user after the session expires. The default value is
You have been automatically timed out due to a period of inactivity on your
account.

timeout.warning.modal.continue.button
Configures the text that is displayed on the Continue button in the modal dialog that is displayed to
the user before the session expires. The default value is Continue.

timeout.warning.modal.quit.button
Configures the text that is displayed on the Quit button in the modal dialog that is displayed to the
user before the session expires. The default value is Quit.

Application configuration properties
The following default values are defined in the ApplicationConfiguration.properties file:

Session timeout warning modal width
Configures the default width of the session timeout warning modal in pixels. The default value is 580.
You can override the default property value only by customizing the timeout-warning elementin an
application.

Session timeout warning modal height
Configures the default height of the session timeout warning modal in pixels. The default value is 250.
You can override the default property value only by customizing the timeout-warning elementin an
application.

Default buffering period
Configures the default buffering period in seconds to allow a server more time to respond to a client
request over a slow network. The default value is 20. You cannot override the default property value.

Customizing the session timeout warning in the caseworker application
Customize the session timeout warning in the caseworker application by configuring system application
properties, and CDEJ resource properties.

About this task

Settings that you customize in CDEJ properties apply to the whole of IBM Clram Social Program
Management.

If the timeout-warning element is configured for a specific application, the application configuration
takes precedence over the corresponding values that are configured in the application configuration
properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:

1. Log on to IBM Clram Social Program Management as a system administrative user.

194 IBM Curam Social Program Management: Ciram Web Client Reference Manual



2. Click System Configurations.

3. In the Shortcuts panel, click Application Data > Property Administration.
4. Search for and edit each property that you want to configure.

5. To publish the property change, click Publish.

Procedure

Application configuration properties
- Customize the following application configuration properties for the session timeout warning as
required:

Enable or disable the session timeout warning
Edit the curam.environment.internal.enable.timeout.warning.modal application configuration
property. The property configures whether the session timeout warning is displayed to users, A
valid Boolean value is required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.internal.timeout.warning.modal.time application configuration
property. The property configures the notice period that users are given in seconds, through the
display of the session timeout warning, that their browser session is about to time out. For
example, if the default browser session length is 30 minutes, and the timeout attribute value is
configured to 120, which corresponds to a value of 2 minutes, the session timeout warning is
displayed after 28 minutes of inactivity. Then, users must click a button in the user interface to
prevent the session from automatically timing out. A valid integer value is required, where the
default value is 120.

Customize the session expiry logout page
Edit the curam.environment.internal.timeout.warning.modal.logoutpage application configuration
property, where the default value is internal-logout-wrapper. The property configures the
logout page that is displayed when a user's session expires and the user is automatically logged
out. The property value must be a valid UIM page.

CDEJ resource properties
« Customize the following CDEJ resource properties for the session timeout warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property configures the title that is
displayed on the timeout warning modal dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.user.message CDEJ property. The property configures the
message that is displayed to the user before the session expires. The default value is You will
be timed out when the countdown reaches 0 seconds. Click Continue to
resume using the application or Quit to exit.

Customize the session expiry message
Edit the timeout.warning.modal.expired.user.message CDEJ property. The property configures the
message that is displayed to the user after the session expires. The default value is You have
been automatically timed out due to a period of inactivity on your
account.

Customize the Continue button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.continue.button CDEJ property. The property configures the text
that is displayed on the Continue button in the modal dialog that is displayed to the user before
the session expires. The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The property configures the text that is
displayed on the Quit button in the modal dialog that is displayed to the user before the session
expires. The default value is Quit.

Curam web client reference 195



Customizing the session timeout warning in Universal Access
Customize the session timeout warning in Universal Access by configuring system application properties,
and CDEJ resource properties.

About this task

Settings that you customize in CDEJ properties apply to the whole of IBM Clram Social Program
Management.

If the timeout-warning element is configured for a specific application, the application configuration
takes precedence over the corresponding values that are configured in the application configuration
properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:

1. Log on to IBM Curam Social Program Management as a system administrative user.
2. Click System Configurations.

3. In the Shortcuts panel, click Application Data > Property Administration.

4. Search for and edit each property that you want to configure.

5. To publish the property change, click Publish.

Procedure

Application configuration properties

« Customize the following application configuration properties for the session timeout warning as
required:

Enable or disable the session timeout warning
Edit the curam.environment.enable.timeout.warning.modal application configuration property. The
property configures whether the session timeout warning is displayed to users, A valid Boolean
value is required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.timeout.warning.modal.time application configuration property. The
property configures the notice period that users are given in seconds, through the display of the
session timeout warning, that their browser session is about to time out. For example, if the default
browser session length is 30 minutes, and the timeout attribute value is configured to 120, which
corresponds to a value of 2 minutes, the session timeout warning is displayed after 28 minutes of
inactivity. Then, users must click a button in the user interface to prevent the session from
automatically timing out. A valid integer value is required, where the default value is 120.

Customize the session expiry logout page
Edit the curam.environment.timeout.warning.modal.logoutpage application configuration property,
where the default value is LogoutWrapper. The property configures the logout page that is
displayed when a user's session expires and the user is automatically logged out. The property
value must be a valid UIM page.

CDEJ resource properties
« Customize the following CDEJ resource properties for the session timeout warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property configures the title that is
displayed on the timeout warning modal dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.user.message CDEJ property. The property configures the
message that is displayed to the user before the session expires. The default value is You will
be timed out when the countdown reaches 0 seconds. Click Continue to
resume using the application or Quit to exit.

196 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Customize the session expiry message
Edit the timeout.warning.modal.expired.user.message CDEJ property. The property configures the
message that is displayed to the user after the session expires. The default value is You have
been automatically timed out due to a period of inactivity on your
account.

Customize the Continue button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.continue.button CDEJ property. The property configures the text
that is displayed on the Continue button in the modal dialog that is displayed to the user before
the session expires. The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The property configures the text that is
displayed on the Quit button in the modal dialog that is displayed to the user before the session
expires. The default value is Quit.

Customizing the timeout warning in an application
You can configure the session timeout warning individually for each application by configuring the optional
timeout-warning element.

About this task

Optionally, configure the timeout-warning element in the application configuration XML file, which has
the extension . app. If you configure the timeout-warning element in the application, the values takes
precedence over both the values that are configured in the system application configuration properties
and the default values.

Procedure

- Configure the following attributes as required in an application's configuration file:

title
Configures the title that is displayed on the timeout warning dialog.

user-message
Configures the message that is displayed to the user before the session expires. If the message
requires more than two lines of text, to prevent text cutoff from occurring a scroll bar is
automatically displayed in the session timeout warning modal. Because the scroll bar is
implemented by using CSS styling, it is not possible to disable it by configuring a property.

expired-user-message
Configures the message that is displayed to the user after the session expires.

quit-button
Configures the text that is displayed on the Quit button in the modal dialog that is displayed to the
user before the session expires.

continue-button
Configures the text that is displayed on the Continue button in the modal dialog that is displayed
to the user before the session expires.

timeout
Configures the notice period that users are given in seconds, through the display of the session
timeout warning, that their browser session is about to time out. For example, if the default
browser session length is 30 minutes, and the timeout attribute value is configured to 120, which
corresponds to a value of 2 minutes, the session timeout warning is displayed after 28 minutes of
inactivity. Then, users must click a button in the user interface to prevent the session from
automatically timing out.

width
Configures the width of the session timeout warning modal in pixels.

height
Configures the height of the session timeout warning modal in pixels.

Curam web client reference 197



- Foran application in Universal Access, you can enable a specific logout page to be associated with the
Quit button for a modal dialog. On the logout banner menu item that is on the person banner menu,
you must set the logout attribute to true, as shown in the following example:

<ac:banner-menu type="person" title="person.title" page-id="somPageID"/>
<ac:menu-item id="logout" title="menu.logout.title" text="menu.logout.text"
page-id="LogoutWrapper" logout="true"/>

<ac:banner-menu/>

<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"

expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"

quit-button="timeout.logout"

timeout="300"

width="650"

height="300"/>

Example
The following example demonstrates how to specify values for the timeout-warning attributes:

<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"
expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"
quit-button="timeout.logout"

timeout="300"

width="580"

height="200"/>

Configuring a customized logon page

If a browser session times out because of no user interaction, users are redirected to an application logon
page that is specified by the configuration properties. The logon page displays a session expiry message
that tells users that they have been logged out because of a period of inactivity on their account.

About this task

In the configuration properties, you can specify the application logon page that is displayed both in the
IBM Cudram Social Program Management application and in the Universal access application.

If the application is configured to display a customized logon page instead of the default page, then use
the following procedure to insert a customized session expiry message into the customized logon page. If
a user's session times out automatically, the customized session expiry message is then displayed in the
customized logon page that the user is redirected to.

Procedure

1. To configure the custom logon JSP page, do the following steps:
a) Import the class JSPUtil by using the following page directive:

<jsp:directive.page import="curam.util.client.jsp.JspUtil"/>
b) Insert the scriptlet to print the session expired message on the page:

<jsp:scriptlet>
<![CDATA[ JspUtil. printSessionExpiredMessage(pageContext); 11>
</jsp:scriptlet>

2. To configure the custom logon renderer class, do the following steps:
a) Create a div with a custom ID on your logon page to wrap the session expired message.
b) Call the following method and pass in the ID of the div as a parameter:

JspUtil.getSessionExpiredMessageScript(div.id);

198 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Tab Session Limitations

The tab session data records a limited number of tabs. The limit imposed relates to the total size of the
tab session data and is approximately 70-80 tabs. Once this limit has been exceeded, tab session data is
maintained only in the web tier and is no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected. However, if a user logs out
with more tabs open than can be recorded for a session, only the state of the tabs at the time the limit
was first exceeded will be restored.

Closing tabs will reduce the size of the tab session data and writing to the database will then resume as
normal.

Browser Specific Session Management

The version of the browser that is used can affect new sessions when they are started and when they are
shared. Two browser instances that share the same session result in the same set of open tabs that are
displayed in both instances. This sharing can cause interference and unpredictability of the persisted data
in the same way if two users that use the same user ID and password from different computers.

Example Session Issue: A user logs in to the Cdram application in one browser instance as the ‘admin’
user. They then open a new browser tab, which shares the session. From here, they access the Cliram
login page and login as a ‘caseworker’ user.

In this situation, the original browser tab still displays the tabs for the admin user. If the user refreshes
the original tab, then the tabs and application view are restored for the caseworker application.
Alternatively, if the user opens new tabs that apply to the admin application only, the tabs are persisted
for the caseworker user. Within the same browser session, a user must always log out to end the session
and be able to log in as a different user.

Users logging into two separate applications (for example, internal and external applications) within the
same browser also causes problems. Within one browser, users cannot log in to external and internal
applications at the same time.

Browser Management

Configure the browser that users use to view the IBM Curam Social Program Management user interface.
For example, notifications can alert users about when to upgrade their browser version. Notifications can
request confirmation when a user attempts to leave the current page in a browser.

Optimal Browser Support

Learn about optimal browser support and how to notify the user when they are using a sub-optimal
browser with the Ciram application.

Users can be notified when they are not using the optimal version of a supported web browser. The user's
web browser is considered sub-optimal if it is below the supported minimum version of the browser, or
above the supported maximum version of the browser. The supported minimum/maximum version of a
web browser is configurable. The out of the box settings for these versions of the web browser is in line
with those supported by IBM for external applications.

Note: IBM Curam external applications are public facing applications, where mode="external" is setin
the application configuration file (*.app). Health Care Reform and Universal Access are examples of this
type of application.

This feature appears in the form of a message at the top of the banner, which can be dismissed. Once the
optimal browser message is dismissed and if the browser is not updated, the message will be displayed
again when a certain number of days have elapsed. This is assuming that the fully qualified URL to the
application remains the same. An example of a fully qualified URL might be https://
myserver.ibm.com:9044/CitizenPortal/application.do.The number of days that have elapsed
before the next optimal browser check is configurable and by default it is sixty days in the future. The out
of the box optimal browser message by default has a link to a website which assists the user to take
action and update their version of the web browser to an optimal one.

Curam web client reference 199



The optimal browser message essentially has three components as follows:
« Warning Icon

The warning icon gets the attention of the user that they should update their web browser.
- Optimal Browser Message Content

The message content that will be displayed to the user. It will consist of plain text and optionally a
hyperlink which directs the user to a website where they can take action to update their web browser.
Please refer to “Text Configuration” on page 201 for more information on configuring the message
content.

- Optimal Browser Message Exit Icon
Allows the user to dismiss the optimal browser message.

Related reference
Application Configuration Properties
CDEJResources.properties

Feature Configuration

All aspects of the optimal browser message feature, with the exception of the text, are configured in the
ApplicationConfiguration.properties file. Please refer to “Text Configuration” on page 201 for
how to configure the text associated with this feature.

The following properties within the ApplicationConfiguration.properties file can be used to
configure whether the feature is enabled/disabled, and the number of days before the next optimal
browser check will take place:

optimal.browser.detection.enabled
Example: optimal.browser.detection.enabled=true. This is an application wide setting. It
allows this feature to be enabled or disabled. Valid values for this property are; "true", and "false". The
default value is "false".

optimal.browser.next.check
Example: optimal.browser.next.check=20. This property configures the number of days that
will elapse before the next check is done to determine if a user's web browser is at an optimal level.

Note: This must an integer value. It is recommended to use a value between 1 and 60 (inclusive). The
default value is set to 60.

If this value is incorrectly configured it will be set to the default value. Additionally, an exception will
be reported in the server logs when client side tracing is enabled. Please see “Tracing” on page 23 for
more information on setting client side tracing. It should be noted that if this value is changed, it will
not take effect until the optimal browser message is displayed again.

A number of properties within the ApplicationConfiguration.properties file are available to
define what constitutes an optimal minimum and maximum browser for each supported web browser.

Note: The value of these properties must be an integer or double value, otherwise a default value of "0"
will be set and the optimal browser feature will not work as expected when using the an application in the
associated web browser. An exception will be reported in the server logs if client side tracing is enabled.

The default value for each of these properties is in line with that supported by IBM for external
applications.

The following are the properties that define what constitutes an optimal browser:

ie.min.version
Example: ie.min.version=11. This property is used to configure the minimum supported version
of the Internet Explorer web browser. Any version below this is not considered an optimal Internet
Explorer web browser when using a IBM Curam application.

200 IBM Curam Social Program Management: Ciram Web Client Reference Manual



ie.max.version
Example: ie.max.version=11. This property is used to configure the maximum supported version
of the Internet Explorer web browser. Any version above this is not considered an optimal Internet
Explorer web browser when using a IBM Curam application.

chrome.min.version
Example: chrome.min.version=29. This property is used to configure the minimum supported
version of the Chrome web browser. Any version below this is not considered an optimal Chrome
browser when using a IBM Curam application. The default value is set to zero because there is no
minimum supported version for Chrome.

chrome.max.version
Example: chrome.max.version=62. This property is used to configure the maximum supported
version of the Chrome web browser. Any version above this is not considered an optimal Chrome
browser when using a IBM Cdram application. The default value is set to zero because there is no
maximum supported version for Chrome.

ff.min.version
Example: £f.min.version=18. This property is used to configure the minimum supported version
of the Firefox web browser. Any version below this is not considered an optimal Firefox browser when
using a IBM Curam application. The default value is set to zero because there is no minimum
supported version for Firefox.

ff.max.version
Example: £f.max.version=>56. This property is used to configure the maximum supported version
of the Firefox web browser. Any version above this is not considered an optimal Firefox browser when
using a IBM Curam application. The default value is set to zero because there is no maximum
supported version for Firefox.

safari.min.version
Example: safari.min.version=5.0. This property is used to configure the minimum supported
version of the Safari web browser. Any version below this is not considered an optimal Safari browser
when using a IBM Curam application.

safari.max.version
Example: safari.max.version=11. This property is used to configure the maximum supported
version of the Safari web browser. Any version above this is not considered an optimal Safari browser
when using a IBM Curam application.

Text Configuration
The following properties can be used to configure the text associated with the optimal browser message:

optimal.browser.msg.description
Example: optimal.browser.msg.description=optimal browser message banner. This
property configures the text for the description of the optimal browser support feature so that it can
be read by the screen reader. A default value is provided.

optimal.browser.msg.text
Example: optimal.browser.msg.text=For a better experience, please
10.1link:http://www.whatbrowser.org/tupdate your browseri0.end?. This property
configures content of the optimal browser message. The text between the {0.1ink: and {0.end}
mark-up tags configures the hyperlink and hyperlink text. These mark-up tags are optional. If they are
omitted from the value of this property then the optimal browser message will be displayed as plain
text. If the mark-up tags are included but not specified correctly, i.e. the specified hyperlink (URL) is
not in the correct format or the format of the markup tags themselves are not correct, then the
optimal message content will not be displayed as expected.

optimal.browser.msg.info
Example: optimal.browser.msg.info=Rendering. .. This property is used to configure the text
while the optimal browser message is being rendered. A default value for this property is provided.

Curam web client reference 201



optimal.browser.dismiss
Example: optimal.browser.dismiss=dismiss. This property is used to configure the tooltip text
associated with the button to dismiss the optimal browser message. A default value for this property
is provided.

optimal.browser.warning
Example: optimal.browser.warning=warning. This property is used to configure the text for the
warning icon so that it can be read by the screen reader. A default value for this property is provided.

Configuring Browser Back, Refresh, and Close Button Behavior
The IBM Cdram Social Program Management application does not support using the browser back and
refresh buttons to navigate the application. Also, if users click the close button to close the application,
they might lose data. In both the caseworker user interface and the Universal Access user interface, if
users click either the back, refresh, or close browser buttons, by default a warning message is displayed
in a confirmation window. The warning message asks users whether they want to either stay on the page,
or leave the page as requested. You can configure properties to either enable or disable the confirmation
message from being displayed.

Before you begin

You must log on to IBM Clram Social Program Management as a system administrative user.

About this task

Use the following procedure to either enable or disable confirmation messages from being displayed
when users click either the back, refresh, or close browser buttons in either the caseworker user interface
or the Universal Access user interface.

The content of the confirmation message depends on the browser, and cannot be customized.
Note: Browser specific behavior
All browsers

In all browsers, when a warning message confirmation window is displayed after clicking either the
back, refresh, or close browser buttons, the following actions are recommended:

« If users click the back, refresh, or close button and a warning message confirmation window is
displayed that asks users whether they want to leave the page, it is recommended that users do not
click the Leave button. Clicking the Leave button causes unpredictable results that depend on the
browser that is being used, and on where users are within the application. Instead, it is
recommended that users click the Stay button in the warning message confirmation window.

« If users click the browser refresh button and a warning message confirmation window is displayed
that asks users to confirm whether they want to reload the page, it is recommended that users do
not click the Reload button. Clicking the Reload button causes unpredictable results that depend on
the browser that is being used, and on where users are within the application. Instead, it is
recommended that users click the Don't Reload button in the warning message confirmation
window.

Users can then use the supported navigational options that are provided in the application to perform
the wanted action.

Chrome and Microsoft Edge

If you enable the confirmation message to be displayed, both Chrome and Microsoft Edge display an
extra check box that users can select to stop the page from opening more message or confirmation
windows. If users select the check box, the message or confirmation window is not displayed again
when users click the back, refresh, or close buttons. It is recommended that users do not select the
check box.

202 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Firefox

In Universal Access, if a user has not interacted with a page by clicking, touching, scrolling, or typing
on the elements, the warning message is not displayed when the user clicks the Back button. In this
case, data will not be lost if the user leaves the page.

Procedure

1. Click System Configurations.

2. In the Shortcuts panel, click Application Data > Property Administration.
3. Choose one of the following options:

« Toenable or disable the confirmation window in the IBM Clram Social Program Management user
interface, search for and edit the value of the curam.internal.app.guard.against.leaving property.

« To enable or disable the confirmation window in the Universal Access user interface, search for and
edit the value of the curam.app.guard.against.leaving property.

4. To publish the property change, click Publish.

Domain-Specific Controls

Learn about the domain-specific controls that are provided by the Ciram Client Development
Environment (CDEJ). Domain-specific controls are employed to provide a more sophisticated interface for
user information than the standard set of HTML controls.

Examples of domains that require sophisticated controls include dates, date-times, the meeting view, and
the rules decision tree. Any Curam User Interface Metadata (UIM) page tat contains a server access bean
with fields of this nature will have a web page generated containing a custom control appropriate to the
type. For example, when a server bean contains the CALENDAR_XML_STRING domain, a calendar is
generated that expects server information in a particular XML format. Each of the following sections
details the custom controls converted for particular domains.

Dates

Dates are mapped to the SVR_DATE domain. Any server access bean that contains fields of this type
shows a date selector to the user for data input. These selectors are HTML fields with an adjacent pop-up
icon that causes a menu to be displayed allowing the user to select a date or date time with ease.

Note: This function is based on JavaScript and it is important that the user enable JavaScript in their
browser for this selector to work. The appearance of the date selector pop-up can be altered by overriding
its dedicated cascading stylesheet. For more information, see “Cascading Stylesheets” on page 29.

The initially configured date dialog has three input controls; a drop-down field for the month, a text input
field for the year, and the days of the month are displayed so that a day can be selected. When the day of
the month is selected, this selection populates the date field.

The date format string that is associated with date format validations are customizable in the file
CDEJResources.properties and defined by the property
curam.validation.calendar.dateFormat:

curam.validation.calendar.dateFormat=M/dd/yyyy

Figure 83: Customizing the date format

If this value is not set, the date format string will default to the date format setting that is specified in the
ApplicationConfiguration.properties file.

Clram web client reference 203



Three Field Date Selector

Dates can be mapped to the THREE_FIELD_DATE domain to enable use of an alternative date selector
widget. Server access beans that contain fields of this type will display three drop-down elements to the
user for data input.

The order of the drop-down elements and the display values of the month element reflect the date
format, as configured by the dateformat property in the ApplicationConfiguration.properties
file. The day drop-down is populated with numbers that range 1 - 31. Validation at the infrastructure level
prevents users from selecting an invalid date, for example, February 31, 2015. The year drop-down
element is populated with values that start 100 years in the past to 30 years in the future. The range and
order of the options are not configurable.

A selection from the drop-down elements is made either by scrolling to the wanted value or by typing the
value when the drop-down element is active.

To use the Three Field Date Selector widget, model a property on a struct to use a data type derived from
the THREE_FIELD_DATE domain.

Date-Times

Date-times are mapped to the SVR_DATETIME domain. Any server access bean that contains fields of this
type will display a date selector (as described in the Dates topic) next to a time entry field.

Similar to the date selector, the pop-up here requires JavaScript to function correctly. An extra control
exists for entering time as hours and minutes. It is displayed as two side-by-side drop-down lists for
selecting the hour and minute values.

Note: The user needs to enable JavaScript in their browser for these selectors to work.

The date input field will not be displayed when the CURAM_TIME domain (a descendant of the
SVR_DATETIME domain) is used,

The date time format string that is associated with date-time format validations are customizable in the
file CDEJResources.properties and defined by the property
curam.validation.calendar.dateTimeFormat:

curam.validation.calendar.dateTimeFormat=HH:mm
Figure 84: Customizing the Date-Time format

If this value is not set, the date time format string will default to HH mm ss.

Related reference

Dates

Dates are mapped to the SVR_DATE domain. Any server access bean that contains fields of this type
shows a date selector to the user for data input. These selectors are HTML fields with an adjacent pop-up
icon that causes a menu to be displayed allowing the user to select a date or date time with ease.

Representing Time-Only Values
As is described in related topics, Curam has a base type for date-only and date-time values. No specific
base type exists for time-only values.

A CURAM_TIME domain is provided in the initial configuration of Ciram and this configuration is used by
the client infrastructure to display a corresponding time-only widget. The widget also initiates certain
processing when parsing and formatting values based on this domain. However, the underlying data
representation is the same as for SVR_DATETIME and when it is working with time-only domains the
corresponding server-side code must ignore completely the date part of the value.

Because time-only domains are based on the SVR_DATETIME domain, the default values also will be the
same. The zero date time of 0001-01-01 00:00:00 is the value sent to the server if the field is left
blank. If the field is set to 00 : 00, then 00: 00 time value of today's date is sent.

204 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The time input field that is rendered for CURAM_TIME domain is an editable combination box as the
following example shows. The time input field contains selectable time values for every 30 minutes. The
exact time value also can be entered directly in the field.

The values to be selected are in the application-wide format set in
ApplicationConfiguration.properties, including AM/PM for the 12-hour display. A manually
typed value ends to follow the same format.

Customizing the Time Format
The application-wide time format setting can be changed by setting or modifying the timeformat and
timeseparator valuesinthe ApplicationConfiguration.properties file

For more information, see “Application Configuration Properties” on page 20.

Frequency Pattern Selector

In the frequency pattern selector pop-up, users can configure a frequency pattern; for example, daily,
weekly, monthly, bi-monthly or yearly. Frequency patterns are mapped to the FREQUENCY_PATTERN
domain. Any server access bean containing fields of this type will display a frequency pattern selector to
the user for data input. These selectors are non editable HTML text fields with an adjacent pop-up icon
which causes a pop-up menu to be displayed allowing the user to select a frequency pattern with ease.

Note that the functionality is based on JavaScript and it is important that the user have JavaScript
enabled in their browser for this selector to work. The appearance of the frequency pattern selector pop-
up can be altered by overriding its dedicated cascading stylesheet. See “Cascading Stylesheets” on page
29 for more details.

It is worth noting that the frequency pattern text selected varies in length, depending on the pattern
selected. This makes the display of the selected pattern prone to re-sizing and wrapping, depending on
the layout of the UIM page and the display space available.

Selection Lists

Within the Cdram application, the use of the standard HTML selection list i.e. the select element is
supported. Selection lists will truncate long data strings in order to preserve the correct page layout. To
combat this, the data's full value is available as a tooltip for each item in the list. The list can be populated
with data in a number of ways as described in the following sections.

Populated from a Code-Table

If a FIELD has a target connection mapped to a property based on a code-table domain, a drop-down
selection list will be displayed containing all code-table entries that are marked as "enabled". The entries
will be sorted alphabetically according to their code descriptions. This can be overridden by setting the
"sort order" of each entry. Consult the Cliram Server Developers Guide for full details on creating code-
tables in a Curam application.

When the selection list is displayed the initially selected item is evaluated as follows:
1. The code value specified by the source connection of the field.
2. The default code of the code-table if the FIELD element's USE_DEFAULT attribute is not set to false.

3. The first item in the selection list, if no default code is defined or the default code is marked as
"disabled".

4. Blank, if the FIELD element's USE_DEFAULT attribute is set to false.

A drop-down selection list can also be displayed as a scrollable selection list where a number of entries
are initially displayed instead of just one. To do this simply set the HEIGHT attribute of the FIELD element
to a value greater than 1.

Clram web client reference 205



Populated from Server Interface Properties

Data retrieved through server interface properties can also be used to populate a selection list. The
INITIAL connection end-pointis used in this case. The following are examples of a selection list on an
insert and a modify page.

<FIELD LABEL="Field.Label">
<CONNECT>
<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="pexrsonID"/>
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

Figure 85: Selection List on an Insert Page

In this example the field has an INITIAL connection end-point to populate the selection list and a
TARGET connection end-point to specify what field the selected value should be mapped to. The
PROPERTY attribute of the INITIAL connection end-point is the list of values you want the user to see in
the selection list. When the list is displayed, the first item in the list will initially be selected. The
HIDDEN_PROPERTY attribute specifies a list of corresponding values, when selected, will be mapped to
the property specified in the TARGET connection end-point. The target property is a single field, not a list.
In this example a list of people's names will be displayed but it is the selected person's unique ID that will
be mapped to the target property. In certain circumstances the set of values visible to the user may also
be what you want mapped to the target property. In this case do not use the HIDDEN_PROPERTY
attribute.

The following example shows the same selection list, but used on a modify page. The only difference is a
SOURCE connection end-point is used to specify what is selected in the list when the page is first
displayed.

<FIELD LABEL="Field.Label">
<CONNECT>
<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="sourcePersonID" />
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personlD"/>
</CONNECT>
</FIELD>

Figure 86: Selection List on a Modify Page

Drop-down, Scrollable and Checkboxed List types

Drop-down and Scrollable List

The selection list can be displayed as a drop-down list or as a scrollable selection list with a number of
entries visible. A drop-down selection list is displayed by default. To change this to a scrollable selection
list set the HEIGHT attribute of the FIELD element to a value greater than 1.The appearance of a selection
list differs from a drop-down list in two noticeable ways. For a drop-down list only the default value is
displayed and all the other selectable values are displayed only when the drop down arrow is selected.
Additionally the drop-down list is not scrollable. However, a scrollable selection list does not have the
drop-down arrow, a subset of the values are initially displayed - the size of the subset is dependent on the
value of the HEIGHT that is set. This list has a scrollbar which can be used to scroll the list, and view and
select the remainder of the selectable values.

206 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Checkboxed List

Checkboxed selection list offers an alternative method of selecting individual entries, in this case using
the check box control. This variation will be used if CONTROL attribute is set to CHECKBOXED_LIST. It is
just an alternative way of representation, so everything else applicable to Scrollable List applies for
Checkboxed List without change.

Adding an Empty Entry to a List for Non-Mandatory Fields

Browsers will select the first item in a selection list by default if no item is marked as selected. In certain
cases you may not want to "suggest" a value to the user. A blank entry would be more suitable. Set the
USE_BLANK attribute of the FIELD element to true to add a blank entry as the first item on the selection
list.

Enabling Multiple Selection

Browsers allow multiple items to be selected in a selection list. To enable this first use a scrollable list as
described above (you cannot select multiple items from a drop-down list). Then add the following to the
curam-config.xml file.

<MULTIPLE_SELECT>
<DOMAIN NAME="MY_DOMAIN" MULTIPLE="true"/>
</MULTIPLE_SELECT>a

Figure 87: Enabling multiple selection in curam-config.xml

For each domain which you want to enable multiple selection add a DOMAIN child element to the
MULTIPLE_SELECT element. If a FIELD has a target connection which is based on a domain listed in the
MULTIPLE_SELECT element, multiple selection will be enabled. When the form containing the selection
list is submitted, the selected values will be packaged into a tab-delimited string. Therefore the target
property must be based on a string domain. The same way, the source property in this case is also
expected in the form of a tab-separated string of values to be selected initially (the values should match
some of those specified via HIDDEN_PROPERTY).

Transfer List Widget

Overview

The Transfer List widget is a control used to facilitate multiple selections for a user (i.e. it is used as an
alternative to an regular list which has multiple selection enabled). It consists of two HTML select controls
placed side by side. The left control contains the items from which selections can be made (see See
“Drop-down, Scrollable and Checkboxed List types” on page 206 for more details on selection lists.), the
one to the right displays already selected items. Four buttons between the lists allow for selecting/de-
selecting individual or all items (transferring them from one list to another and back as required).

Configuration

The Transfer List widget is displayed instead of a regular HTML multiple selection control when configured
in one of the two ways described below. In order for all multiple selection controls in an application to be
displayed as Transfer List widgets, curam-config.xml should contain the TRANSFER_LISTS_MODE
element with its value is set to true. Alternatively, individual multiple select controls might be configured
to be displayed that way by setting the CONTROL attribute on the appropriate UIM FIELD to be
TRANSFER_LIST. This setting is applicable just for fields rendered as multiple selection controls on the
resulting UIM page and will be ignored in any other case.

The Transfer List widget requires the same data and the same configuration for enabling multiple
selection as a regular selection list.
User Preferences Editor

The User preferences editor allows a user to edit a user preference value for use anywhere within the
application. For details on the definition of user preferences please consult the Cliram Server Developers
Guide.

Curam web client reference 207



The editor may be accessed from the taskbar by clicking the preferences button. On clicking this button a
popup window should be displayed with a list of all visible user preferences. Those preferences that are
editable will appear as either a text field, radio buttons or a drop-down menu, depending on the type.

If the user wishes, they may edit the value of a preference and save the value using the Submit
Changes link. When the user returns to the editor the updated values will appear. Any changes to user
preferences using the editor will be applied immediately.

To return the values to those that were originally defined, the user should click the Reset to Default
link. Selecting either of these buttons will close the popup window.

Rules Trees

Introduction

The RESULT_TEXT domain contains information about the success or failure of a particular claim against a
set of rules. When the server supplies this information it is translated into a tree view displaying all rules.

The RULES_DEFINITION domain also produces a rules tree, in this case displayed with the rules editor.
For more details on the rules editor see “Rules Editor” on page 212.

It is possible to use the FIELD element's CONTROL attribute to change the format of the rules display. The
following sections will describe the various options for this attribute. Furthermore, the FIELD element's
CONFIG attribute can be used to configure these rules trees.

Behavior of Summary and Highlight-On-Failure Rules Flags
The summary-flag has no effect in this view. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a different color to those that have
succeeded.

Default Rules View

The default rules view of the rules tree, specified by setting the CONTROL attribute of the FIELD element
to DEFAULT, shows data in an expanded tree view using standard HTML. This view should be visible in
most standard web browsers. However, as the rules result is often quite verbose, the resulting output can
be confusing to the viewer of your web page.

Summary Rules View

To display a summary rules view, set the CONTROL attribute of the FIELD element to SUMMARY. The view
of this tree is very similar to the default rules tree view except that the details about why a rule failed or
succeeded are not displayed in the tree.

Any rules, regardless of type, marked as summary items are displayed. The following section, “Failed
Rules View” on page 208, describes a similar view that only displays rules items whose type is explicitly
set to rule. This view can be configured in the same manner as the dynamic rules view mentioned below.
See “Dynamic Rules View” on page 208.

Failed Rules View

To display a failed rules view, set the CONTROL attribute of the FIELD element to FAILURE. This view is
similar in layout to the previously mentioned summary view. See “Summary Rules View” on page 208

Any rules whose type is rule (and not objective or rule group for example) and are marked as
summary items are displayed. This view can be configured in the same manner as the dynamic rules view
mentioned below. See “Dynamic Rules View” on page 208

Dynamic Rules View

When the CONTROL attribute is set to DYNAMIC, this causes an expanding/contracting version of the
decision to be displayed instead of a static tree. In this view the entire tree is not displayed. The view is
"compressed" into multiple trees for each rules-item that has failed coupled with the "summary" flag on

208 IBM Curam Social Program Management: Ciram Web Client Reference Manual



the item. See “Behavior of Summary and Highlight-On-Failure Indicator” on page 211 for more details on
the summary flag. This is accomplished using scalable vector graphics (SVG) content displayed in the
Adobe SVG Viewer instead of HTML. Refer to the Cuiram v6 Supported Prerequisites document to see the
supported version of this Web Browser Plugin.

Although the dynamic view requires an extra browser plug-in, it provides the user with a much more
comprehensive and interactive view of the rules data. The rules tree is more comprehensively organized
with a supplementary conjunction text displayed next to the rules.

There is no need to set a HEIGHT or WIDTH as the rules window resizes itself automatically. The developer
is limited to two dynamic rules windows per page.

Localization of the text to display within the viewer is accomplished through JavaScript property files as
described in “JavaScript Externalized Strings” on page 40. The name of these JavaScript property files
should be SVGText. For example, SVGText.js_es.properties would be the name of the Spanish
language version of SVGText. js.properties file.

All style information related to the dynamic rules widgets is held in a separate file called
curam_svg. css. For further details see “Cascading Stylesheets” on page 29.

The developer can configure the rules tree using an XML configuration file. For all rules widgets based on
the RESULT_TEXT domain this configuration is read from RulesDecisionConfig.xml. A version of this
file should be in your components directory. This XML configuration file is merged during the build
process in a similar method to other XML configuration files.

The CONFIG attribute of the FIELD displaying rules is used to specify an ID matching a CONFIG element
inthe RulesDecisionConfig.xml file. The following is a sample of a RulesDecisionConfig.xml
file:

Clram web client reference 209



<RULES-CONFIG DEFAULT="default-config">
<CONFIG ID="default-config" HYPERLINK-TEXT="false">
<TYPE NAME="PRODUCT"
SUCCESS-ICON="Images/product-16x16.git"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="ASSESSMENT"
SUCCESS-ICON="Images/default-16x16.gif"
FATILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="SUBRULESET"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="OBJECTIVE_GROUP"
SUCCESS-ICON="Images/default-16x16.git"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="OBJECTIVE"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RULE_GROUP"
SUCCESS-ICON="Images/default-16x16.git"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RULE_LIST_GROUP"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RULE"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>
</CONFIG>
<CONFIG ID="Rules.Config.Core"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">
<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="0OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>
</RULES-CONFIG>

Figure 88: Sample RulesDecisionConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is
mandatory and should match an ID attribute value on a CONFIG element in this document. The default
configuration contains the icon information as well as the default nodes to link to if no configuration is
required for a widget. These are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE
attributes respectively.

210 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to
arules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Note that the CONFIG with the ID of value of Rules.Config.Coxre has the optional attribute OPEN-
NODE-PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open
when the page is loaded. This configuration file is also used for configuration of the dynamic full tree rules
view described in the next section.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page
parameter whose value will be the source for a new parameter (hamed by the DECISION-ID-TARGET)
appended to each link on the widget. The above example will look for a page parameter called source-
Decision-ID and pass on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISTION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD
attributes to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is
thrown if all three are present. The DECISION-ID-SOURCE attribute should be the name of a bean on the
page and the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the
decision ID value. The following is an example of this configuration:

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">
<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>

Figure 89: Example of Decision ID Sourced from a Bean

Behavior of Summary and Highlight-On-Failure Indicator
The highlight-on-failure indicator on a rules item does not have any effect in this view.

If an item fails and is marked as a summary item, this item should only be displayed as a separate tree if
no item along its parent path (i.e. any group that contains it) has failed and is marked as a summary item.
Consider the following tree of rule groups and rules and note the result and summary attributes on each
item. Note that this is purely for illustrative purposes and does not represent the data-format created by
the Rules Engine.

Curam web client reference 211



<decision>
<rules-item id="B" type="rule-group"
result="success" summary="true">
<rules-item id="C" type="rule"
result="success" summary="false" />
<rules-item id="D" type="rule"
result="fail" summary="true" />
</rules-item>
<rules-item id="E" type="rule-group"
result="fail" summary="true">
<rules-item id="F" type="rule"
result="fail" summary="false" />
<rules-item id="G" type="rule"
result="success" summary="false" />
</rules-item>
<rules-item id="H" type="rule-group"
result="success" summary="true">
<rules-item id="I" type="rule"
result="success" summary="true" />
<rules-item id="J" type="rule"
result="fail" summary="false" />
</rules-item>
</decision>

Figure 90: Example of Rules Tree Items with Summary Flag

A rule that fails and is marked as "not a summary item" may still display as long as it is contained within
another node that fails and has summary set to "true”. A rule that fails and is marked as "not a summary
item" will never display as the root of a tree in the dynamic rules view. So, the data above will result in
separate "trees" as follows.

-D

- E
-~ F
-- G

From the first rule-group "B", only the item "D" is displayed because it has failed and is marked as a
summary item. It appears as a single-node tree.

The rule-group "E" is marked as a summary item and it has failed, therefore it and all it's child nodes are
displayed no matter what the success\failure status or summary flag on the child nodes is.

The entire rule-group "H" is filtered out. "H" itself, and "I" have succeeded and will not be displayed.
Although "J" has failed it is not marked as a summary item and therefore is not displayed.

Dynamic Full Tree Rules View

When the CONTROL attribute is set to DYNAMIC_FULL_TREE a view, similar in functionality to the dynamic
rules view described in the previous section, is displayed. The main difference is that the entire rule set is
displayed, similar to the default rules view, although the tree is interactive thus requiring the SVG viewer.
There is no filtering of the display of rule groups in this view, potentially making it difficult to understand
for someone who is not familiar with the rules engine. Configuration of this view is through the
RulesDecisionConfig.xml file described in the previous section

Rules Editor

The RULES_DEFINITION domain produces the rules editor. This control has a default HTML-only view or,
if the FIELD 's CONTROL attribute is set to DYNAMIC, an SVG view. See “Default Rules View” on page 208
and “Dynamic Rules View” on page 208 for more information.

This widget uses the CONFIG attribute to specify an ID attribute value matching the ID attribute value of
a CONFIG elementinthe RulesEditorConfig.xml file. This XML configuration file is merged during the
build process in a similar method to other XML configuration files. The following is a sample of
RuleskEditorConfig.xml:

212 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<RULES-CONFIG DEFAULT="DefaultConfig">
<CONFIG ID="DefaultConfig" HYPERLINK-TEXT="true">
<TYPE NAME="Product"
SUCCESS-ICON="Images/product-16x16.git"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="Assessment"
SUCCESS-ICON="Images/default-16x16.gif"
FATILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="SubRuleSet"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="ObjectiveGroup"
SUCCESS-ICON="Images/default-16x16.git"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="ObjectivelistGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="Objective"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="SubRuleSetLink"
SUCCESS-ICON="Images/default-16x16.git"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RuleGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RulelistGroup"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="Rule"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>
<TYPE NAME="DataItemAssignment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
</CONFIG>
<CONFIG ID="Editor.Config"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">
<TYPE NAME="Product" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Assessment" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSet" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectivelListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Objective" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSetLink" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RulelistGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Rule"/>
<TYPE NAME="DataItemAssignment" EDIT-PAGE="RulesResult"/>
</CONFIG>
</RULES-CONFIG>

Figure 91: Sample RulesEditorConfig.xml File

Curam web client reference 213



Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is
mandatory and should match an ID on a CONFIG element in this document. The default configuration
contains the icon information as well as the default nodes to link to if no configuration is present for a
widget. These are covered by the SUCCESS-ICON, FATLURE-ICON, and EDIT-PAGE attributes
respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to
arules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Note that the CONFIG with the ID of value of Editor.Config has the optional attribute OPEN-NODE -
PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open to when
the page is opened.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page
parameter whose value will be the source for a new parameter (hamed by the DECISION-ID-TARGET)
appended to each link on the widget. The above example will look for a page parameter called source-
Decision-ID and pass on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-1ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISTION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD
attributes to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is
thrown if all three are present. The DECISION-ID-SOURCE attribute should be the name of a bean on the
page and the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the
decision ID value. The following is an example of this configuration:

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">
<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>

Figure 92: Example of Decision ID Sourced from a Bean

Meeting View

Overview

The meeting view is a control that displays scheduling information in a chart format. It is associated with
the USER_DAILY_SCHEDULE domain. The data to display in the meeting view is in XML format.
Configuration settings for the meeting view must be in a file called MeetingViewConfig.xml in a
component. The format for the XML data and configuration settings are described below. Finally, the
control has two modes of operation: single and multiple selection.

Single Selection Mode

In the single selection mode meeting view, the first column contains a list of users. The second column
indicates the duration of the event to be scheduled. The third column displays the times during the day
that the user is available or busy. The available times are hyperlinks that can be clicked to indicate the
schedule the start time for the meeting. Note that any parameters passed to a page containing the
meeting view will be included in any links within the view. Only start times that can accommodate the

214 IBM Curam Social Program Management: Ciram Web Client Reference Manual



relevant meeting duration will be hyperlinks. For example, if John Smith is busy from 10:30 until 12:30, it
is not possible to select 10:00 as the start time for a meeting with a duration of one hour and the 10:00
time slot will not be a hyperlink.

Note that any parameters passed to a page containing the meeting view will be included in any links
within the view.

Multiple Selection Mode

This view returns a tab-delimited list of the user IDs of selected rows. The meeting view widget in this
mode is the same as that described above for the single selection mode except that it has an extra
column which is inserted as the first column in the list and has a selectable checkbox for each list item.
The users in this mode of widget are chosen by selecting their associated check boxes. Time slots are not
hyperlinked and are for display only.

XML Formats
The meeting view control expects information in a specific XML format. Below is an example of this:

<SCHEDULE MODE="Single|Multiple" TYPE="User"
READ_ONLY="False" DATE="2003-30-10">
<USER NAME="John Smith" ID="12345" DURATION="90">
<BUSY START="2003-30-10 10:30:00" END="2003-30-10 12:30:00"/>
<BUSY START="2003-30-10 15:45:00" END="2003-30-10 16:15:00"/>
</USER>
<USER NAME="James Smith" ID="12346" DURATION="90">

<BUSY START="2003-30-10 12:30:00" END="2003-30-10 13:30:00"/>
<BUSY START="2003-30-10 15:00:00" END="2003-30-10 18:15:00"/>
</USER>
</SCHEDULE>

Note that in the format above: the MODE attribute is either Single or Multiple; the DURATION attribute
is in minutes; START and END attributes are date-times in the format "yyyy-MM-dd HH:mm:ss". The
READ_ONLY attribute, if set to false, indicates that no time slot will be selectable as a hyperlink. The
DATE attribute contains the date of the current scheduling and must be supplied. It should be in the
format "yyyy-MM-dd". Finally, the TYPE attribute associates the schedule information with configuration
settings which are also specified in an XML format as below:

<SCHEDULE_CONFIG>
<CONFIG TYPE="User" INTERVAL="15" START="08:00" END="16:00">
<USER_HOME PAGE="PersonHome"
ID_PARAM="UserID" NEW_WINDOW="True" />
<NEW_EVENT PAGE="AddNewEvent" ID_PARAM="UserID"
START_PARAM="start" END_PARAM="end" />
<KMULTI_SELECT PAGE="SelectedUsers"
TAB_STRING_PARAM="selectedUsers"
DATE_PARAM="eventDate" />
</CONFIG>
</SCHEDULE_CONFIG>

Where INTERVAL is the duration in minutes of each segment of the time line. This can be 15, 30, or 60.
Only these values are acceptable. The START and END attributes detail the beginning and end times of the
time line. They are in the form "HH:mm". Each CONFIG element can have the following sub-elements:

USER_HOME
The PAGE attribute details which page to link to when clicking on the user's name. The ID_PARAM
attribute is the name of the parameter to supply with the user's ID as a value. NEW_WINDOW attribute,
true by default, specifies if the link opens in a new window or not.

NEW_EVENT
The PAGE attribute details which page to link to when clicking on a time slot. The ID_PARAM attribute
is the name of the parameter to supply with the user's ID as a value. The START_PARAM attribute is
the name of the parameter to supply with the start time of the new event. Similarly, the END_PARAM
describes the name of the end time parameter. Both of these attributes will be in the current
application's date-time format.

Curam web client reference 215



MULTI_SELECT
The PAGE attribute details which page to link to when the submit button on the multi-select view is
pressed. TAB_STRING_PARAM is the name of the link parameter to supply containing the tab-
delimited string of selected users. DATE_PARAM is the name of another link parameter containing the
date of the event in question. The date value is taken from the value of the DATE attribute on the
SCHEDULE element.

Charts

Overview

Charts are displayed when one of the domains of CHART_XML, LINE_CHART_XML, PIE_CHART_XML or
BARCHART_XML domains (or any derivation of them) is used as the source of a field.

Note: Charts are rendered in the browser using Adobe Flex technology. which requires Adobe Flash
Player. Refer to the Curam Third-Party Tools Installation Guide for Windows document to see the
supported version of Adobe Flash Player.

Chart appearance

A bar chart displays a number of rows horizontally with a horizontal and vertical axis. Each row represents
a unit of information comprised of a caption and a stack of differently colored bars of variable length.
Their length represents the quantity of the unit in question and can be ascertained using the numbered
marks on the horizontal axis, or a data tip which is available when you hover over the unit, as described
below. The chart scale is chosen to fit the biggest stack of bars (this might be overriden by a configuration
setting). Each bar is a hyperlink to a page containing further information. The vertical axis of this chart
displays captions, describing each bar stack category. Captions might be dates, date ranges or textual
values. They are optionally rendered as hyperlinks leading to pages with additional information, in which
case captions are additionally visually indicated when hovered over. Both bar links and caption links are
configurable, as described in “Chart configuration” on page 217.

Textual captions might get longer than one line. In such a case long captions are wrapped within the
category segment. If a caption text exceeds two lines, though, it is truncated at that point and an
additional tool tip with the full label text is displayed when such a label is hovered over.

Both bar links and caption links are configurable, as described in “Chart configuration” on page 217.

A column chart is similar to the bar chart and configurable the same way, except that units of information
are displayed in column stacks rather than bars, and axes are interchanged accordingly. It is also possible
to configure a column chart so that it has a legend that describes what each of the possible shaded areas
in a column represents. The user can hover over a shaded area in a column, which displays what it
represents when mapped to an entry in the legend.

Another way of presenting chart information is to use a line chart. In this chart, information is rendered as
points in each category group, with points of the same type joined by straight lines (e.g. to represent data
changes over time). Line charts differ from bar and column charts in that neither the points nor lines are
currently hyperlinks. The same applies to line chart captions.

The last available chart type is a pie chart. Charts of this type are typically used to illustrate relative
magnitudes, frequencies or percentages. The arc length of each sector is proportional to the quantity it
represents. Together, the sectors create a full disk. Pie charts use callout-like labels, which provide details
of the item represented by a sector and its percentage in the pie. Sectors are rendered as hyperlinks,
leading to pages with additional information; however, chart labels are not currently available as
hyperlinks.

By default, charts are displayed without a legend so that all the available space can be dedicated to the
chart itself. However, charts can be configured to include a legend which shows extra information on what
is represented by the elements of the chart.

Data tips are displayed on a chart when you hover the mouse over a particular chart data element. Data
tips are shown regardless of whether a legend is included or not.

216 IBM Curam Social Program Management: Ciram Web Client Reference Manual



« The data tip for bar and column charts shows absolute and relative quantitative information attributed
to the element and the element stack, the category (group) to which that element belongs and the type
of the element (corresponding to an entry in the legend, if present).

« As line charts are not stacked, relative quantity information is not shown in their data tips; line chart
data tips are also displayed only when the mouse is over a data point and not over a line.

« For a pie chart, a data tip displays absolute quantitative information for the particular sector and the
percentage of the sector within the disk.

Note: Line charts always display a legend and this is currently not configurable.

Chart configuration

Various aspects of charts can be configured. This is accomplished by setting the CONFIG attribute on the
UIM field in question. The appropriate XML configuration file must contain a configuration section with a
unique identifier matching the text in the CONFIG attribute.

All the necessary chart configuration files are to be in your component directory.
Different types of charts are currently configured in separate configuration files:

« Bar charts and column charts both use ChartConfig.xml and are also backward compatible with the
previous configuration file version, BarChartConfig.xml (data is taken from whichever of those two
files contains a configuration with the required ID; if configurations with the same ID exist in both files,
the one found in ChartConfig.xml takes precedence).

e LineChartConfig.xml configuration file is used to look for line chart configuration data.
- Pie chart configuration data is to be placed into file PieChartConfig.xml

The following is a sample of a chart configuration file:

Curam web client reference 217



<CHART-CONFIG>
<CONFIG ID="Column.Chart.Config" ORIENTATION="VERTICAL"
X_AXIS_LABEL="Vert.BarChart.X-Axis"
Y_AXIS_LABEL="Vert.BarChart.Y-Axis">
<LEGEND CODETABLE="Attendance">
<ITEM CODE="CR1"/>
<ITEM CODE="CR2"/>
<ITEM CODE="CR3"/>
</LEGEND>
<LINK LOCATION="ComponentRedirect">
<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"
USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>
</LINK>
<CAPTION_LINK LOCATION="AnotherPage">
<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"
USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>
</LINK>
</CONFIG>

<CONFIG ID="BarChart.Config" ORIENTATION="HORIZONTAL"
CAPTION="Status.Caption"
CAPTION_TEXT_CODETABLE="Cars"
MIN_HEIGHT="200" MAX_HEIGHT="500">
<LEGEND VISIBLE="true" CODETABLE="0ldCars">
<ITEM CODE="CR1"/>
</LEGEND>
<LINK LOCATION="TransferPage">
<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
</LINK>
</CONFIG>
<CONFIG ID="BarChart.Config" TYPE="line"
CAPTION="Line.Chart.Caption">
<LEGEND>
<ITEM CODE="CR1"/>
</LEGEND>
<LINK LOCATION="ComponentRedirect">
<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
</LINK>
</CONFIG>
</CHART-CONFIG>

The CHART-CONFIG root element contains only CONFIG elements. The CONFIG element contains all
configuration for a particular field, identified by the ID attribute. The following table describes all
attributes of the CONFIG element. BarChart.properties referred to in this table is a properties file in
the client application's <CLIENT_DIR>\components\core folder, used to look up values required

Table 114: Attributes of the CONFIG element

Attribute Description
ID Unique identifier for this CONFIG element.
TYPE Can be either 1ine or pie, depending on required type of chart. If not

present, ORIENTATION attribute will be used to define if bar or column
chart is to be displayed.

218 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 114: Attributes of the CONFIG element (continued)

Attribute

Description

ORIENTATION

Can be either HORIZONTAL or VERTICAL, depending on required type of
chart, HORIZONTAL meaning bar chart and VERTICAL - column chart.

CAPTION_TEXT_CODETABLE

Code table currently used for label captions throughout a chart. If not
specified, literal values from chart data will be used.

MAX_VALUE

Maximum value for a numeric axis of column or bar chart. Automatically
calculated to fit the maximum element, if not specified.

MAX_INCREMENT

Maximum increment value for a numeric axis of a chart. Numbered ticks
are drawn on a chart at the specified intervals. If not specified,
numbered ticks are placed at uniform intervals along the numeric axis,
taking into account it's maximum value.

X_AXIS_LABEL

Key to a text property in BarChart.properties. This text is used as
the label for the x-axis in the column or line chart, or y-axis in the bar
chart. Not used on pie chart.

Y_AXIS_LABEL

Key to a text property in BarChart.properties. This text is used as
the label for the y-axis in the column or line chart, or x-axis in the bar
chart. Not used on pie chart.

MIN_HEIGHT

This setting is used to define minimum chart object height and is to be
specified in pixels. Where a chart contains a small number of items and
would be short based on that content size, minimum height introduced
by this setting is used. The setting is optional, so 250px default
minimum height is used if MIN_HEIGHT is not specified.

MAX_HEIGHT

This setting is used to define the maximum chart object height on screen
and should be specified in pixels. Where a chart contains numerous
items and its contents exceeds the MAX_HEIGHT specified, this setting
is used for the chart object height and a vertical scrollbar appears to
allow for access to the rest of the items in the chart. The setting is
optional and a default of 250px is used if the attribute is not specified. A
value of -1 for MAX_HEIGHT means that the chart takes whichever
height its content needs to be displayed in full. It is worth noting that the
minimum height setting, either default or explicit, is still taken into
account in this case. As a result, charts with little content will not be
shorter than minimum or default height implies. Finally, a chart with
MAX_HEIGHT set to -1 will not display its vertical scrollbar and the
browser scrollbar will appear once the chart is too big to fit into the
screen area available.

CAPTION

Key to a text property in BarChart.properties. This text is used as
the label for the whole chart.

Note: The example lists sample ChartConfig.xml contents. The older format in
BarChartConfig.xml is almost the same except that the root element is called BARCHART - CONF IG.

The older versions of BarChartConfig. xml do not contain configuration for label links. This element
might be added, if required to this file directly; it is preferable, though, to create appropriate full
configuration with the same ID in the ChartConfig.xml which will override the older version.

MIN_HEIGHT and MAX_HEIGHT settings currently do not apply to line or pie charts and will be ignored for

these types.

The CONFIG element has three child elements: LEGEND, LINK and optional CAPTION_LINK.

Clram web client reference 219



« The LEGEND element defines the items available for use in the TYPE attribute of a BLOCK element in
chart data returned from the server. The element has an optional CODETABLE attribute, specifying the
code table used for legend item translation, and an optional VISIBLE attribute which indicates if the
legend should be seen on screen or not. This attribute has a default value of false, so it must be
explicitly set to true in order for the legend to be displayed.

The ITEM child element of specifies each legend entry. Its CODE attribute is the text or code table code
used to identify a legend item. The code table containing the CODE value will be ascertained first from
the CAPTION_TEXT_CODETABLE value of the CONFIG element, then the CODETABLE attribute on the
LEGEND element value, or, in case neither of these attributes are present or do not apply to a particular
CODE, the literal value will be used as a caption. The same caption is used for a context data tip
displayed when mouse pointer is over a corresponding chart element.

« The LINK child element is used to configure hyperlinks on bar chart bars and column chart columns or
pie chart segments. Its LOCATION attribute is the ID of the UIM page to link to. A LINK element can
have any number of PARAMETER child elements. The NAME attribute of a PARAMETER is the name to give
the parameter when transferred as part of hyperlink. The VALUE attribute is the name of the attribute on
the BLOCK element or the CAPTION element in the chart input data returned from the server (see
below) to use as a parameter value unless USE_PAGE_PARAM is true, in which case VALUE is the name
of a page parameter.

« Finally, the CAPTION_LINK element is used whenever chart captions are intended to be rendered as
links and contains separate settings for such links. The CAPTION_LINK element contents are similar to
those of the LINK element. When this element is skipped, captions are displayed as static text. Also,
captions as links are currently supported on bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by creating a properties file called
BarChart.properties inthe client application's <CLIENT_DIR>\components\core folder and
placing there values under keys, corresponding to the ones specified among CONFIG element parameters
as described above.

In addition, the text displayed for the word total displayed in the bar tool-tips is customizable using the
key total.tooltip.text in the BarChart.properties file.

Note: Bar colors are not customizable in charts and are automatically calculated by Adobe FLEX.

Collapsible Cluster Support: Collapsible clusters are not supported for any cluster containing this
widget.

Chart Data Formats
The data to be displayed in a chart comes from the server in XML format.
Below is example of the XML used to create a chart:

<CHART>
<UNIT>
<CAPTION TEXT="TR1" START_DATE="2004-12-31"
END_DATE="2005-03-06"/>
<BLOCK ID="1" TYPE="CR1" DUE_DATE="2005-01-01" LENGTH="33"/>
<BLOCK ID="2" TYPE="CR3" DUE_DATE="2005-02-01" LENGTH="14"/>
</UNIT>
<UNIT>
<CAPTION TEXT="TR2" START_DATE="2004-12-31" />
<BLOCK ID="3" TYPE="CR3" DUE_DATE="2005-01-02" LENGTH="11"/>
</UNIT>
<UNIT>
<CAPTION TEXT="TR3" END_DATE="2005-03-08" />
<BLOCK ID="4" TYPE="CR1" DUE_DATE="2005-01-03" LENGTH="22"/>
<BLOCK ID="5" TYPE="CR2" DUE_DATE="2005-01-09" LENGTH="15"/>
<BLOCK ID="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>
</UNIT>
</CHART>

Figure 93: Sample Horizontal Bar Chart XML

220 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The root element, CHART, can contain any number of UNIT elements. These elements are used to group
related information into groups (clusters) and contain one CAPTION element and one or more BLOCK child
elements.

The CAPTION element displays an appropriate caption depending on what attributes are set:

« If either the START_DATE or both START_DATE and END_DATE attributes are set, then the caption will
be either a single start date or a range of dates.

- If the TEXT attribute is set, then the caption text is first looked for in the code table specified in the
CAPTION_TEXT_CODETABLE attribute of the CONFIG element (see above), then looked for as a
property in BarChart.properties using the TEXT value as a key, or, if neither attempt is a match, the
literal TEXT value is rendered as a caption.

Each BLOCK element represents a block to be drawn on a chart as a bar, column, line chart point or pie
chart sector. This element must have an associated TYPE attribute to match it with a particular item. The
LENGTH attribute is necessary to define the measurement of the block. In the bar or column chart this is
the length/height of a bar/column; in a line chart it's the position of an edge point; in a pie chart it's the
relative sector arc length. The ID attribute is a unique identifier for a block and can be used as a
parameter for any hyperlinks. The optional DUE_DATE attribute can also be used as an ID parameter for
hyperlinks on a particular block. It represents the due date for a given block.

Note:

« There are no restrictions on the number or names of the attributes of BLOCK element. This facilitates
passing an arbitrary set of attributes in the links from a chart (provided the configuration is updated
appropriately). However, one should keep in mind, that the names of the attributes provided in this
section are reserved and bound to the particular elements, i.e. even though START_DATE attribute
could be added to a BLOCK element, in this case it will be interpreted as a literal value and not a date as
it would be in the context of CAPTION element.

 Due to the nature of pie chart, no more than one BLOCK element will be processed and displayed in this
type of chart.

Heatmap Widget

Overview

The Heatmap widget is a control which displays a grid of items of different importance. Items in the
widget are presented by color shades varying from red to blue, indicating their importance level from
highest to lowest.

The widget is inserted into the page when the XML_HEATMAP domain is associated with UIM source
property of a FIELD.

The Heatmap widget expects XML data from the server in the following format:

<HEATMAP>

<REGION REGION_ID="R1" LABEL="highest importance"/>

<REGION REGION_ID="R2" LABEL="middle importance">
<ITEM ITEM_ID="id9" LABEL="0009" />
<ITEM ITEM_ID="id10" LABEL="0010"/>
<ITEM ITEM_ID="id21" LABEL="0021"/>

</REGION>

<REGION REGION_ID="R3" LABEL="lowest importance">
<ITEM ITEM_ID="id22" LABEL="0022"/>

</REGION>

</HEATMAP>
Here, the REGION elements specify the importance level ("heat") of their contained ITEM s. There should

be at least two regions in a heatmap widget. The color will always start from red, so if no items of that
importance are there, empty REGION elements should be inserted for the widget to render properly.

Curam web client reference 221



Configuration

Different types of heatmap can be configured by creating entries in the HeatmapConfig. xml file in your
components directory, using the following format:

<HEATMAP_CONFIG>
<CONFIG ID="Mapl" NUM_COLS="10" NUM_ROWS="4"
LEGEND_POSITION="LEFT"
LEGEND_TITLE="Deadline"
LEGEND_TITLE_PROPERTY="Localised.lLegend.Title">
<ITEM_LINK PAGE_ID="Sample_page">
<PARAM NAME="configParameter" VALUE="ITEM_ID"/>
</ITEM_LINK>
</CONFIG>
<CONFIG ID="Map2" NUM_COLS="6">
</CONFIG>
</HEATMAP_CONFIG>

The attributes of a CONFIG element are summarized in the following table:

Table 115: Attributes for CONFIG element

Attribute Description

NUM_COLS This attribute allows you to set the number of items displayed in each
row of the Heatmap

NUM_ROWS This attribute allows you to specify the number of visible rows in the
Heatmap. If this attribute is set to less rows than are required to display
the data, a vertical scrollbar will be provided. If this attribute is not
present, the widget will expand to display as many rows as are required.

LEGEND_POSITION By default, the Heatmap legend is drawn to the right of the widget. This
attribute can be used to draw the legend to the left instead, by setting
it's value to LEFT.

LEGEND_TITLE The default title for a legend is Legend. This attribute can be used to
specify a more logical title to use.

LEGEND_TITLE_PROPERTY |[Optional attribute used to customize/localize the displayed title. The
value here is the key in the CDEJResources.properties file or its
localized version (see “Localization” on page 38 for more details on
localization).

The ITEM_LINK element can be used to specify the page to which to link when a user clicks on an itemin
the Heatmap, by setting it's PAGE_ID attribute. The PARAM child element can be used to specify what
page parameters to pass (the NAME attribute) and what data items to use as their value (the VALUE
attribute). Values which don't match any attributes in the ITEM elements in the Heatmap XML are
assumed to be literal values.

To specify which configuration to use for a given instance of the Heatmap widget, the CONFIG attribute of
the field containing the widget should be set to the ID of the desired configuration.

Workflow

Overview

A workflow depicts a series of steps that routinely take place in order for a unit of work to be completed.
The WORKFLOW_GRAPH_XML domain, or any derivation of it, causes a workflow to be displayed. The
data to be displayed in a workflow comes from the server in XML format. Configuration settings for the
Workflow must be in a file called WorkflowConfig.xml, of which there can be only one per component.
The format for the XML data and configuration settings are described below. Any static text for this view

222 IBM Curam Social Program Management: Ciram Web Client Reference Manual



can be customized and localized by creating a properties file called Workflow.properties in the client
application's <CLIENT_DIR>\components\core folder.

Workflow Details

In a workflow view, a box, along with a representative icon, represents a discrete unit of work and is
called an activity. Any line connecting nodes is called a transition and is intended to illustrate the flow of
work. For this reason, the start and end activities are represented by icons only. Workflow proceeds from
the left and ends at the right-most activity. An activity is a hyperlink to a tab containing further details on
that activity. An activity can have a second, smaller icon indicating that there is a notification on this
activity. Clicking on the notification icon (a small envelope in the image below) will open a separate tab
with details of the notification.

An activity has an entry point and an exit point for a transition, on the right and the left respectively. When
two or more transitions leave an exit point this is called a split. The transitions in a split can be given a
number to indicate their relative progression. When two or more transitions meet at an activity's entry
point this is called a join. If either a join or a split is an "and" type, also called a "conjunction”, then it is
represented as a small square. This implies that a series of transitions have to take place together in order
for the workflow to proceed. If a join or a split is an "xor" type, an either-or situation, then a small circle is
used. There are examples of both in the figure below. Finally, a transition can have an associated
transition condition. This means that certain criteria have to be met in order for a transition to proceed.
This is represented by an asterisk on the transition and the full condition information is displayed in a
pop-up if the user hovers the mouse over the symbol.

4

i

“of

: "'"'-"'.'".-':l'?'?

Figure 94: Workflow

Workflow XML Formats

The workflow widgets require XML data that conforms to the workflow schema defined in the
workflow. xsd file located in the 1ib\curam\xml\schema folder of your CDEJ installation folder.
Below is an example of workflow XML data:

Curam web client reference 223



<WORKFLOW ID="4791830003522207744" PROCESS-VERSION="1">

<NODE ID="6953557824660045824" X="2.0" Y="1.0"
TEXT="Loop Activity [End]" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT9" HAS-NOTIFICATION="true"
IS-EXECUTED="false" SPLIT-TYPE="AND" JOIN-TYPE="AND"
TASK-ID="1"/>

<NODE ID="-3566850904877432832" X="3.0" Y="1.0"
TEXT="EndProcessActivity" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT7" IS-EXECUTED="false"
JOIN-TYPE="AND" TASK-ID="2"/>

<NODE ID="2702159776422297600" X="1.0" Y="2.0"
TEXT="Activity 1" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT5" IS-EXECUTED="false"
SPLIT-TYPE="AND" JOIN-TYPE="AND" TASK-ID="3"/>

<EDGE FROM="6953557824660045824" T0="-3566850904877432832"
HIDDEN="false" TRANSITION-ID="1621295865853378560"
IS-EXECUTED="false" REVERSE-ARROW="false"/>

<EDGE FROM="3566850904877432832" T0="2702159776422297600"
HIDDEN="false" TRANSITION-ID="0" IS-EXECUTED="false"
REVERSE-ARROW="tTue"/>

</WORKFLOW>

The root element, WORKFLOW, can have any number of NODE (activity) and EDGE (transition) elements. The
ID attribute on WORKFLOW identifies this particular workflow as does the PROCESS-VERSION attribute.

The NODE element represents a single activity in the workflow. All attributes of a node are defined in the
following table:

Table 116: Attributes of a Node

Attribute Description

ID Unique identifier for this element, supplied as a parameter in the row
header hyperlink.

X An x-coordinate for an element on the workflow graph.

Y A y-coordinate for an element on the workflow graph.

TEXT The text of an activity.

ACTIVITY-TYPE-CODE Code for an activity type. Used as a parameter in a hyperlink.

HIDDEN Boolean property to indicate if an edge or node is to be hidden. If true
the node will not be displayed.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for
a particular process instance. If set to true then the activity has been
executed.

SPLIT-TYPE The split type associated with an activity.

JOIN-TYPE The join type associated with an activity.

ACTIVITY-INSTANCE-ID The unique identifier of an activity instance for a particular process
instance.

START-DATE-TIME The start date time of an activity instance or transition instance for an
executed or currently executing process.

END-DATE-TIME The end date time of an activity instance or transition instance for an
executed or currently executing process.

STATUS The current status of an activity instance.

TASK-STATUS Code for the status of a task.

TASK-RESERVED-BY The name of the user reserving the task.

224 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 116: Attributes of a Node (continued)

Attribute Description

TASK-TOTAL-TIME-WORKED [The total time worked on a task in seconds.

NUMBER-ITERATIONS The number of times the activity contained in a node has been executed.
TASK-1D The unique identifier for the task.

The EDGE element represents a single transition in the workflow. All attributes of an edge are defined in
the following table:

Table 117: Attributes of an Edge

Attribute Description

FROM The ID of the node this edge is from.

TO The ID of the node this edge is to.

TRANSITION-ID The unique identifier of a transition.

IS-FOLLOWED Boolean property to indicate if a particular transition has already been

followed for a process instance.

TRANSITION-INSTANCE-ID |The unique identifier of a transition instance for a particular process

instance.

REVERSE-ARROW Boolean property to indicate if an arrow on an edge should be reversed.
In this case, the arrow will be going into the FROM node instead of the TO
node.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for
a particular process instance. If set to true then the activity has been
executed.

TRANSITION-CONDITION The condition associated with a transition in an edge.

REAL_FROM ID of a node that this edge is actually from as opposed to an
intermediate hidden node identified by the FROM attribute.

REAL_TO ID of a node that this edge is actually to as opposed to an intermediate
hidden node identified by the TO attribute.

ENABLED Boolean property to indicate if an edge is to be enabled as a hyperlink.
This attribute is false by default.

ORDER Indicates the order of an edge relative to other edges.

As mentioned above, workflow charts are configurable. This is accomplished by setting the CONFIG
attribute on the UIM field in question. The WorkflowConfig.xml XML configuration file must contain a
configuration section with a unique identifier matching the text in the CONFIG attribute. The XML schema
format for this file is defined in the workflow-config. xsd file located in the 1ib\curam\xml\schema
folder of your CDEJ installation folder. The following is a sample of this file:

Clram web client reference 225




<WORKFLOW_CONFIG>
<ICON CODE="AT1" PATH="Images/manual.gif"/>
<ICON CODE="AT2" PATH="Images/automatic.gif"/>
<ICON CODE="AT4" PATH="Images/subflow.gif"/>
<ICON CODE="AT5" PATH="Images/route.gif"/>
<ICON CODE="AT6" PATH="Images/eventwait.gif"/>
<ICON CODE="AT7" PATH="Images/endprocess.gif"/>
<ICON CODE="AT8" PATH="Images/loopbegin.gif"/>
<ICON CODE="AT9" PATH="Images/loopend.gif"/>
<ICON CODE="AT10" PATH="Images/decision.gif"/>
<ICON CODE="AT11l" PATH="Images/startprocess.gif"/>
<ICON NOTIFICATION="true"
PATH="CDEJ/cdej-images/notification.gif"/>
<CONFIG ID="WorkFlow.Config"
NOTIFICATION_PAGE="viewActivityNotification"
DETAILS_PAGE="componentRedirect"
START_PROCESS_TYPE="AT11" END_PROCESS_TYPE="AT7"/>
</WORKFLOW_CONFIG>

The WORKFLOW_CONFIG root element contains CONFIG elements and ICON elements. The CONFIG
element contains all configuration for a particular field, identified by the ID attribute. The following table
describes all attributes of the CONFIG element:

Table 118: Attributes of Workflow CONFIG element

Attribute

Description

ID

Unique identifier for this configuration.

DETAILS_PAGE

ID of a UIM page to use as a destination for a hyperlink on a
node.

HEIGHT

Height in pixels of a workflow chart. If height is not specified,
a height will be chosen that attempts to maximize the use of
available space.

ACTIVITY_CODETABLE

Codetable name for resolving ACTIVITY-TYPE-CODE
attribute values.

TASKSTATUS_CODETABLE

Codetable name for resolving TASK-STATUS attribute values.

PROCESSSTATUS_CODETABLE

Codetable name for resolving the status of a process instance
(e.g. In Progress, Completed, Suspended or Aborted).

SHOW_INSTANCE_DATA

Determines if the chart should display a text area containing
all instance data information. Valid settings are true and
false.

START_PROCESS_TYPE

Code identifying the ACTIVITY-TYPE-CODE set as the start
process type. This activity will be drawn without a box.

END_PROCESS_TYPE

Code identifying the ACTIVITY-TYPE-CODE set as the end
process type. This activity will be drawn without a box.

NOTIFICATION_PAGE

ID of a UIM page to use as a destination for a hyperlink on a
notification icon.

READONLY_VIEW

Determines if the links on a workflow graph should be
disabled.

HIGHLIGHT_ACTIVITY_PARAM

Represents the parameter used to determine the current
activity in a workflow. The value of the parameter is matched
with a corresponding attribute in the XML data returned from
the server to indicate which node has to be highlighted.

226 IBM Curam Social Program Management: Ciram Web Client Reference Manual




The ICON child element of the WORKFLOW_CONFIG root element defines all icons for the workflow chart.
Either the CODE attribute or the NOTIFICATION attribute defines what kind of icon this is. If CODE is set
then the ACTIVITY-TYPE-CODE on a NODE is used to match an icon to a particular activity type. If the
NOTIFICATION attribute is set to true then this icon is used as a graphic depicting a notification present
on an activity. The PATH attribute on ICON is used to point to an image file, relative to your project's
WebContent directory.

Evidence View

This view has two modes for displaying and comparing evidence data.

Evidence Display Mode

The EVIDENCE_XML domain results in a table displaying evidence items. There are three columns in the
table. The first displays the evidence item name, the second shows the group to which evidence item
belongs and the value of the item is displayed in the third column. The value of the item will be formatted
based on it's domain.

Evidence Comparison Mode

The EVIDENCE_XML_COMPARE domain results in three tables displaying evidence comparison results.
The comparison results consist of three tables to display items which were modified, added or deleted. All
three tables follow the same format: the first column displays the evidence item name; the second
column displays the group which the evidence item belongs to and corresponding values are displayed in
the third (the modified evidence table will have a fourth fourth column to show previous values against
current values) column.

Configuration

The evidence view is configurable by changing settings in appropriate properties files. For Evidence
Display mode this is the DisplayEvidence.properties file and for Evidence Comparison mode
configuration, ComparedEvidence.properties file is used. These properties files should be created in
the <CLIENT_DIR>\components\cozre folder.

Configuration files contain table headers and captions for all the columns as well as visibility settings for
each column. There is also a links section for specifying links to pages for each evidence item and item
group column if needed. If a link is not required, leave the value empty rather than deleting the property
itself. Also there are properties containing textual substitution for an empty value case and textual insert
used in evidence item name.

Note: The properties specifying visibility settings are not localizable strings and should contain either
"true" or "false" depending on desired visibility of the corresponding column.

Below is an example of the configuration settings for display evidence mode:

Curam web client reference 227



#Textual descriptions for comparison sections.
Table.Summary.Single=This table contains evidence items.

# Comparison section labels
Evidence.Table.Label=Evidence Items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Value.Column.Header=Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Value.Column.Visible=true

# Localizable messages
Message.No.Value=This item is not set
Message.Item.Joint=referenced by rule item

f#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

The following is an example of the configuration settings for the evidence comparison mode:

#Textual descriptions for comparison sections.
Table.Summary.MODIFIED=This table contains modified evidence
Table.Summary.NEW=This table contains newly added evidence items.
Table.Summary.REMOVED=This table contains removed evidence.

# Comparison section labels

Evidence.Label .MODIFIED=Modified evidence
Evidence.Label.NEW=Newly added evidence items
Evidence.lLabel.REMOVED=Removed evidence items

##fColumn headers
Description.Column.Header=Rule
Group.Column.Header=Group
Oldval.Column.Header=Previous Value
Value.Column.Header=New Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true

Oldval.Column.Visible=tzue
Value.Column.Visible=true

f#fLinks (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

Data Format

The Evidence view expects the following XML format. Below is an example for Evidence Comparison
mode:

228 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<EVIDENCE_COMPARE>
<EVIDENCE TYPE="MODIFIED">
<GROUP ID="modlID"
DESCRIPTION="en|EvidenceGroupl">
<EVIDENCE_ITEM ID="modItemlID"

DESCRIPTION="en|Number of Children"

OLDVAL="11" VALUE="13"
DOMAIN="SVR_INT32"/>
</GROUP>
<GROUP ID="mod2ID"
DESCRIPTION="en|EvidenceGroup2">
<EVIDENCE_ITEM ID="modItem3ID"
DESCRIPTION="en|Are you married"
OLDVAL="false" VALUE="true"
DOMAIN="SVR_BOOLEAN"/>
</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="NEW">
<GROUP ID="newlID"
DESCRIPTION="en]|EvidenceGroupl">
<EVIDENCE_ITEM ID="newItemlID"
DESCRIPTION="en|Number of cars"
VALUE="6"
DOMAIN="SVR_INT32"/>
</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="REMOVED">
<GROUP ID="dellID"
DESCRIPTION="en|Deletion">
<EVIDENCE_ITEM ID="delItemlID"
DESCRIPTION="en|Number of houses"
OLDVAL="1"
DOMAIN="SVR_INT32"/>
</GROUP>
</EVIDENCE>
</EVIDENCE_COMPARE>

The following is an example of the Evidence Display mode:

Curam web client reference 229



<evidence>
<group id="groupl" display-name="EvidenceGroupl">
<item name="itemll"
display-name="Number of Children"
initial-value="13" no-value="false"
type="SVR_INT32"/>
<item name="iteml2"
display-name="item with no value"
initial-value="" no-value="true"
type="SVR_STRING" />
</group>
<group id="group2" display-name="EvidenceGroup2">
<item name="item21"
display-name="Are you married"
initial-value="true" no-value="false"
type="SVR_BOOLEAN" />
<item name="item22"
display-name="Some important dates"
initial-value="" no-value="false"
type="SVR_DATE">
<value position="10" description="Important date 1"
value="20050401TO0O000">
<value position="18" description="Important date 2"
value="20050601TO00000">
<value position="5" description="Important date 3"
value="20051231TO00000">
</item>
</group>
</evidence>

The display-name attribute represents a description for every item or group, the description does
the same for the value element. Group ids, evidence item names and value descriptions are supplied by
the evidence text returned from the rules engine. The type attribute is used to select particular
representation for different data types from the server. The name attribute of item and the id attribute of
group are used as link parameters if a link is specified for the first or second column.

Calendar

The calendar is used by any UIM page which displays a field from a server access bean containing a
CALENDAR_XML_STRING domain. This view allows for scheduling of events from different time-frames;
monthly, weekly and daily.

Programmatically, the calendar expects to be populated with information about events in an XML format.

The following is an example of what the XML received from the server might look like:

230 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<CURAM_CALENDAR_DATA TYPE="UserCalendar">
<EVENT>
<ID>1</ID>
<DATE>2002-10-10</DATE>
<STARTTIME>10:10:10</STARTTIME>
<ENDTIME>10:10:10</ENDTIME>
<DURATION>0O</DURATION>
<DESCRIPTION>Hello World!</DESCRIPTION>
<STATUS>ATS1</STATUS>
<PRIORITY>AP1</PRIORITY>
<LEVEL>AL1</LEVEL>
<RECURRING>false</RECURRING>
<READ_ONLY>false</READ_ONLY>
<ALL_DAY>false</ALL_DAY>
<ATTENDEE>true</ATTENDEE>
<ACCEPTANCE>true</ACCEPTANCE>
</EVENT>
<SINGLE_DAY_EVENT>
<ID>2</ID>
<DATE>2003-04-01</DATE>
<TYPE>ET1</TYPE>
<DESCRIPTION>April Fool's Day</DESCRIPTION>
</SINGLE_DAY_EVENT>
</CURAM_CALENDAR_DATA>

Figure 95: Calendar XML Stream

Notice that there can be two kinds of event elements contained within the CURAM_CALENDAR_DATA XML
data: EVENT and SINGLE_DAY_EVENT. In the schema of the XML data expected the root element,
CURAM_CALENDAR_DATA, can hold any number (zero to many) of EVENT and SINGLE_DAY_EVENT
elements; CURAM_CALENDAR_DATA can optionally have a TYPE attribute which associates this sequence
of events with a particular calendar configuration (see example below).

The following tables describe the schema definitions for each of the attributes allowed on the EVENT and
the SINGLE_DAY_EVENT elements respectively.

Table 119: EVENT attributes in schema

Attribute Name Description Required
ID A string to uniquely identify this event.
DATE The date of the event in xs:date format: (CCYY-MM-DD) [ No

I.e. 21- Aug-2002 is represented as 2002-08-21.

STARTTIME The start time in xs:time format: (hh:mm:ss). I.E. 1:34
pm and 56 seconds is represented as 13:34:56.

ENDTIME The start time in xs:time format: (hh:mm:ss). No

DURATION The duration of the event in minutes. This should be an | No
integer.

DESCRIPTION A Description of the event. No

STATUS The status of the event. This node is limited to values No

stored in the ActivityTimeStatus code table in the
reference application.

Clram web client reference 231



Table 119: EVENT attributes in schema (continued)

Attribute Name Description Required

PRIORITY The priority of the event. This node is limited to values No
stored in the ActivityPriority code table in the reference
application.

LEVEL Code that shows the level of the activity. This node is No
limited to the values stored in the ActivityLevel code
table in the reference application.

RECURRING Recurring indicator: true if this event is a recurring event. | No
Otherwise false.

READ_ONLY Read-only indicator: true if this event is a read-only No
event. Otherwise false.

ALL_DAY All-day indicator: True if this is an all-day event. No
Otherwise false.

ATTENDEE Attendee indicator: true if the user is attending a No
meeting. Otherwise false.

ACCEPTANCE Acceptance indicator: True if the user has accepted an
invitation to a meeting. Otherwise false.

POSITION For a spanning event, indicates first or last component of | No
the event.

Table 120: SINGLE_DAY_EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event. No

DATE The date of the event in xs:date format. No

TYPE The type of a single day event. No

DESCRIPTION A Description of the event. No

Once a field based on the CALENDAR_XML_STRING domain returns XML information formatted according
to the aforementioned schema, it will be displayed in the appropriate time position by the calendar. Any
web page containing a calendar can be set to open on different dates and views by specifying the
startDate and calendarViewType parameters in the page's URL. The startDate parameter should be
formatted according to the date format expected by the application and the calendarViewType parameter
should be one of the following codes.

Table 121: Calendar View Type Values

Code

Value

CVT1

Day view

232 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 121: Calendar View Type Values (continued)
Code Value
CvT2 Week view
CVT3 Month view

You can configure the display of calendar information using the CalendarConfig. xml file. There should
be at least one copy of this in the components folder. This file should contain configuration information for
each type of calendar, the TYPE attribute of the CURAM_CALENDAR_DATA element mentioned above
associates a calendar data stream with a particular type. The following is an example of the structure of
the CalendarConfig.xml

<CONFIGURATION MONTH_CELL_HEIGHT="4"
SHOW_REPEAT_EVENT_TEXT="true">
<CALENDAR TYPE="UserCalendar">
<DESCRIPTION_LOCATION>DetailsPage.do</DESCRIPTION_LOCATION>
<DAY_VIEW_TIME_FORMAT>24</DAY_VIEW_TIME_FORMAT>
</CALENDAR>
<EVENT_TYPES>
<TYPE NAME="ET1" ICON="Images/mandatory.gif"/>
<TYPE NAME="ET2" ICON="Images/case.gif"/>
<TYPE NAME="ET3" ICON="Images/concern.gif"/>
</EVENT_TYPES>
</CONFIGURATION>

Figure 96: CalendarConfig.xml Example

The overall schema for this configuration file specifies the CONFIGURATION element as the root element.
The CONFIGURATION has an optional MONTH_CELL_HEIGHT attribute which sets the maximum number
of rows to display in a single cell in the month view. The default value is three. The
SHOW_REPEAT_EVENT_TEXT optional attribute, if set to true, will display the event description in each
month cell if an event spans multiple days. This attribute is false by default.

The CONFIGURATION root element can hold any number of CALENDAR elements and a single
EVENT_TYPES element. The TYPE attribute of CALENDAR associates this configuration information with
an XML stream returned from the server. The DESCRIPTION_LOCATION element of CALENDAR is for
constructing a link to a page containing more information on any event in the calendar. The following table
lists the parameters passed with this hyperlink.

Table 122: Parameters Passed to Event Description Pages

Parameter Name Description

ID the event ID

RE Recurrence indicator
AT Attendee indicator
RO Read-only indicator
LvV_ Activity level

AC Acceptance indicator

Clram web client reference 233




The CALENDAR element should also contain an element called DAY_VIEW_TIME_FORMAT. The valid
values for this element are 12 and 24. They specify whether the time in the day view is displayed using a
12 or 24 hour format.

The EVENT_TYPES element is used for mapping images to display as icons next to single day events. The
NAME attribute of the TYPE element must match a TYPE element on a SINGLE_DAY_EVENT supplied by
the server for the image specified by the ICON attribute to be displayed.

The schema for the calendar configuration file (CalendarConfiguration.xsd) and the schema for the
CALENDAR_XML_STRING domain (CuramCalendar. xsd) are located in your project's WebContent/
WEB-INF/CDEJ/schema folder.

Payment Statement View

The payment statement view is used for displaying under or over payment within the Ciiram application
framework.

The payment statement view supports the display of benefits as well as liabilities. The domain
BENEFIT_REASSESSMENT_RESULT_TEXT should be used for a benefit payment statement view. The
domain LIABILITY_REASSESSMENT_RESULT_TEXT should be used for a liability payment statement view.
It is expected that all string data returned for this field follows a specific tab-delimited format. Examples
of using these domains can be found in the Clram reference application.

There is also a properties file associated with this view: PaymentStatement.properties inthe
<CLIENT_DIR>\components\core folder. The link to a page providing further details on a statement
can be defined using a set of four parameters:

PaymentStatement.RowlLink.Benefit.PagelD
PaymentStatement.RowLink.Benefit.ParameterName
PaymentStatement.RowLink.Benefit.Label
PaymentStatement.RowLink.Benefit.Image

There is one set of parameters for Benefit pages and one for Liability pages. PageID is the name of the
page to link to. ParameterName is the name of the parameter to be passed to this page to identify the id
of the payment in question. Label supplies the text of the link, if Image is not used. Otherwise it supplies
the tool-tip for the image-based link.

The remaining properties are simply externalized strings for the widget.

PaymentStatement.RowlLink.Benefit.PageID=FromBenefit
PaymentStatement.RowlLink.Liability.PageID=FromLiability

PaymentStatement.RowLink.Benefit.ParameterName=paraml
PaymentStatement.RowlLink.Liability.ParameterName=param2

PaymentStatement.RowLink.Benefit.Label=Link Text 1
PaymentStatement.RowlLink.Liability.Label=Link Text 2

#PaymentStatement.RowLink.Benefit.Image=Images/icon.gif
PaymentStatement.RowlLink.Liability.Image=Images/icon.gif

PaymentStatement.Text.fromToDateSeparator=\ to
PaymentStatement.Text.Action=Action
PaymentStatement.Text.Period=Period
PaymentStatement.Text.Desc=Description
PaymentStatement.Text.Actual=Actual
PaymentStatement.Text.Reassessed=Reassessed
PaymentStatement.Text.Liability.Received=Received
PaymentStatement.Text.Diff=Difference
PaymentStatement.Text.GrossTotal=Total Gross Over Payment
PaymentStatement.Text.TaxTotal=Total Tax Deduction
PaymentStatement.Text.UtilityTotal=Total Utility Deduction
PaymentStatement.Text.LiabilityTotal=Total Liability Deduction
PaymentStatement.Text.NetTotal=Net Under or Over Payment

Figure 97: A Sample PaymentStatement.properties File

234 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Batch Function View

The batch function view is generated from the PARAM_TAB_LIST domain. It allows you to enter
parameters to submit a batch program for execution. The labels of each field are provided to the view by a
single tab-delimited string.

Addresses

The ADDRESS_DATA domain type maps to a tag for entering and displaying addresses. Although the user
sees several fields, addresses are stored as a single string field. Each of the fields displayed as part of the
out-of-the-box address are text input fields except for the state field which is drop-down field.

To parse the address and display it, the elements that make up the address have to be defined in the
curam-config.xml file. Different address configurations for different locales in the Clram application
can be defined. “Addresses” on page 235 demonstrates how to set this configuration using the
ADDRESS_CONFIG element.

<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_us"
ADDRESS_FORMAT_NAME="US"/>
<LOCALE_MAPPING LOCALE="en_GB"
ADDRESS_FORMAT_NAME="UK" />
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT LABEL="Address.Label.AptSuite"
NAME="ADD1" />
<ADDRESS_ELEMENT LABEL="Address.Label.Street.1"
NAME="ADD2" />
<ADDRESS_ELEMENT LABEL="Address.Label.Street.2"
NAME="ADD3" />
<ADDRESS_ELEMENT LABEL="Address.Label.City"
NAME="CITY"/>
<ADDRESS_ELEMENT CODETABLE="AddressState"
LABEL="Address.Label.State"
NAME="STATE" />
<ADDRESS_ELEMENT LABEL="Address.Label.Zip"
NAME="ZIP" />

</ADDRESS_FORMAT>

<ADDRESS_FORMAT NAME="UK" COUNTRY_CODE="GBR">

<ADDRESS_ELEMENT LABEL="Address.lLabel.Address.1"
MANDATORY="true" NAME="ADD1"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Address.2"
NAME="ADD2" />

<ADDRESS_ELEMENT LABEL="Address.lLabel.Address.3"
NAME="ADD3" />

<ADDRESS_ELEMENT LABEL="Address.lLabel.Address.4"
NAME="ADD4" />

<ADDRESS_ELEMENT LABEL="Address.Label.County"
NAME="ADD5" />

<ADDRESS_ELEMENT LABEL="Address.lLabel.City"
NAME="CITY"/>

<ADDRESS_ELEMENT LABEL="Address.Label.PostCode"
NAME="POSTCODE" />

<ADDRESS_ELEMENT CODETABLE="Countzy"
LABEL="Address.Label.Countzy"
NAME="COUNTRY" />

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

Figure 98: Address Configuration in curam config xml
The ADDRESS_CONFIG element is built using multiple LOCALE_MAPPING and ADDRESS_FORMAT
elements. In Ciram application deployments with multiple locales, a developer may wish to use a

different address format for each locale. To do this we use the LOCALE_MAPPING element. This element
contains a LOCALE attribute which defines the locale and an ADDRESS_FORMAT _NAME attribute which

Curam web client reference 235



defines the ADDRESS_FORMAT element to be mapped. By default, the OOTB Cluram application has a
number of ADDRESS_FORMAT elements defined which are mapped to specific locales. As these locales
are already mapped it is not required to define LOCALE_MAPPING elements for them, however customers
are free to modify these or create new configuration(s) as per their implementation needs. Figure 76
above illustrates how the LOCALE_MAPPING element is used for the US and UK address formats. The
following address formats and their corresponding locale mappings are available OOTB.

Table 123: Address Format configurations

Address Format Name Locale Mapping
us en_US

UK en_GB

DE de

CA en_CA

KR ko

JP ja

TW zh TW

CN zh_CN

The ADDRESS_FORMAT has an optional COUNTRY_CODE attribute which is used in the address header
when an address is first created. If it is not set, the COUNTRY_CODE defaults to GBR when the address
format specified is UK and to US for everything else. The COUNTRY_CODE is not used by the infrastructure.
It is one of the fields in the address string used by the application, but infrastructure provides an initial
value for it.

The ADDRESS_FORMAT elements contain ADDRESS_ELEMENT elements which defines the fields in the
address tag. The ADDRESS_ELEMENT element has a LABEL attribute which refers to properties contained
in the CDEJResources.properties file. The address is then built using ADDRESS_ELEMENT tags which
must be given a name and label. Note that a code table can also be specified for each
ADDRESS_ELEMENT. When a code table is specified, a drop-down list will display the code table entries
and the default code will be pre-selected.

The optional MANDATORY attribute specifies if an address element is required to be filled in. The
Mandatory indicator is an asterisk beside the field label as shown in the example above. Please note, that
in order for MANDATORY settings in curam-config.xml to work, the field supplying the address data
should be marked mandatory in application model.

Schedule View

The schedule view is used for any domain of the type SCHEDULE_DATA. This view displays a grid of time-
line information for the hours between 8 am and 8 pm. Each row in this grid represents a person whose
full name is displayed in the row header. Each cell in the person's row represents a half hour period
containing an indicator for whether they are available or not. If a user clicks on a free cell, they should be
linked to a page allowing them to enter further schedule events.

The information and setup of this particular view involves a particular setup in a page's UIM file.
“Schedule View” on page 236 is an example of the UIM for a schedule field.

236 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<FIELD>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="schedule"/>
</CONNECT>
<CONNECT>
<LINK PAGE_ID="IncomeScreening_confirmAppointment">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="appointmentDate"/>
<TARGET NAME="PAGE" PROPERTY="date"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="userFullName"/>
<TARGET NAME="PAGE" PROPERTY="fullUserName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="userName"/>
<TARGET NAME="PAGE" PROPERTY="userName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="caselID"/>
<TARGET NAME="PAGE" PROPERTY="caseID"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="pageDescription"/>
<TARGET NAME="PAGE" PROPERTY="pageDescription"/>
</CONNECT>
</LINK>
</FIELD>

Figure 99: UIM Example of Schedule View

The Curam page generator expects any schedule FIELD element to be followed by a LINK element which
details the PAGE_ID of the page to go to when a free cell is clicked on. The following three CONNECT
elements should be fields which provide the following attributes to the link: the date of the day in
question (the time is appended to this date); the full name of the user; and the user's unique identifier.
The order of these CONNECT elements is important or the schedule view will not contain the correct links.

The SCHEDULE_DATA domain is expected to be a list of user names and 32 bit schedule fields separated
by a tab. An example of one such element of this list would be:

John Smith<tab>16777212

Please note that 16777212 is the integer value which translates to the bit field
000000001111121112211122111221112200. A one represents a half hour when Mr. Smith is busy and a
zero stands for free time. The bit field is read from the least significant bit first, i.e. from right to left, with 8
am represented by the right-most bit. As we are dealing with a twelve hour period and each bit stands for
a half hour, only the first 24 bits are important. The last byte is disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks (per user), with each block
representing half an hour. Half hour blocks of free time are displayed differently than the other blocks
(busy) in terms of color and size.

Radio Button Group

An alternative way to present a set of code table values is as a radio button group, each radio button
representing a code table item. To display in the form of radio buttons, a field representing a code table
value should be mapped to the SHORT_CODETABLE_CODE domain or to a domain directly inheriting from
SHORT_CODETABLE_CODE.

Pop-up Pages

This section describes how to set up a pop-up page. The Cdram application has a number of built-in pop-
up pages such as the Date Selector pop-up described earlier which are "helpers" used to enter data.
Developers are also allowed to specify their own pop-up pages. For example, when scheduling a meeting

Curam web client reference 237



for a person you don't want the user to have to know or fill in that persons unique ID. Instead the user
should be provided with a search facility or a pre-populated list of valid options they can select from. This
is achieved in Clram with pop-up pages.

The out-of-the-box pop-up widget has a input field (grey in color) with a search - in the form of a
magnifying glass - and a clear icon beside it. When the user clicks on the search icon this will activate a
pop-up page. The user can select an item from the pop-page which will populate the text input field on
the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

Configure the Pop-up Page

The first step is to configure the pop-up page. This is performed by the POPUP_PAGES element in curam-
config.xml.

<POPUP_PAGES DISPLAY_IMAGES="true|false">
<CLEAR_TEXT_IMAGE>Images/minus.gif<CLEAR_TEXT_IMAGE>
<POPUP_PAGE PAGE_ID="PersonSearch"
CREATE_PAGE_ID="RegisterPerson"
CONTROL_TYPE="textunderline|textinput"
CONTROL_EDITABLE="true|false"
CONTROL_INSERT_MODE="overwrite|insert|append">
<DOMAIN>PERSON_ID</DOMAIN>
<WIDTH>800</WIDTH>
<HEIGHT>600</HEIGHT>
<SCROLLBARS>true</SCROLLBARS>
<IMAGE>Images/search.gif</IMAGE>
<LABEL>Search</LABEL>
<CREATE_IMAGE>Images/new.gif</CREATE_IMAGE>
<CREATE_LABEL>New</CREATE_LABEL>
</POPUP_PAGE>
</POPUP_PAGES>

Figure 100: Pop-up Configuration Example

On the root element the DISPLAY_IMAGES attribute can be used to configure whether images or text is
used for the actions which open a pop-up or clear the currently selected value.

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a "clear this text" button. Note that this is an
application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there must be instance of this
element. Up to two pop-ups can be associated with a single domain; one to search for an existing item,
another to create a new item. The following attributes and child elements control various aspects of how
the pop-up is presented to the user.

Table 124: Attributes of the POPUP_PAGE element.

Name Description

PAGE_ID Specifies the UIM page id of the pop-up page to open to search for an
existing item.

CREATE_PAGE_ID Specifies the UIM page id of the the pop-up page to open to create a
new item.

CONTROL_TYPE Specifies the type of control where the value returned from the pop-up

will be written to. The default value is textunderline which displays
static text with an underline. To display a text input field set the value to
textinput. When a a text input control is configured, on the UIM
FIELD which uses a pop-up, the HEIGHT attribute can be used to
change from a single line text input to a multi-line text area.

238 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 124: Attributes of the POPUP_PAGE element. (continued)

Name

Description

CONTROL_EDITABLE

This attribute is only valid when CONTROL_TYPE is set to textinput. It
controls whether the text input field is editable or not. Set to true to
create a editable field and false to create a non-editable field. Note
that Internet Explorer does not give any visual indication that the text
input field is not editable.

CONTROL_INSERT_MODE

This attribute is only valid when CONTROL_TYPE is set to textinput. It
allows you to configure how a value selected from a pop-up is inserted
into the associated input control. The default is overwrite which
means the selected value will overwrite the previous contents. Setting
the attribute to insert means the selected value will be inserted at the
current cursor position. Setting the attribute to append means the
selected value will be appended to the previous contents of the input
control.

Table 125: Child elements of the POPUP_PAGE element.

Name Description

DOMAIN Domain used to identify this pop-up page. If a FIELD element with a
TARGET connection is based on this domain, a pop-up will be used
instead of a standard text entry box.

CT_CODE This is a second way to identify a pop-up page. The attribute contains a
code table code value and is used when associating multiple pop-up
pages with a single field and is described in further detail below.

WIDTH Width in pixels of pop-up dialog. This element is optional. If not
included, the default width of 600 pixels will be used.

HEIGHT Height in pixels of pop-up dialog. This element is optional. If not
included, the height will be automatically calculated based on the page
contents.

IMAGE Location of image which when clicked launches the pop-up defined by

the POPUP_PAGE element's PAGE_ID attribute.

IMAGE_HOVER

Location of image that is displayed when a user hovers over the search
pop-up icon. Set the IMAGE_HOVER element if the IMAGE element has
been set to a location other than the default location. If the
IMAGE_HOVER element is not set, then a default image is displayed
when a user hovers over a search pop-up icon.

IMAGE_PROPERTY

Optional key in the CDEJResources. properties file under which the
locale-specific location of the pop-up launcher image otherwise
specified by IMAGE attribute is stored. If the IMAGE is also specified for
the same configuration, it will take precedence over the
IMAGE_PROPERTY and this attribute will be ignored.

HIGH_CONTRAST_IMAGE

Location of the high contrast image which when clicked launches the
pop-up defined by the POPUP_PAGE element's PAGE_ID attribute.

HIGH_CONTRAST_IMAGE_PR
OPERTY

Optional key in the CDEJResources.properties file under which the
locale-specific location of the pop-up launcher image otherwise
specified by HIGH_CONTRAST_IMAGE attribute is stored. If the
HIGH_CONTRAST_IMAGE is also specified for the same configuration, it
will take precedence over the HIGH_CONTRAST_IMAGE_PROPERTY and
this attribute will be ignored.

Clram web client reference 239



Table 125: Child elements of the POPUP_PAGE element. (continued)

Name Description

LABEL Alternate text for the image defined by the IMAGE element. If the
POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false,
this text will be displayed instead of the image.

LABEL_PROPERTY Optional key in the CDEJResources. properties file under which the
locale-specific value of the label attribute otherwise specified by the
LABEL attribute is stored. If LABEL is also specified for the same
configuration, it will take precedence over the LABEL_PROPERTY and
this attribute will be ignored.

CREATE_IMAGE Location of image which when clicked launches the pop-up defined by
the POPUP_PAGE element's CREATE_PAGE _ID attribute.

CREATE_IMAGE_PROPERTY |Optional key in the CDEJResources.properties file under which the
locale-specific location of the pop-up launcher image otherwise
specified by CREATE_IMAGE attribute is stored. If the CREATE_IMAGE is
also specified for the same configuration, it will take precedence over
the CREATE_IMAGE_PROPERTY and this attribute will be ignored.

CREATE_LABEL Alternate text for the image defined by the CREATE_IMAGE element. If
the POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false,
this text will be displayed instead of the image.

CREATE_LABEL_PROPERTY |Optional key in the CDEJResources.properties file under which the
locale-specific value otherwise specified by the CREATE_LABEL
attribute is stored. If the CREATE_LABEL is also specified for the
configuration, it will take precedence over the
CREATE_LABEL_PROPERTY and this attribute will be ignored.

Create the Pop-up Page

A Curam pop-up page is written in UIM. It can be written to display a set of existing items for the user to
select from or to register a completely new item.

A pop-up which returns existing items

The following is an example of a pop-up page which accepts user input, displays a list of search results,
one of which can be selected and its unique identifier returned to the parent page.

<PAGE PAGE_ID="Person_search" POPUP_PAGE="true">
<PAGE_TITLE ICON="PersonSearchPagelIcon">
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticTextl"/>
</CONNECT>
</PAGE_TITLE>
<SERVER_INTERFACE NAME="ACTION"
CLASS="Person"
OPERATION="search"
PHASE="ACTION"
/>
<CLUSTER NUM_COLS="2" TITLE="Cluster.Title.SearchCriteria">

<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL LABEL="ActionControl.Label.Search"
TYPE="SUBMIT" DEFAULT="true">
<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>
<ACTION_CONTROL LABEL="ActionControl.Label.Cancel"
IMAGE="CancelButton" TYPE="DISMISS"/>

240 IBM Curam Social Program Management: Ciram Web Client Reference Manual



</ACTION_SET>

<FIELD LABEL="Field.lLabel.ReferenceNumber">
<CONNECT>
<TARGET NAME="ACTION"
PROPERTY="personSearchKey$referenceNumber" />
</CONNECT>
</FIELD>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">
<CONTAINER LABEL="Container.Label.Action">
<ACTION_CONTROL LABEL="ActionControl.Label.Select"
TYPE="DISMISS" >
<LINK>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />
<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>
</LINK>
</ACTION_CONTROL>
</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$referenceNumber"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.FirstName">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personName"/>
</CONNECT>
</FIELD>
</LIST>
</PAGE>

The points to note about this example are:

« The PAGE_ID attributes of the UIM PAGE element and the POPUP_PAGE element in curam-
config.xml must match.

« The POPUP_PAGE attribute of the UIM PAGE element must be set to true.

« The submit action is linked to THIS. This means the page will be redisplayed after the submit button is
pressed.

« To cancel the pop-up an action control of type DISMISS is used. If the action control does not have a
child LINK element, the pop-up will be closed without returning any values to the parent page which
opened it.

« The search results list in this example is made up of three columns. The first contains a link which will
close the pop-up and return the selected values, the remaining columns display further information
about the person.

« To close the pop-up and return values, an action control of type DISMISS is used. This is placed in a
CONTAINER so it is the first column in the search results list. The user can click this link to select one of
the search results.

« To specify what values should be returned a child LINK element is added to the action control. When
used in an action control to close a pop-up all standard attributes of the LINK element (e.g. PAGE_ID)
have no meaning and will be ignored.

« For Clram pop-up pages two values must always be returned. These are specified using CONNECT
elements. Both connections must use a target of PAGE and have the PROPERTY set to value and

Curam web client reference 241



description. The value connection specifies the value required on the page that opened the pop-up,
in this example the persons unique record ID. The description connection specifies descriptive text
to be shown to the user, in this example the person's name. So, on the page which opened the pop-up,
the person's name will be displayed to the user, but it is their unique ID which will be submitted to the
server.

Itis not necessary for pop-up pages to accept input. For example, the LIST can be populated from a
display phase server interface if necessary.

A pop-up which creates a new item

A pop-up may also create a new item and have the newly generated unique identifier for that item
returned to the parent page. To do this create a page which a ACTION_CONTROL of type
SUBMIT_AND_DISMISS must be used. For example;

<ACTION_CONTROL TYPE="SUBMIT_AND_DISMISS" LABEL="Button.Submit">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />
<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>
</ACTION_CONTROL>

Once the type attribute is set to SUBMIT_AND_DISMISS the rules for the child LINK and CONNECT
element is the same as described in the previous section for a DISMISS action control. After the form is
successfully submitted the pop-up will be dismissed and the new values returned to the parent page.

Using the Pop-up Page

Pop-up pages are opened using standard UIM FIELD elements. If the field has a target connection which
is based on a domain as configured in curam-config.xml a link to open the pop-up will be generated
rather than a standard text entry field. This is illustrated in the screen shot above with the "Preferred
Office" input field.

The following is the most basic example of a FIELD opening a pop-up. It is from an insert page so only a
target connection is specified. Using the current example, the person's unique ID will be assigned to the
field specified in the target connection and the person's name will only be used for visual purpose to
display to the user.

<FIELD LABEL="Field.Label.person">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

Figure 101: Opening a Pop-up from an Insert Page

The following example is from a modify page which means the field will have a source value which must
be displayed to the user. It is slightly more complex that standard fields on a modify page because there
are actually two source values to handled. The person's unique ID and the person's name. In this case the
INITIAL connection is used to specify the person's name. This will only be used to display to the user
and note that is not submitted to the server. Following that the field is just like any other on a modify page.
The source connection specifies the existing value of the field, the target connection specifies where the
value should be submitted to.

242 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<FIELD LABEL="Field.Label.person">
<CONNECT>
<INITIAL NAME="DISPLAY" PROPERTY="personName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

Figure 102: Opening a Pop-up from a Modify Page

When invoking a pop-up it is also possible to supply page parameters to the pop-up. This is a slight
variation on the two examples above and involves the use of the LINK element. The following is an
example of two parameters passed to a pop-up page, one sourced from an existing page parameter, the
other from a server interface property. When a LINK element is used in this context no attributes such as
PAGE_ID should be specified. Also a TEXT source connection cannot be used to supply a parameter to a

pop-up page.

<FIELD LABEL="Field.lLabel.person">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personlD"/>
</CONNECT>
<LINK>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="paraml"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="personName"/>
<TARGET NAME="PAGE" PROPERTY="param2"/>
</CONNECT>
</LINK>
</FIELD>

Figure 103: Supplying Parameters to a Pop-up Page

Using Multiple Pop-up Search Pages for a Single Field

In some cases we need to search for different types of Cdram entities but that search is associated with a
single field. For example you may have a requirement to search for a Ciram client which has a generic
domain of CURAM_CLIENT_ID. This could be a person, an employer, a product provider etc. Individual
search pages may already exist for these types so you should be able to reuse them. Assuming the pop-
up search pages already exist, this involves two extra steps which are described in the following sections
and. The resulting pop-up widget is as described in “Pop-up Pages” on page 237 except that there is an
additional drop-down field rendered to the left of the text input field. In order to activate the pop-up page
for this widget, the user first selects the type of search to be performed from the drop down list and then
clicks on the search icon.

Configure the Multiple Pop-up Page

This can be configured through the MULTIPLE_POPUP_DOMAINS elementin curam-config.xml. The
following is an example:

Curam web client reference 243



<MULTIPLE_POPUP_DOMAINS>
<CLEAR_TEXT_IMAGE>Images/clear.gif</CLEAR_TEXT_IMAGE>
<MULTIPLE_POPUP_DOMAIN>
<DOMAIN>CURAM_CLIENT_ID</DOMAIN>
<LABEL>Search</LABEL>
<IMAGE>Images/search.gif</IMAGE>
</MULTIPLE_POPUP_DOMAIN>
</MULTIPLE_POPUP_DOMAINS>

Figure 104: Multiple Pop-up Domains

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a "clear this text" button. This is an application
wide setting.

MULTIPLE_POPUP_DOMAIN : For each domain which you wish to associate multiple pop-up windows
create an instance of this element.

DOMAIN : The name of the domain which is associated with multiple pop-up windows
IMAGE : Location of image to be used for pop-up icon.
LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is required to select the pop-up
type. This drop-down list is populated as normal from a code-table. The code-table codes are the link
between the drop-down list and pop-up that is opened. This requires the CT_CODE child element of the
POPUP_PAGE element to be set to the code-table code value.

Using the Multiple Pop-up Page
Once the configuration is done the final step is the write the UIM necessary to display the pop-up search.

<CONTAINER LABEL="Label.person">
<FIELD LABEL="Field.lLabel">
<CONNECT>
<TARGET PROPERTY="popupType" NAME="ACTION"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label">
<CONNECT>
<TARGET PROPERTY="clientID" NAME="ACTION"/>
</CONNECT>
</FIELD>
</CONTAINER>

Figure 105: UIM to Use Multiple Pop-up Windows

The main points to note are:

« ACONTAINER and two FIELD elements are required, one for the drop-down list, the other for the value
which will be returned from the pop-up. The container must not include any other FIELD elements.

« The first field should be based on a code-table domain which contains a list of codes which corresponds
to the CT_CODE element described earlier.

« The second field should have a target connection which is based on a domain using the
MULTIPLE_POPUP_DOMAIN element.
Agenda Player

The Agenda Player (or player for short) is a wizard-like control which provides guided navigation through a
specified set of screens. As the name implies the screens in the Agenda Player are supposed to be part of
a certain agenda or scenario, most typically involving step-by-step collecting of information.

244 1BM Curam Social Program Management: Ciram Web Client Reference Manual



Note: Agenda Player widget is not supported outside the modal dialog context, an attempt to openiitin
the tab content panel or elsewhere (e.g., as the inline page of an expandable list) will lead to an explicit
error message stating this.

Agenda Player screen structure

Depending on how the Agenda Player player is configured, the screen is divided into either three or four
parts:

« Along the top is the Agenda Player header. It contains a customizable Agenda Player title on the left
and, where appropriate, a progress bar on the top right, which shows the user's progress through the
agenda. The steps completed in the progress bar will be shaded in color whereas the steps that have yet
to be completed will not.

« On the left of an Agenda Player, a navigation panel (optional) shows the list of pages in the current
agenda. The user's progress through the sequence is continuously displayed there (in addition to
progress bar) by highlighting of the current page. The appearance and behavior of the other pages in the
agenda depends on the mode used (see below). The pages in an agenda can be grouped into sections
and the player provides the ability to collapse and expand visited sections.

At the bottom of the navigation panel is the summary link, which allows users to jump directly to the
player summary page (they would also get there by navigating through all the pages in the agenda). The
summary link is only displayed if there is an appropriate element specified in the agenda XML. The
navigation panel is not displayed in the navigator-less (claimant) view of the Agenda Player.

- Along the bottom, a set of buttons is displayed to allow the user to step forward and back through the
Agenda Player. There are also buttons to jump to the summary page (displayed optionally) and to quit
the Player.

Note: The text used for these buttons can be customized (see below). However, for the remainder of
this section they are further referred as the Back, Next, Finish and Cancel buttons, which are their
default captions.

« The main area of the screen is the content area. This area displays normal client pages which might also
be used outside of the Agenda Player.

Navigation modes

In addition to using the back and next buttons to navigate through an agenda, the player can provide
additional options in the navigation panel, depending on the mode used.

The Agenda Player can be configured to operate in one of three navigation modes: basic, incremental
or full, with incremental mode being the default.

- The basic mode is used for strictly sequential navigation through the agenda pages. In this mode the
navigation panel is just used for additional information, indicating which page the user is currently on.
The only navigation means are the standard player buttons.

« The incremental mode expands on the basic mode by providing links in the navigation panel to any
pages which have already been visited. A user can use these links to skip back and forward between
previously visited pages, but will still need to use the next button to progress any further.

« The full mode is actually a non-sequential mode as all the navigation panel elements are initially
rendered as links. Sequential advancing is possible here as well, as the player buttons are fully
functional, but there are no restrictions placed on the order in which you navigate through the agenda.
This, however, means that things related to the sequential progress might be unavailable, or not work
properly in this mode (for example, the progress bar is not displayed for this mode at all; dynamic
parameters might not be available if a screen which expects these parameters is visited before the one
where these parameters are initialized, etc.). Because of this the full navigation mode should be used
where specifically required and the agenda should be designed/configured keeping in mind the possible
consequences.

Agenda Player mode configuration is described in “Agenda Player Configuration” on page 246

Note: Within the Player screens there might be hyperlinks leading to other pages, which open in the client
area, yet do not belong to the specified Player screen set. In this case all the navigation means on the

Curam web client reference 245



Player, including buttons and links rendered for incremental or full mode are disabled until the flow
returns back to an Agenda Player screen. This means in particular that such a 'side' page should provide
means of returning to the AgendaPlayer page flow (by linking to the appropriate page or closing the modal
opened from the Player).

Navigator-less View

By default, an Agenda Player is displayed with all the screen parts present. However, in some situations,
you may like to simplify the view and behavior of the player using the view without the navigation panel
(also called Claimant view after the expected usage - i.e. online claimants). In this view Agenda Player is
displayed without the navigation panel. Only the standard player buttons can be used for navigation, so
the mode setting is effectively ignored.

The fourth player button, Finish, is automatically available on the button bar at the bottom of the page for
the Claimant view. The button makes it possible to jump directly to the summary page rather than having
to advance to it through all the pages. It is shown only when there is a summary page present in the
agenda XML returned from the server.

Player configuration to allow for Claimant view is described in the section below.

Agenda Player Configuration

The Agenda Player can be configured by adding/modifying entries in AgendaConfig. xml. A version of
this file should be in your components directory.

The following is an example of the Agenda Player configuration file contents:

<AGENDA>
<PLAYER ID="DefaultConfig" TITLE="Default.Title"
MODE="incremental" CONFIRM-QUIT="false"/>

<PLAYER ID="Claimant.Config" TITLE="Claimant.Title"
NAVIGATOR-HIDDEN="true" MODE="incremental"
CONFIRM-QUIT="txue"/>
</AGENDA>

The attributes that can be used for particular configuration (PLAYER element) are as follows.

Table 126: Attributes of the PLAYER element

Attribute Description

ID The ID of this particular configuration (referred to by CONFIG
attribute of FIELD element in UIM which contains Agenda
Player).

TITLE Title key for Agenda Player title, displayed on its header. This

key is used to look up customized/localized title from
appropriate properties file as described in “Agenda Player
Customization” on page 247.

MODE This attribute allows for specifying Agenda Player navigation
mode. It might have values of basic, incremental or full,
incremental being the default one, used if the attribute is
skipped in an configuration.

NAVIGATOR-HIDDEN When this attribute is specified and set to true, Agenda
Player will be displayed in Claimant View (see above).

CONFIRM-QUIT This attribute can be used to display a confirmation dialog
when a user clicks on the Cancel button. When present and
set to true, a confirmation dialog will be displayed to confirm
the user's intention to quit the Agenda Player or to cancel and
return to the player.

246 1BM Curam Social Program Management: Ciram Web Client Reference Manual



Agenda Player Customization

The Agenda Player comes with support for customization/localization of certain elements. The elements
which can be customized are the player title, Progress Bar text, the player button texts, the quit confirm
dialog text and descriptions for each of the frames in the player.

Player related properties are kept in the files <client-dir>/components/<component_name>/
CDEJResources.properties and <client-dir>/components/<component_name>/
AgendaPlayer.properties. where <component_name> represents the name of the component
where the customizations are being applied.

Player title is customized by specifying custom value under the key used for it in AgendaConfig.xml
(see above). The value under the key is to be placed into AgendaPlayer.properties.

The Progress Bar text is customized within an Agenda Player header by modifying the
AgendaPlayer.properties file to include values for the keys: Progress.Bar.Prefix,
Progress.Bar.Middle, Progress.Bar.Suffix. Please note that all three keys must be present with blank
values for unused ones in order to ensure clean rendering of the customized Progress Bar text. If this is
not the case then a situation may occur where a non-blank default value is used instead of one undefined.

The text strings associated with Agenda Player control buttons are customizable in the file
CDEJResources.properties and defined by properties wizard.button.back.title,
wizard.button.forward.title, wizard.button.finish.title, and wizard.button.quit.title.

The frame descriptions are useful for users of screen readers but don't appear visually on the screen. The
entries for frame description customizations in CDEJResources.properties are wizard.frameset.title,
wizard.header.frame.title, wizard.navigation.frame.title, wizard.content.frame.title,
wizard.button.frame.title.

Note: The Agenda Player was formerly known as the Wizard widget, so several attribute and property
names still refer to wizard.

In order to change the default question in the quit confirmation dialog, the property Quit.Dialog.Question
should be added/changed in AgendaPlayer.properties.

Player data
There are some specific UIM pages related with Agenda Player:

« Navigation page: Each Player requires a navigation page that will become the navigation panel of the
Agenda Player. This page has two required characteristics. First, the root PAGE element has a TYPE of
SPLIT_WINDOW. This indicates that the page will form part of a frame-set. Second, the page contains a
field with a single source connection and domain type AGENDA_XML. This field supplies the Agenda
Player with the list of pages, parameters and other information that drives the Agenda Player.

« Summary page: This page is optional and might just be a regular UIM page. However, summary page,
specifically displaying summary of visited and unvisited pages is also available. If this information is to
be displayed in a summary page, a WIDGET element with TYPE attribute set to WIZARD_SUMMARY
should be present among page elements.

- Exit page: This is a regular UIM page to which the user is forwarded after quitting the player.

The following is an example of the UIM used to specify the navigation page. It contains a single field which
supplies the agenda XML data.

<PAGE PAGE_ID="WizardTest" TYPE="SPLIT_WINDOW">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="page.title"/>
</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY" CLASS="Agenda"
OPERATION="getAgenda"/>

Curam web client reference 247



<PAGE_PARAMETER NAME="agendaRef"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="agendaRef"/>
<TARGET NAME="DISPLAY" PROPERTY="key$agendaRef"/>
</CONNECT>

<CLUSTER SHOW_LABELS="false">
<FIELD>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="agendaXML"/>
</CONNECT>
</FIELD>
</CLUSTER>

</PAGE>
The following is an example of a specific summary page:
<PAGE PAGE_ID="WizardSummary">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<CLUSTER SHOW_LABELS="false" TITLE="Cluster.Title">
<WIDGET TYPE="WIZARD_SUMMARY"/>
</CLUSTER>

</PAGE>
The agenda data that drives the Player looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<agenda>
<page-flow>
<section description="First section"
status="SCT1">
<page id="Person_homePage" description="Home"
status="SC1" initial="true"
submitonnext="true"/>
</section>
<section description="Second section"
status="SCT2">
<page id="Person_listAddress" status="SC2"
description="Addresses"/>
<page id="Person_listBankAccount" status="SC1l"
description="Bank Accounts"
submitonnext="txrue"/>
<page id="Person_listCommunication" status="SC3"
description="Communications"/>
<page id="Person_listTask" status="SC2"
description="Tasks"/>
<page id="Person_listCitizenship" status="SC2"
description="Citizenships"/>
<page id="Person_listFinancial" status="SC2"
description="Financial"/>
<page id="Person_listNote" status="SC4"
description="Notes"/>
</section>
<summary id="WizardSummazry"
description="Summary Page"
close-on-submit="true"
status="SCT3"/>
</page-flow>

248 IBM Curam Social Program Management: Ciram Web Client Reference Manual



<parameters>
<parameter name="concernRoleID" value="101"/>
<parameter name="dynamicParam" value="0"/>
</parameters>
<exit-page id="Person_homePage">
<parameters>
<parameter name="concernRoleID" value="101"/>
</parameters>
</exit-page>
</agenda>

There is one page element per screen to be displayed in the Agenda Player. The attributes that can be
used in this element are as follows.

Table 127: Attributes of the page element

Attribute Description

id The page id for the page (as set in the PAGE_ID of the PAGE
element in the page's UIM definition).

description The description of the page that will be displayed in the
Navigation Panel.

status A status code that is mapped to an image.

initial Set to true if this is the page that should be displayed when
the Agenda Player is first opened.

disableback Set to true if the Back button should be disabled on this
page.

disableforward Set to true if the Forward button should be disabled on this
page.

submitonnext Set to true if the Forward button should submit the form on
this page.

close-on-submit This attribute applies to summary element only and allows for

alternative way of quiting the player, as described below.

The important features to note are:

- The sequence of screens in the Agenda Player is exactly as listed in the agenda data.

« One of the pages in the Agenda Player can be marked as the start page by setting the initial attribute
to true. When the Agenda Player is first displayed, this page will be loaded but it will still be possible to
navigate back to previous pages. If the Player is configured to use incremental mode, pages prior to
the initial pages on the navigation panel will be rendered as hyperlinks; for a full navigation mode all
the page items except current one will be hyperlinks.

- In the XML sent back by the application server, the page elements might be contained within section
elements or there might be no section element at all. The optional summary element, however, is to
be always placed directly within page-flow.

« All pages in the Agenda Player take the same set of parameters or a subset thereof. These parameters
are specified in the agenda data.

« Page parameters can also be dynamic. These parameters initially carry special value of 0 (note
dynamicParamin the Agenda Player sample data above) and are intended to be initialized during user
interaction with Agenda Player (e.g., user ID is only available after a user registers herself).

- The exit-page denotes the page which the user will be taken to when the Cancel button is clicked.
This page will completely replace the Agenda Player and can be any page in the application with any
parameters (matching those specified by exit-page parameter sub-elements in agenda XML from
the server).

Clram web client reference 249



« When submitonnext is set for a page, the submit button on that page (there should only be one) will
be hidden when it is displayed within the player. The player's Next button can be used to submit the
form instead and will proceed to the next page if no validation error occurs. If there are validation errors,
the page will return to itself displaying the validation errors on the top, as it would for any other
application page.

To allow for pages where the record itself is optional (i.e. you could move on to the next screen without
creating one), but some of the fields are mandatory, if you do try to create a record, the infrastructure
will not perform mandatory field validations if no value has been entered/chosen for any field on the
page. The appropriate server interface will still be called, so it is up to the application logic to work out
what was intended (e.g. don't create a record, delete an existing record, etc.). This behavior only applies
when using the submitonnext feature.

« The summary page can provide an alternative way to quit the Player. In order to do this, the summary
page should contain a submit button, and the summary element in the agenda XML from the server
should have close-on-submit specified and set to be true. If the user clicks on the submit button on
such a summary page and the submit succeeds, the player closes down and the user is forwarded to
whatever page is specified by the link associated with the submit button.

« Each page can be assigned a status code using the status. These status codes can be anything at all as
long as they are mapped in the ImageMapConfig.xml file under the domain AGENDA_XML. When the
list of pages is displayed in the left column, each will have an icon attached corresponding to its status
code.

The following is an example of mapping status codes to images the ImageMapConfig.xml file.

<domain name="AGENDA_XML">
<locale name="en">
<mapping value="SC1l" image="Images/Wizard/statusl.gif"
alt="English text..."/>

<mapping value="SC4" image="Images/Wizard/status4.gif"
alt="English text..."/>
</locale>
<locale name="f1">
<mapping value="SC1" image="Images/Wizard/statusl.gif"
alt="French text..."/>
</locale>
</domain>
The appearance of the Agenda Player control buttons, the summary screen and the navigation is defined
in CSS. For details, please see “Cascading Stylesheets” on page 29.

The UIM CONDITION element allows for the conditional display of action controls, clusters or lists on a
page that is displayed within an Agenda Player (see See “CONDITION” on page 60 for more details on the
condition element). To hide/display elements based on whether the page is in an Agenda Player or not,
the NAME and PROPERTY attributes can only have the values CONTEXT and inWizard respectively.

<ACTION_SET ...>
<CONDITION>
<IS_TRUE NAME="CONTEXT" PROPERTY="inWizard"/>
</CONDITION>

</ACTION_SET>

Figure 106: Condition example:

This indicates that the action set should be displayed only when that Action Set is on a page that is
displaying within a Agenda Player.

LOCALIZED_MESSAGE Domain

The LOCALIZED_MESSAGE domain allows entries in a server message catalog to be displayed on a client
screen. The domain is string based but expects the string to be formatted in specific way. The Cdram

250 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Server Development Environment (SDEJ) provides support for formatting a message catalog entry in this
way so it can be returned to the client. See the Curam Server Developers Guide for full details on working
with message catalogs.

Once the message catalog entry has been formatted on the server side it should be assigned to a field
which is based on the LOCALIZED_MESSAGE domain and returned to the client. The message entry will
be displayed according to the current locale and values will be assigned to the message placeholders.

Decision Assist: Decision Matrix Widget

Overview

The Decision Matrix widget is a control that is used to construct questionnaires. Refer to the Decision
Assist Administration Class and Widget Overview chapter in the Inside Curam Decision Assist Guide for
more details.

Custom Data Conversion and Sorting

Use this information to learn about data formatting, parsing, validation, and sorting behavior in the Ciram
web application.

Custom data conversion and sorting allows most aspects of the management of data in the presentation
layer of Ciram applications to be customized. Customizations can control how data is formatted, parsed,
validated and sorted; error reporting can also be customized and controlled. Operations are performed on
data values according to a well-defined data life-cycle and, at each stage, the operations can be
customized. To understand how, when, and where to customize the operations, you must first understand
the operations available and how they fit into the life-cycle.

warning: Unsupported Customizations

This chapter describes the supported mechanisms for the customization of data conversion and
comparison operations. For completeness, and to aid understanding, some operations are described, but
the corresponding customization mechanisms are not documented, as customization of these operations
is not supported (or not supported using the programmatic mechanisms described here).

The descriptions of the Java interfaces and classes presented here may be incomplete, as unsupported
methods may be omitted from their descriptions for clarity. However, the JavaDoc documentation for
these interfaces and classes may include more information and describe more comprehensive
customization mechanisms, but only the mechanisms described here are supported.

Related reference
Overview

Data Conversion and Sorting Operations

The are a number of operations that are carried out on data values by the client infrastructure. Some are
controlled by the domain definition options that were set in the UML model and are performed
automatically, others are controlled by domain-specific plug-ins that can be overridden and customized;
these plug-ins will be described later. First, the operations that are performed on the data values need to
be understood:

format
When data is retrieved from the application server, it is represented by a Java object appropriate to
the root domain of the data. For example, a value in the SVR_INT64 domain is represented as a
java.lang.Long object. The format operation is responsible for converting these objects to their
string representation, as it is the string representation that must be embedded in the XHTML stream
returned to the web browser.

A format operation is only required to return a non-null string; there are no other limitations. However,
each domain-specific formatter will usually return a string representation of the Java object according
to the usual conventions. For example, a money value may have a currency symbol added during

Curam web client reference 251



formatting and be limited to two significant digits after the decimal point. For most data values, the
formatter should generate a string representation that can later be converted back into the original
data value.

pre-parse
When a user enters values in a form on an application page and submits the form to the client
application, the web browser submits all of these values in string format. These string values need to
be parsed to create the appropriate Java object representations, but first a pre-parse operation is
performed to prepare the string for parsing.

The UML model supports several domain definition options that are recognized by the pre-parse
operation (see the Curam Modeling Reference Guide for more information on domain definition
options). The domain definition options may indicate that leading and trailing whitespace characters
should be trimmed from the string, that all sequences of whitespace characters should be
compressed to single space characters, and that the string should be converted to upper-case. The
pre-parse operation applies these options automatically to the string values and the modified string
values are then ready to be parsed. The pre-parse operation is controlled and customized by setting
these domain definition options in the UML model.

parse
After the pre-parse operation has completed, the parse operation must convert the resulting string
value into its Java object representation before it can be submitted to the application server. In
general, the parse operation is the reverse of the format operation. If the format operation formatted
a money value to a string and added a currency symbol and grouping separator (e.g., thousands
separator) characters, the parse operation must be able to remove these additions and create a Java
object representation of the actual money value.

All that is required of the parse operation is to produce a Java object, it does not validate that value.
However, while not explicitly a validation operation, the parse operation usually needs to perform
some validation to ensure that the value can be parsed correctly. For example, a date may later be
determined to be invalid if it is out of range, but the parse operation must first determine what the
date value is and may fail if the string does not represent a date in any recognized format.

pre-validate
Like the pre-parse operation, the pre-validate operation is performed to apply domain definition
options defined in the UML model. However, unlike the pre-parse operation, different domain
definition options are applied to data values depending on the domain. The data is not modified.
String and BLOB values are tested to ensure that they do not exceed their maximum or minimum
defined sizes (or lengths), while numeric values are tested to ensure that they do not exceed their
maximum or minimum values. Any failures will be reported as errors. See “Converter Plug-ins” on
page 260 for a detailed description of the actual validations performed.

validate
The pre-validate operation is convenient and is applied automatically, but there are situations where it
may not be able to validate data sufficiently. The validate operation is a catch-all that allows any kind
of validation to be performed that is not possible using UML domain definition options alone. For
example, ID values may be tested to see if their check-digit is valid. Errors can be reported if any value
does not meet such specific conditions. Data is not modified by this operation.

compare
When a list of data is returned from the server, the sort order of the values in the list is determined
using the compare operation. This sort order is used to support the sorting of lists on application
pages when users click on the column headers. The compare operation is passed two data values (in
their Java object representations, not in their formatted string representations) and must return a
positive or negative number to indicate which comes first in the sort order. Like the format operation,
the compare operation is not restricted in what calculations it performs, but it will typically sort values
alphabetically or numerically.

Each data conversion operation has access to information about the active user's locale and to
information about the domain being processed. It is also possible for one operation to access and execute
any of the operations should that be necessary. For example, a format operation might format values

252 IBM Curam Social Program Management: Ciram Web Client Reference Manual



differently for each locale and a compare operation might invoke the format operation before making a
comparison.

Data Conversion Life Cycle

The CDEJ infrastructure is responsible for the retrieval of data from the application server, the display of
this data, the processing of user input, and the submission of data back to the application server. This
process has a well-defined life cycle. Operations at each stage in the life cycle are performed in a domain-
specific manner.

Not all data goes through each stage in the life cycle. Some data is displayed but not modified or
resubmitted by the user (read-only); some data is created by the user and submitted without any initial
value being retrieved from the application server (write-only); and some data is retrieved, modified by the
user, and then resubmitted to the application server (read-write).

In the context of the value of a single property, the life cycle for reading the value is as follows:

1. The value is fetched from the application server by invoking a business operation.

2. If the value is one of a list of values for the same property, the related values are sorted using the
compare operation and the resulting sort order is recorded.

3. The value is formatted to a string representation by the format operation and is stored for later display.
4. When the page is displayed, the value is retrieved and inserted into the XHTML stream.

The life cycle for writing a value is as follows:

1. A string representation of the value is entered on a form by the user and the value submitted.

2. The domain definition options for whitespace compression and trimming and for upper-case
translation are applied to the string value by the pre-parse operation. The value remains in string form.

3. If the business operation has declared the value to be mandatory, the value is checked to ensure that
it is not empty or null. An error will be reported if this check fails.

4. The value is parsed from its string representation by the parse operation and the resulting native Java
object replaces the string value.

5. The domain definition options for the size range, value range, and pattern match are applied by the
pre-validate operation is applicable. The value is not modified by this operation. If a validation fails, an
error will be reported.

6. The value is validated by the validate operation to apply any arbitrary validation rules. Again, the value
is not modified by this operation and validation failures are reported.

7. The parsed and validated value is sent to the application server.

For a value that is treated as read-write, the life cycle is simply the combination of the read-only life cycle
followed by the write-only life cycle.

The Domain Hierarchy and Domain Plug-ins

At each step in data life-cycle, knowledge of a value's domain is required to ensure that the correct
processing is performed. Embedding this domain information in the application is one of the tasks
performed by the application code generators. With this information available, the application can invoke
data conversion and comparison operations tailored for each domain.

Not only is information about each domain available at run-time, information about the relationships
between these domains is also available. A model of the domain hierarchy is maintained in memory using
tree structures and all the necessary information about how values in the domains should be processed
"hangs" from these trees.

The domain hierarchy is composed of nodes implementing the curam.util.common.domain.Domain
interface. The main methods declared in this interface are listed below. For more information see the
Cdram JavaDoc documentation for this interface.

« getName()

Curam web client reference 253



This method is used to get the name of this domain.
- getParent()

This method is used to get the parent domain of this domain if it exists.
« getRootDomain()

This method is used to get the ultimate root domain of this domain.
« getChildxen()

This method is used to get the list of children of this domain.
e getPlugIn()

This method is used to get the named plug-in object associated with this domain.

For the purposes of writing custom data conversion and comparison operations, this interface is rarely
used directly, but it is instructive of the mechanism by which custom code is integrated into an
application.

Each domain has a unique name: the name defined for it in the UML model. As domains can be derived
from other domains, parent-children relationships exist, and these are also represented. Also, the root
domain (the ultimate ancestor of any domain) is readily accessible. A root domain is one that does not
have a parent domain. Several root domains (for dates, strings, integers, etc.) are supported in the Cliram
application, so the domain hierarchy is represented by a "forest" of separate trees, rather than a single
tree. All information about a domain, other than its name and relationships to other domains, is provided
via domain plug-ins.

As described in the list above, the curam.util.common.domain.Domain interface also describes a
method for the retrieval of plug-ins, getPlugIn, that takes the name of the type of plug-in required. The
method returns the plug-in configured for the domain or the equivalent plug-in configured for the nearest
ancestor domain if none has been configured directly; this is the simple inheritance mechanism. Domain
plug-ins are Java classes that implement the data conversion and comparison operations and other
features that are specific to each domain. There are four supported plug-in types, each with a unique
plug-in name:

"converter"
Converter plug-ins are responsible for implementing the format, pre-parse, parse, pre-validate, and
validate operations for each domain. Converter plug-ins can be customized to influence the
appearance of values on an application page, to support the parsing of new data formats, and to
prevent the submission of invalid data.

"comparator"
Comparator plug-ins are responsible for implementing the compare operation for each domain.
Comparator plug-ins can be customized to influence the sorting of data.

"default"
Default plug-ins are responsible for providing default values for each domain when no value is
available. While this type of plug-in can be customized freely, there will rarely be any need to modify
the implementations provided within the Ciram application.

"options"
Options plug-ins are responsible for providing access to the domain definition options that were
defined in the UML model. This type of plug-in is built into the client infrastructure and cannot be
customized.

The mechanism used to configure the domain plug-ins exploits the domain hierarchy to simplify the
configuration dramatically: very few domains need to be configured, as domains that are not configured
will inherit the configuration from their ancestor domains. Each root domain needs to be configured (so
that every domain has an ancestor from which it can inherit its configuration), and a small number of
specialized sub-domains are also configured further (the most notable being CODETABLE_CODE, a
derivative of the root domain SVR_STRING). In all, less than 1% of domains are directly configured, so the
configuration information is very manageable. The Ciram application comes complete with plug-in
implementations and configuration information for all the domains used by the reference application;
modifications are only required to handle specialized custom extensions.

254 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Overview of Domain Plug-ins

Common Features of Plug-ins

Domain plug-ins are just Java classes that conform to a well-defined interfaces. There is a base interface
that describes common features of all domain plug-ins and more specialized interfaces for each type of
plug-in. At run-time, the infrastructure co-ordinates instantiation and invocation of all plug-ins, so the
process of writing plug-ins is straightforward: methods need to be implemented that perform the data
conversion and comparison operations and very little else needs to be considered.

All plug-in classes implement the curam.util.common.domain.DomainPlugIn interface. This
defines some common operations and provides access to basic information that the plug-in may require.
The main methods declared in this interface are listed below. For more information see the Cdram
JavaDoc documentation.

- getName ()
This method is used to get the name of this plug-in (one of the four plug-in names described above).
« getlLocale()
This method is used to get the locale associated with this plug-in instance.
« getDomain()
This method is used to get the domain applicable to this plug-in instance.
- getInstance()

The final method is used to get an instance of a domain plug-in; it is not invoked in custom code.
Instantiation issues are described in more detail in “Plug-in Instance Management” on page 283. You
should use the default implementations of these methods provided by the Cdram plug-in classes.

The methods of the DomainPlugIn interface do not really do anything interesting. Derived interfaces
define the specific operations that each type of plug-in performs.
Converter Plug-ins

The DomainConverter interface is the one most likely to be used for customizations. It defines several
simple methods that perform the main data conversion operations. They are listed as follows. For more
information see the Clram JavaDoc documentation for this interface.

« format()

This method is used to format the given object to a string representation.
- parse()

This method is used to parse the given string representation into an object.
- validate()

This method is used to validate an object according to the domain-specific constraints. It may throw an
exception if the object is invalid, but does not modify the object or return any value.

« getDomainClass()

This method returns the class object that indicates the required type of the object that is passed to the
other converter methods or returned by them.

- getGenericlLocale()

This method is used to get the locale to be used when formatting or parsing generic values. This should
be the "en_US" locale and you should not change this value; it does not matter if this locale is not
otherwise used in your application.

« formatGeneric()
This method is used to format the given object to a generic string representation.
« parseGeneric()

Curam web client reference 255



This method is used to parse the given generic string representation into an object of the appropriate
type for the associated domain.

As described above, the formatGeneric and parseGeneric methods are similar to the format and
parse methods, but they are used when converting the values of the domain definition options entered in
the UML model by developers or of values embedded in XML-based data. Domain definition option values,
for example: maximum date values, minimum size values, or regular expressions used for pattern
matching; are extracted from the UML model at build-time and are parsed to their Java object
representations at run-time, so that they can be used when validating data entered by a user. A similar
process is used when extracting values from XML data returned from the application server and when
constructing XML data before it is returned to the application server. The default implementations of the
formatGeneric and parseGeneric methods are sufficient for all purposes (see “Generic Parse
Operations” on page 284 for information on protecting the generic parse operation from side-effects).

Itis by implementing these converter methods or overriding existing implementations of them that most
customizations are performed. The simple method signatures disguise the fact that, via the inherited
DomainPlugIn interface, each method has access to the active user's locale and the full domain
information if necessary.

Implementations of the pre-parse and pre-validate operations are provided for all of the root domains in
the Cdram application. As these operations are controlled completely by the setting of domain definition
options in the UML model, there is rarely any need to customize them programmatically. However, there
are circumstances where custom error messages are required, so you may need to "wrap" these
operations to intercept and replace error messages (this is described in detail in “Custom Error Reporting”
on page 280). These operations are defined on a separate ClientDomainConverter interface. They are
listed as follows. For more information about these methods, see the Clram JavaDoc documentation for
this interface.

« preParse()

This method prepares a string for parsing by applying the relevant domain options. For example, the
string may have whitespace removed or compressed, or may be converted to upper-case. The locale is
used for the conversion to upper-case, if that is required.

« preValidate()

This method performs the standard validation checks that are controlled by the domain options
specified in the UML model. The checks include the maximum and minimum size, the maximum and
minimum value, and the matching of a pattern. The specific data-type of the object will determine which
of these checks are appropriate. The options and comparator are available from the domain.

Access to the ClientDomainConvexrter interface is only supported for the purposes of error message
interception. However, as all converter plug-ins created for use by the client infrastructure must
implement this interface, you must sub-class an existing converter plug-in class (or abstract class) when
creating custom converter plug-ins to inherit an appropriate implementation.

Comparator Plug-ins

The DomainComparator interface is used to control sort orders and it extends the DomainPlugIn
interface and the standard java.util.Comparatox interface. For more information about
DomainComparator, see the Ciram JavaDoc documentation.

The java.util.Comparator interface defines a compare method that takes two java.lang.0Object
arguments and returns an integer that is positive if the first argument comes before the second argument
in the sort order, negative if it comes after, and zero if the objects are equal. (See the JavaDoc
documentation for the java.util.Comparator interface for more details.) An equals method is also
defined by that interface, but it is of lesser importance; all Java classes inherit an implementation of the
equals method from java.lang.0bject or from another ancestor class and no further implementation
is necessary.

256 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Default Value Plug-ins

The DomainDefault interface is used to define default values for domains where no default value is
available. The main methods in this interface are listed as follows. For more information about these
methods, see the Ciram JavaDoc documentation for this interface.

« getAssumedDefault()

This method is used to get the default value that will be assumed when a user clears a field on a form
and submits no value.

- getDisplayedDefault()

This method is used to get the default value that should be displayed when an input field has no initial
value to display.

From the methods listed above, we can see there are two types of default value: the value assumed when
no value is available to send to the application server, and the value displayed when no initial value has
been defined for a form field on an application page. The two default values are often the same, but there
are some cases where they need to be different.

The assumed default value is needed when a form is submitted and the form data contains no value for a
field that was not defined to be mandatory. The web client never submits null data values to the
application server, so it must assume some value for the field and then submit that. The assumed value is
nearly always intuitive: zero for any kind of number, an empty string for any string value, or a zero date or
date-time for such values. The actual assumed default values used in the Curam application are listed in
“Default Value Plug-ins” on page 268.

The displayed default value is needed when a form field has not been initialized with any other value (as is
usual on forms used to create new entities). The UIM FIELD element has a USE_DEFAULT attribute that
defaults to true, so, unless that attribute is set to false, the displayed default value may be used. The
displayed default value for numbers and strings is usually the same as that used as the assumed default
value, but for dates and times, the current date and time is used instead of the zero date and time. Like
the assumed default values, the displayed default values are likely to be sufficient for most applications,
so you are unlikely to need to customize them.

There is also a third source for default values: there is a domain definition option for a default value
supported in the UML model. However, if no such option is set, it is the plug-in's displayed default value
that is used as a fallback, so the two can be treated in the same way. If only the displayed default value
needs to be customized, it is easier to do this using the UML domain definition option rather than writing
and configuring a new plug-in class, but the assumed default value can only be modified via a plug-in.

The default code used for values in a code-table domain is controlled via the application's code-table
administration interface. You should not attempt to control it programmatically.

Domain Plug-in Configuration

Domain plug-ins are configured by means of an XML configuration file. The format is simple: the file
contains a domains root element; for each domain to be configured, a domain element is inserted; within
that element, plug-in elements are used to specify the name of the type of plug-in and the Java class
that implements the operations of that type of plug-in. The domain elements are not nested within other
domain elements to reflect the domain hierarchy. The configuration information is relatively "flat"; each
entry configures a separate domain and the inheritance of plug-ins is determined automatically. Here is a
sample of such a configuration file:

Curam web client reference 257



<dc:domains>
<dc:domain name="SVR_INT64">
<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.SvrInté4Converter"/>
<dc:plug-in name="comparator" class=
"curam.util.client.domain.compare.SvrInté64Comparator" />
<dc:plug-in name="default" class=
"curam.util.client.domain.defaults.SvrInté64Default"/>
</dc:domain>
<dc:domain name="INTERNAL_ID">
<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.InternalIDConverter"/>
</dc:domain>
</dc:domains>

Figure 107: Sample Domain Configuration

The configuration elements are defined in the XML namespace shown above. In the example, the
namespace declaration assigns the prefix "dc" to this namespace, so that prefix is used before the
element names. While you must declare this namespace in your configuration file, you can declare it to be
a default namespace and omit the prefix, or even use a different prefix, but you must not omit the
namespace declaration.

The example shows the configuration of two domains (these are the actual default configurations for
these domains, as provided in the out-of-the-box Cuiram application). Three plug-ins are configured for
the Clram root domain SVR_INT64. This is a complete set of plug-ins, as the "options" plug-in is built-in
and is never directly configured. All descendant domains of SVR_INT64 will inherit these plug-ins unless
further configured. Such a configuration is provided for the INTERNAL_ID domain. This domain is a
descendant of SVR_INT64, but a different converter plug-in is configured; the comparator and default
plug-ins will be inherited from SVR_INT64. This particular configuration is used within the Cdram
application to override the format operation for INTERNAL_ID values so that grouping separators are not
used in the string representations of the integers. An integer formatted by the SvrInt64Converter
plug-in as "1,234,567" will be formatted by the InternalIDConverter class as "1234567". This
ensures that values such as case identifiers (the CASE_ID domain is a descendant of the INTERNAL_ID
domain) are not represented as ordinary numerical values, but as more abstract unique key values.
However, sorting and the calculation of default values remains unchanged, as these plug-ins are not
overridden and the inherited plug-ins will be used.

There is a master configuration file called domains-config.xml located in your CDEJ installation's
lib/curam/xml/config folder. This file contains the complete domain configuration information for all
of the Clram root domains and some descendant domains. You must not make any changes to this file; it
is overwritten each time the development environment is upgraded. However, the information in this file is
useful when you need to make customizations. You can override or extend any configuration setting in this
file using the mechanism described here.

Domain plug-in configuration follows the typical pattern used for when configuring other aspects of
application components. You create configuration files, place them in component folders, and the
component order determines which parts of each file take precedence when the files are merged
together. A single custom configuration results and this may override or extend the master configuration
without limitation. The domain elements in the configuration are merged where they have the same
domain name defined in the name attribute. The plug-in elements of the merged domains are then
collected and those with the same name attribute value as an existing plug-in element take precedence
over that setting. New domain configurations can also be introduced. If the newly configured domain has
descendant domains, they will inherit the new configuration. When configuring plug-ins, the name
returned by a plug-in's getName method must match the name attribute value defined on the plug-in
element in the configuration file; this helps to avoid mistakes in the configuration file.

The configuration files that you place in your component folders must be named DomainsConfig.xml (a
slightly different name to the master configuration file to prevent confusion of the two). You can create
one or more of these files (one in each component), but a single file is probably sufficient for most
purposes. The format is just that shown in the example above. Further configuration examples are
included in “Customization Guidelines” on page 273.

258 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Out-of-the-Box Domain Plug-ins

Extending Existing Plug-ins

Domain plug-ins for all of the root domain definitions (and a few others) are provided in the out-of-the-
box Curam application. Rather than write your own plug-in implementation from scratch, it is far easier to
extend one of these existing plug-ins. The supplied plug-ins are suitable for the majority of uses, but all
can be overridden in whole or in part as necessary, or used as the basis for new plug-ins that customize
the processing of values in new domains. The details of these supplied plug-ins and the behavior of their
operations are described in the sections below.

Abstract plug-in classes are also provided to be used as the basis of new plug-ins. These abstract classes
are used by the Curam plug-ins themselves and provide some useful functionality that is rarely necessary
to override. The abstract classes you might use are:

e« curam.util.client.domain.convert.AbstractConverter

e curam.util.client.domain.compare.AbstractComparator

e« curam.util.client.domain.defaults.AbstractDefault

Their behavior is as follows:

Table 128: Behavior of the Abstract Plug-in Classes

Abstract Plug-in Class

Behavior

AbstractConverter

Returns the correct name for this type of plug-in: "converter".

Formats an object that is an instance of java.lang.Number
using the standard Java locale-specific number format. Other
object types are formatted by calling their toString method.

Pre-parses an object by trimming leading and trailing
whitespace, compressing sequences of spaces, and
converting to upper-case if specified by the UML domain
definition options for the domain.

Does not implement any parse operation.

Pre-validates an object by checking its maximum and
minimum values if these are specified by the UML domain
definition options for the domain.

Validates an object by throwing a
java.lang.NullPointerException if an objectis null,
but otherwise performs no validation.

Performs generic parsing by invoking the ordinary parse
operation that must be implemented in the sub-class. See
“Generic Parse Operations” on page 284 for information on

protecting the generic parse operation from side-effects.

Performs generic formatting by invoking the object's
toString method.

Returns the correct value for the generic locale.

AbstractComparator

Returns the correct name for this type of plug-in:
"‘comparator"”.

Clram web client reference 259



Table 128: Behavior of the Abstract Plug-in Classes (continued)

Abstract Plug-in Class Behavior

AbstractDefault Returns the correct name for this type of plug-in: "default".

Defines constants with suitable assumed default values for
each of the root domains.

Returns the displayed default value by looking up the default
value defined in the UML domain definition options, or, if not
found there, returns the assumed default value.

Does not implement getAssumedDefault.

These abstract classes are used by the Clram plug-in classes and all extend the
curam.util.common.domain.AbstractDomainPlugIn class. This class implements the locale and
domain properties of the DomainPlugIn interface and also provides the plug-in instance management
implementation that should be used by all plug-ins (see “Plug-in Instance Management” on page 283 for
details).

While it is possible to write plug-ins from scratch, you should follow the guidelines presented in this
chapter and extend either the existing plug-in classes or their abstract base classes. Other approaches
cannot be supported due to the complexity of some features, such as instance management and generic
parsing, that are best avoided and the default implementations used. Reusing these classes will also
ensure that your code will be protected from changes to the plug-in interfaces, as default
implementations of new interface methods will be inherited during upgrades and no custom code
changes should be necessary.

Converter Plug-ins

Converter plug-ins implement the format, parse, validate, and related operations. The following converter
plug-ins are provided out-of-the-box. While most are pre-configured against certain domains, others are
left to be configured as described in “Domain Plug-in Configuration” on page 257 (all of the plug-ins are in
the curam.util.client.domain.convert Java package):

Table 129: Out-of-the-Box Converter Plug-ins

Domain Converter Plug-in Class
SVR_BLOB SvrBlobConverter
SVR_BOOLEAN SvrBooleanConverter
SVR_CHAR SvrCharConverter
SVR_DATE SvrDateConverter
SVR_DATETIME DateTimeConverter
CURAM_TIME CuramTimeConverter
SVR_DOUBLE SvrDoubleConverter
SVR_FLOAT SvrFloatConverter
SVR_INT8 SvrInt8Converter
SVR_INT16 SvrIntlé6Converter

260 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 129: Out-of-the-Box Converter Plug-ins (continued)

Domain Converter Plug-in Class
SVR_INT32 SvrInt32Converter
SVR_INT64 SvrInt64Converter
INTERNAL_ID InternalIDConverter
SVR_MONEY SvrMoneyConverter
SVR_STRING SvrStringConverter
SVR_UNBOUNDED_STRING SvxStringConverter

LOCALIZED_MESSAGE

LocalizedMessageConverter

CODETABLE_CODE

CodeTableCodeConverter

N/A SvrInt8BareConverter

N/A SvrIntléBareConverter
N/A SvrInt32BareConverter
N/A SvrInté64BareConverter

The format operations of these plug-ins determine the string representations of data values that appear
on application pages. The format operations behave as follows:

Table 130: Behavior of the Format Operations

Plug-in Class

Formatting Behavior

SvrBlobConverter

Formatted as base-64 encoded strings. The
base-64 encoding scheme is defined in RFC 2045.

SvrBooleanConverter

Formatted as the string values true or false.
These values are not locale-aware. Ciram
application pages rarely display formatted Boolean
values directly, instead, check-boxes are used or
values are translated to locale-specific strings.

SvrCharConverter

Formatted as Unicode characters, not as numbers.

SvrDateConverter

Formatted using the application date format. If the
format includes month or day names, these are
localized using the active user's locale. If the date
is the system "zero" date, an empty string is
returned.

Clram web client reference 261


http://ietf.org/rfc/rfc2045.txt

Table 130: Behavior of the Format Operations (continued)

Plug-in Class

Formatting Behavior

DateTimeConverter

Formatted using the application date and time
formats and the user's preferred time zone. If the
format includes month or day names, these are
localized using the active user's locale. If the date-
time is the system "zero" date-time, an empty
string is returned.

CuramTimeConverter

Formatted using the application time format. If the
date-time is the system "zero" date-time, an empty
string is returned.

SvrDoubleConverter

Formatted as numbers with grouping separator
(e.g., thousands separator) and decimal point
characters appropriate for the active user's locale.

SvrFloatConverter

Formatted in the same manner as the
SvrDoubleConverter.

SvrInt8Converter

Formatted as numbers with grouping separator
(e.g., thousands separator) characters appropriate
for the active user's locale, but without any
decimal point.

SvrIntlé6Converter

Formatted in the same manner as the
SvrInt8Converter.

SvrInt32Converter

Formatted in the same manner as the
SvrInt8Converter.

SvrInté4Converter

Formatted in the same manner as the
SvrInt8Converter.

InternalIDConverter

Formatted as numbers in a non-locale-specific
manner without grouping separator characters.

SvrInt8BareConverter

Formatted in the same manner as
InternalIDConverter.

SvrIntléBareConverter

Formatted in the same manner as
InternalIDConverter.

SvrInt32BareConverter

Formatted in the same manner as
InternalIDConverter.

SvrInté4BareConverter

Formatted in the same manner as
InternalIDConverter.

SvrMoneyConverter Formatted in the same manner as the
SvrDoubleConverter, but with exactly two
significant digits after the decimal point.

SvrStringConverter Formatted literally, i.e., strings are not changed by

the format operation.

262 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 130: Behavior of the Format Operations (continued)

Plug-in Class Formatting Behavior

LocalizedMessageConverter Formatted by decoding the message information,
localizing the string indicated by the message
catalog details, and replacing any encoded string
arguments. The active user's locale is used
throughout.

CodeTableCodeConverter Formatted as the code description corresponding
to the code value using the active user's locale and
the domain's associated code-table.

Pre-parse operations are used to perform string-related operations, indicated by domain definition
options set in the UML model, before the strings are parsed to their Java object representations. The
operations performed are the same for all root domains and are as follows: trimming of leading
whitespace, trimming of trailing whitespace, compression of sequences of whitespace characters to a
single space character, and conversion to upper-case. The pre-parse operations should be customized via
the domain definition options in the UML model. Customization of these options via domain plug-ins is not
necessary and not supported.

Parse operations are used to interpret string values submitted from a form on an application page or via
parameters to a URL and convert then to their Java object representations. The string values received
from the web browser are interpreted as being in the UTF-8 encoding. This encoding is used when
creating the Unicode Java strings that are passed to the parse operations. The parse operations behave as
follows:

Table 131: Behavior of the Parse Operations

Plug-in Class Parsing Behavior
SvrBlobConverter Parsed as a base-64 encoded string.
SvrBooleanConverter Recognizes any of true, yes, or on as Boolean

true values, and any of false, no, or off as
Boolean false values. The parsing is not case-
sensitive or locale-aware. Other values are
reported as errors.

SvrCharConverter Parsed as a single Unicode character. The presence
of extra characters is reported as an error.

SvrDateConverter Parsed using the application date format and the
active user's locale.

DateTimeConverter Parsed using the application date and time formats
and the active user's locale. The user's preferred
time zone is assumed.

CuramTimeConverter Parsed using the application time format. The
server's time zone is assumed.

SvrDoubleConverter Parsed as a number with optional grouping
separator characters and decimal point characters
appropriate for the active user's locale.

Clram web client reference 263



Table 131: Behavior of the Parse Operations (continued)

Plug-in Class

Parsing Behavior

SvrFloatConverter Parsed in the same manner as SVR_DOUBLE
values.

SvrInt8Converter Parsed as a number with optional grouping
separator characters appropriate for the active
user's locale. The presence of a decimal point is
treated as an error.

SvrIntlé6Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt32Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInté4Converter Parsed in the same manner as the

SvrInt8Converter.

InternalIDConverter

Parsed in a non-locale-specific manner. Grouping
separators are not permitted and for negative
values the minus sign must be on the left.

SvrInt8BareConverter

Parsed in the same manner as the
InternalIDConverter.

SvrIntléBareConverter

Parsed in the same manner as the
InternalIDConverter.

SvrInt32BareConverter

Parsed in the same manner as the
InternalIDConverter.

SvrInté4BareConverter

Parsed in the same manner as the
InternalIDConverter.

SvrMoneyConverter Parsed in the same manner as SVR_DOUBLE
values, but the magnitude of the values are limited
to 1e13 to avoid the possibility of rounding errors.

SvrStringConverter Parsed literally, i.e., strings are not changed by the

parse operation.

LocalizedMessageConverter

Parsed literally in the same manner as the
SvrStringConverter. Localized messages are
not supported as input values, so this parser is
never invoked.

CodeTableCodeConverter

Parsed literally as a code value in the domain's
associated code-table. An error is reported if the
code is not defined in that code-table.

Pre-validate operations are used to perform validation checks, indicated by domain definition options set
in the UML model, after values have been parsed to their Java object representations. The checks
performed are not the same for all domains. The possible validation checks are: maximum size (length),

264 IBM Curam Social Program Management: Ciram Web Client Reference Manual




minimum size (length), maximum value, minimum value, and pattern match. The maximum and minimum
values are checked using the compare operation. The pre-validate checks applied as follows:

Table 132: Behavior of the Pre-Validate Operations

Plug-in Class Max./Min. Size | Max./Min Pattern Match
Value
SvrBlobConverter Yes No No
SvrBooleanConverter No Yes No
SvrCharConverter No Yes No
SvrDateConverter No Yes No
DateTimeConverter No Yes No
CuramTimeConverter No Yes No
SvrDoubleConverter No Yes No
SvrFloatConverter No Yes No
SvrInt8Converter No Yes No
SvrIntl6Converter No Yes No
SvrInt32Converter No Yes No
SvrInté64Converter No Yes No
InternalIDConverter No Yes No
SvrInt8BareConverter No Yes No
SvrIntl6BareConverter No Yes No
SvrInt32BareConverter No Yes No
SvrInté4BareConverter No Yes No
SvrMoneyConverter No Yes No
LocalizedMessageConverter Yes No Yes
SvrStringConverter Yes No Yes
CodeTableCodeConverter Yes No No

The pre-validate operations should be customized via the domain definition options in the UML model.
Customization of these options via domain plug-ins is not necessary and not supported.

The default implementations of the validate operations do not perform any extra validations.

Clram web client reference 265



Comparator Plug-ins

Comparator plug-ins implement the compare operations that determine the sort order of lists of values.
Comparator plug-ins are provided for the following domains (all of the plug-ins are in the
curam.util.client.domain.compazre package):

Table 133: Out-of-the-Box Comparator Plug-ins

Domain

Plug-in Class

Behavior

SVR_BLOB

SvrBlobComparator

Not sorted, as there is no useful
sort order for these non-human-
readable values.

SVR_BOOLEAN

SvrBooleanComparator

Sorted with Boolean true values
before false values.

SVR_CHAR SvrCharComparator Sorted strictly numerically with
no locale-aware processing.
SVR_DATE SvrDateComparator Sorted chronologically with the

earliest date first.

SVR_DATETIME

SvrDateTimeComparator

Sorted chronologically with the
earliest date-time first.

CURAM_TIME

CuramTimeComparator

Sorted chronologically with the
earliest time first. CURAM_TIME
is based on the SVR_DATETIME
domain, so values may included
date information, but for
comparisons, the date part is
ignored and only the time part is
used to determine the sort order.

SVR_DOUBLE

SvrDoubleComparator

Sorted numerically; smallest
value first.

SVR_FLOAT

SvrFloatComparator

Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT8

SvrInt8Comparator

Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT16

SvrIntl6Comparator

Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT32

SvrInt32Comparator

Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT64

SvrInté4Comparator

Sorted in the same manner as
SVR_DOUBLE values.

SVR_MONEY

SvrMoneyComparator

Sorted in the same manner as
SVR_DOUBLE values.

266 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 133: Out-of-the-Box Comparator Plug-ins (continued)

Domain Plug-in Class Behavior

SVR_STRING SvrStringComparator Sorted lexicographically based on
the numeric Unicode value of
each character in the string. The
comparison is not locale-aware.

SVR_STRING SvrStringCaseInsensitiveC | Sorted identically to

omparator SvrStringComparator except

the case is ignored.

SVR_STRING SvrStringlocaleAwareCompa | Sorted according to the sorting

rator

rules defined by Unicode
Collation Algorithm for the locale.
See “Localized (Cultural-aware)
string sorting” on page 268 for
details.

SVR_UNBOUNDED_STRING

SvrStringComparator

Sorted in the same manner as
SVR_STRING values.

CODETABLE_CODE

CodeTableCodeComparator

Sorted according to the defined
code-table sort order for the
code values. If the defined sort
orders are equal, the code
descriptions are sorted
lexicographically based on the
numeric Unicode value of each
character in the string. The
comparison is not locale-aware.

CODETABLE_CODE

CodeTableCodeCaseInsensit
iveComparator

Sorted identically to
CodeTableCodeComparator
except case is ignored.

CODETABLE_CODE

CodeTableCodelLocaleAwareC
omparator

Similar to the above, but the
comparison of code descriptions
uses the sorting rules defined by
Unicode Collation Algorithm for
the locale. See “Localized
(Cultural-aware) string sorting”
on page 268 for details.

The SvrStringComparator and CodeTableCodeComparator classes are configured by default to sort
values in the SVR_STRING and CODETABLE_CODE domains respectively. If locale-aware sorting is

required, the default plug-in configuration can be overridden to use the

SvrStringlLocaleAwareComparator and CodeTableCodelLocaleAwareComparator classes
instead. If case-insensitive sorting is required, override using
SvrStringCaselnsensitiveComparator and CodeTableCodeCaseInsensitiveComparator.
See “Domain Plug-in Configuration” on page 257 above for details on overriding the default plug-in

configuration. Using these locale-aware comparators, lists will be sorted according to the expected
sorting rules of the active locale. However, applying these sorting rules takes more time, so there will be
some performance degradation. The implementation of locale-aware sorting uses Java's built-in sorting
rules, so the availability of correct sorting rules for each locale depends on the Java JRE being used.

Clram web client reference 267



Localized (Cultural-aware) string sorting

When sorting the textual strings, Unicode Collation Algorithm implementation is used to ensure the sort
order expected by the users in different cultural environments.

The sorting order depends on both the current user locale and the so called collation strength. This
strength is configurable to ensure the exact requirements for different languages and applications.

In order to change the default strength the application property 'curam.collator.strength' should
be set to one of the valid values summarized in the table Table 134 on page 268 below.

‘curam.collator.strength'is a static property and requires a server restart upon changing.

Table 134: Collation strength summary

'curam.collator.strengt | Strength Name Description
hl
1 PRIMARY Alphabetical sorting which accounts for

the base letter differences.

2 SECONDARY Diacritic sort order which takes into
account character accents.

3 TERTIARY Character case based refinement of the
sort order.

This is the default value of the
‘curam.collator.strength'and
also the fall-back value where the set
value cannot be interpreted.

4 QUATERNARY Used to ignore punctuation when setting
the sort order, and to account for minor
differences. This level should also be
used when sorting Japanese text
according to JIS X 4061 standard.

5 IDENTICAL The tie-breaking level, the character
code point values are compared at this
stage.

Note: If any value beyond the acceptable range is entered for the 'curam.collator.strength’, a runtime fall-
back to the default strength will occur. The notification of this will be recorded in the application server
logs.

Note: As the collation strength is increased this can have an impact on performance.

Default Value Plug-ins

Default value plug-ins supply the default values used when no values are available. Default value plug-ins
are provided for the following domains (all of the plug-ins are in the
curam.util.client.domain.defaults package):

Table 135: Out-of-the-Box Default Value Plug-ins

Domain Plug-in Class Assumed Value | Displayed Value
SVR_BLOB SvrBlobDefault Empty BLOB Empty BLOB
SVR_BOOLEAN SvrBooleanDefault False False

268 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 135: Out-of-the-Box Default Value Plug-ins (continued)

Domain Plug-in Class Assumed Value |Displayed Value
SVR_CHAR SvrCharDefault Character zero Character zero
SVR_DATE SvrDateDefault Zero date Current date
SVR_DATETIME SvrDateTimeDefault Zero date-time Current date-

midnight

SVR_DATETIME

SvrDateTimeDefaultCurrTime

Zero date-time

Current date -
Current time

SVR_DOUBLE SvrDoubleDefault Zero Zero
SVR_FLOAT SvrFloatDefault Zero Zero
SVR_INTS8 SvrInt8Default Zero Zero
SVR_INT16 SvrIntléDefault Zero Zero
SVR_INT32 SvrInt32Default Zero Zero
SVR_INT64 SvrInté64Default Zero Zero
SVR_MONEY SvrMoneyDefault Zero Zero
SVR_STRING SvrStringDefault Empty string Empty string
SVR_UNBOUNDED_STRIN [SvrStringDefault Empty string Empty string
G
CODETABLE_CODE CodeTableCodeDefault Empty code Empty code
string string

Within the Caram application, the zero date and time is represented as midnight on January 1,0001; this
is interpreted as if no date and time has been set at all.

Also, the default value for a code-table code is an empty code string; a different mechanism is used to

define default code-table codes during code-table administration.

SvrDateTimeDefault plug-in is time zone aware and the displayed value it returns is offset by the

difference between the user and server time zones. The configured converter plug-in is expected to also
consider time zone settings and offset the value accordingly. The end result is that the time part of date-
time value is set to midnight regardless the time zone settings.

Error Reporting

Infrastructure Errors

There are many built-in, infrastructure errors, for which the developer can perhaps do no more than retry
the page or restart the web application. If these problems persist, technical support should be notified.

These errors should be reported by keeping a copy of the error page source. Since we are in a browser
environment, this is achieved by simply selecting File-->Save As... from the menu, or selecting
View-->Source to bring up a text editor and then saving the document. The information in the source of
the page may be useful in identifying and resolving the error.

Clram web client reference 269




Exception Classes

Many customizations require the addition of exception handling and error reporting code. All the
necessary infrastructure is provided to make this as simple as possible. A simple formulaic approach can
be followed that will provide all of the necessary functionality. Before looking at how you can write
customizations, you must first learn the necessary error reporting techniques.

All of the plug-in methods that throw exceptions, throw one of two exception types:

e curam.util.common.domain.DomainException
e curam.util.client.domain.convert.ConversionException

ConversionException is derived from DomainException, so instances of these exceptions can both
be treated as DomainException objects when convenient. The ConversionException class is used
for exceptions that are thrown by the methods of converter plug-ins. Unlike a DomainException, a
ConversionException can be associated with a particular property of a server interface so that error
messages reported to a user can indicate the label of the field in error and an error icon can be placed
beside that field. The only exceptions that custom code normally needs to throw are instances of
ConversionException, so this is the only exception class than needs to be understood to implement
your own exception handling and reporting.

Conversion exceptions (and most other exceptions in the client infrastructure) carry information about the
error message that needs to be reported, but not the error message itself. When an exception is thrown,
the identifier of the localized error message string, the values that will be substituted for the placeholders
in that string, and any causal exception object are included in the exception details. Each exception class
can be associated with an error message catalog (a set of localized Java properties files) that is used
when the localized message string is resolved from the message identifier. The localization and
substitution steps are not performed until the message is reported to the user, so the exception can be
propagated and augmented with more information for some time before the message string becomes
fixed. This allows, in the case of conversion exceptions, the field label to be added automatically by the
infrastructure after your custom code has thrown the exception and makes it very easy to integrate your
error reporting requirements into the system.

Custom Exception Classes

The purpose of a custom exception class is to integrate the look-up of localized message strings in a
custom message catalog into the mechanism used for error reporting in the client infrastructure. If you
only need one error message catalog, you will only need one custom exception class, but there is no
restriction on the number of exception classes or message catalogs you can create.

Implementing custom exception handling using a custom exception class is formulaic. As the custom
exception class must integrate into the existing message reporting system, only numeric message
identifiers are supported for custom exceptions and there is very little room for deviation from the
prescribed approach. You cannot, for example, use literal message strings in your code, you must use
references to externalized strings.

Here is an example of a custom exception class:

270 IBM Curam Social Program Management: Ciram Web Client Reference Manual



public class CustomConversionException
extends ConversionException %

private static final Messagelocalizer MESSAGE_LOCALIZER
= new CatalogMessagelocalizer("custom.ErrorMessages");

public CustomConversionException(int messagelD) {
super(messagelD);

public CustomConversionException(int messagelD,
String[] messageArgs) {
super(messagelD, messageArgs);

public CustomConversionException(int messagelD,
String messageArg) i
super (messageID, messageArg);

public Messagelocalizer getMessagelocalizer() %
return MESSAGE_LOCALIZER;
%
%

Figure 108: Custom Exception Class

This class extends ConversionException and implements a number of constructors simply by invoking
the equivalent constructors in the super-class. You only need to implement the constructors that you
intend to use, the rest of the constructors in the super-class can be ignored (Java classes do not inherit
constructors, hence the need to re-implement them). The available constructors are described in the
JavaDoc. Next, it defines a static Messagelocalizer field and instantiates it with a
CatalogMessagelocalizer object that takes your custom catalog name as its argument. The
getMessagelocalizer method then returns this static object. That is all there is to it.

When you throw exceptions of this type, you need to pass your message identifier and optional arguments
to the relevant constructor. You can define constants for your numeric message identifiers in this class if
you wish. Your message strings can contain placeholders such as "%1s", "%2s", etc., to be replaced by
the argument strings (only string types are supported). For an array of arguments, "%1s" will be replaced
by the first argument in the array (index zero), and so on. The special argument "%0s" can be used to
represent the name of the field in error, but you will not need to provide any matching argument string for
that value; it will be substituted automatically. You can also use the same placeholder several times in a
single message if you want the same value to be inserted in more than one place. Here is a sample
message catalog file containing a single message:

-200000=ERROR: The field '%0s' contains an invalid value '%l1s'.
Figure 109: Custom Message Catalog

The file is a standard Java properties file where each line contains a numeric identifier and a message
string separated by an equals character. A collection of properties files with the same base name but with
locale codes appended is treated as a single message catalog. The custom exception class in the example
above refers to the message catalog as "custom.ErrorMessages", so the properties files should be located
on the Java classpath in the custom package folder and in files named ExrrorMessages.properties,
ErrorMessages_en_US.properties, ExrrorMessages_fr_ CA.properties, etc., as you would do
for any other custom properties files. There should be one properties file for each locale that your
application supports. The selection of the correct locale-specific properties file at run-time is completely
automatic once you have written your custom exception class as shown above.

Ensuring that these files end up on the classpath is simply a matter of placing them in their appropriate
package folders below your web application's <client-dir>/<custom>/javasouzce folder, where
customis the name of a custom component. (see “CDEJ Project Folder Structure” on page 10 for details).

Curam web client reference 271



The Java source files for your custom exceptions should also be placed below the <client-dir>/
<custom>/javasource folder in the appropriate folders for the package names you have used.

When throwing a custom exception, the code will look like this (assuming you have decided not to use
constants for your error message identifiers):

throw new CustomConversionException(-200000, myInvalidValue);

Figure 110: Throwing a Custom Exception

Remember, it is not necessary to pass any argument corresponding to the "%0s" placeholder; it will be
calculated and substituted automatically.

Numeric Message Identifiers: When creating message catalog files, try to ensure that the error numbers
do not conflict with the numbers of existing Ciram error messages, as this may cause confusion when
errors are being investigated. Values below -200000 should be safe to use, though conflicting numbers
will not actually cause any application problems, as the message catalogs are separate from those used
by the infrastructure.

If you examine the constructors of the ConversionException class, you will note that many accept a
java.lang.Throwable object as the last argument. You can implement similar constructors and pass
Throwable objects (usually other exception objects) to your custom exceptions when you want your
custom exception to include the exception that caused it. This is often very useful as error messages for
both exceptions will be reported automatically and both stack traces will be included on an application
error page if the error page is required. In fact, there is no imposed limit to the length of the chain of
exceptions that can be built this way; the exception that you add to your own may already contain a
reference to another exception, and so on.

This example show how you can even report two separate error messages at once. Perhaps oneis a
generic message that states that a field does not contain a valid value and another suggests the expected
format for that value. You will have to implement the appropriate constructor to support this, but the
reporting mechanism is automatic.

throw new CustomConversionException(
-200000, myInvalidValue,
new CustomConversionException(-200003));

Figure 111: Throwing Multiple Exceptions

Java Object Representations

The data conversion and comparison operations manipulate strings and other Java objects. Each value in
a root domain is represented by an object of a corresponding Java class. The Java class used by a root
domain is the same for all descendant domains of that root domain and cannot be changed. When
customizing the operations, knowledge of the type of data being processed is important. The table below
shows the Java class used for data objects for each of the root domains.

Table 136: Classes Used for Java Object Representations

Domain Java Class

SVR_BLOB curam.util.type.Blob
SVR_BOOLEAN java.lang.Boolean
SVR_CHAR java.lang.Character
SVR_DATE curam.util.type.Date
SVR_DATETIME curam.util.type.DateTime
SVR_DOUBLE java.lang.Double

272 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 136: Classes Used for Java Object Representations (continued)

Domain Java Class

SVR_FLOAT java.lang.Float

SVR_INT8 java.lang.Byte

SVR_INT16 java.lang.Short

SVR_INT32 java.lang.Integer

SVR_INT64 java.lang.Long

SVR_MONEY curam.util.type.Money
SVR_STRING java.lang.String
SVR_UNBOUNDED_STRING java.lang.String

CODETABLE_CODE curam.util.common.util.CodeItem

Though derived from SVR_STRING, the Java class used for CODETABLE_CODE is different to that of its
parent. This is the only exception to the rule that the Java class used is the same for all descendant
domains of a root domain.

Customization Guidelines

Where to Start

Most customizations aim to control one or more of the data conversion or sorting operations. Guidelines
are provided in the following sections to show you how each of these operations can be customized.
Following these guidelines will ensure that your customizations are as simple and effective as possible.

When you have written your custom plug-ins, you need to configure them and ensure that the Java
classes are available at run-time.Configuration was described in “Domain Plug-in Configuration” on page
257. The Java source files for your custom plug-in classes are added to the web application in exactly the
same way as the Java source code files for your custom exception classes (see “Custom Exception
Classes” on page 270): they are placed in their appropriate package folders in your <client-dir>/
<custom>/javasource folder, (where <custom> is the name of a custom component).

Custom Formatting

Custom formatting may be required when a value displayed on an application page is not in the required
format. A custom formatter might be used to pad values with extra characters, so that they appear to be
the same length; insert a currency symbol into money values; format numeric values without grouping
separator characters; or even take a date value based on the Gregorian calendar and format it after
converting it to another calendar system.

1. Identify an existing converter plug-in class that you want to customize. It will most likely be the
converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the format method.

3. In the implementation of the method, you can perform some processing before or after invoking the
super-class's method of the same name, or implement the formatting code from scratch.

4. Configure your new plug-in for the relevant domains.

Clram web client reference 273



The calendar scenario is somewhat unrealistic because the date selector widget would not be compatible,
but inserting a currency symbol, or an analogous operation, is something that you may want to do. If
multiple currencies are supported, then domains such as US_DOLLAR_AMOUNT or EURO_AMOUNT might
be used to represent values in each currency (though the out-of-the-box Clram application uses a
different scheme for representing money values in different currencies). Custom converter plug-ins may
then be written to format money values for each of these domains by adding the appropriate currency
symbol.

This example shows how a converter plug-in can be written that takes a money value and prefixes the
formatted numeric value with a dollar symbol. The out-of-the-box Ciram application comes with a
converter plug-in that formats money values, but without any currency symbol, so you can reuse its
format operation to simplify the implementation.

[ **
* Converter that supports the use of a dollar symbol for
* money values.
*/
public class USDollarConverter
extends SvrMoneyConverter {
public String format(Object data)
throws ConversionException %
return "$" + super.format(data);
§
§

Figure 112: Custom Formatting for Currency Values

The implementation is very trivial: the super-class does all the work and returns a nicely formatted money
value; the customization just adds the dollar symbol.

The configuration file for this customization is shown below. The file might also include entries for other
customizations that have been made. As the comparator and default value plug-ins have not been
customized, they do not appear in the configuration. These plug-ins will be inherited from the ancestors of
the US_DOLLAR_AMOUNT domain (probably the SYVR_MONEY domain).

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-
config">
<dc:plug-in name="converter"
class="custom.USDollarConverter"/>
</dc:domain>
</dc:domains>

Figure 113: Configuration for Custom Formatting

Values displayed on an application page (or even those passed behind the scenes in hidden page
connections) may be submitted back to the web application. If you write a formatter that inserts a
currency symbol, or you allow users to insert currency symbols in values that they type in, then you will
need to accommodate such values in the parse operation. The next section will demonstrate the custom
parse operation required to match this custom format operation.

Another common need for custom formatting is to format integer values without grouping separator
characters. For example, an integer value that represents the year "2005" should probably be formatted
as "2005" and not "2,005". If the year value is represented by the YEAR_VALUE domain and that domain
is derived from the SVR_INT16 domain, the custom format operation would look like this:

274 1BM Curam Social Program Management: Ciram Web Client Reference Manual



[ **
* Converter that formats year values without adding grouping
* separator characters.
*/
public class YearValueConverter
extends SvrIntléConverter {
public String format(Object data)
throws ConversionException %
return data.toString();
%
%

Figure 114: Custom Formatting without Grouping

This converter overrides the format method of the SvrIntlé6Converter class and simply converts the
data object (a java.lang.Short) to a string. Unlike the routines used by the super-class, the toString
method will not do any locale-aware formatting or add any grouping separator characters. The parse
method is not overridden, so values that are entered with or without grouping separator characters will be
accepted. This converter is configured in the same way that the currency symbol converter was
configured.

Custom Parsing

Custom parsing is implemented when users must enter values in a form that existing parse operations do
not recognize or when some other processing must be performed on values before they are submitted to
the application server. Custom parsing may be as simple as a routine that first removes a currency symbol
from a numeric value before parsing it, where the currency symbol may have been entered by a user or
added by a custom format operation. It could also be something more unusual: a translation of a date to
another calendar system, a routine that pads string values, or an arbitrary calculation on numeric values.

1. Identify an existing converter plug-in class that you want to customize. It will most likely be the
converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the parse method.

3. In the implementation of the method, you can perform some processing before or after invoking the
super-class's method of the same name, or implement the parsing code from scratch.

4. Configure your new plug-in for the relevant domains.

The currency symbol scenario is continued in this example to complement the example shown for a
custom format operation above. The example below shows the same class developed to format money
values with a currency symbol; the class is now extended with a corresponding parse operation. In a case
like this, you do not write separate converter plug-ins for formatting and parsing; you must implement
both operations in the same converter plug-in and then associate the plug-in with the appropriate
domain.

Curam web client reference 275



[ **
* Converter that supports the use of a dollar symbol for
* money values.
*/
public class USDollarConverter
extends SvrMoneyConverter {
public String format(Object data)
throws ConversionException %
return "$" + super.format(data);

ky

public Object parse(String data)
throws ConversionException %
if (data.startswWith("$")) 3
return super.parse(data.substring(1));

ky

return super.parse(data);
§
§

Figure 115: Custom Parsing for Currency Values

The value passed to the parse method is the same value that was entered by the user; it is possible that
it contains no currency symbol or it might contain space characters between the currency symbol and the
value. You can use the UML domain definition options to ensure that the pre-parse operation will have
removed any whitespace before the currency symbol, or simply report an error if the currency symbol or a
digit is not the first character. The parse method above assumes that the currency symbol is the optional
first character and then leaves all other decisions up to the parse method of the super-class. This is
probably the best approach, as it limits the number of formatting rules that a user needs to be aware of
and keeps the code as simple as possible.

The configuration for this plug-in is unchanged from that shown for the custom format operation.

Custom Validation

Custom validation can be performed in two ways: by setting the domain definition options in the UML
model, or by implementing a validate operation in a custom converter plug-in. It is also possible to
combine both ways to meet your validation requirements.

The domain definition options in the UML model are limited to a small number of validations that are
described in the Cidram Modeling Reference Guide and summarized in “Converter Plug-ins” on page 260
above. If the domain definition options meet your needs, you should use them in preference to any
programmatic alternative. If the options meet only some of your needs, you should use them and also
create a custom converter plug-in to complete the validations. If the options are not useful, you should
create a custom converter plug-in and implement all the validations there. Some uses for custom
validation routines might include the validation of check digits or the imposition of any other arbitrary
restrictions on the permitted values.

1. Identify an existing converter plug-in class that you want to customize. It will most likely be the
converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the validate method.

3. In the implementation of the method, invoke the super-class's method of the same name to perform
any existing validations (if that is appropriate).

4. Complete the implementation by performing your validations and throwing an exception if any
validation fails.

5. Configure your new plug-in for the relevant domains.
In this example, a new converter plug-in is created that extends the InternalIDConverter plug-in
with a validation that only permits even numbers. The InternalIDConverterx is derived from the

SvrInté4Converter class thatis configured for use by the SVR_INT64 domain. Values in this domain
are represented by java.lang.Long objects.

276 IBM Curam Social Program Management: Ciram Web Client Reference Manual



[ **
* Reports ID numbers as invalid if they are odd.
*/
public class EvenIDConverter
extends InternalIDConverter {
public void validate(Object data)
throws ConversionException %
// Perform any existing validations first.
super.validate(data);

if (((Long) data).longValue() % 2 !=0) {
throw new CustomConversionException(-200010);
%
%
%

Figure 116: Custom Validation for Odd Numbers

The error message entry in the custom message catalog may look like this:
-200010=ERROR: The field '%0s' must be an even number.

Figure 117: Custom Validation Failure Message

If this validation is to be applied to the EVEN_ID and the NOT_ODD_ID domains, then the configuration
will look like this:

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-
config">
<dc:domain name="EVEN_ID">
<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>
</dc:domain>
<dc:domain name="NOT_ODD_ID">
<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>
</dc:domain>
</dc:domains>

Figure 118: Configuration for Custom Validation

Custom Sorting

When lists of values are displayed in an application page, a user can sort the list by clicking on the column
headers. The sort order of the rows will be determined by the sort order of the values in the selected
column. Successive clicks on a column header alternate between the forward and reverse sort order for
that column. The sort order for any type of data can be customized easily, though the sort-order for code-
table codes must be controlled using the code-table administration interface. The sort order is calculated
when responding to a user's request, so the user's active locale is available by calling the inherited
getlLocale method and can be used to influence the sort order in a locale-specific manner.

The domain comparator plug-ins are responsible for making the comparisons that control the sort order.
The sorting algorithms swap the position of values in their value lists depending on the value returned by
the compare method of the plug-in. The comparator plug-ins used in the Cliram application behave as
described in “Comparator Plug-ins” on page 266. These sort orders are simple and intuitive, but may not
meet the needs of some specialized domains. In these cases, custom sort orders may be required and
there is no limitation on what order can be used.

What Values are Compared?: All compare operations are performed by invoking the comparator plug-ins
compare method. This takes two java.lang.0Object arguments. The method is invoked automatically
by the client infrastructure before the values are formatted. This means that the objects passed are of the
types shown in “Java Object Representations” on page 272, not formatted string representations of the
values.

In most cases, having access to Java object representations makes the comparisons much easier to
perform: comparing dates and numbers is much easier when they are represented by objects that

Curam web client reference 277



conveniently provide a compareTo method that returns the same values that the compare method must
return. However, there are some situations where, for example, encoded strings are decoded by the
format operation and comparing them before they are formatted is not simple or would involve the
duplication of the formatting code. In these cases, it is possible to invoke the appropriate formatter and
compare the results. This will be described later.

The general guidelines for implementing a custom comparator plug-in to control the sort order for a
domain are as follows:

1. Create a new sub-class of the AbstractComparatoxr class described in “Extending Existing Plug-ins”

on page 259.
2. Implement the compare method to perform your custom comparison.

3. Configure your new plug-in for the relevant domains.

To illustrate this, you will see how to write a comparator that compares string values as if they were
numbers. Some of the entities in the Clram application use a string-based domain for their key values to
support the use of identifiers that may not just contain digits. Sorting of these types works well in most
cases, but there can be problems. Because the base domain is a string, the values are sorted
lexicographically, not numerically. If the values are all of the same length, this is not a problem, but if the
lengths differ, the sorting becomes confusing. For example, the string values "22" and "33" will be sorted
into the order "22", "33", but if the values are "22" and "3", the sort order will be "22", "3", because the
character "2" comes before the character "3" in a lexicographical sort and representations of numbers
with positional digits are not recognized.

There are a number of ways to solve this problem:

- The string values could be stored in the database with leading zeros used to pad all values to the same
length, this would trick the lexicographical sorting into working correctly (the lexicographical sort order
for"22" and "03"is "03", "22"). If the leading zeros were not desired for display purposes, they could
be stripped by the format operation and replaced by the parse operation. Legacy data, however, would
need to be updated to conform to the new format.

« Write a custom comparison routine that parses the numeric values from the strings and then performs
the comparison. This would work fine, but the parsing is a little complicated and it may be complicated
further if the values have trailing check letters or other non-digit characters.

« Pad the value with zeros for the purposes of making the comparison, but do this inside the compare
operation, so that no other application changes are necessary.

The latter solution is, perhaps, the easiest to achieve. Here is an example of a custom comparator plug-in
that does this for values that are limited to no more than ten characters:

[ **
* Compares string values after padding them with leading
* zeros to make the sorting work correctly for numeric
* values. Values must not be longer than ten characters.
*/
public class IDComparator
extends AbstractComparator {
public int compare(Object sl1, Object s2) %
return _pad((String) sl1).compareTo(_pad((String) s2));
§

private String _pad(String s) %
return "0000000000".substring(@, 10 - s.length()) + s;
§

ky

Figure 119: Sorting Strings Numerically
The _pad method pads a value with leading zeros, so that all returned strings will be ten characters long
and numeric values will be compared correctly as the positional digits will all be aligned correctly. No

change needs to be made to the format or parse operations or to any existing values in the database; the
sort order is entirely controlled by this simple comparator code. While the numeric values could have

278 IBM Curam Social Program Management: Ciram Web Client Reference Manual



been parsed from the strings and a numeric comparison made, this sample code is much simpler and
more efficient.

Another need for custom sorting arises when values are in an encoded form that is decoded by the format
operation. In this case, sorting of the encoded form may not be meaningful. For example, if a domain
exists that uses an encoded string containing several localized messages and their locale codes like this
"en|Helloles|Hola", calculating the sort orders for such strings is meaningless. The string could be
decoded, but, as decoding must be done by the format operation, it is simpler to invoke the format
operation instead and compare the values that it returns.

[ **
* Compares two encoded message strings using their
* formatted values.
*/
public class MessageComparator
extends AbstractComparator {
public int compare(Object valuel, Object value2) %
final DomainConverter converter;

try ¢
converter = ((ClientDomain) getDomain())
.getConverter(getLocale());
return converter.format(valuel)
.compareTo(converter.format(value2));
% catch (Exception e) %
// Do nothing except report the values to be equal.
return O;
%
%
%

Figure 120: Sorting Formatted Values

This code retrieves the converter plug-in that implements the format operation for the same domain as
that of the values being compared. The returned converter will also be aware of the active user's locale.
The exact mechanism behind this is unimportant, simply copying the code above is all that is needed
Other uses of the ClientDomain class are not supported. The exception handling is simple: it does
nothing. The compare method is not declared to throw exceptions, and thrown run-time exceptions
trigger an application error page, so there is not much useful error handling that can be performed. The
reason that none is attempted at all is that if the converter cannot be retrieved or the format operation
fails, it will be for reasons beyond the control of the comparator plug-in and these reasons will cause
failures in other places that will be reported in time. In fact, the sorting operation is carried out just before
the infrastructure formats all of the values ready for display, so the very next operation will detect and
report the errors that may have been ignored by the comparator.

A final example shows how to make the Clram application zero date (January 1,0001), appear after all
other dates instead of before them:

Curam web client reference 279



[ **
* Compares dates, but places the zero date at the end,
* rather than the start, or the sort order.
*/
public class ZeroDateComparator
extends AbstractComparator {
public int compare(Object valuel, Object value2) %
final Date datel (Date) valuel;
final Date date2 (Date) value2;

if (Date.kZeroDate.equals(datel)
&& !Date.kZeroDate.equals(date2)) %
return -1;
t else if (!Date.kZeroDate.equals(datel)
&& Date.kZeroDate.equals(date2)) {
return 1;

return datel.compareTo(date2);
%
%

Figure 121: Sorting Zero Dates

The comparator returns a negative number (the magnitude is not important) if the first date is the zero
date and the second date is not the zero date to indicate that the first date comes after the second in the
sort order. Likewise, a positive number is returned if the first date is not the zero date and the second date
is the zero date to indicate that the order is correct. Otherwise, the dates are compared as normal. This
causes the zero date to be positioned after all other dates instead of before them in the sort order.

This type of manipulation should be used with caution: the comparator plug-ins are also used during pre-
validation to check a value against the maximum and minimum values defined for its domain in the UML
model's domain definition options. In this case, if the UML domain definition options define a maximum
date and no date is set, then the zero date will be assumed and this will appear to be later than all other
dates, including the maximum date, and the pre-validation check will always fail with an error. If no
maximum value is specified in the model, then this comparator will work without problems.

To override the default comparator for all dates with this new comparator, the configuration will look like
this:

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-
config">
<dc:domain name="SVR_DATE">
<dc:plug-in name="comparatozr"
class="custom.ZeroDateComparatoxr"/>
</dc:domain>
</dc:domains>

Figure 122: Configuration for Custom Sorting

Now, all date values for all domains that are descendants of the root SVR_DATE domain, and values in the
root domain itself, will be sorted according to the new rules. There is no need to configure any other
domains, as they will all inherit this new comparator (unless, of course, a descendant domain has been
configured with another comparator that will override any inherited comparator). This comparator could
also be applied more selectively to descendant domains of SVR_DATE.

Custom Error Reporting

It is possible that a plug-in performs the operations exactly as you require, but you need to customize the
error reporting. One area of the Ciram application where this may happen is in the pre-validation
operation when the pattern matching option is applied. A pattern is a regular expression defined in the
UML model. When this validation fails, the error reports that the data was "not in a recognized format", as
few users would be able to interpret the meaning of a regular expression if presented to them. If the
format is a common and intuitive one (a phone number, say), then this message will probably suffice.

280 IBM Curam Social Program Management: Ciram Web Client Reference Manual



However, if the format is more obscure, the error message may need to be changed to present a human-
readable description of the format (correctly localized). There are two ways to achieve this:

« Remove the pattern option from the UML model and implement your own pattern match validation as
you would for any type of custom validation.

- Intercept the exception from the pre-validation operation and replace it with a different exception
carrying your alternative error message.

A custom validation is possible and you will just need to follow the usual guidelines for such a
customization, but it is complicated by the need to access the pattern information and perform the
pattern matching operation. As you would then need to report your custom error message, it is much
simpler to let the existing infrastructure do all the pattern matching and just focus on the error message.

Custom error reporting is really only applicable to the parse and preValidate methods of a converter
plug-in. These are the only methods that may be invoked and passed values that a user has entered and
that a user may be able to correct in response to an error message. The converter plug-ins supplied with
the out-of-the-box Clram application do not report any errors from their validate methods, so, unless
you want to customize another custom converter plug-in, the validate method can be ignored.

1. Identify the method that is generating the exception that carries the error message that you want to
customize. The likely candidates are the converter plug-in's parse and preValidate methods.

2. Create a new sub-class of the relevant converter plug-in and override the appropriate method.

3. In the implementation of the method, invoke the super-class's method of the same name and catch
any exception thrown.

4. Test the error number on the caught exception to ensure it is the one you want to override.

5. If the error number is correct, throw a new exception carrying your error message, otherwise, re-throw
the caught exception, as it is not the one you wish to override.

6. Configure your new plug-in for the relevant domains.

This example shows how this might be done to override the pattern match failure message. The custom
exception class described in “Custom Exception Classes” on page 270 is used.

[ **
* Reports that social security numbers must match the format
* "xxx-xx-xxxx" when the regular expression defined in the
* UML model "\di3%#\-\d{i2}#\-\di4%" does not match a social
* security number entered by a user.
*/
public class SSNConverter
extends SvrStringConverter %
public void preValidate(Object data)
throws ConversionException {
try ¢
super.preValidate(data);
% catch (ConversionException e) {
if (e.getMessageObject().getMessagelD()
== e.ERR_CONV_NO_MATCH) {
throw new CustomConversionException(-200001);
§
throw e;
§
§
%

Figure 123: Custom Error Reporting

The error message entry in the custom message catalog will look like this:
-200001=ERROR: The field '9%0s' must use the format 'xxx-xx-xxxx'.
Figure 124: Custom Pattern Match Failure Message

Curam web client reference 281



Domains that require this converter can be configured in the same manner as shown for the other
converters above.

When using the error messages interception, please keep in mind, that Ciram error messages are subject
to change without notice. However, in the specific case of the pattern match failure message, the error
-122128 - ERR_CONV_NO_MATCH will be preserved, as the possible need to intercept this message is
recognized.

Custom Default Values

It is unlikely that you will ever need to customize a default value plug-in for a domain. The displayed
default value can be customized using the respective UML domain definition option. The predefined
assumed default values for the domains are probably sufficient for every need. However, in the unlikely
event that you need to customize an assumed default value, the steps are little different from those for
other plug-ins.

Another reason for customizing a default value plug-in is where the displayed default value is not fixed
and cannot be defined in the UML model. An example of this is the use of the current date as a displayed
default value.

1. Identify an existing default value plug-in class that you want to customize.

2. Create a new sub-class of the relevant default value plug-in and override the getDisplayedDefault
method.

3. The implementation of the method should simply return a value compatible with the Java type used to
represent values for the relevant root domain. These Java types are listed in “Java Object
Representations” on page 272.

4. Configure your new plug-in for the relevant domains.

In this example, the displayed default value for an interest rate is calculated dynamically using a notional
CentralBank class that somehow returns the current interest rate.

[ **
* Returns the current interest rate by contacting the
* central bank!
*/
public class InterestRateDefault
extends SvrFloatDefault {
public Object getDisplayedDefault()
throws DomainException %
try 1§
return new Float(CentralBank.getInterestRate());
% catch (Exception e) %
throw new CustomDomainException(-200099, e);
§
§
§

Figure 125: Custom Default Date-Time Value

The example assumes that the InterestRateDefault class will be associated with a descendant of the
SVR_FLOAT domain that requires a default value to be of the java.lang.Float type. By extending the
SvrFloatDefault class, the new default value plug-in will automatically use zero as the assumed
default interest rate value.

The exception handling uses a CustomDomainException class. As the getDisplayedDefault
method throws a DomainException, and not a ConversionException, you could create such a
custom exception class by deriving it from DomainException in exactly the same way as the
CustomConversionException class was derived from ConversionException in “Custom Exception
Classes” on page 270. You might note that, as the DomainException class is an ancestor of the
CustomConversionException class that the CustomConversionException class could be used
here instead. This will work, but you must not attempt to report a message containing the "%0s"
placeholder for the field label, as automatic replacement of the field label is not supported when a
DomainException type is expected.

282 IBM Curam Social Program Management: Ciram Web Client Reference Manual



The example above shows the unknown exception thrown by the CentralBank class being added to the
new custom exception. You only need to implement the appropriate constructor to support this. The
super-class already has a constructor with the same signature, so your constructor's implementation
need only call that. There is no need to extract a string value or stack trace from the exception; all will be
reported correctly when necessary.

Advanced Topics

Type Checking and Null Checking

You may have noticed that none of the examples in this chapter show the string or object values passed to
the methods being checked to see if they are null or of the wrong type. The reason is that it is not
necessary. The client infrastructure guarantees that no method will be called with a null value and that no
conversion operation will be invoked for an object that is not compatible with the class returned by the
converter plug-in's getDomainClass method. Your custom code need never include any error handling
and reporting code for these checks.

Plug-in Instance Management

For efficiency, a Clram client application pools the minimum number of domain plug-in instances
possible. This reduces the overhead involved in creating new plug-in instances each time their operations
are invoked, but it does impose some restrictions on the way plug-ins can be written.

Domain plug-ins maintain state information: a reference to the domain and the active user's locale.
Custom code can access this state information by calling the getDomain and getLocale methods and
use it as required. The potential for concurrent access to plug-ins in typical multi-threaded servers
impacts the way the plug-in instances (with their state information) are managed. If concurrent requests
are received from users who are using different locales, then the same plug-in instance cannot be used
when servicing these requests, as only one locale value can be set in a plug-in instance. However, as any
Curam application only supports a finite number of locales, maintaining a single plug-in instance for each
locale is sufficient to avoid concurrency problems or synchronization overheads. This, of course, has to be
multiplied by the number of domains, as the domain information also constitutes state. The result is that
each domain in the domain hierarchy accesses a pool of plug-in instances specific to that domain and
each pool contains one instance of each type of plug-in for each locale.

This instance management system is entirely driven by the plug-ins themselves. Each type of plug-in can
implement its own instantiation strategy most appropriate to its needs. However, to avoid over-
complicating instance management, the AbstractDomainPlugIn class (see “Extending Existing Plug-
ins” on page 259) implements the single, consistent pooling strategy that balances efficiency against
other considerations.

While it would be more efficient to dispense with the domain and locale state information and pass these
values to the various converter and comparator methods, this poses several other problems that make
this approach less desirable:

« The method signatures would be complicated by values that may not be used.

« Some method signatures, such as the compare method of the java.util.Comparator interface
would not be compatible.

« The addition of new state information in the future would break all existing implementations. Using
accessor methods for state information allows the abstract super-classes to implement the accessors
and the signatures of the other interface methods can remain unchanged. During an upgrade no
changes would need to be made to any existing custom code that has followed the guidelines and
extended these abstract super-classes or other classes derived from them.

It is this latter point that is most important, successful upgrades depend on custom code that does not
attempt to implement the plug-in interfaces from scratch. This is why such an approach cannot be
supported.

The pooling strategy used means that there is one main limitation on how plug-ins can be written: plug-
ins must not attempt to store any state information. In short, no customization should add fields to a plug-

Curam web client reference 283



in class and attempt to store information in them; concurrent application requests will probably cause
such a plug-in to fail intermittently or introduce obscure bugs.

Domain plug-in classes must also provide a default constructor (i.e., a constructor that takes no
arguments). However, any Java class that does not explicitly define a default constructor will
automatically have one defined for it if the default constructor of an ancestor class is visible. For custom
plug-in classes that extend the plug-in classes and abstract plug-in classes provided with the out-of-the-
box Curam application, no explicit default constructor is required.

Naming Conventions

Custom domain plug-in classes may implement utility methods to support the implementation of the
main interface methods. An example is the _pad method shown in “Custom Sorting” on page 277. To
avoid inadvertently overriding another inherited method, or using a method name that conflicts with a
method introduced in a later Ciram release, you should prefix such utility methods with an underscore
character as shown. Underscore characters will not be used in the client infrastructure, so they will
guarantee that no naming conflict will arise in the future. For similar reasons, do not create classes in
packages that might conflict with Ciram package names. All Ciram packages begin with "curam", so
avoiding that name is sufficient. The examples in this chapter used the package name prefix "custom", but
this is not a requirement.

Generic Parse Operations

The generic parse operation, performed by the DomainConverter interface's parseGeneric method,
needs some explanation, so that care can be taken not to disable its operation by mistake. The generic
parse operation is responsible for parsing the string representation of values defined in the UML model's
domain definition options. Domain options for maximum, minimum and default values are expressed in
formats that are not locale-specific, as the UML model is not locale-aware. Each of the root domains
accepts values in a particular format (e.g., ISO-8601 format for SYR_DATE domains) and customization of
this format is not supported. Therefore, the default implementations of the parseGeneric method must
be respected.

For some domains, the format supported by the converter's parse method is the same as the format
supported by the parseGeneric method. The default implementation of the parseGeneric method in
the AbstractConverter class just calls the parse method (which is not implemented in this class).
Therefore, if you sub-class the AbstractConverter class and implement a parse method, the same
implementation will be used by the parseGeneric method. This may be what you require, but, if it is not,
you may want to implement a different parseGeneric method.

All of the out-of-the-box, concrete converter classes separate the implementations of the two methods,
so you can override one without changing the behavior of the other. Again, this may be what you require,
but, if it is not, you may want to override both methods.

Code-Tables

Data conversion and sorting for code-table domains should be managed via the code-table administration
interface. While the client infrastructure uses the same plug-in mechanism described here to manage
code-table values, the customization of code-table-related plug-ins is not supported. Code-table data is
more complex to handle (formatting and parsing are not symmetrical operations as they are for other
types) and all of the necessary customizations can be accomplished without resorting to programmatic
means.

The formatting of code-table values is achieved by modifying the descriptions of each code. Parsing
operations receive the code values and simply pass them on. Pre-parsing, pre-validation, and validation
are not important. Default codes and custom sort orders are controlled entirely via the administration
interface.

284 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Online Help Development

You can embed help information in the Ciram web client with the Ciram Online Help system.

The online help framework is composed of the help entries that are located within property files
associated with UIM. These entries provide help about specific properties -i.e., fields and actions - that
have been defined in the associated UIM file. Within these property files, help entries are situated on the
line immediately following the corresponding property definition. When the online help page is generated,
all field and action help definitions are listed in an easy to understand table format.

Single Source Development

The online help is developed within UIM property files. Each property defined in a property file is
immediately followed by a corresponding help definition. This enables online help developers to easily
compare and update UIM properties and help entries. In addition, having application properties and help
within the same file removes the need to maintain and synchronize a separate set of files for the help
system.

Integrated Localization

Online help localization is integrated with application localization. When localized properties files are
created for a particular locale, those property files will contain localized entries for both UIM properties
and the help properties.

Automatic Generation

Once the help content is added into the UIM property files, online help must be generated as part of the
“client" build target. At runtime online help is generated dynamically and thus does not need to be
deployed separately to the main application. This aids developers in reviewing their online help pages
quickly.

Accessing the Help Page

Access to each help page is provided in a context-sensitive manner; i.e., when a user presses the help
icon on an application page, it opens the corresponding help page in a new window.

Accessibility Features

Curam online help contains accessibility features that enable the help to be accessed by users with
disabilities. The following accessibility features are used:

Alternative Text

Alternate text allows screen readers to provide additional descriptions for non-text elements. Alternate
text is provided for all help links and help buttons.

Elements of Online Help

Introduction to Curam Client Pages

Full Curam developer knowledge is not necessary to develop Curam Online Help content, but a basic
familiarity with the development structure is required. Client pages are installed in the webclient/
components directory of the Curam installation. Each page has a UIM (User Interface Metadata) file
associated with it that defines its content - links, buttons, fields. The UIM file does not contain any actual
text - it uses externalized properties files, which map property names to text strings. UIM files may also
import VIM files. VIM files are in the same format as UIM files, they basically define a fragment of a UIM
file. They also have properties files. The association between the UIM/VIM and the property file is simple -
they have the same name, apart from the file extension.

Curam web client reference 285



The online help content is composed of extra entries embedded in client property files. Properties are
lines of text of the form:

PropertyName=Value of Property

If a button on a page is labeled in the UIM file with the property Button. Save, the following properties file
entry will exist

Button.Save=Save
To explain this in the online help, create another property called Button. Save.Help
Button.Save.Help=Use this button to save.

The online help framework is responsible for generating this into the online help format.

Page Descriptions

Use the Help.PageDescription property to provide a high-level overview of what the page is for. This
should not be used to provide details for each field or button - this can be done elsewhere.

Help.PageDescription=This page allows you to view a clause
record. Clauses describe the precedents for a decision made
on an appeal and the legal articles that affect it. These
clauses can be dynamically inserted into decision documents.

Links and Actions

If there are any labeled links or action controls on the page, a help entry can be provided with a
description for them. When creating help entries, the online help system will create a table for them,
complete with title and abstract.

ActionControl.Label.Save=Save
ActionControl.Label.Save.Help=The Save action creates a new record from the
information entered on the page.

Fields and Columns

Help entries can also be provided for labeled fields or columns on a page. The online help system will
generate a separate table for these help entries.

Field.Label.lLanguage=Language
Field.Label.lLanguage.Help=The language for the clause from the drop-down
list of languages, e.g., English, French.

Adding or Updating Help content

Help can be added for any new properties within the existing property file. However before updating
online help it is important to read the chapter on “Domain-Specific Controls” on page 203

Updating Help for non 'Domain Specific Controls'
In order to update the online help, the following steps should be followed:

1. Identify the correct property file to edit, in order to update the online help: The help text for a
particular page in the application is contained in the property file with the same name. For example, if
the online help for the 'Person Search' in the application needs to be updated then this means that
some property/properties referenced by the Person_search.uim file will have to be customized. In this
case, these properties are contained in a file named Person_search.properties.

2. Location where to update online help The property file that is being updated should be modified in
the 'webclient/components/custom' directory only. E.g. If the 'webclient/components/core/Person/

286 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Search/Person_search.properties' needs to be updated, then copy this file straight in to the 'webclient/
components/custom' directory. The 'Person/Search' directories don't need to be created in the custom
directory.

3. Modify the relevant property file as described in the earlier sections of this chapter.

4. Build client after making all the changes. Help is built by default as part of the client build target. The
help is generated dynamically at runtime and does not need to be explicitly included in the application.

Updating Help for 'Domain Specific Controls'

The address elements for a particular type of address would be a good example of a Domain Specific
Control. The field elements that are displayed on a page in the application depend on the locale that is
specified. For instance the format of the address elements displayed for an address in the US would be
different from those displayed in the UK. For this reason, the online help cannot be specified for each of
the elements within an address. For example, in the 'Register Employer' page in the application there is a
registered address and a business address. The name of the properties file which relates to this page is
Employer_registerView.properties . In order to update the online help regarding the Employer's business
address and registered we could add help properties as follows:

## ADDING HELP HERE FOR REGISTERED ADDRESS
Field.Label.RegisteredAddress.Help=

The Employer can enter their registered address in the fields displayed.
The format of the

Employers registered address will depend on the Country in which they reside.
Field.Label.BusinessAddress=Business Address

## ADDING HELP HERE FOR BUSINESS ADDRESS

Field.Label.BusinessAddress.Help=

The Employer can enter their business address in the fields displayed.

The format of the

Employers business address will depend on the Country in which they reside.

Maintaining Dynamic UIM Pages

Use this information to learn how to load dynamic UIM pages into the application resource store.

The way you store your screens differs depending on whether you are working in a development
environment or a running system.

Important: Currently the development of custom dynamic UIM pages is only supported for the
presentation of decision details only. Development of dynamic UIM for any purpose beyond this is not
supported.

Related concepts
Calculating and Displaying Decision Details

Working in a Development Environment

In order to load a dynamic UIM page into the resource store, you must add two separate entries to the
AppResouzrce.dmx file in the custom component, each entry corresponding to a dynamic UIM file and an
associated properties file.

The following is an example of how to add the DUIMSample dynamic UIM page to the AppResouzrce.dmx
file, so that it will be loaded into the application resource store at build time.

Curam web client reference 287



<row>
<attribute name="resourceid">
<value>1</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.uim</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_XML</value>
</attribute>

</row>

<row>
<attribute name="resourceid">
<value>2</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample.properties</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.properties</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>l</value>
</attribute>
<attribute name="category">
<value>RS_PROP</value>
</attribute>

</row>

288 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Note: The value of the contentType attribute specifies the location on the file system that each entry
(dynamic UIM file and associated properties file) can be uploaded from. The value of the category
attribute in the AppResouzrce.dmx categorizes a dynamic UIM page resource so that they can be
distinguished from other kinds of resources in the resource store. The dynamic UIM file should be
categorized (as shown in the example) as a RS_XML resource. The associated properties file should be
categorized as RS_PROP. Each dynamic UIM resource that is added to the AppResource.dmx should
also be given the same value so that they all belong to the same category. See the section below for
details of how new dynamic UIM pages are loaded into the resource store at runtime. The value of the
localeIdentifier attribute should be empty (as in the example) if the user's required locale is English.
Otherwise the actual locale should be used as the value for this attribute for both the UIM and properties
file.

Working in a Running System

In order to navigate to the home dynamic UIM administration screen in the application, the user must do
the following;:

 Log into the "admin" application.

« From the shortcut menu, select the "Dynamic UIM" menu item from the "Dynamic UIM" category.This
should open the home dynamic UIM administration screen

A user can maintain dynamic UIM pages in the resource store by performing the following actions:
« Add a dynamic UIM page to the Resource Store

« Edit a dynamic UIM page in the Resource Store

« Delete a dynamic UIM page from the Resource Store

« Validate a dynamic UIM page in the Resource Store

Search for Dynamic UIM Pages by Category

In order to view the current list of dynamic UIM pages in the resource store you must perform a search
based on the resource store category. This can be done from the home dynamic UIM administration
screen as follows:

« Select a menu item for the drop-down list on "Category Search" field.
« Click on the "Search" button. This will return the list of dynamic UIM pages for the selected category.

Uploading a Dynamic UIM page to the Resource Store

From the home dynamic UIM administration screen, a dynamic UIM page can be added to the resource
store by doing the following

« Select the New... page level action control. This will open a modal dialog page with four mandatory
fields.

« Enter the value of the page Page ID field. The value must be the same as the value of the PAGE_ID
attribute in the UIM file that is being uploaded, otherwise an error message will be displayed.

- Select the locale from the drop-down list on the locale field. The default is locale is English.

 Use the "Browse" button on the "UIM File" field to navigate to the dynamic UIM file that is to be
uploaded to the resource store. As indicated, this is a mandatory field.

- Use the "Browse" button on the "Properties File" field to navigate to the associated properties file to
upload to the resource store. As indicated, this is a mandatory field.
Editing a Dynamic UIM page in the resource store

From the home dynamic UIM administration, a dynamic UIM page can be added to the resource store by
doing the following;:

« From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like to
edit (by Page ID), and select the "Edit..." menu item for the list action menu. This should open a modal
dialog page with three fields.

Curam web client reference 289



« If you would like to download the current version of the dynamic UIM file and associated properties file
(to be edited) from the Resource Store the locale file system, then select the "Download" button and
save the zip file - containing both aforementioned files - to the file system. The dynamic UIM file and
associated properties file can then be unzipped from the downloaded zip and edited as required.

 Use the "Browse" button on the "UIM File" field to navigate to the dynamic UIM file that is to be
uploaded to the resource store. As indicated, this is a mandatory field.

- Use the "Browse" button on the "Properties File" field to navigate to the associated properties file to
upload to the resource store. As indicated, this is a mandatory field.

Deleting a Dynamic UIM File from the Resource Store

From the home dynamic UIM administration, a dynamic UIM page can be deleted from the resource store
by doing the following:

« From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like to
edit (by Page ID), and select the "Delete..." menu item for the list action menu. As a result of this
action a modal dialog will be displayed, with a message looking for confirmation that you want to delete
the selected dynamic UIM page from the resource store.

« The Yes button should be selected to delete the dynamic UIM page from the resource store. A new
search for dynamic UIM pages in the resource store should reflect the fact that this dynamic UIM page
has been removed from the resource store.

Validating a dynamic UIM file in the resource store

From the home dynamic UIM administration, a dynamic UIM page can be validated in the resource store
by doing the following:

« From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like to
edit (by Page ID), and select the "Validate..." menu item for the list action menu. As a result of this
action a modal dialog will be displayed, with a message stating whether the validation has passed of
failed. If the validation fails, then the source of the error page will appear in the dialog and the full
details of the error can be found in the server logs.

Publish dynamic UIM files

The changes to the dynamic UIM files will not be made public until they are intentionally published to the
resource store. This can be done by selecting the "Publish..." page action control from the home dynamic
UIM administration screen. This action will open a modal dialog page asking for confirmation that the
changes are to be published to the resource store.

Unsupported Features in Dynamic UIM

Learn about the elements and attributes that are not supported in dynamic UIM.

PAGE
Table 137: Unsupported PAGE Features
Name Feature Type
FIELD Child Element
CONTAINER Child Element
WIDGET Child Element
INCLUDE Child Element

290 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 137: Unsupported PAGE Features (continued)
Name Feature Type
SHORTCUT_TITLE Child Element
TAB_NAME Child Element
JSP_SCRIPTLET Child Element
SCRIPT Child Element
SCRIPT_FILE Attribute
POPUP_PAGE Attribute
APPEND_COLON Attribute
HIDE_CONDITIONAL_LINKS Attribute
COMPONENT_STYLE Attribute
TYPE Attribute
PAGE TITLE
For full details on the supported features of this element in static UIM, see “PAGE TITLE” on page 93.
Table 138: Unsupported PAGE_TITLE Features
Name Feature Type
DESCRIPTION Child Element
ICON Attribute
CLUSTER

For full details on the supported features of this element in static UIM, see “CLUSTER” on page 54.

Table 139: Unsupported CLUSTER Features

Name Feature Type Supported/Unsupported
attribute values

TITLE Child Element

DESCRIPTION Child Element

WIDGET Child Element

SUMMARY Attribute

TAB_ORDER Attribute

Clram web client reference 291



LIST

For full details on the supported features of this element in static UIM, see “LIST” on page 81.

Table 140: Unsupported LIST Features
Name Feature Type Supported/Unsupported
attribute values

TITLE Child Element

DESCRIPTION Child Element

FOOTER_ROW Child Element

ACTION_CONTROL Child Element

SUMMARY Attribute

SORTABLE Attribute

PAGINATED Attribute

DEFAULT_PAGE_SIZE Attribute

PAGINATION_THRESHOLD Attribute

FIELD

For full details on the supported features of this element in static UIM, see “FIELD” on page 64.
Table 141: Unsupported FIELD Features

Name Feature Type

LABEL Child Element

SCRIPT Child Element

EDITABLE Attribute
LABEL_ABBREVIATION Attribute

DESCRIPTION Attribute

INITIAL_FOCUS Attribute

ALT_TEXT Attribute

CONTROL Attribute

CONFIG Attribute

CONTAINER

For full details on the supported features of this element in static UIM, see “CONTAINER” on page 61.

292 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 142: Unsupported CONTAINER Features

Name Feature Type
IMAGE Child Element
LABEL_ABBREVIATION Attribute

ACTION_SET

For full details on the supported features of this element in static UIM, see “ACTION SET” on page 52.

Table 143: Unsupported ACTION_SET Features

Name Feature Type

CONDITION Child Element

SEPARATOR Child Element

TOP Attribute

BOTTOM Attribute
WIDGET

For full details on the supported features of this element in static UIM, see “WIDGET” on page 99.

Table 144: Unsupported WIDGET Features

Name Feature Type Supported/Unsupported
attribute values

WIDTH Attribute

WIDTH_UNITS Attribute

ALIGNMENT Attribute

HAS_CONFIRM_PAGE Attribute

CONFIG Attribute

COMPONENT_STYLE Attribute

TYPE Attribute Only the value SINGLESELECT and
MULTISELECT are supported, all
other values are unsupported

ACTION_CONTROL

For full details on the supported features of this element in static UIM, see “ACTION CONTROL” on page

49.

Clram web client reference 293



Table 145: Unsupported ACTION_CONTROL Features

Name Feature Type Supported/Unsupported
attribute values

CONNECT Child Element

SCRIPT Child Element

CONDITION Child Element

LABEL_ABBREVIATION Attribute

IMAGE Attribute

CONFIRM Attribute

DEFAULT Attribute

ACTION_ID Attribute

TYPE Attribute Only the values ACTION and
SUBMIT (An action of type SUBMIT
is not supported within a list action
menu or a page level action menu.
A list action menu is an
ACTION_SET element within a LIST
that has a value of
'LIST_ROW_MENU' on it's 'TYPE'
attribute. A page level action menu
is an ACTION_SET defined at the
PAGE level. See the “ACTION SET”
on page 52 for further details. All
other submit actions are
supported.) are supported, all
other values are unsupported

(An action of type SUBMIT is not
supported within a list action menu
or a page level action menu. A list
action menu is an ACTION_SET
element within a LIST that has a
value of 'LIST_ROW_MENU' on it's
'TYPE' attribute. A page level action
menu is an ACTION_SET defined at
the PAGE level. See the “ACTION
SET” on page 52 for further details.
All other submit actions are
supported.)

LINK

For full details on the supported features of this element in static UIM, see “LINK” on page 76.

294 IBM Curam Social Program Management: Ciram Web Client Reference Manual



Table 146: Unsupported LINK Features

Name Feature Type
CONDITION Child Element
PAGE_ID_REF Attribute
SAVE_LINK Attribute

URL Attribute
URI_REF Attribute
URI_SOURCE_NAME Attribute
URI_SOURCE_PROPERTY Attribute
SET_HIERARCHY_RETURN_PAGE Attribute
USE_HTIERARCHY_RETURN_PAGE Attribute
HOME_PAGE Attribute

INLINE_PAGE
For full details on the supported features of this element in static UIM, see “INLINE PAGE” on page 71.

Table 147: Unsupported INLINE_PAGE Features

Name Feature Type
URI_SOURCE_NAME Attribute
URI_SOURCE_PROPERTY Attribute

MENU

For full details on the supported features of this element in static UIM, see “MENU” on page 85.

Table 148: Unsupported MENU Features

Name Feature Type Supported/Unsupported attribute
values

CONNECT Child Element

MODE Attribute Only the value IN_PAGE_NAVIGATION
is supported, all other values are
unsupported.

SERVER_INTERFACE

For full details on the supported features of this element in static UIM, see “SERVER INTERFACE” on page
95.

Clram web client reference 295



Table 149: Unsupported SERVER_INTERFACE Features

Name

Feature Type

ACTION_ID_PROPERTY

Attribute

INFORMATIONAL

Only Informationals whose connections endpoints are associated with a server interface defined in the
DISPLAY phase, are supported. See “INFORMATIONAL” on page 71 for more details on informationals.).
Informationals with other any type of connection endpoints are not supported.

UIM Support in Universal Access

Learn about the elements and attributes that have limited support or are not supported in Universal

Access.

Description

UIM Screens can be used in the Universal Access user interface. However, only a subset of UIM features
support the alternate look and feel in Universal Access.

UIM Supportin UA

The following table summarizes the supported UIM elements in the Universal Access, and the contexts

they are supported in.

Table 150: UIM in the Universal Access

UIM Element Parent UIM | Main Content |Modal Dialog |DETAILS_ROW [Notes
Name Element Panel Context | Context Context
Name
ACTION_SET PAGE Support forup |Supported Unsupported The buttons
to 2 items will be
divided by a displayed in the
separator Universal
Access look
and feel.
ACTION_SET CLUSTER Supported Supported Unsupported The buttons
will be
displayed in the
Universal
Access look
and feel.
ACTION_SET LIST Unsupported Unsupported Unsupported
ACTION_SET[@TYP|LIST Unsupported Unsupported Unsupported The
E="LIST_ROW_MEN ACTION_CONT
u"] ROL element
can be used in
the column of a
LIST
ACTION_CONTROL |[CONTAINER |Supported Supported Supported
PAGE_TITLE - Supported Supported n/a

296 IBM Curam Social Program Management: Ciram Web Client Reference Manual




Table 150: UIM in the Universal Access (continued)

UIM Element
Name

Parent UIM
Element
Name

Main Content
Panel Context

Modal Dialog
Context

DETAILS_ROW
Context

Notes

DESCRIPTION

Supported

Supported

n/a

CLUSTER

Supported

Supported

Supported

The collapsible
behavior is not
supported.
Nesting of
clusters is not
supported.

LIST

Supported

Supported

Supported

The collapsible
behavior is not
supported.
Paginated lists,
scrollable lists
and nested lists
are not
supported.

DETAILS_ROW

LIST

Supported

Supported

Supported

Nesting of
expandable
lists is not
supported.

FIELD

Support for the
following input
types only: text
input, text area,
code table
drop-downs,
date picker,
password

Support for the
following input
types only: text
input, text area,
code table
drop-downs,
date picker,
password

Unsupported

Code-table
hierarchy and
all other items
not defined in
the cell for
Main Content
Panel or Modal
Dialog are not
supported

Clram web client reference 297




Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

298 Notices



Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 299


http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

300 IBM Curam Social Program Management: Curam Web Client Reference Manual






Part Number:

(1P) P/N



	Contents
	List of Figures
	List of Tables
	Chapter 1.  Cúram web client reference
	Cúram web client overview
	User interface metadata
	Page content metadata

	Application user interface overview
	Cúram applications
	Page context
	Page appearance
	Application controller JSP
	Direct browsing

	Web Client Development
	Outline of the Client Development Process
	CDEJ Installation
	CDEJ Project Folder Structure
	Application Components
	Component Folders
	Component Order
	Localized Components


	Component Artifacts
	Application Locales
	Building an Application
	Build Targets
	Related Build Targets
	Full and Incremental Builds
	Dependency Checking
	Build Logs
	Error Reporting
	Server Interface Reference
	Enabling the clipboard action from Internet Explorer 11
	Page Previews
	UIM Generator Tool
	External Client Applications

	Deployment
	Overview
	Application Configuration Properties
	Tracing

	Customizing the Web Application Descriptor
	Customizing the 404 or Page Not Found error response.


	Customization
	Overview
	Adding New Artifacts
	Overriding or Merging Artifacts
	Externalized Strings
	Images
	Image Mapping
	CuramLinks.properties
	XML Runtime Configuration Files
	Login Pages
	JavaScript Files
	Cascading Stylesheets
	Application Specific CSS
	Media Specific CSS
	Browser Specific CSS

	Application Configuration Files
	General Configuration
	Overview
	POPUP_PAGES
	MULTIPLE_POPUP_DOMAINS
	ERROR_PAGE
	MULTIPLE_SELECT
	FILE_DOWNLOAD_CONFIG
	ENABLE_COLLAPSIBLE_CLUSTERS
	APPEND_COLON
	ADDRESS_CONFIG
	ADMIN
	STATIC_CONTENT_SERVER
	FIELD_ERROR_INDICATOR
	SECURITY_CHECK_ON_PAGE_LOAD
	ENABLE_SELECT_ALL_CHECKBOX
	TRANSFER_LISTS_MODE
	HIDE_CONDITIONAL_LINKS
	DISABLE_AUTO_COMPLETE
	SCROLLBAR_CONFIG
	PAGINATION
	Customizing Configuration Settings
	Dividing the Configuration File

	Custom Resources


	Localization
	Numbers
	File Encoding
	XML Files
	Java properties files
	Non-XML Files

	Locales
	Non JavaScript property files
	JavaScript property files

	UIM Externalized Strings
	JavaScript Externalized Strings
	Accessing properties in JavaScript

	Image.properties
	Infrastructure Widget Properties Files
	Frequency Pattern Selector Localization

	CDEJResources.properties
	ApplicationConfiguration.properties
	Application-wide Menu
	Tabbed Configuration Artifacts
	Runtime Messages

	UIM Reference
	Creating UIM Documents
	UIM Document Types
	UIM Pages
	UIM Views
	UIM Page Field Level Validations
	UIM Pages

	Externalized Strings
	UIM Reference for Pages and Views
	Introduction
	Connection Types
	ACTION CONTROL
	Cancel Button
	File Downloads
	Attributes
	Child Elements

	ACTION SET
	Attributes
	Child Elements

	CLUSTER
	Attributes
	Child Elements
	Dynamic Conditional Clusters

	CONDITION
	Attributes
	Child Elements

	CONNECT
	Attributes
	Child Elements

	CONTAINER
	Attributes
	Child Elements

	DETAILS_ROW
	Attributes
	Child Elements

	DESCRIPTION
	Attributes
	Child Elements

	FIELD
	Attributes
	Child Elements

	FOOTER_ROW
	Attributes
	Child Elements

	IMAGE
	Attributes
	Child Elements

	INCLUDE
	Attributes
	Child Elements

	INITIAL
	Attributes
	Child Elements

	INFORMATIONAL
	Attributes
	Child Elements

	INLINE PAGE
	Attribute
	Child Elements
	Restrictions on usage

	IS_FALSE
	Attributes
	Child Elements

	IS TRUE
	Attributes
	Child Elements

	JSP SCRIPTLET
	Attributes
	Child Elements

	LABEL
	Attributes
	Child Elements

	LINK
	Attributes
	Child Elements
	Modal Dialogs

	LIST
	List attributes
	Child Elements
	Editable Lists

	MENU
	Attributes
	Child Elements
	DYNAMIC and INTEGRATED_CASE type menus
	The IN_PAGE_NAVIGATION type menu
	WIZARD_PROGRESS_BAR menu
	The UIM wizard pages
	Wizard menu configuration

	PAGE
	Attributes
	Child Elements

	PAGE_PARAMETER
	Attributes
	Child Elements

	PAGE TITLE
	Attributes
	Child Elements

	SCRIPT
	Attributes
	Child Elements

	SERVER INTERFACE
	Attributes
	Child Elements

	SOURCE
	Attributes
	Child Elements

	TAB_NAME
	Child Elements

	TARGET
	Attributes
	Child Elements

	TITLE
	Attributes
	Child Elements

	VIEW
	Attributes
	Child Elements


	UIM Reference for Widgets
	Introduction
	WIDGET
	Attributes
	Child Elements

	WIDGET_PARAMETER
	Attributes
	Child Elements

	The EVIDENCE_COMPARE Widget
	(deprecated) The FILE_EDIT Widget
	(deprecated) FILE_EDIT Widget Configuration
	(deprecated) User Machine Configuration for the Applet version
	(deprecated) User Machine Configuration for the Native Messaging version

	The FILE_UPLOAD Widget
	File Upload Widget Considerations

	The FILE_DOWNLOAD Widget
	The MULTISELECT Widget
	Confirmation Pages

	The SINGLESELECT Widget
	The RULES_SIMULATION_EDITOR Widget
	The IEG_PLAYER Widget

	Dynamic UIM Cross Reference
	Dynamic UIM System Initialization

	Application Configuration
	Configuration files
	Web client properties
	Customizing the CDEJResources.properties file
	Configuring the browser title

	Applications
	Application definition
	Application application-menu element
	Application application-search element
	Application section-ref element
	Application timeout-warning element
	Application context

	Application optional header
	Application example
	Associate an application with a user

	Configuring Smart Navigator search targets and keywords
	Creating search targets
	Creating search keywords
	Creating search keywords using code tables
	Creating search keywords using the administration system

	Binding keywords to search target implementations
	Deleting or disabling keywords
	Modifying keywords
	Modifying keywords in CT_AppSearchTarget.ctx
	Modifying keywords by using the administration system

	Overriding default search targets
	Overriding the person search
	Modifying product URLs
	Enabling and disabling Smart Navigator
	Setting the preferred tabs

	Sections
	Section definition
	Section tab element
	Section shortcut-panel-ref element

	Section example

	Section shortcut panel
	Section shortcut panel definition
	Section shortcut panel node element

	Section shortcut panel example

	Tabs
	Tab definition
	Tab page-param element
	Tab menu element
	Tab context element
	Tab navigation element
	Tab smart-panel element
	Tab tab-refresh element

	Context panel UIM
	Tab example configuration file

	Tab actions menu
	Tab actions menu definition
	Tab actions menu menu-item element
	Tab actions menu submenu element
	Tab actions menu menu-separator element
	Tab actions menu loader-registry element
	Tab actions menu loader element

	Tab actions menu dynamic support
	File download menu item
	Tab actions menu example configuration file

	Tab navigation
	Tab navigation definition
	Tab navigation nodes element
	Tab navigation navigation-group element
	Tab navigation navigation-page element
	Tab navigation loader-registry element
	Tab navigation loader element

	Tab navigation dynamic support
	Tab navigation example configuration file

	Opening tabs and sections
	Using links to open tabs and sections
	Page to tab and tab to section associations
	Tab and section page parameters
	Tab ordering


	Working with the Cúram user interface
	Prerequisites for configuring the user interface
	Creating a simple application
	Defining an application
	Adding a section to an application
	Adding a tab to a section
	Add a UIM page to a tab
	Associating a user with an application
	Build targets required to create a simple application

	Adding a shortcut panel
	Adding a section
	Defining the contents of a section shortcut panel
	Defining a search tab
	Define the Search Page

	Build targets required to add a shortcut panel

	Adding tab content
	Defining a person tab
	Defining a context panel
	Defining a person page

	Build targets required to add tab content

	Configuring modal dialogs
	Opening a modal dialog
	Defining the content of the modal dialog
	Adding a wizard progress bar
	Defining the wizard progress bar configuration file
	Defining wizard pages

	Build targets required to add modals and wizard progress bars

	Adding tab navigation
	Defining a navigation bar
	Build targets required to add tab navigation

	Working with lists
	Defining an expandable list
	Defining a list actions menu
	Build targets required to add lists and list actions


	Session Management
	Session Overview
	Tab Restoration
	Session Configuration
	Session Timeout Warning
	Session timeout warning default values
	Customizing the session timeout warning in the caseworker application
	Customizing the session timeout warning in Universal Access
	Customizing the timeout warning in an application
	Configuring a customized logon page

	Tab Session Limitations
	Browser Specific Session Management

	Browser Management
	Optimal Browser Support
	Feature Configuration
	Text Configuration

	Configuring Browser Back, Refresh, and Close Button Behavior

	Domain-Specific Controls
	Dates
	Three Field Date Selector

	Date-Times
	Representing Time-Only Values
	Customizing the Time Format

	Frequency Pattern Selector
	Selection Lists
	Populated from a Code-Table
	Populated from Server Interface Properties
	Drop-down, Scrollable and Checkboxed List types
	Drop-down and Scrollable List
	Checkboxed List

	Adding an Empty Entry to a List for Non-Mandatory Fields
	Enabling Multiple Selection
	Transfer List Widget
	Overview
	Configuration


	User Preferences Editor
	Rules Trees
	Introduction
	Behavior of Summary and Highlight-On-Failure Rules Flags

	Default Rules View
	Summary Rules View
	Failed Rules View
	Dynamic Rules View
	Behavior of Summary and Highlight-On-Failure Indicator

	Dynamic Full Tree Rules View
	Rules Editor

	Meeting View
	Overview
	Single Selection Mode
	Multiple Selection Mode
	XML Formats

	Charts
	Overview
	Chart appearance
	Chart configuration
	Chart Data Formats

	Heatmap Widget
	Overview
	Configuration

	Workflow
	Overview
	Workflow Details
	Workflow XML Formats

	Evidence View
	Evidence Display Mode
	Evidence Comparison Mode
	Configuration
	Data Format

	Calendar
	Payment Statement View
	Batch Function View
	Addresses
	Schedule View
	Radio Button Group
	Pop-up Pages
	Configure the Pop-up Page
	Create the Pop-up Page
	A pop-up which returns existing items
	A pop-up which creates a new item

	Using the Pop-up Page
	Using Multiple Pop-up Search Pages for a Single Field
	Configure the Multiple Pop-up Page
	Using the Multiple Pop-up Page

	Agenda Player
	Agenda Player screen structure
	Navigation modes
	Navigator-less View
	Agenda Player Configuration
	Agenda Player Customization
	Player data

	LOCALIZED_MESSAGE Domain
	Decision Assist: Decision Matrix Widget
	Overview


	Custom Data Conversion and Sorting
	Data Conversion and Sorting Operations
	Data Conversion Life Cycle
	The Domain Hierarchy and Domain Plug-ins
	Overview of Domain Plug-ins
	Common Features of Plug-ins
	Converter Plug-ins
	Comparator Plug-ins
	Default Value Plug-ins

	Domain Plug-in Configuration
	Out-of-the-Box Domain Plug-ins
	Extending Existing Plug-ins
	Converter Plug-ins
	Comparator Plug-ins
	Localized (Cultural-aware) string sorting

	Default Value Plug-ins

	Error Reporting
	Infrastructure Errors
	Exception Classes
	Custom Exception Classes

	Java Object Representations
	Customization Guidelines
	Where to Start
	Custom Formatting
	Custom Parsing
	Custom Validation
	Custom Sorting
	Custom Error Reporting
	Custom Default Values

	Advanced Topics
	Type Checking and Null Checking
	Plug-in Instance Management
	Naming Conventions
	Generic Parse Operations
	Code-Tables


	Online Help Development
	Single Source Development
	Integrated Localization
	Automatic Generation
	Accessing the Help Page
	Accessibility Features
	Alternative Text

	Elements of Online Help
	Introduction to Curam Client Pages
	Page Descriptions
	Links and Actions
	Fields and Columns

	Adding or Updating Help content
	Updating Help for non 'Domain Specific Controls'
	Updating Help for 'Domain Specific Controls'


	Maintaining Dynamic UIM Pages
	Working in a Development Environment
	Working in a Running System
	Search for Dynamic UIM Pages by Category
	Uploading a Dynamic UIM page to the Resource Store
	Editing a Dynamic UIM page in the resource store
	Deleting a Dynamic UIM File from the Resource Store
	Validating a dynamic UIM file in the resource store
	Publish dynamic UIM files


	Unsupported Features in Dynamic UIM
	PAGE
	PAGE TITLE
	CLUSTER
	LIST
	FIELD
	CONTAINER
	ACTION_SET
	WIDGET
	ACTION_CONTROL
	LINK
	INLINE_PAGE
	MENU
	SERVER_INTERFACE
	INFORMATIONAL

	UIM Support in Universal Access
	UIM Support in UA


	Notices
	Privacy Policy considerations
	Trademarks


