
IBM Cúram Social Program Management

Data Extractor

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
96

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.7 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... iv

Tables... v

Chapter 1. IBM Social Program Management Data Extractor................................... 1
Determining case eligibility and entitlement.. 1
Components of the IBM Social Program Management Data Extractor.. 3
Downloading and installing the IBM Social Program Management Data Extractor...................................7
Batch jobs...8

Batch jobs: job types and their purposes.. 9
XML flow job... 12
Filter flow CSV job ... 16
Filter flow database job..17
Filter flow job output.. 20
Monitoring job progress in the log .. 31
Functions of the IBM Social Program Management Data Extractor that relate to the batch jobs 32

Other functions of the IBM Social Program Management Data Extractor... 36
Searching for the Filter Flow attribute paths ..36
Generating the Filter Flow attribute value database tables creation and drop DDL..........................37
Defining the output of the XML flow job transformation...40

Setup steps to run the IBM Social Program Management Data Extractor... 45
Prerequisite setup steps.. 45
Creating and dropping the database tables.. 45
Editing the Spring Profile..49
Getting the database drivers..56
Configuring the IBM Social Program Management Data Extractor MBean API for remote access... 57
Logging..59
How to perform profiling by using J9 VM tracing.. 59

Running the IBM Social Program Management Data Extractor..62
Starting the IBM Social Program Management Data Extractor in server mode................................. 62
Starting the IBM Social Program Management Data Extractor in non-server mode..........................65
Running the IBM Social Program Management Data Extractor's functions in server mode and

non-server mode...69
Parameters for the IBM Social Program Management Data Extractor's functions............................ 85
Stopping the IBM Social Program Management Data Extractor...95

Notices..96
Privacy Policy considerations.. 97
Trademarks.. 97

 iii

Figures

1. BLOB data structure.. 2

iv

Tables

1. The process and write operations used by the three functions...9

2. Columns in DETERMINATIONXML..14

3. The number of tables that are written for each filter flow table..19

4. The number of database write operations for a chunk size of 20 with compaction disabled.................. 19

5. The number of database write operations for a chunk size of 20 and a compaction limit of 10..............20

6. Metrics produced when compaction is enabled with chunk size 20 and compaction limit 20................ 20

7. Columns that are in the determinations, decisions, and attribute value relational data structures........ 23

8. STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv sample..28

9.
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_EL
IGIBLEMEMBERSNAME.csv sample..29

10. The XML format and the XSD files used. ... 41

 v

vi

Chapter 1. IBM Social Program Management Data
Extractor

The IBM Social Program Management Data Extractor makes Determinations data available in a format
that can be used in a data warehouse with analytic tools. The IBM Social Program Management Data
Extractor can be used to extract complex determination BLOB data into a format that is more easily
queried.

Determinations data stores the display rules data that the caseworker application then uses to present
and explain eligibility outcomes to caseworkers. Determinations data is also used for eligibility and
entitlement reports. Determinations data is stored in a compressed format in the Social Program
Management database, which makes it difficult to extract for use in reports. However, the IBM Social
Program Management Data Extractor makes it easier to retrieve the display rule attributes of a product
rule set from the Determinations data.

To use the IBM Social Program Management Data Extractor, customers must be familiar with Cúram
Express Rules (CER), specifically with display rules and the role that the rules play in relation to
determination data.

Operators must be familiar with eligibility and entitlement rules. For more information about eligibility and
entitlement rules, see the Eligibility and Entitlement Rules Getting Started related link. Operators must
also be familiar with how to use Cúram Rules to develop eligibility and entitlement.

For more information about Cúram Rules, see the Developing with Eligibility and Entitlement by using
Cúram Rules related link. To access the link, you must be a member of the IBM Watson® Health Client
Community. To request to join the community, complete the registration form.

Related information
Eligibility and Entitlement Rules Getting Started
Developing with Eligibility and Entitlement by using Cúram Rules

Determining case eligibility and entitlement
The IBM Social Program Management Data Extractor extracts complex determination BLOB data into a
format that is more easily queried. The IBM Social Program Management Data Extractor currently
supports only the extraction of the data for determinations that are associated with product delivery
cases.

Eligibility and entitlement engine

In IBM SPM, the eligibility and entitlement engine uses Cúram Express Rules (CER) to apply rules to real-
world data to determine eligibility and entitlement. The following list outlines the main characteristics of
the eligibility and entitlement engine:

• The starting point for case eligibility and entitlement is the product.
• A product contains all the configuration details that specify the CER rules to use for the determination of

eligibility and entitlement.
• When a customer configures a product, the product’s configuration can be used to calculate and store a

determination result that is based on the input data. The determination result is used to generate
financials and is retrieved when a caseworker views eligibility and entitlement details for the case.

• Decision display rules are used to display information about decisions in the application. For example,
the decision display rules can be used to display the key criteria that is used to determine the income
assistance payable to a family in need.

• The information to display comes from the display rules XML output or determination results. The
results are stored in the Social Program Management database, in a BLOB type field called
CREOLECASEDETERMINATIONDATA.CREOLESNAPSHOTDATA as a compressed, XML document.

© Copyright IBM Corp. 2019 1

https://truvenhealth.force.com/WHClientCommunity/WHClientCommunityRegistration
https://truvenhealth.force.com/WHClientCommunity/s/contentdocument/0694A000007e3JGQAY
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideClassicRules/ctr_InsideCuramAssessmentEngine.html

Determinations

A determination is a collection of one or more decisions. Each decision persists the following BLOB
models:

• Display rules; for more information about display rules, see the Display rules related link.
• CER session data; for more information about CER session data, see the CREOLECaseDeterminationData

related link.

The display rules model is a summary of important data that was used in the calculation or that was
calculated in the determination. The purpose of storing the data is to permit the caseworker to better
understand decisions and determinations.

For every new determination that is calculated, a new CREOLECASEDETERMINATION row is inserted. The
following list applies where the determination is the first determination for a case or where the results of
the determination differ from the current determination for the case:

• A new CREOLECASEDETERMINATIONDATA is created to store the display rules data for the
determination. The stored data is compressed.

• The DETERMINATIONRESULTDATAID column of the CREOLECASEDETERMINATION row points to the
CREOLECASEDETERMINATIONDATA row.

Where the option to persist CER session data is enabled, another CREOLECASEDETERMINATIONDATA
row or rows are created to store the session data and the following list applies:

• The stored data is also compressed.
• The RULEOBJECTSNAPSHOTDATAID column of the CREOLECASEDETERMINATION row points to the

other CREOLECASEDETERMINATIONDATA row. If the result of the determination does not differ from
the current determination, the CREOLECASEDETERMINATION.DETERMINATIONRESULTDATAID points
to the existing CREOLECASEDETERMINATIONDATA row with the display rule data.

If the option to persist CER session data is enabled, the
CREOLECASEDETERMINATION.RULEOBJECTSNAPSHOTDATAID points to the existing
CREOLECASEDETERMINATIONDATA row with the rule session data.

Extracted BLOB data format

When the BLOB for the display rule data is extracted and parsed, the XML structure is as shown in the
following figure.

Figure 1. BLOB data structure

2 IBM Cúram Social Program Management: Data Extractor

The complex data structure consists of multiple parts. The first part of the data is structured as illustrated
in the top box of the figure. The data follows the structure for all determinations.

The second part of the data is structured as illustrated by the bottom box of the figure. The second part of
the data is the display rules data. As the displayable categories and the displayable attributes vary from
product to product, so does the structure of the display rules data.

The extracted BLOB is a collection of XML files. The first XML file is a hierarchical representation that
corresponds to the CREOLE rule classes. After the first XML, there is a collection of XML files that are all
escaped. Each escaped XML file corresponds to a category for a specific period. For more information
about the BLOB XML structure, see Determination BLOB XML structure.

Related concepts
Determination BLOB XML structure
When a caseworker opens a determination in the Social Program Management application, a set of
decisions for different periods is displayed. When a caseworker selects a period, a list of categories is
displayed. Under each category, a set of values is displayed.
Related information
Display rules
CREOLECaseDeterminationData

Components of the IBM Social Program Management Data Extractor
The components of the IBM Social Program Management Data Extractor are the Spring technology stack,
the Social Program Management data source, the Data Warehouse data source, the Extraction tables, and
the SPM Tools tables.

The IBM Social Program Management Data Extractor is developed for Java 8 and it requires a Java 8
Standard Development Kit (JDK). For information about how to start the IBM Social Program Management
Data Extractor, see the Running the IBM Social Program Management Data Extractor related link.

Chapter 1. IBM Social Program Management Data Extractor 3

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/IncomeSupport/c_INCSPRT_DisplayRules.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Creolecasedeterminationdata1.html

Spring technology stack

The IBM Social Program Management Data Extractor tool was developed as a Spring® Boot application.
For more information about Spring Boot, see the Spring Boot related link. The tool uses other frameworks
from the Spring stack, for example, Spring Data, Spring JMX, and Spring Batch. For more information
about the Spring stack, see the Spring related link.

As a Spring Boot application, the IBM Social Program Management Data Extractor supports the use of
multiple profiles. A profile is used to segregate application configuration. The tool uses the Java
properties to store the application configuration. By default, the name of the properties file, which is
commonly referred to as the Spring Profile, is application.properties.

The IBM Social Program Management Data Extractor tool can run in two modes: server and non-server
mode. The tool’s functions can be called in either mode. Selecting the mode that the tool runs in is based
on the Java command that is used to start the tool. For more information, see the Running the IBM Social
Program Management Data Extractor related link. For a full list of the Data Extractor’s functions, see the
Running the IBM Social Program Management Data Extractor’s functions in server mode and non-server
mode related link.

The following list outlines the differences between the two modes:

• When the operator starts the tool in server mode, the operator does not specify the function to start.
The tool starts an MBean server and registers the MBeans that provide APIs for calling the tool
functions by using JConsole. The operator can then call the tool’s functions by using an MBean API. The
tool runs until the operator explicitly shuts down the Java virtual machine (JVM). The following notes
apply to running the tool in server mode:

– By default, the tool limits access to the MBean server to the local computer only.
– IBM does not recommend exposing remote access to the MBeans. However, customers can choose

to open the MBeans to remote access where customers follow specific steps. For information about
the steps, see the Configuring the IBM Social Program Management Data Extractor MBean API for
remote access related link.

– The operator who wants to use the MBean APIs can use JConsole to connect to the MBeans that are
registered by the tool. JConsole is packaged as part of a Java Development Kit (JDK). For information
about JConsole, see the Using JConsole related links.

• When the tool is run in non-server mode, the operator must specify the tool function to run. The tool
starts, runs that one function, and then exits. In non-server mode, the IBM Social Program Management
Data Extractor MBeans are not registered, so the MBean API is unavailable.

The tool includes three batch job types that extract display rules determination data from the source
Social Program Management database. The operator can schedule the batch jobs in server mode by using
the MBean APIs or in non-server mode by using the command line.

Operators can schedule the following three jobs to run:
XML Flow

• For information about how to schedule the job to run by using the MBean API, see the Running the
IBM Social Program Management Data Extractor’s functions in server mode and non-server mode
related link.

• For information about how to schedule the job to run by using the command line in non-server
mode, see the Starting the IBM Social Program Management Data Extractor in non-server mode and
the Running the IBM Social Program Management Data Extractor’s functions in server mode and non-
server mode related links.

Filter Flow CSV job

• For information about how to schedule the job to run by using the MBean API, see the Running the
IBM Social Program Management Data Extractor’s functions in server mode and non-server mode
related link.

• For information about how to schedule the job to run by using the command line in non-server
mode, see the Starting the IBM Social Program Management Data Extractor in non-server mode and

4 IBM Cúram Social Program Management: Data Extractor

the Running the IBM Social Program Management Data Extractor’s functions in server mode and non-
server mode related links.

Filter Flow database job

• For information about how to schedule the job to run by using the MBean API, see the Running the
IBM Social Program Management Data Extractor’s functions in server mode and non-server mode
related link.

• For information about how to schedule the job to run by using the command line in non-server
mode, see the Starting the IBM Social Program Management Data Extractor in non-server mode and
the Running the IBM Social Program Management Data Extractor’s functions in server mode and non-
server mode related links.

The tool accesses two data sources: the SPM data source (the source, from which data is extracted) and
the Data Warehouse data source (the target, to which data is written).

SPM data source

The SPM data source is used to connect to the source Social Program Management database. The
database must be a copy or a replica of the database that is used by the SPM application and must not be
the live production database. The IBM Social Program Management Data Extractor tool requires read-only
access to a subset of the tables in the Social Program Management database. For more information, see
the Required database access related link.

Data Warehouse data source

The Data Warehouse data source is used to connect to two sets of tables that are collocated in the same
schema of a second database, referred to as the Data Warehouse database. The first set of tables is
referred to as the Extraction tables. The second set of tables is referred to as the SPM Tools tables.

For information about how to configure the application to connect to the two data sources, see the Editing
the Spring Profile related link.

Extraction tables

The Extraction tables are where the tool's batch jobs write the data that the tables extracted and
processed from the Social Program Management database. The following list is included in the tables:

• The DETERMINATIONXML table, which is written to by the XML Flow job. For every determination that is
read and processed by the execution of an XML Flow job, a row is written to the DETERMINATIONXML
table.

• The Filter Flow database tables, which are used by the Filter Flow database job.
• The DETERMINATIONS table, which is written to by the Filter Flow database job. For every

determination that is read and processed by the execution of a Filter Flow database job, a row is written
to the DETERMINATIONS table.

• The DECISIONS table, which is written to by the Filter Flow database job. For every decision split in a
determination that is read and processed by the execution of a Filter Flow database job, a row is written
to the DECISIONS table.

• Filter Flow attribute value tables, which is written to by the Filter Flow database job, where the data
items that the operator specifies from the display rules determination data are written.

The Data Definition Language (DDL) scripts to create the DETERMINATIONXML, DECISIONS, and
DETERMINATIONS tables are packaged as part of the IBM Social Program Management Data Extractor
tool. For more information, see the Downloading and installing the IBM Social Program Management Data
Extractor related link.

However, the DDL for the Filter Flow attribute value tables must be generated by using the tool because
the schema of these tables is computed from the Rules Set Definitions in the Social Program Management
database and the set of attributes, that is, data items, to be extracted as specified by the operator in
application.properties. Both inputs can vary between configurations. So, the DDL must be

Chapter 1. IBM Social Program Management Data Extractor 5

generated by using the tool because the schema cannot be known without knowing these two inputs first.
For more information, see the Generating the Filter Flow attribute value database tables creation and drop
DDL related link.

SPM Tools tables

The SPM Tools tables are infrastructure tables that are used in the running of the IBM Social Program
Management Data Extractor tool. For the first release, the SPM Tools tables include tables that are written
to by the tool’s Spring Batch infrastructure. The tables store information about the job instances that are
scheduled and the status of job executions. The script for creating the tables is packaged as part of the
tool. For more information, see the Downloading and installing the IBM Social Program Management Data
Extractor related link. Create the tables in the same database and the schema as the Extraction tables.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Starting the IBM Social Program Management Data Extractor in non-server mode
When the tool is run in non-server mode, the operator must specify the tool function to run. The tool
starts, runs that one function, and then exits. In non-server mode, the IBM Social Program Management
Data Extractor MBeans are not registered, so the MBean API is unavailable. To schedule new batch job
instances in non-server mode, use JobLauncherApplication. For all other non-server mode functions,
use GenericTaskLauncherApplication.
Required database access
Operators must configure the Social Program Management data source and the Data Warehouse data
source for the IBM Social Program Management Data Extractor.
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.
Downloading and installing the IBM Social Program Management Data Extractor
Extract the contents of the compressed file and run the installer jar.
Generating the Filter Flow attribute value database tables creation and drop DDL
Generating the creation and drop DDL for the Filter Flow attribute value tables is a function of the IBM
Social Program Management Data Extractor.
Related tasks
Running the IBM Social Program Management Data Extractor
To run the IBM Social Program Management Data Extractor, operators must perform mandatory steps.
Depending on configuration, operators might need to perform an optional step.
Configuring the IBM Social Program Management Data Extractor MBean API for remote access
Customers can perform a series of steps to expose the MBean API. However, to expose the MBean API
customers must secure the connection over TLS v1.2 and configure client certificate-based
authentication as a requirement. We advise that you complete the setup in the following procedure only if
remote access to the MBean functionality is needed.
Related information
Spring Boot
Spring
Using JConsole with Oracle Java
Using JConsole with IBM Java

6 IBM Cúram Social Program Management: Data Extractor

https://spring.io/projects/spring-boot
https://spring.io/
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/jconsole.html

Downloading and installing the IBM Social Program Management Data
Extractor

Extract the contents of the compressed file and run the installer jar.

Use the following steps to download and install the IBM Social Program Management Data Extractor:

1. Extract the contents of the downloaded compressed file to a local drive location.
2. Run the installer jar, which can be found in the INSTALLER folder at that location.

The installer extracts the tool binary, the sample properties files, and the SQL scripts. The installation
location contains the following contents:

├── DataExtractor
│ ├── DataExtractor-version_no.jar
│ ├── samples
│ │ ├── application-SAMPLE.properties
│ │ ├── log4j2.properties
│ │ └── ShortNames-SAMPLE.properties
│ └── sql
│ ├── db2
│ │ ├── CreateDataWarehouseTables.sql
│ │ ├── CreateSPMToolsTables.sql
│ │ ├── DropDataWarehouseTables.sql
│ │ └── DropSPMToolsTables.sql
│ ├── h2
│ │ ├── CreateDataWarehouseTables.sql
│ │ ├── CreateSPMToolsTables.sql
│ │ ├── DropDataWarehouseTables.sql
│ │ └── DropSPMToolsTables.sql
│ └── oracle
│ ├── CreateDataWarehouseTables.sql
│ ├── CreateSPMToolsTables.sql
│ ├── DropDataWarehouseTables.sql
│ └── DropSPMToolsTables.sql
├── Installer
│ ├── CuramInstaller.log
│ └── Installhistory.txt
├── license
│ └── IBM\ Social\ Program\ Management\ Data\ Extractor
│ └── license
│ ├── Chinese_TW.txt
│ ├── Chinese.txt
│ ├── Czech.txt
│ ├── English.txt
│ ├── French.txt
│ ├── German.txt
│ ├── Greek.txt
│ ├── Indonesian.txt
│ ├── Italian.txt
│ ├── Japanese.txt
│ ├── Korean.txt
│ ├── Lithuanian.txt
│ ├── notices.txt
│ ├── Polish.txt
│ ├── Portuguese.txt
│ ├── Russian.txt
│ ├── Slovenian.txt
│ ├── Spanish.txt
│ ├── status.dat
│ └── Turkish.txt
└── Uninstaller
 └── uninstaller.jar

Where version_no is the version number of the software, for example 1.0.2.

The InstallLocation/DataExtractor/DataExtractor-version_no.jar is the application
binary. In Spring Boot terminology, the JAR file is a fat or uber JAR. The Uber jar is the binary that delivers
the tool’s functionality.

The samples folder

The samples folder contains the following files:

Chapter 1. IBM Social Program Management Data Extractor 7

• The application-SAMPLE.properties file. The file is a sample Spring Profiles File, the main
configuration file for the tool. For information about how to use the application-
SAMPLE.properties file to create your own Spring Profile, see the Running the IBM Social
Program Management Data Extractor related link.

• The ShortNames-SAMPLE.properties file. The file is a sample "Short-Names" substitution file.
The customer is advised to create a copy and rename this copy to ShortNames.properties and
move the file to the same folder on the loader.path.

• The ShortNames.properties is required to solve the issues with the length of filter flow
database table names. For more information, see the Issues associated with the length of a generate
table name related link. For information about how to use the ShortNames.properties file, see
the The ShortNames.properties file related link.

• The log4j2.properties file. The file does not have a -SAMPLE suffix because it is usable as it is.
For information about how to use the log4j2.properties file, see the Logging related link.

The sql folder

The sql folder contains database vendor-specific versions of the following scripts:

• CreateSPMToolsTables.sql: The script is used to create the SPM Tools tables. This includes the
DDL to create the tables that are used by the Spring Batch infrastructure.

• DropSPMToolsTables.sql: The script is used to drop the SPM Tools tables.
• CreateDataWarehouseTables.sql: The script is used to create the Data Warehouse tables. This

script contains the DDL to create the DETERMINATIONXML, DETERMINATIONS, and DECISIONS
tables. For more information, see the Creating the database tables related link.

• DropDataWarehouseTables.sql: This script is used to drop the Data Warehouse tables.

Related concepts
Issues associated with the length of a generated table name
Tool operators might see an issue where the table names in the generated Filter Flow creation DDL
reaches the limit for table name length for their selected database vendor. As an interim solution, the
Short Names Substitution functionality is used on table names and column names.
The ShortNames.properties file
Changes to the ShortNames.properties are effective only after an application restart.
Logging
The IBM Social Program Management Data Extractor uses Apache Log4j 2 as its logging service.
Creating and dropping the database tables
Operators must create and drop the Extraction tables and the SPM tables.
Related tasks
Running the IBM Social Program Management Data Extractor
To run the IBM Social Program Management Data Extractor, operators must perform mandatory steps.
Depending on configuration, operators might need to perform an optional step.

Batch jobs
The batch jobs for the IBM Social Program Management Data Extractor run asynchronously. The jobs all
read a set of determinations that is based on criteria that are specified by the operator. The jobs process

8 IBM Cúram Social Program Management: Data Extractor

these determinations by extracting and transforming the data. Finally, the jobs are used to write the
transformed data to a destination.

Batch jobs: job types and their purposes
The batch jobs that the IBM Social Program Management Data Extractor runs are Spring Batch jobs.
Spring Batch uses a chunk-oriented processing approach.

Chunk-oriented processing

In a chunk-oriented processing approach, items are handled in the following ways:

• Items are read and processed individually.
• Items are then written out in chunks up to a fixed size.

The Spring Batch Configuring a step documentation includes the following description for chunk-oriented
processing: "Chunk oriented processing refers to reading the data one at a time and creating 'chunks' that
will be written out, within a transaction boundary." After a transaction boundary, a commit operation is
performed.

Single step job configuration

The IBM Social Program Management Data Extractor performs single step jobs. The following list outlines
how single step jobs are configured:

• An ItemReader implementation for reading input items of type I, individually
• An ItemProcessor implementation from processing items of type I and creating output items of type O
• An ItemWriter implementation for writing out chunks of items of type O

Batch job implementation

The following table outlines the procedures that are used by the XML Flow, the Filter Flow database job,
and the Filter Flow CSV when the functions process and write jobs. The following list applies to the XML
Flow, the Filter Flow database job, and the Filter Flow CSV:

• A generic ItemReader is used to read all functions.
• A generic ItemProcessor is used to convert IDs to Plain Old Java Objects (POJOs).

Table 1. The process and write operations used by the three functions.

Function Process Write

XML Flow XML Flow ItemProcessor XML Flow Writer

Filter Flow database job Filter Flow ItemProcessor Filter Flow Database Writer

Filter Flow CSV Filter Flow ItemProcessor Filter Flow CSV Writer

In Java, a singleton is a class that provides only one instance of itself and is used as a point of access. For
the IBM Social Program Management Data Extractor, the singleton steps from all three job types use the
same ItemReader implementation. The implementation runs a reader query in a paged way. For more
information, see the How determinations are read by the IBM Social Program Management Data Extractor
batch jobs related link.

The implementation initially runs a database query to read N number of items into an in-memory buffer.
In the IBM Social Program Management Data Extractor jobs, the items are
CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs. The implementation serves the N
number of items individually until the buffer is empty. Then, the reader runs a second query to fetch the
next N items into the buffer. The process repeats until no results are returned by the query.

Chapter 1. IBM Social Program Management Data Extractor 9

The singleton steps also use chained ItemProcessors, that is, a pair of ItemProcessors where the output
of the first ItemProcessor of the pair is piped to the input of the second ItemProcessor of the pair. The
first ItemProcessor is used to resolve a CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONID
to a Plain Old Java Object (POJO) that contains all the data that is needed by the second ItemProcessor of
the pair.

All three jobs use the same implementation of the first ItemProcessor in the pair. The Filter Flow jobs use
the same ItemProcessor implementation for the second processor of the pair. The XML Flow job uses a
dedicated ItemProcessor implementation for the second processor. All three jobs use different
ItemWriter implementations.

For the XML Flow and Filter Flow database jobs, a job can optionally be scaled by having the step for that
job as a partitioned step. So, several step executions can run in parallel. As a result, a single execution of
a job starts multiple step executions in parallel. For example, with gridSize P, P step executions are
started with their own dedicated ItemReader instance and run the execution cycle that is shown in Table
1.

A dedicated partitioner creates a separate step execution context that effectively divides the range of
CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONID into P partitions. Each execution step is
then used to read, process, and write the determination data in the partition for which it is responsible.

In the release of the tool, a thread-based grid execution fabric is used. So, each step execution has a
corresponding thread in the same JVM as the IBM Social Program Management Data Extractor tool itself.

A larger grid size P means that instead of a job execution that reads-processes-writes items serially, the
job execution is performed in parallel over P # threads. So, the job execution typically takes less time than
with a single thread. When specified to be a value greater than one, the tool creates partitioned step
executions.

Criteria for processing determinations

Other than criteria that is fixed, the operator can specify some of the criteria for matching determinations.
The jobs only process determinations that meet the following criteria:

1. Determinations that belong to one specific product type OR to a specific product. Operators must set a
product type code or a product ID in the Spring Profile (applications.properties). For more
information, see the Job configuration properties (applies to all job types) related link.

2. Determinations of type Manual Check Eligibility (CDT1) can optionally be excluded. By default, the
determinations are included. For more information, see the Job configuration properties (applies to all
job types) related link.

3. Determinations that were made within a specified period. By default, the period is assumed to be the
last three days from the moment the job was scheduled. However, the period can be overridden by a
configuration property or by a parameter in the MBean API operation for scheduling the job, or as job
parameter when the operator schedules the job from the command line, that is, in non-server mode.
For more information, see the Scheduling a job execution, Job configuration properties (applies to all
job types), and Starting the IBM Social Program Management Data Extractor in non-server mode related
links.

Related concepts
How determinations are read by the IBM Social Program Management Data Extractor batch jobs
The reader that is used by all three job types reads the set of CREOLECASEDETERMINATIONIDS for the
rows of the CREOLECASEDETERMINATION table in the Social Program Management database that match
the preceding criteria.
Job configuration properties (applies to all job types)
Operators can edit 11 job configuration properties. The configuration properties include
spm.extract.product.typecode and spm.extract.product.id.
Scheduling a job execution

10 IBM Cúram Social Program Management: Data Extractor

In server mode or non-server mode, tool operators can schedule an execution of one of the three batch
job types.
Starting the IBM Social Program Management Data Extractor in non-server mode
When the tool is run in non-server mode, the operator must specify the tool function to run. The tool
starts, runs that one function, and then exits. In non-server mode, the IBM Social Program Management
Data Extractor MBeans are not registered, so the MBean API is unavailable. To schedule new batch job
instances in non-server mode, use JobLauncherApplication. For all other non-server mode functions,
use GenericTaskLauncherApplication.
Related information
Spring Batch: Configuring a Step

How determinations are read by the IBM Social Program Management Data Extractor batch jobs
The reader that is used by all three job types reads the set of CREOLECASEDETERMINATIONIDS for the
rows of the CREOLECASEDETERMINATION table in the Social Program Management database that match
the preceding criteria.

Criteria for processing determinations

Other than criteria that is fixed, the operator can specify some of the criteria for matching determinations.
The jobs only process determinations that meet the following criteria:

1. Determinations that belong to one specific product type OR to a specific product. Operators must set a
product type code or a product ID in the Spring Profile (applications.properties). For more
information, see the Job configuration properties (applies to all job types) related link.

2. Determinations of type Manual Check Eligibility (CDT1) can optionally be excluded. By default, the
determinations are included. For more information, see the Job configuration properties (applies to all
job types) related link.

3. Determinations that were made within a specified period. By default, the period is assumed to be the
last three days from the moment the job was scheduled. However, the period can be overridden by a
configuration property or by a parameter in the MBean API operation for scheduling the job, or as job
parameter when the operator schedules the job from the command line, that is, in non-server mode.
For more information, see the Scheduling a job execution, Job configuration properties (applies to all
job types), and Starting the IBM Social Program Management Data Extractor in non-server mode related
links.

The job reads the IDs in a paged way, N IDs at a time, where N is the value of the pageSize job
parameter where specified. Otherwise, N defaults to the value of the spm.extract.pagesize property.

Running a job with a single partition

• Use the following query to read the first page of IDs (assuming N=10) from a Social Program
Management database on Db2:

SELECT CCDID FROM (
 SELECT CCD.CREOLECASEDETERMINATIONID AS CCDID
 FROM PRODUCTDELIVERY PD INNER JOIN CREOLECASEDETERMINATION CCD ON PD.CASEID
= CCD.CASEID
 WHERE
 (0=:USEPRODUCTTYPECODE OR PD.PRODUCTTYPE=:PRODUCTTYPECODE) AND
 (1=:USEPRODUCTTYPECODE OR PD.PRODUCTID=:PRODUCTID) AND
 (1=:INCLUDEMANUALELIGIBILITYCHECK OR CCD.TYPE!=:EXCLUDEDETERMINATIONTYPE)
AND
 CCD.DETERMINATIONDATETIME >=:STARTDATE AND CCD.DETERMINATIONDATETIME
<:ENDDATE) ORDER BY CCDID ASC FETCH FIRST 10 ROWS ONLY

• Use the following query to read the second and later page of IDs (assuming N=10) from a Social
Program Management database on Db2:

SELECT CCDID FROM (
 SELECT CCD.CREOLECASEDETERMINATIONID AS CCDID
 FROM PRODUCTDELIVERY PD INNER JOIN CREOLECASEDETERMINATION CCD ON PD.CASEID
= CCD.CASEID
 WHERE
 (0=:USEPRODUCTTYPECODE OR PD.PRODUCTTYPE=:PRODUCTTYPECODE) AND

Chapter 1. IBM Social Program Management Data Extractor 11

https://docs.spring.io/spring-batch/docs/current/reference/html/step.html

 (1=:USEPRODUCTTYPECODE OR PD.PRODUCTID=:PRODUCTID) AND
 (1=:INCLUDEMANUALELIGIBILITYCHECK OR CCD.TYPE!=:EXCLUDEDETERMINATIONTYPE)
AND
 CCD.DETERMINATIONDATETIME >=:STARTDATE AND CCD.DETERMINATIONDATETIME
<:ENDDATE)WHERE ((CCDID > :_CCDID)) ORDER BY CCDID ASC FETCH FIRST 10 ROWS ONLY

Running a job with multiple partitions

• Use the following query to read the first page of IDs (assuming N=10) from a Social Program
Management database on Db2:

SELECT CCDID FROM (
 SELECT CCD.CREOLECASEDETERMINATIONID AS CCDID
 FROM PRODUCTDELIVERY PD INNER JOIN CREOLECASEDETERMINATION CCD ON PD.CASEID
= CCD.CASEID
 WHERE
 (0=:USEPRODUCTTYPECODE OR PD.PRODUCTTYPE=:PRODUCTTYPECODE) AND
 (1=:USEPRODUCTTYPECODE OR PD.PRODUCTID=:PRODUCTID) AND
 (1=:INCLUDEMANUALELIGIBILITYCHECK OR CCD.TYPE!=:EXCLUDEDETERMINATIONTYPE)
AND
 CCD.DETERMINATIONDATETIME >=:STARTDATE AND CCD.DETERMINATIONDATETIME
<:ENDDATE)WHERE ((CCDID > :_CCDID)) ORDER BY CCDID ASC FETCH FIRST 10 ROWS ONLY

• Use the following query to read the second and later page of IDs (assuming N=10) from a Social
Program Management database on Db2:

SELECT CCDID FROM (
 SELECT CCD.CREOLECASEDETERMINATIONID AS CCDID
 FROM PRODUCTDELIVERY PD INNER JOIN CREOLECASEDETERMINATION CCD ON PD.CASEID
= CCD.CASEID
 WHERE
 (0=:USEPRODUCTTYPECODE OR PD.PRODUCTTYPE=:PRODUCTTYPECODE) AND
 (1=:USEPRODUCTTYPECODE OR PD.PRODUCTID=:PRODUCTID) AND
 (1=:INCLUDEMANUALELIGIBILITYCHECK OR CCD.TYPE!=:EXCLUDEDETERMINATIONTYPE)
AND
 CCD.DETERMINATIONDATETIME >=:STARTDATE AND CCD.DETERMINATIONDATETIME
<:ENDDATE AND
 CCD.CREOLECASEDETERMINATIONID>=:LOWERBOUND AND
CCD.CREOLECASEDETERMINATIONID<=:UPPERBOUND) WHERE ((CCDID > :_CCDID)) ORDER BY CCDID ASC
FETCH FIRST 10 ROWS ONLY

Related concepts
Job configuration properties (applies to all job types)
Operators can edit 11 job configuration properties. The configuration properties include
spm.extract.product.typecode and spm.extract.product.id.
Scheduling a job execution
In server mode or non-server mode, tool operators can schedule an execution of one of the three batch
job types.
Starting the IBM Social Program Management Data Extractor in non-server mode
When the tool is run in non-server mode, the operator must specify the tool function to run. The tool
starts, runs that one function, and then exits. In non-server mode, the IBM Social Program Management
Data Extractor MBeans are not registered, so the MBean API is unavailable. To schedule new batch job
instances in non-server mode, use JobLauncherApplication. For all other non-server mode functions,
use GenericTaskLauncherApplication.

XML flow job
Operators can use the XML flow job to read the determinations that match the proceeding criteria.

Criteria for processing determinations

Other than criteria that is fixed, the operator can specify some of the criteria for matching determinations.
The jobs only process determinations that meet the following criteria:

1. Determinations that belong to one specific product type OR to a specific product. Operators must set a
product type code or a product ID in the Spring Profile (applications.properties). For more
information, see the Job configuration properties (applies to all job types) related link.

12 IBM Cúram Social Program Management: Data Extractor

2. Determinations of type Manual Check Eligibility (CDT1) can optionally be excluded. By default, the
determinations are included. For more information, see the Job configuration properties (applies to all
job types) related link.

3. Determinations that were made within a specified period. By default, the period is assumed to be the
last three days from the moment the job was scheduled. However, the period can be overridden by a
configuration property or by a parameter in the MBean API operation for scheduling the job, or as job
parameter when the operator schedules the job from the command line, that is, in non-server mode.
For more information, see the Scheduling a job execution, Job configuration properties (applies to all
job types), and Starting the IBM Social Program Management Data Extractor in non-server mode related
links.

For each determination, use the XML flow job to perform the following actions:

• Ingest the determination BLOB from CREOLECASEDETERMINATIONDATA.CREOLESNAPSHOTDATA.
• Write the transformed XML to the DETERMINATIONXML.XMLVALUE column in the data warehouse.

The DETERMINATIONXML.XMLVALUE column is of the XML data type for Db2 or XMLType data type for
Oracle. For more information about the XML data type for Db2, see the XML data type related link. For
more information about the XMLType data type for Oracle, see the XMLTYPE related link. The data type
supports XQuery functionality. For more information about the XQuery functionality, see the An
introduction to XQuery related link.

The SQL script for creating the DETERMINATIONXML table is supplied as part of the tooling. For more
information, see the Components of the IBM Social Program Management Data Extractor and the
Downloading and installing the IBM Social Program Management Data Extractor related links.

When the job transforms the determination of the XML, the job performs the following five tasks:

1. The job extracts the compressed data to its original XML form.
2. The job unescapes the XML so that the sections that pertain to decisions are now part of the XML

document structure. The step is to permit the XPath to data query the decisions.
3. The job scrubs the XML of any XML declarations. The step is to permit the XPath to data query the

decisions.
4. The job augments the XML with the following data that is taken from the corresponding

CREOLECASEDETERMINATION.

The XML uses the following seven attributes:

• ASSESSMENTSTATUS
• ASSESSMENTREASON
• TYPE
• DETERMINATIONDATETIME
• CREOLECASEDETERMINATIONID
• CREATEDBYUSER
• RULEOBJECTSNAPSHOTDATAID

The information appears as attributes of an IngestedData element as the last child of the root
Determination element. The nested decision nodes are links from the decision split dates in the
determination XML to the case decision record on the database. The nested
determinationResultDataId nodes are used to list the CREOLECASEDETERMINATIONDATAID
identifiers for CREOLECASEDETERMINATIONDATA records that hold the raw display rules data. There
might be more than one for a determination. The CREOLECaseDeterminationData page of the IBM
Cúram Social Program Management Knowledge Center includes the following description: "In the
unlikely event that the XML data is too long to fit onto a single CREOLECaseDeterminationData, the
data will be truncated to fit, and the extra data stored on an "overflow"
CREOLECaseDeterminationData row (or chain of overflow rows)."

<IngestedData
 assessmentReason="CADR6"

Chapter 1. IBM Social Program Management Data Extractor 13

 assessmentStatus="CDAS1"
 type="CDT3"
 determinationDateTime="2019-01-21"
 creoleCaseDeterminationId="-6587007036238594048"
 createdByUser="SYSTEM"
 ruleObjectSnapshotDataId="5878956732322938880">
 <Decisions>
 <Decision caseDecisionId="5673232293888045101" endDate="20140531" startDate="20140425"/>
 <Decision caseDecisionId="5673232293888045102" endDate="20141026" startDate="20140601"/>
 <Decision caseDecisionId="5673232293888045102" endDate="20141031" startDate="20141027"/>
 <Decision caseDecisionId="5673232293888045103" endDate="20141130" startDate="20141101"/>
 <Decision caseDecisionId="5673232293888045103" endDate="20141231" startDate="20141201"/>
 </Decisions>
 <DeterminationResultDataIds>
 <DeterminationResultDataId>6527475078664290304</DeterminationResultDataId>
 <DeterminationResultDataId>-1470917859545710592</DeterminationResultDataId>
 <DeterminationResultDataId>3068710564843749376</DeterminationResultDataId>
 </DeterminationResultDataIds>
 </IngestedData>

5. The resulting XML is written to the XMLVALUE column of the DETERMINATIONXML table.

Columns in DETERMINATIONXML

The columns JOBINSTANCEID, JOBEXECUTIONID, and EXTRACTIONDATE are included in all Extraction
tables. The columns have the same meaning in each table.

Table 2. Columns in DETERMINATIONXML

Column name Column description

created The time the row was created.

caseid The case identifier for the case for which the
original determination was created.

xmlvalue The transformed XML.

jobinstanceid The value in the column corresponds to the unique
identifier for the job instance of the XML flow job
that was used to write the row.

The The Domain Language of Batch documentation
includes the following description for a job
instance: "A JobInstance refers to the concept of a
logical job run."

The job instance ID is the same one that is
displayed in the logs in the printed summary after a
job completes.

Job Name: ‘XmlFlow’
Instance: 23
Execution: 43
Finished Step: 'xmlFlowStep0'
Step Summary: 'StepExecution: id=43,
version=7, name=step,

status=COMPLETED, exitStatus=COMPLETED,
readCount=53,

filterCount=0, writeCount=53 readSkipCount=0,

 writeSkipCount=0, processSkipCount=0,
commitCount=6, rollbackCount=0'

14 IBM Cúram Social Program Management: Data Extractor

Table 2. Columns in DETERMINATIONXML (continued)

Column name Column description

jobexecutionid The value in the column corresponds to the unique
identifier for the job execution of the XML flow job
that was used to write the row.

The The Domain Language of Batch documentation
includes the following description for a job
execution: "A JobExecution refers to the technical
concept of a single attempt to run a Job."

The job execution ID is the same one that is
displayed in the logs in the printed summary after a
job completes.

Job Name: 'XmlFlow'
Instance: 23
Execution: 43
Finished Step: 'xmlFlowStep0'

Step Summary: 'StepExecution: id=43,
version=7, name=step,

 status=COMPLETED, exitStatus=COMPLETED,
readCount=53,

filterCount=0, writeCount=53 readSkipCount=0,

 writeSkipCount=0, processSkipCount=0,
commitCount=6, rollbackCount=0'

A job that is restarted has the same job instance ID
when it restarts. However, the new attempt to run
the job has a new job execution ID.

extractiondate The value in the column corresponds to the start
time of the job execution that was used to write the
row.

Related concepts
Job configuration properties (applies to all job types)
Operators can edit 11 job configuration properties. The configuration properties include
spm.extract.product.typecode and spm.extract.product.id.
Scheduling a job execution
In server mode or non-server mode, tool operators can schedule an execution of one of the three batch
job types.
Starting the IBM Social Program Management Data Extractor in non-server mode
When the tool is run in non-server mode, the operator must specify the tool function to run. The tool
starts, runs that one function, and then exits. In non-server mode, the IBM Social Program Management
Data Extractor MBeans are not registered, so the MBean API is unavailable. To schedule new batch job
instances in non-server mode, use JobLauncherApplication. For all other non-server mode functions,
use GenericTaskLauncherApplication.
Components of the IBM Social Program Management Data Extractor

Chapter 1. IBM Social Program Management Data Extractor 15

The components of the IBM Social Program Management Data Extractor are the Spring technology stack,
the Social Program Management data source, the Data Warehouse data source, the Extraction tables, and
the SPM Tools tables.
Downloading and installing the IBM Social Program Management Data Extractor
Extract the contents of the compressed file and run the installer jar.
Related information
XML data type
XMLTYPE
An introduction to XQuery
CREOLECaseDeterminationData
The Domain Language of Batch

Filter flow CSV job
Use the filter flow job to match a set of determinations and specify the attributes.

Determinations for a product can have many display attributes. In many scenarios, customers are
interested in only a few of these attributes. Additionally, customers often prefer such data in a relational
format rather than in a hierarchical format.

The purpose of the filter flow job is to enable customers to perform the following two tasks:

• Match a set of determinations on the same set of criteria that is used by the XML Flow job.
• Specify the attributes in the matching determinations that the customer is interested in and extract this

data to a destination that supports a relational format. For the filter flow CSV job, the data is a set of
CSV files.

How do I specify the attributes that I am interested in?

To specify the attributes that the filter flow job is to extract, customers must configure the
spm.extract.creoledeterminations.displayrules.extractlistattributes property in the
Spring Profile properties file.

Specify the attributes as a comma-delimited list of attribute paths. An attribute path is a reference to an
attribute in the determination XML that uses the format {RuleSet}.{RuleClass}.
{RuleAttribute}. For example:
StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.householdnonf
inancialnoeligibletimeline.

For information about how to search for all valid attribute paths, see the Searching for the filter flow
attribute paths related link.

Related concepts
Searching for the Filter Flow attribute paths
Search the set of display rule attributes in the rule set definitions that can be queried. The output of the
function is a listing of attribute paths.

The output directory for the filter flow CSV job
The path to the directory where the filter flow CSV job writes the CSVs is configurable. It is a configuration
property spm.extract.csvs.output.dir in the Spring Profile (applications.properties).

For information about all the properties of the Spring Profile, see the Editing the Spring Profile
(application.properties) related link.

An example of the directory structure that is beneath the output directory is:

├── 66
│ ├── DECISIONS.csv
│ ├── DETERMINATIONS.csv
│ ├── STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv
│ ├──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLEMEMBERSINCOMEPERC
ENTAGE.csv

16 IBM Cúram Social Program Management: Data Extractor

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.xml.doc/doc/c0023366.html
https://docs.oracle.com/database/121/ARPLS/t_xml.htm#ARPLS369
https://www.ibm.com/developerworks/library/x-xquery/index.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Creolecasedeterminationdata1.html
https://docs.spring.io/spring-batch/docs/current/reference/html/domain.html

│ ├──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLEMEMBERSNAME.csv
│ ├──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_SMINCOMEELIGIBILITYSUBSCR
EEN.csv
│ └──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_SMMEMINCOMECATEGORYSUBSCR
EENS.csv
└── 67
 ├── DECISIONS.csv
 ├── DETERMINATIONS.csv
 ├── STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv
 ├──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLEMEMBERSINCOMEPERC
ENTAGE.csv
 ├──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLEMEMBERSNAME.csv
 ├──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_SMINCOMEELIGIBILITYSUBSCR
EEN.csv
 └──
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_SMMEMINCOMECATEGORYSUBSCR
EENS.csv

Beneath the spm.extract.csvs.output.dir directory, there is a set of directories with names that
correspond to the job instance IDs. For example, in the listing above, the directory 66 contains files that
are written by executions of the filter flow CSV job with Job Instance ID 66.

Note: The IBM Social Program Management Data Extractor does not encrypt the data that is written to the
CSV files. For customers who use filter flow CSV jobs, customers can configure the
spm.extract.csvs.output.dir directory to point to a location that is either file system encrypted or
that corresponds to a mounted volume that uses block level encryption.

Related concepts
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.

Filter flow database job
The filter flow CSV job and the filter flow database job are similar and are used for the same purpose. The
key difference between the filter flow database job and the filter flow CSV job is the data that is extracted
by the filter flow database job is written to a set of database tables that the customer creates in the
customer’s data warehouse.

A successful filter flow database batch job writes to several database tables. The filter flow database
batch job includes the following characteristics:

• One or more attribute value database tables to which the extracted data, corresponding to the
attributes that are specified by the operator, is exported. The way that attributes are exported is
determined in the following ways:

1. Attributes that are not defined as lists in their corresponding rule class are always exported to a
destination that corresponds to that rule class. The table names are in the format:
{RuleSet}_{RuleClass}. An example is
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.

2. Attributes that are defined as lists in their corresponding rule class are always exported to a
destination that corresponds to that attribute only. The table names are in the format
{RuleSet}_{RuleClass}_LIST_{RuleAttribute}. An example is
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGI
BLEMEMBERSNAMES.

• Attributes consist of a single database table that contains data that relates to the determinations that
are extracted. The data that is written to the table is independent of the specified attribute paths. The
database table name is DETERMINATIONS.

Chapter 1. IBM Social Program Management Data Extractor 17

• Attributes consist of a single table that contains data that relates to the decisions in the determinations
that are extracted. The data that is written to the table is independent of the specified attribute paths.
The table name is DECISIONS.

The naming specifications that apply to the CSV files and their schemas also apply to the naming of
output tables and their schema for the filter flow database job. For more information about the filter flow
CSV job, see the Filter flow CSV job related link.

Note: The filter flow CSV job can be used to create and write to files on the local file system. However, the
filter flow database jobs are used to write to pre-existing database tables in the data warehouse. The tool
cannot be used to create the tables in the data warehouse. However, the tool can be used to generate the
DDL to create the tables and to drop the tables. For more information, see the Generating the filter flow
attribute value database tables creation and drop DDL related link.

Related concepts
Filter flow CSV job
Use the filter flow job to match a set of determinations and specify the attributes.
Generating the Filter Flow attribute value database tables creation and drop DDL
Generating the creation and drop DDL for the Filter Flow attribute value tables is a function of the IBM
Social Program Management Data Extractor.

Filter flow compaction limit
Compaction is a configuration setting to enable a behavior for filter flow database job executions. Use
compaction to reduce the number of database write operations to the filter flow extraction tables.

Extraction jobs have different ItemWriter implementations for writing out chunks of items of type O. For
more information, see the Batch jobs: job types and their purposes related link.

For the filter flow database jobs, the number of calls to its ItemWriter's write operation is not equal to
the number of database calls to write data to the Data Warehouse for the following reasons:

• The process operation of the ItemProcessor for the filter flow jobs is used to take in a single
determination object of type I and produces a single result object of type O.

• A single O object is used to model all the relational data that is due to be written to two or more filter
flow tables.

• When filter flow database job calls its ItemWriter to write out the data for a single O item, it performs
database write operations against two or more filter flow tables in the following ways:

– The job writes data to the DETERMINATION and DECISIONS filter tables.
– Data is written to the attribute value tables only if the determination's XML BLOB contained the

requested data attributes for one or more decision periods in that determination.

The ItemWriter's write operation for a filter flow job, however, operates on a collection or 'chunk' of
these O objects under the following conditions:

• The size of the chunks is up to chunkSize.
• The call to the ItemWriter's write operation is contained within a transaction boundary. At the end of

chunk, the writes to the database are committed if there were no unskippable errors or rolled back if
there were unskippable errors. This chunk-oriented processing is used to enable a behavior that is
known as compaction for the filter flow database job.

The IBM Social Program Management Data Extractor is used to exploit the chunk-oriented approach to
reduce the number of round-trip calls that write data to the Data Warehouse database, by enabling the
compaction behavior.

If compaction is not enabled when the filter flow Database ItemWriter's write operation is called, then
for each item in a chunk, the ItemWriter makes separate database write calls to every filter flow table
for which that item mapped data. So, for a call to the ItemWriter's write operation for each Filter flow
table, there is a maximum #chunkSize database calls to write data to it.

If compaction is enabled, then the write operation the filter flow database ItemWriter is used to
buffer the data on a per filter flow table basis. A database write operation to a table is performed only

18 IBM Cúram Social Program Management: Data Extractor

for every N rows of data that is buffered for that table. Immediately before it completes a chunk, the
write operation for the ItemWriter performs one extra database write per filter flow table for any rows
that remain in that table's buffer, if any. The number N is called the compaction limit. For example, if there
was a chunk size of 25 and a compaction limit of 10, then there are, on average, three calls per chunk, to
write data to the DETERMINATIONS table. That is, there are two writes of 10 rows of data, and one write
for the remaining five rows.

Scenario examples to illustrate the benefit of using the compaction limit
Scenario 1

The following conditions apply to this scenario:

• Only one attribute path (a.p) is specified, the a.p. corresponds to rule attribute that is a list.
• The a.p. is used to attribute data when it is extracted. The data is written to an attribute value (AV)

table.
• On average, there are three decision periods per determination.
• On average, three items are extracted for the decision period that corresponds to the specified a.p.
• The chunkSize is 20.

So, it is expected that a call to the ItemWriter's write operation generates the results that are shown in
the following table. The numbers in the table are the same regardless of whether compaction is enabled.

Table 3. The number of tables that are written for each filter flow table

Table Rows written

DETERMINATIONS 20

DECISIONS 60 (20*3)

AV 180 (20*3*3)

Scenario 2

The benefits of compaction are that with a properly tuned compaction limit the filter flow Database
ItemWriter is used to write out the same volume of data over fewer database calls. As a result, the time
that is spent writing data to the Data Warehouse is reduced. If compaction is disabled, the ItemWriter's
write operation that is operating on a chunk size of 20 produces the metrics in the following table.

Table 4. The number of database write operations for a chunk size of 20 with compaction disabled

Table name Number of database writes Average number of rows that
are written for each database
write

DETERMINATIONS 20 1

DECISIONS 20 3

AV 20 9

Total number of database writes 60 N/A

Note: There can be less than 20 database writes to the AV table because there might be determinations
that do not have the specified attribute set for any period in that determination.

Scenario 3

If compaction is enabled with chunk size 20 and compaction limit 10, the metrics in the following table
are produced.

Chapter 1. IBM Social Program Management Data Extractor 19

Table 5. The number of database write operations for a chunk size of 20 and a compaction limit of 10

Table name Number of database writes Average number of rows that
are written for each database
write

DETERMINATIONS 2 10

DECISIONS 6 10

AV 18 10

Total number of database writes 26 N/A

Scenario 4

If compaction is enabled with chunk size 20 and compaction limit 20, the metrics in the following table
are produced.

Table 6. Metrics produced when compaction is enabled with chunk size 20 and compaction limit 20

Table name Number of database writes Average number of rows that
are written for each database
write

DETERMINATIONS 1 20

DECISIONS 3 20

AV 9 20

Total number of database writes 13 N/A

The compaction limit is set as a property in the Spring Profile. The property name is
spm.extract.filterflow.compactionlimit. For more information about the
spm.extract.filterflow.compactionlimit property, see the Filter flow job configuration
properties related link.

Related concepts
Batch jobs: job types and their purposes
The batch jobs that the IBM Social Program Management Data Extractor runs are Spring Batch jobs.
Spring Batch uses a chunk-oriented processing approach.
Filter Flow job configuration properties
Operators can edit three Filter Flow job configuration properties, which are
spm.extract.creoledeterminations.displayrules.extractlistattributes,
spm.extract.csvs.output.dir, and spm.extract.filterflow.compactionlimit.

Filter flow job output
The outputs of filter flow jobs are relational data structures. For filter flow CSV jobs, the output is a set of
CSV files. For filter flow database jobs, the output is a set of database tables.

Filter flow CSV jobs

A successful filter flow CSV batch job produces several CSV files. Typically, the CSV output includes the
DETERMINATIONS.csv, DECISIONS.csv, and Attribute value CSVs files.

Filter flow database jobs

A database administrator must create the output tables in the Data Warehouse database before running
the filter flow database job. For information about how to create the tables, see the following links:

20 IBM Cúram Social Program Management: Data Extractor

• For the DETERMINATIONS and DECISIONS tables, see “Creating and dropping the database tables” on
page 45.

• For the Attribute Value Tables, see “Generating the Filter Flow attribute value database tables creation
and drop DDL” on page 37.

Relational data structures
Filter flow batch jobs output data to three relational data structures, which are the DETERMINATIONS,
DECISIONS, and attribute value relational data structures.

DETERMINATIONS relational data structure

The individual rows of the DETERMINATIONS relational data structure correspond to the product delivery
case determinations that were extracted from the source Cúram SPM database. The rows that the filter
flow job writes reflect the state of the determination at the time of the extraction.

Filter flow database
The table name is DETERMINATIONS.

Filter flow CSV
The file name is DETERMINATIONS.csv.

For more information about the columns that the DETERMINATIONS relational data structure includes,
see the Table 7 on page 23 table.

DECISIONS relational data structure

The individual rows of the DECISIONS relational data structure correspond to the coverage periods in the
product delivery cases that the filter flow job extracts. The individual row also records what decision
period the coverage period belongs to.
Coverage periods

• For a given product delivery case determination, two or more consecutive periods might exist where
the client is eligible but for different reasons.

• In the display rules determination data, the two consecutive periods are classified as distinct
coverage periods.

• In the IBM Cúram Social Program Management caseworker application, when the caseworker views
the current determination page on a product delivery case, the caseworker is viewing a visual
representation of the coverage period view of decisions within a determination.

Decision periods

• The eligibility and entitlement engine splits a determination into decision periods, which are periods
of constant eligibility and entitlement.

• The eligibility and entitlement engine stores the periods as rows in the CASEDECISION table in the
Cúram SPM database.

• For more information about decision periods, see The CaseDecision Database Table.

The DECISIONS relational data structure links the individual determination decision period to the
corresponding CASEDECISION in the source Cúram SPM database, through the caseDecisionId
column. In the scenario of CREOLE products that are configured to allow open-ended cases, the
determination might have a trailing coverage period with a start date but with no end date, and for
which there is no corresponding CASEDECISION. In that scenario, the row that corresponds to such a
coverage period in the DECISIONS relational data structure does not specify a value in the
caseDecisionId column.

Attribute value relational data structures

The filter flow extraction jobs write the extracted data, which corresponds to the attributes that are
specified in the
spm.extract.creoledeterminations.displayrules.extractlistattributes property to

Chapter 1. IBM Social Program Management Data Extractor 21

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Casedecision1.html

attribute value relational data structures. For more information, see “Filter flow CSV job ” on page 16 and
“Filter flow database job” on page 17.

The schema of the DETERMINATIONS and DECISIONS data structures are static and are the same for
every Data Extractor set-up configuration. However, the schema of the attribute value relational data
structures can vary between set-up configurations. The names and the schema for the data structures is
determined by the following items:

• The set of specified extract display rule attributes that is specified for the
spm.extract.creoledeterminations.displayrules.extractlistattributes property

• The CREOLE product configuration, which includes collectively the display rule set definitions, display
categories, and product period configuration in the source Cúram SPM database

Therefore, for filter flow database extraction, the SQL file that is used to create the DETERMINATIONS and
DECISIONS tables is generated by the installer. However, the SQL file that is used to create the attribute
value tables must be generated by a function of the Data Extractor tool, as described at the beginning of
this topic.

The following rules determine the mapping of the extract attributes to the corresponding attribute value
relational data structures and their columns:

1. Attributes that are not defined as lists in their corresponding rule class definition are always exported
to a destination that corresponds to that rule class. In this scenario, the target relational data structure
name is in the following format: {RuleSet}_{RuleClass}, for example:

STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY

For filter flow CSV jobs, the target CSV file name also follows the previous convention but also appends
the .csv extension, for example:
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv

2. Attributes that are defined as lists in their corresponding rule class definition are always exported to a
destination that is created for only that attribute. In this scenario, the relational data structure name is
in the following format: {RuleSet}_{RuleClass}_LIST_{RuleAttribute}, for example:

STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLEMEMBERSNAMES

For filter flow CSV jobs, the target CSV file name also follows the previous convention but also appends
the .csv extension, for example:
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGI
BLEMEMBERSNAMES.csv

The following table lists and describes the applicable filter flow table columns. Some of the columns exist
only in one of the relational data structures, that is, either DETERMINATIONS, DECISIONS, or attribute
value. In other cases, the applicable filter flow table columns exist in two or more of the relational data
structures . In such cases, it is indicated in the Applicable relational data structures column.

22 IBM Cúram Social Program Management: Data Extractor

Table 7. Columns that are in the determinations, decisions, and attribute value relational data structures

Applicable relational data
structures

Column name Description

All caseref • A reference ID, which has a
path-like structure, that
uniquely identifies a case.

• The structure of a caseref value
is case/{caseID}.

determinationref • A reference ID, which has a
path-like structure, that
uniquely identifies a
determination.

• The structure of a
determinationref value is
case/{caseID}/
determination/
{determinationId}.

jobinstanceid • The value of the jobinstanceid
column corresponds to the
unique identifier for the job
instance of the filter flow that
was used to write the row.

• The Domain Language of Batch
documentation includes the
following description for a job
instance:

"A JobInstance refers to the
concept of a logical job run."

• The job instance ID is the same
one that is displayed in the logs
in the printed summary after a
job finishes:

Job Name: 'FilterFlowCsv'
Instance: 21
Execution: 41
Finished Step:
'filterFlowCSVStep0'
Step Summary:
'StepExecution:
id=41,version=7,
name=step,
status=COMPLETED,
exitStatus=COMPLETED,
readCount=53,
filterCount=0,
writeCount=53
readSkipCount=0,
writeSkipCount=0,
processSkipCount=0,
commitCount=6,
rollbackCount=0'

jobexecutionid • The jobexecutionid
corresponds to the unique
identifier for the job execution
of the filter flow that was used
to write the row.

• The The Domain Language of
Batch documentation includes
the following description for a
job execution: "A JobExecution
refers to the technical concept
of a single attempt to run a
Job."

• The job instance ID is the same
one that is displayed in the logs
in the printed summary after a
job finishes:

Job Name: 'FilterFlowCsv'
Instance: 21
Execution: 41
Finished Step:
'filterFlowCSVStep0'
Step Summary:
'StepExecution: id=41,
version=7, name=step,
status=COMPLETED,
exitStatus=COMPLETED,
readCount=53,
filterCount=0,
writeCount=53
readSkipCount=0,
writeSkipCount=0,
processSkipCount=0,
commitCount=6,
rollbackCount=0'

extractiondate • The extractiondate
corresponds to the start time of
the job execution, where
extractiondate is in the date
format yyyyMMdd.

Chapter 1. IBM Social Program Management Data Extractor 23

https://docs.spring.io/spring-batch/docs/current/reference/html/domain.html

Table 7. Columns that are in the determinations, decisions, and attribute value relational data structures
(continued)

Applicable relational data
structures

Column name Description

All except DETERMINATIONS decisionref • A reference ID, which has a
path-like structure, that
uniquely identifies a coverage
period, as described previously.

• The structure of decisionref
value is case/{caseID}/
determination/
{determinationId}/
decision/{decisionDate}
where decisionDate is in the
date format yyyyMMdd.

All except attribute value tables productid • The unique reference number
that is assigned by SPM to the
product offering, for the
product delivery case for which
the determination was created.
For more information, see the
following pages in the IBM
Cúram Analysis Documentation
entities directory:
Product.html,
CREOLEProduct.html,
and ProductDelivery.html.

producttypecode • The code table entry for the
product type for the product
offering. Multiple products can
share the same product type
code.

24 IBM Cúram Social Program Management: Data Extractor

https://www.ibm.com/support/pages/node/299627
https://www.ibm.com/support/pages/node/299627

Table 7. Columns that are in the determinations, decisions, and attribute value relational data structures
(continued)

Applicable relational data
structures

Column name Description

DECISIONS casedecisionid • The caseDecisionId for the
CASEDECISION database table
that corresponds to the
decision period. See the
previous information about
decision periods.

startdate • The start date for the coverage
period of eligibility or
ineligibility. See the previous
description of coverage
periods.

• In the CSV, it is a date
formatted string with the
format yyyyMMdd

enddate • The end date for the coverage
period of eligibility or
ineligibility. See the previous
description of coverage
periods.

• In the CSV, it is a date
formatted string with the
format yyyyMMd

DETERMINATIONS status • The assessment status of the
determination at the time of
extraction.

• It corresponds to the
CREOLECASEDETERMINATION
.STATUS of the determination
at the time of the extraction.

type • The type of the determination.
• It corresponds to the

CREOLECASEDETERMINATION
.TYPE of the determination at
the time of the extraction.

determinationdatetime • The date and time that the
determination was made.

• It corresponds to the
CREOLECASEDETERMINATION
.DETERMINATIONDATETIME of
the determination at the time
of the extraction.

• In the CSV, it is a date
formatted string with the
format yyyyMMdd.

Chapter 1. IBM Social Program Management Data Extractor 25

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Creolecasedetermination1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Creolecasedetermination1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Creolecasedetermination1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Creolecasedetermination1.html

Table 7. Columns that are in the determinations, decisions, and attribute value relational data structures
(continued)

Applicable relational data
structures

Column name Description

Attribute value relational data
structures only

attributeref • A hierarchically name-spaced
reference that uniquely
identifies a Rule Class Attribute
instance, across all
determinations.

• A filter flow extraction flattens
hierarchical XML data and
maps it a relational format in
the following ways:

– attributeref can be used to
reconnect data items that
had a relationship that is
represented in the
Determination XML in a
hierarchical way.

– Either attributeref or
ruleclassref, but not both, is
present in an attribute value
CSV file or database table.

– For a full explanation with
examples, see Scenario A
and Scenario B.

• The attributeref uses the
following path-like structure:

– case/{caseID}/
determination/
{determinationId}/
decision/
{decisionDate}/
{RuleClass}{index_1}/
{RuleAttribute}/
{index_2}/Item/
{index_3}

• The indexes are one-based,
that is, the indexing starts with
a one, rather than zero-based.
The following characteristics
apply to the indexes:

– index_1 identifies the
specific rule class instance
within a given coverage
period.

– index_2 identifies the
specific rule attribute
instance within a specific
rule class instance.

– index_3 identifies the
specific item within a
specific rule attribute list.

26 IBM Cúram Social Program Management: Data Extractor

Table 7. Columns that are in the determinations, decisions, and attribute value relational data structures
(continued)

Applicable relational data
structures

Column name Description

ruleclassref • A hierarchically name-spaced
reference that uniquely
identifies a Rule Class instance,
across all determinations.

• A filter flow extraction flattens
hierarchical XML data and
maps it to a relational format in
the following ways:

– ruleclassref can be used to
reconnect data items that
had a relationship that is
represented in the
Determination XML in a
hierarchical way.

– Either attributeref or
ruleclassref, but not both, is
present in an attribute value
CSV file or database table.

– For a full explanation with
examples, see Scenario A
and Scenario B.

• The ruleclassref uses the
following path-like structure:

– case/{caseID}/
determination/
{determinationId}/
decision/
{decisionDate}/
{RuleClass}/{index}

– The index value is one-
based, not zero-based.

– The index identifies the
specific rule class instance
for the decision period. It
supports the scenario of a
coverage period where there
is more than one instance of
a specific rule class.

Reference columns always exist in the relational data structures for case, determination, and decision.
The references follow a hierarchical name spacing pattern and are used to make it easy to join across the
relational data structures when required.

Related information
Decision periods
CaseDecision
The Domain Language of Batch

Chapter 1. IBM Social Program Management Data Extractor 27

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1DecisionPeriods1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Determinations1Casedecision1.html
https://docs.spring.io/spring-batch/docs/current/reference/html/domain.html

Filter flow CSV examples
Two scenarios, scenario A, and scenario B, and a rule class extract illustrate where attribute data that is
extracted by a filter flow CSV job is written. The process shows how the extracted data that corresponds
to an attribute path A is written to a file F.

The CSV file name and its schema is determined by an algorithm, for which one of the inputs determines
how the requested rule attribute is declared in the display rule class.

Scenarios A and B provide the following details for filter flow CSV jobs:

• Attributes to be extracted
• The corresponding rule class that defines the extracted attributes
• Expected structure of the attribute value CSV files
• Explanation of the reference columns that are written, as well as the extracted attribute's data
• Explanation of how the reference columns can be used to correlate data that was hierarchically related

in the source data

See the sample of the rule class that declares the attributes that are requested at the end of the topic.

Scenario A example attribute paths and CSV

In scenario A, the following attribute paths are specified:

• StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.membersElig
ibleOrNotMessage

• StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.householdNo
nFinancialNotEligibleTimeline

In the StreamlineMedicaidIncomeCategory rule class, these attributes are declared to be non-list
values. If both these attribute paths were specified, the value is extracted to the same CSV file. The name
of the file is STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv.
The example in the following table shows only a selection of the columns in the CSV file, to illustrate how
the structure of the file differs from the other CSV files. See the Table 7 on page 23 table for the standard
set of reference columns that are included in an attribute value CSV file.

Table 8. STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv
sample

ruleclassref memberseligibleornotmessage householdnonfinancialnoelig
ibletimeline

case/649/determination/152/
decision/20180401/
StreamlineMedicaidIncomeCa
tegory/1

Income eligibility was not determined. True

case/649/determination/152/
decision/20180429/
StreamlineMedicaidIncomeCa
tegory/1

No members in the household are
found to be eligible.

True

case/649/determination/152/
decision/20180501/
StreamlineMedicaidIncomeCa
tegory/1

No members in the household are
found to be eligible.

False

The file STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY.csv has
a column ruleclassref. The following list outlines the characteristics of the values that are stored in the
ruleclassref column:

28 IBM Cúram Social Program Management: Data Extractor

• Each value is a hierarchical, name-spaced reference that is used to identify a rule class instance
uniquely, across all determinations.

• Filter flow jobs flatten the hierarchical display rules XML data from a product delivery case
determination into a relational format. The ruleclassref reference can be used to reconnect related
hierarchical data.

• The ruleclassref uses the structure case/{caseID}/determination/{determinationId}/
decision/{decisionDate}/{RuleClass}/{index}.

– The index is one-based, not zero-based.
– The index identifies the specific rule class instance for the coverage period.
– The structure supports the scenario of a coverage period where more than one instance of a rule

class exists.

Scenario B example attribute paths and CSV

In scenario B, the following attribute path is specified:
StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.eligibleMembe
rsName.

In the Spring Profile properties file, to extract the previous attribute, the operator must specify the
spm.extract.creoledeterminations.displayrules.extractlistattributes property as
shown in the following sample:

spm.extract.creoledeterminations.displayrules.extractlistattributes=\

 StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.eligibleMembersName

As you can see in the sample from the StreamlineMedicaidDisplayRuleset, the
StreamlineMedicaidIncomeCategory rule class declares the eligibleMembersName rule attribute
as a list attribute. Therefore, it can have multiple values within a single coverage period. Thus, it is
extracted into the
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLE
MEMBERSNAME.csv file. See the Table 7 on page 23 table for the standard set of reference columns that
are included in an attribute value CSV file.

Table 9.
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLEME
MBERSNAME.csv sample

attributeref eligiblemembersname

case/649/determination/152/decision/20180401/
StreamlineMedicaidIncomeCategory/1/
eligibleMembersName/1/Item/2/0 Mary Mitchell

Mary Mitchell

case/649/determination/152/decision/20180429/
StreamlineMedicaidIncomeCategory/1/
eligibleMembersName/1/Item/2/1 John Stephens

John Stephens

case/649/determination/152/decision/20180429/
StreamlineMedicaidIncomeCategory/1/
eligibleMembersName/1/Item/2/0 Mary Mitchell

Mary Mitchell

case/649/determination/152/decision/20180429/
StreamlineMedicaidIncomeCategory/1/
eligibleMembersName/1/Item/2/2 Peter Brown

Peter Brown

The file
STREAMLINEMEDICAIDDISPLAYRULESET_STREAMLINEMEDICAIDINCOMECATEGORY_LIST_ELIGIBLE
MEMBERSNAME.csv has an attributeref column. The column stores a hierarchical name that is

Chapter 1. IBM Social Program Management Data Extractor 29

spaced-referenced for the attribute. The following list outlines the characteristics of the attributeref
column:

• The attributeref column can be used to identify an instance of an attribute across all
determinations.

• Filter flow jobs flatten the hierarchical display rules XML data from a product delivery case
determination into a relational format. The attributeref column can be used to reconnect related
hierarchical data.

• The attributeref column uses the structure case/{caseID}/determination/
{determinationId}/decision/{decisionDate}/{RuleClass}/{index_1}/
{RuleAttribute}/{index_2}/Item/{index_3}

• The indexes are one-based, not zero-based. The following characteristics apply to the indexes:

– index_1 identifies the specific rule class instance within a decision period.
– index_2 identifies the specific rule attribute instance within a rule class instance.
– index_3 identifies the specific item within a rule attribute list.

SteamlineMedicaidDisplayRuleSet sample

The following sample shows an extract from a StreamlineMedicaidIncomeCategory rule class.

<Class extends="DefaultCase" extendsRuleSet="DefaultProductDecisionDetailsRuleSet" name =
"StreamlineMedicaidIncomeCategory"…>
 …
 <Attribute name = "eligibleMembersName">
 <Annotations>
 <Display/>
 </Annotations>
 <type>
 <javaclass name = "curam.creole.value.Timeline">
 <javaclass name = "List">
 <javaclass name = "String"/>
 </javaclass>
 </javaclass>
 </type>
 …
 </Attribute>
 <Attribute name="membersEligibleOrNotMessage">
 <Annotations>
 <Display/>
 </Annotations>
 <type>
 <javaclass name = "curam.creole.value.Timeline">
 <javaclass name = "curam.creole.value.Message"/>
 </javaclass>
 </type>
 …
 </Attribute>
 …
 <Attribute name=" householdNonFinancialNonEligibleTimeline">
 <Annotations>
 <Display/>
 </Annotations>
 <type>
 <javaclass name = "curam.creole.value.Timeline">
 <javaclass name = "Boolean"/>
 </javaclass>
 </type>
 …
 </Attribute>
 <Attribute name = "eligibleMembersIncomePercentage">
 <Annotations>
 <Display/>
 </Annotations>
 <type>
 <javaclass name = "curam.creole.value.Timeline">
 <javaclass name = "List">
 <javaclass name = "curam.creole.value.Message"/>
 </javaclass>
 </javaclass>
 </type>

30 IBM Cúram Social Program Management: Data Extractor

 …
 </Attribute>
 <Attribute name = "sMMemIncomeCategorySubscreens">
 <Annotations>
 <DisplaySubscreen/>
 </Annotations>
 <type>
 <javaclass name = "curam.creole.value.Timeline">
 <javaclass name = "List" >
<ruleclass name = "StreamlineMedicaidIncomeSubScreen" ruleset =
"StreamlineMedicaidDisplayRuleSet"/>
 </javaclass>
 </javaclass>
 </type>
 …
 </Attribute>

Monitoring job progress in the log
When the operator runs the IBM Social Program Management Data Extractor in either server or non-
server mode, the log output is written to both the standard output and to the dataExtractor.log file in
the same directory where the IBM Social Program Management Data Extractor was started.

For more information about the log output, see the Running the IBM Social Program Management Data
Extractor related link. The tool's log displays a message when the operator starts the tool and the tool
logs output when tool functionality is called.

Job executions log output when the job runs

A job execution logs a progress message every N chunks. The N is configurable through the
spm.extract.chunkloginterval property in the Spring Profile (application.properties). For
more information about the properties of the Spring Profile, see the Editing the Spring Profile
(application.properties) related link.

The following samples show examples of progress messages:

2019-07-21 02:50:54.332 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logProgressAtInfo:Read Count=1, Read Skip Count=0, Process Skip Count=0, Write Count=1,
Write Skip Count=0, Commit Count=1, Roll Back Count=0, Calculated Read Progress=25.0

2019-07-21 02:50:55.381 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logProgressAtInfo:Read Count=2, Read Skip Count=0, Process Skip Count=0, Write Count=2,
Write Skip Count=0, Commit Count=2, Roll Back Count=0, Calculated Read Progress=50.0

2019-07-21 02:50:56.416 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logProgressAtInfo:Read Count=3, Read Skip Count=0, Process Skip Count=0, Write Count=3,
Write Skip Count=0, Commit Count=3, Roll Back Count=0, Calculated Read Progress=75.0

2019-07-21 02:50:57.502 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logProgressAtInfo:Read Count=4, Read Skip Count=0, Process Skip Count=0, Write Count=4,
Write Skip Count=0, Commit Count=4, Roll Back Count=0, Calculated Read Progress=100.0

When a job execution finishes, it prints a summary. The message is a step execution summary rather than
a job execution summary, which is a known issue. For jobs that support parallelization, that is, XML Flow
and Filter Flow database, each parallel step execution logs a summary message. The log message
includes statistics that relate to the step execution. The following sample shows an example summary:

2019-07-21 02:50:58.458 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logStepFinished:

Job Name: 'FilterFlowCsv'
Instance: 4
Execution: 4
Finished Step: 'filterFlowCSVStep0'
Step Summary: 'StepExecution: id=4, version=6, name=filterFlowCSVStep0, status=COMPLETED,
exitStatus=COMPLETED, readCount=4, filterCount=0, writeCount=4 readSkipCount=0,
writeSkipCount=0, processSkipCount=0, commitCount=5, rollbackCount=0'

2019-07-21 02:50:58.462 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener

Chapter 1. IBM Social Program Management Data Extractor 31

- >>logReaderExhaustedMessages:We have finished querying the backlog.The number of items
successfully read was 4.We were within the limit that was explicitly set for the reader 250.

Related concepts
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.
Related tasks
Running the IBM Social Program Management Data Extractor
To run the IBM Social Program Management Data Extractor, operators must perform mandatory steps.
Depending on configuration, operators might need to perform an optional step.

Functions of the IBM Social Program Management Data Extractor that relate to the batch
jobs

The operator can call the batch-related functions. The batch-related functions can be used to, for
example, schedule a job execution, restart a job execution, stop a job execution, or report a job execution
status.

Scheduling a job execution
In server mode or non-server mode, tool operators can schedule an execution of one of the three batch
job types.

For more information about the scheduling a job execution, see the Running the IBM Social Program
Management Data Extractor’s functions in server mode and non-server mode related link.

Note: One of the inputs for scheduling a job, is a parameter name. The parameter is intended as an easy
way for operators to identify a job instance. If the jobs are of the same type, operators cannot schedule
two job instances with the same value for the name parameter because the name job parameter is an
identifying parameter in the domain language of Spring Batch. For more information about an identifying
parameter, see the The Domain Language of Batch related link.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Related information
The Domain Language of Batch

Restarting a job execution
In server mode or non-server mode, tool operators can use the failed job’s execution ID to restart a failed
execution of one of the three batch job types.
Jobs that can be restarted

• Only a job with a FAILED status can be restarted. Jobs that fail are ones that encounter N number of
failures that are caused by a failure to process determinations. The number N is configurable by the
spm.extract.skiplimit property in the Spring Profile. For more information about the Spring
Profile, see the Editing the Spring Profile (application.properties) related link.

Execution ID

• For each new job that a tool operator schedules, both an instance ID and an execution ID are
generated. When an operator restarts a failed job, the new job execution uses the same job instance
ID as the original failed execution but uses a different execution ID. The new job execution resumes
where the failed execution ended. For example, a job execution that appears to fails after the
execution reads 100 determinations even though there are more determinations that matched that
job's criteria. A new execution for the same job instance does not try to read or process those first
100 determinations. Instead, the new execution starts at that 101st determination that the original
execution was due to process before that attempt failed.

32 IBM Cúram Social Program Management: Data Extractor

https://docs.spring.io/spring-batch/docs/current/reference/html/domain.html

• If a job execution fails, the dataExtractor log file lists a printed summary of the job execution:

Job Name: 'XmlFlow'
Instance: 43
Execution: 43
Finished Step: 'xmlFlowStep0'
Step Summary: 'StepExecution: id=43, version=3, name=xmlFlowStep0, status=FAILED,
exitStatus=FAILED, readCount=30, filterCount=0, writeCount=20 readSkipCount=0,
writeSkipCount=0, processSkipCount=0, commitCount=2, rollbackCount=2'

In the example, the execution ID is shown as 43. The operator can restart the job execution by
calling the restart a job function. For more information, see the Parameters for the IBM Social
Program Management Data Extractor's functions related link.

If the restarted job succeeds, a dataExtractor log file is displayed:

Job Name: 'XmlFlow'
Instance: 43
Execution: 44
Finished Step: 'xmlFlowStep0'
Step Summary: 'StepExecution: id=44, version=4, name=xmlFlowStep0, status=COMPLETED,
exitStatus=COMPLETED, readCount=22, filterCount=0, writeCount=22 readSkipCount=0,
writeSkipCount=0, processSkipCount=0, commitCount=3, rollbackCount=0'

As the log file shows, the summary of the restarted job uses the same job instance ID as the failed
execution, but shows a new job execution ID.

Rows that are written by the same execution have the same value in the JOBEXECUTIONID column

• The Extraction database tables, that is DETERMINATIONXML, DETERMINATIONS, DECISIONS, and
the Filter Flow attribute value tables, have JOBINSTANCEID and JOBEXECUTIONID columns. For
more information, see the Creating the database tables related link. A characteristic of restarted job
executions is that rows that are written to the Extraction tables by executions that belong to the
same job instance have the same value in the JOBINSTANCEID column. Rows that are written by
the same execution have the same value in the JOBEXECUTIONID column. Using the preceding
example, a customer might use the DETERMINATIONXML table to identify the following
characteristics of the job:

– It took more than one execution to complete job instance 43.
– The execution IDs for the executions, that is, 43 and 44.
– The rows that each execution wrote to that table.

SELECT JOBEXECUTIONID,COUNT(*) AS WRITECOUNT FROM DW.DETERMINATIONXML
WHERE JOBINSTANCEID=43
GROUP BY JOBEXECUTIONID;
JOBEXECUTIONID WRITECOUNT
-------------- --
43 20
44 22

Directories and job instance IDs

• Beneath the directory that is specified as the value of the spm.extract.csvs.output.dir
property in the Spring Profile, there is a set of one or more directories with names that correspond
to the job instance IDs. For example, the directory 1 contains files that are written by executions of
the Filter Flow CSV job with Job Instance ID 1.

For restarted job executions, the new job execution appends to the same CSVs written to the
previous failed job execution with which they share a job instance ID. The rows that are written by
the new job execution have the same value in the JOBINSTANCEID column as the rows that were
written by the failed execution but have a different value in the JOBEXECUTIONID column.

Scheduling a job of the same type with the same name as the job that failed

• To restart a failed job execution, IBM recommends that operators use the function that accepts a
job execution ID. However, if the operator tried to schedule a job of the same type with the same
name as the job that failed, the effect is to restart the failed job by creating a new job execution with

Chapter 1. IBM Social Program Management Data Extractor 33

the same instance ID but a different execution ID. In such a scenario, the new job execution runs by
using the job parameters that were specified the second time rather than the parameters that were
specified the first time. It is problematic when the job parameters that were specified the second
time are used because it can change the criteria that is used to select the determinations to extract.

For example, an operator schedules a job with MyJob101 as the name parameter, but the operator
does not specify the startDate and endDate parameters. So, only determinations that were
created within the last N days are to be extracted, that is, when the startDate or the endDate are
not specified, the startDate and the endDate are inferred by the tool.

Where the first attempt to run the job fails and the operator uses a restart by name option instead of
the recommended restart by execution ID option, the startDate and endDate values are used by
the new execution. The values are used regardless of whether the operator omits the startDate
and endDate or the operator specifies a startDate and endDate on the restart. The values from
the original execution are not used, which might lead to undesirable effects. For example, the new
execution skips determinations because the selection criteria are changed. So, IBM recommends
that operators use the restart by execution ID method.

Related concepts
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.
Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.
Creating and dropping the database tables
Operators must create and drop the Extraction tables and the SPM tables.

Per determination retry
Operators can use the retry operation to explicitly specify the determinations that the operator wants to
extract by specifying the set of CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs that is
required.

When the operator is extracting data from an individual determination, the operator can encounter errors.
The error might be regarded as a tolerable failure to the extraction job. A job execution can tolerate X
such errors, where X is the effective value of the spm.extract.skiplimit configuration property. For
more information about errors, see the Restarting a job execution and the Editing the Spring Profile
(application.properties) related links.

The failed extractions can be identified by using the following information:

• For the Filter Flow CSV or Filter Flow database, operators use the following code:

[WARN] 2019-08-06 12:20:22.552 [SimpleAsyncTaskExecutor-1] FilterFlowJobItemListener -
>>onProcessError 45018 Failed to parse data for CREOLEDetermination with ID: 45018

• For the XML Flow, operators use the following code:

[WARN] 2019-08-06 12:22:23.483 [SimpleAsyncTaskExecutor-1] XMLFlowJobItemListener -
>>onProcessError 45018 Failed to parse data for CREOLEDetermination with ID: 45018

As the log message shows, the CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONID for the
problem determination is logged to the dataExtractor.log file and to the standard output of the Data
Extractor Java process.

Certain issues can be rectified. For example, bad test data on a test database. Where the test data is
rectified, the determination can be extracted successfully if the operator schedules a new job instance of
the same type and with the same parameters except for the name parameter. The name parameter must
be different. After the operator fixes the cause of the error, the operator might want to extract the only
applicable determinations.

34 IBM Cúram Social Program Management: Data Extractor

However, IBM recommends that customers avoid performing either of the following steps just to extract,
for example, 10 determinations that were skipped:

• Scheduling a job execution with a new name, but the same criteria as the original execution.
• Scheduling a job execution with a new name, but with changed criteria like a narrower date range.

In both scenarios, scheduling such jobs results in extra load in processing hundreds, and possibly
thousands, of determinations, most of which were already extracted to get the 10 determinations that
were skipped.

Operators can use the retry operation to explicitly specify the determinations that the operator wants to
extract by specifying the set of CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs. The
operator can use the dataExtractor.log to identify the set of
CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs to extract.

The functionality can be used for all three types of extraction jobs.

In server mode, the retry operations are displayed as separate operations on the
JobLaunchingController. In non-server mode, the command that is used is similar to the command that
is used to schedule new jobs, but it accepts a different job parameter. While the operation is listed as a
separate function, the operation reuses the existing batch job types. However, there are six key
differences. The six distinctions between an XML Flow retry job and a standard XML Flow job are:

1. The retry job does not use an SQL query to identify the set of determinations to extract.
2. The retry job ignores the gridSize parameter and the spm.extract.gridsize configuration

property. A grid-size of one is assumed.
3. The retry job ignores the maxNumItems parameter and the spm.extract.maxitemcount

configuration property.
4. The retry job ignores the pageSize parameter and the spm.extract.pagesize configuration

property.
5. The retry job ignores the fetchSize parameter and the spm.extract.fetchsize configuration

property.
6. While the IBM Social Program Management Data Extractor does not prevent the restarting of a retry

job, IBM does not support the operation.

Related concepts
Restarting a job execution
In server mode or non-server mode, tool operators can use the failed job’s execution ID to restart a failed
execution of one of the three batch job types.
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.

Stopping a job execution
In server mode or non-server mode, tool operators can use the running job’s execution ID to stop a
running execution of one of the three batch job types.

For more information about how to stop a job execution, see the Running the IBM Social Program
Management Data Extractor’s functions in server mode and non-server mode related link.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode

Chapter 1. IBM Social Program Management Data Extractor 35

The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.

Reporting a job execution status
In server mode or non-server mode, tool operators can use the running job’s execution ID to get the
status of a running execution of one of the three batch job types.

The following summary looks like the summary that is returned:

JobExecution: id=288, version=1, startTime=2019-07-17 11:19:15.644, endTime=null,
lastUpdated=2019-07-17 11:19:15.736, status=STARTED,
exitStatus=exitCode=UNKNOWN;exitDescription=, job=[JobInstance: id=228, version=0,
Job=[FilterFlowDb]], jobParameters=[{includeManualEligibilityCheck=true, gridSize=1,
chunkSize=10, endDate=87804100800000, fetchSize=10, fieldsNotExplicitlySet=chunkLog
gingInterval,chunkSize,endDate,fetchSize,gridSize,includeManualEligibilityCheck,pageSize,product
TypeCode, name=FilterFlowDb_17-07-2019_11-19-14.09, pageSize=10, maxNumItems=100,
chunkLoggingInterval=2, startDate=1404100800000, productTypeCode=PT26304}]

For more information about how to call the function, see the Running the IBM Social Program
Management Data Extractor’s functions in server mode and non-server mode related link.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.

Abandoning a job execution
In server mode or non-server mode, operators can use the execution ID of the running job to abandon a
job execution of one of the three batch job types.

The Spring Batch Configuring and Running a Job documentation includes the following description for
aborting a job: "If the process died ("kill -9" or server failure) the job is, of course, not running, but the
JobRepository has no way of knowing because no-one told it before the process died. You have to tell it
manually that you know that the execution either failed or should be considered aborted."

For more information about how to call the function to abandon a job execution, see the Running the IBM
Social Program Management Data Extractor’s functions in server mode and non-server mode related link.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Related information
Spring Batch: Configuring and Running a Job

Other functions of the IBM Social Program Management Data Extractor
The IBM Social Program Management Data Extractor can be used for functions other than batch jobs. The
other functions include searching for the Filter Flow attribute paths, generating the Filter Flow attribute
value database tables creation and drop DDL, and generating schema definitions for Determination BLOB
XML.

Searching for the Filter Flow attribute paths
Search the set of display rule attributes in the rule set definitions that can be queried. The output of the
function is a listing of attribute paths.

The IBM Social Program Management Data Extractor computes the list by querying the rules meta model,
an in-memory data structure that models the set of rule set definitions that are stored in the Social
Program Management database.

36 IBM Cúram Social Program Management: Data Extractor

https://docs.spring.io/spring-batch/docs/current/reference/html/job.html#aborting-a-job

The same data structure and the properties
spm.extract.creoledeterminations.displayrules.extractlistattributes,
spm.extract.dw.datasource.platform in the Spring Profile, and the ShortNames.properties
determine the Filter Flow attribute value table outputs. For more information, see the Generating the Filter
Flow attribute value database tables creation and drop DDL related link.

Spring Profiles are a way to segregate application configurations so that the configuration is available only
in certain environments. Operators can use the attributes paths from the output of the search function as
the value of the spm.extract.creoledeterminations.displayrules.extractlistattributes
property in the Spring Profile. For more information, see the Filter Flow CSV job related link.

The input to the search function is a regular expression, for example [.]*ncomePer[^\.]+$.

The response to a query is a text output that shows the results, as shown in the following example:

Filtered Attribute Paths matching pattern '[.]*ncomePer[^\.]+$':-
--
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.fplTierForIncomePercentage,
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.incomePercentageofFPL,
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceIncomeCategory.incomePercentageFPLTimeline,
StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.eligibleMembersIncomePercentag
e
--
Found 4 Attribute Paths
--

For more information about how to call the function and for details about how to specify the parameter or
parameters of the function, see the Running the IBM Social Program Management Data Extractor’s
functions in server mode and non-server mode and the Parameters for the IBM Social Program
Management Data Extractor's functions related links.

Related concepts
Generating the Filter Flow attribute value database tables creation and drop DDL
Generating the creation and drop DDL for the Filter Flow attribute value tables is a function of the IBM
Social Program Management Data Extractor.
Filter flow CSV job
Use the filter flow job to match a set of determinations and specify the attributes.
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Generating the Filter Flow attribute value database tables creation and drop DDL
Generating the creation and drop DDL for the Filter Flow attribute value tables is a function of the IBM
Social Program Management Data Extractor.

For more information about generating the creation and drop DDL for the Filter Flow attribute value
tables, see the Creating the database tables related link. For information about how to call the
functionality in server mode and non-server mode, see the Running the IBM Social Program Management
Data Extractor’s functions in server mode and non-server mode related link.

The schema of the tables can be generated only when the following criteria is specified:

1. The rule set definitions that are configured for that Social Program Management system.
2. The attributes that the customer wants to extract from the determinations as part of a Filter Flow job,

which requires that the customer edit a property in application.properties.

The DDL that is generated varies depending on the database vendor. The tool generates the DDL that is
specific for the database vendor type of the Date Warehouse database.

Chapter 1. IBM Social Program Management Data Extractor 37

For example, the operator might edit their Spring Profile (application.properties) according the
following criteria:

1. The Data Warehouse data source is pointing to an Oracle database.
2. The operator is using the default version of the INSURANCEASSISTANCEDISPLAYRULESET Rule Set

Definition.
3. The operator configured their Spring Profile as:

spm.extract.product.typecode=PT26304
spm.extract.creoledeterminations.displayrules.extractlistattributes=\
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID,\
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRule
s,\

Consequently, the output of the Generate Filter Flow attribute value tables Creation DDL function is as
defined in the following sample:

CREATE TABLE INSURANCEASSISTANCEDISPLAYRULESET_INSURANCEASSISTANCEDETAILSCATEGORY(
CASEPARTICIPANTROLEID DOUBLE,
CASEREF VARCHAR(1024),
DECISIONREF VARCHAR(1024),
DETERMINATIONREF VARCHAR(1024),
EXTRACTIONDATE DATE,
ISPASSEDNONFINANCIALRULES BOOLEAN,
JOBEXECUTIONID BIGINT,
JOBINSTANCEID BIGINT,
RULECLASSREF VARCHAR(1024)
);

The output of the Generate Filter Flow attribute value tables Drop DDL function is:

DROP TABLE INSURANCEASSISTANCEDISPLAYRULESET_INSURANCEASSISTANCEDETAILSCATEGORY CASCADE
CONSTRAINT PURGE;

Alternative implementation for Oracle databases

Issues with some versions of Oracle that use the preceding DDL can occur. For more information about
the likely issues, see the Issues associated with the length of a generated table name related link.
However, customers can shorten the table name length and column name length by configuring a
ShortNames.properties and placing it in a directory on the loader.path.

By adding to the example scenario of the preceding steps 1-3, then configuring the
ShortNames.properties is:

INSURANCEASSISTANCEDISPLAYRULESET=IA
INSURANCEASSISTANCEDENIED=DND
INSURANCEASSISTANCEDETAILS=DTLS
INSURANCEASSISTANCEINCOME=INCOME
INSURANCEASSISTANCE=IA
PROGRAMNAMETIMELINE=PRGMNAMETL
COUNTEDMEMBERMAGITIMELINE=COUNTMEMTL
ASSISTANCETYPELIST=ASTLIST
DENIED=DND
PROGRAM=PRGM
CATEGORY=CAT
DETAILS=DTLS
INSURANCEASSISTANCEDENIED=DND
INSURANCEASSISTANCEDETAILS=DTLS
INSURANCEASSISTANCEINCOME=INCOME
INSURANCEASSISTANCE=IA
PROGRAMNAMETIMELINE=PRGMNAMETL
COUNTEDMEMBERMAGITIMELINE=COUNTMEMTL
ASSISTANCETYPELIST=ASTLIST
DENIED=DND
PROGRAM=PRGM
CATEGORY=CAT
DETAILS=DTLS

38 IBM Cúram Social Program Management: Data Extractor

The output of the Generate Filter Flow attribute value tables Creation DDL function is:

CREATE TABLE IA_DTLSCATEGORY(
CASEPARTICIPANTROLEID DOUBLE,
CASEREF VARCHAR(1024),
DECISIONREF VARCHAR(1024),
DETERMINATIONREF VARCHAR(1024),
EXTRACTIONDATE DATE,
ISPASSEDNONFINANCIALRULES BOOLEAN,
JOBEXECUTIONID BIGINT,
JOBINSTANCEID BIGINT,
RULECLASSREF VARCHAR(1024)
);````

The output of the Generate Filter Flow attribute value tables Drop DDL function is: DROP TABLE
IA_DTLSCATEGORY CASCADE CONSTRAINT PURGE;

Drop DDL function output

Generating the drop DDL for the Filter Flow database tables is a function of the IBM Social Program
Management Data Extractor.

If the operator configured the Spring Profile (application.properties) and the
ShortNames.properties as specified in the preceding section, then the drop DDL functionality returns:

DROP TABLE IA_DTLSCATEGORY CASCADE CONSTRAINT PURGE;

For more information about how to call the functionality, see the Running the IBM Social Program
Management Data Extractor’s functions in server mode and non-server mode related link.

Related concepts
Creating and dropping the database tables
Operators must create and drop the Extraction tables and the SPM tables.
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Issues associated with the length of a generated table name
Tool operators might see an issue where the table names in the generated Filter Flow creation DDL
reaches the limit for table name length for their selected database vendor. As an interim solution, the
Short Names Substitution functionality is used on table names and column names.

Issues associated with the length of a generated table name
Tool operators might see an issue where the table names in the generated Filter Flow creation DDL
reaches the limit for table name length for their selected database vendor. As an interim solution, the
Short Names Substitution functionality is used on table names and column names.

The algorithm for generating the name of an output database table uses a structured naming scheme,
based on the attribute path. For more information, see the Generating the Filter Flow attribute value
database tables creation and drop DDL related link. As the attribute path becomes longer, so does the
generated table name. Social Program Management permits the following rule set and rule class
specifications:

• Rule set names up to 255 characters.
• Rule class names up to 255 characters.
• Rule set attributes up to 255 characters.

Therefore, tool operators might see an issue where the table names in the generated Filter Flow creation
DDL reaches the limit for table name length for their selected database vendor. For example:

• Before Oracle 12cR2, the limit for database object names is 30 characters.

Chapter 1. IBM Social Program Management Data Extractor 39

• After Oracle 12cR2, the limit is 128 characters. For more information, see the Increase maximum
identifier length from 30 characters to 60 or more related link.

• For Db2 11.1, the limit is also 128 characters. For more information, see the SQL and XML limits related
link.

To enable the Filter Flow database job and the Filter Flow Tables DDL API to conform to the short name
substitution policy, the operator can include the ShortName.properties file on the loader.path
when the operator runs the tool. For more information, see the The ShortNames.properties file related
link. For more information about the loader.path, see the Running the IBM Social Program Management
Data Extractor related link.

Related concepts
Generating the Filter Flow attribute value database tables creation and drop DDL
Generating the creation and drop DDL for the Filter Flow attribute value tables is a function of the IBM
Social Program Management Data Extractor.
Increase maximum identifier length from 30 characters to 60 or more
The ShortNames.properties file
Changes to the ShortNames.properties are effective only after an application restart.
Related tasks
Running the IBM Social Program Management Data Extractor
To run the IBM Social Program Management Data Extractor, operators must perform mandatory steps.
Depending on configuration, operators might need to perform an optional step.
Related information
SQL and XML limits

Defining the output of the XML flow job transformation
The XSD schema definition doc describes the transformed XML document that the XML flow job generates
from the source XML document, and then writes to the XMLVALUE of the DETERMINATIONXML table in
the Data Warehouse. Use the XSD generation functionality to provide a definition of a particular
determination XML for a specific product on a specific date.

The operator can use the XML Flow jobs to extract the CREOLE Case Determination Data BLOB and
convert it into a readable XML format. However, it can still be difficult to anticipate the structure of the
XML. It can also be difficult to anticipate what the operator can either query by using the XQuery on the
DETERMINATIONXML or can extract by using the Filter Flow jobs. For more information about XQuery,
see the XQuery related link.

For the extracted CREOLE Case Determination Data BLOB that is converted into a readable XML format,
the XML differs for every product and for every period of that product.

The XSD Generation functionality provides the definition by using the following XSD files that together
define the full structure of the Determination XML:

• Statics XSD
• Product Period XSD
• RuleSet XSD

The following table lists the readable XML format and the XSD files that are used to define the structure of
the Determination XML.

40 IBM Cúram Social Program Management: Data Extractor

https://community.oracle.com/ideas/3338
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001029.html

Table 10. The XML format and the XSD files used.

XML XSD

 <Determination>
 <…>
 <…>
 </…>
 </…>
 <…>
 <…>
 <…>

Statics

• Portions of the XML do not change. So, the
portions have their own XSDs that can be
downloaded one time and reused.

<DecisionDetails>
Product period

• The product period XSDs define the single
element that connects the Statics to RuleSets
XSD. The single element, DecisionDetails can
contain any of the configured Display Categories.

 <CustomDisplayCategory>
 <…>
 <…>
 </…>
 </…>
 <CustomDisplayCategory>

RuleSet

• Three RuleSet XSDs define each display category
that is configured on the rule set, that is, the
superset of all periods.

Related information
An introduction to XQuery

Generating schema definitions
For a product and period, actual XSD content can be generated by using the XSD Generation APIs.

List APIs also exist to support finding the right XSD APIs. List APIs return JSON formatted content that
attempts to be self-describing. The _links portion of each item does not contain real API references.
Instead, it contains an indicative URL representation of the API to call to get further information.

For more information about how to call the functionality, see the Running the IBM Social Program
Management Data Extractor’s functions in server mode and non-server mode related link.

In the order that an operator needs to call them, the high-level functionality consists of seven operations.

1. Get a list of all CER products

The proceeding operation shows a portion of the output of the API. For each product, it includes the
productID, the productTypeCode, and the productName. The productID can be used as input to
the next operation.

 [
 {
 "id": "26301",
 "typeCode": "PT26301",
 "name": "PN26301",
 "_links": {
 "self": {
 "href": "/xsd/cer/products/26301"
 }
 }
 },
 {
 "id": "26304",
 "typeCode": "PT26304",
 "name": "PN26304",
 "_links": {

Chapter 1. IBM Social Program Management Data Extractor 41

https://www.ibm.com/developerworks/library/x-xquery/index.html

 "self": {
 "href": "/xsd/cer/products/26304"
 }
 }
 }
]

2. List the details of one CER product

The proceeding operation shows the output of the API. It includes the same details as the previous
operation for just one product, but it adds all the configured product periods.

For each period, it includes the periodId, startDate, and endDate and a list of XSD files that are
required to fully describe the Determination XML for the product period, including rule set schemas, static
schemas, and a schema for the product period itself.

The details that are presented can be used to call the next set of operations. When these operations are
called, the outputs must be saved to the same location in the operator’s file system that adheres to the
file names provided here.

 [
 {
 "id": "26304",
 "typeCode": "PT26304",
 "name": "PN26304",
 "_links": {
 "self": {
 "href": "/xsd/cer/products/26304"
 }
 },
 "periods": [
 {
 "id": "26302",
 "startDate": "2012-01-01",
 "endDate": "null",
 "dependencies": [
 {
 "id": "26302",
 "startDate": "2012-01-01",
 "endDate": "null",
 "file_name": "Product_26302_2012-01-01.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/products/26304/periods?date=2012-01-01"
 }
 }
 },
 {
 "id": "BaseTypes",
 "file_name": "BaseTypes.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/statics/BaseTypes"
 }
 }
 },
 {
 "id": "DeterminationToDecisionDetails",
 "file_name": "DeterminationToDecisionDetails.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/statics/DeterminationToDecisionDetails"
 }
 }
 },
 {
 "id": "InsuranceAssistanceDisplayRuleSet",
 "file_name": "InsuranceAssistanceDisplayRuleSet.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/rulesets/InsuranceAssistanceDisplayRuleSet"
 }
 }
 }
]
 }

42 IBM Cúram Social Program Management: Data Extractor

]
 }
]

3. Get the contents of a CER product period XSD

The operation takes the periodId and date from the preceding listing.

4. Get the contents of a CER static XSD

The operation takes the schema name from the preceding listing.

5. Get the contents of a CER ruleset XSD

The operation takes the ruleset name from the preceding operation.

6. List all CER Static XSDs

The operation is listed for completeness, but the operation is not typically needed as the dependencies of
a product period always include the static schemas. The proceeding operation lists the output of the API.

[
 {
 "id": "BaseTypes",
 "file_name": "BaseTypes.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/statics/BaseTypes"
 }
 }
 },
 {
 "id": "DeterminationToDecisionDetails",
 "file_name": "DeterminationToDecisionDetails.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/statics/DeterminationToDecisionDetails"
 }
 }
 }
]

7. List all CER ruleset XSDs

The operation is listed for completeness, but the operation is not typically needed as the dependencies of
a product period always include the ruleset schemas. The proceeding operation lists a portion of the
output of the API.

[
 {
 "id": "InsuranceAssistanceDisplayRuleSet",
 "file_name": "InsuranceAssistanceDisplayRuleSet.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/rulesets/InsuranceAssistanceDisplayRuleSet"
 }
 }
 },
 {
 "id": "StreamlineMedicaidDisplayRuleSet",
 "file_name": "StreamlineMedicaidDisplayRuleSet.xsd",
 "_links": {
 "self": {
 "href": "/xsd/cer/rulesets/StreamlineMedicaidDisplayRuleSet"
 }
 }
 }
]

Chapter 1. IBM Social Program Management Data Extractor 43

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.

Determination BLOB XML structure
When a caseworker opens a determination in the Social Program Management application, a set of
decisions for different periods is displayed. When a caseworker selects a period, a list of categories is
displayed. Under each category, a set of values is displayed.

For more information about viewing product delivery case determinations, see the related links.

The Determination Data XML file

The structure of the Determination Data XML file is based on the CREOLE product configuration, including
the product periods, display categories, and display rule set definitions. It uses a similar hierarchy
structure to the full schema definition that is described at the beginning of this section. The Determination
Data XML file delivers the XML into the category page only for the category for the period under
consideration. The XML file starts with high-level information about the determination. Then, the XML file
branches into an overall eligibility timeline where contiguous decisions with the same eligibility are
merged. The XML file then displays a list of categories in the UI mapped to timelines of display rules
results, where the display rules results are the category page data. For populated entries in the map, the
start dates are the start dates of decision splits - see the following note. The end dates are the day before
the next start date. For an open-ended case, there is no end date for the final decision.

Note: Typically, there are many more decision splits than there are CaseDecision records for the same
determination. CaseDecision records are typically created for discrete periods of eligibility or ineligibility.
For example, there might be three decision periods in a row that are eligible but with different display
rules results. In that case, the decision periods map to the one CaseDecision record. The associated
caseDecisionId is recorded on the DECISIONS table and on the Decision nodes of the IngestedData on
DETERMINATIONXML.XMLVALUE.

The display rules results

The display rules results are formatted in escaped XML. The structure of the display rules results is
predictable based on the following design of the corresponding CREOLERuleSet definition:

1. The rule class on top corresponds to the display category
<StreamlineMedicaidIncomeCategory>.

2. Under the display category are attributes of the category <isInPostPartumPeriodTimeline
domain="SVR_BOOLEAN">false</isInPostPartumPeriodTimeline>.

3. Under any attributes whose type is a list of simple types is a list of item nodes that contain values as
text: <eligibleMembersName> <Item domain="SVR_UNBOUNDED_STRING">John
Stephens</Item> <Item domain="SVR_UNBOUNDED_STRING">Mary Mitchell</Item>
<eligibleMembersName>.

4. Under any attributes whose type is another rule class are attributes of that rule class:
<taxFilerMAGIDisplay> <displayAmount domain="CURAM_AMOUNT">0</displayAmount>
<displayType domain="SVR_UNBOUNDED_STRING">MAGI</displayType>
<taxFilerMAGIDisplay>.

5. Under any attribute whose type is a list of rule classes is a list of item nodes that contain all attributes
of the sub-rule class. The sub-rule class itself does not get an element.

 <taxFilerMAGIDisplayList> <Item> <displayAmount domain="CURAM_AMOUNT">0</displayAmount>
<displayType domain="SVR_UNBOUNDED_STRING">MAGI</displayType> </Item>
<taxFilerMAGIDisplayList>

6. The previous sub-rule class patterns can be nested.

44 IBM Cúram Social Program Management: Data Extractor

Related information
Summary display category
Current determination and determination history views

Setup steps to run the IBM Social Program Management Data Extractor
The four main setup steps to run the IBM Social Program Management Data Extractor are completing the
prerequisites, creating the database tables, editing the Spring Profile application.properties, and
getting the database drivers.

Prerequisite setup steps
To run the IBM Social Program Management Data Extractor, operators must perform three prerequisites.

Procedure

1. The operator must install and set up a Java SE Development Kit (JDK) according to the instructions
that are provided by the operator’s JDK provider.

2. The operator must use the instructions that are provided by the JDK vendor to set the JAVA_HOME and
PATH environment variables.

3. The operator must copy the same CryptoConfig.jar that was copied during the setup steps for the
customer’s SPM deployment to the ${JAVA_HOME}/jre/lib/ext directory.

Creating and dropping the database tables
Operators must create and drop the Extraction tables and the SPM tables.

Creating the Extraction tables

The scripts for creating the Extraction tables are installed in the location {INSTALL_LOCATION}/
DataExtractor/sql/<dbvendor>/CreateDataWarehouseTables.sql.

Creating the SPM tables

The scripts for creating the SPM Tools tables are packaged and installed in the location
{INSTALL_LOCATION}/DataExtractor/sql/<dbvendor>/CreateSPMToolsTables.sql.

Note: For the default scripts for Db2, the CreateDataWarehouseTables.sql is used to create a
separate Data Warehouse schema for the Extraction tables and the SPM Tools tables. So, when the
default scripts for Db2 are used it is important to run the CreateDataWarehouseTables.sql script
first.

Dropping the SPM Tools tables

The scripts for dropping the SPM Tools tables are packaged and installed in the location
{INSTALL_LOCATION}/DataExtractor/sql/<dbvendor>/DropSPMToolsTables.sql.

Dropping the Extraction tables

The scripts for dropping the Extraction tables are installed in the location {INSTALL_LOCATION}/
DataExtractor/sql/<dbvendor>/DropDataWarehouseTables.sql.

Note: For the default scripts for Db2, the DropDataWarehouseTables.sql drops the Data Warehouse
schema that is shared by the Extraction tables and the SPM Tools tables. So, when the default scripts for
Db2 are used it is important to run the DropDataWarehouseTables.sql script last.

Chapter 1. IBM Social Program Management Data Extractor 45

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/InsideEligibilityAndEntitlementUsingCER/c_INSEECER_Calculating1SummaryDisplayCategory1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.10/com.ibm.curam.content.doc/IntegratedCaseManagement/c_ICM_DeliverDetermination.html

Required database access
Operators must configure the Social Program Management data source and the Data Warehouse data
source for the IBM Social Program Management Data Extractor.

The data sources

The first data source that must be configured corresponds to the source Social Program Management
database. The second data source that must be configured corresponds to the target Data Warehouse.
The information in the proceeding SPM data source and Data Warehouse data source sections, the
information in Filter Flow job configuration properties, and the information in Editing the Spring Profile
(application.properties) list the database objects that are accessed through each data source and the
privileges that the tool requires to run successfully. Operators must grant the privileges to the database
user accounts that the operator configured in the application.properties for the corresponding
data source. For more information, see the Filter Flow job configuration properties and Editing the Spring
Profile (application.properties) related links.

Example

The database administrator of the Social Program Management database grants READ access to the
CASEDECISION table to the user account whose name is the assigned value for the
spm.extract.spm.datasource.username property in the application.properties.

SPM data source
Database user (property in applications.profile)

• spm.extract.spm.datasource.username

Database object type

• TABLES

Database objects: SPM tables

• CASEDECISION
• CASEHEADER
• CREOLECASEDECISION
• CREOLECASEDETERMINATION
• CREOLECASEDETERMINATIONDATA
• CREOLEPRODUCTDECISIONDISPCAT
• CREOLEPRODUCTPERIOD
• CREOLEPRODUCTPERIODDISPCAT
• CREOLERULECLASSLINK
• CREOLERULESET
• PRODUCT
• PRODUCTDELIVERY

Grant privileges

• READ

Data Warehouse data source
Database user (property in applications.profile)

• spm.extract.dw.datasource.username

Database object type

• TABLES

46 IBM Cúram Social Program Management: Data Extractor

Database objects: SPM tools tables

• BATCH_JOB_EXECUTION
• BATCH_JOB_EXECUTION_CONTEXT
• BATCH_JOB_EXECUTION_PARAMS
• BATCH_JOB_INSTANCE
• BATCH_STEP_EXECUTION
• BATCH_STEP_EXECUTION_CONTEXT

Grant privileges

• WRITE

Database objects: Extraction tables

• DECISIONS
• DETERMINATIONS
• DETERMINATIONXML
• Filter Flow attribute value Tables

Grant privileges

• WRITE

Database object type

• SEQUENCES

Database objects: SPM tools sequences

• BATCH_JOB_EXECUTION_SEQ
• BATCH_JOB_SEQ
• BATCH_STEP_EXECUTION_SEQ

Grant privileges

• USAGE

Note: IBM recommends that you run the tool on the same computer as your databases. However, if you
must run the tool remotely to the databases, IBM recommends that you enable the TLSv1.2 connections
between the tool and the two databases. For more information, see Securing a connection to the Social
Program Management and Data Warehouse databases over TLS 1.2.

Related concepts
Filter Flow job configuration properties
Operators can edit three Filter Flow job configuration properties, which are
spm.extract.creoledeterminations.displayrules.extractlistattributes,
spm.extract.csvs.output.dir, and spm.extract.filterflow.compactionlimit.
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.

Securing a connection to the Social Program Management and Data Warehouse databases over TLS
1.2
The procedure for securing a connection to the Social Program Management and Data Warehouse
databases over TLS 1.2 is determined by the database that you use. We recommend implementing the

Chapter 1. IBM Social Program Management Data Extractor 47

configuration in the following procedures only if the database connection is remote to the Data Extractor
tool.

Generic information about how to secure a connection

The following criteria applies to securing a connection to the Social Program Management (SPM)and Data
Warehouse (DW) databases over TLS 1.2:

• The instructions were verified against the following database versions:

– Db2 v10.5.0.9
– Oracle v12.2.0.1.0

• For simplicity, the instructions assume that SPM and DW tables are on the same database. This is not a
recommended configuration. For each database, the steps for securing the connection against the
different databases must be repeated.

• Customers can import the exported database certificates to the cacerts truststore for the Java SE
Development Kit (JDK) that is used to run the tool. As an alternative, the customer can create a
separate truststore for the IBM Social Program Management Data Extractor and point the tool to the
truststore by using the system property javax.net.ssl.trustStore, as shown in the following
example:

-Djavax.net.ssl.trustStore=<trustStoreFile> -
Djavax.net.trustStorePassword=<trustStorePassword>

For more information, see Table 6: Customizable Items in the Java Secure Socket Extension (JSSE)
Reference Guide related link.

• To debug issues with the SSL/TLS, the operator specifies the javax.net.debug system property
when the operator starts the IBM Social Program Management Data Extractor, that is, -
Djavax.net.debug=all. For more information about how to debug issues with SSL/TLS, see the
Debugging SSL/TLS Connections related link.

Securing a connection for Db2 (Db2 v10.5.0.9)

1. For the database, the operator performs a set of steps. For more information about the steps to
perform, see the Configuring Secure Sockets Layer (SSL) support in a Db2 instance related link.

2. For the client, that is the IBM Social Program Management Data Extractor, the operator copies the
exported public certificate of the database to the client. The operator uses keytool to import the
public certificate to the truststore that the operator configured for use by the IBM Social Program
Management Data Extractor. Customers can import the exported database certificates to the cacerts
truststore for the Java SE Development Kit (JDK) that is used to run the tool. As an alternative, the
customer can create a separate truststore for the IBM Social Program Management Data Extractor and
point the tool to the truststore by using the system properties javax.net.ssl.trustStore, as
shown in the following example:

-Djavax.net.ssl.trustStore=<trustStoreFile> -
Djavax.net.trustStorePassword=<trustStorePassword>

For more information, see Table 6: Customizable Items in the Java Secure Socket Extension (JSSE)
Reference Guide related link. Operators must refer to the keytool documentation that applies to the
JDK that the operator is using.

3. The operator updates the data source URLs for the SPM and the Data Warehouse data source to point
to the secured port for the operator’s database server. For example, where the database server name
is myhost.com, the database name is DATABASE, and the secure port is 50001, then the following
sample shows the URL:

spm.extract.spm.datasource.url=jdbc:db2://myhost.com:50001/
DATABASE:sslConnection=true

48 IBM Cúram Social Program Management: Data Extractor

spm.extract.dw.datasource.url=jdbc:db2://myhost.com:50001/
DATABASE:sslConnection=true

Oracle (v12.2.0.1.0)

1. For the database, the operator performs a set of steps. For more information about the steps to
perform, see the B Appendix: Secure JDBC with Oracle 12c Database related link.

2. For the client, that is the IBM Social Program Management Data Extractor, the operator copies the
public certificate of the exported database to the client. The operator uses the keytool to import the
public certificate to the truststore that the operator configured for use by the IBM Social Program
Management Data Extractor. Customers can import the exported database certificates to the cacerts
truststore for the Java SE Development Kit (JDK) that is used to run the tool. As an alternative, the
customer can create a separate truststore for the IBM Social Program Management Data Extractor and
point the tool to the truststore by using the system properties javax.net.ssl.trustStore, as
shown in the following example:

-Djavax.net.ssl.trustStore=<trustStoreFile> -
Djavax.net.trustStorePassword=<trustStorePassword>

For more information, see Table 6: Customizable Items in the Java Secure Socket Extension (JSSE)
Reference Guide related link. Operators must refer to the keytool documentation that applies to the
JDK that the operator is using.

3. The operator updates the Spring Profile application.properties to use the correct driver class
and the Java Database Connectivity (JDBC) URLs for the secured data sources. For example, where the
database server name is myhost.com, the database service name is ORCL, and the secure port is
2484, then the following sample shows the URL:

spm.extract.spm.datasource.driver-class-name=oracle.jdbc.OracleDriver
spm.extract.spm.datasource.url=jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)
(HOST=myhost.com)(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
spm.extract.dw.datasource.url=jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)
(HOST=myhost.com)(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
spm.extract.dw.datasource.driver-class-name=oracle.jdbc.OracleDriver

Note: For Oracle 12.2, the customer must use the ojdbc8.jar database driver JAR.

Related information
Java Secure Socket Extension (JSSE) Reference Guide
Debugging SSL/TLS Connections
Configuring Secure Sockets Layer (SSL) support in a Db2 instance
B Appendix: Secure JDBC with Oracle 12c Database

Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.

Note: Changes to the application.properties, or to the file specified to be the active Spring Profile,
are only effective after the application is restarted.

Filter Flow job configuration properties
Operators can edit three Filter Flow job configuration properties, which are
spm.extract.creoledeterminations.displayrules.extractlistattributes,
spm.extract.csvs.output.dir, and spm.extract.filterflow.compactionlimit.
spm.extract.creoledeterminations.displayrules.extractlistattributes

• The property is a comma-delimited list of attribute paths to query.
• An attribute path is a reference to a rule attribute that uses the format
RuleSet.RuleClass.RuleAttribute.

Chapter 1. IBM Social Program Management Data Extractor 49

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/ReadDebug.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.sec.doc/doc/t0025241.html
https://docs.oracle.com/cd/E12517_01/back_office/pdf/141/html/pos_sg/appendix_jdbc_oracle.htm

• An example of the property is:
StreamlineMedicaidDisplayRuleSet.StreamlineMedicaidIncomeCategory.isInPost
PartumPeriodTimeline

• Where RuleAttributeA is of type RuleClass, then
RuleSet.RuleClass.RuleAttributeA.RuleAttributeB is also supported.

• Tip: By using backslashes at the end of each line in the file, the user can put one attribute path per
line to make it more readable.

• For example:

spm.extract.creoledeterminations.displayrules.extractlistattributes=\

InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline,In
suranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList

• For more information about how to search for all valid attribute paths, see the Searching for the
Filter Flow attribute paths related link.

• Default value when not specified: NONE.

spm.extract.csvs.output.dir

• The property is a string.
• The property is an absolute file path that if explicitly specified must point to an existing directory on

the local file system to which the java process has permission to write.
• The property is the location where the CSV output of the Filter Flow CSV job is written.
• The property only applies to the Filter Flow CSV job. When the tool is deployed on a Windows OS,

escape the back-slashes in the file path. For example: C:\\IBM\\DataExtractor\\csvs\\
• Default value when not specified: ${java.io.tmpdir}spmExtractToolCsvs. For more

information about class files, see the Class File related link.

spm.extract.filterflow.compactionlimit

• The property is a positive integer greater than or equal to zero.
• When zero, the property is used to disable the compaction behavior.
• When greater than zero, the property is used to enable the compaction behavior. For more

information about compaction behavior, see the Filter Flow compaction limit related link.
• The maximum value that can be specified for the property is 500.
• Default value when not specified: 0.

Related concepts
Searching for the Filter Flow attribute paths
Search the set of display rule attributes in the rule set definitions that can be queried. The output of the
function is a listing of attribute paths.
Filter flow compaction limit
Compaction is a configuration setting to enable a behavior for filter flow database job executions. Use
compaction to reduce the number of database write operations to the filter flow extraction tables.
Related information
Class File

Job configuration properties (applies to all job types)
Operators can edit 11 job configuration properties. The configuration properties include
spm.extract.product.typecode and spm.extract.product.id.
spm.extract.product.typecode

Description

• The property is a string.

50 IBM Cúram Social Program Management: Data Extractor

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

• The property is a product type code.
• The extract job reads the determinations that belong to the product delivery cases for products that

use this type code.
• Set the property spm.extract.product.typecode or set the property
spm.extract.product.id, but do not set both properties. Setting both properties prevents the
tool from starting.

Default value when not specified

• NONE

spm.extract.product.id
Description

• The property is a long.
• The property is a product identifier.
• The property corresponds to the primary key of the PRODUCT table in Social Product Management

that is PRODUCT.PRODUCTID.
• The extract job reads the determinations that belong to the product delivery cases for the product

that uses the productid.
• Set the property spm.extract.product.id or set the property
spm.extract.product.typecode, but do not set both properties. Setting both properties
prevents the tool from starting.

Default value when not specified

• NONE

spm.extract.creoledeterminations.includemanual
Description

• true indicates that all job types include determinations of type Manual Check Eligibility (CDT1).
• false indicates that all job types exclude determinations of type Manual Check Eligibility (CDT1).

Default value when not specified

• true

spm.extract.maxdateinterval
Description

• The property is a positive integer I, greater than zero.
• The number of days that are permitted between the startDate and endDate parameters for all

extraction job types.

Default value when not specified

• 3

spm.extract.maxitemcount
Description

• The property is a positive integer J, greater than zero.
• The maximum number of determinations read by a step execution. The criteria applies to all job

types.
• All jobs are configured with a single step. However, XML Flow and Filter Flow database support

parallel step executions. For more information about step executions, see the Batch jobs: job types
and their purposes related link.

• The step execution finishes either after it reads the maximum number of items or the backlog of
readable items is exhausted, whichever happens first. For example, where an XML Flow job is
started with a gridSize of two, a job execution runs with two parallel step executions.

• Each parallel execution can read as many items as set by the maxItemCount.

Chapter 1. IBM Social Program Management Data Extractor 51

Default value when not specified

• 250

spm.extract.chunkloginterval
Description

• The property is a positive integer K, greater than zero.
• A property that is used by all job types.
• When specified to be number K, XML Flow and Filter job executions log progress every K number of

chunks.

Default value when not specified

• 2

spm.extract.skiplimit
Description

• The property is a positive integer L, greater than zero.
• The number of read or process failures that are tolerated per step execution before the step is

deemed failed.

Default value when not specified

• 100

spm.extract.pagesize
Description

• The property is a positive integer M, greater than zero, less than or equal to 500.
• A property that is used by all batch jobs.
• A property that is used by the paged reader SQL query that is run by all the batch jobs types to read

the CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs from those
CREOLECASEDETERMINATION rows that match the query criteria, M IDs at a time. For more
information about how determinations are read, see the How determinations are read by the IBM
Social Program Management Data Extractor batch jobs related link.

• A larger M means fewer reader queries are run against the database during the execution of a job.

Default value when not specified

• 200

spm.extract.fetchsize
Description

• The property is a positive integer N, greater than zero, less than or equal to 500.
• A property that is used to determine the number of rows that are fetched from the database after a

reader query is run. It affects the number of network round trips to the database to fetch the results
of a query. For example, if reader query page size was 20 and the fetch size was 10 then, after a
reader query that yields 20 rows is run, the tool must make two round trips to the database to fetch
these rows. For more information about the fetch size, see the setFetchSize related link. IBM
suggests that operators leave the property the same as the pageSize.

Default value when not specified

• 200

spm.extract.chunksize
Description

• The property is a positive integer O, greater than zero, less than or equal to 500.
• For chunk size O, a batch job buffers every O items that are processed before the batch job sends

them to the associated ItemWriter for the job. The write is then committed.

52 IBM Cúram Social Program Management: Data Extractor

• For the XML Flow, a processed item or output item corresponds to the number of items that are
processed before the resulting items are sent to ItemWriter for that job. A processed item or output
item for the XML Flow job corresponds to a row in the DETERMINATIONXML table in the Data
Warehouse.

• For the Filter Flow database job, a processed item or output item corresponds to all the data that is
extracted from a single determination. As a result, a collection of output rows is written to multiple
Filter Flow database tables in the Data Warehouse. A larger chunk size means fewer database calls
and fewer database commits to the Data Warehouse.

• For the Filter Flow CSV, a processed item or output item corresponds to the number of items that
are processed before the resulting items are sent to ItemWriter for that job.

• For the Filter Flow CSV job, a processed item or output item corresponds to all the data that is
extracted from a single determination. As a result, a collection of output rows is written to multiple
CSV files on the local file system.

• The chunk size is the commit interval for a job. The bigger the number, the fewer the commit
operations there is for a job.

• IBM suggests that operators leave the property the same as the pageSize.

Default value when not specified

• 200

spm.extract.gridsize
Description

• The property is a positive integer, P.
• The property is used by the Filter Flow database and the XML Flow batch jobs. The property is not

used by the Filter Flow CSV batch job.
• When specified as a value greater than 1, the tool creates partitioned step executions. With a grid

size that is greater than 1, the following changes then apply:

– A single execution of a job starts multiple step executions in parallel. For example, with
gridSize P, P step executions are started with their own dedicated ItemReader instance and
run the execution cycle. For more information about the execution cycle, see the Batch jobs: job
types and their purposes related link.

– A dedicated partitioner creates a separate step execution context that effectively divides the
range of CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs that are to be
processed by this job into P partitions.

– Each step execution is then used to read and process the determinations that correspond to the
IDs in the partition for which it is responsible.

• In the release of the IBM Social Program Management Data Extractor, a thread-based grid
execution fabric is used. So, each step execution has a corresponding thread in the same JVM as the
IBM Social Program Management Data Extractor tool itself.

• A larger grid size P means that instead of a job execution that reads-processes-writes items serially,
the job execution is performed in parallel over #P threads. As a result, the job execution typically
takes less time than with a single thread.

• The lower limit of the property is 1. The upper limit of the property is 128.

Default value when not specified

• 4

Related concepts
Batch jobs: job types and their purposes
The batch jobs that the IBM Social Program Management Data Extractor runs are Spring Batch jobs.
Spring Batch uses a chunk-oriented processing approach.
How determinations are read by the IBM Social Program Management Data Extractor batch jobs

Chapter 1. IBM Social Program Management Data Extractor 53

The reader that is used by all three job types reads the set of CREOLECASEDETERMINATIONIDS for the
rows of the CREOLECASEDETERMINATION table in the Social Program Management database that match
the preceding criteria.
Related information
setFetchSize

Editing the Social Program Management database data source properties
Operators must configure properties to specify the data source to connect to the Social Program
Management database.

Social Program Management database properties

The following code explains the Social Program Management database properties.

#The Database Vendor type of the SPM database.
#Allowable values are
#Db2|Oracle|h2
spm.extract.spm.datasource.platform=<spm-db-type>
#The JDBC driver class used to connect to the SPM database.
#DB2 -> com.ibm.db2.jcc.DB2Driver
#Oracle -> oracle.jdbc.driver.OracleDriver
#H2 -> org.h2.Driver
spm.extract.spm.datasource.driver-class-name=<jdbc-driver-class>
#The JDBC URL used to connect to the SPM database.
#Db2 -> jdbc:db2://<spm-db-server-name>:<spm-db-port>/<spm-db-name>
#Oracle -> jdbc:oracle:thin:@//<spm-db-server-name>:<spm-db-port>/<spm-db-name>
#H2 -> jdbc:h2:tcp://localhost/file:<file-system--absolute-path>/<spm-db-
name>;schema=<spm-db-schema>
spm.extract.spm.datasource.url=<spm-db-jdbc-url>
#The database schema to which the SPM tables belong.
#Comment out this property if you are configuring this datasource as a H2 datasource
spm.extract.spm.datasource.schema=<spm-db-schema>
#The database user name as whom we connect to the SPM database.
spm.extract.spm.datasource.username=<spm-db-user>
#The Curam encrypted password for the database user.
spm.extract.spm.datasource.password=<spm-db-password>

Example Social Program Management database properties

The following code is an example of the Social Program Management database properties.

spm.extract.spm.datasource.driver-class-name=oracle.jdbc.driver.OracleDriver
spm.extract.spm.datasource.url=jdbc:oracle:thin:@//localhost:1521/orcl
spm.extract.spm.datasource.schema=CURAM
spm.extract.spm.datasource.username=curam
spm.extract.spm.datasource.password=GVE/3J2k+3KkoF62aRdUjTyQ/5TVQZ4fI2PuqJ3+4d0=
spm.extract.spm.datasource.platform=Oracle

Editing the Data Warehouse database data source properties
Operators must configure properties to specify the data warehouse for connecting to the Data Warehouse
database.

Data Warehouse database properties

The following code explains the Data Warehouse database properties.

#The Database Vendor type of the Data warehouse database.
#Db2|Oracle|h2
spm.extract.dw.datasource.platform=<dw-db-type>
#The JDBC driver class used to connect to the Data warehouse database.
#DB2 -> com.ibm.db2.jcc.DB2Driver
#Oracle -> oracle.jdbc.driver.OracleDriver
#H2 -> =org.h2.Driver
spm.extract.dw.datasource.driver-class-name=<jdbc-driver-class>
#The JDBC URL used to connect to the Date warehouse database.
spm.extract.dw.datasource.url=<dw-db-jdbc-url>

54 IBM Cúram Social Program Management: Data Extractor

https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html#setFetchSize-int-

#Db2 -> jdbc:db2://<dw-db-server-name>:<dw-db-port>/<dw-db-name>
#Oracle -> jdbc:oracle:thin:@//<dw-db-server-name>:<dw-db-port>/<dw-db-name>
#H2 -> jdbc:h2:tcp://localhost/file:<file-system--absolute-path>/<dw-db-name>;schema=<dw-
db-schema>
#The database schema to which the Data warehouse tables belong.
#Comment out this property if you are configuring this datasource as a H2 datasource
spm.extract.dw.datasource.schema=<dw-db-schema>
#The database user name as whom we connect to the SPMTools database.
spm.extract.dw.datasource.username=<dw-db-user>
#The Curam encrypted password for the database user.
spm.extract.dw.datasource.password=<dw-db-password>

Example Data Warehouse properties

The following code is an example of the Data Warehouse database properties.

spm.extract.dw.datasource.url=jdbc:oracle:thin:@//localhost:1521/orcl
spm.extract.dw.datasource.driver-class-name=oracle.jdbc.driver.OracleDriver
spm.extract.dw.datasource.schema=CURAM
spm.extract.dw.datasource.username=curam
spm.extract.dw.datasource.password=GVE/3J2k+3KkoF62aRdUjTyQ/5TVQZ4fI2PuqJ3+4d0=
spm.extract.dw.datasource.platform=Oracle

The ShortNames.properties file
Changes to the ShortNames.properties are effective only after an application restart.

The algorithm to generate the names of the Filter Flow database tables might produce table names
whose length exceeds the limits on the table name length for a database vendor. For more information
about potential table name issues, see the Issues associated with the length of a generate table name
related link. Operators can use ShortNames.properties, the introduced conversion file, to shorten the
names produced by the algorithm.

Operators can control whether a conversion file is used by including a ShortNames.properties file in a
directory on the loader.path of the tool. For more information about the loader.path, see the
Running the IBM Social Program Management Data Extractor’s functions in server mode and non-server
mode related link.

Substitution rules

Substitution is performed according to the following rules:

• The possible substitution is checked at the start position of the word to be converted.
• If the word is found, the word is replaced with the right string of the substitution pair.
• The same procedure is repeated from the beginning of the word and continues until either the

shortened name has no more than 18 characters or no possible substitutions are found.
• If the word to be shortened consists of several words that are delimited by the “_” character, then each

component of the word is shortened independently.

The following examples show how the substitution rules apply.

The ShortNames.properties file example

--
File layout:
- everything to the right of the hash symbol '#' is treated
as comments and is ignored by the substituter.
- pairs of strings denote substitutions whereby instances of
the left string are replaced with instances of the right
string.
--
Substitutions
OVERUNDERPAYMENT=OVUNPYMT
INSTRUCTIONLINEITEM=ILI
INSTRUCTLINEITEM=ILI
PAYMENT=PYMNT

Chapter 1. IBM Social Program Management Data Extractor 55

Based on the file, the names OVERUNDERPAYMENTENTITY becomes OVUNPYMTENTITY and
SAMPLEPAYMENTENTITY becomes SAMPLEPYMNTENTITY.

Note: The substitutions are applied in order of their appearance in the ShortNames.properties file.

Words example

In the proceeding example, the file name PERSONALHOMEFAXTELEPHONENUMBER becomes
PRSHOMEFAXPHONE,NUM.

--
File layout:
- everything to the right of the hash symbol '#' is treated
as comments and is ignored by the substituter.
- pairs of strings denote substitutions whereby instances of
the left string are replaced with instances of the right
string.
--
Substitutions
PERSON=PERS
PERSAL=PRS
NUMBER=NUM
TELEPHONE=PHONE
TELEPH=F

The name that consists of several words delimited by an underscore character
PERSONALHOMEFAXTELEPHONENUMBER_PERSONALHOMEFAXTELEPHONENUMBER_PERSONALHOME
FAXTELEPHONENUMBER becomes
PRSHOMEFAXPHONENUM_PRSHOMEFAXPHONENUM_PRSHOMEFAXPHONENUM.

In the proceeding example, a different ordering is used so that PERSONALHOMEFAXTELEPHONENUMBER
becomes PRSHOMEFAXFONENUM.

--
File layout:
- everything to the right of the hash symbol '#' is treated
as comments and is ignored by the substituter.
- pairs of strings denote substitutions whereby instances of
the left string are replaced with instances of the right
string.
--
Substitutions
PERSON=PERS
PERSAL=PRS
NUMBER=NUM
TELEPH=F
TELEPHONE=PHONE

Related concepts
Issues associated with the length of a generated table name
Tool operators might see an issue where the table names in the generated Filter Flow creation DDL
reaches the limit for table name length for their selected database vendor. As an interim solution, the
Short Names Substitution functionality is used on table names and column names.
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.

Getting the database drivers
The IBM Social Program Management Data Extractor uses the database drivers for the database server
that is used by the customer. The database drivers must be copied to the computer where the operator
intends to run the IBM Social Program Management Data Extractor.

The log4j2.properties and the ShortNames.properties can be colocated in the same directory as
the database driver JAR files. As a result and providing that the directory is on the loader.path, the

56 IBM Cúram Social Program Management: Data Extractor

resources are used by the tool. For more information about the Apache log4j2 logging service, see the
Logging related link. For more information about the ShortNames.properties file, see the The
ShortNames.properties file. related link.

Db2 drivers

For more information about how to obtain the appropriate Java Database Connectivity (JDBC) driver jars,
see RDBMS official documentation. For more information about the required driver versions and
downloads, see the DB2 JDBC Driver Versions and Downloads related link.

Oracle drivers

For information about how to obtain the appropriate JDBC driver jars, see RDBMS official documentation.
For more information about Oracle 12cR1, see the Oracle Database 12.1.0.1 JDBC Driver & UCP
Downloads related link. For more information about Oracle 12cR2, see the Oracle 12cR2, see Oracle
Database 12.2.0.1 JDBC Driver & UCP Downloads related link.

The three following Oracle jars are required by the tool:

• ojdbc{X}.jar

– For Oracle 12cR1; ojdbc7.jar.
– For Oracle 12cR2; ojdbc8.jar.

• xmlparserv2.jar
• xdb.jar

Related concepts
Logging
The IBM Social Program Management Data Extractor uses Apache Log4j 2 as its logging service.
The ShortNames.properties file
Changes to the ShortNames.properties are effective only after an application restart.
Related information
DB2 JDBC Driver Versions and Downloads
Oracle Database 12.1.0.1 JDBC Driver & UCP Downloads
Oracle Database 12.2.0.1 JDBC Driver & UCP Downloads

Configuring the IBM Social Program Management Data Extractor MBean API for remote
access

Customers can perform a series of steps to expose the MBean API. However, to expose the MBean API
customers must secure the connection over TLS v1.2 and configure client certificate-based
authentication as a requirement. We advise that you complete the setup in the following procedure only if
remote access to the MBean functionality is needed.

About this task

IBM does not recommend that customers expose remote access to the MBean functionality. However, if
necessary, customers can expose the MBean API if customers secure the connection over TLS v1.2 and
configure client certificate-based authentication as a requirement. For more information about securing
the JMX agent, see the Monitoring and Management Using JMX Technology related link.

Procedure

1. Create a valid certificate for the IBM Social Program Management Data Extractor. For information
about how to create a valid certificate, see the Using SSL related link.

2. Use keytool to export the certificate file.
3. Copy the exported certificate file to the remote client computer.

Chapter 1. IBM Social Program Management Data Extractor 57

https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads
http://www-01.ibm.com/support/docview.wss?uid=swg21363866
https://www.oracle.com/database/technologies/jdbc-ucp-122-downloads.html

4. On the client computer, use keytool to import the certificate to a truststore that is used when the
JConsole is started.

5. Create a valid certificate for the JConsole client that is used to connect to the IBM Social Program
Management Data Extractor. For information about how to create a valid certificate, see the Using
SSL related link. The certificate is used to authenticate the client to the IBM Social Program
Management Data Extractor.

6. Use keytool to export the certificate.
7. Copy the exported client certificate to the IBM Social Program Management Data Extractor computer.
8. Use keytool to import the client certificate to a truststore on the IBM Social Program Management

Data Extractor computer.
9. Designate a port on the IBM Social Program Management Data Extractor host computer as the JMX

port for the IBM Social Program Management Data Extractor Java process.
10. Configure the firewall of your operating system to permit remote access to the JMX port from the

permitted IP addresses.
11. On the IBM Social Program Management Data Extractor computer, start the IBM Social Program

Management Data Extractor in server mode with the following list of options:

java
-Djavax.net.ssl.keyStore=<data-extractor-keystore>
-Djavax.net.ssl.keyStorePassword=<data-extractor-keystore-password>
-Djavax.net.ssl.trustStore=<data-extractor-truststore>
-Djavax.net.ssl.trustStorePassword=<data-extractor-truststore-password>
-Djava.rmi.server.hostname=<data-extractor-machine-ip-address>
-Dcom.sun.management.jmxremote.port=<data-extractor-jmx-port>
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
 -Dcom.sun.management.jmxremote.ssl=true
-Dloader.path=<data-extractor-lib-directory>
-Dspring.config.location=<data-extractor-spring-profiles-directory>
-Dspring.profiles.active=<data-extractor-spring-profile-name>
-jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.
12. When the server is started, the server can accept connections. From the client computer, use the

following code to start the JConsole:

jconsole
 -J-Djavax.net.ssl.trustStore=<jconsole-trust-store>
 -J-Djavax.net.ssl.trustStorePassword=<jconsole-trust-store-password>
 -J-Djavax.net.ssl.keyStore=<jconsole-key-store>
 -J-Djavax.net.ssl.keyStorePassword=<jconsole-key-store-password>

13. When the user interface (UI) of the JConsole starts, click the Remote Process button.
14. Specify the connection details in the text box that is below the radio button. Use the format: <data-

extractor-machine-ip-address>:<data-extractor-jmx-port>.
15. Click the Connect button.
16. For more information about how to call the tool’s functions, see the Running the IBM Social Program

Management Data Extractor functions in server mode and non-server mode related link.
To debug issues with the SSL/TLS, specify the javax.net.debug system property, which is -
Djavax.net.debug=all. For more information, see the Debugging SSL/TLS Connections related
link. Use the following code for the IBM Social Program Management Data Extractor:

java
-Djavax.net.debug=all
-Djavax.net.ssl.keyStore=<data-extractor-keystore>
-Djavax.net.ssl.keyStorePassword=<data-extractor-keystore-password>
-Djavax.net.ssl.trustStore=<data-extractor-truststore>
-Djavax.net.ssl.trustStorePassword=<data-extractor-truststore-password>
-Djava.rmi.server.hostname=<data-extractor-machine-ip-address>
-Dcom.sun.management.jmxremote.port=<data-extractor-jmx-port>
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true

58 IBM Cúram Social Program Management: Data Extractor

 -Dcom.sun.management.jmxremote.ssl=true
-Dloader.path=<data-extractor-lib-directory>
-Dspring.config.location=<data-extractor-spring-profiles-directory>
-Dspring.profiles.active=<data-extractor-spring-profile-name>
-jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.
Use following code for JConsole:

jconsole
 -J-Djavax.net.debug=all
 -J-Djavax.net.ssl.trustStore=<jconsole-trust-store>
 -J-Djavax.net.ssl.trustStorePassword=<jconsole-trust-store-password>
 -J-Djavax.net.ssl.keyStore=<jconsole-key-store>
 -J-Djavax.net.ssl.keyStorePassword=<jconsole-key-store-password>

What to do next
A customer might want to perform the extra step of enabling password authentication for the JMX agent.
The step is not verified by IBM, but for more information about how to enable password authentication
see the Monitoring and Management Using JMX Technology related link.
Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Related information
Monitoring and Management Using JMX Technology
Using SSL
Debugging SSL/TLS Connections

Logging
The IBM Social Program Management Data Extractor uses Apache Log4j 2 as its logging service.

The uber jar contains a default log4j2.properties. The log4j2.properties is used to specify the
logging level for the packages that are inside the jar and the name of the log file.

A copy of IBM's log4j2.properties is included in the {INSTALL_LOCATION}/samples directory.

Optionally, for a support scenario, the customer can copy the log4j2.properties file to the same
directory where the customer stores the database drivers that are used by the tool. Then, the next time
that the customer runs the IBM Social Program Management Data Extractor, the tool will select this file
rather than the file that is packaged in the uber JAR file.

For more verbose logging to help troubleshoot any issues, the operator can customize the
log4j2.properties file. The operator can also change the name of the log file to which the application
logs. For more information about Apache Log4j 2 , see the Apache Log4j 2 related link.

Related information
Apache Log4j 2

How to perform profiling by using J9 VM tracing
Optionally, customers who select to use a J9 VM (OpenJ9 or IBM J9) can use J9's tracing facility, XTrace,
to profile the performance of key methods in the extraction batch jobs.

The IBM J9 VM component of the SDK was contributed to the Eclipse Foundation as the Eclipse OpenJ9
project in September 2017. For more information, see the IBM SDK, Java Technology Edition, Version 8
related link.

For more information about the IBM JDK documentation for XTrace, see the How to use IBM Java -Xtrace
related link. For more information about the OpenJ9 documentation for XTrace, see the -Xtrace related
link.

Chapter 1. IBM Social Program Management Data Extractor 59

https://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html#gdemv
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/ReadDebug.html
https://logging.apache.org/log4j/2.x/

The .trc file can be formatted by using the trace formatter. For more information about the trace
formatter, see the Trace formatter (traceformat) related link. Optionally, customers might use the IBM
Health Center client to analyze the .trc files. For more information about the IBM Health Center client,
see the Installing the Health Center client related link. The Health Center Client can be installed as an add-
on for the IBM Support Assistant or as an Eclipse plug-in. For more information, see the IBM Support
Assistant, login is required, and the IBM WebSphere tools related links.

To profile the execution time for specific methods, specify the method whose execution time you want to
measure as an option to the J9 Java virtual machine (JVM), for example:

Xtrace:none,output={methods%p_#.trc,100m,5},maximal=mt,methods={org/springframework/batch/item/
database/JdbcPagingItemReader.doReadPage}

The following list outlines each metric, its associated method, and the Xtrace string to use to measure the
method's execution time:

Timing for the initial read of IDs
Method

org.springframework.batch.item.database.JdbcPagingItemReader.doReadPage()

Corresponding Xtrace string

org/springframework/batch/item/database/JdbcPagingItemReader.doReadPage

Timing for the retrieval of IDs from BLOB CREOLECaseDeterminationData
Method

com.ibm.spm.extracttool.batch.processors.CREOLEDeterminationDataProcessor.process(Long)

Corresponding Xtrace string

com/ibm/spm/extracttool/batch/processors/CREOLEDeterminationDataProcessor.process

Timing for determination processing
Filter Flow jobs

Method

com.ibm.spm.extracttool.batch.processors.FilterJobProcessor.process(CREOLEDeterminationPo
jo)

Corresponding trace string

com/ibm/spm/extracttool/batch/processors/FilterJobProcessor.process

XML Flow jobs
Method

com.ibm.spm.extracttool.batch.processors.XMLFlowProcessor.process(CREOLEDeterminationPojo
)

Corresponding Xtrace string

com/ibm/spm/extracttool/batch/processors/XMLFlowProcessor.process

60 IBM Cúram Social Program Management: Data Extractor

Write-out time to database
Filter Flow jobs

Method

com.ibm.spm.extracttool.batch.writers.FilterJobWriter.write(List<? extends
TabularDataAggregation>)

Corresponding Xtrace string

com/ibm/spm/extracttool/batch/writers/FilterJobWriter.write

XML Flow jobs
Method

com.ibm.spm.extracttool.batch.writers.XMLDeterminationWriter.write(List<? extends
XMLDeterminationPojo>)

Corresponding Xtrace string

com/ibm/spm/extracttool/batch/writers/XMLDeterminationWriter.write

Job execution time
Method

org.springframework.batch.core.job.AbstractJob.execute(JobExecution)

Corresponding Xtrace string

org/springframework/batch/core/job/AbstractJob.execute

Sample command with method profiling

Enter the following command, on one line, to start the tool in non-server mode, schedule an XML Flow
job, and exit when the job completes. The .trc file represents a profile of the timings for the preceding
methods.

java "-Xtrace:none,output={methods%p_#.trc,100m,5},maximal=mt,
 methods={org/springframework/batch/item/database/JdbcPagingItemReader.doReadPage,
 com/ibm/spm/extracttool/batch/processors/CREOLEDeterminationDataProcessor.process,
 com/ibm/spm/extracttool/batch/processors/XMLFlowProcessor.process,
 com/ibm/spm/extracttool/batch/writers/FilterJobWriter.write,
 com/ibm/spm/extracttool/batch/writers/XMLDeterminationWriter.write,
 com/ibm/spm/extracttool/batch/processors/FilterJobProcessor.process,
 org/springframework/batch/core/job/AbstractJob.execute}" -Dspring.config.location=./profiles/
 -Dspring.profiles.active=Db2 -Dloader.path=./db2_drivers/
 -Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication
 -Dloader.args="XmlFlow name=XmlFlowJob_20190702_003 startDate=1970-01-01 endDate=2019-07-01"
 -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related information
IBM SDK, Java Technology Edition, Version 8
How to use IBM Java -Xtrace
-Xtrace
Trace formatter (traceformat)
Installing the Health Center client
IBM Support Assistant
IBM WebSphere tools

Chapter 1. IBM Social Program Management Data Extractor 61

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/welcome/welcome_javasdk_version.html
https://www-01.ibm.com/support/docview.wss?uid=swg21657391
https://www.eclipse.org/openj9/docs/xtrace/
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/tool_traceformat/index.html
https://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/installingclient.html
https://www.ibm.com/marketing/iwm/mrs/mrs_landing_page?source=isa
http://public.dhe.ibm.com/ibmdl/export/pub/software/websphere/runtimes/tools/healthcenter/

Running the IBM Social Program Management Data Extractor
To run the IBM Social Program Management Data Extractor, operators must perform mandatory steps.
Depending on configuration, operators might need to perform an optional step.

Procedure

1. Copy the database driver jars for your selected database server to the client computer where the tool
is installed. IBM suggests creating a folder here: {INSTALL_LOCATION}/DataExtractor/lib/.
Then, copy your database driver jars to the folder.

2. Create a copy of the file sample/application-SAMPLE.properties and rename the copy to
application-{yourProfileName}.properties, for example application-
TEST.properties. IBM suggests that you create a folder here: {INSTALL_LOCATION}/
DataExtractor/profiles/. Then, place the properties file in the folder.
Support is only provided for the use of one profile at a time. However, the operator you can use a
different profile to start the tool to switch between database systems, job configurations, or both.

3. Change the properties file. For more information about how to change the file, see the Editing the
Spring Profile related link.

4. Depending on your configuration, you might need to create a copy of the file ShortNames-
SAMPLE.properties and rename the copy to ShortNames.properties. Ensure that the renamed
copy is on the loader.path when you start the tool in either server or non-server mode. For
simplicity, IBM suggests that you copy the file to the {INSTALL_LOCATION}/DataExtractor/lib/
directory that you created in Step 1. Edit the ShortNames.properties file. For more information
about how to edit the file, see the Generating the Filter Flow attribute value database tables creation
and drop DDL related link.

5. Open a command window and change directory to {INSTALL_LOCATION}/DataExtractor.

Results
When the application starts, it prints to the console and to a log file that is named dataExtractor.log
in the directory where the tool was started.
Related concepts
Editing the Spring Profile
The properties that operators can edit in the Spring Profile application.properties include the Filter
Flow job configuration properties and the ShortNames.properties file.
Generating the Filter Flow attribute value database tables creation and drop DDL
Generating the creation and drop DDL for the Filter Flow attribute value tables is a function of the IBM
Social Program Management Data Extractor.

Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

About starting the IBM Social Program Management Data Extractor in server mode

The loader.path is a comma-separated class path, such as lib,${HOME}/app/lib. In the Spring
Batch The Executable Jar Format documentation, the following description of the loader.path is
provided: "Earlier entries take precedence, like a regular -classpath on the javac command line."

The command to run the tool is:

java -Dloader.path={path-to-directory-with-db-drivers} -Dspring.config.location={path-to-
profiles-directory} -Dspring.profiles.active={spring-profile-name} -jar DataExtractor-
version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

62 IBM Cúram Social Program Management: Data Extractor

Operators can use a combination of the spring.config.location and the
spring.profiles.active to point to the Spring Profile that operators want to use. For example:

• The customer can have both an application-Db2.properties and an application-
Oracle.properties in the {INSTALL_LOCATION}/DataExtractor/profiles directory. In
application-Db2.properties, both data sources point to Db2 databases. In application-
Oracle.properties, both data sources point to Oracle databases.

• The customer can have both sets of database drivers Jars for both Db2 and Oracle in a directory that is
named {INSTALL_LOCATION}/DataExtractor/lib.

Starting the tool from the command line

Where the current directory is {INSTALL_LOCATION}/DataExtractor/, to start the tool in server
mode from the command line perform the following steps:

• To start the tool in server mode by using the Db2 profile: java -Dloader.path=./lib/ -
Dspring.config.location=./profiles/ -Dspring.profiles.active=Db2 -jar
DataExtractor-version_no.jar where version_no is the version number of the software, for
example 1.0.2.

• To start the tool in server mode by using the Oracle profile: java -Dloader.path=./lib/ -
Dspring.config.location=./profiles/ -Dspring.profiles.active=Oracle -jar
DataExtractor-version_no.jar where version_no is the version number of the software, for
example 1.0.2.

The console or log output when the tool is started in server mode

When the operator enters the following command:

java -Dloader.path=./ora_tls_drivers/ -Dspring.config.location=./profiles/ -
Dspring.profiles.active=Oracle-12c -jar DataExtractor-version_no.jar

the following output is displayed in the console:

___ ____ __ __ ____ _ _____
_ _
 / ___| | _ \ | \/ | | _ \ __ _ | |_ __ _ | ____| __ __ | |_ _ __ __ _
___ | |_ ___ _ __
 ___ \ | |_) | | |\/| | | | | | / _` | | __| / _` | | _| \ \/ / | __| | '__| / _`
| / __| | __| / _ \ | '__|
 ___) | | __/ | | | | | |_| | | (_| | | |_ | (_| | | |___ > < | |_ | | | (_| | |
(__ | |_ | (_) | | |
 |____/ |_| |_| |_| |____/ __,_| __| __,_| |_____| /_/_\ __| |_| __,_|
___| __| ___/ |_|

 :: IBM Social Program Management Data Extractor :: (vversion_no)

2019-07-22 08:03:22.123 [INFO] [main] ExtractToolApplication - Starting ExtractToolApplication
on LAPTOP-J35DTHTU with PID 15116 (C:\IBM\DataExtractor_Gold\DataExtractor\DataExtractor-
version_no.jar started by userX in C:\IBM\DataExtractor_Gold\DataExtractor)
2019-07-22 08:03:22.133 [INFO] [main] ExtractToolApplication - The following profiles are
active: Oracle-12c
2019-07-22 08:03:25.997 [INFO] [main] DataSourceConfiguration - >>dw.dataSource: The Data
Warehouse Database URL is jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)
(HOST=127.0.0.1)(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
2019-07-22 08:03:31.436 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database Meta Data 'Database Product Name 'Oracle' Database Product
Version 'Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production' Database
Driver Version '12.2.0.1.0''
2019-07-22 08:03:31.436 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database URL
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)(PORT=2484))
(CONNECT_DATA=(SERVICE_NAME=ORCL)))'
2019-07-22 08:03:31.440 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database Driver Class Name 'oracle.jdbc.OracleDriver'
2019-07-22 08:03:31.694 [INFO] [main] DataSourceConfiguration - >>spmDataSource: The Curam SPM
Data Source URL is jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)
(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
2019-07-22 08:03:32.558 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database Meta Data 'Database Product Name 'Oracle' Database
Product Version 'Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production'

Chapter 1. IBM Social Program Management Data Extractor 63

Database Driver Version '12.2.0.1.0''
2019-07-22 08:03:32.559 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database URL
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)(PORT=2484))
(CONNECT_DATA=(SERVICE_NAME=ORCL)))'
2019-07-22 08:03:32.559 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database Driver Class Name 'oracle.jdbc.OracleDriver'
2019-07-22 08:03:35.787 [INFO] [main] ApplicationProperties - <<getViolations(), returning=[]
2019-07-22 08:03:35.917 [INFO] [main] ExtractToolConfiguration - >>filterFlowProperties
extractlistattributes
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline,Insuranc
eAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList,InsuranceAssista
nceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID,InsuranceAssistanceDi
splayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRules,InsuranceAssistanceDis
playRuleSet.InsuranceAssistanceIncomeCategory.countedMemberMAGITimeline
2019-07-22 08:03:35.926 [INFO] [main] RulesMetaModel - Building an in-memory model of the rule
set definitions.
2019-07-22 08:05:59.483 [WARN] [main] RulesMetaModel - ISScreening includes classpath 'curam/
citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes are not
supported. This can result in unqueriable inherited attributes.
2019-07-22 08:05:59.490 [WARN] [main] RulesMetaModel - InternalScreeningRuleSet includes
classpath 'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes
are not supported. This can result in unqueriable inherited attributes.
2019-07-22 08:05:59.492 [WARN] [main] RulesMetaModel - OnePageScreening includes classpath
'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes are not
supported. This can result in unqueriable inherited attributes.
2019-07-22 08:05:59.514 [WARN] [main] RulesMetaModel - InternalScreeningRuleSet_V2 includes
classpath 'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes
are not supported. This can result in unqueriable inherited attributes.
2019-07-22 08:06:01.167 [INFO] [main] MetaDestinationSchemaFactory - Queried Attribute Paths
and their XPath:-
2019-07-22 08:06:01.173 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDeniedPrograms/
programNameTimeline/Item
2019-07-22 08:06:01.173 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
assistanceTypeList/Item
2019-07-22 08:06:01.173 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
caseParticipantRoleID
2019-07-22 08:06:01.173 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRules
= /Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
isPassedNonFinancialRules
2019-07-22 08:06:01.177 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceIncomeCategory.countedMemberMAGITimeline
= /Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceIncomeCategory/
countedMemberMAGITimeline/Item
2019-07-22 08:06:03.228 [INFO] [main] ApplicationProperties - <<getViolations(), returning=[]
2019-07-22 08:06:05.764 [INFO] [main] ExtractToolApplication - Started ExtractToolApplication
in 164.766 seconds (JVM running for 178.26)
2019-07-22 08:06:05.771 [INFO] [main] ExtractToolApplication - ####### WELCOME ##########
2019-07-22 08:06:05.771 [INFO] [main] ExtractToolApplication - Ensure your Database is
running...
2019-07-22 08:06:05.774 [INFO] [main] ExtractToolApplication - Please see product
documentation for details on how to call the functionality of this tool.

Where version_no is the version number of the software, for example 1.0.2.

Calling the functions of the tool through the MBean APIs by using JConsole

1. Where the operator sets the JAVA_HOME and PATH environment variables for the Java SE
Development Kit (JDK), the operator can start the JConsole in these ways:

• For Windows, use: jconsole.exe.
• For *nix, use: ${JAVA_HOME}/bin/jconsole.

For information about how to securely connect the IBM Social Program Management Data Extractor by
using the JConsole, see the Configuring the IBM Social Program Management Data Extractor MBean
API for remote access related link.

2. When the operator starts the JConsole, the operator is prompted to create a new connection to either
a local or remote process.

64 IBM Cúram Social Program Management: Data Extractor

3. From a list of the processes, the operator selects the process whose ID corresponds to the process of
the started application that is recorded in the dataExtractor.log: [INFO] 2019-07-22
11:19:40.704 [main] ExtractToolApplication - Starting ExtractToolApplication
on LAPTOP-J35DTHTU with PID 24244 (C:\IBM\DataExtractor_Gold\DataExtractor
\DataExtractor-version_no.jar started by userX in C:\IBM\DataExtractor_Gold
\DataExtractor"

Where version_no is the version number of the software, for example 1.0.2.
4. The operator clicks Connect.
5. The operator clicks Insecure Connection. The Overview tab is displayed.
6. The operator clicks the MBeans tab. For information about how to call a specific function, see the

Running the IBM Social Program Management Data Extractor’s functions in server mode and non-server
mode related link.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.
Related tasks
Configuring the IBM Social Program Management Data Extractor MBean API for remote access
Customers can perform a series of steps to expose the MBean API. However, to expose the MBean API
customers must secure the connection over TLS v1.2 and configure client certificate-based
authentication as a requirement. We advise that you complete the setup in the following procedure only if
remote access to the MBean functionality is needed.
Related information
Spring Batch: The Executable Jar Format

Starting the IBM Social Program Management Data Extractor in non-server mode
When the tool is run in non-server mode, the operator must specify the tool function to run. The tool
starts, runs that one function, and then exits. In non-server mode, the IBM Social Program Management
Data Extractor MBeans are not registered, so the MBean API is unavailable. To schedule new batch job
instances in non-server mode, use JobLauncherApplication. For all other non-server mode functions,
use GenericTaskLauncherApplication.

JobLauncherApplication

The following code is the general structure of the JobLauncherApplication command:

java
 -Dloader.path={path-to-directory-with-db-drivers}
 -Dspring.config.location={path-to-profiles-directory}
 -Dspring.profiles.active={spring-profile-name}
 -Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication
 -Dloader.args="{JobName} {JobParameters}"
 -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Where:

• {JobName} is either XmlFlow, FilterFlowCsv, or FilterFlowDb.
• {JobParameters} is a space-delimited set of parameters.

For example: XmlFlow name=jobName101 startDate=2019-01-01 endDate=2019-06-01. For
more examples, see the Running the IBM Social Program Management Data Extractor’s functions in server
mode and non-server mode related link.

Chapter 1. IBM Social Program Management Data Extractor 65

https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html

GenericTaskLauncherApplication

The following code is the general structure of the GenericTaskLauncherApplication command:

 java
 -Dloader.path={path-to-directory-with-db-drivers}
 -Dspring.config.location={path-to-profiles-directory}
 -Dspring.profiles.active={spring-profile-name}
 -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication
 -Dloader.args="{Function} {FunctionArgs}"
 -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Where:

• {Function} is a tool function.
• {FunctionArgs} are arguments to the function.

For more examples, see the Running the IBM Social Program Management Data Extractor’s functions in
server mode and non-server mode related link.

Related concepts
Running the IBM Social Program Management Data Extractor's functions in server mode and non-server
mode
The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.

The console log output when started in non-server mode: running a batch job
A sample shows the console log output from an example command for running a batch job when the
console log output is started in non-server mode.

When the operator enters the following command:

java -Dloader.path=./ora_tls_drivers/ -Dspring.config.location=./profiles/ -
Dspring.profiles.active=Oracle-12c -Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication
-Dloader.args="XmlFlow name=XmlFlowExample startDate=2000-01-01 endDate=2019-07-01
productTypeCode=PT26304" -jar DataExtractor-version_no.jar

the following output is displayed in the console:

2019-07-22 08:27:14.773 [INFO] [main] JobLauncherApplication - ####### WELCOME ##########

 ____ ____ __ __ ____ _ _____
_ _
 / ___| | _ \ | \/ | | _ \ __ _ | |_ __ _ | ____| __ __ | |_ _ __ __ _
___ | |_ ___ _ __
 ___ \ | |_) | | |\/| | | | | | / _` | | __| / _` | | _| \ \/ / | __| | '__| / _`
| / __| | __| / _ \ | '__|
 ___) | | __/ | | | | | |_| | | (_| | | |_ | (_| | | |___ > < | |_ | | | (_| | |
(__ | |_ | (_) | | |
 |____/ |_| |_| |_| |____/ __,_| __| __,_| |_____| /_/_\ __| |_| __,_|
___| __| ___/ |_|

 :: IBM Social Program Management Data Extractor :: (vversion_no)

2019-07-22 08:27:16.016 [INFO] [main] JobLauncherApplication - Starting JobLauncherApplication
on LAPTOP-J35DTHTU with PID 7444 (C:\IBM\DataExtractor_Gold\DataExtractor\DataExtractor-
version_no.jar started by userX in C:\IBM\DataExtractor_Gold\DataExtractor)
2019-07-22 08:27:16.022 [INFO] [main] JobLauncherApplication - The following profiles are
active: Oracle-12c
2019-07-22 08:27:17.935 [INFO] [main] CommandLineJobLaunchCondition - >>matches, true
2019-07-22 08:27:19.829 [INFO] [main] DataSourceConfiguration - >>dw.dataSource: The Data
Warehouse Database URL is jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)
(HOST=127.0.0.1)(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
2019-07-22 08:27:24.131 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database Meta Data 'Database Product Name 'Oracle' Database Product
Version 'Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production' Database
Driver Version '12.2.0.1.0''
2019-07-22 08:27:24.133 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source

66 IBM Cúram Social Program Management: Data Extractor

'spm.extract.dw.datasource' Database URL
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)(PORT=2484))
(CONNECT_DATA=(SERVICE_NAME=ORCL)))'
2019-07-22 08:27:24.134 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database Driver Class Name 'oracle.jdbc.OracleDriver'
2019-07-22 08:27:24.311 [INFO] [main] DataSourceConfiguration - >>spmDataSource: The Curam SPM
Data Source URL is jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)
(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
2019-07-22 08:27:24.833 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database Meta Data 'Database Product Name 'Oracle' Database
Product Version 'Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production'
Database Driver Version '12.2.0.1.0''
2019-07-22 08:27:24.834 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database URL
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)(PORT=2484))
(CONNECT_DATA=(SERVICE_NAME=ORCL)))'
2019-07-22 08:27:24.835 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database Driver Class Name 'oracle.jdbc.OracleDriver'
2019-07-22 08:27:26.981 [INFO] [main] ApplicationProperties - <<getViolations(), returning=[]
2019-07-22 08:27:27.068 [INFO] [main] ExtractToolConfiguration - >>filterFlowProperties
extractlistattributes
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline,Insuranc
eAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList,InsuranceAssista
nceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID,InsuranceAssistanceDi
splayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRules,InsuranceAssistanceDis
playRuleSet.InsuranceAssistanceIncomeCategory.countedMemberMAGITimeline
2019-07-22 08:27:27.076 [INFO] [main] RulesMetaModel - Building an in-memory model of the rule
set definitions.
2019-07-22 08:29:43.670 [WARN] [main] RulesMetaModel - ISScreening includes classpath 'curam/
citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes are not
supported. This can result in unqueriable inherited attributes.
2019-07-22 08:29:43.675 [WARN] [main] RulesMetaModel - InternalScreeningRuleSet includes
classpath 'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes
are not supported. This can result in unqueriable inherited attributes.
2019-07-22 08:29:43.677 [WARN] [main] RulesMetaModel - OnePageScreening includes classpath
'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes are not
supported. This can result in unqueriable inherited attributes.
2019-07-22 08:29:43.687 [WARN] [main] RulesMetaModel - InternalScreeningRuleSet_V2 includes
classpath 'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes
are not supported. This can result in unqueriable inherited attributes.
2019-07-22 08:29:44.822 [INFO] [main] MetaDestinationSchemaFactory - Queried Attribute Paths
and their XPath:-
2019-07-22 08:29:44.824 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDeniedPrograms/
programNameTimeline/Item
2019-07-22 08:29:44.825 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
assistanceTypeList/Item
2019-07-22 08:29:44.825 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
caseParticipantRoleID
2019-07-22 08:29:44.826 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRules
= /Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
isPassedNonFinancialRules
2019-07-22 08:29:44.827 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceIncomeCategory.countedMemberMAGITimeline
= /Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceIncomeCategory/
countedMemberMAGITimeline/Item
2019-07-22 08:29:46.779 [INFO] [main] ApplicationProperties - <<getViolations(), returning=[]
2019-07-22 08:29:48.812 [INFO] [main] JobLauncherApplication - Started JobLauncherApplication
in 153.808 seconds (JVM running for 166.668)
2019-07-22 08:30:01.519 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logStepFinished:

Job Name: 'XmlFlow'
Instance: 20
Execution: 20
Finished Step: 'xmlFlowStep0'
Step Summary: 'StepExecution: id=20, version=2, name=xmlFlowStep0, status=COMPLETED,
exitStatus=COMPLETED, readCount=2, filterCount=0, writeCount=2 readSkipCount=0,
writeSkipCount=0, processSkipCount=0, commitCount=1, rollbackCount=0'

2019-07-22 08:30:01.522 [INFO] [SimpleAsyncTaskExecutor-1] DeterminationStepLifeCycleListener
- >>logReaderExhaustedMessages:We have finished querying the backlog.The number of items
successfully read was 2.We were within the limit that was explicitly set for the reader 250.

C:\IBM\DataExtractor_Gold\DataExtractor>

Chapter 1. IBM Social Program Management Data Extractor 67

Where version_no is the version number of the software, for example 1.0.2.

The console log output when the tool is started in non-server mode: searching for the valid Filter
Flow attribute paths
A sample shows the console log output for searching for the valid Filter Flow attribute paths when the
console log output is started in non-server mode.

When the operator enters the following command:

java -Dloader.path=./ora_tls_drivers/ -Dspring.config.location=./profiles/ -
Dspring.profiles.active=Oracle-12c -
Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dloader.args="AttributePathSearch.searchAttributePaths attributePathPattern=.*(?
i)incometimeline." -jar DataExtractor-version_no.jar

the following output is displayed in the console:

2019-07-22 10:05:19.948 [INFO] [main] GenericTaskLauncherApplication - ####### WELCOME
##########
2019-07-22 10:05:19.958 [INFO] [main] GenericTaskLauncherApplication - Ensure your Database is
running...
2019-07-22 10:05:19.958 [INFO] [main] GenericTaskLauncherApplication - Running task
'AttributePathSearch.searchAttributePaths'.
 ____ ____ __ __ ____ _ _____
_ _
 / ___| | _ \ | \/ | | _ \ __ _ | |_ __ _ | ____| __ __ | |_ _ __ __ _
___ | |_ ___ _ __
 ___ \ | |_) | | |\/| | | | | | / _` | | __| / _` | | _| \ \/ / | __| | '__| / _`
| / __| | __| / _ \ | '__|
 ___) | | __/ | | | | | |_| | | (_| | | |_ | (_| | | |___ > < | |_ | | | (_| | |
(__ | |_ | (_) | | |
 |____/ |_| |_| |_| |____/ __,_| __| __,_| |_____| /_/_\ __| |_| __,_|
___| __| ___/ |_|

 :: IBM Social Program Management Data Extractor :: (vversion_no)

2019-07-22 10:05:21.170 [INFO] [main] GenericTaskLauncherApplication - Starting
GenericTaskLauncherApplication on LAPTOP-J35DTHTU with PID 18320 (C:\IBM\DataExtractor_Gold
\DataExtractor\DataExtractor-version_no.jar started by userX in C:\IBM\DataExtractor_Gold
\DataExtractor)
2019-07-22 10:05:21.174 [INFO] [main] GenericTaskLauncherApplication - The following profiles
are active: Oracle-12c
2019-07-22 10:05:24.737 [INFO] [main] DataSourceConfiguration - >>dw.dataSource: The Data
Warehouse Database URL is jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)
(HOST=127.0.0.1)(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
2019-07-22 10:05:29.769 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database Meta Data 'Database Product Name 'Oracle' Database Product
Version 'Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production' Database
Driver Version '12.2.0.1.0''
2019-07-22 10:05:29.771 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database URL
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)(PORT=2484))
(CONNECT_DATA=(SERVICE_NAME=ORCL)))'
2019-07-22 10:05:29.774 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.dw.datasource' Database Driver Class Name 'oracle.jdbc.OracleDriver'
2019-07-22 10:05:30.001 [INFO] [main] DataSourceConfiguration - >>spmDataSource: The Curam SPM
Data Source URL is jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)
(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=ORCL)))
2019-07-22 10:05:30.761 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database Meta Data 'Database Product Name 'Oracle' Database
Product Version 'Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production'
Database Driver Version '12.2.0.1.0''
2019-07-22 10:05:30.764 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database URL
'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=127.0.0.1)(PORT=2484))
(CONNECT_DATA=(SERVICE_NAME=ORCL)))'
2019-07-22 10:05:30.765 [INFO] [main] DataSourceConfiguration - >>getDataSource: Data Source
'spm.extract.spm.datasource' Database Driver Class Name 'oracle.jdbc.OracleDriver'
2019-07-22 10:05:33.394 [INFO] [main] ApplicationProperties - <<getViolations(), returning=[]
2019-07-22 10:05:33.529 [INFO] [main] ExtractToolConfiguration - >>filterFlowProperties
extractlistattributes
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline,Insuranc
eAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList,InsuranceAssista
nceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID,InsuranceAssistanceDi
splayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRules,InsuranceAssistanceDis
playRuleSet.InsuranceAssistanceIncomeCategory.countedMemberMAGITimeline

68 IBM Cúram Social Program Management: Data Extractor

2019-07-22 10:05:33.539 [INFO] [main] RulesMetaModel - Building an in-memory model of the rule
set definitions.
2019-07-22 10:07:45.654 [WARN] [main] RulesMetaModel - ISScreening includes classpath 'curam/
citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes are not
supported. This can result in unqueriable inherited attributes.
2019-07-22 10:07:45.661 [WARN] [main] RulesMetaModel - InternalScreeningRuleSet includes
classpath 'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes
are not supported. This can result in unqueriable inherited attributes.
2019-07-22 10:07:45.666 [WARN] [main] RulesMetaModel - OnePageScreening includes classpath
'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes are not
supported. This can result in unqueriable inherited attributes.
2019-07-22 10:07:45.686 [WARN] [main] RulesMetaModel - InternalScreeningRuleSet_V2 includes
classpath 'curam/citizenworkspace/rules/impl/CitizenWorkspaceScreeningInterface.xml'. Includes
are not supported. This can result in unqueriable inherited attributes.
2019-07-22 10:07:47.319 [INFO] [main] MetaDestinationSchemaFactory - Queried Attribute Paths
and their XPath:-
2019-07-22 10:07:47.324 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDeniedPrograms.programNameTimeline = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDeniedPrograms/
programNameTimeline/Item
2019-07-22 10:07:47.324 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.assistanceTypeList = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
assistanceTypeList/Item
2019-07-22 10:07:47.325 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.caseParticipantRoleID = /
Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
caseParticipantRoleID
2019-07-22 10:07:47.326 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceDetailsCategory.isPassedNonFinancialRules
= /Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceDetailsCategory/
isPassedNonFinancialRules
2019-07-22 10:07:47.326 [INFO] [main] MetaDestinationSchemaFactory -
InsuranceAssistanceDisplayRuleSet.InsuranceAssistanceIncomeCategory.countedMemberMAGITimeline
= /Determination/DR/M/E/T/I/V/S/DecisionDetails/InsuranceAssistanceIncomeCategory/
countedMemberMAGITimeline/Item
2019-07-22 10:07:49.246 [INFO] [main] ApplicationProperties - <<getViolations(), returning=[]
2019-07-22 10:07:51.395 [INFO] [main] GenericTaskLauncherApplication - Started
GenericTaskLauncherApplication in 151.239 seconds (JVM running for 164.815)
2019-07-22 10:07:53.926 [INFO] [main] GenericTaskLauncherConfiguration -
Filtered Attribute Paths matching pattern '.*(?i)incometimeline.':-
--

FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalEarnedIncomeTimelineList,
FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalGrossIncomeTimelineList,
FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalGrossUnearnedIncomeTimelineList,
FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalNonCountableEarnedIncomeTimelineList,
FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalNonCountableIncomeTimelineList,
FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalNonCountableUnearnedIncomeTimelineList,
FoodAssistanceDisplayRuleSet.FAMemberIncomeCategory.totalSelfEmploymentIncomeTimelineList,
LIFCDisplayRuleSet.LIFCSummaryCategory.extendedLIFCSummaryCategory.riseInChildOrSpouseNetEarnedI
ncomeTimelineMessage,
LIFCDisplayRuleSet.LIFCSummaryCategory.transitionalLIFCSummaryCategory.riseInCaretakersNetEarned
IncomeTimelineMessage
--

Found 9 Attribute Paths
--

2019-07-22 10:07:53.931 [INFO] [main] GenericTaskLauncherApplication - ####### END
GenericTaskLauncherApplication ##########

Where version_no is the version number of the software, for example 1.0.2.

Running the IBM Social Program Management Data Extractor's functions in server mode
and non-server mode

The functions of the IBM Social Program Management Data Extractor include scheduling jobs, searching
for the Filter Flow attribute paths, and batch jobs.

Chapter 1. IBM Social Program Management Data Extractor 69

Scheduling jobs
Operators can schedule the XML Flow job, the Filter Flow CSV job, and the Filter Flow database job in
server mode and non-server mode.

Scheduling the XML Flow job
Operators can schedule the XML Flow job in server mode and non-server mode.

Scheduling the XML Flow job in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands JobLaunchingController. Six buttons are displayed. The following two buttons

are relevant for the XML Flow job:

• launchXmlFlowJob (name:String, startDate:String, endDate:String, gridSize:int):long
• launchXmlFlowJob (name:String, startDate:String, endDate:String, pageSize:int, maxNumItems:int,

gridSize:int):long

The launchXmlFlowJob operations support the parameters that are listed in the Parameters for the
IBM Social Program Management Data Extractor's functions related link.

The launchXmlFlowJob operation is overloaded with two versions that are shown in the preceding
list.

The launchXmlFlowJob (name:String, startDate:String, endDate:String, gridSize:int):long omits the
pageSize and the maxNumItems parameters. Instead, the effective values for these settings are read
from the application.properties. To run the job with effective page size, fetch size, and chunk
size that differ from each other, operators use this version.

The launchXmlFlowJob (name:String, startDate:String, endDate:String, pageSize:int,
maxNumItems:int, gridSize:int):long includes the pageSize and the maxNumItems parameters. The
value that is specified for the pageSize parameter becomes the effective value for page size, fetch
size, and chunk size.

4. The operator specifies the value for a job parameter by completing the applicable text box for one of
the two versions of the method.

5. The operator clicks the corresponding launchXmlFlowJob button. The Job Execution ID of the
scheduled batch job is displayed.

Scheduling the XML Flow job in non-server mode

Enter the following command to schedule the XML Flow job in non-server mode:

java -Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication -Dloader.args="XmlFlow
{JobParameters}" -Dspring.config.location={path-to-profiles-directory} -
Dspring.profiles.active={spring-profile-name} -Dloader.path={path-to-database-drivers-
directory} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2m. {JobParameters} matches
the format described at “Starting the IBM Social Program Management Data Extractor in non-server
mode” on page 65. The supported parameter names and their allowed values are described at
“Parameters for scheduling jobs” on page 85.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

70 IBM Cúram Social Program Management: Data Extractor

Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Scheduling the Filter Flow CSV job
Operators can schedule the Filter Flow CSV job in server mode and non-server mode.

Scheduling the Filter Flow CSV job in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands JobLaunchingController. Six buttons are displayed. The following two buttons

are relevant for the Filter Flow CSV job:

• launchFilterFlowCsvJob (name:String, startDate:String, endDate:String):long
• launchFilterFlowCsvJob (name:String, startDate:String, endDate:String, pageSize:int,

maxNumItems:int):long

The launchFilterFlowCsv operations support the parameters that are listed in the Parameters for the
IBM Social Program Management Data Extractor's functions related link.

The launchFilterFlowCsvJob operation is overloaded with two versions that are shown in the
preceding list.

The launchFilterFlowCsvJob (name:String, startDate:String, endDate:String):long omits the
pageSize and the maxNumItems parameters. Instead, the effective values for these settings are read
from the application.properties. To run the job with effective page size, fetch size, and chunk
size that differ from each other, operators use this version.

The launchFilterFlowCsvJob (name:String, startDate:String, endDate:String, pageSize:int,
maxNumItems:int):long includes the pageSize and the maxNumItems parameters. The value that is
specified for the pageSize parameter becomes the effective value for page size, fetch size, and chunk
size.

4. The operator specifies the value for a job parameter by completing the applicable text box for one of
the two versions of the method.

5. The operator clicks the corresponding launchFilterFlowCsvJob button. The Job Execution ID of the
scheduled batch job is displayed.

Scheduling the Filter Flow CSV job in non-server mode

Enter the following command to schedule the Filter Flow CSV job in non-server mode:

java -Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication -Dloader.args="FilterFlowCsv
{JobParameters}" -Dspring.config.location={path-to-profiles-directory} -
Dspring.profiles.active={spring-profile-name} -Dloader.path={path-to-database-drivers-
directory} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2. {JobParameters} matches the
format described at “Starting the IBM Social Program Management Data Extractor in non-server mode”
on page 65. The supported parameter names and their allowed values are described at “Parameters for
scheduling jobs” on page 85.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Chapter 1. IBM Social Program Management Data Extractor 71

Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Scheduling the Filter Flow database job
Operators can schedule the Filter Flow database job in server mode and non-server mode.

Schedule the Filter Flow database job in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands JobLaunchingController. Six buttons are displayed. The following two buttons

are relevant for the Filter Flow database job:

• launchFilterFlowDbJob (name:String, startDate:String, endDate:String,gridSize:int):long
• launchFilterFlowDbJob (name:String, startDate:String,endDate:String, pageSize:int,

maxNumItems:int,gridSize:int):long

The launchFilterFlowDbJob operation is overloaded with two versions that are shown in the
preceding list.

The launchFilterFlowDbJob (name:String, startDate:String, endDate:String,gridSize:int):long omits
the pageSize and the maxNumItems parameters. Instead, the effective values for these settings are
read from the application.properties. To run the job with effective page size, fetch size and
chunk size that differ from each other, operators use this version.

The launchFilterFlowDbJob (name:String, startDate:String,endDate:String, pageSize:int,
maxNumItems:int,gridSize:int):long includes the pageSize and the maxNumItems parameters. The
value that is specified for the pageSize parameter becomes the effective value for page size, fetch
size, and chunk size.

4. The operator specifies the value for a job parameter by completing the applicable text box for one of
the two versions of the method.

5. The operator clicks the corresponding launchFilterFlowDbJob button. The Job Execution ID of the
scheduled batch job is displayed.

Schedule the Filter Flow database job in non-server mode

Enter the following command to schedule the Filter Flow database job in non-server mode:

java -Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication -Dloader.args="FilterFlowDb
{JobParameters}" -Dspring.config.location={path-to-profiles-directory} -
Dspring.profiles.active={spring-profile-name} -Dloader.path={path-to-database-drivers-
directory} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2. {JobParameters} matches the
format described at “Starting the IBM Social Program Management Data Extractor in non-server mode”
on page 65. The supported parameter names and their allowed values are described at “Parameters for
scheduling jobs” on page 85.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).
Parameters for the IBM Social Program Management Data Extractor's functions

72 IBM Cúram Social Program Management: Data Extractor

The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Generating the Filter Flow database tables DDL
Operators can generate the Creation DDL for the attribute value tables in server and non-server mode.
Operators can also generate the Drop DDL for the attribute value tables in server mode and non-server
mode.

Generating the Creation DDL for the attribute value tables in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands DDLGeneratorController. The following two buttons for this MBean are

displayed:

• generateCreationDDL ()
• generateDropDDL ()

4. The operator clicks generateCreationDDL () to generate the creation DDL.

Generating the Creation DDL for the attribute value tables in non-server mode

Enter the following command to generate the Creation DDL for the attribute value tables in non-server
mode:

java -Dloader.args="DDLGenerator.generateCreateDDL" -Dloader.path={path-to-directory-with-db-
drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Generating the Drop DDL for the attribute value tables in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands DDLGeneratorController. The following two buttons for this MBean are

displayed:

• generateCreationDDL ()
• generateDropDDL ()

4. The operator clicks generateDropDDL () to generate the drop DDL.

Generating the Drop DDL for the attribute value tables in non-server mode

Enter the following command to generate the Drop DDL for the attribute value tables in non-server mode:

java -Dloader.args="DDLGenerator.generateDropDDL" -Dloader.path={path-to-directory-with-db-
drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode

Chapter 1. IBM Social Program Management Data Extractor 73

When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Searching for the Filter Flow attribute paths
Operators can search for the valid Filter Flow attribute paths in server mode and non-server mode.

Searching for the valid Filter Flow attribute paths in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands AttributePathSearchController. A searchAttributePaths (String) button for

this MBean is displayed.
4. If the operator does not want to specify an attributePathPattern parameter, the operator

removes String from the attributePathPattern field that corresponds to the searchAttributePaths
button.

5. The operator clicks searchAttributePaths to search for valid attribute paths.

Searching for the valid Filter Flow attribute paths in non-server mode

Enter the following command to search for the valid Filter Flow attribute paths in non-server mode:

java -Dloader.args="AttributePathSearch.searchAttributePaths
attributePathPattern={regexPattern}" -Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Generating XSDs for XML Flow ingested determination XML
Operators can list all valid CER static XSDs, list all valid CER products, read CER product details, print a
CER product period XSD, list all valid CER ruleset XSDs, print a CER ruleset XSD, and print a CER static
XSD. Operators can perform all these functions in server mode and non-server mode.

To list all valid CER static XSDs in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all

operation buttons are displayed in the Operation invocation pane.
4. The operator clicks listCERStatics ().

74 IBM Cúram Social Program Management: Data Extractor

To list all valid CER static XSDs in non-server mode

Enter the following command to list all valid CER static XSDs in non-server mode:

java -Dloader.args="XSDGenerator.listCERStatics" -Dloader.path={path-to-directory-with-db-
drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

To list all valid CER products in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all

operation buttons are displayed in the Operation invocation pane.
4. The operator clicks listCERProducts ().

To list all valid CER products in non-server mode

Enter the following command to list all valid CER products in non-server mode:

java -Dloader.args="XSDGenerator.listCERProducts" -Dloader.path={path-to-directory-with-db-
drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

To read CER product details, including all periods and each period's dependent XSDs, in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all

operation buttons are displayed in the Operation invocation pane.
4. The operator specifies the value for a job parameter by completing the applicable text box.
5. The operator clicks listCERPeriodsByProduct ().

To read CER product details, including all periods and each period's dependent XSDs, in non-server
mode

Enter the following command to read CER product details, including all periods and each period's
dependent XSDs, in non-server mode:

java -Dloader.args="XSDGenerator.listCERPeriodsByProduct {productId}" -Dloader.path={path-to-
directory-with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication
-Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Chapter 1. IBM Social Program Management Data Extractor 75

To print a CER product period XSD in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all

operation buttons are displayed in the Operation invocation pane.
4. The operator specifies the value for a job parameter by completing the applicable text box.
5. The operator clicks getCERPeriod (productid, date).

To print a CER product period XSD in non-server mode

Enter the following command to print a CER product period XSD in non-server mode:

java -Dloader.args="XSDGenerator.getCERProductPeriodByProductIDAndDate {productId}
{effective_date}" -Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

To list all valid CER ruleset XSDs in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all

operation buttons are displayed in the Operation invocation pane.
4. The operator clicks listCERRuleSets ().

To list all valid CER ruleset XSDs in non-server mode

Enter the following command to list all valid CER ruleset XSDs in non-server mode:

java -Dloader.args="XSDGenerator.listCERRuleSets" -Dloader.path={path-to-directory-with-db-
drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

To print a CER ruleset XSD in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands the com.ibm.spm.extracttool.controllers
section.

3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all
operation buttons are displayed in the Operation invocation pane.

4. The operator specifies the value for a job parameter by completing the applicable text box.
5. The operator clicks getCERRuleSetByName (ruleSetName).

76 IBM Cúram Social Program Management: Data Extractor

To print a CER ruleset XSD in non-server mode

Enter the following command to print a CER ruleset XSD in non-server mode:

java -Dloader.args="XSDGenerator.getCERRuleSetByName {ruleSetName}" -Dloader.path={path-to-
directory-with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication
-Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

To print a CER static XSD in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands XSDGenerationController and clicks Operations. From the operations node, all

operation buttons are displayed in the Operation invocation pane.
4. The operator specifies the value for a job parameter by completing the applicable text box.
5. The operator clicks the button getCERStaticBySchemaName (schemaName).

To print a CER static XSD in non-server mode

Enter the following command to print a CER static XSD in non-server mode:

java -Dloader.args="XSDGenerator.getCERStaticBySchemaName {schemaName}" -Dloader.path={path-to-
directory-with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication
-Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Batch jobs
Operators can perform 10 batch jobs in server and non-server mode. The batch jobs include abandoning a
job execution, restarting a job, and listing job instances.

Abandoning a job execution
An operator can abandon a job execution in server mode or in non-server mode.

Abandon a job execution in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using J Console, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) abandonExecution(executionId:long):Long.
4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the abandonExecution button.

Chapter 1. IBM Social Program Management Data Extractor 77

Abandon a job execution in non-server mode

Enter the following command to abandon a job execution in non-server mode:

java -Dloader.args="JobOperatorProxy.abandon {executionId}" -Dloader.path={path-to-directory-
with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Stopping a job execution
An operator can stop a job execution in server mode or in non-server mode.

Stop a job in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) stop(executionId:long):boolean.
4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the stop button.

Stop a job in non-server mode

Enter the following command to stop a job execution in non-server mode:

java -Dloader.args="JobOperatorProxy.stop {executionId}" -Dloader.path={path-to-directory-with-
db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Getting job parameters
An operator can get job parameters in server mode or in non-server mode.

Get job parameters in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.

78 IBM Cúram Social Program Management: Data Extractor

3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.
The list of buttons that is displayed includes (i) getParameters(executionId:long):String.

4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the getParameters button.

Get job parameters in non-server mode

Enter the following command to get job parameters in non-server mode:

java -Dloader.args="JobOperatorProxy.getJobParameters {executionId}" -Dloader.path={path-to-
directory-with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication
-Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Restarting a job
An operator can restart a job in server mode or in non-server mode.

Restart a job in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) restart(executionId:long):Long.
4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the restart button.

Restart a job in non-server mode

Enter the following command to restart a job in non-server mode:

java -Dloader.args="JobOperatorProxy.restart {executionId}" -Dloader.path={path-to-directory-
with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Chapter 1. IBM Social Program Management Data Extractor 79

Summarizing step executions
An operator can summarize step executions in server mode or in non-server mode.

Summarize step executions in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i)
getStepExecutionSummaries(executionId:long):Map.

4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the getStepExecutionSummaries button.

Summarize step executions in non-server mode

Enter the following command to summarize step executions in non-server mode:

java -Dloader.args="JobOperatorProxy.getStepExecutionSummaries {executionId}" -
Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Summarizing job executions
An operator can summarize job executions in server mode or in non-server mode.

Summarize job executions in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) getSummary(executionId:long):String.
4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the getSummary button.

Summarize job executions in non-server mode

Enter the following command to summarize job executions in non-server mode:

java -Dloader.args="JobOperatorProxy.getSummary {executionId}" -Dloader.path={path-to-directory-
with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

80 IBM Cúram Social Program Management: Data Extractor

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Listing job instances
An operator can list job instances in server mode or in non-server mode.

List job instances in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes
(i)getJobInstances(jobName:String,start:int,count:int):List.

4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the getJobInstances button.

List job instances in non-server mode

Enter the following command to list job instances in non-server mode:

java -Dloader.args="JobOperatorProxy.getJobInstances {jobTypeName} {start} {count}" -
Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Listing the executions of an instance
An operator can list the executions of an instance in server mode or in non-server mode.

Listing the executions of an instance in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) getExecutions(instanceId:long):List.
4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the getExecutions button.

Chapter 1. IBM Social Program Management Data Extractor 81

Listing the executions of an instance in non-server mode

Enter the following command to list the executions of an instance in non-server mode:

java -Dloader.args="JobOperatorProxy.getExecutions {instanceId} " -Dloader.path={path-to-
directory-with-db-drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication
-Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Listing the available jobs
An operator can list the available jobs in server mode or in non-server mode.

List the available jobs in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) getJobNames():Set.
4. The operator clicks the getJobNames button.

List the available jobs in non-server mode

Enter the following command to list the available jobs in non-server mode:

java -Dloader.args="JobOperatorProxy.getJobNames" -Dloader.path={path-to-directory-with-db-
drivers} -Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no>.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Listing the running executions for a job
An operator can list the running executions for a job in server mode or in non-server mode.

List the running executions for a job in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.batch.launch.
3. The operator expands com.ibm.spm.extracttool.batch.launch > JobOperatorProxy > Operations.

The list of buttons that is displayed includes (i) getRunningExecutions(jobName:String):Set.

82 IBM Cúram Social Program Management: Data Extractor

4. The operator specifies the required values in the respective text boxes.
5. The operator clicks the getRunningExecutions button.

List the running executions for a job in non-server mode

Enter the following command to run executions for a job in non-server mode:

java -Dloader.args=" JobOperatorProxy.getRunningExecutions {jobTypeName}" -Dloader.path={path-
to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.GenericTaskLauncherApplication -
Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-profile-
name} -jar DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).

Retry Determination Extraction operations
The operator can run the retry Determination XML Flow operation, the retry Determination Filter Flow CSV
operation, and the retry Determination Filter Flow database operation. Operators can perform the three
functions in server mode and non-server mode.

Note: The retry functionality was originally intended to be used to retry individual determinations that
failed as part of a standard extraction. However, the retry functionality can also be used to extract an
individual determination's data by using the determination's ID. The retry functionality can be used
regardless of whether that determination was part of a previous extract.

Retry Determination XML Flow
The operator can run the retry Determination XML Flow in server mode and non-server mode.

Retry Determination XML Flow in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands JobLaunchingController. Six buttons are displayed. The button

retryXmlFlowJob (String, String) (jobInstanceName:String,retryDeterminationIds:String):long is
relevant for the retry Determination XML Flow. The retryXmlFlowJob operation supports the
parameters that are listed in the Parameters for the IBM Social Program Management Data Extractor's
functions related link.

4. The operator specifies the value for a job parameter by completing the applicable text box for one of
the two versions of the method.

5. The operator clicks the corresponding retryXmlFlowJob button. The Job Execution ID of the
scheduled batch job is displayed.

Retry Determination XML Flow in non-server mode

Enter the following command to retry Determination XML Flow in non-server mode:

java -Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-
profile-name} -Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication -Dloader.args="XmlFlow
name={jobInstanceName} retryDeterminationIds={determination_ids} {OtherJobParameters}" -jar
DataExtractor-version_no.jar

Chapter 1. IBM Social Program Management Data Extractor 83

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).
Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Retry Determination Filter Flow CSV
The operator can run the retry Determination Filter Flow CSV in server mode and in non-server mode.

Retry Determination Filter Flow CSV in server mode

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands JobLaunchingController. Six buttons are displayed. The relevant button for

retry Determination Filter Flow CSV is retryFilterFlowCsvJob (String, String)
(jobInstanceName:String,retryDeterminationIds:String):long. The retryFilterFlowCsvJob
operation supports the parameters that are listed in the Parameters for the IBM Social Program
Management Data Extractor's functions related link.

4. The operator specifies the value for a job parameter by completing the applicable text box for one of
the two versions of the method.

5. The operator clicks the corresponding retryFilterFlowCsvJob button. The Job Execution ID of the
scheduled batch job is displayed.

Retry Determination Filter Flow CSV in non-server mode

Enter the following command to retry Determination Filter Flow CSV in non-server mode:

java -Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-
profile-name} -Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication -Dloader.args="FilterFlowCsv
name={jobInstanceName} retryDeterminationIds={ determination_ids } {OtherJobParameters}" -jar
DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).
Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Retry Determination Filter Flow database
The operator can run the retry Determination Filter Flow database in server mode and in non-server
mode.

Retry Determination Filter Flow Database in server mode

84 IBM Cúram Social Program Management: Data Extractor

1. The operator follows steps 1-6 for starting JConsole and connecting to the MBean server. For more
information about calling the functions of the tool through the MBean APIs by using JConsole, see the
Starting the IBM Social Program Management Data Extractor in server mode related link.

2. In the folder view of the MBean pane, the operator expands com.ibm.spm.extracttool.controllers.
3. The operator expands JobLaunchingController. Six buttons are displayed. The relevant button for

retry Determination Filter Flow database is retryFilterFlowDbJob (String, String)
(jobInstanceName:String,retryDeterminationIds:String):long. The retryFilterFlowDbJob
operation supports the parameters that are listed in the Parameters for the IBM Social Program
Management Data Extractor's functions related link.

4. The operator specifies the value for a job parameter by completing the applicable text box for one of
the two versions of the method.

5. The operator clicks the corresponding retryFilterFlowDbJob button. The Job Execution ID of the
scheduled batch job is displayed.

Retry Determination Filter Flow database in non-server mode

Enter the following command to retry Determination Filter Flow database in non-server mode:

java -Dspring.config.location={path-to-profiles-directory} -Dspring.profiles.active={spring-
profile-name} -Dloader.path={path-to-directory-with-db-drivers} -
Dloader.main=com.ibm.spm.extracttool.JobLauncherApplication -Dloader.args="FilterFlowDb
name={jobInstanceName} retryDeterminationIds={ determination_ids } {OtherJobParameters}" -jar
DataExtractor-version_no.jar

Where version_no is the version number of the software, for example 1.0.2.

Related concepts
Starting the IBM Social Program Management Data Extractor in server mode
When the operator starts the tool in server mode, the operator does not specify the function to start. The
tool starts an MBean server and registers the MBeans that provide APIs for calling the tool functions by
using JConsole. The operator can then call the tool’s functions by using an MBean API. The tool runs until
the operator explicitly shuts down the Java virtual machine (JVM).
Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Parameters for the IBM Social Program Management Data Extractor's functions
The parameters for the IBM Social Program Management Data Extractor include scheduling jobs, retrying
Determination extraction operations, and searching for the valid Filter Flow attribute paths.

Parameters for scheduling jobs
Operators can use the parameters of the IBM Social Program Management Data Extractor to schedule the
XML Flow job, the Filter Flow CSV job, and the Filter Flow database job.

Parameters for scheduling the XML Flow job
The parameters for scheduling the XML Flow job are name, startDate, endDate, maxNumItems,
pageSize, and gridSize. The XML Flow job returns a long integer that represents a Job Execution ID.

name

The following lists the characteristics of the name parameter:

• name is a means of identifying a job instance.
• name is a string.
• name is a required parameter.

Chapter 1. IBM Social Program Management Data Extractor 85

startDate

The following lists the characteristics of the startDate parameter:

• startDate is a formatted date string. The format is yyyy-MM-dd.
• startDate is used used to match determinations that were made on or after the date and time.
• Currently, the API only supports specifying a day in the format yyyy-MM-dd.
• The time for a specified day is taken as midnight of that day. For example: 2018-10-01 is classed as

midnight of 10 October 2018.
• startDate is an optional parameter.
• If unspecified, the job calculates startDate as the endDate minus
spm.extract.maxdateinterval number of days.

endDate

The following lists the characteristics of the endDate parameter:

• endDate is a formatted date string. The format is yyyy-MM-dd.
• endDate matches determinations that were made before the date and time.
• Currently, the API only supports specifying a day in the format yyyy-MM-dd.
• The time for a specified day is taken as midnight of that day. For example: 2018-10-01 is classed as

midnight of 10 October 2018.
• endDate is an optional parameter.
• If unspecified, the job calculates endDate in the following ways:

– The current date time, if startDate is not specified.
– The startDate plus spm.extract.maxdateinterval number of days, if startDate is specified.

maxNumItems

The following lists the characteristics of the maxNumItems parameter:

• maxNumItems is the maximum number of determinations that are read by an XML Flow or Filter Flow
job.

• maxNumItems is a positive integer greater than zero.
• maxNumItems overrides the spm.extract.maxitemcount property in application.properties.
• If the operator uses the MBean start operation that does not have the maxNumItems parameter, the

scheduled job uses the value from the spm.extract.maxitemcount configuration property.

pageSize

The following lists the characteristics of the pageSize parameter:

• pageSize is a positive integer, M.
• The pageSize parameter overrides the following application.properties properties:

– spm.extract.pagesize
– spm.extract.fetchsize
– spm.extract.chunksize

• To vary the configuration properties so that the properties have different values, do not use the version
of the method that uses the preceding properties as parameters. Instead, use the corresponding
properties in application.properties and use the MBean start operation or operations that do not
use the pageSize parameter.

• The pageSize parameter is used by all batch jobs.

86 IBM Cúram Social Program Management: Data Extractor

• The pageSize parameter is used by the paged, reader SQL query that is run by the all batch jobs types
to read the CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs from the
CREOLECASEDETERMINATION rows that match the query criteria, M IDs at a time.

• A larger M means that fewer reader queries are run against the database.

gridSize

The following lists the characteristics of the gridSize parameter:

• gridSize is a positive integer, P.
• The gridSize parameter overrides the application.properties property
spm.extract.gridsize.

• The gridSize parameter is used by the Filter Flow database and the XML Flow. The parameter is not
used by the Filter Flow CSV.

• When specified as a value greater than 1, the tool creates partitioned step executions. The following
changes then apply:

– A single execution of a job starts multiple step executions in parallel. For example, with gridSize P,
P step executions are started with their own dedicated ItemReader instance and run the read,
process, and write execution cycle. For more information, see Table 1 in the Batch jobs: job types and
their purposes related link.

– A dedicated partitioner creates a separate step execution context that effectively divides the range of
CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs that are to be processed by the
job into P partitions.

– Each step execution is then used to read and process the IDs in the partition for which it is
responsible.

• In the release of the tool, a thread-based grid execution fabric is used. So, each step execution has a
corresponding thread in the same JVM as the IBM Social Program Management Data Extractor itself.

• A larger grid size P means that instead of a job execution that reads-processes-writes items serially, the
job execution is performed in parallel over #P threads. So, the job execution typically takes less time
than with a single thread.

Related concepts
Batch jobs: job types and their purposes
The batch jobs that the IBM Social Program Management Data Extractor runs are Spring Batch jobs.
Spring Batch uses a chunk-oriented processing approach.

Parameters for scheduling the Filter Flow CSV job
The parameters for scheduling the Filter Flow CSV job are name, startDate, endDate, maxNumItems,
and pageSize. The Filter Flow CSV job returns a long integer that represents a Job Execution ID.

name

The following lists the characteristics of the name parameter:

• name is a means of identifying a job instance.
• name is a string.
• name is a required parameter.

startDate

The following lists the characteristics of the startDate parameter:

• startDate is a formatted date string. The format is yyyy-MM-dd.
• startDate is used used to match determinations that were made on or after the date and time.
• Currently, the API only supports specifying a day in the format yyyy-MM-dd.

Chapter 1. IBM Social Program Management Data Extractor 87

• The time for a specified day is taken as midnight of that day. For example: 2018-10-01 is classed as
midnight of 10 October 2018.

• startDate is an optional parameter.
• If unspecified, the job calculates startDate as the endDate minus
spm.extract.maxdateinterval number of days.

endDate

The following lists the characteristics of the endDate parameter:

• endDate is a formatted date string. The format is yyyy-MM-dd.
• endDate matches determinations that were made before the date and time.
• Currently, the API only supports specifying a day in the format yyyy-MM-dd.
• The time for a specified day is taken as midnight of that day. For example: 2018-10-01 is classed as

midnight of 10 October 2018.
• endDate is an optional parameter.
• If unspecified, the job calculates endDate in the following ways:

– The current date time, if startDate is not specified.
– The startDate plus spm.extract.maxdateinterval number of days, if startDate is specified.

maxNumItems

The following lists the characteristics of the maxNumItems parameter:

• maxNumItems is the maximum number of determinations that are read by an XML Flow or Filter Flow
job.

• maxNumItems is a positive integer greater than zero.
• maxNumItems overrides the spm.extract.maxitemcount property in application.properties.
• If the operator uses the MBean start operation that does not have the maxNumItems parameter, the

scheduled job uses the value from the spm.extract.maxitemcount configuration property.

pageSize

The following lists the characteristics of the pageSize parameter:

• pageSize is a positive integer, M.
• The pageSize parameter overrides the following application.properties properties:

– spm.extract.pagesize
– spm.extract.fetchsize
– spm.extract.chunksize

• To vary the configuration properties so that the properties have different values, do not use the version
of the method that uses the preceding properties as parameters. Instead, use the corresponding
properties in application.properties and use the MBean start operation or operations that do not
use the pageSize parameter.

• The pageSize parameter is used by all batch jobs.
• The pageSize parameter is used by the paged, reader SQL query that is run by the all batch jobs types

to read the CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs from the
CREOLECASEDETERMINATION rows that match the query criteria, M IDs at a time.

• A larger M means that fewer reader queries are run against the database.

88 IBM Cúram Social Program Management: Data Extractor

Parameters for scheduling a Filter Flow database job
The parameters for scheduling the Filter Flow database job are name, startDate, endDate,
maxNumItems, pageSize, and gridSize. The Filter Flow database job returns a long integer that
represents a Job Execution ID.

name

The following lists the characteristics of the name parameter:

• name is a means of identifying a job instance.
• name is a string.
• name is a required parameter.

startDate

The following lists the characteristics of the startDate parameter:

• startDate is a formatted date string. The format is yyyy-MM-dd.
• startDate is used used to match determinations that were made on or after the date and time.
• Currently, the API only supports specifying a day in the format yyyy-MM-dd.
• The time for a specified day is taken as midnight of that day. For example: 2018-10-01 is classed as

midnight of 10 October 2018.
• startDate is an optional parameter.
• If unspecified, the job calculates startDate as the endDate minus
spm.extract.maxdateinterval number of days.

endDate

The following lists the characteristics of the endDate parameter:

• endDate is a formatted date string. The format is yyyy-MM-dd.
• endDate matches determinations that were made before the date and time.
• Currently, the API only supports specifying a day in the format yyyy-MM-dd.
• The time for a specified day is taken as midnight of that day. For example: 2018-10-01 is classed as

midnight of 10 October 2018.
• endDate is an optional parameter.
• If unspecified, the job calculates endDate in the following ways:

– The current date time, if startDate is not specified.
– The startDate plus spm.extract.maxdateinterval number of days, if startDate is specified.

maxNumItems

The following lists the characteristics of the maxNumItems parameter:

• maxNumItems is the maximum number of determinations that are read by an XML Flow or Filter Flow
job.

• maxNumItems is a positive integer greater than zero.
• maxNumItems overrides the spm.extract.maxitemcount property in application.properties.
• If the operator uses the MBean start operation that does not have the maxNumItems parameter, the

scheduled job uses the value from the spm.extract.maxitemcount configuration property.

pageSize

The following lists the characteristics of the pageSize parameter:

Chapter 1. IBM Social Program Management Data Extractor 89

• pageSize is a positive integer, M.
• The pageSize parameter overrides the following application.properties properties:

– spm.extract.pagesize
– spm.extract.fetchsize
– spm.extract.chunksize

• To vary the configuration properties so that the properties have different values, do not use the version
of the method that uses the preceding properties as parameters. Instead, use the corresponding
properties in application.properties and use the MBean start operation or operations that do not
use the pageSize parameter.

• The pageSize parameter is used by all batch jobs.
• The pageSize parameter is used by the paged, reader SQL query that is run by the all batch jobs types

to read the CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs from the
CREOLECASEDETERMINATION rows that match the query criteria, M IDs at a time.

• A larger M means that fewer reader queries are run against the database.

gridSize

The following lists the characteristics of the gridSize parameter:

• gridSize is a positive integer, P.
• The gridSize parameter overrides the application.properties property
spm.extract.gridsize.

• The gridSize parameter is used by the Filter Flow database and the XML Flow. The parameter is not
used by the Filter Flow CSV.

• When specified as a value greater than 1, the tool creates partitioned step executions. The following
changes then apply:

– A single execution of a job starts multiple step executions in parallel. For example, with gridSize P,
P step executions are started with their own dedicated ItemReader instance and run the read,
process, and write execution cycle. For more information, see Table 1 in the Batch jobs: job types and
their purposes related link.

– A dedicated partitioner creates a separate step execution context that effectively divides the range of
CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONIDs that are to be processed by the
job into P partitions.

– Each step execution is then used to read and process the IDs in the partition for which it is
responsible.

• In the release of the tool, a thread-based grid execution fabric is used. So, each step execution has a
corresponding thread in the same JVM as the IBM Social Program Management Data Extractor itself.

• A larger grid size P means that instead of a job execution that reads-processes-writes items serially, the
job execution is performed in parallel over #P threads. So, the job execution typically takes less time
than with a single thread.

Related concepts
Batch jobs: job types and their purposes

90 IBM Cúram Social Program Management: Data Extractor

The batch jobs that the IBM Social Program Management Data Extractor runs are Spring Batch jobs.
Spring Batch uses a chunk-oriented processing approach.

Parameters for retrying Determination extraction operations
Operators can use the parameters of the IBM Social Program Management Data Extractor to run the retry
Determination XML Flow job, the retry Determination Filter Flow CSV job, and the retry Determination
Filter Flow database job.

Parameters for the retry Determination XML Flow job
The parameters for the retry Determination XML Flow job are name and retryDeterminationIds. The
retry Determination XML Flow job returns a long integer that represents a Job Execution ID.

name

The following lists the characteristics of the name parameter:

• name is a means of identifying a job instance.
• name is a string.
• name is a required parameter.

retryDeterminationIds

The following lists the characteristics of the retryDeterminationIds parameter:

• retryDeterminationIds is a string.
• retryDeterminationIds is a comma-delimited list of determination IDs that corresponds to values

for CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONID in the Social Program
Management database.

• retryDeterminationIds is a required parameter.

Parameters for the retry Determination Filter Flow CSV job
The parameters for the retry Determination Filter Flow CSV job are name and retryDeterminationIds.
The retry Determination Filter Flow CSV job returns a long integer that represents a Job Execution ID.

name

The following lists the characteristics of the name parameter:

• name is a means of identifying a job instance.
• name is a string.
• name is a required parameter.

retryDeterminationIds

The following lists the characteristics of the retryDeterminationIds parameter:

• retryDeterminationIds is a string.
• retryDeterminationIds is a comma-delimited list of determination IDs that corresponds to values

for CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONID in the Social Program
Management database.

• retryDeterminationIds is a required parameter.

Chapter 1. IBM Social Program Management Data Extractor 91

Parameters for the retry Determination Filter Flow database job
The parameters for the retry Determination Filter Flow database job are name and
retryDeterminationIds. The retry Determination Filter Flow database job returns a long integer that
represents a Job Execution ID

name

The following lists the characteristics of the name parameter:

• name is a means of identifying a job instance.
• name is a string.
• name is a required parameter.

retryDeterminationIds

The following lists the characteristics of the retryDeterminationIds parameter:

• retryDeterminationIds is a string.
• retryDeterminationIds is a comma-delimited list of determination IDs that corresponds to values

for CREOLECASEDETERMINATION.CREOLECASEDETERMINATIONID in the Social Program
Management database.

• retryDeterminationIds is a required parameter.

Parameters for generating the Filter Flow database tables DDL
Operators can use return values to generate the Creation DDL for the attribute value table and to generate
the Drop DDL for the attribute value tables.
Generating the Creation DDL for the attribute value tables

To create the Filter Flow attribute value tables for the Data Warehouse, the return value is DDL.
Generating the Drop DDL for the attribute value tables

To create the Filter Flow attribute value tables for the Data Warehouse, the return value is DDL.

Parameters for searching for the valid Filter Flow attribute paths
Operators can use the attributePathPattern parameter to search for the valid Filter Flow attribute
paths.

The parameter attributePathPattern is an optional parameter that takes a valid regular expression
pattern. The return value is a list of all valid filter flow attribute paths, optionally filtered by the parameter.

Parameters for generating XSDs for XML Flow- ingested determination XML
Operators can use parameters to list all valid CER static XSDs, list all valid CER products, read CER
product details, print a CER product period XSD, list all valid CER ruleset XSD, print a CER ruleset XSD,
and print a CER static XSD. Operators can perform all these functions in server mode and non-server
mode.

List all valid CER static XSDs
Return value

The function returns a listing of all available CER static XSDs as a string in JSON format.

List all valid CER products
Return value

The function returns a listing of all available CER products as a string in JSON format.

Read CER product details, including all periods and each period's dependent XSDs
productid

The unique identifier for the product.

92 IBM Cúram Social Program Management: Data Extractor

Return value
The function returns a listing of all available CER period XSDs for a CER product as a string in JSON
format.

Print a CER product period XSD
productid

The unique identifier for the product.
effective_date

The parameter effective_date is a formatted date string with the date format is yyyy-MM-dd,
where the following characteristics apply:

• Represents the date for which to produce the XSD.
• The function is contained in only one product period.

Return values
The function returns a string in XSD format:

• Save to a file and name it using the name that is given for it in listCERPeriodsByProduct.
• Defines a portion of the structure of the DETERMINATION XML that differs per product per period.

List all valid CER ruleset XSDs
Return value

The function returns a listing of all available CER ruleset XSDs as a string in JSON format.

Print a CER ruleset XSD
ruleSetName

The unique identifier for the ruleset.
Return values

The function returns a string in XSD format:

• Save to a file and name it using the name that is given to it in listCERPeriodsByProduct /
listCERRuleSets.

• Defines the portion of the structure of the DETERMINATION XML that is related to the rule set.

Print a CER static XSD
schemaName

The unique name for the static schema.
Return values

The function returns a string in XSD format:

• Save to a file and name it using the name that is given to it in listCERPeriodsByProduct /
listCERStatics.

• Defines the static portion of the structure of the DETERMINATION XML.

Parameters for batch jobs
Operators can use parameters to perform 10 batch jobs. The batch jobs include stopping a job, getting job
parameters, and listing the executions of an instance.

Stop a job
executionId

The unique identifier for the product.
Return value

The return value is true if the message was successfully sent, although it does not ensure that the job
is stopped.

Chapter 1. IBM Social Program Management Data Extractor 93

Abandon a job execution
executionId

The unique identifier for the execution.
Return value

The return value is the ID of the execution that was started.

Get job parameters
executionId

The unique identifier for the execution.
Return value

The return value is the job parameters that were used to start the associated instance.

Restart a job
executionId

The unique identifier for the execution.
Return value

The return value is the ID of the execution that was started.

Summarize step executions
executionId

The unique identifier for the execution.
Return value

The return value is a map of step execution ID to string that summarizes the state of the execution.

Summarize job execution
executionId

The unique identifier for the execution.
Return value

The return value is a string that summarizes the state of the job execution.

List job instances

The list job instances batch job has three parameters:
jobname

The job name that is given to all the instances.
start

The start index of the instances.
count

The maximum number of values.
Return value

The return value is the ID values of the instances.

List executions of an instance
instanceId

The unique identifier for the instance.
Return value

The return value is the ID values of all the executions that are associated with this instance.

94 IBM Cúram Social Program Management: Data Extractor

List available jobs
Return value

The return value is a set of job names.

List running executions for a job
jobname

The job name that is given to all the instances.
Return value

The return value is the ID values of the running execution instances.

Stopping the IBM Social Program Management Data Extractor
To stop the IBM Social Program Management Data Extractor when the tool is running in server mode, the
operator issues Ctrl+C in the command window where the operator started the tool.

Chapter 1. IBM Social Program Management Data Extractor 95

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

96 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 97

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

98 IBM Cúram Social Program Management: Data Extractor

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Figures
	Tables
	Chapter 1. IBM Social Program Management Data Extractor
	Determining case eligibility and entitlement
	Components of the IBM Social Program Management Data Extractor
	Downloading and installing the IBM Social Program Management Data Extractor
	Batch jobs
	Batch jobs: job types and their purposes
	How determinations are read by the IBM Social Program Management Data Extractor batch jobs

	XML flow job
	Filter flow CSV job
	The output directory for the filter flow CSV job

	Filter flow database job
	Filter flow compaction limit

	Filter flow job output
	Relational data structures
	Filter flow CSV examples

	Monitoring job progress in the log
	Functions of the IBM Social Program Management Data Extractor that relate to the batch jobs
	Scheduling a job execution
	Restarting a job execution
	Per determination retry
	Stopping a job execution
	Reporting a job execution status
	Abandoning a job execution

	Other functions of the IBM Social Program Management Data Extractor
	Searching for the Filter Flow attribute paths
	Generating the Filter Flow attribute value database tables creation and drop DDL
	Issues associated with the length of a generated table name

	Defining the output of the XML flow job transformation
	Generating schema definitions
	Determination BLOB XML structure

	Setup steps to run the IBM Social Program Management Data Extractor
	Prerequisite setup steps
	Creating and dropping the database tables
	Required database access
	Securing a connection to the Social Program Management and Data Warehouse databases over TLS 1.2

	Editing the Spring Profile
	Filter Flow job configuration properties
	Job configuration properties (applies to all job types)
	Editing the Social Program Management database data source properties
	Editing the Data Warehouse database data source properties
	The ShortNames.properties file

	Getting the database drivers
	Configuring the IBM Social Program Management Data Extractor MBean API for remote access
	Logging
	How to perform profiling by using J9 VM tracing

	Running the IBM Social Program Management Data Extractor
	Starting the IBM Social Program Management Data Extractor in server mode
	Starting the IBM Social Program Management Data Extractor in non-server mode
	The console log output when started in non-server mode: running a batch job
	The console log output when the tool is started in non-server mode: searching for the valid Filter Flow attribute paths

	Running the IBM Social Program Management Data Extractor's functions in server mode and non-server mode
	Scheduling jobs
	Scheduling the XML Flow job
	Scheduling the Filter Flow CSV job
	Scheduling the Filter Flow database job

	Generating the Filter Flow database tables DDL
	Searching for the Filter Flow attribute paths
	Generating XSDs for XML Flow ingested determination XML
	Batch jobs
	Abandoning a job execution
	Stopping a job execution
	Getting job parameters
	Restarting a job
	Summarizing step executions
	Summarizing job executions
	Listing job instances
	Listing the executions of an instance
	Listing the available jobs
	Listing the running executions for a job

	Retry Determination Extraction operations
	Retry Determination XML Flow
	Retry Determination Filter Flow CSV
	Retry Determination Filter Flow database

	Parameters for the IBM Social Program Management Data Extractor's functions
	Parameters for scheduling jobs
	Parameters for scheduling the XML Flow job
	Parameters for scheduling the Filter Flow CSV job
	Parameters for scheduling a Filter Flow database job

	Parameters for retrying Determination extraction operations
	Parameters for the retry Determination XML Flow job
	Parameters for the retry Determination Filter Flow CSV job
	Parameters for the retry Determination Filter Flow database job

	Parameters for generating the Filter Flow database tables DDL
	Parameters for searching for the valid Filter Flow attribute paths
	Parameters for generating XSDs for XML Flow- ingested determination XML
	Parameters for batch jobs

	Stopping the IBM Social Program Management Data Extractor

	Notices
	Privacy Policy considerations
	Trademarks

