
IBM Cúram Social Program Management
Version 7.0.10

Performance tuning

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
24

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.10 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2014, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables.. iv

Chapter 1. Performance tuning.. 1

Chapter 2. Prerequisites for performance tuning.. 2

Chapter 3. System configuration assumptions.. 3

Chapter 4. Database configuration... 4
Db2... 4
Oracle... 5

Chapter 5. Social Program Management application... 9
Static content... 9
Configuring the HTTP key server... 9
ID generation..9
Caches.. 9
Login... 10
Batch processes...10

Chapter 6. Application server...11
Number of application servers.. 11
JVM settings...11
Thread pools.. 12
JDBC connection pool settings..13
JMS settings...14
WAS Java 2 security...15
Monitoring the application server..16
WAS tunable parameters summary.. 17

Chapter 7. Tuning the HTTP server... 21
Configuring the HTTP server for static content...21
Compressing content from HTTP server... 21
Monitoring the HTTP server...21
Configuring persistent connections.. 22
Adjusting thread tuning... 22

Notices..24
Privacy Policy considerations.. 25
Trademarks.. 25

 iii

Tables

1. Oracle tuning parameters... 6

2. Recommended cache sizes.. 10

3. Summary of tunable parameters for WAS..17

iv

Chapter 1. Performance tuning
This guide provides a quick-start and guidelines to tuning IBM Cúram Social Program Management (SPM)
in a production or production-like environment. The guide covers the key tuning parameters for a system
deployment of SPM, and provides formulas to use for some parameters and starter values for others.

Scope

The following turning tasks are out of scope:

• Database tuning
• Operating system tuning
• Network tuning
• Disk subsystem tuning

While the starter values are based on experience and are sensible for production, it is unlikely that they
are the optimal values for your specific system. You must further tune the starter values during your load
testing and production monitoring. Tuning testing might be helpful for evaluating the initial starter values.
Tuning tests consist of running short simulations of a workload representative of production volume and
hardware to find the optimum tuning values for the system. The production volume might be simulated by
using your load test workload. The tests do not normally use think times and need to last only half an
hour. During these tests, perform full system monitoring. This type of testing allows a short cycle of test,
feedback, and update to tuning parameters. Tuning tests are specialized load tests and are not a direct
replacement for load tests. The goal of tuning tests is only to improve the system performance through
tuning.

Audience

This guide is intended for a technical audience who is deploying, testing, or running IBM Cúram Social
Program Management in a production or production-like environment.

© Copyright IBM Corp. 2014, 2020 1

Chapter 2. Prerequisites for performance tuning
Before you undertake IBM Cúram Social Program Management tuning activities, for example, configuring
SPM for a specific deployment, obtain an understanding of SPM and the requisite middleware such as
IBM WebSphere® Application Server and IBM Db2®.

To ensure you are using supported software with the correct versions, refer to the IBM Cúram Social
Program Management Supported Prerequisites. In addition to the product prerequisites, consult the
system requirement documents for each of the required/optional software components.

For more information about IBM Cúram Social Program Management, see https://www.ibm.com/support/
knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.nav.doc/spm_welcome.html.

2 IBM Cúram Social Program Management: Performance tuning

https://www.ibm.com/support/pages/ibm-c%C3%BAram-social-program-management-supported-prerequisites
https://www.ibm.com/support/pages/ibm-c%C3%BAram-social-program-management-supported-prerequisites
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.nav.doc/spm_welcome.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.nav.doc/spm_welcome.html

Chapter 3. System configuration assumptions
Specific values are provided as recommended initial values for the performance tuning process, and the
performance turning examples that are provided assume certain configuration settings.

The values you identify from your observation and tuning activities might vary, based on a number of
factors:

• Distribution of workload
• Number of processor cores
• Speed of the processor cores
• Performance of the I/O system

The provided examples assume the following configuration settings:

• Each application server runs its own messaging engine, as for a high-availability environment.
• Each server uses a dedicated thread pool that is configured for online processing, and another pool for

asynchronous processing.

For more information about configuration details, see the Cúram Social Program Management Clustered
IBM WebSphere Application Server Deployment Guide, or the Cúram Social Program Management
Clustered Oracle WebLogic Server Deployment Guide, which is available on request.

© Copyright IBM Corp. 2014, 2020 3

https://www.ibm.com/support/pages/node/254553
https://www.ibm.com/support/pages/node/254553

Chapter 4. Database configuration
Database tuning is out of scope. However, the following suggestions for how to configure a database for
high performance with IBM Cúram Social Program Management are based on prior experience. The
suggestions are not exhaustive, and tuning before production is strongly recommended.

Db2
The following maintenance and database design guidelines apply to tuning Db2 databases.

Maintenance

Regular database maintenance is essential to ensure optimal performance and reliability of your
databases. Running the REORGs and RUNSTATS utilities is critically important for optimal performance
with Db2 databases. After the database is populated, do the maintenance on a regularly scheduled basis,
such as weekly. A regularly scheduled maintenance plan is essential to maintain peak performance of
your system.

Physical database design

In addition to physical database design done as part of the project, the following tips apply specifically to
performance and scalability:

• Create two 4 K page buffer pools, one for data and one for indexes, and a 4 K page temporary table
space.

• Create a 4 K page large table space for data, with no file system caching.
• Create a 4 K page large table space for indexes, with no file system caching.
• Create a 4 K page large table space for LOBs, with file system caching (to enable buffering of Large

Object types (LOBs)).
• Move all indexes to the 4 K page indexes table space. A common page size makes database

administration easier and improves performance. For example, indexes of tables in the 32 K page table
space that use 4 K pages require less I/O.

• Move all LOBs to the 4 K page LOBs table space.
• Move all tables that do not need 32 K page to the 4 K page data table space. It can improve buffer pool

utilization and decrease database I/O.
• Enable compression on tables if it is wanted. Compression was tested by IBM with no issues.
• Review the use of dedicated table spaces. Consider moving the largest tables (for example,

DYNAMICEVIDENCEDATAATTRIBUTE and DEPENDENCY) to dedicated table spaces. However, from
experience, with good I/O layouts, the only reason for dedicated table spaces is maintenance.

• Review the use of partitioning. From experience, with good I/O layouts, the only reason for partitioning
is maintenance (similar to dedicated table spaces).

Registry variables

To improve the buffer pool management and increase performance in Db2, you can set the following Db2
registry variables:

 DB2_USE_ALTERNATE_PAGE_CLEANING=ON

Setting DB2_PARALLEL_IO=*:n enables Db2 to parallelize IO to that logical volume. The number of
disks in the RAID array that backs a logical volume is represented by “n”.

4 IBM Cúram Social Program Management: Performance tuning

Oracle
The following maintenance and database design guidelines apply to tuning Oracle databases.

Initialization and tuning parameters for Oracle databases

The application server for IBM Cúram Social Program Management uses JDBC connection pooling and
prepared statement caching. At bare minimum, review and adjust the PROCESSES and OPEN_CURSORS
parameters from the following list according to your system requirements. You can use the following
guidance when you are deciding which values to apply for PROCESSES and OPEN_CURSORS on your
system. In addition to these two basic parameters, check the parameters that are referenced in the
following table, and adjust the parameters if necessary.
PROCESSES

PROCESSES specifies the maximum number of operating system user processes that can
simultaneously connect to Oracle. Its value must allow for all background processes such as locks,
job queue processes, and parallel execution processes. This parameter is operating system
dependent. The default values of the SESSIONS and TRANSACTIONS parameters are derived from
this parameter. If you change the value of PROCESSES, evaluate whether to adjust the values of those
derived parameters. You can use the following guidance to set a value for PROCESSES:

PROCESSES > MAX

where

MAX=NUMBER OF APPLICATION SERVERS * NUMBER OF POOLED JDBC CONNECTIONS

or

MAX=NUMBER OF BATCH STREAMS * 3

Note: Increasing the number of processes leads to greater memory consumption. Consult with your
database administrator before you make any changes.

OPEN_CURSORS
Oracle creates a memory area (context area) for processing SQL statements. The value of
OPEN_CURSORS must be set high enough to prevent your application from running out of open
cursors. Assuming that a session does not open the number of cursors that are specified by
OPEN_CURSORS, there is no added overhead to setting this value higher than needed. The following
guidance can be used to set a value for OPEN_CURSORS:

OPEN_CURSORS >= NUMBER OF OVERALL EXPECTED DBCONNECTIONS

or

OPEN_CURSORS > JDBC/CURAMDB PREPARED STATEMENT CACHE SIZE

SESSIONS
This parameter modifies the number of sessions that are allowed by Oracle at database level.

Note: Setting the number of allowed processes automatically sets the appropriate number of
sessions, which is the recommended way of tuning this parameter. Oracle does not recommend
setting this parameter explicitly.

EVENTS
This parameter is used to reduce contention that is caused by LOB management. To identify the
number of chunks to be cleaned up each time a reclamation operation is performed, set EVENT
44951 to a value in the range 1 - 1024. In turn, this parameter reduces the number of requests
against the high watermark enqueue.

Chapter 4. Database configuration 5

DB_BLOCK_SIZE
This parameter controls the size of the default data block size at the time of database creation. If the
database exists, this value cannot be changed: a new database needs to be created with a different
block size. Since Oracle 10g Release 2, each table space can have a different block size. However, the
block size still needs to be chosen wisely. Performance tests showed that decreasing the block size
decreases threads contention. The DB_BLOCK_SIZE default value is 8192. The value of this
parameter must be a multiple of the physical block size at the device level. Our suggestion is to set
the parameter to the lowest possible value.

DISK_ASYNCH_IO
Much CPU time can be wasted on asynchronous I/O on systems that support it. We suggest setting
the DISK_ASYNCH_IO parameter to FALSE.

Note: With DISK_ASYNCH_IO off, you should set the DBWR_IO_SLAVES parameter to a value other
than its default of 0, to simulate asynchronous I/O.

DBWR_IO_SLAVES
The DBWR_IO_SLAVES parameter is relevant only on systems with only one database writer process
(DBW0). It specifies the number of I/O server processes that are used by the DBW0 process. The
DBW0 process and its server processes always write to disk. By default, the value is 0 and I/O server
processes are not used. DBWR_IO_SLAVES should be set and tuned when simulating asynchronous
I/O, for example, with DISK_ASYNCH_IO=FALSE. Performance tests have shown that setting
DBWR_IO_SLAVES to 20 yields good performance.

In addition to the parameters mentioned previously, a number of other important Oracle tuning
parameters are available that you can review and adjust, if necessary. The following table summarizes the
tuneable parameters.

Table 1. Oracle tuning parameters

Tuning parameter Description and use Recommended value

PROCESSES Specifies the maximum number
of operating system user
processes that can
simultaneously connect to Oracle

PROCESSES > MAX
where
MAX=NUMBER OF
APPLICATION SERVERS *
NUMBER OF POOLED JDBC
CONNECTIONS
or
MAX=NUMBER OF BATCH
STREAMS * 3

SESSIONS Modifies the number of sessions
that are allowed by Oracle at
database level.

Note: Setting this parameter
explicitly is not recommended.

OPEN_CURSORS Controls the size of the memory
area (context area) for
processing SQL statements.

open_cursors >= number
of overall expected
dbconnections
or
open_cursors > jdbc/
curamdb prepared
statement cache size

EVENTS Set to reduce contention caused
by LOB management.

SET EVENTS ='44951 TRACE
NAME CONTEXT FOREVER,
LEVEL 1024'

6 IBM Cúram Social Program Management: Performance tuning

Table 1. Oracle tuning parameters (continued)

Tuning parameter Description and use Recommended value

DB_BLOCK_SIZE Controls the size of the default
data block size at the time of
database creation.

Set to the lowest possible value
(2048):
DB_BLOCK_SIZE = 2048

FAST_START_MTTR_TARGET Specifies the number of seconds
that the database takes to
perform crash recovery of a
single instance.

FAST_START_MTTR_TARGET=60
 for approximately 100 MB files.
FAST_START_MTTR_TARGET=30
0 for approximately 500 MB files.
Check the size of log files with:
select * from V$LOG

FAST_START_MTTR_TARGET=30
0

DISK_ASYNCH_IO Controls whether I/O to data
files, control files, and log files is
asynchronous.

DISK_ASYNCH_IO=false

DBWR_IO_SLAVES Specifies the number of I/O
server processes that are used by
the DBW0 process.

DBWR_IO_SLAVES = 20

DB_WRITER_PROCESSES DB_WRITER_PROCESSES
(DBWR) manages the "dirty
block" cleanouts from the data
buffer. Very few tuning options
exist except adjusting the
number of DBWR processes.
DB_WRITER_PROCESSES cannot
exceed a value of 20.

The default value is the larger
value of either:
DB_WRITER_PROCESSES = 1
or
CPU_COUNT/8

IDLE_TIME Set to greater or equal to the
timeout that is set on WebSphere
Application Server.

ALTER PROFILE DEFAULT
LIMIT IDLE_TIME n
Set the value to greater than or
equal to the WebSphere
Application Server timeout.

LOG_BUFFER Specifies the amount of memory
in bytes that Oracle uses when
buffering redo entries to a redo
log file. The database chooses an
appropriate default based on the
server specification.
In our tests, we set this
parameter with positive results
for performance. Consult your
database administrator to
determine whether setting this
parameter is appropriate in your
environment.

Note: In newer releases of
Oracle, the advice is do not set
the LOG_BUFFER parameter.

Chapter 4. Database configuration 7

Table 1. Oracle tuning parameters (continued)

Tuning parameter Description and use Recommended value

DB_CACHE_SIZE Use the DB cache advisor (V
$DB_CACHE_ADVICE view) to
see whether any benefit can be
gained from increasing the size of
the buffer cache. Consult your
database administrator to
determine whether setting this
parameter is appropriate in your
environment.

No recommendation because the
parameter is system-dependent.

TABLESPACE DATAFILES More data files results in less
write contention. Consult your
database administrator to
determine whether setting this
parameter is appropriate in your
environment.

No recommendation because the
parameter is system-dependent.

Physical database design

In addition to physical database design that is done as part of the project, experience shows that the
database design has benefits in reducing contention on hot index blocks (cache buffer chain). To achieve
this benefit, create a 2 K block table space for indexes, and move indexes to that 2 K block index table
space.

Statistics

The database optimizer relies on database statistics to determine which indexes are used for data access.
If the database statistics are not up-to-date, the correct indexes might not be used. In this case, the
performance of the system degrades, and at worst the system becomes unstable. It is important to
ensure that database statistics are run and gathered frequently. The general convention is that database
statistics are gathered on a table when 10% or more of the data on that table changes. Typical examples
in SPM are to run statistic in the early life of the system and after some batch job executions.

More specifically, initially many tables in the SPM database are empty or have a low number of rows.
Therefore, before you turn on a production or test system, you must run and gather database statistics.
During the first hours and days that the system is used, run and gather database statistics often, at least
daily.

8 IBM Cúram Social Program Management: Performance tuning

Chapter 5. Social Program Management application
Use the following guidelines for basic tuning of the Social Program Management application.

Static content
An application server is optimized to serve dynamic content, while an HTTP server is optimized to serve
static content. Package the IBM Cúram Social Program Management (SPM) static content and copy it to
the HTTP Server.

To enable static content in SPM, set the STATIC_CONTENT_SERVER element in the curam-config.xml
file and perform a full SPM build.

For information about configuring the web server for static content, see the section “Configuring the HTTP
server for static content” on page 21.

Configuring the HTTP key server
For higher performance, consider setting humanReadable=1 for all entries in the KeyServer.dmx file.

Note: If you set humanReadable=1, key allocation becomes sequential and therefore predictable. You
must consider the use of this parameter in conjunction with your security requirements.

Note: Some customers have reported that when they use humanReadable=1 and Oracle RAC,
concurrent inserts into the same table can cause heavy contention on index blocks. A solution to this
problem is to re-create the primary key index of the affected tables to be REVERSE KEY. However, using a
REVERSE KEY index means that Oracle cannot perform an index range scan on that index. This should not
be a problem for primary key indexes as we mostly use surrogate keys, which have no business meaning.

ID generation
If the default ID generation algorithms are used, change them to use the key server to prevent contention.

Set the value of the following application properties to YES:

curam.referencenumber.generateproviderreferencenumberfromkeyset
curam.referencenumber.generateprovidergroupreferencenumberfromkeyset
curam.referencenumber.generateexternalpartyidfromkeyset
curam.referencenumber.generateemployeridfromkeyset
curam.referencenumber.generatepersonidfromkeyset
curam.referencenumber.generateinformationproviderridfromkeyset
curam.referencenumber.generateutilityidfromkeyset
curam.referencenumber.generateservicesupplieridfromkeyset
curam.referencenumber.generateproductprovideridfromkeyset
curam.referencenumber.generaterepresentativeidfromkeyset

Caches
For better performance, you can resize caches.

To improve performance, resize the following caches to the values that are indicated in the table. Monitor
the caches and increase their size if evictions occur.

© Copyright IBM Corp. 2014, 2020 9

Table 2. Recommended cache sizes

Cache Recommended value

curam.cache.curam-
group.componentModelCache.size

100000

curam.cache.curam-
group.CREOLERuleSetDtlsCache.size

Higher than the number of rule sets that are stored
in the CREOLERuleSet table

curam.cache.curam-
group.RuleSetSnapshotIDCache.size

Set the size to the largest of the following two
values:

• 3 times the number of rule sets that are stored in
the CREOLERuleSet table

• The number of snapshots that are stored in the
CREOLERuleSetSnapshot table

Login
The first login on a cold application server is usually slower than subsequent logins, and can exceed the
application server transaction timeout. To avoid slow first logins, you can set a custom value for the
LoginBeanTransaction.transaction.timeout property.

Set the value of the LoginBeanTransaction.transaction.timeout property to greater than the
application server transaction timeout. When the value is set, the value overrides the application server
transaction timeout for the login transaction.

Batch processes
Use the following guidelines to tune the performance of batch processes.

Batch chunk size

For streamed batch jobs, to offer good balance between scalability and error management, tune the
chunk size for a batch job so that it takes between one to two minutes to process one chunk.

Db2

When Db2 is used, set the following tables to be volatile:

BATCHPROCESS
BATCHPROCESSCHUNK

Oracle

When Oracle is used, enable Oracle connection and statement caching in the bootstrap.properties
file:

curam.db.oracle.connectioncache.enabled=true
curam.db.oracle.connectioncache.minlimit=3
curam.db.oracle.connectioncache.maxlimit=3
curam.db.oracle.connectioncache.initiallimit=3
curam.db.oracle.cachesize=1000

10 IBM Cúram Social Program Management: Performance tuning

Chapter 6. Application server
The following section indicates starting values for application server tuning parameters. The parameters
are key to the performance of Social Program Management on applications servers such as WebSphere
Application Server (WAS) and WebLogic Server (WLS). Refine the values during load testing of the system
and during monitoring of production. A load test phase in the project is highly recommended.

Number of application servers
Determine the number of application servers in your application clusters that are based on availability
requirements. An initial starting point is to have at least two application servers per cluster. However, it is
recommended to use three or more application servers per cluster to ensure good performance and
quality of service in case of server failure.

Another consideration for the number of application servers is the number of cores that are available from
the operating system. In general, it is recommended to keep the number of threads in a Social Program
Management application server to a low multiplier of the number of cores, as described in the “Thread
pools” on page 12 section. However, a high number of cores can result in a very high number of threads
and, therefore, a higher probability of threads contending on Java locks. In that case, it is advisable to
split the threads across multiple application servers instead of just one, which reduces the probability of
contention. However, a drawback of this approach is increased memory utilization on the operating
system as multiple JVMs are needed.

JVM settings
Because of the memory requirements in Social Program Management, either a 64-bit WebSphere
Application Server (WAS) or WebLogic Server (WLS) application server is required for production.

For the SPM internal application and the portals that are deployed in their own cluster, start with the
following settings:

minimum heap size = maximum heap size = 4GB

HotSpot JVM

• Size the Permanent Generation to at least 512 MB
• Set the Nursery size to about two-thirds of the Heap size

GSS and BirtViewer

• Start with Minimum Heap Size = Maximum Heap Size = 1GB

Then, use the following heuristic to further tune heap sizes during your load tests, with an objective of
getting above 98% garbage collection efficiency. Configure the following settings, where
avg_used_after_global is the average amount of used heap after global collections:

-Xmx = 8 * avg_used_after_global
-Xms = 8 * avg_used_after_global
-Xmn = 6 * avg_used_after_global

The following common recommendations outline the rationale behind the previous heuristic:

• A recommendation for sizing the tenured generation is to have a free tenured utilization after global
collection of around 50%. The tenure contains global and thread-scoped SPM caches, and any long-
lived objects.

• A recommendation for sizing the nursery generation is to have a nursery as large as possible, if the
pause times are acceptable. The nursery contains transient objects for in-flight SPM transactions, so its
sizing depends on the number of concurrent transactions and the average memory payload of a

© Copyright IBM Corp. 2014, 2020 11

transaction. The goal is to minimize the number of transient objects that survive collections and end up
in the tenure. We have found in our load tests that a 3:1 ratio of nursery to tenure gives good results.

Thread pools
For online HTTP requests and asynchronous JMS processing, IBM Cúram Social Program Management
(SPM) is configured to use two distinct thread pools. Tune both pools as explained in the following
sections.

To enable the system to be driven at optimum throughput, it is generally recommended that the total
number of application threads are about twice the number of CPUs. This general convention assumes that
the environment has fast I/O subsystems.

Note: Threads that are used by SPM carry caches and therefore impact memory requirements. In
addition, the higher the number of threads, the more likely that contention occurs on Java™ locks.
Therefore, it is recommended to limit the number of threads to a low multiplier of the number of cores.

WAS: WebContainer and SIBJMSRAThreadPool

In WebSphere Application Server (WAS), the WebContainer thread pool is set up to process HTTP
requests and the SIBJMSRAThreadPool is set up to process JMS messages.

Use the following specification as a starting point: the total number of threads that SPM uses in the
application server can be set to twice the number of available cores. This starting point assumes that only
one application server is running on the operating system or logical partition. Setting the number of
threads to twice the number of cores is based on experience that processing in SPM is usually split
relatively equally between I/O and CPU.

The way processing is then broken down between online and asynchronous processing depends on the
characteristics of your system: how much asynchronous processing does it do? As a quick-start, a simple,
equal split is suggested:

WebContainer_max_threads = number of cores
SIBJMSRAThreadPool_max_threads = number of cores

It is suggested that you set the minimum number of threads equal to the maximum number of threads.
Setting the minimum threads equal to the maximum threads avoids the processing cost of pool growth
and shrinkage. Use the following settings to configure the pools:

WebContainer_min_threads=WebContainer_max_threads
SIBJMSRAThreadPool_min_threads=SIBJMSRAThreadPool_max_threads

Then, monitor the thread pool usage and the number of threads that are adjusted according to CPU
utilization. For example, if a thread pool is fully used and spare CPU capacity exists, you can add a thread.
Spare CPU capacity, depending on the platform, might be CPU use below 80%. You need to define your
CPU plateau threshold based on your environment configuration and the results of load testing.

WLS: Maximum thread constraints

In WebLogic Server (WLS) configure the two work managers that SPM uses, which are the default work
manager for HTTP requests and the MDBWorkManager for JMS. Specify a maximum thread constraint. As
a starting point, set the maximum thread constraints to the following values:

default_max_thread_constraint = number of cores
MDBWorkManager_max_thread_constraint = number of cores

Then, tune the work managers by monitoring thread usage. Monitoring indicates thread usage for a work
manager. If all threads are used and CPU capacity exists, you can increase the maximum thread
constraint.

12 IBM Cúram Social Program Management: Performance tuning

JDBC connection pool settings
Set the JDBC connection pools for the Social Program Management data sources.

Data source: jdbc/curamdb

A Social Program Management (SPM) transaction can require two JDBC connections, one for the
transaction itself and another one for the key server. Size the jdbc/curamdb data source connection
pool to prevent deadlocks, with more connections available than threads that SPM uses. Therefore, size
the connection pool for the jdbc/curamdb data source by using the following formula:
WebSphere Application Server (WAS)

max_connections = WebContainer_max_threads + SIBJMSRAThreadPool_max_threads + 1

WebLogic Server (WLS)

max_connections = default_max_thread_constraint + MDBWorkManager_max_thread_constraint + 1

If a firewall exists between the application servers and the database, to prevent issues that are related to
StaleConnectionException, we recommend setting min_connections = 0 and reapTime<=
unused connection timeout <= firewall timeout.

As a starting value for SPM, increase the data source prepared statement cache (jdbc/curamdb
Statement Cache Size) to 1000. Then, monitor the cache use and increase it if discards occur. In our
experience, preventing discards can increase throughput by up to 20%.

Note: While we recommend an initial value of 1000 for the prepared statement cache to prevent discards,
this value can be too high for SPM-based systems that have many threads and that are memory
constrained. In that case, it is recommended to review the SQLStats from the JMX Stats, from either load
tests or production. Then, use a simple heuristic based on the distribution of SQL executions to find a
smaller cache size that covers around 90% of SQL executions from the application and gives a better
balance between system performance and Java heap utilization. However, monitor prepared statement
cache discards, system performance, and heap utilization, and adjust the cache size further as needed.

Data source: jdbc/curamsibdb

As all SPM transactions can potentially create a JMS message, size the connection pool for the jdbc/
curamsibdb data source by using the following formula:
WAS

max_connections = WebContainer_max_threads + SIBJMSRAThreadPool_max_threads + 1

WLS

max_connections = default_max_thread_constraint + MDBWorkManager_max_thread_constraint + 1

To prevent the processing cost of pool growth and shrinkage, it is suggested to set min_connections =
max_connections.

If a firewall exists between the application servers and the database, to prevent issues that are related to
StaleConnectionException, we recommend setting min_connections = 0 and reapTime<=
unused connection timeout <= firewall timeout.

Data source: jdbc/curamtimerdb

The EJB timer service is used by all SPM transactions, but only once per transaction, in our application
infrastructure and at the very start of an SPM transaction. Currently, no reference to or usage of this
service exists after the very start of an SPM transaction.

Chapter 6. Application server 13

You can tune the size of the jdbc/curamtimerdb data source connection pool to be the same size as
the number of threads, which would ensure that no contention can occur on the pool. However, given that
the time that is spent using the EJB timer service is typically short compared to the duration of the
transactions, a smaller size should work well with barely any contention. So our advice is to start with the
default size, monitor the system, and then increase the size if evidence exists of a significant contention
under normal conditions.

We have not had to resize the jdbc/curamtimerdb data source connection pool in our load tests of SPM
in a default installation, where our application servers are tuned for high throughput and memory
protection. In such an environment, the number of threads is a low multiplier of the number of cores that
are available to the application server, as documented in the “Thread pools” on page 12 section.

JMS settings
The application server settings for Java Message Service (JMS), which include connection factory and
activation specification settings, can affect performance. You must tune both the connection factory
settings and the activation specification settings.

The client of a connection factory is the application. The application uses the connection factory to push
or pull messages to or from the messaging engine through a queue. The client of an activation
specification is the Enterprise JavaBeans (EJB) container. The EJB container obtains an activation
specification to register a MessageEndpointFactory for the message driven bean (MDB) with a
ResourceAdapter.

When a client pushes a message to the messaging engine, the messaging engine uses the registered
MessageEndpointFactory to forward the message to the application, for example, the MDB. Then, the
application asynchronously receives messages, rather than requiring the client to poll or block by trying to
pull a message from the queue.

Connection factory: jms/CuramConnectionQueueFactory

Similar to the jdbc/curamsibdb data source, size the connection pool for the jms/
CuramConnectionQueueFactory connection factory by using the following formula:
WebSphere Application Server (WAS)

max_connections = WebContainer_max_threads + SIBJMSRAThreadPool_max_threads + 1

WebLogic Server (WLS)

max_connections = default_max_thread_constraint + MDBWorkManager_Max_thread_constraint +1

To prevent the processing cost of pool growth and shrinkage, it is suggested to set min_connections =
max_connections.

WAS - activation specifications

Tune the maximum concurrent end points for the JMS activation specifications for the SPM queues. The
settings define how many EJB MDBs are available to process JMS messages. Asynchronous processing
concurrency in the application server is limited by the lower of the number of either MDBs or
SIBJMSRAThreadPool threads.

Set the maximum concurrent end points for the SPM error queues to 1. This setting is suggested because
errors are not expected at high volume.

This sizing applies to the following activation specifications:

• DPError
• WorkflowError
• CuramDeadMessageQueue

14 IBM Cúram Social Program Management: Performance tuning

Then, for simplicity, use the following formulas to set the maximum concurrent end points for the three
main Cúram queues:

 max_end_points_DPEnactment = SIBJMSRAThreadPool_max_threads
max_end_points_WorkflowEnactment = SIBJMSRAThreadPool_max_threads
max_end_points_WorkflowActivity = SIBJMSRAThreadPool_max_threads

The previous formulas effectively simplify tuning for asynchronous processing by creating a single point
for tuning, which is the number of JMS threads. However, if more granular tuning is required, you can
decrease the concurrent end points, for either SPM Deferred Processing or Workflow.

WLS - message driven beans

In WLS, the number of EJB MDBs is set in the weblogic-ejb-jar.xml deployment descriptor. The
descriptor also associates MDBs with the MDBWorkManager, as shown in the following example:

<weblogic-enterprise-bean>
 ...
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>3</max-beans-in-free-pool>
 <initial-beans-in-free-pool>3</initial-beans-in-free-pool>
 </pool>
 </message-driven-descriptor>
 ...
 <dispatch-policy>MDBWorkManager</dispatch-policy>
</weblogic-enterprise-bean>

Set both the maximum and initial values of the beans in the free pool for the SPM error MDBs to 1. This
setting is suggested because errors are not expected at high volume, and it applies to the DPErrorMDB
and WorkflowErrorMDB beans.

Then, for simplicity, use the following formulas to set both the maximum and initial values of the beans in
the free pool for the three main SPM MDBs:

beans_in_free_pool_DPEnactmentMDB=MDBWorkManager_max_thread_constraint
beans_in_free_pool_WorkflowEnactmentMDB=MDBWorkManager_max_thread_constraint
beans_in_free_pool_WorkflowActivityMDB=MDBWorkManager_max_thread_constraint

The previous formulas effectively simplify tuning for asynchronous processing by creating a single point
for tuning, which is the number of JMS threads. However, if more granular tuning is required, you can
decrease the beans in the free pool, for either SPM Deferred Processing or Workflow.

WAS Java 2 security
The recommendation is to turn off Java 2 security because Social Program Management (SPM) does not
use it. The WebSphere Application Server (WAS) Java 2 security feature has a performance cost when it is
turned on.

In WAS, when Java 2 security is turned on, every time Java code calls the classloader to load a class or a
resource and so on, the call goes through a synchronized block, then a security check, and potentially an
access to the file system and then another security check. Effectively, the impact is twofold:

• Performance degrades badly in low memory situations, as weak reference caches like ResourceBundles
are constantly cleared and reloaded. Each reload means a call to the classloader, and hence going
through a Java lock, security checks, and a file system access.

• Even in a normal memory situation, it is a bottleneck because Java code that is calling the classloader
goes through the lock and security checks.

Chapter 6. Application server 15

Monitoring the application server
Use the tasks in the following section to monitor the system after you make the tuning changes.

JVM

To confirm and fine-tune the JVM heap size, turn on garbage collection (GC) logging by adding the
following JVM parameter:

-verbose:gc

On WebSphere Application Server (WAS) with the IBM JVM, you can specify the location of the GC log file
by setting the following JVM parameter:

-Xverbosegclog:<<path to file>>

With a non-IBM JVM, you can specify the location by setting the following JVM parameter:

-Xloggc:<<path to file>>

You can then process the GC log file to analyze the GC efficiency and identify better GC tuning values. As a
general convention, if more than 2% of the JVM time is spent doing garbage collection, adjust the heap
size as described in the “JVM settings” on page 11 section.

JVM heap size for WebSphere Application Server Liberty

To get a heap dump if the JVM crashes, set the following JVM parameter:

-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=$WLP_HOME/usr/servers/CuramServer/

-XX:+HeapDumpOnOutOfMemoryError generates a heap dump when an allocation from the Java heap
or the permanent generation cannot be satisfied.

Threads

Monitor thread utilization in the thread pools. For example, the WebSphere Performance Viewer -
“Active Thread” counter shows the number of threads that are used in a thread pool. You can
compare the counter with the defined number of threads to determine whether a thread pool is fully used.

If a thread pool shows as fully used and if spare CPU capacity exists, you can add a thread to the thread
pool. Then, use the formulas that are described previously to update the connection pool sizes to reflect
the new number of threads. If no spare CPU capacity exists, then you must balance the tuning to favor
either online or asynchronous processing.

Consider the case where the online thread pool is fully used, which results in poor user response times
from the application server. You might favor the online processing by decreasing the number of
asynchronous threads by 1 and by increasing the number of online threads by 1.

JDBC

Monitor the prepared statement cache discards for the jdbc/curamdb data source. For example, in
WAS, monitor the JDBC connection pools PrepStmtCacheDiscardCount in the WebSphere
Performance Viewer -Extended Statistic Set.

Not reusing a prepared statement has a significant processing cost. Therefore, aim for no discards, and
increase the prepared statement cache size if many discards are reported. If you are using the Oracle
database, monitor the maximum number of open cursors and update the configuration as needed.

16 IBM Cúram Social Program Management: Performance tuning

JMS

Monitor the depth of JMS queues at run time. It indicates how many messages are waiting to be
processed. For example, in WAS the AvailableMessageCount counter is available from the
WebSphere Performance Viewer-All Statistic-Queues-Queue Stat. The following list
indicates the key queues to monitor:

• DPEnactment
• WorkflowEnactment
• WorkflowActivity

If the rate of JMS message processing is not satisfactory and if spare CPU capacity exists, you can
increase the number of threads. Use either SIBJMSRAThreadPool for WAS or MDBWorkManager for
WLS.

However, if no spare CPU capacity exists, review either the maximum concurrent endpoints for the
queues in WAS or the beans in the free pool in WLS. In this case, either constrain the queues in WAS or
the WLS free pool beans that have a low depth to favor those queues with a high depth. That is, either the
queues or the beans that have high queue depths or message counts need more resources.

For more information about applying the constraints, see “WAS - activation specifications” on page 14 or
“WLS - message driven beans” on page 15.

WAS tunable parameters summary
The table in this section summarizes the parameters that you can tune in WebSphere Application Server
(WAS).

Table 3. Summary of tunable parameters for WAS

Tuning parameter Description and use Recommended value

SERVLET CACHING After a servlet is launched and
completes generating the output
to cache, a cache entry is created
that contains the output and the
side effects of the servlet. The
side effects can include calls to
other servlets, JavaServer Pages
(JSP) files, or metadata about the
entry, including timeout and
entry priority information.
Configure servlet caching to save
the output of servlets and
JavaServer Pages (JSP) files to
the dynamic cache.

Disable

Chapter 6. Application server 17

Table 3. Summary of tunable parameters for WAS (continued)

Tuning parameter Description and use Recommended value

SERVLET REQUEST AND
RESPONSE POOLING

Specifies to disable the pooling
of servlet request and servlet
response objects that are pooled
by the web container.
When you disable pooling of
servlet request and servlet
response objects, new servlet
request and servlet response
objects are created for each
request, that can negatively
affect performance, but that
provide protection from any
unforeseen pooling issues.

Disable

JAVA HEAP By default the application server
JVM initial and maximum heap
size is set to 1024 MB. However,
you can override the default JVM
initial and maximum heap size by
setting the
curam.server.jvm.heap.siz
e property in the
AppServer.properties file.
We recommend setting minimum
heap size = maximum heap size
to 4 GB as a starting point. You
can then use a heuristic
algorithm to further tune the
heap size and achieve high
garbage collection efficiency.

Start with
curam.server.jvm.heap.siz
e=4096
Then further tune the application
server JVM heap size by using
the following heuristic:

-Xmx = 8 *
avg_used_after_global
-Xms = 8 *
avg_used_after_global
-Xmn = 6 *
avg_used_after_global

NUMBER OF HTTP SESSIONS Tune the number of allowed
HTTP sessions to a large enough
number to serve your expected
number of users. Ensure that the
timeout is set so as not to waste
sessions and to keep memory
usage under control.

See description.

CONNECTION TIMEOUT
and
KEEP-ALIVE

HTTP persistent connection, or
HTTP keepalive, is where a single
connection is used to send and
receive multiple HTTP requests.

Depends on system behavior
under load. Disable if the issues
that are mentioned in
“Configuring persistent
connections” on page 22 occur.

NUMBER OF WEB THREADS HTTP requests are processed by
a pool of server threads. You can
configure the minimum and
maximum thread pool size for the
web container for optimal
performance.

WebContainer_max_threads
= number of cores
WebContainer_min_threads
=
WebContainer_max_threads

18 IBM Cúram Social Program Management: Performance tuning

Table 3. Summary of tunable parameters for WAS (continued)

Tuning parameter Description and use Recommended value

NUMBER OF MDB THREADS SIBJMSRAThreadPool is set up
to process JMS messages.
Always set minimum threads =
maximum threads to avoid
thread reconstruction.

SIBJMSRAThreadPool_max_th
reads = number of cores

SIBJMSRAThreadPool_min_th
reads =
SIBJMSRAThreadPool_max_th
reads

MAX CONCURRENT MDB
INVOCATIONS PER ENDPOINT
(activation specifications)

A JMS activation specification is
associated with one or more
message-driven beans (MDBs)
and provides the configuration
necessary for the MDBs to
receive messages.

For all queues set the value equal
to
SIBJMSRAThreadPool_max_th
reads

QUEUES FETCH
(activation specifications

Use this setting to control the
message retrieval from the
queue. We recommend setting
the value equal to
SIBJMSRAThreadPool_max_th
reads to aim for zero messages
in the queue.

Set equal to
SIBJMSRAThreadPool_max_th
reads

MIN/MAX CONNECTIONS
(connection factory)

This setting is used to size the
connection pool for JMS
connection factory messages. To
prevent the processing cost of
pool growth and shrinkage, we
suggest setting
min_connections =
max_connections.

max_connections =
WebContainer_max_threads
+
SIBJMSRAThreadPool_max_th
reads +
1min_connections=max_conn
ections

NUMBER OF DATABASE
CONNECTIONS
(jdbc data source)

An SPM transaction needs two
JDBC connections, transaction
and KeyServer. jdbc/curamdb
data source connection pool
needs to be sized to ensure that
more connections are available
than threads. Use Performance
Monitoring Infrastructure (PMI)
to identify the average number of
connections and to size the pool
to three times that number to
avoid deadlocks.

max_connections =
WebContainer_max_threads
+
SIBJMSRAThreadPool_max_th
reads + 1

STATEMENT CACHE SIZE
(jdbc data source)

This parameter controls the size
of the data source prepared
statement cache size. We
recommend a starting value of
1000. However, monitor the
cache size and increase the value
if discards occur.

Starting value 1000

Chapter 6. Application server 19

Table 3. Summary of tunable parameters for WAS (continued)

Tuning parameter Description and use Recommended value

CONTAINER MANAGED
PERSISTANCE
(jdbc data source)

An entity bean that uses
container-managed persistence
(CMP) delegates the
management of its state, or
persistence, to the application
server container. We observed
better response times when CMP
is disabled.

Disable in Curamdb and
curamsibdb

JAVA 2 SECURITY Social Program Management
(SPM) does not use Java 2
Security and this WAS feature
has a performance cost when it is
turned on.

Turn off

20 IBM Cúram Social Program Management: Performance tuning

Chapter 7. Tuning the HTTP server
Use the guidelines in the following sections to tune the HTTP server.

Configuring the HTTP server for static content
As described in the “Static content” on page 9 section, package the Social Program Management (SPM)
static content outside the EAR files that are to be copied onto the HTTP Server. The guidelines assume
that the relative URL /CuramStatic/ is being used.

You can use the Apache module mod_expires to automatically configure the HTTP header of static
content to be cached by the browser. To apply the configuration, configure the following settings in the
httpd.conf file on the HTTP server:

<LocationMatch /(Curam|CuramStatic)>
...
ExpiresActive On
ExpiresByType text/css "access plus 1 month"
ExpiresByType text/javascript "access plus 1 month"
ExpiresByType text/plain "access plus 1 month"
ExpiresByType image/gif "access plus 1 month"
ExpiresByType image/jpg "access plus 1 month"
ExpiresByType image/png "access plus 1 month"
ExpiresByType application/x-shockwave-flash "access plus 1 month"
ExpiresByType application/x-javascript "access plus 1 month"
Header unset Last-Modified
</LocationMatch>"

To increase performance under heavy loads, consider hosting the static content on a separate server,
which in turn reduces the load on the SPM application server.

Compressing content from HTTP server
You can compress the content that is served by HTTP Server.

You can use the Apache module mod_deflate to compress the content that is served through the HTTP
Server. To apply the configuration, configure the following settings in the httpd.conf file on the HTTP
server:

<LocationMatch /(Curam|CuramStatic)>
AddOutputFilterByType DEFLATE text/html text/plain text/xml text/css application/x-
javascript
Netscape 4.x has some problems...
BrowserMatch ^Mozilla/4 gzip-only-text/html
Netscape 4.06-4.08 have some more problems
BrowserMatch ^Mozilla/4\.0[678] no-gzip
MSIE masquerades as Netscape, but it is fine
BrowserMatch \bMSI[E] !no-gzip !gzip-only-text/html
Make sure proxies don't deliver the wrong content
Header append Vary User-Agent env=!dont-vary
...
<LocationMatch/>

Monitoring the HTTP server
To monitor the HTTP server, modify the httpd.conf file as shown in the example.

Modify the httpd.conf file so it matches the following example. If you are using secure access to
server-status, see the relevant HTTP server documentation.

LoadModule status_module modules/mod_status.so
<Location /server-status

© Copyright IBM Corp. 2014, 2020 21

SetHandler server-status
 Order allow,deny
 Allow from all
</Location>

To gather extended status information, ensure that the following section is not commented out in the
httpd.conf file:

<IfModule mod_status.c>
 ExtendedStatus On
</IfModule>

Restart the web server and open the following URL in your browser:

http://<web_server_host>/server-status

In the server-status page, you can view the number of threads and their state.

Configuring persistent connections
HTTP persistent connection or HTTP keepalive is a TCP feature that is used to reduce network congestion
and CPU usage, in particular on systems that have lower hardware specifications. The feature allows
multiple requests over a single connection. Reusing a connection in this way is useful with secure HTTP
because the same connection does not need to be renegotiated every time.

The following parameters in the httpd.conf file control persistent connections:

KeepAlive On
MaxKeepAliveRequest 1000
KeepAliveTimeOut 2

The KeepAliveTimeOut parameter controls the amount of time that the server waits for the next
request on a persistent connection. If the value is too small, connections might not be reused efficiently.
If the value is too large, web server threads might not be used efficiently. We recommend starting by
setting the value to 2 and then adjust it if necessary. It is suggested that you keep this value lower than
the average think time of the users of the system.

Recent performance tests highlighted that some disadvantages occur when persistent connections are
used with SPM application servers:

• Intermittent blank or frozen application
• Failure to load content after some time

In addition, we found that the WebSphere Application Server (WAS) setting WebServer Plug-in
Properties-Connection Timeout affects the server's ability to handle heavy loads. When the
feature is turned on, issues that arise include huge numbers of objects are created when the server is
unable to handle the load, extreme resource utilization occurs on the server, and server failures occur.

If you experience any of the issues when you test your system with heavy loads, we recommend disabling
the persistent Connections/keepalive feature.

Adjusting thread tuning
If the system throughput is known or a good estimation of the system throughput is available, you can
calculate the number of threads that are in the web server. You can do the calculation after the persistent
connections are configured.

The following formula indicates the total number of threads that are required in the web server:

Throughput * KeepAliveTimeOut

22 IBM Cúram Social Program Management: Performance tuning

Alternatively, you can use the following formula to obtain a rough starting value for the number of threads
that you can use, where WebContainer_max is the number of application server threads that are
available to process HTTP requests:

WebContainer_max * KeepAliveTimeOut

If the HTTP server load balances against multiple application servers, multiply the number of threads as
needed:

 ratio_of_application_servers_per_HTTP_servers * WebContainer_max * KeepAliveTimeOut

The previous thread calculation is likely to be too low a number, but you can use it as a quick start. Then,
refine the number of threads during load tests or production monitoring by including the 95th percentile
of response time through the following heuristic:

threads = ratio_of_application_servers_per_HTTP_servers * WebContainer_max *
(KeepAliveTimeOut + user_interaction_95th%ile_response_time)

You might need to adjust the number of threads further depending on the following factors:

• The average amount of static content that is in your web pages
• How well the static content is cached by the web browser

The dependency occurs because some web clients can use multiple connections for retrieving the static
content on a web page. The behavior is a strong case for monitoring the HTTP server threads utilization.

During monitoring, as a general convention, increase the number of threads only if the following
statements are true:

• All threads are active, and no idle threads exists.
• The response time is not acceptable.
• The CPU is not fully utilized.

The procedure for setting the number of threads differs according to the operating system:
Windows

ThreadLimit 300
ThreadsPerChild 300
MaxRequestsPerChild 0

UNIX systems

ServerLimit 1
ThreadLimit 300
StartServers 1
MaxClients 300
MinSpareThreads 300
MaxSpareThreads 300
ThreadsPerChild 300
MaxRequestsPerChild 0

Chapter 7. Tuning the HTTP server 23

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

24 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 25

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

26 IBM Cúram Social Program Management: Performance tuning

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Tables
	Chapter 1. Performance tuning
	Chapter 2. Prerequisites for performance tuning
	Chapter 3. System configuration assumptions
	Chapter 4. Database configuration
	Db2
	Oracle

	Chapter 5. Social Program Management application
	Static content
	Configuring the HTTP key server
	ID generation
	Caches
	Login
	Batch processes

	Chapter 6. Application server
	Number of application servers
	JVM settings
	Thread pools
	JDBC connection pool settings
	JMS settings
	WAS Java 2 security
	Monitoring the application server
	WAS tunable parameters summary

	Chapter 7. Tuning the HTTP server
	Configuring the HTTP server for static content
	Compressing content from HTTP server
	Monitoring the HTTP server
	Configuring persistent connections
	Adjusting thread tuning

	Notices
	Privacy Policy considerations
	Trademarks

