
IBM Cúram Social Program Management
Version 7.0.1

Cúram JMX Developer Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 11

Edition

This edition applies to IBM Cúram Social Program Management v7.0.1 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing with Cúram JMX 1
Overview 1
What is Cúram JMX 1

Using Cúram JMX to Expose Application Statistics 1

Developing the Custom MBean 1
Updating the Configuration of Cúram JMX . . 9
Instrumenting Application Code 9

Notices 11
Privacy Policy considerations 13
Trademarks 13

© Copyright IBM Corp. 2012, 2017 iii

iv IBM Cúram Social Program Management: Cúram JMX Developer Guide

Figures

1. A custom MBean interface 2
2. A custom MBean implementation 4
3. Usage example 5
4. Usage example 6
5. Usage example 7
6. Using NumericalCounterStatisticsAggregator

and NumericCounterStatistics 8

7. Pushing elapsed time statistics to the custom
MBean 9

8. Pushing execution statistics to existing JMX
services 9

© Copyright IBM Corp. 2012, 2017 v

vi IBM Cúram Social Program Management: Cúram JMX Developer Guide

Tables

1. MBean abstract classes 2

© Copyright IBM Corp. 2012, 2017 vii

viii IBM Cúram Social Program Management: Cúram JMX Developer Guide

Developing with Cúram JMX

Use the Cúram Java Management Extensions infrastructure to simplify the
instrumentation of code and the collection of application operational data by using
the JMX standard. Cúram JMX facilitates the creation of custom MBeans and their
registration in the correct MBean server corresponding to the runtime environment.

Overview
The purpose of this guide is to describe how Cúram JMX can be extended with
custom MBeans. This guide is intended for application developers interested in
providing custom operational data via Cúram JMX.

What is Cúram JMX
Cúram Java Management Extensions (JMX) is an infrastructure that simplifies the
instrumentation of code and the collection of application operational data using the
JMX standard. Cúram JMX facilitates the creation of custom MBeans and their
registration in the correct MBean server corresponding to the runtime environment.

Using Cúram JMX to Expose Application Statistics
In order to collect and expose custom application statistics an MBean needs to be
created, the application code instrumented to provide the statistics and the JMX
infrastructure configuration modified to initialize the newly created MBean.

Developing the Custom MBean
Cúram JMX supports only Open MBeans. An Open MBean is an MBean where the
types of attributes and of operation parameters and return values are built using a
small set of predefined Java classes. A multidimensional array of any one of these
classes or their corresponding primitive types is also allowed.

These acceptable Java data types are listed below.
v java.lang.Void
v java.lang.Boolean
v java.lang.Character
v java.lang.Byte
v java.lang.Short
v java.lang.Integer
v java.lang.Long
v java.lang.Float
v java.lang.Double
v java.lang.String
v java.math.BigDecimal
v java.math.BigInteger
v java.util.Date
v javax.management.ObjectName
v javax.management.openmbean.CompositeData
v javax.management.openmbean.TabularData

© Copyright IBM Corp. 2012, 2017 1

The Interface:

This example shows the definition of an interface for an MBean that returns some
statistics in a tabular format and supports the reset of its statistics. It is not
compulsory to declare the reset method. Declare it only if the MBean can or is
allowed to reset its statistics.

When an administrative request is made to reset all JMX statistics the JMX
infrastructure inspects the MBean definition and if it finds the reset operation it
invokes it.

End the name of the interface in StatsMBean: It is important for all MBeans that
export statistics to have an interface class name that ends in StatsMBean.

The Implementation:

There are several options for creating your own MBean. We provide a set of
abstract classes that can be subclassed to create MBeans for different types of work.

The table below provides information on each type and when it could be used.

Table 1. MBean abstract classes

MBean Abstract Class Usage

curam.util.jmx.CuramMBeanAbstract This is the super class of all Cúram MBeans.
Use this class when full control is needed
and any of the other abstract classes are not
sufficient.

curam.util.jmx.mbean.GenericTabularStats Generic MBean used for exposing tabular
statistics. Use this class to implement a
simple MBean that exposes a single set of
generic, predefined invocation statistics.

curam.util.jmx.mbean.GenericNameValueStats Generic MBean used for exposing a list of
name-value items. Use this class to
implement a simple MBean that exposes a
set of statistics that are naturally organized
as name-value pairs.

curam.util.jmx.mbean.GenericKeyedPoolStats Generic MBean used for exposing usage
statistics for keyed pools. A keyed pool is a
pool that can cache multiple items for the
same key.

import javax.management.openmbean.OpenDataException;
import javax.management.openmbean.TabularData;

public interface MyStatsMBean {
/**
* MBean attribute holding the statistics.
*/
TabularData getStats() throws OpenDataException;
/**
* This method is invoked by the JMX infrastructure when
* a request is made to reset the JMX statistics.
*/
void reset();

}

Figure 1. A custom MBean interface

2 IBM Cúram Social Program Management: Cúram JMX Developer Guide

Using CuramMBeanAbstract:

Create an implementation of your interface that inherits from
curam.util.jmx.CuramMBeanAbstract.

See The Interface. To make it easier further on, derive the name of this class from
the name of the implemented MBean by removing the MBean suffix. This super
class provides the MBean with access to the application configuration via the
execution context and it facilitates the handling of changes in application
configuration data that might be of interest to the MBean.

Developing with Cúram JMX 3

package com.mytest;

import java.util.logging.Level;
import java.util.logging.Logger;

import javax.management.openmbean.
CompositeDataSupport;

import javax.management.openmbean.
CompositeType;

import javax.management.openmbean.
OpenDataException;

import javax.management.openmbean.OpenType;
import javax.management.openmbean.SimpleType;
import javax.management.openmbean.TabularData;
import javax.management.openmbean.

TabularDataSupport;
import javax.management.openmbean.TabularType;

import curam.util.jmx.CuramMBeanAbstract;

public class MyStats extends CuramMBeanAbstract
implements MyStatsMBean {

private static final Logger log = Logger
.getLogger(MyStats.class.getName());

private static final OpenType[] kItemTypes
= new OpenType[] {

SimpleType.STRING,
SimpleType.LONG,

};

private static final String[] kItemNames
= new String[] {

"Item",
"Execution time(ms)"};

private static final String[] kItemDescriptions
= new String[] {

"The name of the item",
"The execution time in milliseconds"};

private static TabularType stTabularType;

private static CompositeType stRowType;

private static MyStats instance;

static {
try {

stRowType = new CompositeType(
"MyStatsType", "My statistics",
kItemNames, kItemDescriptions, kItemTypes);

stTabularType = new TabularType(
"MyStats", "My statistics",
stRowType, new String[] { kItemNames[0]});

} catch (Exception e) {
log.log(Level.SEVERE,

"Failed to create the open types.", e);
}

}

public MyStats() {
super();
instance = this;

}

/* (non-Javadoc)
* @see com.mytest.MyStatsMBean#getStats()
*/
public TabularData getStats()

throws OpenDataException {
if (stRowType == null

|| stTabularType == null) {
return null;

}
TabularDataSupport sup = new TabularDataSupport(

stTabularType);

// sample stats
Object[] values = new Object[2];
// ...
// get the values
// ...
CompositeDataSupport cd =

new CompositeDataSupport(
stRowType, kItemNames, values);

sup.put(cd);
return sup;

}

/**
* This method is invoked from instrumented code
* to update the statistics for
* <code>item</code>.
* @param item the item to update statistics for
* @param executionTime the execution time
*/
public static void updateStats(

String item, long executionTime) {
if(instance != null) {

instance._updateStats(item, executionTime);
}

}

/**
* This method is invoked by the JMX infrastructure when
* a request is made to reset the JMX statistics.
* @see com.mytest.MyStatsMBean#reset()
*/
public void reset() {
// ...
// reset the statistics
//...
}

private void _updateStats(String item, long executionTime) {
// ...
// update the items average execution time
// ...

}
}

Figure 2. A custom MBean implementation

4 IBM Cúram Social Program Management: Cúram JMX Developer Guide

More complex MBeans that require dynamic configuration parameters or support
per user data collection can override or utilize the provided protected methods in
curam.util.jmx.CuramMBeanAbstract.

Using GenericTabularStats:

This abstract class can be used to develop an MBean for exposing a single set of
tabular statistics.

The statistics names will be as follows:
v Target - the monitored target (for example a URL or a method name)
v Invocations - the number of invocations made to the monitored target
v Elapsed time(ms) - the average elapsed time in milliseconds for an invocation of

the monitored target
v Std deviation elapsed time(ms) - the standard deviation of the elapsed time in

milliseconds
v Min elapsed time(ms) - the minimum elapsed time in milliseconds
v Max elapsed time(ms) - the maximum elapsed time in milliseconds
v Errors - the number of times the invocation failed

Use this class in the following manner:
1. Create your MBean interface and class as described in The Interface
2. Make your MBean class a subclass of this class
3. Use the methods provided by this class to push statistics data to your MBean

Usage should be as follows where MyGenericTabularStats is the implementation of
your MBean:

Using GenericNameValueStats:

Use this class to implement a simple MBean that exposes a set of statistics that are
naturally organized as name-value pairs.

Use this class in the following manner:
1. Create your MBean interface and class as described in The Interface

public class MyGenericTabularStats extends GenericTabularStats implements
MyGenericTabularStatsMBean {

private static volatile MyGenericTabularStats instance;

public MyGenericTabularStats() {

super();
instance = this;

}

public static void addStats(String target, long elapsedTime, boolean error) {

if (instance != null) {
instance.addStatistics(target, elapsedTime, error);

}
}

}

Figure 3. Usage example

Developing with Cúram JMX 5

2. Make your MBean class a subclass of this class
3. Use the methods provided by this class to push statistics data to your MBean

Usage should be as follows where MyGenericNameValueStats is the implementation
of your MBean:

Using GenericKeyedPoolStats:

Generic MBean used for exposing usage statistics for keyed pools. A keyed pool is
a pool that can cache multiple items for the same key.

The statistics names will be as follows:
v Key - the key
v Active - the average number of active/borrowed items in the pool for items

with this key
v Size - the average number of items in the pool for this key

Use this class in the following manner:
1. Create your MBean interface and class as described in The Interface
2. Make your MBean class a subclass of this class
3. Use the methods provided by this class to push statistics data to your MBean

Usage should be as follows where MyGenericKeyedPoolStats is the implementation
of your MBean:

public class MyGenericNameValueStats extends GenericNameValueStats implements
MyGenericNameValueStatsMBean {

private static volatile MyGenericNameValueStats instance;

public MyGenericNameValueStats() {

super();
instance = this;

}

public static void addOrUpdateStats(String name, Object value) {

if (instance != null) {
instance.addOrUpdateStatistics(name, value);

}
}

}

Figure 4. Usage example

6 IBM Cúram Social Program Management: Cúram JMX Developer Guide

Using curam.util.jmx.NumericalCounterStatisticsAggregator:

This example shows how to use curam.util.jmx.
NumericalCounterStatisticsAggregator and
curam.util.jmx.NumericalCounterStatistics to calculate and make available
various arithmetic values for a numerical counter (average, minimum, maximum
and standard deviation).

public class MyGenericKeyedPoolStats extends GenericKeyedPoolStats implements
MyGenericKeyedPoolStatsMBean {

private static volatile MyGenericKeyedPoolStats instance;

public MyGenericKeyedPoolStats() {

super();
instance = this;

}

public static void addStats(String key, long active, boolean size) {

if (instance != null) {
instance.addStatistics(key, active, size);

}
}

}

Figure 5. Usage example

Developing with Cúram JMX 7

import curam.util.jmx.NumericCounterStatisticsAggregator;
...

/** Elapsed time statistics. */
private NumericCounterStatisticsAggregator

elapsedTimeStats;

/** Error counter. */
private AtomicLong errors;

/** Constructor. */
MyClass() {

super();
errors = new AtomicLong(0);
elapsedTimeStats =

new NumericCounterStatisticsAggregator();
}

/**
* Get the number of invocations.
*
* @return the number of invocations.
*/

long getInvocations() {
return this.elapsedTimeStats

.getNumberOfSamples();
}

/**
* Get elapsed time statistics.
*
* @return elapsed time statistics.
*/

NumericCounterStatistics getElapsedTimeStats() {
return elapsedTimeStats.getAll();

}

/**
* Get error counter.
*
* @return error counter.
*/

long getErrors() {
return errors.get();

}

/**
* Add a statistics sample.
*
* @param elapsedTime the elapsed time.
* @param error true if invocation ended in error.
*/

void addStats(long elapsedTime, boolean error) {
boolean reset = this.elapsedTimeStats

.add(elapsedTime);
if(reset) {
// Long.MAX_VALUE overflow
errors.set(0);
} else if(error){
if(errors.incrementAndGet() < 0) {
// Long.MAX_VALUE overflow
this.elapsedTimeStats.reset();

}
}

}
...

Figure 6. Using NumericalCounterStatisticsAggregator and NumericCounterStatistics

8 IBM Cúram Social Program Management: Cúram JMX Developer Guide

Updating the Configuration of Cúram JMX
The next step is to add the new MBean to the list of MBeans to be instantiated by
the JMX infrastructure.

Depending on where the MBean is located (Web or Enterprise Java Beans (EJB)
container) modify the corresponding application property:
v curam.jmx.configured_mbeans_ejb – for MBeans residing in the EJB container
v curam.jmx.configured_mbeans_web – for MBeans residing in the Web container

See Cúram JMX Configuration Guide for more details.

Instrumenting Application Code
The application code needs to be instrumented to push data to the custom MBean.
In order to minimize overhead check that JMX monitoring is turned on before
pushing statistics to the MBean.

Another possible instrumentation is to add execution statistics to the existing JMX
services such as transaction tracing and in-flight transaction data.

public void instrumentedMethod() {
long startTime = System.currentTimeMillis();
...
// do processing
...
// check that JMX monitoring is enabled before
// updating the MBean
if(CuramJMXUtil.isJmxMonitoringEnabled()) {
MyStats.updateStats("item",

System.currentTimeMillis() - startTime);
}

}

Figure 7. Pushing elapsed time statistics to the custom MBean

public Result instrumentedMethod(String param) {
try {
return CuramJMXUtil.runAndRecord(new Callable<Result>(){
public Result call() throws Exception {
return myMethod(param);
}}, "myMethod",
TransactionInfo.getProgramUser());
} catch (CuramJMXUtil.CallableException e) {
throw new AppRuntimeException(e.getCause());
}

}

Figure 8. Pushing execution statistics to existing JMX services

Developing with Cúram JMX 9

10 IBM Cúram Social Program Management: Cúram JMX Developer Guide

Notices

This information was developed for products and services offered in the United
States.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM® product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21,
Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2012, 2017 11

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

12 IBM Cúram Social Program Management: Cúram JMX Developer Guide

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “ Copyright and
trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 13

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

14 IBM Cúram Social Program Management: Cúram JMX Developer Guide

Notices 15

IBM®

Printed in USA

	Contents
	Figures
	Tables
	Developing with Cúram JMX
	Overview
	What is Cúram JMX
	Using Cúram JMX to Expose Application Statistics
	Developing the Custom MBean
	The Interface
	The Implementation
	Using curam.util.jmx.NumericalCounterStatisticsAggregator

	Updating the Configuration of Cúram JMX
	Instrumenting Application Code

	Notices
	Privacy Policy considerations
	Trademarks

