
IBM Cúram Social Program Management
Version 7.0.1

Cúram Web Client Reference Manual

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 313

Edition

This edition applies to IBM Cúram Social Program Management v7.0.1 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Cúram web client reference 1
Cúram web client overview 1

User interface metadata. 1
Page content metadata 2

Application user interface overview 4
Cúram applications 7
Page context 8
Page appearance 9
Application controller JSP 9
Direct browsing 10

Web Client Development 10
Outline of the Client Development Process . . . 10
CDEJ Installation 11
CDEJ Project Folder Structure 11
Application Components 14

Component Folders. 14
Component Order 15

Component Artifacts 15
Application Locales. 16
Building an Application 17

Build Targets 17
Related Build Targets 18
Full and Incremental Builds 19
Dependency Checking 19
Build Logs. 19
Error Reporting 19
Server Interface Reference 20
Page Previews 21
UIM Generator Tool 21
External Client Applications 22

Deployment 22
Overview 22
Configuring the Application 22
Customizing the Web Application Descriptor 26

Customization 28
Overview 28
Adding New Artifacts 28
Overriding or Merging Artifacts 28
Externalized Strings 29
Images 29
Image Mapping 30
CuramLinks.properties 31
XML Runtime Configuration Files 31
Login Pages 32
JavaScript Files 32
Cascading Stylesheets 33
Application Configuration Files. 34
General Configuration 35
Custom Resources 43

Localization 43
Numbers 43

File Encoding. 44
XML Files 44
Java properties files. 44
Non-XML Files 45

Locales 45
Non JavaScript property files 45
JavaScript property files 46

UIM Externalized Strings 46
JavaScript Externalized Strings 47

Accessing properties in JavaScript 47
Image.properties. 48
Infrastructure Widget Properties Files. 48

Frequency Pattern Selector Localization . . . 49
CDEJResources.properties 51
ApplicationConfiguration.properties 51
Application-wide Menu 51
Tabbed Configuration Artifacts 51
Runtime Messages 51

UIM Reference 52
Creating UIM Documents 52
UIM Document Types 52
UIM Pages 53
UIM Views 53
UIM Page Field Level Validations 53

UIM Pages 53
Externalized Strings 54
UIM Reference for Pages and Views 54

Introduction 54
Connection Types 54
ACTION CONTROL 56
ACTION SET. 60
CLUSTER 62
CONDITION 68
CONNECT 69
CONTAINER 69
DETAILS_ROW 70
DESCRIPTION 71
FIELD 72
FOOTER_ROW 76
IMAGE 77
INCLUDE 78
INITIAL 78
INFORMATIONAL 78
INLINE PAGE 79
IS_FALSE 80
IS TRUE 81
JSP SCRIPTLET 81
LABEL 84
LINK 84
LIST 89
MENU 93
PAGE 98
PAGE_PARAMETER 101
PAGE TITLE 101
SCRIPT 102
SERVER INTERFACE. 104

© Copyright IBM Corp. 2012, 2017 iii

SOURCE 105
TAB_NAME 105
TARGET 106
TITLE 106
VIEW 107

UIM Reference for Widgets 107
Introduction 107
WIDGET 108
WIDGET_PARAMETER 109
The EVIDENCE_COMPARE Widget 109
The FILE_EDIT Widget 110
The FILE_UPLOAD Widget 116
The FILE_DOWNLOAD Widget 118
The MULTISELECT Widget. 119
The SINGLESELECT Widget 122
The RULES_SIMULATION_EDITOR Widget 123
The IEG_PLAYER Widget 125

Dynamic UIM Cross Reference 125
Dynamic UIM System Initialization 125

Application Configuration 125
Configuration files. 126
Web client properties 127

Customizing the CDEJResources.properties
file 128
Configuring the browser title 128

Applications. 128
Application definition 129
Application optional header 136
Application example 136
Associate an application with a user. . . . 138

Sections 138
Section definition 140
Section example 141

Section shortcut panel 142
Section shortcut panel definition 142
Section shortcut panel example 144

Tabs 145
Tab definition 146
Context panel UIM 152
Tab example configuration file. 152

Tab actions menu 153
Tab actions menu definition 153
Tab actions menu dynamic support 158
File download menu item 158
Tab actions menu example configuration file 159

Tab navigation 160
Tab navigation definition 160
Tab navigation dynamic support 164
Tab navigation example configuration file 165

Opening tabs and sections 165
Using links to open tabs and sections . . . 166
Page to tab and tab to section associations 167
Tab and section page parameters 168
Tab ordering. 169

Working with the Cúram user interface. 169
Prerequisites for configuring the user interface 169
Creating a simple application 169

Defining an application 170
Adding a section to an application 171
Adding a tab to a section 171
Add a UIM page to a tab 172

Associating a user with an application . . . 173
Build targets required to create a simple
application 174

Adding a shortcut panel. 175
Adding a section 175
Defining the contents of a section shortcut
panel 176
Defining a search tab 176
Build targets required to add a shortcut
panel 179

Adding tab content 179
Defining a person tab 179
Build targets required to add tab content . . 183

Configuring modal dialogs 183
Opening a modal dialog. 184
Defining the content of the modal dialog . . 184
Adding a wizard progress bar 186
Build targets required to add modals and
wizard progress bars 191

Adding tab navigation 191
Defining a navigation bar 191
Build targets required to add tab navigation 192

Working with lists 192
Defining an expandable list. 193
Defining a list actions menu 193
Build targets required to add lists and list
actions 195

Session Management 195
Session Overview 195
Tab Restoration. 196
Session Configuration 197
Session Timeout Warning 198

Session timeout warning default values . . 198
Customizing the session timeout warning in
the caseworker application 199
Customizing the session timeout warning in
Universal Access 201
Customizing the timeout warning in an
application 202
Configuring a customized logon page . . . 203

Tab Session Limitations 204
Browser Specific Session Management 204

Browser Management 205
Optimal Browser Support 205

Feature Configuration 206
Text Configuration 207

Configuring Browser Back, Refresh, and Close
Button Behavior 208

Domain-Specific Controls 209
Dates 210

Three Field Date Selector 210
Date-Times 211

Representing Time-Only Values 211
Customizing the Time Format 212

Frequency Pattern Selector 212
Selection Lists 212

Populated from a Code-Table 212
Populated from Server Interface Properties 213
Drop-down, Scrollable and Checkboxed List
types 213

iv IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Adding an Empty Entry to a List for
Non-Mandatory Fields 214
Enabling Multiple Selection 214
Transfer List Widget 214

User Preferences Editor 215
Rules Trees 215

Introduction 215
Default Rules View 215
Summary Rules View. 216
Failed Rules View 216
Dynamic Rules View 216
Dynamic Full Tree Rules View. 219
Rules Editor 220

Meeting View 222
Overview. 222
Single Selection Mode 223
Multiple Selection Mode. 223
XML Formats 223

Charts 224
Overview. 224
Chart appearance 224
Chart configuration 225
Chart Data Formats 228

Heatmap Widget 230
Overview. 230
Configuration 230

Workflow. 231
Overview. 231
Workflow Details 231
Workflow XML Formats 232

Evidence View 236
Evidence Display Mode 236
Evidence Comparison Mode 236
Configuration 236
Data Format 237

Calendar 239
Payment Statement View 242
Batch Function View 243
Addresses 244
Schedule View 245
Radio Button Group 246
Pop-up Pages 247

Configure the Pop-up Page 247
Create the Pop-up Page 249
Using the Pop-up Page 251
Using Multiple Pop-up Search Pages for a
Single Field 252
Configure the Multiple Pop-up Page . . . 253
Using the Multiple Pop-up Page 253

Agenda Player 254
Agenda Player screen structure 254
Navigation modes 255
Navigator-less View 255
Agenda Player Configuration 256
Agenda Player Customization 256
Player data 257

LOCALIZED_MESSAGE Domain. 261
Decision Assist: Decision Matrix Widget . . . 261

Overview. 261
Custom Data Conversion and Sorting 261

Data Conversion and Sorting Operations . . . 262

Data Conversion Life Cycle. 263
The Domain Hierarchy and Domain Plug-ins 264
Overview of Domain Plug-ins 266

Common Features of Plug-ins 266
Converter Plug-ins 267
Comparator Plug-ins 268
Default Value Plug-ins 268

Domain Plug-in Configuration 269
Out-of-the-Box Domain Plug-ins 271

Extending Existing Plug-ins 271
Converter Plug-ins 272
Comparator Plug-ins 277
Default Value Plug-ins 280

Error Reporting 280
Infrastructure Errors 280
Exception Classes 281
Custom Exception Classes 281

Java Object Representations 284
Customization Guidelines 284

Where to Start 284
Custom Formatting 285
Custom Parsing 286
Custom Validation. 287
Custom Sorting. 289
Custom Error Reporting 293
Custom Default Values 294

Advanced Topics 295
Type Checking and Null Checking 295
Plug-in Instance Management 295
Naming Conventions 297
Generic Parse Operations 297
Code-Tables 297

Online Help Development 298
Single Source Development. 298
Integrated Localization 298
Automatic Generation 298
Accessing the Help Page 298
Accessibility Features. 298

Alternative Text 298
Elements of Online Help 298

Introduction to Curam Client Pages 298
Page Descriptions 299
Links and Actions 299
Fields and Columns 299

Adding or Updating Help content 299
Updating Help for non 'Domain Specific
Controls' 299
Updating Help for 'Domain Specific Controls' 300

Maintaining Dynamic UIM Pages 300
Working in a Development Environment . . . 300
Working in a Running System 303

Search for Dynamic UIM Pages by Category 303
Uploading a Dynamic UIM page to the
Resource Store 303
Editing a Dynamic UIM page in the resource
store 304
Deleting a Dynamic UIM File from the
Resource Store 304
Validating a dynamic UIM file in the
resource store 304
Publish dynamic UIM files 304

Contents v

Unsupported Features in Dynamic UIM 304
PAGE 305
PAGE TITLE 305
CLUSTER 305
LIST 305
FIELD 306
CONTAINER 306
ACTION_SET 306
WIDGET 307
ACTION_CONTROL 307
LINK 308

INLINE_PAGE 309
MENU 309
SERVER_INTERFACE 309
INFORMATIONAL 309

UIM Support in Universal Access 309
UIM Support in UA 309

Notices 313
Privacy Policy considerations 315
Trademarks 315

vi IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Figures

1. Page UIM Example 3
2. Application user interface overview 4
3. Sample Application .app File 8
4. Web Client Folder Structure 12
5. Default Preview Values for Domain Definitions 21
6. external-client invocation 22
7. Configuring an Application Locale 27
8. A Sample Properties File 29
9. A Sample Image.properties File 30

10. A Sample ImageMapConfig.xml file 31
11. Error_Page Section Example 35
12. Error_Page Section Example with one default

page 35
13. Multiple Select Section Example. 36
14. Disable Collapsible Clusters Example 36
15. Append Colon Section Example. 36
16. Admin Section Example 36
17. Static Content Base URL Example 36
18. Relative URL Example 37
19. Zip Target Example 37
20. Response Headers 37
21. Field Error Indicators Example 38
22. Security Check on Page Load Example 38
23. Enable Select All Check-box Example 39
24. Transfer Lists Mode Example 39
25. Hide Conditional Links 39
26. Disable Auto Complete 39
27. Scrollbar Configuration 40
28. Sample Pagination Configuration 40
29. Extract from curam-config.xml File (1) . . . 41
30. Extract from curam-config.xml File (2) . . . 42
31. Sample address-config.xml File 42
32. Accessing a property 47
33. Connection Types Example 55
34. Example Configuration for File Download 57
35. Example of a FOOTER_ROW in a List. 77
36. Example JSP SCRIPTLET Accessing a

TextHelper 82
37. Example JSP SCRIPTLET Redirecting to a Page 82
38. Example JSP_SCRIPTLET Redirecting and

Accessing a TextHelper 83
39. Example of a Dynamic LABEL. 84
40. Example of Dynamic MENU Data 95
41. Example of a DYNAMIC Menu Configuration File 95
42. Example of an INTEGRATED_CASE Menu

Configuration File 95
43. Example of the IN_PAGE_NAVIGATION

menu in UIM 96
44. An example of wizard-type menu UIM 97
45. Example of the required properties in the

resource store property file 98
46. Sample Template Details 112
47. MULTISELECT Example 120
48. Application User Interface Overview 126
49. Simple.app 137
50. CT_APPLICATIONCODE.ctx 138

51. Application User Interface Overview 139
52. SimpleWorkspaceSection.sec 141
53. SimpleShortcutPanel.ssp 144
54. Application User Interface Overview 145
55. SimpleTab.tab 153
56. FILE_DOWNLOAD Configuration from

curam-config.xml 159
57. SimpleMenu.mnu 159
58. SimpleNavigation.nav. 165
59. SimpleApp app 170
60. SimpleAppHomeSection.sec. 171
61. SimpleHome.tab 172
62. SimpleHome.uim 172
63. Users.dmx 173
64. CT_APPLICATION_CODE.ctx 174
65. SimpleApp.app 175
66. SimpleAppWorkspaceSection.sec 175
67. SimpleShortcutPanel.ssp 176
68. SimpleSearch.tab 176
69. Person Search Page 177
70. SimpleSearch.uim 178
71. SimplePerson tab 180
72. SimplePersonContext.uim 180
73. SimplePerson uim 182
74. SimplePerson uim 184
75. CreateEmployments.uim 185
76. CreateEmploymentWizard.properties 186
77. CreateEmploymentWizard_pageOne.uim 188
78. CreateEmploymentWizard_pageTwo.uim 190
79. SimplePerson Tab 192
80. SimplePersonNav.nav 192
81. SimpleSearch.uim 193
82. SimpleSearch.uim 194
83. Customizing the date format 210
84. Customizing the Date-Time format 211
85. Selection List on an Insert Page 213
86. Selection List on a Modify Page 213
87. Enabling multiple selection in

curam-config.xml 214
88. Sample RulesDecisionConfig.xml File 217
89. Example of Decision ID Sourced from a Bean 218
90. Example of Rules Tree Items with Summary

Flag. 219
91. Sample RulesEditorConfig.xml File 221
92. Example of Decision ID Sourced from a Bean 222
93. Sample Horizontal Bar Chart XML 229
94. Workflow 232
95. Calendar XML Stream 240
96. CalendarConfig.xml Example 242
97. A Sample PaymentStatement.properties File 243
98. Address Configuration in curam config xml 244
99. UIM Example of Schedule View 246

100. Pop-up Configuration Example 247
101. Opening a Pop-up from an Insert Page 252
102. Opening a Pop-up from a Modify Page 252
103. Supplying Parameters to a Pop-up Page 252

© Copyright IBM Corp. 2012, 2017 vii

104. Multiple Pop-up Domains 253
105. UIM to Use Multiple Pop-up Windows 254
106. Condition example: 261
107. Sample Domain Configuration 269
108. Custom Exception Class 282
109. Custom Message Catalog 282
110. Throwing a Custom Exception 283
111. Throwing Multiple Exceptions 284
112. Custom Formatting for Currency Values 285
113. Configuration for Custom Formatting 286
114. Custom Formatting without Grouping 286

115. Custom Parsing for Currency Values 287
116. Custom Validation for Odd Numbers 288
117. Custom Validation Failure Message 288
118. Configuration for Custom Validation 289
119. Sorting Strings Numerically. 290
120. Sorting Formatted Values 291
121. Sorting Zero Dates 292
122. Configuration for Custom Sorting. 292
123. Custom Error Reporting 294
124. Custom Pattern Match Failure Message 294
125. Custom Default Date-Time Value 295

viii IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Tables

1. Environment Variables 18
2. Pagination configuration options 40
3. Placeholders used in Frequency Pattern

Selector 49
4. Properties used for the Frequency Pattern

Selector 50
5. Attributes of the ACTION_CONTROL Element 57
6. Child Elements of the ACTION_CONTROL

Element 60
7. Attributes of the ACTION_SET Element 61
8. Child Elements of the ACTION_SET Element 62
9. Attributes of the CLUSTER Element 62

10. Child Elements of the CLUSTER Element 64
11. Attributes of the CONDITION element 68
12. Child Elements of the CONDITION Element. 68
13. Child Elements of the CONNECT Element 69
14. Attributes of the CONTAINER Element 69
15. Child Elements of the CONTAINER Element 70
16. Attributes of the DETAILS_ROW Element 71
17. Child Elements of the INFORMATIONAL

Element 71
18. Attributes of the DESCRIPTION Element 71
19. Child Elements of the DESCRIPTION Element 71
20. Attributes of the FIELD element 72
21. Child Elements of the FIELD Element 75
22. Child Elements of the FOOTER_ROW Element 77
23. Attributes of the IMAGE Element 77
24. Attributes of the INCLUDE Element 78
25. Attributes of the INITIAL Element 78
26. Child Elements of the INFORMATIONAL

Element 79
27. Attributes of the INLINE_PAGE Element 79
28. Child Elements of the INLINE_PAGE Element 80
29. Attributes of the IS_FALSE Element 81
30. Attributes of the IS_TRUE Element. 81
31. Child Elements of the LABEL Element . . . 84
32. Attributes of the LINK Element 85
33. Child Elements of the LINK Element 88
34. Attributes of the LIST Element 89
35. Child Elements of the LIST Element 92
36. Attributes of the MENU Element 94
37. Child Elements of the MENU Element . . . 94
38. Properties in the wizard defining resource 98
39. Attributes of the PAGE Element. 99
40. Child Elements of the PAGE Element 100
41. Attributes of the PAGE_PARAMETER

Element 101
42. Attributes of the PAGE_TITLE Element 102
43. Child Elements of the PAGE_TITLE Element 102
44. Attributes of the SCRIPT Element 103
45. Attributes of the SERVER_INTERFACE

Element 104
46. Attributes of the SOURCE Element 105
47. Child Elements of the TAB_NAME Element 106
48. Attributes of the TARGET Element 106
49. Attributes of the TITLE Element 106

50. Child Elements of the TITLE Element 107
51. Child Elements of the VIEW Element 107
52. Attributes of the WIDGET Element 108
53. Child Elements of the WIDGET Element 108
54. Attributes of the WIDGET_PARAMETER

Element 109
55. Child Elements of the

WIDGET_PARAMETER Element 109
56. Parameters to the EVIDENCE_COMPARE

Widget. 109
57. Parameters to the FILE_EDIT Widget 111
58. FILE_EDIT Widget Configuration settings

summary 113
59. Parameters to the FILE_UPLOAD Widget 117
60. Parameters to the FILE_DOWNLOAD Widget 118
61. Parameters to the MULTISELECT Widget 121
62. Parameters to the SINGLESELECT Widget 123
63. Parameters to the

RULES_SIMULATION_EDITOR Widget. . . 124
64. Configuration Files. 127
65. Attributes of the application Element 129
66. Supported Child Elements of the application

Element 131
67. Supported child elements of the

application-menu element 131
68. Attributes of the application-search element 132
69. Supported child elements of the

application-search element 132
70. Supported child elements of the search-pages

element 133
71. Attributes of the search-page element 133
72. Attributes of the further-options element 134
73. Attributes of the section-ref element 134
74. Attributes of the timeout-warning element 135
75. Attributes of the section Element 140
76. Supported Child Elements of the section

Element 140
77. Attributes of the tab element 141
78. Attributes of the shortcut-panel-ref element 141
79. Attributes of the section-shortcut-panel

Element 142
80. Supported Child Elements of the

section-shortcut-panel Element 142
81. Attributes of the node element 143
82. Attributes of the tab-config Element 147
83. Supported Child Elements of the tab-config

Element 147
84. Attributes of the page-param Element 148
85. Attributes of the menu element 148
86. Attributes of the context element 148
87. Attributes of the navigation element 149
88. Attributes of the smart-panel element 150
89. Supported child elements of the tab-refresh

element 151
90. Attributes of the onload/onsubmit Elements 151
91. Attributes of the menu-bar element 154

© Copyright IBM Corp. 2012, 2017 ix

92. Supported child elements of the menu-bar
element 154

93. Attributes of the menu-item element 154
94. Attributes of the submenu element 156
95. Supported child elements of the submenu

element 156
96. Attributes of the menu-separator element 157
97. Supported child elements of the

loader-registry element 157
98. Attributes of the loader Element 157
99. Attributes of the navigation element 160

100. Supported child elements of the navigation
element 161

101. Supported child elements of the nodes
element 161

102. Attributes of the navigation-group element 161
103. Supported child elements of the

navigation-group element 162
104. Attributes of the navigation-page element 162
105. Supported child elements of the

loader-registry element 163
106. Attributes of the loader element 164
107. Tab Opening Rules. 168
108. Files required to create an application and

corresponding build targets 174
109. Files required to add a shortcut panel and

corresponding build targets 179
110. Files required to add tab content and

corresponding build targets 183
111. Files required to add modal dialogs and

corresponding build targets 191
112. Files required to add tab navigation and

corresponding build targets 192
113. Files required to add an expandable list and a

list actions menu, and corresponding build
targets 195

114. Attributes of the CONFIG element 227

115. Attributes for CONFIG element 230
116. Attributes of a Node 233
117. Attributes of an Edge 234
118. Attributes of Workflow CONFIG element 235
119. EVENT attributes in schema 240
120. SINGLE_DAY_EVENT attributes in schema 241
121. Calendar View Type Values 241
122. Parameters Passed to Event Description Pages 242
123. Address Format configurations 245
124. Attributes of the POPUP_PAGE element. 248
125. Child elements of the POPUP_PAGE element. 248
126. Attributes of the PLAYER element 256
127. Attributes of the page element 259
128. Behavior of the Abstract Plug-in Classes 271
129. Out-of-the-Box Converter Plug-ins 272
130. Behavior of the Format Operations 273
131. Behavior of the Parse Operations 275
132. Behavior of the Pre-Validate Operations 276
133. Out-of-the-Box Comparator Plug-ins 277
134. Collation strength summary 279
135. Out-of-the-Box Default Value Plug-ins 280
136. Classes Used for Java Object Representations 284
137. Unsupported PAGE Features 305
138. Unsupported PAGE_TITLE Features 305
139. Unsupported CLUSTER Features 305
140. Unsupported LIST Features 306
141. Unsupported FIELD Features 306
142. Unsupported CONTAINER Features 306
143. Unsupported ACTION_SET Features 307
144. Unsupported WIDGET Features 307
145. Unsupported ACTION_CONTROL Features 307
146. Unsupported LINK Features 308
147. Unsupported INLINE_PAGE Features 309
148. Unsupported MENU Features 309
149. Unsupported SERVER_INTERFACE Features 309
150. UIM in the Universal Access 310

x IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Cúram web client reference

Provides a reference for the Cúram web client application. The Cúram web client
has an HTML user interface that is generated by a middle-tier web application. It
conforms to the Java EE architecture and is driven by JavaServer pages and servlet
technology that is based on the Apache Struts framework. This HTML user
interface uses standard browser and Web 2.0 technologies, including JavaScript and
cascading style sheets.
Related concepts:
“Working with the Cúram user interface” on page 169
Use this information to develop user interface elements with the Cúram Client
Development Environment for Java. User interface elements that can be created
with the Cúram Client Development Environment for Java include shortcut panels,
tabs, modal dialogs, tab navigation, and lists.

Cúram web client overview
Learn about the concepts and terminology that are related to the Cúram Client
Development Environment (CDEJ).

A basic understanding of Java EE development environments, XML and Web
technologies such as Hypertext Transfer Protocol (HTTP), JavaServer Pages (JSP),
Cascading Style Sheets (CSS) and JavaScript is helpful, but not required.
v Cúram web application development is simplified by describing pages and

applications in terms of their content and flow rather than the graphical
look-and-feel and layout of the content.

v User interface metadata (UIM) consists of definitions in XML format that
describe the contents, and, to a certain extent, the layout, of one of the main
elements in the Cúram user interface, a UIM page.

v An application is a collection of user interface elements, predominantly based on
UIM pages, combined to create specific content for a particular user or role.

v Graphical layout options available to a developer are restricted to enforce a
consistent user interface across the whole application.

User interface metadata
User interface metadata (UIM) is an XML language that describes the contents and
layout of one of the main elements in the Cúram user interface, a UIM page.

UIM limits the variety of interface layout options that are available to developers,
and defaults user interface characteristics based on the known formats of server
interfaces. Consequently, the UIM is kept simple and the user interface layout has
an enforced consistency across the whole application.

The developer creates the UIM page definitions in files with a .uim extension, with
each file corresponding to a single page.

Individual pages are made up from different elements such as page titles, labels,
buttons, and links as well as the most important element, the data content. UIM
focuses on defining elements rather than how they are graphically laid out. The
CDEJ provides the tools to generate client screens from UIM definitions.

© Copyright IBM Corp. 2012, 2017 1

Page content metadata
Users can display and enter server data in the main content area of an application.
Page content metadata is used to create the content area. The basic unit of data is a
field. Each field is either an output or input parameter of a server interface.

Various XML elements correspond to the user interface elements such as PAGE,
FIELD, CLUSTER, LIST, ACTION_CONTROL, ACTION_SET and so on. The CONNECT element
is an important construct that allows fields to be associated with parameters to
server interfaces. As well as mapping fields, connections can also map page
parameters and static text. The latter is not stored directly in the UIM, but is
externalized in a property file which facilitates easier language localization of user
interfaces.

Other XML elements, such as PAGE_PARAMETER and SERVER_INTERFACE, do not have
visual representations in a UIM page but are important to the functionality of the
page. A server interface is a method that has been implemented using the Cúram
Server Development Environment (SDEJ). Each UIM page can be associated with
one or more server interface methods. Each method is associated with either the
initialization phase or the process phase. When the UIM page is first opened, the
initialization phase methods are executed. Typically an initialization phase method
uses page parameters as input parameters, and the resulting server data is mapped
to output fields on the screen.

The process phase is initiated when an action control of type Submit is selected by
the user. Data from input fields on the screen are mapped to input parameters of
process phase server methods and the methods are invoked. After execution of
process phase methods, the flow of control is determined by the Submit action,
which can specify a link to a new target page, or by the default action which
returns to the same page.

The following example shows an extract of UIM used to create the content area.
The extract displays how the major elements that make up a screen of content area,
such as clusters and lists, are represented in UIM.

2 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<PAGE PAGE_ID="Person_search">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText1"/>

</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="ACTION"
CLASS="Person_fo"
OPERATION="search"
PHASE="ACTION" />

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.SearchCriteria">

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="referenceNumber"/>
</CONNECT>

</FIELD>

<FIELD CONTROL="SKIP"/>

</CLUSTER>

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.AdditionalSearchCriteria">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="forename"/>
</CONNECT>

</FIELD>

... more <FIELD> elements...

<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL LABEL="ActionControl.Label.Search"
IMAGE="SearchButton"
TYPE="SUBMIT">

<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="ActionControl.Label.Reset"
IMAGE="ResetButton">

<LINK PAGE_ID="Person_search"/>
</ACTION_CONTROL>

</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">

<FIELD LABEL="Field.Title.Name" WIDTH="44">
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="personName"/>

</CONNECT>
</FIELD>
... more <FIELD> elements...

</LIST>

</PAGE>

Figure 1. Page UIM Example

Cúram web client reference 3

Related reference:
“UIM Reference” on page 52
Learn about the Cúram User Interface Meta-data (UIM) format used to specify the
contents of the Cúram web application client pages.

Application user interface overview
The application user interface contains elements that are implemented through
user interface metadata. Other topics in the section describe how each of the user
interface elements can be configured in an application.

The following list describes the user interface elements with cross-references to the
numbered annotations in the previous figure.

Application banner (1)

An application is defined to present a specific view of the data for a user
or user role. The application banner provides the user with the context of
the application they are currently accessing. The banner also include a
number of application links, such as Help, Logout and Preferences, and an
application search facility.

Application name (1.1)

A name is defined for an application.

Welcome message (1.2)

1 1.1

1.2 1.31.42

3

4 5

6

7

7.1

7.1.1

8

9 10

11

12

13

14

15

16

17

18

19

20

21

Issues and Proceedings tab

21.1

Figure 2. Application user interface overview

4 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A welcome message is displayed.

Application menu (1.3)

The application menu forms part of the application banner, and allows for
the optional addition of up to three links. You can add a link to the
application help, a link to logout from the application and a link to open
the user preferences dialog.

Application search (1.4)

The application search element provides a search function.

Application sections (2)

An application contains a number of sections that allow quick and easy
access to some of the more common tasks and activities performed by a
user.

Application tab (3)

Content in a section is displayed in a tab, and each section can open
multiple tabs, where each tab represents a business object or logical
grouping of information. A tab can also be described as a logical grouping
of UIM pages.

Tab title bar (4)

The tab title bar contains text that identifies the current tab.

Tab actions menu (5)

The actions menu provides actions associated with the business object
represent by the tab.

Tab context panel (6)

A tab contains a context panel, which contains context information
associated with the data displayed in the tab. This context information is
always available when working with the data on the tab.

Section shortcut panel (7)

Each section can optionally have a section shortcut panel, which is
collapsed by default. When expanded the shortcut panel provides quick
links to open content, in the form of UIM pages, and perform actions
within the section. The content in the section shortcut panel is organized
into categories of menu items. The section shortcut panel contains section
shortcut categories (7.1), each of which contains quick links in the form of
section shortcut menu items (7.1.1).

Content area tab navigation bar (8)

A tab comprises of one or more pages of information, represented by UIM
pages. These pages can be navigated using a navigation bar, which
contains navigation tabs linking to single pages or sets of pages. Where a
navigation tab links to a set of pages, a page group navigation bar is
displayed.

Page title (9)

A title can be defined for a whole UIM page.

Page action control (10)

An action control can be associated with a UIM page. See Action controls
(19).

Cúram web client reference 5

Refresh button (11)

An action control that refreshes the user interface content.

Print button (12)

An action control that can be used to print user interface content.

Help button (13)

An action control that displays help content in a new window.

In-page navigation tabs (14)

A page can contain several tabs of information.

Page content area (15)

The page content area displays the currently selected UIM page.

Page group navigation bar (16)

Where a tab links to a set of pages, the pages are displayed as a page
group navigation bar, with the first one selected by default.

Fields (17)

Fields are visually organized into clusters and lists on a UIM page. There
may be zero or more of each on a page. Clusters and lists can have a title
which describes the type of data displayed.

Clusters (18)

A cluster is a rectangular area that displays fields in a tabular format. A
cluster can have one or more columns of fields, and fields can be displayed
with or without an associated label. Fields can be read-only, or they may
be editable. If editable, they appear as a control such as a text area,
drop-down menu, or check-box. The figure shows an example of two
configured clusters in the page content area, each with a configured title.

Action controls (19)

Action controls, displayed as buttons, are used to submit form data, to link
to related pages, or to open a modal dialog. Action controls can be
organized into action sets which are associated with clusters, lists, or the
UIM page (see element 10 in the figure). Individual action controls can also
be associated with a single field in a cluster or a column in a list. When an
action control is used to link to another page it can also send parameters to
the target page which are normally used as keys to retrieve server data
that populates the target page. By default action controls appear at the top
and bottom of the widget they are associated with.

Smart panel (20)

The smart panel displays extra contextual information, such as quick notes
that relate to a case, or advice that was given to a client.

Lists (21)

A list is used to display rows of repeating or indexed fields. As in clusters,
fields can have associated labels which are displayed as column headings
in the list. A list action menu (21.1) is displayed at the end of the row for
each list item and contains all the actions that are associated with the list
item.

Related concepts:

6 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

“Cúram applications”
When a user logs into the Cúram application they are presented with a view that
is specific to their role, which an application. An application in the Cúram user
interface is a collection of user interface elements, mainly based on UIM pages,
combined to create specific content for a particular user or role.
Related reference:
“Application Configuration” on page 125
An application in the Cúram user interface is a collection of user interface
elements, based on UIM.pages, that are combined to create specific content for a
particular user or role. Develop Cúram web client applications by configuring
application configuration files.

Cúram applications
When a user logs into the Cúram application they are presented with a view that
is specific to their role, which an application. An application in the Cúram user
interface is a collection of user interface elements, mainly based on UIM pages,
combined to create specific content for a particular user or role.

In addition to defining the layout of the screen, an application controls the flow
between pages available in the application. Within an application, links to other
pages are available from a section shortcut panel, the tab navigation bar and page
group navigation bar, in addition to links on the page displayed in the content
area.

Activating any of these links will result in accessing a new page in the content
area, or opening a new page in a modal dialog. For new pages in the content area,
the application definition is used to determine what tab the page belongs to and
what section the relevant tab belongs to. The page is then opened in the context of
the relevant section and tab.

Applications are defined in an XML format using a number of different files. For
example, an application is defined using an XML file with the extension .app. Each
section referenced in the application is defined using an XML file with the
extension .sec and any tabs referenced by the section are defined using an XML
file with the extension .tab.

In the following example, an application configuration .app file creates an
application containing two sections, in addition to an application banner with a
quick search facility:

Cúram web client reference 7

The separation of configuration into multiple files allows for reuse of different
elements across multiple applications. For example, a common inbox section can be
defined and referenced by multiple applications.
Related concepts:
“Application user interface overview” on page 4
The application user interface contains elements that are implemented through
user interface metadata. Other topics in the section describe how each of the user
interface elements can be configured in an application.
Related reference:
“Application Configuration” on page 125
An application in the Cúram user interface is a collection of user interface
elements, based on UIM.pages, that are combined to create specific content for a
particular user or role. Develop Cúram web client applications by configuring
application configuration files.

Page context
UIM pages are displayed in different contexts within an application. The context
the UIM page is displayed in may result in different behavior for some of the
elements.

The main contexts that UIM pages are displayed in are outlined in the following
list:
v Content Area

<?xml version="1.0" encoding="UTF-8"?>
<ac:application

id="SimpleApp"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:application-search>
<ac:search-pages>

<ac:search-page type="SAS01"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>

<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />

</ac:search-pages>
<ac:further-options-link

description="Search.Further.Options.Link.Description"
page-id="Person_search" />

</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Figure 3. Sample Application .app File

8 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The content area is where the main content for an application is displayed.
When a UIM page is displayed in the content area it will automatically contain a
refresh, help and print button within its title bar. Refer to user interface element
15 of “Application user interface overview” on page 4 to see an example of a
configured content area.

Note: The Cúram application does not support the web browser File > Print
functionality. A print button is provided for printing the contents of the Content
Area only.

v Context Panel

A context panel displays a specific kind of UIM page that displays common
information for the tab that is always viewable. Refer to user interface element 6
of “Application user interface overview” on page 4 to see a configured example
of context panel.

v List Dropdown Panel

A list dropdown panel displays a UIM page when a list row is expanded in a
list. Expanded rows are a supported feature of lists. Refer to user interface
element 21 of “Application user interface overview” on page 4 to see
unexpanded list items (toggle buttons) in a list. Refer to “LIST” on page 89 for
more information.

v Modal Dialog

A modal dialog displays a UIM page in a dialog window, displayed above the
main content. While the dialog is open, the parent content cannot be accessed.
See “Modal Dialogs” on page 88 for more information.

v Smart Panel

A smart panel, is an optional panel that can be added to the right of the content
area in a tab and displays a UIM page. For more information see “Tab
smart-panel element” on page 149. Refer to see user interface element 20 of
“Application user interface overview” on page 4 to see an example of a
configured smart panel in an application.

Page appearance
In the Cúram client development, the application and page metadata provide
limited scope to specify the position and layout of user interface elements.

Note the position and layout of the following features:
v The application banner, sections, and tabs are in fixed positions.
v Clusters and lists flow from top to bottom on a page.
v Fields are automatically positioned within the previous user interface elements.

Some control is allowed through attributes of the various elements, but sensible
defaults are provided for all these attributes to minimize the situations where they
must be used. Refer to user interface element 19 of “Application user interface
overview” on page 4 to see how action controls are aligned to the center of a
cluster. The action controls were aligned by configuring the ALIGNMENT attribute of
the ACTION_SET element in “Page content metadata” on page 2.

Application controller JSP
A single JavaServer Pages (JSP) file, AppController.do, renders the Cúram client on
the browser. Therefore, the URL in the browser always ends with

Cúram web client reference 9

AppController.do. The URL does not change as the user navigates between
separate pages within the Cúram application. Therefore, the browser back button is
not supported.

It is still possible to request the URL of a specific page in the browser. In this
scenario, on receipt of the request, the browser is automatically redirected to
AppController.do, which loads the requested page. See “Direct browsing” for
details.

Direct browsing
You can access a page directly by typing its full URL into the browser's navigation
bar, for example, http://host:port/Curam/en_US/SomePage.do. The process by
which the page is loaded depends on whether the page is associated with a tab.

If you access a page directly, the session and its associated tabs will first be
restored, then a request will be sent for the specified page. The page will then be
loaded in it's associated section and tab. However, if this page is not associated
with a tab, it will be loaded in the currently selected tab. In the case of a new
session, this will be the Home tab.

Tabs changed in this way can be returned to their default state by closing and
reopening the tab where possible. For the Home tab; logging out and back into the
application will restore the Home tab to the user's default home page. See “Tab
Restoration” on page 196 for more information about tab restoration and session
management.

Web Client Development
Use this information to understand the structure of the Cúram web client
application project, including related files in the Cúram server project, and how to
develop, build and deploy the application.

The Cúram CDEJ translates files specified in UIM (User Interface Meta-data)
format into the JavaServer Pages (JSP) that will be deployed on your web
application server. These UIM files are supported by various properties files,
configuration files, and others. Collectively, these files are called the application's
artifacts.

Your Cúram web client application project can be divided into various functional
components for ease of development. With this system, application changes and
updates can be introduced by dropping in a new component that will
automatically override the artifacts of another component, where appropriate. The
location and purpose of these artifacts and components will be described in detail
in this chapter.

Outline of the Client Development Process
Much of the client development process is driven by executing specific build
scripts. The following is an outline of the typical steps in the process:
1. Install the Cúram Application and the Cúram CDEJ. Directions to the

installation guide are provided in “CDEJ Installation” on page 11.
2. The installer creates both an server application and client application project on

your file system containing all the source files. These files will include the
application configuration files, the XML-based User Interface Metadata (UIM)
for all your pages, any images and other resources that the application requires.

10 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

3. Create and edit your source files (UIM and application configuration files) or
customize existing files.

4. Deploy your application to an application server. During development, this
might be a server embedded in your integrated development environment.

5. Once deployed, you can test your application using a web browser, for example
using the following URL:
http://localhost:9080/'server_name'/AppController.do

CDEJ Installation
To install the Cúram CDEJ, follow the instructions contained in the Cúram
Installation Guide. The installer will install the Cúram CDEJ and the Cúram
Application project ready for further development and customization. The Cúram
Application is divided into two major parts: the server application that defines the
business entities and business logic of the application, and the web client
application that defines how this information is presented to the user.

In this manual, the folders into which parts of the application and the
infrastructure are installed will be referred to using placeholders, as the actual
locations will vary depending on where they are installed and whether or not you
are developing the Cúram Application, additional applications or samples.

Folder Placeholders

<app-dir>
The top-level application folder containing both the server application and
the client application.

<client-dir>
The folder containing the web client application. Typically this is a folder
called webclient within the <app-dir> folder.

<server-dir>
The folder containing the server application. Typically this is a folder called
EJBServer within the <app-dir> folder.

<cdej-dir>
The folder containing the Cúram CDEJ, the tools and infrastructure
required to build and run web client applications. Typically this is a folder
called CuramCDEJ.

<sdej-dir>
The folder containing the Cúram SDEJ, the tools and infrastructure
required to build and run server applications. Typically this is a folder
called CuramSDEJ. More information on this folder can be found in the
Cúram Server Developers Guide

For example, if you have installed the Cúram Application into the folder C:/Curam,
then the <app-dir> placeholder refers to this folder, the <client-dir> placeholder
refers to the C:/Curam/webclient folder, the <server-dir> refers to the
C:/Curam/EJBServer folder, and the <cdej-dir> refers to the C:/Curam/CuramCDEJ
folder.

CDEJ Project Folder Structure
A Cúram web client application project is organized into a folder structure that is
recognized by the Cúram CDEJ when the application is built. “CDEJ Project Folder
Structure,” shows an outline of this folder structure for the project and the list that
follows describes each folder within this structure in more detail. The base folder

Cúram web client reference 11

of this structure is the <client-dir> folder.

Web Client Folders

build Temporary generated artifacts. The only contents of interest are the
generated reference documentation for the façade server interfaces.

build/bean-doc
Generated reference documentation for the façade server interfaces in
HTML format. These are regenerated each time the application model
changes. See “Server Interface Reference” on page 20 for more details.

buildlogs
Log files generated from each build. See “Build Logs” on page 19 for more
details.

components
The top-level folder for the application components. Each sub-folder of this
folder contains a separate application component. See “Application
Components” on page 14 for more information on application components.

components/core
The pre-defined core Cúram application component artifacts that provide
the core functionality. These artifacts should not be modified directly. To
change them, you should create new artifacts in another component which
will then override the core artifacts.

components/<custom>
One or more extra application components containing artifacts that add
additional application functionality or customize existing functionality.

components/<custom>/Images
Arbitrary custom resources that you want to deploy with your application.
Files and folders within this folder will be copied to the top-level
WebContent folder during the build process.

components/<custom>/javasource
Javasource code and properties files used to add extra functionality to an
application or to define externalized strings used across many application
pages. There are a number of different customizations that can be applied
to files within this directory. These include updates to control one or more
of the data conversion or sorting operations. Please refer to “Custom Data
Conversion and Sorting” on page 261 for more details on these
customizations. This javasource directory is optional, however if this

<client-dir>
+ build

+ bean-doc
+ buildlogs
+ components

+ core
+ <custom>

+ Images
+ javasource
+ WebContent

+ JavaSource
+ project
+ WebContent

+ <locale>
+ Previews
+ WEB-INF

Figure 4. Web Client Folder Structure

12 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

directory is added, the webclient/.classpath file must be updated to
reference this new source directory. This ensures that the changes in this
directory are recompiled when a client build is run within the specified
development environment. The following is an entry in the
webclient/.classpath file, (where <custom> represents the name of a
custom directory):
<classpathentry kind="src" path="components/<custom>/javasource"/>

components/<custom>/WebContent
Arbitrary custom resources that you want to deploy with your application.
Files and folders within this folder will be copied to the top-level
WebContent folder during the build process.

JavaSource
Contains the Initial_ApplicationConfiguration.properties file, that is
described in “Configuring the Application” on page 22.

project
Configuration files used when customizing the application deployment
descriptors. See “Customizing the Web Application Descriptor” on page 26
for more details.

WebContent
The generated web application files. This contains the generated JSP files
and other application artifacts that can be used to start and test an
application in the development environment. When an application is to be
deployed outside of the development environment, many of the files in
this folder are packaged in the application EAR file. See “Deployment” on
page 22 for more details.

WebContent/<locale>
The generated JSP files for each locale supported by the application are
placed in folders named after the locales. For example, for American
English pages there will be a folder named en_US. These JSP files are
generated as necessary when the application is built, so they will be
replaced automatically if deleted or out of date with respect to the
corresponding UIM file. The JSP files are placed in sub-folders of the locale
folder using the first two letters of the page ID as the sub-folder name.
This reduces the likelihood that an option provided by some application
server software to pre-compile the JSP files will fail when trying to
pre-compile too many JSP files at the same time.

WebContent/Previews
Generated HTML files providing a rough preview of what each
corresponding JSP will look like when the application is running. These
previews can be viewed directly in a web browser without running the
application. See “Page Previews” on page 21 for more information.

WebContent/WEB-INF
The standard folder which must exist in every Java EE web application. No
files in this folder will be served by the web container, the files are only
used internally by the web client application. It contains a classes folder
that contains all the compiled Java class files and properties files required
by the application. In a Cúram web application project, this includes the
classes and properties files from the component specific javasource folders
and the properties file from the <client-dir>/JavaSource directory. It also
contains a lib folder that contains all required library classes packaged in

Cúram web client reference 13

JAR files. The CDEJ supplies all the JAR files required for this folder and
they are copied during the build process. You should not modify any files
in this folder.

In addition to the web client folders, there are a number of folders in the
<server-dir> project that are relevant to web client application development. The
<server-dir> project maintains a similar structure to the web client, specifically in
relation to the component folder.

Server Folders

components/<component-name>/clientapps
Application configuration artifacts. These are the XML configuration files
for defining applications, sections, tabs, etc. For more information see
“Application Configuration” on page 125.

components/<component-name>/tab
Application configuration artifacts pre-defined in the Cúram application.
XML configuration files shipped with the core and other out-of-the-box
components will exist in this folder. These should not be modified. To
change these you should create new artifacts in the clientapps folder in
another component, which will then override these artifacts.

Application Components

Component Folders
Cúram web client applications are organized into collections of artifacts called
components. Each component has its own folder below the <client-dir>/
components folder. The core component is always present. This contains all of the
artifacts needed for the core functionality of the Cúram reference application. The
name of the component folder is used as the name of the component.

A component does not necessarily define a discrete part of an application; rather it
defines an additional customization layer of an application. By adding new
components, it is possible to selectively replace pages in the core application, add
new pages, change the appearance of the application and alter various settings. It
should never be necessary to edit files within the core application, thereby
ensuring that when the core application is upgraded, the core changes do not
overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you to
organize your artifacts as you see fit. Artifacts in a component must have unique
file names and the folder structure does not affect this. For example, you cannot
place two UIM files with the same name within the same component, even though
they would be in different folders. Likewise, a UIM file in one component is
considered equivalent to a UIM file in another component, even if the folders
within the components containing these UIM files have different names.
Technically, a component represents a single namespace for artifacts and the folder
structures within the components are mostly ignored.

The only exception to the requirement to use unique file names for artifacts is
within the optional WebContent folder within a component. Within this folder, you
can place arbitrary files in an arbitrary folder structure that you want to deploy
with your application. The files will be copied to the main <client-dir>/
WebContent folder during the build process and the folder structure will be
preserved, so files in different folders may share the same name.

14 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Component Order
There can be any number of application components, but they are processed in a
strict component order. This order determines the priority that will be given to
artifacts that share the same name but appear in different components. This is
fundamental to the manner in which Cúram web client applications are
customized.

The component order is defined by the CLIENT_COMPONENT_ORDER
environment variable. This is a comma-separated list of component names. Use
only commas; do not use spaces. You must place the component with the
highest-priority first in the list and continue in descending order of priority. The
core component always has the lowest priority and is implicitly assumed to be at
the end of the list; you do not need to add it explicitly.

For example, setting the component order to
“MyComponentOne,MyComponentTwo” will give the highest priority to artifacts
in the MyComponentOne folder within <client-dir>/components, a lower priority to
artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the
core folder. Any component folder not listed in the component order will not be
included in the build and a warning will be displayed to indicate that these
components have been ignored. If you do not set the component order at all, the
default component order will include all components in alphabetical order.

Note: The SERVER_COMPONENT_ORDER order, used for the <server-dir>
project, will always include all component folders existing in the components folder.
If they are omitted from the SERVER_COMPONENT_ORDER environment
variable, they will automatically be added to the end of the component order in
alphabetical order. For more information consult the Cúram Server Developers Guide.

Localized Components:
Localized components contains translated artifacts for the base components and are
of the format “<component name>_<locale>”. It is not necessary for these to be
added to the CLIENT_COMPONENT_ORDER environment variable as the tooling
that processes this environment variable will prepend any available components
that match entries in the LOCALE_LIST environment variable. Localized
components are matched both on complete locale entry and on the two-character,
lower-case language code. Localized components are prepended before the base
component in the complete component order.

Component Artifacts
Components contain a number of artifacts that are used to build an application. All
the artifacts in a single component have the same priority in the component order.
The artifacts in one component may be used to customize the artifacts in a
lower-priority component, or they may be entirely new artifacts that extend the
application. The main type of artifacts are as follows:

UIM Pages
UIM pages are the principal artifacts of a web client application. Each UIM
page describes a web page that users will see when accessing the web
client application with their web browsers. The files for these artifacts use
the .uim extension.

UIM Views
UIM views define portions of a page that may be re-used by many UIM
pages. The files for these artifacts use the .vim extension.

Cúram web client reference 15

Properties Files
Properties files store the natural language text for a page separately from
the pages, views and page groups. When applications are localized into
different languages, there will be a separate properties file for each
language (or locale, see “Application Locales”). This allows a single UIM
page, view or page group to be defined for all of the supported languages.

Note: UIM properties files do not support any form of visual layout or
formatting capabilities such as using carriage returns or inserting HTML
elements.

Application Configuration Files
Application configuration files define the layout of the user interface and
how UIM pages are grouped into sections and tabs. The files for these
artifacts are defined using the extensions .app, .sec, .tab, .nav, .mnu, and
.ssp. Note, these files are located in the <server-dir> project. See
“Application Configuration” on page 125 for details.

Image Files
Images file referenced from your UIM pages or views can be added to
your component's Images sub-folder. See “Images” on page 29 for details.

Configuration Files
Configuration files are used to alter the behavior or appearance of the
application or of elements of the application. There are a variety of
different configuration files that can be used for different purposes.

Custom Resources
Custom resources are arbitrary files that you want to deploy with your
application. For example, you may want to customize the appearance of a
page to reference you own image file for a logo; this image file is a custom
resource.

Application Locales
A locale describes a user's language, country and determines what the user will see
in the pages they access via their web browser. While the data will largely remain
the same (other than in the details of the formatting of numbers and dates) the
labels for the data will appear in the appropriate language. Locales are specified
using a simple identifier that contains a two-character, lower-case language code
optionally followed by an underscore character and a two-character, upper-case
country code. For example, “en” indicates the English language, and “en_US”
indicates the regional variation of the English language appropriate for the United
States of America. This regional variation may help to identify differences in the
dialect or usage of the language, American English in this example, but it may also
affect the way dates and numbers are formatted.

The language and country codes have been standardized and support for any
specific locale is determined by the Java Runtime Environment (JRE) that you are
using for you application and whether you have localized your application
appropriately for that locale. Consult the documentation provided by the vendor of
your JRE for details on the support locales and see “Localization” on page 43 for
full information on the procedure for localizing a Cúram web client application.

Before building a Cúram application that may have been localized for a number of
locales, you need to specify what locales you want to include. To do this, you set
the LOCALE_LIST environment variable to a comma-separated list of the locale
codes. Use only commas, do not use spaces. For example, “en_US,es” specifies the

16 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

American English locale and the Spanish locale (with no regional variation). The
first locale in the list is treated as the default locale.

Certain operations, such as the generation of page previews (see “Page Previews”
on page 21), are only performed for the default locale.

Improving Build Performance: The Cúram CDEJ performs most of the translation
work for the application's locales during the build process; from a single UIM file
it will produce one JSP file for each locale in the locale list. If your application
supports many locales, you may find it convenient when developing the
application to omit some of the locale codes from the locale list, as this will
improve the build performance. You can replace the locales when you want to
view or test all of the localized pages.

Building an Application

Build Targets
The client application is built using Apache Ant build scripts. These build scripts
define ordered sequences of processing steps called targets. To invoke a target, you
open a command prompt window and change to the <client-dir> folder and then
pass the name of the target to the command you use to start Apache Ant. Typically
this command is called build or appbuild. The name depends on the script
provided for your application, but it will be referred to as build in this manual.
For example, to build the web client application, the command is buildclient. You
can run more than one target at a time by passing the target names separated by
space characters. For example, buildcleanclient will first clean all the generated
output that may be present before building the full web client application again.

The following build targets are available for Cúram client projects:

client Builds the client application. See “Full and Incremental Builds” on page 19
for further details.

clean Deletes all of output generated by the other build targets. See “Full and
Incremental Builds” on page 19 for further details.

beandoc
Generates reference documentation for the façade server interfaces. See
“Server Interface Reference” on page 20 for further details.

client-with-previews
Builds the client application and also generates previews of the pages in
HTML format in the <client-dir>/WebContent/Previews folder. See “Page
Previews” on page 21 for further details.

uimgen Generates skeleton UIM pages from the façade server interface definitions.
See “UIM Generator Tool” on page 21 for further details.

A number of environment variables affect the build process for a web client
application. Some have been introduced already and others are explained
elsewhere, but all are shown below. When you install the Cúram Application, the
build command will set most of these for you, as they mostly refer to files and
folders that will be in fixed locations relative to where you installed the
application. However, for a new application, or if you are modifying the build
command, you may need to confirm that these are set correctly.

Cúram web client reference 17

Table 1. Environment Variables

Name Required Description

CURAMCDEJ Yes The location of the installed Cúram
CDEJ infrastructure. This is the same
as the value of the <cdej-dir>
placeholder used in this manual. See
“CDEJ Installation” on page 11 for
details.

CLIENT_DIR Yes The location of your web client
application. This is the same as the
value of the <client-dir>
placeholder used in this manual. See
“CDEJ Installation” on page 11 for
details.

CLIENT_PROJECT_NAME Yes Defines the name of the application
being built. This name is used as a
base name for many generated
artifacts, for example, for Java
package names. The name is defined
in the UML model. For the installed
Cúram Application, the value should
be “Curam”.

LOCALE_LIST Yes Defines the locales that will be
supported by the application. See
“Application Locales” on page 16 for
details.

CLIENT_COMPONENT_ORDER No Defines the prioritized order of the
application's components. See
“Component Order” on page 15 for
details. This is not required, but it is
highly recommended that you set it
explicitly. By default, all components
will be processed in alphabetical
order.

ENCODING No Defines the character encoding that
will be used to interpret files that do
not explicitly define an encoding. By
default, the system's default character
encoding will be used. See “File
Encoding” on page 44 for details.

MULTIPLE_VALIDATION_ERRORS No Controls the number of errors that
are reported during the build process
before the build terminates. See
“Error Reporting” on page 19 for
details.

Related Build Targets
The server application is built using Apache Ant build scripts, in the same way as
the client application is built. The application configuration files are located in the
<server-dir> project and as a result, the targets for processing these are part of the
server project. The following targets are used to process the client application
configuration files:

inserttabconfiguration
Combines and imports the client application configuration files onto the
database. See “Configuration files” on page 126 for more details.

18 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

database
The last step of the database target is to call the inserttabconfiguration
target. For more information the database target see the Cúram Server
Developers Guide.

Full and Incremental Builds
Theclient build target will generate a complete web client application. If no
previous build output is present, running this target will build the entire
application. This is called a full build. Subsequently, on running this target, the
build scripts will compare your source files to the previously generated output files
to detect what you have changed and will update the minimum number of output
files possible. This is called an incremental build. An incremental build is performed
automatically as long as the output of a previous build is present and is much
faster than a full build. To perform a full build again, you must first run theclean
target to remove all of the outputs from the previous build.

warning: Building after Upgrading

If you upgrade your Cúram application or Cúram CDEJ, you must perform a full
build by first running theclean target. Failure to do this could result in
unpredictable behavior during the build process or when then application is
running.

Platform Specific Setting: When executing theclient build target from a text-only
interface (e.g., using a terminal emulator to access a UNIX machine),
-Djava.awt.headless=true must be added to theANT_OPTS environment setting.

Dependency Checking
For most changes that you make, you need only run the incremental build, as the
changes will be detected automatically and only the dependent output files will be
updated. However, some changes are not detected and you may need to run a full
build for your changes to take effect. In particular, if you change a setting in the
curam-config.xml configuration file that affects the build process (typically by
affecting the appearance of the pages in a way that is applied at build-time), then
you will need to perform a full build manually, as the changes will not be detected
automatically.

Dependency checking will identify changes to server interfaces used by UIM
pages. Server interfaces are defined in the application's UML model and more
information can be found in “Server Interface Reference” on page 20. Only changes
to interface properties, not their underlying domain types, are recognized in an
incremental build. For example, changing a code-table name will not be detected
by dependency checking and a clean build will be required.

Build Logs
Every time you run theclient target to build the application, all of the messages
produced by the build scripts are written to a file in the <client-dir>/buildlogs
folder. The files created are named for the date and time on which the build was
started. If errors occur during a build, you may find it easier to review them by
reading the log file instead of scrolling through messages at the command prompt.

Error Reporting
One of the main steps performed by the client target is the generation of the JSP
files from the UIM files. This process will check the validity of your UIM files as
they are processed. The validity of the UIM files is determined in a number of
steps:

Cúram web client reference 19

1. They must contain well-formed XML and must not attempt to include VIM files
that do not exist.

2. They must conform to the XML schema for UIM and to some additional
context-sensitive rules that cannot be defined in the XML schema.

3. They must refer only to externalized strings that exist in their associated
properties files.

4. They must meet a number of other requirements related to the connections
made to the properties of server interfaces. For example, the property names
must be unambiguous, or an address field must be the only field in a cluster.

Normally, the processing will stop when the first error occurs and the indicated
problem must be fixed before the build can be executed again. However, for the
errors detected in the second step, the schema and schema-related validation
errors, there is an option to continue processing as far as possible after an error
occurs to allow you to locate and fix more than one error at a time. Errors reported
during the other steps will always stop the build immediately.

To allow multiple validation errors to be reported during a build, set the
MULTIPLE_VALIDATION_ERRORS environment variable to true. If not set, the
default value is false and the build will terminate after the first validation error
occurs.

The number of errors reported is limited by the number of UIM files being
validated at one time. The validation is typically performed on files in groups of
one hundred, so this option will cause all of the validations errors in the current
group to be reported before the build is terminated. No further groups will be
processed after a group containing files with validation errors has been
encountered.

Server Interface Reference
When developing UIM pages, you will need to know details about the façade
server interfaces and their properties so that you can select the information that
you want to display on each page. This information is all defined in the
application's UML model, but, for your convenience, you can generate simple
reference documentation in HTML format to make the information more easily
accessible.

Thebeandoc target generates this reference documentation for all of the available
façade server interfaces (“classes”), creating many HTML files in the
<client-dir>/build/bean-doc folder. To view the documentation, open the
index.html file created in that folder in a web browser. This document provides
links to alphabetical lists of all classes, all operations on those classes, all domain
definitions used by properties of those operations, and all code-tables referenced
by any of those domain definitions. Each of these lists provides further links for
cross-references or providing more details. Viewing a class will display a list of its
operations and selecting an operation will show a list of its properties.

In UIM, you do not have to use the full property name; you can use only part of
the ending of the name as long as it is unambiguous. In the reference
documentation for each operation, both the full property name and the shortest,
unique ending of the property name are given. This will help you to choose a
name that is short and readable, but that will not cause any build errors later.

Beside many of the class, operation, and property names, you will see a Copy
button. Clicking this button will copy the name to the clipboard, allowing you to

20 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

paste it into your UIM file. For property names, the shortest unique name is
copied. Copying to the clipboard using the Copy button only works in Microsoft
Internet Explorer. In other browsers, you will have to select the text and use the
normal copying commands.

Page Previews
Page previews are produced by running theclient-with-previews build target.
This will generate static HTML pages for the default locale that can be opened in a
browser to give you an impression of what the page will look like when the
application is running. The HTML pages are located in the <client-dir>/
WebContent/Previews folder. You do not need to start a server to view the pages.
The pages display a default value for each field but do not support any
user-interaction (buttons, links, pop-ups, etc. do not function). The preview page
represents only the main content area of the page (the part specified in UIM) and
not the sidebar or page header or footer.

The default values for the fields are defined by associating a default value with the
domain definition of the field. These default values are used only for the preview
pages and are defined in the domain-defaults.xml file in <client-dir>/
components/core. Overriding this file in other components is not currently
supported so it must be modified in place.

The file uses a simple XML format, a sample of which is shown below. The root
element is DOMAIN_DEFAULTS. This element contains one DOMAIN element for each
domain definition for which a default value is to be defined. The DOMAIN element
requires a NAME attribute specifying the domain name, and a DEFAULT attribute
specifying the default value for that domain.

When generating preview pages, if there is no default value defined for a domain,
a warning message will be displayed. These warnings will not prevent the preview
page from being generated and a fall-back value will be used in the generated
page (for example, “[field-value]”). Note that fields that have a complex domain
value are not parsed or processed in the normal manner. Most of these are simply
replaced by an image of the typical output and no default value is required.
Complex fields like this are described in “Domain-Specific Controls” on page 209.

UIM Generator Tool
The UIM Generator tool provides a user interface for automatically generating a
UIM page for a particular server interface.

To start the UIM Generator tool:
1. Open a command prompt and change to the <client-dir> folder.
2. Run builduimgen .
3. The first time you run the UIM Generator you will be asked to locate a

ServerAccessBeans.xml file. This file is generated by theclient target and can
be found in the <client-dir>/build folder.

Once the UIM Generator has started, you should see a screen containing the
following:

<DOMAIN_DEFAULTS>
<DOMAIN NAME="MY_DOMAIN" DEFAULT="My value"/>
<DOMAIN NAME="YOUR_DOMAIN" DEFAULT="Your value"/>

</DOMAIN_DEFAULTS>

Figure 5. Default Preview Values for Domain Definitions

Cúram web client reference 21

v A File menu containing options to view your current configuration settings and
to exit the application.

v A tree on the left hand side which lists all the server interfaces in the
application.

v Two options, Display Phase and Action Phase, which determine when the
selected server interface is called in the generated page.

v A Make Page button which generates the UIM for the current settings.

To generate a page perform the following:
1. Select the interface you wish to test from the tree (e.g. Register-Person.read).
2. Select the phase in which the interface should be called, for example, Action.

Action phase pages call the interface when the page is submitted. Data can be
entered for each input field and a button is generated to submit the page.

3. Click the Make Page button and you will be asked to specify a location for the
generated UIM. You can change the default name if you wish. The location
should be in the appropriate component folder of your application.

A UIM file and a properties file are generated. The labels for each field are given
defaults based on the name of the server interface property associated with the
field.

External Client Applications
Due to the webclient directory containing a mix of components that are targeted
for different EAR packaging, it can be difficult to use the single development
environment and component order to develop and test these.

To allow for this a build targetexternal-client will allow for creation of an
environment and building of the components specified for an EAR entry in the
deployment_packaging.xml.

The target requires a parameter-Dapp which should refer to the name of an EAR
entry within the deployment_packaging.xml.

The build target will copy the components specified for this EAR entry to a
webclient\build\apps\<app name> directory and here will both build the project
and create the relevant Eclipse project configuration files to allow for the project
directory to be imported into Eclipse and development-type testing to be
performed on these external client applications.

Deployment

Overview
A detailed description of the deployment procedure is provided in the Cúram
Deployment Guide appropriate for your application server and operating system.
However, there are a number of configuration settings available in your web client
application project prior to deployment. These settings are described below.

Configuring the Application
The ApplicationConfiguration.properties file defines the most important
application configuration settings. The file needs to be located in the curam/omega3
subfolder of the <client-dir>/JavaSource folder. When you create a new

build external-client -Dapp=SamplePublicAccess

Figure 6. external-client invocation

22 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

application, this folder contains a sample file named
Initial_ApplicationConfiguration.properties. You need to copy this file and
rename it to ApplicationConfiguration.properties and change the settings to
match your requirements. For the installed Cúram application, this process is done
for you already, but you might still want to change other settings.

The properties that can be set in this file are described in the as follows:

dateformat
dateformat=M d yyyy

The format that is used by the Cúram date selector widget for entry and
display of date fields.

The value of can be set to one of the following formats:
v Day-month-year order - d M yyyy (the default), dd MM yyyy.
v Month-day-year order - M d yyyy, MM dd yyyy.
v Year-month-day order - yyyy M d, yyyy MM dd.

In these formats, d represents the day number, dd represents the two-digit
day number (padded with a leading zero if necessary), M represents the
month number, MM represents the two-digit month number (padded with a
leading zero if necessary), and yyyy represents the four-digit year. An
uppercase letter M is used for the month, as the lowercase letter m is used in
Java applications to represent the minute value when formatting times.
Using MMM or MMMM to represent the month name is not supported. The
formats are specified by using a space character as a separator. The actual
separator character that you want to use is specified separately.

dateseparator
dateseparator=/

The date separator character that is applied to the specified date format.
The value can be set to one of the following characters: forward slash (/)
(the default), period (.), comma (,), or dash (-).

timeformat
timeformat=HH mm

The value of timeformat can be set to one of h m s a, h m a, H m, hh mm a,
HH mm, hhmm a, or HHmm. Where not specified, HH mm is used as the default.

timeseparator
timeseparator=:

The value of timeseparator can be set by using either a colon (:) or period
(.). Where not specified, the colon (:) is used as the default.

serverConnectionType
serverConnectionType=single

Do not change this value.

addressFormatType
addressFormatType=US

Default address format for addresses in the application.

addressDefaultCountryCode
addressDefaultCountryCode=US

Default, application-wide country code for addresses. This code must
match an entry on the server application's Country code table.

Cúram web client reference 23

uploadMaximumSize
uploadMaximumSize=-1

Maximum file upload size in bytes. Files that exceed this size are rejected.
This limit needs to be set to match the allocated storage in the database for
fields that contain uploaded files. This limit cannot be tailored to suit
different database fields. The value -1 indicates no maximum limit.

uploadThresholdSize
uploadThresholdSize=1024

The maximum size in bytes of an uploaded file before a temporary file is
created on the server to reduce the memory processor usage of storing the
data as it is being processed. By default, the uploaded files are written to
temporary disk storage if they exceed 1024 bytes.

uploadRepositoryPath
uploadRepositoryPath=c:/temp

Temporary files that are created during file upload are written to this
location if they exceed the upload threshold size. By default, files are
written to the Java system temporary folder (as defined by the Java system
property property java.io.tmpdir).

use.synchronizer.token
use.synchronizer.token=true

Whether to use a synchronizer token to prevent accidental resubmission of
forms due to use of the browser's Back button. The value can be set to
true (default) or false.

synchronizer.token.timeout
synchronizer.token.timeout=1800

A synchronizer token expires if its associated form is never submitted.
Values are specified in seconds. The default value for this property is 1,800
seconds.

errorpage.stacktrace.output
errorpage.stacktrace.output=false

The value for this property is true or false, with true as the default.

Stacktrace output is used in the development environment for debugging
purposes. When the value for this property is true, the Java exception
errors are output into the HTML error pages.

The property must be set to false in a production environment, for
example, errorpage.stacktrace.output=false, otherwise it introduces
security vulnerabilities into the application. The HTML error pages, which
contain the Java exception stack trace, are not subject to the Cúram's
application malicious code and filtering checks. This exemption potentially
leaves the application open to injection attacks, for example, cross-site
scripting and link injection.

dbtojms.credentials.getter
dbtojms.credentials.getter=curam.sample.CredentialsGetter

Specifies the name of the class that is used to obtain credentials to be used
for triggering a DBtoJMS transfer. If not specified, a default set of credentials
is used for this operation. For more information about DBtoJMS and how to
use this property, see the Security Considerations section of the Cúram
Batch Processing Guide.

24 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

modal.dialogs.minimum.height
modal.dialogs.minimum.height=200

Specifies the minimum required height for a modal dialog in pixels. The
parameter is used when the calculated height of the modal dialog is less
than the minimum required height or the specified height is less than the
minimum required height. The default value of 100 pixels applies if this
parameter is not set.

tabSessionUpdateCountThreshold
tabSessionUpdateCountThreshold=10

Specifies the number of tab session data updates that must be received
before the data is persisted from the web tier to the database. After the
threshold is reached, the recent updates are written and counting starts
again from zero until the threshold is reached. A value of 1 causes writes
on every update. A value of zero (or a negative or invalid value) disables
writing based on update counts.

The default is every 10 updates.

For more information, see “Session Management” on page 195.

tabSessionUpdatePeriodThreshold
tabSessionUpdatePeriodThreshold=120

Specifies the number of seconds that must elapse since the last time session
data was persisted from the web tier to the database before a new update
triggers another write. A value of zero (or a negative or invalid value)
disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information, see “Session Management” on page 195.

resourceCacheMaximumSize
resourceCacheMaximumSize=16000000

Specifies the size of the application resource store cache. By default, the
cache is limited to 16 MB (approx.) in size. When that limit is reached, the
least recently used resources are ejected from the cache to make room for
newly requested resources that are not already in the cache. The size of the
cache is specified in bytes.

Note: A single resource is not cached if it exceeds the size limit for the
cache.

dynamicUIMInitModelOnStart
dynamicUIMInitModelOnStart=false

Indicates whether the Dynamic Cúram User Interface Metadata (UIM)
system needs to initialize the required information on the application
model during startup or when it is first required for a Dynamic UIM page.
The default value is true and it needs to be set to false to cause the
model to be initialized when it is first required by a Dynamic UIM page.

For more information, see “Dynamic UIM System Initialization” on page
125.

sanitize.link.parameter
sanitize.link.parameter=true

Enables protection from link injection attacks. The default value is false.

Cúram web client reference 25

When the value of this property is set to true, any parameters in the
request URL within the Cúram application that are built with this value
are validated for security vulnerabilities. If tracing is enabled, any
parameters in which possible security vulnerabilities are detected are
logged and, to maintain security, the request is terminated at a specially
created error page.

curam.progress.widget.enabled
curam.progress.widget.enabled=true

Enables the Progress Spinner widget. The default value is true.

When the value of this property is set to true, and the loading of content
in any panel or modal dialog takes longer than 2 seconds, a progress
spinner will appear to indicate that the system is busy.

curam.progress.widget.threshold
curam.progress.widget.threshold=2000

Specifies the time offset in milliseconds for the progress spinner to be
displayed. The default value is 2000 milliseconds (or 2 seconds).

This property specifies how long the progress spinner should wait before
being displayed. If the page content loads within this period, the progress
spinner will not be shown.

Related reference:
“Optimal Browser Support” on page 205
Learn about optimal browser support and how to notify the user when they are
using a sub-optimal browser with the Cúram application.

Tracing:
As described in “Localization” on page 43, the file CDEJResources.properties
defines properties for localizing certain features of the application. It also contains
the setting to enable tracing of server function calls on the web-tier. Add the
following property to enable this tracing:
TraceOn=true

When enabled, the inputs to and outputs from all server function calls will be
written to “Standard Out”1.

Customizing the Web Application Descriptor
The web application descriptor that is defined in a file named web.xml is a
standard Java EE web application file. A Cúram web application contains various
settings that a developer may wish to change, for example, server connection
settings and the session time-out. The default settings can be seen in the following
files based on the environment you are running the application from:

Development Environment
<cdej-dir>/lib/curam/web/WEB-INF/web.xml

IBM® WebSphere® Application Server
<cdej-dir>/ear/WAS/war/WEB-INF/web.xml

WebLogic Application Server
<cdej-dir>/ear/WLS/war/WEB-INF/web.xml

1. Due to classloader issues with Log4j, the web-tier does not currently provide a configurable logging system in the same way as
the server-tier.

26 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Customizing the web.xml file is done differently depending on whether you are
changing the version of the file to be included in the Cúram EAR file or the
version to be used at development time (e.g. in Apache Tomcat).

Customizing the web.xml for development time can be done by creating a custom
version of the web.xml file in the WebContent/WEB-INF directory of a particular
component, e.g. custom. Where multiple versions of web.xml exist in different
components, the version in the highest precedence component, based on
CLIENT_COMPONENT_ORDER, will be used.

The web.xml used within a Cúram EAR file can be customized using the
deployment_packaging.xml file located in the Curam Server project/config
directory. It is possible to specify a custom web.xml using the custom-web-xml
property. For more information on customizing web.xml at runtime please consult
the Cúram Deployment Guide for the relevant Application Server.

When customizing web.xml, the existing security, filter and servlet settings should
not be modified.

The server and port settings in ApplicationConfiguration.properties are now
obsolete and no longer need to be specified. They are now automatically
configured as context-param elements in web.xml when the Cúram EAR file is
created. The server and port values are set according to the values specified in the
AppServer.properties files (see the Cúram Server Deployment Guides for more
information), with the exception of the web.xml used at development time. The
development web.xml, located in <cdej-dir>/lib/curam/web/WEB-INF/web.xml, has
the server and port set to localhost and 900 respectively.

To change or add a locale, locate the init-param elements of the ActionServlet
and duplicate them, changing the value of the param-name element as appropriate
so it is in the form config/<locale-code>. See the example below.

By default the web.xml for both WebSphere and WebLogic application servers is
configured to enforce secure http (https), i.e. a secure SSL connection between the
web client and the server. This can be modified by changing thetransport-
guarantee from CONFIDENTIAL to NONE. Note, this does not disable access to the
Cúram web client over https, but enables additional access via http. Please refer to
the Curam Security Handbook for further details.

Customizing the 404 or Page Not Found error response.:
The 404 or Not Found error message is a HTTP standard response code indicating
that the client was able to communicate with the server, but the server could not
find what was requested. The default web.xml files for WebSphere, and WebLogic
specify a default error page for the Cúram application when an HTTP 404 error is
thrown by the application server. The following is the error message displayed on
that default page:
v The page you have requested is not available. One possible cause for this is that

you are not licensed for the necessary Cúram module - if that is the case, you
can use the User Interface administration screens to remove these links.

<init-param>
<param-name>config/en</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

Figure 7. Configuring an Application Locale

Cúram web client reference 27

This message may be customized by adding a HTTP404Error.properties file into
the <client-dir>/components/<component_name>/ folder of the application and
overriding the error.message property specified in that file.

Customization

Overview
A Cúram web client application can be customized without modifying the original
components or their artifacts. This makes it easier to upgrade a base application
while preserving your custom changes to that application. In this section you will
see how the customization process works and how you can modify or extend a
base application.

Customizations are applied according to the component order. The changes that
you make to customize an application should be made in a separate component
from the application's original components. The Cúram Application will be
installed with a number of components (the core component and a number of
other add-on components). To make customizations, create a new component
folder containing a new sub-folder called components. Add that component's name
to the component order (see “Component Order” on page 15). You will always
want to add your component name to the beginning of the component order to
give it the highest priority when artifacts are being selected at build-time. You can
add more that one custom component, but you must decide what their relative
position in the component order should be.

To begin with, your custom component will be an empty folder. You make your
customizations by adding artifacts (e.g., UIM pages, configuration, files, etc.) to this
component folder. You can create arbitrary sub-folders to help you organize these
artifacts. You can customize an application by adding new artifacts, overriding
existing artifacts, or merging new content with existing artifacts.

Adding New Artifacts
You can add new artifacts to extend a base application. To add a new artifact, you
simply create the new file in your component folder. The file name of the artifact
should not be the same as the file name of an artifact in another component. If it
is, the artifact will override another artifact or be merged with one. All types of
artifacts can be added to an application in this manner, note artifacts added to the
WebContent sub-folder will always override other delivered artifacts, as described
in Section “Custom Resources” on page 43.

Overriding or Merging Artifacts
Some types of artifacts can be overridden (effectively replaced) by adding an
artifact with the same file name as an artifact in another component to your
custom component. When building the application, the artifact in the highest
priority component will be selected and the others ignored. Not all types of
artifacts are overridden so completely. Other types of artifacts are merged with the
same named artifacts in the lower priority components. The content of all of the
artifacts is combined and, where the content is related, the content from the highest
priority component is selected. The customized artifacts only need to share the
same file name, they do not have to share the same relative folder location, though
you may find it advantageous to organize them in a similar manner.

For example, for UIM files that share the same name, the file in the highest priority
component will be selected and the others ignored; but for properties files that
share the same name, all of the properties are merged together and, where the files
contain properties with the same key name, the value of the property from the file

28 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

in the highest priority component will be used. When building an application, the
artifacts in the components are not modified. The selection and merging of artifacts
is performed in temporary locations, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in the
sections below.

Externalized Strings
All string values in UIM documents and JavaScript must be externalized. This aids
maintenance and allows the application to be localized. JavaScript, UIM pages and
UIM views can reference externalized strings.

The syntax of a properties file is simple. Each line contains a name=value pair,
where the name is an arbitrary name for the string (it should not contain the “=”
character), and the value is the localized string value. Blank lines and lines
beginning with a “#” character are ignored. “Externalized Strings” contains an
example. The syntax is defined by the java.util.Properties class provided with
your Java Runtime Environment; you can consult the API documentation for that
class for more details.

It is worth noting that the property value will be reproduced in the final
application page exactly as you have typed it in the properties file. The value can
contain any character from any language and it does not matter if that character is
reserved in XML, HTML or anywhere elseit will be safely processed and displayed
as you intended in the application.

If you find that you need to enter a character in a property value that you cannot
generate from the keyboard, the only one way to do it is to use the Unicode value
of that character in a Unicode escape sequence a backslash and a “u” followed by the
four-digit hexadecimal character code. For example, if you want to enter a
non-breaking space, the corresponding Unicode escaped sequence is “\u00a0”. An
example of this is included in the sample properties file below.

As you can see, using “.” characters is a useful way to add some structure to the
properties in the file, though it is not a requirement.

When customizing an application, you can customize properties independently of
pages and views by adding the appropriately named properties file to your custom
component and defining the externalized string properties. You do not need to add
the corresponding page or view file to your component and you do not need to
redefine any of the properties that you do not want to change.

Images
All references to icons or other graphics within a UIM document are externalized
in a manner similar to normal strings. The Image.properties file (you can include

Main Titles
MyPage.Title=My First Page
Cluster.User.Title=User Details

Field labels
Field.FirstName.Label=First Name
Field.Surname.Label=Surname

Other
Separator=\u00a0

Figure 8. A Sample Properties File

Cúram web client reference 29

one in each component, if you wish) uses the same format as the string properties
files to associate image references with image file names. The image files should be
stored in the component's Images sub-folder and can be organized into a folder
structure below this folder if desired. Most web browsers will support images in
the portable network graphics (PNG) format, the graphics interchange format
(GIF), and the joint photographic experts group (JPEG) format.

The Image.properties file simply associates a key with a path to the corresponding
image file specified relative to the component folder. A sample of this file is shown
below. To use these images, the key is used as the value of the IMAGE attribute on
the ACTION_CONTROL element in the UIM page.

The entries in the Image.properties file in the core component can be overridden
individually or in total by creating an Image.properties file in your custom
component and overriding the properties as required. You can override the image
files themselves by creating files in your custom component with the same names
as the files in the core component.

If you need to localize your images for different languages, you can add several
Image.properties files using a different locale code as the file name suffix. See
“Locales” on page 45 for details on locale code suffixes. Each properties file should
define the same keys, but the image files can be different for each locale. If only
some of the images need to be localized, the common images can be defined in the
default Image.properties file (the one without the locale code suffix) and only
properties for the localized images in the other properties files.

Image Mapping
Images can also be used within the Cúram application to represent different values
of displayed fields instead of presenting the value as text. For example, a typical
boolean value of true or false could be represented by two images of, say, a green
check mark and a red X.

The mapping between values and images is stored in the ImageMapConfig.xml file.
There is no need to specify this in any way in UIM. If you use a property with a
domain listed in the ImageMapConfig.xml file, it will automatically be displayed as
an image.

Button.Ok=Images/ok.gif
Button.Cancel=Images/cancel.gif
MyPage.Title.Icon=Images/bluedot.gif

Figure 9. A Sample Image.properties File

30 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

In the example, a field with domain type MY_BOOLEAN has been assigned an
image mapping. Note that you should specify an image mapping for each
available locale even if the images used are identical. This is because the
alternative text (“alt text”) attached to the image will be different for different
locales. This text is important for accessibility reasons (users who have visual
difficulties might use an audio browser, for example, which will read out the “alt
text”).

ImageMapConfig.xml files in different components are merged with all unique
image mappings preserved. If the same value in the same locale is mapped in two
ImageMapConfig.xml files in two different components, the mapping from the
higher priority component prevails.

CuramLinks.properties
The UIM LINK element allows links to other client pages to be specified indirectly.
The PAGE_ID_REF attribute is a key into the CuramLinks.properties file that returns
the actual ID of the linked page.

Many links can point to the same page reference. The advantage of using a page
reference is that all the links can be updated by changing a single entry in this file.

Each component can have its own CuramLinks.properties file. During generation,
these individual files will be merged. As usual, if a particular key is present in
more than one CuramLinks.properties file, the component priority order is used to
decide which value is retained.

XML Runtime Configuration Files
There are a few miscellaneous XML files that are used by the running client
application. To change any of these files, copy the original file into the custom
component sub-directory and modify the copied file. The default files can be found
in <cdej-dir>/lib.. The client generators will use the xml file from the highest
priority as specified by the CLIENT_COMPONENT_ORDER environment variable. The
following is a list of these files:
v CalendarConfig.xml

v DynamicMenuConfig.xml

v ICDynamicMenuConfig.xml

<map>
<domain name="MY_BOOLEAN">

<locale name="en">
<mapping value="true"

image="Images/ValuesToImages/true.gif"
alt="True"/>

<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="False"/>

</locale>
<locale name="fr">

<mapping value="true"
image="Images/ValuesToImages/true.gif"
alt="Vrai"/>

<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="Pas Vrai"/>

</locale>
</domain>

</map>

Figure 10. A Sample ImageMapConfig.xml file

Cúram web client reference 31

v MeetingViewConfig.xml

v RatesTableConfig.xml

v RulesDecisionConfig.xml

v RulesEditorConfig.xml

Further details on the customization of these configuration files are given in
“Domain-Specific Controls” on page 209.

Login Pages
A default login page is supplied, called logon.jsp and located in the
lib/curam/web/jsp directory of the Cúram Client Development Environment. This
can be overridden by placing a copy, with the required changes, in a
webclient/components/<custom component>/WebContent folder. However, there are
some guidelines that should be followed.

Firstly, the following JavaScript should be included in the head section of the page:
<jsp:include page="no-dialog.jsp"/>

<script type="text/javascript"
src="${pageScope.path1}/CDEJ/jscript/curam/util/Logon.js">
//script content</script>

<script type="text/javascript">
curam.util.Logon.ensureFullPageLogon();
function window_onload() {
document.loginform.j_username.focus();
return true;

}
</script>

This prevents the login page from being loaded in a dialog window.

Secondly, if it is desired to use the j_security_check login mechanism, the form
submitted from the page should have an action attribute of j_security_check, a
user name input with the name attribute j_username and a password input with the
name attribute j_password.

The Cúram Server Developers Guide contains details of some common customizations
to the logon.jsp file to support an external user client application and automatic
login.

The styling of logon.jsp can be customized in the usual way. Simply add relevant
CSS to any .css file in the custom component.

JavaScript Files
The UIM SCRIPT element allows events on the page to trigger JavaScript functions.
You can simply provide a path to the JavaScript file that is relative to your
component folder. For example, if you have a JavaScript file in a sub-folder of your
component folder: MyComponent/scripts/myScript.js, you can just refer to this in
the SCRIPT tag as follows:

<SCRIPT SCRIPT_FILE="scripts/myScript.js" ...>

The paths you have specified will be fully preserved during application generation.

JavaScript allows HTML and CSS to be queried and manipulated. The underlying
HTML and CSS source code used to style the Cúram application is not
documented. No guarantees are made about its stability across Cúram releases.
Therefore, custom JavaScript may have to be updated in line with changes to
HTML structure.

32 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A number of JavaScript APIs for use in the custom JavaScript code are provided
within the Cúram application. They are documented in the following location in
your CDEJ installation: CuramCDEJ\doc\Javascript\index.html. Use of any other
Cúram JavaScript APIs, discovered through web developer tools for example, is
not supported. The same is true of the JavaScript APIs and functions of third party
frameworks used within the Cúram application. While there is nothing prevent a
developer using these, using them means the code will be impacted by changes to
the Cúram application in future releases.

Using the techniques described above to add new JavaScript files to the custom
component, new third party APIs could be added to Cúram pages. This is at the
customers discretion, as no guarantees can be made on third-party APIs that have
not been used and verified within the Cúram application.

Cascading Stylesheets
Stylesheets (* .css) define the appearance (colors, fonts, etc.) of the client pages
when viewed in a web browser. Default stylesheets are provided for the Cúram
client application. It should never be necessary to edit these files, you can view
them in the WebContent/WEB-INF/css folder. Instead, you can override particular
styles or add new styles by creating new CSS files in one of your application
components. Any CSS file located in the component/<some-component> folder (or
sub-folder) will be automatically concatenated into the custom.css file. The
custom.css file is included on all pages in the Cúram client application.

The underlying HTML and associated CSS used to style the Cúram user interface
can easily be viewed in a variety of ways, such as using developer tools like the
Internet Explorer Developer Toolbar. An example of customization would be to
view the CSS used to apply a color to a field's label. The same CSS style can then
be added to your custom CSS file and a different color specified. For example,
assuming the HTML and CSS has been analyzed and the CSS rule .field.label
applies the label color, the following CSS could be used to override the default:
.field .label {

color: red;
}

This will take precedence over the Cúram style because custom CSS is included on
the page after Cúram's default CSS. Another customization technique would be to
create a new rule that is an extension of a Cúram rule. Continuing the above
example, a developer analyzes the HTML and sees that within the Cúram
application a span element is generated as a child of the .label element. It is
possible to create a new rule that is specific to this span, even if Cúram has not
done so. The complete customization will now look like this:
.field .label {

color:red;
}
.field .label span{
color:blue;
}

The underlying HTML and CSS source code used to style the Cúram user interface
is not documented (hence the use of developer tools to view it). No guarantee is
made about its stability across Cúram releases. Therefore, customizations as
described above or any customization based on analysis of the Cúram application's
underlying HTML and CSS may be lost as new releases are taken on. The
customizations may have to be re-applied by analyzing the HTML and CSS again.

Cúram web client reference 33

Note: Some UIM elements support the STYLE tag which allows specific styling to
be added to any instance of that element. This styling will always override that
included in .CSS files. For more information, see “UIM Reference” on page 52.

Application Specific CSS:
CSS can be specific to the application being viewed. The id of the application (.app
file) currently being viewed is added as a class on the BODY element of each HTML
page, allowing application specific styling to be added to that page.

For example, a System Administrator views the SYSADMAPP application. The
following is an example of CSS specific to that application:
.SYSADMAPP .field .label {

color:red;
}

Media Specific CSS:
CSS can be specific to the type of media being used to view the web page. So, for
example, it is possible to have some styles that only apply when a page is printed
and others that only apply on-screen. It is possible to include CSS specific to a
media using the following pattern:
<STYLE type="text/css">

@media print {
BODY {font-size: 10pt; background: white;}

}
@media screen {

BODY {font-size: medium;}
}
</STYLE>

Browser Specific CSS:
CSS can be specific to the browser used to view the web page. Internet Explorer
specific CSS files can be created in any folder in a component. A naming
convention is used to distinguish between versions of Internet Explorer.
Specifically, the following suffix is used:

_ie.css
This file will be included in all versions of Internet Explorer.

Note that developers should continue to strive to use the same CSS on all
browsers. Internet Explorer specific styling should only be used as a last resort.

Application Configuration Files
The application configuration files for defining application, section and tabs can be
added to the <server-dir>\components\<component-name>\clientapps directory,
where <component-name> is a custom component. Sub-folders are supported
within the clientapps folder. Any artifacts added to this directory will override
files of the same name in the <server-dir>\components\<component-name>\tab
directory. The tab directory contains files that are shipped with existing
components within the Cúram application and these files should not be modified.

Note: The OOTB Cúram application uses fragments of configuration artifacts that
are merged into single files at build time, this is not supported for custom
application configuration artifacts. (i.e.) you should not have a tab folder in
EJBServer\components\custom.

When customizing application configuration files that ship with the Cúram
application, the XML configuration file and.properties file should always be
customized as a unit. For example, a change to the SimpleApp.properties file,

34 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

associated with the SimpleApp.app file, should result in adding both
SimpleApp.app and SimpleApp.properties to the clientapps folder. These files
should be based on the merged version of the files. The inserttabconfiguration
target can be used to get a development copy of the merged file. See the Cúram
Server Developer Guide for more information.

There are a few general rules and best practices when working with the
application configuration files:
v The id attribute on the root element of each configuration file must match the

name of the file. E.g. SimpleApp.app must have an id of SimpleApp.
v The id attributes should not contain the period (.) or underscore (_) characters.
v Localizable text should be added to a .properties file which matches the name

of the configuration file. E.g. SimpleApp.app will have a corresponding
SimpleApp.properties.

v Properties files can be re-used across configuration files. E.g. Person.nav and
Person.tab can share the same Person.properties file.

v Ensure when developing the XML files to add the proper namespace
information. This will allow for validation. For example:

General Configuration

Overview:
The curam-config.xml file contains a number of general-purpose configuration
options that affect the appearance or behavior of the web client application. Each
of the following sections describe in detail the main elements of this configuration
file.

POPUP_PAGES:
See “Pop-up Pages” on page 247.

MULTIPLE_POPUP_DOMAINS:
See “Pop-up Pages” on page 247.

ERROR_PAGE:
If an error occurs at run-time, the user will be redirected to a page defined here.
Depending on the error cause, two types of error page could be provided for
reporting system or application failure (or a default page for reporting both kind of
errors could be configured instead).

Please note: when overriding the ERROR_PAGE setting it is not possible for a custom
configuration to define an ERROR_PAGE element without a TYPE attribute if a low
priority component defines an ERROR_PAGE element with a TYPE attribute. In that
case, the custom component needs to use a TYPE attribute and must override both
supported types of error page to get the desired effect

<ac:application
...
</ac:application>

<ERROR_PAGE TYPE="SYSTEM" PAGE_ID="CuramSystemError"/>
<ERROR_PAGE TYPE="APPLICATION" PAGE_ID="CuramError"/>

Figure 11. Error_Page Section Example

<ERROR_PAGE PAGE_ID="CuramError"/>

Figure 12. Error_Page Section Example with one default page

Cúram web client reference 35

MULTIPLE_SELECT:
Domains which should display as multiple select list boxes in forms are specified
here. The MULTIPLE attribute, if true, allows multiple selection in the list.

FILE_DOWNLOAD_CONFIG:
See “File Downloads” on page 56.

ENABLE_COLLAPSIBLE_CLUSTERS:
Set to false to disable collapsible clusters. By default this value is set to true.

APPEND_COLON:
Set to true to automatically append colons to FIELD and CONTAINER labels within
CLUSTER elements.

ADDRESS_CONFIG:
See “Domain-Specific Controls” on page 209.

ADMIN:
The ADMIN element can contain any number of CODETABLE_UPDATE,
TAB_CONFIG_UPDATE and RESOURCE_UPDATE elements. The PAGE_ID attribute of these
elements specifies the page that will clear the relevant caches whenever its submit
action is called.

Please note: The caches are only cleared for the current instance of the web
application. Other instances will have to be restarted to receive the code table
updates. This feature applies at development time only.

STATIC_CONTENT_SERVER:
This option specifies a base URL for static content such as images, CSS files and
JavaScript files. The option enables the relocation of static content to a separate
server to allow for performance optimizations.

<MULTIPLE_SELECT>
<DOMAIN NAME="PRIMARY_ID" MULTIPLE="true"/>
<DOMAIN NAME="OTHER_ID" MULTIPLE="true"/>

</MULTIPLE_SELECT>

Figure 13. Multiple Select Section Example

<ENABLE_COLLAPSIBLE_CLUSTERS>false</ENABLE_COLLAPSIBLE_CLUSTERS>

Figure 14. Disable Collapsible Clusters Example

<APPEND_COLON>true</APPEND_COLON>

Figure 15. Append Colon Section Example

<ADMIN>
<CODETABLE_UPDATE PAGE_ID="CodeTableAdmin" />

</ADMIN>
<TAB_CONFIG_UPDATE PAGE_ID="ApplicationConfigAdmin"/>
<RESOURCE_UPDATE PAGE_ID="publishResourceChanges"/>

Figure 16. Admin Section Example

<STATIC_CONTENT_SERVER>
<URL>http://www.myserver.com/staticresources/</URL>

</STATIC_CONTENT_SERVER>

Figure 17. Static Content Base URL Example

36 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The forward slash at the end of the URL in the example is optional. It is also
possible to use a relative URL.

Note: A full build is required to pick up this setting.

Where this option is used, the static content can be packaged using the
zip-static-content target available in the webclient project. This target will create a
zip file, StaticContent.zip, in the webclient\build directory. The
StaticContent.zip file will contain all relevant static content to be relocated when
the STATIC_CONTENT_SERVER setting is enabled. The -Dstatic.content.zip setting
can be used to overwrite the default zip location. All content in the zip is stored
under a root folder called WebContent.

The following content is included in the zip file:
v WebContent/**/*.html

v WebContent/**/*.htm

v WebContent/CDEJ/**/*.png

v WebContent/CDEJ/**/*.gif

v WebContent/CDEJ/**/*.jpg

v WebContent/CDEJ/**/*.jpeg

v WebContent/CDEJ/**/*.ico

v WebContent/CDEJ/**/*.css

v WebContent/CDEJ/**/*.js

v WebContent/CDEJ/**/*.svg

v WebContent/CDEJ/jscript/**/*.*

v WebContent/CDEJ/themes/**/*.*

v WebContent/Images/**/*.*

v WebContent/genImages/**/*.*

v WebContent/themes/**/*.*

The relocation of static content to a separate server allows for specific cache control
response headers to be set for this content. Setting a cache control response header
provides an instruction to the browser to cache this content for a period of time;
the aim of which is to reduce network traffic and improve performance. The
Expires and Cache-control headers are generally recommended to encourage the
browser to cache static content.

Note: The Expires value must match the specific formatting above to be
recognized. The max-age attribute value is in seconds.

<STATIC_CONTENT_SERVER>
<URL>/CuramStatic/</URL>

</STATIC_CONTENT_SERVER>

Figure 18. Relative URL Example

build zip-static-content -Dstatic.content.zip=<myzipfile.zip>

Figure 19. Zip Target Example

Expires: Thu, 15 Apr 2010 20:00:00 GMT
Cache-control: max-age=86400

Figure 20. Response Headers

Cúram web client reference 37

When the above headers are set the browser will cache the content until the
max-age value is reached or the Expires date is reached. When cached, no request
will be made to the server.

It is worth noting that there are exceptions to this, which can be browser
dependent. A key exception is on a user triggered refresh (F5); Internet Explorer
and Chrome will both perform conditional requests for all content in this instance,
regardless of the freshness of the content in the cache. A conditional request is a
request to determine if the resource has been modified and will usually result in a
304 response, which will be faster than a full resource request (200 response).

FIELD_ERROR_INDICATOR:
This option indicates if field level error indicators are to be displayed when an
error occurs. The error message is the alt text of the image and is available as a
tool-tip when the mouse is hovered over the image. The feature only applies to
text input and date-time fields. Also, this feature only applies to web-tier generated
messages (data-type validation, mandatory fields etc.), it does not apply to
messages generated from server side code since there is no way to associate a
server exception with a client side field.

Please note if the FIELD_ERROR_INDICATOR element is not specified, it defaults to
FALSE.

SECURITY_CHECK_ON_PAGE_LOAD:
All server functions used on a Cúram screen are checked for authorization rights
when the page is initially loaded. If a user fails authorization for any of the server
functions, an authorization error message will be displayed and the user will be
prevented from viewing the page. For example, if a user has authorization rights to
access the DISPLAY phase server function, but not the ACTION phase, they will
not be able to view the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml, which is
true by default, indicates that authorization checks should be performed before the
page is loaded to ensure the user has access rights to all server functions
referenced by SERVER_INTERFACE elements on the UIM page.

Setting the SECURITY_CHECK_ON_PAGE_LOAD attribute to false will disable
this initial authorization check and defer authorization to the point at which the
server function is invoked. As a result, on an edit page for example, a user would
require authorization rights for the DISPLAY phase server function at a minimum.
If they did not have authorization rights for the ACTION phase server function,
the page will display, but the user will receive an authorization error message
when the page is submitted.

To set SECURITY_CHECK_ON_PAGE_LOAD, and disable authorization on page
load, add the following to the curam-config.xml file:

Please note if the SECURITY_CHECK_ON_PAGE_LOAD element is not specified, it defaults
to TRUE.

<FIELD_ERROR_INDICATOR>true</FIELD_ERROR_INDICATOR>

Figure 21. Field Error Indicators Example

<SECURITY_CHECK_ON_PAGE_LOAD>false</SECURITY_CHECK_ON_PAGE_LOAD>

Figure 22. Security Check on Page Load Example

38 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

There is no security risk associated with this change, but the change has
implications for auditing. When the authorization check is performed on page
load, by default authorization failures are not added to the AuthorisationLog
database table. This behavior can be modified by setting
curam.enable.logging.client.authcheck to true using the Property Administration
screens.

When the authorization check is deferred to the invocation of the server function,
i.e. SECURITY_CHECK_ON_PAGE_LOAD is false, authorization failures are
always logged. It is not possible to control or disable this behavior. As a result, the
risk is that the AuthorisationLog database table will be filled with noise in the
form of authorization failures that are valid failures based on usage.

ENABLE_SELECT_ALL_CHECKBOX:
The multi-select check-box WIDGET described “The MULTISELECT Widget” on page
119 displays a column of check-boxes used to select items in a LIST. The following
configuration setting causes a check-box to be displayed in the column header that
can be used to select or de-select all of the check-boxes at once.

Please note if the ENABLE_SELECT_ALL_CHECKBOX element is not specified, it defaults
to FALSE.

TRANSFER_LISTS_MODE:
When set to true all multiple selection controls in an application are displayed as
Transfer List widgets.

Please note if the TRANSFER_LISTS_MODE element is not specified, it defaults to
FALSE.

HIDE_CONDITIONAL_LINKS:
When set to true all conditional links that evaluate to false are not displayed.
When set to false all conditional links that evaluate to false are displayed as
disabled links.

Please note if the HIDE_CONDITIONAL_LINKS element is not specified, it defaults to
TRUE.

DISABLE_AUTO_COMPLETE:
When set to true auto complete on all input fields is disabled. When set to false
auto complete on all input fields is enabled.

Please note if the DISABLE_AUTO_COMPLETE element is not specified, it defaults to
FALSE.

<ENABLE_SELECT_ALL_CHECKBOX>true</ENABLE_SELECT_ALL_CHECKBOX>

Figure 23. Enable Select All Check-box Example

<TRANSFER_LISTS_MODE>true</TRANSFER_LISTS_MODE>

Figure 24. Transfer Lists Mode Example

<HIDE_CONDITIONAL_LINKS>true</HIDE_CONDITIONAL_LINKS>

Figure 25. Hide Conditional Links

<DISABLE_AUTO_COMPLETE>true</DISABLE_AUTO_COMPLETE>

Figure 26. Disable Auto Complete

Cúram web client reference 39

SCROLLBAR_CONFIG:
The SCROLLBAR_CONFIG element allows a vertical scrollbar to appear on a LIST or
CLUSTER element after a maximum height is reached. It can contain two or less
ENABLE_SCROLLBARS elements. The ENABLE_SCROLLBARS element has the following
attributes:
v TYPE : Specifies the element in which vertical scrollbars are to be enabled. Can

only be set to LIST or CLUSTER.
v MAX_HEIGHT : Specifies the maximum height a CLUSTER or LIST can reach before a

vertical scrollbar is displayed.

Please note if the SCROLLBAR_CONFIG element is not specified no LIST or CLUSTER
element will display a vertical scrollbar.

PAGINATION:
This element configures the LIST pagination options for the whole application.
Individual lists can override the global settings.

Table 2. Pagination configuration options

Option Name Required Default Description

ENABLED No true Enables the ability to page through lists
displayed in Cúram pages. Any LIST
longer than the configured minimum
size will display only the first "page" of
data and the pagination controls will be
displayed below the list.

DEFAULT_PAGE_SIZE No 15 Specifies the page size the list will get
by default. The page size can be then
changed at runtime by the user.

PAGINATION_THRESHOLD No Based on
the
DEFAULT_PAGE_SIZE
value.

Specifies the minimum list size at which
pagination will be enabled. For shorter
lists there will be no pagination, even if
otherwise pagination is switched on.

Customizing Configuration Settings:
The core component contains a copy of the curam-config.xml file, but you are free
to augment and override the settings by including your own curam-config.xml file
in your custom component. All of the individual curam-config.xml files will be
merged into one at generation. The effect of this merging depends on each
particular setting.

Some entries are global settings for the application and so must only appear once
in the final output. These entries are as follows:

<SCROLLBAR_CONFIG>
<ENABLE_SCROLLBARS TYPE="LIST" MAX_HEIGHT="150" />
<ENABLE_SCROLLBARS TYPE="CLUSTER" MAX_HEIGHT="100" />

</SCROLLBAR_CONFIG>

Figure 27. Scrollbar Configuration

<PAGINATION ENABLED="true">
<DEFAULT_PAGE_SIZE>15</DEFAULT_PAGE_SIZE>
<PAGINATION_THRESHOLD>15</PAGINATION_THRESHOLD>

</PAGINATION>

Figure 28. Sample Pagination Configuration

40 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v HELP

v ERROR_PAGE

v APPEND_COLON

v ADMIN

v POPUP_PAGES/CLEAR_TEXT_IMAGE

v MULTIPLE_POPUP_DOMAINS/CLEAR_TEXT_IMAGE

v STATIC_CONTENT_SERVER

If you define one of these in a custom component, it will completely override that
of the core component.

The other entries will be merged. This applies to the following elements:
v MULTIPLE_POPUP_DOMAINS

v POPUP_PAGES

v MULTIPLE_SELECT

v FILE_DOWNLOAD_CONFIG

v PAGINATION

v ADDRESS_CONFIG

Note, however, that particular address formats can be overridden. So, for example,
if the core component had the following address format definition:

and if your custom component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Core.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Core.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Core.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Core.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Core.Label.Zip" />

</ADDRESS_FORMAT>

Figure 29. Extract from curam-config.xml File (1)

Cúram web client reference 41

then it is the second one (i.e., the custom definition) that will appear in the final
merged curam-config.xml file. This is because both address formats have the same
name (“US”).

Dividing the Configuration File:
The curam-config.xml file can be divided into manageable chunks. If you like, you
can take one part of the configuration and save it in a file with a different name.
Taking the previous address format configuration as an example, you can create a
file with the following contents:

You would then save this with a file name that ends with -config.xml anywhere
within your component, say, address-config.xml. Note that the file must have the
same APP_CONFIG root element as the full curam-config.xml file. As long as you
follow these conventions, all of your configuration files will be merged into a
single address-config.xml file at build time.

Configuration File Names: Two naming patterns are used for most configuration
files. Some use the pattern XConfig.xml and others X-config.xml, where “X” is
some prefix. For example, ImageMapConfig.xml and address-config.xml. The

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Custom.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />

</ADDRESS_FORMAT>

Figure 30. Extract from curam-config.xml File (2)

<APP_CONFIG>
<ADDRESS_CONFIG>

<LOCALE_MAPPING LOCALE="en_US"
ADDRESS_FORMAT_NAME="US">

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Custom.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

</APP_CONFIG>

Figure 31. Sample address-config.xml File

42 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

former pattern indicates a standalone configuration file that is not related to other
configuration files. The latter pattern indicates that the file is really just part of the
curam-config.xml file.

Custom Resources
Arbitrary files can be included in the web application by doing the following:
1. At the root of a component, created a folder called WebContent, for example

<client-dir>/components/MyComponent/WebContent.
2. Place files in this folder using any folder structure you wish.
3. When you run the client build target these files will be copied directly to the

<client-dir>/WebContent which represents the root of the web application. The
folder structure will be maintained during the copy.

warning:

Before making use of this functionality care should be taken to understand the
effects. It is advised to firstly view the generated WebContent folder (located
webclient/WebContent) and to be aware of what files exist in it. Placing a similar
file in the WebContent folder of a component will overwrite the currently existing
file in the generated WebContent folder.

Files included in the application in this way take precedence over the merging and
overriding process as described in previous sections for other resources. For
example, if you include a CSS file in this way, the contents of the file will not be
included in the CSS overriding process described in “Cascading Stylesheets” on
page 33.

The copying of custom resources occurs after other source artifacts are built and
merged, so it is possible to replace existing resources. Care should be taken in this
case. For example, it would be possible to have a component with a file in
WebContent/WEB-INF/struts-config.xml that would completely replace the Struts
configuration file generated by the client build and therefore break the application.

It is also important to note that the files placed in a WebContent folder within a
component are completely ignored during the build process and are not processed.
They are merely copied across. For example, if you have JavaScript properties file
in the WebContent folder of your component it will not be processed.

Finally, when multiple components have a WebContent folder they are copied based
on component priority, but the copy is time-stamp based. The copy command
always uses verbose output for these files so the developer can see exactly what
files are being copied.

Localization
Use this information to learn about the various files that need to be updated when
translating a Cúram application into a new language.

To simplify the translation process, the language-specific parts of the application
are separated out from the application code.

Numbers
Numbers are language-specific and so a Cúram application treats numbers in a
locale-specific manner depending on the preferred language of the user. For

Cúram web client reference 43

example, a decimal number can be represented as 7,99 or 7.99 depending on
whether the user's locale is French or English.

File Encoding
OOTB Cúram supports the development of applications localized into many
languages. The Cúram CDEJ generators support files encoded in the various
character encodings appropriate for those languages. Definition of the encoding for
a file is dependent on the type of file and the following sections describe how to
set the encoding for the different types of supported files.

XML Files
The encoding for XML-format files is declared explicitly within the XML file itself,
where the first line, the XML declaration, may look like this:

This tells the XML parser that the file uses the ISO-8859-1 encoding, a typical
encoding for Western European languages. If the XML declaration is omitted, the
parser will assume UTF-8 encoding, which covers most modern languages and
many others, besides being based on the Unicode standard. It is very important
that the XML declaration matches the actual file encoding. The declaration does
not determine the encoding, it only identifies it; changing the declaration does not
automatically change the file encoding. If you use a specialized XML editor
application, then it will probably recognize the declaration and change the file
encoding for you. Most plain-text editors will not do this, so you must ensure that
you select the correct encoding in your editor before saving the file.

It is highly recommended that UTF-8 encoding is used for XML files.

Java properties files
For Java properties files (used in the application, for example, to define the text
strings that appear on client screens), there is no equivalent of the explicit XML
declaration. The client generator must assume an encoding for the client properties
files. The assumption the generator makes is that Java properties files are encoded
in the default system encoding of the machine that the build is running on. This is
a reasonable assumption given that the files themselves were likely created on the
same machine or a machine of similar type in the same country. On a Microsoft
Windows machine in Western Europe, for example, the system encoding is
probably Cp1252, the Windows variant of ISO-8859-1. This encoding will handle
the accented characters of Western European languages but does not cover, say,
Cyrillic or Chinese characters.

If, for some reason, you are building on a machine that does not share its system
encoding with the files that are being processed, you must indicate this by setting
the ENCODING environment variable. For example, to build a Chinese language
web client application on an English language Microsoft Windows machine, you
might choose to save your properties files in the UTF-8 encoding, so you would set
the ENCODING environment variable to UTF-8. During the build, you can see that
the generator overrides its normal default setting:

The Java Runtime Environment will always assume that properties files use the
ISO-8859-1 encoding. This is not very helpful if you want to create properties files
using the UTF-8 encoding for localization to, say, Chinese. To overcome this

<?xml version="1.0" encoding="ISO-8859-1"?>

System encoding is Cp1252.
Using encoding UTF-8 to read properties files.

44 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

limitation, the Cúram CDEJ will automatically translate properties files from your
preferred encoding (either the system default encoding, or the encoding specified
via the ENCODING environment variable) into the encoding required by Java.
This is performed automatically during the build process and your original
properties files will not be affected.

Troubleshooting: Where a properties file has been saved in UTF-8 encoding, and
this does not match the system encoding, build failures can occur. The build failure
will report a PageGenerationException, where the build could not find a property
even though the property exists in the relevant file. This happens where the
properties file has been saved by a UTF-8 editor which adds the Byte Order Mark
(BOM) at the beginning of the file. The property reported in the error will be the
first property in the file. To resolve the issue the file should be saved in the correct
encoding, ensuring the BOM character has been removed.

Note: The properties files shipped by default with Cúram use ISO-8859-1
encoding, and where necessary use Unicode characters.

Non-XML Files
The non-XML files in the Cúram Reference Application are encoded in the ASCII
encoding. ASCII has the useful property of being a subset of most other common
file encodings. This means you do not generally need to convert the English
language files that ship with the OOTB Cúram application in a new encoding in
order to build them in a different language environment.

Locales
A Java locale identifier has three parts:

Language
A lower-case, two-letter, ISO-639 code.

See http://www.unicode.org/onlinedat/languages.html.

Country
An upper-case, two-letter, ISO-3166 code.

See http://www.unicode.org/onlinedat/countries.html.

Variant
A vendor-specific or browser-specific code.

The language code is required, but the other parts are optional. The individual
parts are separated by an underscore character. Some examples of valid locales are:
“en” (English language), “en_US” (English language for the United States), zh_HK
(Chinese language for Hong Kong). This system is used within the Cúram
application to identify locales. Most locale-specific information in the application
are contained in properties files.

Non JavaScript property files
When localizing an application (see “JavaScript property files” on page 46 for
details on localizing JavaScript), you will need to create new properties files for
each locale. The files for the default locale are named simply as
SomeFile.properties. The files for other locales are identified by appending the
locale identifier to the end of the file name after a separating “_” (underscore)
character (i.e., between the name of the page and the .properties extension). For
example, SomeFile_es.properties would be the name of the Spanish language
version of SomeFile.properties.

Cúram web client reference 45

http://www.unicode.org/onlinedat/languages.html
http://www.unicode.org/onlinedat/countries.html

It is useful to note that if a particular property is not found by the application in
SomeFile_es.properties, the properties file for the default locale, i.e.
SomeFile.properties, will be searched. This is particularly handy in the case of
Image.properties, described below, where only some of your images contain text
and thus need to be localized. Properties for the other images can be defined once
in the default locale properties file and they will be picked up in all locales.

Once done adding localized .properties files, update the LOCALE_LIST
environment variable as appropriate (this variable defines the list of locales the
client will be built for), for example, set it to “en,es” for a default English language
application and a Spanish language application. See “Application Locales” on page
16 for more details on this setting.

The merging of localized properties files from different components happens in
exactly the same way as it does for default locale properties files. See “Externalized
Strings” on page 29 for more details on the merging of properties files.

JavaScript property files
When localizing JavaScript files in the application, you will need to create new
JavaScript property files for each locale. The files for the default locale are named
simply as *.js.properties. The files for other locales are identified by appending
the locale identifier - after a separating “_” (underscore) character - between the
.js extension and the .properties extension. For example,
SomeJSFile.js_es.properties would be the name of the Spanish language version
of SomeJSFile.js.properties file. This file will be automatically processed by a
client build. Similar to the non JavaScript property files, if a particular property is
not found by the application in SomeJSFile.js_es.properties file, then the
property from the default properties file (SomeJSFile.js.properties) will be used.

UIM Externalized Strings
As described in “Externalized Strings” on page 29, all string values in UIM files
are externalized to .properties files.

If MyPage.uim is the UIM file, then MyPage.properties is the corresponding
properties file. To add localized properties files, please see “Locales” on page 45.

The strings are stored in a properties file in the same folder as the page or view
file. This file must have the same name as the page or view file but with the
extension .properties. For example, if the page is stored in a file called
MyPage.uim, the strings will be stored in the file MyPage.properties in the same
folder. Similarly, views will see the .vim extension changed to .properties.

While UIM documents in the highest priority component override those in all
other components, properties files in different components are merged together.
Individual properties override those with the same property name defined in
lower priority components. Also, when a UIM page includes a UIM view (a .vim
file), all of the properties defined for both the page and the view are merged and
the properties for the page override those defined for the view where they share
the same property name. These two merging steps happen separately with the
component order applied first for each properties file and the page-view order
applied on the resulting properties. A property defined for a page will override a
property of the same name defined for a view, even if the property for the view
was defined in a higher priority component.

46 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

JavaScript Externalized Strings
As described in “Externalized Strings” on page 29, all string values in JavaScript
files should be externalized to JavaScript property files (.js.properties files).

By convention the name of the resource file for your JavaScript must be derived
from name of the.js file itself. For example if your JavaScript file is called
SomeJSFile.js then related localizable resources should be placed in
SomeJSFile.js.properties file. A *.js.properties file can be placed anywhere in the
component directory, but by convention it should be in the same directory as the
related *.js file.

The exception to this is that a *.js file within a WebContent directory cannot have
its associated *.js.properties file within the same directory. The associated
*.js.properties file must be placed within a directory outside of the WebContent
directory. To add localized JavaScript properties files, please see “Locales” on page
45.

JavaScript Properties files with the same name across all components will be
merged together during processing. Any property with the same name will be
overwritten by the highest component in the component order.

The use of placeholders within a property value is supported. The placeholders
must be in the format %ns or '%ns' where n represents an integer from 1...n, and n
must be within a defined range. The range is defined by the number of of
placeholders used within a property value. For example, if there are three
placeholders within a property value then the placeholders must be numbered
from 1 to 3 (e.g. %1s, %2s, %3s) and anything outside of this range is not
supported.

Accessing properties in JavaScript
There are three requirements for accessing a JavaScript property.

1. Load the resources using dojo.requireLocalization().

Refer to comment 1 in “Accessing properties in JavaScript” for an example of
this.

2. Create an instance of the curam.util.ResourceBundle object.

This is required in order to be able to access the localized resources. Refer to
comment 2 in “Accessing properties in JavaScript” for an example of this.

3. Access a property

// 1.
dojo.requireLocalization("curam.application", "SomeJSFile");

// 2.
dojo.require("curam.util.ResourceBundle");
var bundle = new curam.util.ResourceBundle("SomeJSFile");

// 3.
var localizedMessage = bundle.getProperty("myPropertyKey");
var localizedMessageWithSubstitutions

= bundle.getProperty("my.sub.key", ["a", "b"]);

curam.application is the default package into which all localizable resources are placed by the Curam infrastructure.
SomeJSFile is derived from the name of the related JavaScript properties file.
Figure 32. Accessing a property

Cúram web client reference 47

The getProperty() method can be used to access a property on the instantiated
ResourceBundle. Refer to comment 3 in “Accessing properties in JavaScript” on
page 47 for an example of how to get a property and a substituted (2
substitutions) property respectively.

Image.properties
The Image.properties file (see “Images” on page 29) can be localized as per other
properties files, please see “Locales” on page 45 for more information on localizing
properties files. Once the localized properties file is created, place this beside the
Image.properties file.

It is useful to note that if the application does not find a particular property in a
localized properties file, it will check the default locale properties file. This is
generally true for all properties files but it is particularly useful in the case of
Image.properties. You might find that some of your images can be used no matter
what language is displayed, whereas other images contain text and thus must be
altered. It is only these latter images that need to be mentioned in the localized
properties file.

Infrastructure Widget Properties Files
The following is a list of .properties files associated with Infrastructure widgets,
e.g. the AgendaPlayer.properties file is associated with the AgendaConfig.xml file,
which defines the Agenda Player widget.
v AgendaPlayer.properties

v BarChart.properties

v Calendar.properties

v ComparedEvidence.properties

v DateTimeSelector.properties

v DecisionMatrixAddMessage.properties

v DisplayEvidence.properties

v EvidenceComparison.properties

v EvidenceReview.properties

v EvidenceTabContainer.properties

v FrequencyPatternSelector.properties

v GanttChart.properties

v IEGPlayer.properties

v Logon.properties

v MeetingView.properties

v PaymentStatement.properties

v RatesTable.properties

v Rules.properties

v TypicalPictureEditor.properties

v Workflow.properties

v FileEdit.properties

Note: The names of the properties files associated with infrastructure widgets are
reserved names and must not be used for the name of any other client properties
file. No warning is printed to the console in this scenario, therefore care must be
taken when naming other properties files.

48 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

To customize a widget properties file, create a new version under the
webclient/components/custom component folder, where the default content for the
file can be found in the corresponding sample widget properties file located in the
<cdej-dir>/doc/defaultproperties/ folder. For each entry in Cúram's version of
the file you wish to change, add a corresponding entry to your custom file. These
properties files can be localized as per “Locales” on page 45.

Frequency Pattern Selector Localization
The Frequency Pattern Selector infrastructure widget is used to construct frequency
patterns such as:

This sentence is made up of fixed text from its associated
FrequencyPatternSelector.properties file as well as values selected by a user
from an input field and two drop-downs in the widget, refer to this example
frequency pattern in “Frequency Pattern Selector” on page 212.

Because of the grammar differences between different languages, the construction
of this example frequency pattern sentence can be dramatically changed in other
languages, like the values selected by a user can be re-ordered in it. Therefore, the
placeholders are introduced to represent these user selected values so that we can
localize every frequency pattern as "whole" into every single property in the
properties file.

Here is the property entry from the FrequencyPatternSelector.properties for this
example frequency pattern:

The strings %ordinal%, %dayOfWeekExtended% and %monthInterval% in this property
entry are the placeholders that map to the values that will be selected from two
drop-downs and one input field in the widget. The detailed explanation of these
three placeholders will be covered later in a table.

In order to use these placeholders properly, you need to stick to the following two
rules:
v The placeholders control the layout of the widget

Any change of the location of a placeholder in a localized text for a certain
frequency pattern would cause the change of the layout of this frequency pattern
to be displayed on the Frequency Pattern Selector widget.

v The placeholders that can be used for every frequency pattern are fixed

You could not change, add or reduce placeholders used for a certain frequency
pattern. It will cause this widget failing to work.

A description of all these placeholders used in the properties file of this widget is
listed as follows:

Table 3. Placeholders used in Frequency Pattern Selector

Placeholder Name Description

%dayInterval% A day interval. It maps to an input field where you
can enter a number for a day interval for a frequency
pattern.

the first day of every 1 month(s)

Text.monthly.freq.type.two= The %ordinal% %dayOfWeekExtended%
of every %monthInterval% month(s)

Cúram web client reference 49

Table 3. Placeholders used in Frequency Pattern Selector (continued)

Placeholder Name Description

%weekInterval% A week interval. It maps to an input field where you
can enter a number for a week interval for a
frequency pattern.

%dayOfWeek% A set of days in a week. It maps to a collection of
check boxes where you can multi select the days in a
week for a frequency pattern.

%dayOfWeekExtended% It is an extension of the values represented by
%dayOfWeek%, which also includes the weekday,
weekend day and day value. It maps to a drop-down
where you can select one of those day values for a
frequency pattern.

%monthInterval% A month interval. It maps to an input field where
you can enter a number for a month interval for a
frequency pattern.

%ordinal% an ordinal, e.g. first, second. It maps to a drop-down
where you can select an ordinal for a frequency
pattern.

%dayIntervalOne%,
%dayIntervalTwo%

Two day intervals in a frequency pattern. They
should be used together and map to two input field
where you can enter a number for a day interval
respectively for a frequency pattern.

%ordinalOne%, %ordinalTwo% Two ordinals in a frequency pattern. They should be
used together and map to two drop-downs where
you can select an ordinal respectively for a frequency
pattern.

%monthOfYear% A month in a calendar year. It maps to a drop-down
where you can select a month for a frequency
pattern.

As stated in the second rule above, the placeholders used for every frequency
pattern are fixed. So you need to take care that you have used them properly when
localizing the properties in this widget properties file. As long as you keep this in
mind, the customization of this widget properties file is also no difference from
other infrastructure widgets. The following table lists all the properties and the
placeholders they contain for every frequency pattern sentence displayed on the
Frequency Pattern Selector.

Table 4. Properties used for the Frequency Pattern Selector

Property Name Placeholders it contains

Text.daily.freq.type.one %dayInterval%

Text.daily.freq.type.two None.

Text.weekly.freq.type %weekInterval%, %dayOfWeek%

Text.monthly.freq.type.one %dayInterval%, %monthInterval%

Text.monthly.freq.type.two %ordinal%, %dayOfWeekExtended%,
%monthInterval%

Text.bimonthly.freq.type.one %dayIntervalOne%, %dayIntervalTwo%

Text.bimonthly.freq.type.two %ordinalOne%, %ordinalTwo%, %dayOfWeek%

Text.yearly.freq.type.one %monthOfYear%, %dayInterval%

50 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 4. Properties used for the Frequency Pattern Selector (continued)

Property Name Placeholders it contains

Text.yearly.freq.type.two %ordinal%, %dayOfWeekExtended%,
%monthOfYear%

CDEJResources.properties
This properties file can be localized as per “Locales” on page 45. Images defined in
this file can also be customized per locale.
Related reference:
“Optimal Browser Support” on page 205
Learn about optimal browser support and how to notify the user when they are
using a sub-optimal browser with the Cúram application.

ApplicationConfiguration.properties
This properties file does not, in itself, need to be localized but there are a couple of
settings within this file which are related to the localization of date and address
formatting. See “Configuring the Application” on page 22 for details.

Application-wide Menu
The contents of the application-wide menu (that normally appears in the top-right
of the screen) are defined in curam-config.xml. It is possible to put the text that
will appear on screen directly into this file, in the LABEL attribute of the LINK
element. That approach, however, is not suitable if the application should be
viewable in multiple languages, so the application will first check if the LABEL
attribute is actually a key into the CDEJResources.properties file. If it finds the
key, it will use the corresponding value in the menu. To localize the menu,
therefore, simply include the same key in the localized version of
CDEJResources.properties. This properties file can be localized as per “Locales”
on page 45.

Tabbed Configuration Artifacts
Each tabbed configuration artifact will have a corresponding properties file for any
text that may be localizable. To localize this text for a specific language, you must
add the locale-specific properties file beside its associated tabbed configuration
artifact in your <custom> component. These properties file can be localized as per
“Locales” on page 45.

Runtime Messages
The Cúram CDEJ runtime messages can be localized or customized by creating a
RuntimeMessages.properties file within the component folder, i.e. the
<client-dir>/components/<component_name> folder. The default content for this file
can be found in the <cdej-dir>/doc/defaultproperties/ folder. Any messages
present in this file will override the corresponding messages from the
RuntimeMessages.properties shipped with the Cúram CDEJ. The standard file
naming convention for Java properties files can be used to add locale-specific
messages. For example, to create a Spanish version, a file
RuntimeMessages_es.properties would be created.

Cúram web client reference 51

It is not necessary to copy all of the messages into the custom message catalog
when customizing only some of them. Only the messages that are customized need
to be defined in the custom message catalog; the other messages will be loaded
from the default message catalog.

When resolving error messages, the custom message catalog is checked first and all
the locale fall-backs are applied. If a message is not found, then the default
message catalog (from the Cúram CDEJ) is checked. Therefore, a message in a
custom message catalog will take precedence over one in a default catalog even if
the locale of the default catalog is more specific.

When customizing a message, the message argument placeholders cannot be
changed. The message argument placeholders have the form %ns where n is the
argument number. The message arguments can be moved around and their order
changed, but no new arguments may be added and none may be removed.

UIM Reference
Learn about the Cúram User Interface Meta-data (UIM) format used to specify the
contents of the Cúram web application client pages.

UIM is an XML dialect and all UIM files are well-formed XML. The Cúram CDEJ
will translate UIM files into JSP files that can be deployed to your web application
server.

Creating UIM Documents
You can use any text editor to write UIM documents, but it is usually easier if a
specialized XML editor is used. The CDEJ includes an XML Schema file defining
the syntax of a UIM document and when this is combined with a schema-aware
XML editor, you will have access to many time-saving facilities such as
auto-completion, syntax checking, etc.

UIM Document Types
When creating UIM documents, there are four root elements that are valid: PAGE,
VIEW, PAGE_GROUP and APPLICATIONS. These root elements are used to create the two
types of UIM document:

PAGE This defines a UIM page that will be translated into a JSP page. The file
name must be the same as the value of the PAGE_ID attribute of the root
element. The file extension to use is .uim. UIM pages can be organized
arbitrarily into sub-folders within a component folder for convenience in
managing a large number of files. Ultimately, all UIM pages are generated
into JSP pages in a single folder, so the PAGE_ID attribute of the PAGE
element and consequently the file names of all the .uim files must be
unique within a component.

VIEW This defines a portion of a page that can be included into a PAGE element
in another UIM document. This allows common sequences of elements to
be reused. The file name is not restricted. The file extension to use is .vim.
Like UIM pages, views can be organized into an arbitrary folder structure
within a component folder, but the file names must be unique within that
component.

52 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

UIM Pages
“Cúram web client overview” on page 1 covered the basic concepts behind UIM
pages and what clusters, lists, action sets, action controls, containers, and fields are,
so this information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML Schema
definition of UIM. However, this order is only imposed when editing using a
schema-aware XML editor. The JSP generator does not check the ordering at
present. The order in which elements are presented in the child element tables in
this reference is the order in which the elements should be used in the UIM
documents unless otherwise indicated. There is no specific ordering for attribute
values.

UIM Views
A PAGE element can contain an INCLUDE element anywhere at the top level that
allows commonly used fragments of UIM to be inserted at that point during
translation. The included elements are defined in a UIM document called a view.
The view document uses VIEW as the root element. Elements included from a view
must be valid in the context in which they have been included. For example, a
PAGE element that already contains a PAGE_TITLE element, cannot include a view
that also defines a PAGE_TITLE element. Similarly, the schema rules governing the
order of elements in a page must be observed when elements are included from a
view.

Views are similar to pages in what they can contain, the only differences are as
follows:
v A view cannot contain an INCLUDE element to include another view.
v A view does not have any PAGE_ID attribute, this is defined in the page that

includes the view.

All other elements that are valid in a PAGE element at the top level, are also valid
in a VIEW.

When including views, the name of the view file must be specified. Regardless of
where in the component the file including the view is, only the name of the view
file is required, not its path.

UIM Page Field Level Validations
Field level validation appear in a cluster above the fields. The validation messages
do not appear in the same order as the fields are displayed.

UIM Pages
“Cúram web client overview” on page 1 covered the basic concepts behind UIM
pages and what clusters, lists, action sets, action controls, containers, and fields are,
so this information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML Schema
definition of UIM. However, this order is only imposed when editing using a
schema-aware XML editor. The JSP generator does not check the ordering at
present. The order in which elements are presented in the child element tables in
this reference is the order in which the elements should be used in the UIM
documents unless otherwise indicated. There is no specific ordering for attribute
values.

Cúram web client reference 53

Externalized Strings
All string values and image references in UIM documents must be externalized,
i.e., the actual values are stored in files separated from the UIM. This aids
maintenance and allows the application to be localized.

See “Externalized Strings” on page 29 for details on externalizing strings.

UIM Reference for Pages and Views

Introduction
This section describes the PAGE and VIEW elements and all of the child elements that
they can contain with the exception of WIDGET elements. These are treated in the
next section.

Most elements have a list of attributes that can be used in any order. Some
attributes are optional and have default values when omitted. Others can have one
of a range of values. Boolean attributes can only have the values true and false
(case-sensitive).

Many elements can have child elements and these are listed in the order in which
they must be added and include details on their cardinality. Cardinalities use “0”
to indicate that the element is optional, “1” to indicate that it can appear only once,
and “n” to indicate that it can be appear any number of times. The “..” indicates
the range of the cardinality. For example, “0..1” indicates that the element can
appear zero or one times in this location, i.e., it is optional, while “1..n” indicates
that an element must appear at least once, but can appear any number of times
thereafter.

Connection Types
UIM pages use connections for associating components on a page with actual data.
The connection type is reflected in the connection tag name and is roughly
equivalent to data direction. The three types of connection available are SOURCE,
TARGET and INITIAL (see “SOURCE” on page 105, “TARGET” on page 106, and
“INITIAL” on page 78, respectively).

Connection endpoints are further distinguished by the setting of the NAME attribute.
The value of this attribute may be the name of the server interface used, TEXT,
CONSTANT ,or JSCRIPT_REF or PAGE. These values designate objects which supply or
consume data. JSCRIPT_REF can only be a TARGET connection with either PAGE or a
server interface defined in the DISPLAY phase, as the SOURCE connection. TEXT or
CONSTANT can only be used when TARGET has a server interface defined in the
ACTION phase.

54 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Most frequent is a connection to a server interface. Here, the NAME attribute
corresponds to an existing (i.e. declared on the page) SERVER_INTERFACE NAME
attribute value (DISPLAY_SI and ACTION_SI in the example above).

A value of TEXT means data is sourced from a properties file. The PROPERTY
attribute in this case contains the name of an externalized string in a page-specific
property file. In the example, the file APage.uim has a page title which references
the Page.Title.Static property in the associated APage.properties file.

A value of CONSTANT provides similar functionality to TEXT but the externalized
string is component-specific rather than page-specific and is sourced from a file
called Constants.properties. In the example, there is a page level connection to a
From.Constants.Props property.

<PAGE PAGE_ID="APage">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title.Static"/>

</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY_SI"
CLASS="sourceClass"
OPERATION="read"
PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION_SI"
CLASS="targetClass"
OPERATION="modify"
PHASE="ACTION/>

<PAGE_PARAMETER NAME="P_PARAM"/>

<CONNECT>
<SOURCE NAME="CONSTANT"

PROPERTY="From.Constants.Props"/>
<TARGET NAME="ACTION_SI"

PROPERTY="aProperty"/>
</CONNECT>

<ACTION_SET BOTTOM="true" TOP="false">
<ACTION_CONTROL TYPE="SUBMIT" LABEL="Button.Submit">

<LINK PAGE_ID="APage">
<CONNECT>

<SOURCE NAME="DISPLAY_SI" PROPERTY="PARAM"/>
<TARGET NAME="PAGE" PROPERTY="P_PARAM"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

<CLUSTER NUM_COLS="1" SHOW_LABELS="false">
<FIELD LABEL="Label.Text">

<CONNECT>
<SOURCE NAME="DISPLAY_SI" PROPERTY="sourceField"/>

</CONNECT>
<CONNECT>

<TARGET NAME="ACTION_SI" PROPERTY="targetField"/>
</CONNECT>

</FIELD>
</CLUSTER>

</PAGE>

Figure 33. Connection Types Example

Cúram web client reference 55

A connection might also source its data from a page parameter (i.e., a variable
declared on a page, P_PARAM in the example). In this case PAGE is used as the value
of the NAME attribute.

There are limitations and restrictions on the use of the various connection types in
various contexts. The UIM element descriptions below detail these limitations
where they arise.

ACTION CONTROL
The ACTION_CONTROL element defines a link (text based), button or file download
link that the user can activate on a page.

Cancel Button:
An UIM action control with TYPE of ACTION and no explicit link specified
('previous' control further in the text) implicitly leads to the page which linked to it
and had the "SAVE_LINK=true" specified in UIM for that link. This type of action
is used for the Cancel Button.

However, as no page history is memorised and supported, only a single implicit
transfer back is possible. Therefore in a situation when consecutive screens contain
'previous' controls, only the 'previous' control on the last screen would correctly
pass the flow back with the subsequent attempt to get to the page before it will
result in an error.

The screen flow with 'previous' controls is not recommended in the content pane of
the tabbed v6 application as it breaks usability, however it could still be used in
the modal wizard type flows or other contexts not bound to the tabbed navigation
(like nested pages). Therefore, if such a screen flow contains more than one
consecutive "previous" controls, they must explicitly link to the page to go to when
clicked.

File Downloads:
An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD results in the generation of
a hyperlink on the page. Clicking on the hyperlink invokes a special FileDownload
servlet included in the Cúram CDEJ that returns the contents of a file from the
database. The FileDownload servlet is configured with the server interface to call to
get the file contents and the parameters to pass to identify that file. The
configuration is performed in the curam-config.xml file. A single server interface
can be configured for each page of the application that includes file download
action controls. An example configuration is shown in “File Downloads,” below:

A WIDGET with the TYPE set to FILE_DOWNLOAD can also be used to generate a
hyperlink to download a file. You should use the ACTION_CONTROL element when
the hyperlink text is the fixed LABEL value. The FILE_DOWNLOAD WIDGET allows the
hyperlink text to be a dynamic value retrieved from a server interface property.

56 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Each configuration for downloading files is contained in a FILE_DOWNLOAD element
within the FILE_DOWNLOAD_CONFIG element in the configuration file. There should be
one FILE_DOWNLOAD element for each page that contains file download action
controls.

The FILE_DOWNLOAD element takes two attributes: PAGE_ID for the identifier of the
page containing the action controls to which this configuration will be applied, and
CLASS containing the name of the server interface that will be called by the
FileDownload servlet when the generated hyperlink is invoked.

The FILE_DOWNLOAD element can contain zero or more INPUT elements specifying the
key values to set before the server interface is called. These INPUT elements
associate page parameters with properties of the server interface. The PAGE_PARAM
attribute specifies the name of the page parameter whose value will be used as a
key value, and the PROPERTY attribute specifies the key property of the server
interface that must be set to identify the file. The page parameters are set by the
LINK element within the ACTION_CONTROL, as you will see below.

The other three elements, FILE_NAME and FILE_DATA, and CONTENT_TYPE all have
PROPERTY attributes that indicate the properties of the server interface that will
contain the name of the file, the contents of the file, and the content type of the file
respectively, after the server interface is called. This data is returned to the client in
response to the activation of the hyperlink and the user's browser will present
them with the download dialog box prompting them to save or open the file.

Where property names are specified, the names must be written in full and cannot
be abbreviated like they can in UIM documents.

Attributes:
The ACTION_CONTROL element has the following attributes. The LABEL attribute must
be present.

Table 5. Attributes of the ACTION_CONTROL Element

Attribute Name Required Default Description

LABEL See above. A reference to an externalized string
containing the label text for this action
control. If the TYPE is ACTION, this will be
the text of the hyperlink. If the TYPE is
SUBMIT, this will be caption of the
submit button.

LABEL_ABBREVIATION No A reference to an externalized string
containing the label abbreviation text for
this action control. This label
abbreviation is placed only on table
headers in a LIST.

<APP_CONFIG>
<FILE_DOWNLOAD_CONFIG>

<FILE_DOWNLOAD PAGE_ID="FileDownload"
CLASS="curam.interfaces.FilePkg.File_read_TH">

<INPUT PAGE_PARAM="fileID" PROPERTY="key$fileID"/>
<FILE_NAME PROPERTY="dtls$fileName"/>
<FILE_DATA PROPERTY="dtls$fileData"/>

</FILE_DOWNLOAD>
</FILE_DOWNLOAD_CONFIG>

</APP_CONFIG>

Figure 34. Example Configuration for File Download

Cúram web client reference 57

Table 5. Attributes of the ACTION_CONTROL Element (continued)

Attribute Name Required Default Description

TYPE No ACTION The type of action control to create.
There are six types: ACTION (the default)
defines a link to another page, SUBMIT
forwards the page's form data to the
action phase for processing, DISMISS
closes a pop-up page,
SUBMIT_AND_DISMISS combines a submit
with closing a pop-up page (see
“Pop-up Pages” on page 247 for details
on working with pop-up pages),
FILE_DOWNLOAD defines a link that
triggers the download of a file from the
server, and CLIPBOARD places a
predefined value to the system
clipboard. Please note, the CLIPBOARD
type control is only functional in
Internet Explorer as it relies on the
JavaScript specific to that browser.

STYLE No The class name of the CSS style to use
when formatting the action control.
Supported by action controls in action
sets only.

CONFIRM No Use the CONFIRM attribute of
ACTION_CONTROL to force a confirmation
dialog when the action control is
activated.

The value of the CONFIRM attribute is a
reference to the confirmation message in
the page properties file.

DEFAULT No false If there is more than one submit action
on a page, it is useful to specify which
one is executed when the user hits the
Enter key. This is especially
recommended when the submitting
action controls are contained within the
different action sets as in this case the
default action could be different than the
first submit action declared on the page.
The default action can be specified by
setting this attribute to true. Note that
only one submit action on a page can
have a DEFAULT value of true.

58 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 5. Attributes of the ACTION_CONTROL Element (continued)

Attribute Name Required Default Description

ACTION_ID No A custom identifier for action controls of
TYPE = SUBMIT. It is used in conjunction
with ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE element to inform the
server side code which action control
was used to make the server call.

This attribute is only valid on action
controls of TYPE = SUBMIT.

The value of this attribute among the
action controls within the page must be
unique.

The value of this attribute must be in
the format suitable for the domain
associated with the property specified in
the ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE.

This attribute must be either specified
on all action controls within the page or
not specified on any of them.

If this attribute is specified then the
ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE must also be
specified.

IMAGE No The value of this attribute refers to an
externalized string which maps to a
specific icon or graphic in the
application. An action control with this
attribute can only be used within a
CONTAINER element.

ALIGNMENT No RIGHT When contained in a page level
ACTION_SET of a Modal Dialog, the
ALIGNMENT attribute is supported. This
will define the individual horizontal
alignment of the action control. It can be
set to LEFT or RIGHT. The default is to
right aligned.

Child Elements:
The ACTION_CONTROL element can contain the following child elements:

Cúram web client reference 59

Table 6. Child Elements of the ACTION_CONTROL Element

Element Name Cardinality / Description

LINK 0..1. An action control with a TYPE of ACTION that has
no LINK element will create a link to the previous page
in the history that had SAVE_LINK set to true on the
link that led to this page (this is typically used for
Cancel buttons). However this type of ACTION_CONTROL
should not be present on a page that is directly
referenced by any tabbed configuration artifact. Also,
if this type of ACTION_CONTROL is preceded by another
ACTION_CONTROL of the same type in the page history,
there is the potential of a circular reference between
these pages.

An action control with a TYPE of SUBMIT that has no
LINK element will submit the field values to the action
phase and then return to the previous page in the
history that had SAVE_LINK set to true on the link that
led to this page.

An action control with a TYPE of FILE_DOWNLOAD only
requires a link if it must provide the page parameter
values specified in the INPUT elements of its
configuration. Each CONNECT element in the link can
contain a SOURCE element to specify the value and a
TARGET element specifying the page parameter to
which to map the value. The PROPERTY attribute value
of the page parameter must match the PAGE_PARAM
attribute value of the INPUT element in the
configuration.

CONNECT 0..1. A CONNECT element specifying a single SOURCE
end-point. As a direct child it is used only for an
action control with a TYPE of CLIPBOARD. Such an
action control places predefined textual data into the
system clipboard when clicked.

Text to be copied to clipboard can be sourced from the
server, the request or a properties file.

The CONNECT element used can only contain a SOURCE
element with a NAME property of PAGE, TEXT or the
name of a server interface defined within the page.

SCRIPT 0..n. A script element associated with an action
control. For a detailed description of this element see
“SCRIPT” on page 102.

SCRIPT elements are not supported on ACTION_CONTROL
elements with a type of CLIPBOARD.

CONDITION 0..1. Affects whether or not the ACTION_CONTROL is
displayed.

When linking to another page, the link must specify all page parameters declared
on the target page.

ACTION SET
The ACTION_SET element groups a number of ACTION_CONTROL elements together.
Depending on the context in which the action set is defined, the action controls
will be displayed in differing ways.

60 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

At the page level, action controls are displayed at the left side of the page title bar,
see the Page Level Action Control in User Interface Element 10 of “Application
user interface overview” on page 4. If the action set contains two or less action
controls, then each link is displayed side by side with a new item icon to the left of
it. The SEPARATOR child element has no affect.

If three or more action controls exist at the page level, then a drop down menu
will display each action control as a menu item. In this case, the SEPARATOR element
inserts a gray separator into the drop down menu at the position indicated in the
UIM file.

At the list level, all action controls will be displayed in a menu drop down. The
SEPARATOR element inserts a gray separator into the drop down menu.

For action sets defined at the cluster or list level, the action controls can be
displayed above and/or below the element with which the action set is associated
and are aligned horizontally.

In all scenarios, conditional links that evaluate to false will not display if
HIDE_CONDITIONAL_LINKS attribute is set to true, otherwise the conditional link
displays but is disabled.

Attributes:
The ACTION_SET element has the following attributes:

Table 7. Attributes of the ACTION_SET Element

Attribute Name Required Default Description

TOP No true Defines whether the action controls
will be displayed above the
associated element. Can be set to
true (the default) or false.

BOTTOM No true Defines whether the action controls
will be displayed below the
associated element. Can be set to
true (the default) or false.

ALIGNMENT No DEFAULT Defines the horizontal alignment of
the set of action controls with
respect to the associated element.
Can be set to LEFT, RIGHT, CENTER, or
DEFAULT The value DEFAULT
corresponds to the CSS class
ac_default in curam_common.css. The
default is to be left aligned. In
addition, for a page level
ACTION_SET in a Modal Dialog, LEFT,
RIGHT and DEFAULT values are
supported.

TYPE No DEFAULT Defines the location of the action
set. This can be set to LIST_ROW_MENU
or DEFAULT.

LIST_ROW_MENU is applicable where
the ACTION_SET is contained within a
LIST. It indicates that the action set
should be displayed as a list actions
menu within each list row entry.

Cúram web client reference 61

Note: An ACTION_SET of type LIST_ROW_MENU should not be used to open a “Using
the Pop-up Page” on page 251.

Child Elements:
The ACTION_SET element can contain the following child element:

Table 8. Child Elements of the ACTION_SET Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. See the description of ACTION_SET 's parent
element to see what ACTION_CONTROL elements are
valid in each context.

CONDITION 0..1. Affects whether or not the ACTION_SET is
displayed.

SEPARATOR 0..n. allows the for ability to add a visual separator
between action controls that display in the page action
drop down menu.

CLUSTER
The CLUSTER element defines a group of input and/or output fields containing data
from any data source (server interface property values, externalized string values,
or page parameter values) and supplying data to other data targets (server
interface properties, or page parameters). Clusters generally show the fields with
labels to the left and these label/field pairs in a number of columns. Clusters can
also include other clusters and lists in place of fields to allow more complex
layouts.

Attributes:
The CLUSTER element has the following attributes:

Table 9. Attributes of the CLUSTER Element

Attribute Name Required Default Description

TITLE No A reference to an externalized string
containing the title string for this
cluster.

NUM_COLS No (see the
note in the
description)

1 The number of columns to display in
the cluster, where a cluster column
includes both the label and the field.
Note: The NUM_COLS attribute is
required in the case where a cluster
contains a field element that has the
ADDRESS_DATA domain data type. The
NUM_COLS attribute is optional for all
other domain data types.

TAB_ORDER No COLUMN Indicates the order to layout elements
in a multi-column cluster. The elements
can be ordered by ROW or COLUMN
(default). Please note, if a CLUSTER has
NUM_COLS set to 2 or above and is going
to contain a mix of LIST and FIELD
elements, the TAB_ORDER must be set to
ROW.

SHOW_LABELS No true Can be set to true (the default) to show
labels beside the field values or false
to show no labels at all.

62 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 9. Attributes of the CLUSTER Element (continued)

Attribute Name Required Default Description

LAYOUT_ORDER No LABEL Labels can be displayed to the left or to
the right of their associated fields. Set
the attribute value to LABEL to show
labels to the left (this is the default
behavior). Set the attribute value to
FIELD to show labels to the right.

WIDTH No 100 The percentage of the width of the
containing area that the cluster should
occupy.

STYLE No The class name of the CSS style to
associate with this cluster for
formatting.

DESCRIPTION No A reference to an externalized string
that provides more details about the
cluster than the title alone. This will be
displayed below the title on the page.

LABEL_WIDTH No The percentage of the width of a cluster
column that the label should occupy. By
default, the web browser will determine
the widths as appropriate.

This attribute has an effect even if
SHOW_LABELS is set to false. It is
possible, say, to use action controls in
place of text labels. You might want to
control the width of these action control
columns and you can do that by setting
the LABEL_WIDTH attribute. The specified
width will be applied to every other
column. Whether this starts with the
first or second column depends on the
LAYOUT_ORDER attribute.

The LABEL_WIDTH attribute will not
apply to codetable hierarchy fields
when SHOW_LABELS is set to false or the
FIELD attribute CONFIG has a value of
CT_DISPLAY_LABELS. See the CONFIG
attribute in “FIELD” on page 72 for
more information on code table
hierarchies.

Cúram web client reference 63

Table 9. Attributes of the CLUSTER Element (continued)

Attribute Name Required Default Description

BEHAVIOR No EXPANDED Collapsible clusters can be initially
displayed expanded or collapsed on a
page. Set the attribute value to
EXPANDED to display a collapsible cluster
fully expanded. Set the attribute to
COLLAPSED to display a collapsible
cluster collapsed. To remove the
collapsible functionality from a cluster
set the attribute to NONE. Note that this
attribute is only applicable when the
property ENABLE_COLLAPSIBLE_CLUSTERS
is not set or is set to true in
curam_config.xml. For details see
“General Configuration” on page 35.
This feature is currently not supported
on clusters containing Charts, Evidence
Review Widgets, Evidence Comparison
Widgets, or Evidence Tab Containers.

SUMMARY No A reference to an externalized string
containing the summary of this cluster.
The SUMMARY attribute describes the
purpose and/or structure of a cluster.

SCROLL_HEIGHT No Specifies in pixels the desired
maximum height of a scrollable cluster.

Child Elements:
The CLUSTER element must contain one of the following elements; ACTION_SET,
FIELD, WIDGET, CONTAINER, CLUSTER or LIST.

Table 10. Child Elements of the CLUSTER Element

Element Name Cardinality / Description

CONDITION 0..1. Affects whether or not the cluster is displayed.

TITLE 0..1. The TITLE element will be displayed above the CLUSTER.

DESCRIPTION 0..1 The “DESCRIPTION” on page 71 element has the same
behavior as the DESCRIPTION attribute but allows the description
to be built up from a number of sources. If both are specified,
this element takes precedence over the corresponding attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any
type. The action controls will be displayed above or below the
entire cluster.

FIELD 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements
can be freely intermingled.

WIDGET 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements
can be freely intermingled.

CONTAINER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements
can be freely intermingled.

CLUSTER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements
can be freely intermingled.

LIST 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements
can be freely intermingled.

64 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Dynamic Conditional Clusters:
Up until now UIM supported the CONDITION element but only in the context of
static data. For more information, see “CONDITION” on page 68. The term "static"
data referred to the fact that the data which evaluated whether a cluster on a page
was displayed or hidden, could only come from previous page(s) not from any
fields on the current page. UIM now supports the CONDITION element within the
context of dynamic data, otherwise known as dynamic conditional clusters. A new
attribute is supported on the CONDITION element to mark a conditional cluster as
being dynamic, for more information, see “Attributes” on page 68.

The fundamental concept of a dynamic conditional cluster is that input field
controls within one cluster on a page can control whether another cluster is
displayed or not at runtime. In essence the way in which this works is that the
input field controls are mapped to a JavaScript function for a cluster. When the
JavaScript function is evaluated at runtime, the selected value of the input field
controls can be accessed to determine whether the cluster should be displayed or
not.

There are three potential sources of data for dynamic conditional clusters. One
source of data is dynamic and comes from user interactions with input field
controls on that page. The two other sources of data are static in nature and come
from page connections and server interface connections.

For dynamic data the following input field controls can be used to control the
behavior of a dynamic conditional cluster:;
1. Drop Down Lists.

These can be populated from a code table, for more information, see
“Populated from a Code-Table” on page 212. Alternatively they can be
populated from a display phase server interface, for more information, see
“Selection Lists” on page 212.

2. Radio Button Group,
For more information, see “Radio Button Group” on page 246.

3. Check box Fields.
Single check box fields based on the SVR_BOOLEAN domain are supported

Data from a page connection or display phase server interface connection can be
used in addition to dynamic data, to evaluate whether a dynamic conditional
cluster gets displayed or not. For more information, see “Connection Types” on
page 54. For more information about display phase server interfaces, see
“Attributes” on page 104. In order for data from a page connection to control a
dynamic conditional cluster, there needs to be a source page connection mapped to
a JSCRIPT_REF target connection. In order for data from a display phase server
interface connection to control a dynamic conditional cluster, there needs to be a
display phase server interface connection mapped to a JSCRIPT_REF target
connection

Only data types derived from the following underlying domains are supported:
v CURAM_BOOLEAN
v SVR_DATE
v SVR_DATETIME
v THREE_FIELD_DATE
v CURAM_TIME
v SVR_DOUBLE

Cúram web client reference 65

v SVR_FLOAT
v SVR_INT8
v SVR_INT16
v SVR_INT32
v SVR_INT64
v SVR_CHAR
v SVR_STRING
v FREQUENCY_PATTERN

A dynamic conditional cluster can be displayed when a page is initially loaded
(without any user interaction) if the data that controls the cluster evaluates to true
within the configured JavaScript. When a user interacts with a input field control
and selects a particular value from it, it is the raw value that will be immediately
passed to a configured JavaScript function which can be used to evaluate whether
the cluster will be displayed or hidden. When data is submitted to the server,
regardless of whether it's source is static or dynamic, it is the raw value that will
be sent. For example, a raw boolean value will be sent for boolean data, a raw
unformatted string will be sent for frequency pattern data, a raw integer value will
be sent for integer data, e.t.c

Data entered into the fields of a dynamic conditional cluster will only be submitted
to the server if the cluster is displayed. If the cluster is hidden when the data is
submitted, then default values will be submitted to the server. For example, for
input field controls with integer data, the raw value '0' will be submitted. For input
fields with string data, the raw the raw value '' will be submitted e.t.c. If a user
changes their selection value to display a cluster that was previously hidden, any
data entered into the fields within the cluster will be reset to the default value.
Dynamic conditional clusters can also be pre-populated with initial values when
the cluster in initially loaded. Initial data that has been specified in fields contained
within dynamic conditional clusters will only be submitted to the server if that
cluster is shown. However if a user changes their selection value to display a
cluster with initial data that was previously hidden, the initial data will be
displayed again to the user.

There are guidelines for configuring dynamic conditional clusters within the
application:
v Nested dynamic conditional clusters are supported but it is recommended that

there should be a limit of three nested levels deep, otherwise the performance
and responsiveness of the page may be impacted.
Additionally when configuring nested dynamic conditional clusters, the value of
the CONTROL_REF attribute on each field must be unique and the value of each
EXPRESSION attribute must be unique. For more information on the CONTROL_REF,
see “Attributes” on page 72. For more information on EXPRESSION see
“Attributes” on page 102.

v Multiple fields can control a single dynamic conditional cluster and the opposite
is also true where one field can control multiple dynamic conditional clusters.

v A controlling field in VIM referenced in a UIM Page can control a dynamic
conditional cluster present in that UIM page. The opposite also holds true where
a controlling field in a UIM can control a dynamic conditional cluster present in
a referenced VIM.

The following are unsupported for dynamic conditional clusters:

66 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v Only the three aforementioned input field controls are supported for dynamic
data. No other input field controls are supported.

v When configuring static data for dynamic conditional clusters, only single values
are supported, not lists of values.

v Mandatory fields within dynamic conditional clusters are not supported.
v When configuring the values of the CONTROL_REF and EXPRESSION attributes,

please ensure that it is not a JavaScript reserved word, otherwise a JavaScript
error will occur.

Configuring Conditional Clustering

As stated static data can be configured to control dynamic conditional clusters by
configuring a page connection or display phase server interface connection as a
SOURCE connection and JSCRIPT_REF as the TARGET connection.

The value of the PROPERTY attribute on the JSCRIPT_REF target connection will be
transformed in to a JavaScript variable with the same name and which can be
referenced as curam.dcl.getField('PROPERTY_VALUE') , where PROPERTY_VALUE
refers to the value of the PROPERTY attribute on the JSCRIPT_REF target. Likewise the
value of the CONTROL_REF attribute will be transformed into a JavaScript variable
with the same name and which can be referenced as
curam.dcl.getField('CONTROL_REF_VALUE'), where CONTROL_REF_VALUE refers
to the value of the CONTROL_REF attribute. The curam.dcl.getField() function gets the
value from a data source as described above. See more information on this
function within the JavaScript documentation.

The following steps are required to configure dynamic conditional clusters:
1. Configure the SCRIPT_FILE attribute of the PAGE element to configure the

JavaScript file that contains the configured JavaScript functions. For more
information, see “Attributes” on page 102

2. The following example shows how to configure static data from a page
connection and display server interface connection respectively.
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="param1"/>
<TARGET NAME="JSCRIPT_REF" PROPERTY="staticRef1"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="stringField1">
<TARGET NAME="JSCRIPT_REF" PROPERTY="staticRef2">

</CONNECT>

3. To configure a field that will control a dynamic conditional cluster, add the
CONTROL_REF attribute on the appropriate FIELD element. The following example
shows this.
<FIELD LABEL="Field.Label" CONTROL_REF="widgetRef1">
....

</FIELD>

4. At the cluster level, set the TYPE attribute to DYNAMIC on the CONDITION element.
For more information, see “Attributes” on page 68. An example of the setting is
as follows:
<CLUSTER TITLE="Cluster.Title" ... />

<CONDITION TYPE="DYNAMIC">
<SCRIPT EXPRESSION="displayCluster1"/>

</CONDITION>
</CLUSTER>

5. The recommended location for the JavaScript file that is referenced by the
SCRIPT_FILE attribute and which contains the function to evaluate whether the

Cúram web client reference 67

cluster(s) are displayed or not. It should be located in the same location as the
UIM page or an appropriate jscript directory that contains other JavaScript files.
Any variables referenced by curam.dcl.getField() must refer to a JSCRIPT_REF
property value or the value of a CONTROL_REF attribute or a JavaScript error will
occur. The following example shows how a JavaScript function consumes the
data configured and may be evaluated to display or hide a cluster.
function displayCluster1() {

// field1 is the value defined in the CONTROL_REF attribute
if(curam.dcl.getField(’staticRef1’) == true && curam.dcl.getField(’staticRef1’) == ’Astring’ && curam.dcl.getField(’widgetRef1’) == ’A_CODE_TABLE_VALUE’)
{

return curam.dcl.CLUSTER_SHOW;;
}
return curam.dcl.CLUSTER_HIDE;

}

CONDITION
The CONDITION element represents the condition under which an ACTION_SET,
ACTION_CONTROL, LIST, or a CLUSTER is displayed. If a condition evaluates to true,
then the parent element will be displayed; if the condition evaluates to false, then
the parent element is not displayed with the following exception: an ACTION_SET or
ACTION_CONTROL element will display disabled links if the condition evaluates to
false and the HIDE_CONDITIONAL_LINKS attribute on the PAGE element or in the
curam_config.xml file has been set to false. Conditional ACTION_SETS and
ACTION_CONTROLS are mutually exclusive from one another and therefore the
CONDITION element should be set for either one (depending on the requirements)
but not both.

Finally, if the condition equates to false for those conditional action sets or action
controls which appear as drop down menu items, then a single disabled menu
item titled, 'No Contents' is displayed (upon selecting the drop down menu icon).

Attributes:
The CONDITION element has the following attributes:

Table 11. Attributes of the CONDITION element

Attribute Name Required Default Description

TYPE No Configuring the
TYPE to be
DYNAMIC enables
cluster be
dynamically
displayed depending
on input from the
current UIM page.

Child Elements:
The CONDITION element must contain either an IS_TRUE element or an IS_FALSE
element. It must not be empty and it must not contain more than one element.

Table 12. Child Elements of the CONDITION Element.

Element Name Cardinality / Description

IS_TRUE 0..1 If the property referenced by the IS_TRUE element
returns true then the condition is true.

68 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 12. Child Elements of the CONDITION Element. (continued)

Element Name Cardinality / Description

IS_FALSE 0..1 If the property referenced by the IS_FALSE element
returns false then the condition is true.

SCRIPT 0..1 This is used to configure a JavaScript function that
evaluates a Dynamic Conditional Cluster.

For Agenda Player specific use, see “Agenda Player” on page 254

CONNECT
The CONNECT element defines a data connection between two connection end points
such as server interface bean properties, page parameters, screen controls, localized
string values, etc.

Attributes:
The CONNECT element has no attributes.

Child Elements:
The CONNECT element must contain at least one of the child elements from the table
below, but the details of how these elements are used depends on the context in
which the CONNECT element is defined. See the specific parent or child element's
description for more details.

Table 13. Child Elements of the CONNECT Element

Element Name Cardinality / Description

INITIAL 0..1. This element is only valid in CONNECT elements
contained within FIELD elements.

SOURCE 0..1. Within a FIELD element, the SOURCE is the source
of the value displayed in the field control (unless
INITIAL is used).

TARGET 0..1. Within a FIELD element, the TARGET is the
property to which the value in the field control will be
assigned.

CONTAINER
The CONTAINER element groups FIELD, ACTION_CONTROL and IMAGE elements so that
they can be used in a single cell of a CLUSTER or LIST element.

Attributes:
The CONTAINER element has the following attributes:

Table 14. Attributes of the CONTAINER Element

Attribute Name Required Default Description

LABEL No A reference to an externalized string
that should be used as the associated
label for this container.

LABEL_ABBREVIATION No A reference to an externalized string
containing the associated label
abbreviation text for this container.
This label abbreviation is placed only
on table headers in a LIST.

Cúram web client reference 69

Table 14. Attributes of the CONTAINER Element (continued)

Attribute Name Required Default Description

WIDTH No 100 The percentage of the width of the
field value cell in the cluster or list
that the container should occupy.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the
elements within the container. Can be
set to LEFT, RIGHT, CENTER, or DEFAULT.
The value DEFAULT corresponds to the
CSS class default in curam_common.css.
Currently the default is to be left
aligned.

SEPARATOR No A reference to an externalized string to
use as the separator between the
elements within the container.

STYLE No A CSS class to be applied to this
container.

Child Elements:
The CONTAINER element can contain the following child elements. It must contain at
least one element.

Table 15. Child Elements of the CONTAINER Element

Element Name Cardinality / Description

FIELD 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

IMAGE 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

ACTION_CONTROL 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

WIDGET 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

DETAILS_ROW
The DETAILS_ROW element is used within a LIST element to enable each row to be
expanded to show more details about the row. Child elements of DETAILS_ROW
define the content that is displayed when the row is expanded. Currently only the
INLINE_PAGE element is supported as a child.

When a page containing a list with expanded rows is submitted to self or refreshed
after a dialog submit, the rows will be re-expanded after the page loads again. This
functionality is based on page parameters to the corresponding INLINE_PAGE and
the following limitations apply:
v The INLINE_PAGE must take page parameters and they must uniquely identify

each row within the list.
v The functionality is supported for pages submitted to self or refreshed after a

dialog submit. In all other cases all rows after refresh are reset to default -
collapsed.

v If the list contains duplicate items, only the first of them will retain the
expanded state after refresh.

v If an edit operation in a dialog changes values that are used in the INLINE_PAGE
parameters, this row will be collapsed after refresh.

70 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v If an expanded row is expandable conditionally and it is no longer expandable
after the page is refreshed, its state will be always set to collapsed.

Note that DETAILS_ROW element is not allowed in a list using the SCROLL_HEIGHT
attribute.

Attributes:
The DETAILS_ROW element has the following attribute.

Table 16. Attributes of the DETAILS_ROW Element

Attribute Name Required Default Description

MINIMUM_EXPANDED_HEIGHTNo 30px Specifies minimum height in pixels of an
expanded row for this list. To be used
for in-line pages that are expected to
contain nested lists with long actions
menus which would not fit to the
default expanded row height.

Child Elements:
The DETAILS_ROW element contains the following child elements.

Table 17. Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

INLINE_PAGE 1..1 This defines the page to be shown when the list
row is expanded. Currently this is the only supported
element, hence it's 1..1 cardinality.

CONDITION 0..1. Affects whether or not the details row is
displayed.

DESCRIPTION
The DESCRIPTION element defines the description associated with a PAGE_TITLE,
CLUSTER or LIST element. A DESCRIPTION is constructed by concatenating a number
of connection sources together.

Attributes:
The DESCRIPTION element has the following attributes:

Table 18. Attributes of the DESCRIPTION Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the
separator between the elements within the container.

Child Elements:
The DESCRIPTION element can contain child elements as follows:

Table 19. Child Elements of the DESCRIPTION Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE
elements can be included (one SOURCE per CONNECT).
Sources can be server interface properties or, with the
NAME attribute set to TEXT, references to strings in a
properties file.

Cúram web client reference 71

FIELD
The FIELD element specifies a data value to be displayed in a CLUSTER, a value to
be retrieved from the user via an input control in a CLUSTER, or a list of data values
to be displayed in a LIST column. FIELD elements can also be aggregated within
CONTAINER elements so that they fill a single cell of a CLUSTER or LIST element.

Please note that, when the FIELD element is used to display a code table hierarchy
either on an edit or ready-only page, the following should apply:
v For an edit page, only one FIELD element is needed to display a code table

hierarchy with a domain definition inherited from CODETABLE_CODE that has the
code table name set to the lowest level code table in a hierarchy. The CDEJ
infrastructure automatically determines its code table hierarchy and then
displays however many dropdowns it has, i.e. if it is a three level hierarchy, then
the three levels are displayed.

v For a read-only page, however only the lowest level code table value is
displayed on the screen by the same way using a single FIELD element as the
edit page. And the CDEJ infrastructure does not support on displaying its full
hierarchy.

Attributes:
The FIELD element has the following attributes:

Table 20. Attributes of the FIELD element

Attribute Name Required Default Description

LABEL No A reference to an externalized string
that needs to be used as the
associated label for this field. The
LABEL attribute is mandatory when a
CONNECT element exists that contains
a TARGET.

LABEL_ABBREVIATION No A reference to an externalized string
that contains the associated label
abbreviation text for this field. This
label abbreviation is placed only on
table headers in a LIST.

DESCRIPTION No A reference to an externalized string
that is displayed below the label text.

ALT_TEXT No A reference to an externalized string
that is used as the alternate text for
the field. This reference is applicable
only when the field has a target
connection, that is, it is an input
field. If this attribute is added to a
mandatory input field, the text
Mandatory is appended to the
externalized string. If this attribute is
not specified, the LABEL is used.
Browsers that are supported by the
Cúram application display alternate
text when the mouse is hovered over
the input control.

WIDTH No Specifies the width of the field value
within its cluster or list cell.

72 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 20. Attributes of the FIELD element (continued)

Attribute Name Required Default Description

WIDTH_UNITS No PERCENT The units in which the width is
interpreted. This measurement can
be PERCENT to indicate the percentage
of the space available to the field, or
CHARS to indicate the number of
visible characters the field needs to
accommodate.

HEIGHT No 1 For input fields that resolve to a text
input control, this input specifies the
number of visible lines of text that
the control displays. For input fields
that resolve to a selection list, this
value specifies the number of entries
that are initially displayed. For
example, a scrollable selection list is
displayed instead of a drop-down
selection list.

ALIGNMENT No DEFAULT Defines the horizontal alignment of
the field value. Can be set to LEFT,
RIGHT, CENTER, or DEFAULT. The value
DEFAULT corresponds to the CSS class
default in the curam_common.css.
Currently the default is to be
left-aligned. In a CLUSTER, only input
fields are aligned. In a LIST, all fields
are aligned.

USE_DEFAULT No true If set to true (the default) and the
field has no SOURCE connection, then
if a sensible default value for the
field can be determined
automatically, it is displayed.

For example, numeric fields display
a zero, string fields are empty, and
date fields defaults to the current
date.

USE_BLANK No false If the field source is a
code-table-based property, or a
server interface list property, it is
displayed in a list. If this attribute is
set to true, an extra blank value is
added to the top of the list.

Cúram web client reference 73

Table 20. Attributes of the FIELD element (continued)

Attribute Name Required Default Description

CONTROL No DEFAULT The CONTROL attribute can take one of
a number of values:

v DEFAULT - The field behaves in the
standard fashion.

v SUMMARY, DYNAMIC,
DYNAMIC_FULL_TREE, and FAILURE -
These settings apply only to rules
fields. For more information, see
“Rules Trees” on page 215.

v SKIP - Indicates that the field is
only present to occupy space in a
CLUSTER to balance the layout. No
label or value is displayed.
However, the label background
still is presented.

v TRANSFER_LIST - Enables a list on a
page to be displayed as a transfer
list widget. This mode is only
applicable and supported for list
controls with multiple selection
capability.

v CT_HIERARCHY_HORIZONTAL -
Displays a list as a horizontal code
table hierarchy.

v CT_HIERARCHY_VERTICAL - Displays
a list as a vertical code table
hierarchy. For more information on
code table hierarchies, see the
Cúram Server Developers Guide.

CONFIG No Identifies configuration details for
this FIELD instance. This attribute can
be used only with a FIELD whose
CONTROL attribute is for a widget that
supports configuration. For example,
if the CONTROL attribute is DYNAMIC for
a FIELD of the RESULT_TEXT
domain then the CONFIG attribute
needs to match an ID on a config
element in the
RulesDecisionConfig.xml file. For
more information on configuration,
see “Dynamic Rules View” on page
216.

CT_DISPLAY_LABELS : Displays labels
for each code table in a code table
hierarchy. . For more information on
code table hierarchies, see the
CONTROL attribute in “FIELD” on
page 72.

74 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 20. Attributes of the FIELD element (continued)

Attribute Name Required Default Description

INITIAL_FOCUS No false A FIELD element, whose
INITIAL_FOCUS attribute is set to
true, gets focus when the page is
displayed. In other words, the cursor
is placed in that field ready for data
entry. If no FIELD requests the initial
focus, the cursor is placed in the first
input field on the page. It is not
allowed to have more than one FIELD
with the INITIAL_FOCUS attribute set
to true specified on a page.

PROMPT No false This attribute is used to configure a
placeholder value in the field that is
associated with a Date Selector, if the
field is blank. On focus, the
placeholder text disappears to allow
for data entry.

CONTROL_REF No This setting is used to configure
Dynamic Conditional Clusters. The
purpose of the CONTROL_REF is to set
the controlling input. If something is
selected, a cluster becomes visible.
The CONTROL_REF attribute is set to an
identifier that is evaluated by the
JavaScript.

Child Elements:
The FIELD element can contain the following child elements:

Table 21. Child Elements of the FIELD Element

Element Name Cardinality / Description

CONNECT 0..3. A field can contain up to three CONNECT elements. The SOURCE
connection defines the initial value for the field (this will be the
static value shown if there is no target end-point, or the initial value
of an input control if there is a target end-point). The TARGET
end-point defines the property that will be set from the field value
during the action phase. If a TARGET end-point is specified the SOURCE
end-point can only be from a server interface property. This is
because domain information is required to correctly format the value
for display in the input control.

If an INITIAL end-point is used and the property is not a list value, it
specifies the visible value of the field (which will be read-only). The
SOURCE value will be hidden, and the pair of values can only be
changed via a pop-up search page. The TARGET end-point will be
supplied with the hidden value.

If an INITIAL end-point is used and the property is a list value, it
specifies the visible values in a drop-down list. The INITIAL
element's HIDDEN_PROPERTY specifies the corresponding list of hidden
values that will be supplied to the TARGET end-point. In this instance,
the SOURCE end-point specifies one of the hidden values in the list
that should be used as the initial list selection (the corresponding
visible value is displayed).

Cúram web client reference 75

Table 21. Child Elements of the FIELD Element (continued)

Element Name Cardinality / Description

LINK 0..1. Only valid for output fields (those with no TARGET connection
end-point). The value of the output field will be used as the text for
the hyperlink specified by this LINK element.

If the field is based on a domain which requires a pop-up window
then the LINK element can be used to supply parameters to the
pop-up page. In this case the LINK element must not have a PAGE_ID
attribute specified. See “Using the Pop-up Page” on page 251 for
further details.

LABEL 0..1. Allows the label for a FIELD to constructed from a number of
sources. If both a LABEL attribute and LABEL child element are
specified, the element takes precedence. See “LABEL” on page 84 for
more details.

SCRIPT 0..n. A script file associated with this FIELD that contains JavaScript
code to be activated in response to the specified event on the field
control. See “SCRIPT” on page 102 for more details and limitations
on this element usage.

FOOTER_ROW
The FOOTER_ROW element is used to define a single footer row at the end of a list. A
list can have multiple footer rows.

A FOOTER_ROW element may only contain FIELD elements. The number of FIELD
elements must match the number of columns in the parent list.

There are two CSS classes associated with footer row fields. A FIELD with a TEXT
SOURCE connection is output with the footerheader CSS class. All other SOURCE
connections are output with the footervalue CSS class. Both of these classes are
defined in curam_common.css and can thus be customized.

Spanning column widths are supported through the use of skip fields. For
instance, if one normal field and two skip fields are used in a FOOTER_ROW element,
this normal field will span three columns. Example code is shown below.

76 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Attributes:
The FOOTER_ROW element has no attributes.

Child Elements:
The FOOTER_ROW element contains the following child elements.

Table 22. Child Elements of the FOOTER_ROW Element

Element Name Cardinality / Description

FIELD 1..n Each FOOTER_ROW must contain the same number
FIELD elements as there are columns in the parent
LIST.

IMAGE
The IMAGE element inserts an image into a CONTAINER.

Attributes:
The IMAGE element has attributes as follows:

Table 23. Attributes of the IMAGE Element

Attribute Name Required Default Description

IMAGE Yes A reference to an entry in the
Image.properties file.

LABEL Yes The entry in the UIM's associated
properties file which is used as the
alternate (or “alt”) text of the image.

STYLE No A CSS style to associate with the image.

<LIST TITLE="List.Title.One" DESCRIPTION="List.Description.One">
<FIELD LABEL="Field.Title.BankId" WIDTH="40">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Name" WIDTH="35">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$date"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.VersionNo" WIDTH="25">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$total"/>

</CONNECT>
</FIELD>

<FOOTER_ROW>
<FIELD CONTROL="SKIP"/>
<FIELD WIDTH="40" LABEL="Field.Title.Footer" >

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Entitlement"/>

</CONNECT>
</FIELD>
<FIELD>

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>

</CONNECT>
</FIELD>

</FOOTER_ROW>
</LIST>

Figure 35. Example of a FOOTER_ROW in a List.

Cúram web client reference 77

Child Elements:
The IMAGE element has no child elements.

INCLUDE
The INCLUDE element indicates that the elements within an external UIM view
document should be included at this position in the page.

Attributes:
The INCLUDE element has attributes as follows:

Table 24. Attributes of the INCLUDE Element

Attribute Name Required Default Description

FILE_NAME Yes The file name of the UIM view document
to be included. No path to the file should
be specified. The file name alone is
sufficient to identify the document.

Child Elements:
The INCLUDE element has no child elements.

INITIAL
This element is only valid within a CONNECT element contained in a FIELD element.
Use of this connection type is described in further detail in the following sections:
v For pop-up pages see “Pop-up Pages” on page 247
v For selection lists populated from server interface properties see “Selection Lists”

on page 212

Attributes:
The INITIAL element has the following attributes:

Table 25. Attributes of the INITIAL Element

Attribute Name Required Default Description

NAME Yes The name of the
SERVER_INTERFACE instance to use
as the source of the property
value.

PROPERTY Yes The source of the data to be
displayed in the visible field. This
can be a list or a non-list field
type.

HIDDEN_PROPERTY No The source of the list data that
has a one-to-one mapping (based
on the list indexes) to the list
property specified in the PROPERTY
attribute.

Child Elements:
The INITIAL element contains no child elements.

INFORMATIONAL
The INFORMATIONAL element is used to display informational messages returned
from the server. These are different to error messages in that the server call

78 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

completes successfully. The messages are created in server side code using the
SDEJ Informational Manager API (see the Cúram Server Developers Guide for more
details). This API allows a developer to assign messages to an output list field(s).
This field must then be referenced using child CONNECT elements. The message will
be displayed at the top of the page in the same area as error messages and this
may not be on the page on which the INFORMATIONAL element was defined. It
could be on the following page or on the parent page in the case of modal dialogs.
Finally, messages will never be displayed within the context panel of the
application, but will instead will always be displayed within the main content area
of the page.

Attributes:
The INFORMATIONAL element has no attributes.

Child Elements:
The INFORMATIONAL element contains the following child elements.

Table 26. Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

CONNECT 1..n Each CONNECT element specifies a single SOURCE
end-point. This is a field of a bean which contains
informational messages.

INLINE PAGE
The INLINE_PAGE element is used to display the contents of one UIM page in-line in
another. Currently this is only supported within the DETAILS_ROW element of a LIST
to support displaying extra content when a list row is expanded.

Attribute:
The INLINE_PAGE element has the following attributes:

Table 27. Attributes of the INLINE_PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes The ID of the UIM page to
display. Circular dependencies
must not be introduced. If a page
is used inline, it is not allowed for
it to be mapped to a tab at the
same time.

URI_SOURCE_NAME No The name of the
SERVER_INTERFACE instance to use
as the source of the URI. This
attribute is paired with
URI_SOURCE_PROPERTY. Note that a
URI can only be sourced from a
server interface. This attribute
cannot be used to specify page
parameters or properties files as a
source for the URI. The server
interface reference must be called
during the “display-phase” and
the parent ACTION_CONTROL must
be of type ACTION when this
property is used.

URI_SOURCE_PROPERTY No The name of the property to use
as the source of the URI.

Cúram web client reference 79

Child Elements:
The INLINE_PAGE element contains the following child elements.

Table 28. Child Elements of the INLINE_PAGE Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on this element define the
parameters to be exported to the page targeted by the
INLINE_PAGE elements PAGE_ID attribute. The CONNECT
should contain both a SOURCE and a TARGET element
and the TARGET element should have the NAME attribute
set to PAGE and the PROPERTY attribute set to the name
of the page parameter.

Restrictions on usage:
The UIM page opened in an expanded row is intended for only viewing additional
information about the row. It should not be used for editing information about that
row. Instead a modal dialog should be launched from the page when an edit is
required.

As these pages are for viewing information only, the following rules/restrictions
should be noted for these "in-line" pages.
v The "in-line" pages displayed in an expanded row must not be used for editing

information.
v The "in-line" pages displayed in an expanded row should not display very

complex widgets that require a "full screen". This includes the following domain
specific controls and UIM elements:
– Decision Assist: The Decision Matrix Widget
– Decision Assist: Typical Picture Editor Widget
– Decision Assist: Evidence Review Widget
– Agenda Player
– Batch Function View
– The Rules Simulation Editor
– The Rates Table
– The Meeting View Widget
– The FILE_EDIT Widget
– The Calendar
– Rules Trees

Note: There are no validations in place for these restrictions and it is the
responsibility of the developer to ensure they don't use unsupported widgets in an
expandable list.

IS_FALSE
A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element
evaluates to true when the referenced property value is false.

Attributes:
The IS_FALSE element has the following attributes:

80 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 29. Attributes of the IS_FALSE Element

Attribute Name Required Default Description

NAME Yes The name of the
SERVER_INTERFACE instance to use
as the source of the property
value.

PROPERTY Yes The name of the property being
accessed. It must be a Boolean
value.

See “Attributes” for more details on the use of this element to access the values of
action-phase server interface properties.

Child Elements:
The IS_FALSE element contains no child elements.

IS TRUE
A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element
evaluates to true when the referenced property value is true.

Attributes:
The IS_TRUE element has the following attributes:

Table 30. Attributes of the IS_TRUE Element

Attribute Name Required Default Description

NAME Yes The name of the
SERVER_INTERFACE instance to use
as the source of the property
value.

PROPERTY Yes The name of the property being
accessed. It must be a Boolean
value.

In the majority of cases the NAME and PROPERTY combination will reference a
display-phase server interface property. However when a page submits to itself
using an ACTION_CONTROL with a child LINK element that has the PAGE_ID set to THIS
(e.g., a search page), properties of the action-phase server interface can be
referenced. When the page is first displayed the action-phase server interface will
not be in scope and the property is treated as if its value is false. When the page is
submitted, the action-phase server interface will be in scope and the referenced
property will be evaluated as normal.

Child Elements:
The IS_TRUE element contains no child elements.

JSP SCRIPTLET
The JSP_SCRIPTLET element defines JSP scriptlet code that should be inserted into
the page at that point relative to any other LIST or CLUSTER elements. Any
TextHelper beans declared by a SERVER_INTERFACE element to be in the DISPLAY
phase are available to the scriptlet by getting the attribute of the page context with
the same name as the NAME attribute of the SERVER_INTERFACE element. An example
is shown in “JSP SCRIPTLET” below.

Cúram web client reference 81

As the code within the JSP_SCRIPTLET element may contain reserved XML
characters2, you can either replace these characters with the appropriate XML
character entity or enclose the contents of the element in the CDATA (“character
data”) block as shown above which will prevent the XML parser from trying to
interpret the contents of the block.

A common use of the JSP_SCRIPTLET element is to write code that will redirect the
current page to another page. “JSP SCRIPTLET” on page 81, below, shows an
example of this.

This demonstrates the API used to access the system parameters that control an
application's ability to return to previous pages. The information about the
previous page is stored in the system parameters accessible via the
RequestHandler. getSystemParameters() method. By adding the system parameters,
any Cancel button on the following page will return to the expected page when
clicked. The RequestHandlerFactory. getRequestHandler() method is passed the
JSP request object and will return the appropriate request handler. The system
parameters should be appended to the redirect URL and just require a separating
“&” character as they are already formatted in name = value pairs.

When using a JSP_SCRIPTLET to redirect to another page, the JSP_SCRIPTLET should
be the only child element of the PAGE element. When this is the case, no HTML
content will be generated for the page: it will not be displayed, so no HTML is
required. If other elements are present, then HTML content will be generated. This
can include the page header, navigation menus, footer, title, etc. If this HTML

2. The reserved characters in XML are “ ' ”, “ " ”, “ & ”, “ < ”, and “ > ”. The respective XML character entities are “ ' ”, “
" ”, “ & ”, “ < ”,and “ > ”.

<SERVER_INTERFACE NAME="MyBeanName" CLASS="MyClass"
OPERATION="getMyData" />

<JSP_SCRIPTLET>
<![CDATA[

curam.omega3.texthelper.TextHelper th =
pageContext.findAttribute("MyBeanName");

String myValue = th.getFieldValue("myPropertyName");
out.print("VALUE: " + myValue);

]]>
</JSP_SCRIPTLET>

Figure 36. Example JSP SCRIPTLET Accessing a TextHelper

<PAGE PAGE_ID="Activity_resolveAttendeeHome">
<JSP_SCRIPTLET>

<![CDATA[
curam.omega3.request.RequestHandler rh

= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(pageContext.getSession())

.getLocale() + "/";
String url = context + "UserCalendarPage.do?"

+ "startDate=&calendarViewType=CVT3";
url += "&" + rh.getSystemParameters();
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Figure 37. Example JSP SCRIPTLET Redirecting to a Page

82 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

content exceeds the size of the buffer on the web container serving the page, then
the content will be transmitted to the web browser. Once any content is
transmitted in this way, the redirect operation will have no effect. Therefore,
ensuring that the page contains a single JSP_SCRIPTLET element and no other
elements will ensure that the redirect operation works as expected.

If you need to access a TextHelper instance from a JSP scriptlet that redirects to
another page, then you cannot use the SERVER_INTERFACE element to declare the
TextHelper as shown in “JSP SCRIPTLET” on page 81, as this extra element would
cause HTML content to be generated. Instead, you must declare the TextHelper
instance within the scriptlet code as shown below.

It should be noted that, when using JSP_SCRIPTLET, there is limited error handling
capability. Thus, code should not make calls to secured server interface methods.
Instead, the target page of any JSP_SCRIPTLET should be secured appropriately.

When adding parameters to the parameter list, care must be taken if the parameter
value may contain non-ASCII characters. Values containing non-ASCII characters
must be escaped before they are added to the parameter list to ensure that the
characters are preserved correctly. The RequestUtils. escapeURL(String) method

<PAGE PAGE_ID="Activity_resolveApplicationHome">
<JSP_SCRIPTLET>

<![CDATA[
curam.omega3.request.RequestHandler rh

= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(pageContext.getSession())

.getLocale() + "/";
String activityID = request.getParameter("ID");
String eventType = request.getParameter("TYPE");
String url = context;

curam.interfaces.ActivityPkg.Activity_readDescription_TH
th = new curam.interfaces.ActivityPkg

.Activity_readDescription_TH();
th.setFieldValue(

th.key$activityDescriptionKey$activityID_idx,
activityID);

th.callServer();

String description = th.getFieldValue(
th.result$activityDescriptionDetails$description_idx);

if (eventType.equals("AT1")) {
url = "Activity_viewUserRecurringActivityPage.do?";

} else {
url = "Activity_viewUserStandardActivityPage.do?";

}
url += "activityID=" + activityID;
url += "&description="

+ curam.omega3.request.RequestUtils.escapeURL(
description);

url += "&" + rh.getSystemParameters();
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Figure 38. Example JSP_SCRIPTLET Redirecting and Accessing a TextHelper

Cúram web client reference 83

can be used to perform the escaping. An example of the Java code to perform this
escaping is shown in the example above. Code following that pattern should be
included within your JSP scriptlet.

Attributes:
The JSP_SCRIPTLET element has no attributes.

Child Elements:
The JSP_SCRIPTLET element contains no child elements. The body of the element
must only contain the JSP scriptlet code to be inserted into the page.

LABEL
The LABEL element can be used as a child element of FIELD to construct a label by
concatenating multiple values. An example of the field and label data is shown in
“LABEL,” below.

Attributes:
The LABEL element has no attributes:

Child Elements:
The LABEL element can contain the following child elements.

Table 31. Child Elements of the LABEL Element

Element Name Cardinality / Description

CONNECT 1..n. A CONNECT element specifying a single SOURCE end-point.
Action-phase server interfaces cannot be used in the SOURCE
end-point.

LINK
The LINK element specifies the page to go to after an action phase. Alternatively, a
LINK element can specify any external web page or certain resource. Links can
contain CONNECT elements to map values to parameters to be added to the link.

Attributes:

<CLUSTER TITLE="Cluster.Title">
<FIELD>

<LABEL>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Label.Text" />
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personName" />
</CONNECT>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Label.Separator" />
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="dateOfBirth" />
</CONNECT>

</LABEL>

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fieldName"/>

</CONNECT>
</FIELD>

</CLUSTER>

Figure 39. Example of a Dynamic LABEL

84 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The LINK element has the following attributes. Note that the PAGE_ID, PAGE_ID_REF,
URL, URI, and URI_REF attributes are mutually exclusive as well as the pair of
attributes URI_SOURCE_NAME and URI_SOURCE_PROPERTY.

Please note that attributes that have the ability to link to external web pages or
resources (i.e mailto: links) will have their link back functionality stripped away.
This link back functionality keeps a link to the previous page. An example of
where this is needed is with cancel buttons where if they are used, the page will
link back to the previous page. In order to keep this, the link will have to be to an
internal Curam page. In order to mark a link as being a link to an internal Curam
page, the keyword 'curam:' needs to be added before the link text.

Table 32. Attributes of the LINK Element

Attribute Name Required Default Description

PAGE_ID No The unique identifier of the page to be
opened. This is the value of the
PAGE_ID attribute of the PAGE element
in the required UIM page document.

If this attribute is set to the PAGE_ID of
the current page, the page will be
re-opened with all the input fields reset
to their default state.

If the link is on an action control with
a TYPE set to SUBMIT and this attribute
is set to the value THIS, the link will
return to the current page after the
action phase and the input fields will
not be reset to their default state. This
is useful for search pages where the
search criteria need to be preserved.

PAGE_ID_REF No A PAGE_ID can alternatively be
specified by reference to an entry in
the CuramLinks.properties file. This
allows many links to refer to the same
target page yet all can be updated by
changing the entry in the
CuramLinks.properties file.

URL No It is recommended to use the new URI
attribute which is described below. The
URL attribute is maintained for
backward compatibility.

URI No Rather than link to another page in the
application, the URI attribute allows the
creation of a link to any URI
whatsoever. This can be used to link to
pages or other resources completely
outside of the application. Parameters
must be supplied by CONNECT elements
within the LINK to ensure correct
encoding.

Cúram web client reference 85

Table 32. Attributes of the LINK Element (continued)

Attribute Name Required Default Description

URI_REF No A URI (or URL) can alternatively be
specified by reference to an entry in
the CuramLinks.properties file. This
allows many links to refer to the same
target yet all can be updated by
changing the entry in the
CuramLinks.properties file. The file
can be placed in any component in the
application.

URI_SOURCE_NAME No The name of the SERVER_INTERFACE
instance to use as the source of the
URI. This attribute is paired with
URI_SOURCE_PROPERTY. Note that a URI
can only be sourced from a server
interface. This attribute cannot be used
to specify page parameters or
properties files as a source for the URI.
The server interface reference must be
called during the “display-phase” and
the parent ACTION_CONTROL must be of
type ACTION when this property is
used.

URI_SOURCE_PROPERTY No The name of the property to use as the
source of the URI.

OPEN_NEW No false When set to true, this flag indicates
that the linked page should be opened
in a new window. When set to false
(the default) the linked page will be
opened in the current window. This
setting is only supported for links to
external sites.

SAVE_LINK No true This attribute indicates that the page
containing the link should be returned
to if an action control on the target
page is configured to return to the
previous page. An action control
without a LINK child element will
return the user to the previous page. If
there is a sequence of pages and any
one of them needs to go back to a
“starting” page, then each page in the
sequence should set this attribute to
false so that subsequent pages do not
return to their immediate previous
page in the chain.

SET_HIERARCHY_RETURN_PAGENo false This attribute is no longer used but has
been retained in the UIM schema to
avoid upgrade impact.

USE_HIERARCHY_RETURN_PAGENo false This attribute is no longer used but has
been retained in the UIM schema to
avoid upgrade impact.

86 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 32. Attributes of the LINK Element (continued)

Attribute Name Required Default Description

HOME_PAGE No If this attribute is set to true, the link
will take a user directly to their home
page. During development the home
page can be configured by setting the
“application code” field of the Cúram
“users” table. This value of this field
corresponds to an entry on the
APPLICATION_CODE code-table. At
runtime, the Cúram Administration
application allows the home page to be
set when creating or editing a user.

Note, that in the development
environment Java EE security is not
enabled. Therefore, since a user name
is not available the home page link
cannot be displayed.

OPEN_MODAL No "false" If this attribute is set to true, the link
will open the referenced page in a new
window. The new window is modal,
meaning that while it is open the
parent window cannot be accessed.
When a user navigates from the
original page in the modal dialog,
either by submitting a form or clicking
a link, the modal dialog is closed, and
the parent page that spawned it is sent
to the new location.

DISMISS_MODAL No "true" If this attribute is set to false, the link
will open the referenced page in the
same pop-up window, modal or
normal depending on what the
browser supports.

WINDOW_OPTIONS No "width=800,
height=450"

The size of each modal dialog is
configurable using this parameter. The
value of the attribute is a comma
separated list of name value pairs. The
currently supported options are width
and height, both of which take an
integer value, which is translated
directly to a pixel value. Any other
parameters will cause an exception to
be thrown. This attribute should only
be set when OPEN_MODAL is set to true
on the same LINK tag.

Child Elements:
The LINK element can contain the following child elements:

Cúram web client reference 87

Table 33. Child Elements of the LINK Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on a link define the parameters to be
exported to the page targeted by the link. The CONNECT
should contain both a SOURCE and a TARGET element
and the TARGET element should have the NAME attribute
set to PAGE and the PROPERTY attribute set to the name
of the page parameter. Any type of SOURCE element
can be used except the TEXT. Also, in the scenario
where the LINK is inside an ACTION_CONTROL with TYPE
= SUBMIT, the SOURCE must have an ACTION phase bean,
a page parameter or a CONSTANT. The reason being the
URL is generated in the action class and the DISPLAY
bean is not accessible at the stage.

CONDITION 0..1. Affects whether or not the link is displayed.

Modal Dialogs:
A Modal Dialog is similar to a Pop-up Page, in that it opens a dialog box to
display a page on top of the main application content. However, modal dialog is
different in a number of ways.
v When a modal dialog is open, its parent page cannot be accessed. The parent

page is grayed-out and ignores any user action.
v Changing the page in the Modal Dialog, either by submitting a form or by

clicking a hyperlink, causes it to close, and the parent page to be changed to the
changed page, with the following exceptions
– If the page linked to has the same id as the current modal page (e.g. a 'save &

new' button/link), then the page will be refreshed within the same modal
window

– If the link clicked has the attribute DISMISS_MODAL set to false, the page
linked to will opened within the same modal window

– If the link clicked has the attribute OPEN_MODAL set to true, it will open in
a new modal window

v The usage of Modal Dialogs is different to that of Pop-up pages. It is
considerably less complex, consisting of using either one or two optional
attributes on the LINK tag.

Using Modal Dialogs

A LINK tag is made to open in a Modal Dialog, rather than the default action of
opening a new page in the same window, by setting the OPEN_MODAL attribute to
true.
<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true" />

Note in the example the use of the OPEN_MODAL attribute on the LINK tag.

Setting OPEN_MODAL on a LINK that is inside an ACTION_CONTROL of type SUBMIT has
no effect. Setting OPEN_MODAL =true on a link implies also having DISMISS_MODAL
=false on that link, and setting DISMISS_MODAL =true on it is ignored. Setting
DISMISS_MODAL =false implies OPEN_MODAL =false, so there is no need to set it.

88 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Configuring Modal Dialogs

Modal Dialogs can be individually configured by setting the WINDOW_OPTIONS
attribute on a LINK tag which has the OPEN_MODAL attribute set to true. Multiple
options can be set via this attribute, which is formatted as a comma separated list
of name value pairs. The currently supported parameters are
v width - sets the width of the Modal Dialog, measured in pixels. This parameter

takes an integer value.
v height - sets the height of the Modal Dialog, measured in pixels. This parameter

takes an integer value.
<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true"

WINDOW_OPTIONS="width=600,height=500" />

Note in the example above the use of the WINDOW_OPTIONS attribute. The values
specified for width and height are simple integers and do not have any alphabetic
characters appended. A default width of 600 pixels is used if no width parameter is
specified. If no height parameter is specified the height will be automatically
calculated to accommodate the page contents. If an unsupported parameter is
placed in the WINDOW_OPTIONS, a build time exception will be thrown.

If the WINDOW_OPTIONS attribute is also specified on the PAGE element of the page a
LINK points to, it will take precedence over the value specified on the LINK itself.

The minimum required height for modal dialogs can be configured using the
property modal.dialogs.minimum.height that is located in the
ApplicationConfiguration.properties file.

Controlling Modal Dialogs from custom JavaScript

Modal Dialogs can be controlled by custom JavaScript using the provided
curam.util.UimDialog API. For details see the full API documentation in HTML
format, accessible by opening <cdej-dir>\doc\JavaScript\index.html in a Web
browser.

Loading custom non-UIM pages in a Modal Dialog

Custom non-UIM pages must hook into a specific set of API functions in order to
work correctly in a Modal Dialog. These functions are provided by the
curam.util.Dialog API. The details are available in the full API documentation:
<cdej-dir>\doc\JavaScript\index.html.

LIST
The LIST element defines the layout of a control used to display lists of data. Each
field or action control becomes a column and data values are then tabulated.

List attributes:
The LIST element has the following attributes:

Table 34. Attributes of the LIST Element

Attribute Name Required Default Description

TITLE No A reference to an externalized string
containing the title string for this list.
See also note below.

Cúram web client reference 89

Table 34. Attributes of the LIST Element (continued)

Attribute Name Required Default Description

STYLE No The class name of the CSS style to
associate with this list for formatting.

DESCRIPTION No A reference to an externalized string that
provides more details about the list than
the title alone. This will be displayed
below the title on the page.

SORTABLE No true Lists can be sorted by clicking on the
appropriate headers. This is set by
default to be enabled without the use of
the attribute. This attribute allows this
feature to be controlled with false
disabling the feature and true enabling
it.

SUMMARY No A reference to an externalized string
containing the summary of this list. The
SUMMARY attribute describes the purpose
and/or structure of a list.

SCROLL_HEIGHT No Specifies in pixels the desired fixed
height of a scrollable list. A vertical
scrollbar is provided once the list
exceeds the scroll height. The scrollbar is
only applied to the list body and the
list's column headers remain fixed Scroll
height is independent of the list contents
and therefore an empty list will still be
set to the height specified.

90 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 34. Attributes of the LIST Element (continued)

Attribute Name Required Default Description

BEHAVIOR No Optional attribute which controls the
display and behavior of the toggle
button used to expand or collapse the
list.

Three value options are available for this
attribute:

v NONE which prevents the toggle button
from being displayed in the list
header.

v EXPANDED : the toggle button is
displayed and the list is initially
expanded.

v COLLAPSED : the toggle button is
displayed and the list is initially
collapsed.

When the BEHAVIOR is not set for a list,
its default value of EXPANDED is implied.

Note that this attribute is only
applicable when the property
ENABLE_COLLAPSIBLE_CLUSTERS is not set
or is set to true in curam_config.xml.
For details see “General Configuration”
on page 35.

PAGINATED No true Enables the ability to page through lists
displayed in Cúram pages. Any LIST
longer than the configured minimum
size will display only the first "page" of
data and the pagination controls will be
displayed below the list.

DEFAULT_PAGE_SIZE No Based on the
global
configured
value, usually
15.

Specifies the page size the list will get
by default. The page size can be then
changed at runtime by the user.

PAGINATION_THRESHOLD No Based on the
global
configured
value, usually
same as
DEFAULT_PAGE_SIZE.

Specifies the minimum list size at which
pagination will be enabled. For shorter
lists there will be no pagination, even if
otherwise pagination is switched on.

Note: Lists on search pages now display the number of items found as a result of
the search. The number of items will be displayed beside the list title.

The text used to display the number of items can be customized by setting the
following property in the CDEJResources.properties file, for example:

Cúram web client reference 91

The actual number of items will be displayed after the text.

This feature only applies to search pages and must be enabled by adding the
following to the curam-config.xml file:

Child Elements:
The LIST element can contain the following child elements. It must contain at least
one ACTION_CONTROL, FIELD, or CONTAINER element. SOURCE connections can be made
to list or non-list properties. Within a table all list properties must belong to the
same list structure defined in the server interface model. This ensures that they are
all the same length. The number of rows in the list will be equal to the number of
elements in the list properties. The value of a non-list property is simply repeated
on each row.

Table 35. Child Elements of the LIST Element

Element Name Cardinality / Description

TITLE 0..1. The TITLE element will be displayed above the LIST.

DESCRIPTION 0..1 The “DESCRIPTION” on page 71 element has the same
behavior as the DESCRIPTION attribute but allows the
description to be built up from a number of sources. If both
are specified, this element takes precedence over the
corresponding attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of
any type. The action controls will be displayed above and/or
below the entire list.

FIELD 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can
be freely intermingled. Only output fields can be used (i.e.,
fields with no target connection.)

CONTAINER 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can
be freely intermingled. Within the container, only output
fields can be used (i.e., fields with no target connection.)

CONDITION 0..1. Affects whether or not the list is displayed.

FOOTER_ROW 0..n. This should be defined after all other child elements.

LIST_CONNECT 0..n. This should be defined after all other child elements.
The only supported child elements are SOURCE and TARGET.
The SOURCE connection must be a display phase bean.

Editable Lists:

This section describes editable lists.

Up until now UIM only supported read only lists, where FIELD elements within a
list could only have SOURCE connections. UIM now supports FIELD elements within
a list that have SOURCE and TARGET connections, otherwise known as editable lists.
FIELD elements that have only a TARGET connection with no SOURCE connection are
not supported. The reason for this is that only Clusters that have input fields
should be used for creating business data within the application.

There are essentially two distinct types of editable lists:
1. Editable Lists controlled by checkbox

record.number.message=Items found:

<LIST_ROW_COUNT>true</LIST_ROW_COUNT>

92 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

If the first field within a list has both connections and it has SVR_BOOLEAN as it's
underlying domain, the first column in the list will be displayed as a check
box. When a user selects the check box on a particular row, the other editable
columns within that row can be edited (their value updated).
If a user does not select a check box, then the other editable columns within
that row are disabled and cannot be edited. The key point, is that within a
Check Box Controlled Editable List, all the editable columns are controlled by
the first column - the check box column.

2. Editable Lists
If the first field within a list has both connections and it does not have
SVR_BOOLEAN as it's underlying domain then it will be treated as a normal
editable list, where all of the editable columns are decoupled from one another.
Even if there is a check box column within the list (not the first column), it
cannot control whether the other editable lists are editable or not.

A mixture of read only fields and editable fields are permitted within a list but
suffice to say that the read only columns cannot be updated.

Within editable lists it is possible to submit hidden values (per list row) to the
server that are not visible within the list. The LIST_CONNECT element is supported
within a LIST element in order to facilitate this. For more information, refer to
“Child Elements” on page 92. For example in the context of a person object, if
there was an editable list on a page that displayed details about the person, there
may be the need to submit the persons ID (unique identifier) to the server as a
hidden field without displaying it to the user. In this case a single LIST_CONNECT
element could be configured within the list to pass the unique id for each person
(each row represents a single person).

Only the following data types are supported on fields within editable lists:
v CURAM_BOOLEAN,
v THREE_FIELD_DATE,
v SVR_DOUBLE,
v SVR_FLOAT,
v SVR_INT8,
v SVR_INT16,
v SVR_INT32,
v SVR_INT64,
v SVR_CHAR, and
v SVR_STRING.

MENU
The MENU element is used to define six types of menus in a Cúram client
application. The menu types are:
v STATIC : The menu is made up of ACTION_CONTROL elements that will appear on

the page menu. The ACTION_CONTROL elements must have the TYPE of ACTION.
v NAVIGATION : The menu is made up of ACTION_CONTROL elements that will be

appended to the “Navigation” menu. The ACTION_CONTROL elements must have
the TYPE of ACTION.

v DYNAMIC : The menu is driven by XML data constructed on the server
application.

Cúram web client reference 93

v INTEGRATED_CASE : The menu is driven by XML data constructed on the server
application. This menu is specific to the Cúram-style Integrated Case user
interface and is rendered as a set of of tabs.

v IN_PAGE_NAVIGATION : The menu is made up of ACTION_CONTROL elements that
will appear on the in-page-navigation menu at the top of the main content area.

v WIZARD_PROGRESS_BAR : This is another specific type of menu rendered as a
button bar on the top of the content area in a modal dialog for displaying a
sequence of related pages in the wizard manner. The menu is driven by a
resource stored in the server application.

Attributes:
The MENU element has the following attribute:

Table 36. Attributes of the MENU Element

Attribute Name Required Default Description

MODE No STATIC The type of menu to create. The mode
can be STATIC (the default), NAVIGATION,
DYNAMIC, INTEGRATED_CASE,
IN_PAGE_NAVIGATION or
WIZARD_PROGRESS_BAR.

Static, navigation and
in-page-navigation menus contain one
or more ACTION_CONTROL elements that
represent links to other pages. The
static menu normally appears just
above the main content area of the
page. Navigation menu items will be
appended to the navigation menu,
normally on the left of the page.
In-page-navigation menu items appear
at the top of the main content area and
the wizard progress bar appears at the
top of the modal dialog content area.

Dynamic menus of both types (DYNAMIC
and INTEGRATED_CASE) are created from
data retrieved from the server and
contain a single CONNECT element
specifying a SOURCE end-point to a
server interface property.

Child Elements:
The MENU element can contain the following child elements. Note that the
ACTION_CONTROL and CONNECT elements are mutually exclusive.

Table 37. Child Elements of the MENU Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. Only action controls with a TYPE of ACTION can be
used.

CONNECT 1. A CONNECT element specifying a single SOURCE
end-point.

DYNAMIC and INTEGRATED_CASE type menus:
The data for both DYNAMIC and INTEGRATED_CASE menu's are driven by the same
XML format. An example of the menu data sent by the application server is shown

94 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

below.

All the menu links are contained within the DYNAMIC_MENU root element. Each entry
on the menu is specified by a LINK element. The LINK element has the following
attributes:
v PAGE_ID : Specifies the target page for the link.
v DESC : Specifies the server message catalog entry to be looked up and used as

the text for the link. The Cúram SDEJ provides an API to create the string
representation of a message catalog entry shown in the example above. Consult
the Cúram Server Developers Guide for details on using message catalogs.

v TYPE : specifies a value that is looked up in appropriate menu configuration file
(described below) to identify the icon that should be associated with the link.

Each LINK element can contain a number of PARAMETER elements that specify
additional parameters that will be added to the link from the menu. The PARAMETER
element has the following attributes:
v NAME : The parameter name.
v VALUE : The parameter value.

The configuration files for the DYNAMIC and INTEGRATED_CASE menu's are
DynamicMenuConfig.xml and ICDynamicMenuConfig.xml respectively. The following
are examples each configuration file.

<DYNAMIC_MENU>
<LINK PAGE_ID="CaseHome"

DESC="2:field1:curam.omega3.myMessages:info_menu1:()"
TYPE="case" >

<PARAMETER NAME="caseID" VALUE="1234" />
</LINK>
<LINK PAGE_ID="ProductHome"

DESC="2:field1:curam.omega3.myMessages:info_menu2:()"
TYPE="product" >

<PARAMETER NAME="productID" VALUE="5678" />
<PARAMETER NAME="caseID" VALUE="1234" />

</LINK>
</DYNAMIC_MENU>

Figure 40. Example of Dynamic MENU Data

<?xml version="1.0" encoding="UTF-8"?>
<DYNAMIC_MENU_CONFIG>

<SEPARATOR IMAGE="Images/separator.gif"
TEXT="Dyn.Menu.Separator"/>

<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>

<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>

</DYNAMIC_MENU_CONFIG>

Figure 41. Example of a DYNAMIC Menu Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<INTEGRATED_CASE_MENU_CONFIG>

<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>

<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>

</DYNAMIC_MENU_CONFIG>

Figure 42. Example of an INTEGRATED_CASE Menu Configuration File

Cúram web client reference 95

The differences to note are the root elements, DYNAMIC_MENU_CONFIG and
INTEGRATED_CASE_MENU_CONFIG, and the SEPARATOR element which is not used in an
INTEGRATED_CASE because of its very specific look and feel.

The SEPARATOR element describes an image or a piece of text used to separate the
menu items and has the following attributes:
v IMAGE : Specifies an image to use as the separator.
v TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is

mandatory. If an image is specified this will be used as the alternate text for the
image, if not, then the text will be displayed.

The LINK element has the following attributes.
v TYPE : This must match the TYPE attribute of the LINK element returned from the

server application.
v IMAGE : Specifies an image to use in the link. This attribute is mandatory.
v TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is

mandatory. It will be used as the alternate text for the image.

The IN_PAGE_NAVIGATION type menu:
The in-page navigation menu, see User Interface Element 9 of “Application user
interface overview” on page 4, allows for the addition of a set of links which will
be displayed as tabs embedded within a UIM page. Each UIM page in the set must
define the same MENU element. The currently selected UIM page, aka tab, is
identified by the STYLE="in-page-current-link" attribute. This will differ on each
of the UIM pages in the set and should be set on the ACTION_CONTROL that matches
the UIM page the MENU is contained in.

WIZARD_PROGRESS_BAR menu:
The wizard progress menu bar is inserted on a page by including a MENU element
which has a MODE attribute set to WIZARD_PROGRESS_BAR. It binds a number of pages,
allowing for the sequential navigation through them. For instance, in a modal
dialog which contains a wizard progress menu bar, pages can be navigated
through by clicking the previous or next button. At the same time, the wizard
progress menu bar presented on the top of it will indicate its progress.

The UIM wizard pages:

<PAGE PAGE_ID="InPageNav">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Title.Text"/>

</CONNECT>
</PAGE_TITLE>

<MENU MODE="IN_PAGE_NAVIGATION">
<ACTION_CONTROL LABEL="Label.page1">

<LINK PAGE_ID="Page1" SAVE_LINK="false"/>
</ACTION_CONTROL>
<ACTION_CONTROL

LABEL="Page2.Label"
STYLE="in-page-current-link" >

<LINK PAGE_ID="Page2" SAVE_LINK="false" />
</ACTION_CONTROL>

</MENU>
........
</PAGE>

Figure 43. Example of the IN_PAGE_NAVIGATION menu in UIM

96 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

There are some specifics regarding the UIM pages used with the
WIZARD_PROGRESS_BAR menu:
v The wizard pages should open in the modal dialog. The wizard progress bar

functionality should not be used in standard non-modal UIM pages.
v Each page in the wizard flow is implemented as standard UIM with a wizard

progress bar widget placed at the top of each page.
v The pages should have action controls for advancing through the wizard (back

and forward buttons as required by the scenario). The LINK elements of these
action controls should have DISMISS_MODAL attribute set to false (except for the
controls supposed to close the wizard). Additionally, the SAVE_LINK attribute
should also be set to false.

In the example above the connection in the MENU provides the identifier of the
server-side resource describing this wizard (see below).

Wizard menu configuration:
The text required by the wizard progress bar items come from a property resource
whose identifier must be provided to the wizard progress bar menu.

<PAGE PAGE_ID="Sample_PageOne">
<MENU MODE="WIZARD_PROGRESS_BAR">

<CONNECT>
<SOURCE

NAME="DISPLAY" PROPERTY="resourceID" />
</CONNECT>

</MENU>
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT"

PROPERTY="PageTitle" />
</CONNECT>

</PAGE_TITLE>
<SERVER_INTERFACE

CLASS="WizardSample"
NAME="DISPLAY" OPERATION="getResourceID"

PHASE="DISPLAY" />
<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL
LABEL="ActionControl.Label.Cancel"/>

<ACTION_CONTROL
LABEL="ActionControl.Label.Next">

<LINK PAGE_ID="Sample_PageTwo"
SAVE_LINK="false"

DISMISS_MODAL="false"/>
</ACTION_CONTROL>

</ACTION_SET>
........
</PAGE>

Figure 44. An example of wizard-type menu UIM

Cúram web client reference 97

Table 38. Properties in the wizard defining resource

Property Name Description

Number.Wizard.Pages The value of this property defines the number of items
to be rendered for the wizard progress bar. The value
must be a numeric whole number greater than zero.

<PageID>.Wizard.Item.Text Defines the text to be displayed within the wizard
progress bar item for each page of the wizard. There
must be one of these properties defined for each page
in the wizard. The property is uniquely identified for
each wizard page by the <PageID> prefix which
represents the actual identifier of that UIM page in the
wizard flow.

<PageID>.Wizard.Page.Title Defines the title to be displayed within the wizard
progress bar for the current page of the wizard. There
must be one of these properties defined for each page
in the wizard. The property is uniquely identified for
each wizard page by the <PageID> prefix which
represents the actual identifier of that UIM page in the
wizard flow.

<PageID>.Wizard.Page.Desc Defines the description to be displayed within the
wizard progress bar for the current page of the
wizard. There must be one of these properties defined
for each page in the wizard. The property is uniquely
identified for each wizard page by the <PageID> prefix
which represents the actual identifier of that UIM page
in the wizard flow.

Wizard.PageID.<PageNum> Defines the position of the page within the wizard
flow. The widget uses this information to style the bar
items correctly. There must be one of these properties
defined for each page in the wizard. This property is
uniquely identified for each wizard page by the
<PageNum> suffix which represents the position of
each page within the list of wizard menu pages.

The order of the properties declaration in the resource is important as the
associated menu widget will draw the wizard items for the progress bar in that
order. The page title and description are added by the widget for the current page
of the wizard.

PAGE
The PAGE element is the root element of a UIM document that describes the data to
be included in a generated JSP page.

Attributes:

Number.Wizard.Pages=2
Sample_pageOne.Wizard.Item.Text=Child
Sample_pageOne.Wizard.Page.Title=Step 1: Child Details
Sample_pageOne.Wizard.Page.Desc=Capture some details
Wizard.PageID.1=Sample_pageOne

Sample_pageTwo.Wizard.Item.Text=Parent
Sample_pageTwo.Wizard.Page.Title=Step 2: Parent Details
Sample_pageTwo.Wizard.Page.Desc=Capture some details 1
Wizard.PageID.2=Sample_pageTwo

Figure 45. Example of the required properties in the resource store property file

98 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The PAGE element has the following attributes:

Table 39. Attributes of the PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes An identifier for the page used when
referencing the page from LINK
elements. This identifier must be
unique within a project. The file name
of the document must be the same as
the value of this attribute and have the
extension .uim.

POPUP_PAGE No false Indicates that this page is a pop-up
that will be opened from a parent
page. Pop-up pages do not include the
side-bar, header and footer of standard
pages. The value can be set to true or
false. The attribute must only be used
for pages configured according to
“Pop-up Pages” on page 247 (i.e.,
search pop-up pages).

SCRIPT_FILE No The name of the script file containing
the JavaScript functions that are
specified in the ACTION attribute of any
SCRIPT elements on the page. If no
SCRIPT_FILE attribute is set on a
particular SCRIPT element within a
FIELD or ACTION_CONTROL the PAGE
script file is used by default. The script
file should be added in a component. If
another script file has the same name
in another component, the version in
the highest priority component will be
used. Each SCRIPT can specify its own
script file if required, or share this
common script file.

APPEND_COLON No Set to true to automatically append
colons to FIELD and CONTAINER labels
within CLUSTER elements. This
overrides the value of the
APPEND_COLON element in the
curam-config.xml file for that
individual page (see
“APPEND_COLON” on page 36).

WINDOW_OPTIONS No "width=700,
height=auto-
calculated"

The size of the page when displayed in
a modal dialog is configurable using
this parameter. The value of the
attribute is a comma separated list of
name value pairs. The currently
supported options are width and
height, both of which take an integer
value, which is translated directly to a
pixel value. Only a width needs to be
specified however as the height will be
dynamically calculated. Any other
parameters will cause an exception to
be thrown.

Cúram web client reference 99

Table 39. Attributes of the PAGE Element (continued)

Attribute Name Required Default Description

TYPE No DEFAULT Used to define specific types of UIM
pages. Two types are supported,
DETAILS and SPLIT_WINDOW.

SPLIT_WINDOW enables the use of frames
within the page. If the attribute is not
present or is set to DEFAULT then frames
are not used. See “Agenda Player” on
page 254 for an example of use.

DETAILS defines a UIM page that will
be used as a context panel page. For
more information see “Context panel
UIM” on page 152.

HIDE_CONDITIONAL_LINKSNo TRUE Set to true to hide conditional links
that evaluate to false. Set to false to
show a disabled conditional link that
evaluate to false. This overrides the
value of the HIDE_CONDITIONAL_LINKS
element in the curam-config.xml file
for that individual page (see
“APPEND_COLON” on page 36).

Child Elements:
The PAGE element can contain child elements as follows:

Table 40. Child Elements of the PAGE Element

Element Name Cardinality / Description

INCLUDE 0..1. This element can be used before any other child
element of a PAGE element.

PAGE_TITLE 0..1. This does not apply to context panel UIM pages.
In this case, the PAGE_TITLE element is mandatory.
See “Context panel UIM” on page 152 for more
information.

DESCRIPTION 0..1

SHORTCUT_TITLE 0..1

SERVER_INTERFACE 0..n. Multiple SERVER_INTERFACE elements are
supported, however it is recommended that only one
SERVER_INTERFACE with the PHASE attribute set to
ACTION is defined per PAGE element. See “SERVER
INTERFACE” on page 104 for more information.

INFORMATIONAL 0..1

MENU 0..2. The page can contain one optional static and one
optional dynamic menu as well as append extra
items to the navigation menu.

ACTION_SET 0..1. In this context, the action set defines the set of
action controls that will appear around the page's
main content area.

PAGE_PARAMETER 0..n

100 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 40. Child Elements of the PAGE Element (continued)

Element Name Cardinality / Description

CONNECT 0..n. In this context, the connections can copy values
directly from the properties of source server
interfaces to properties of the target server interfaces.
Each CONNECT element should contain both a SOURCE
and a TARGET element.

JSP_SCRIPTLET 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be
preserved in the generated page.

CLUSTER 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be
preserved in the generated page.

LIST 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be
preserved in the generated page.

SCRIPT 0..n. A script associated with the PAGE that will be
activated in response to the specified event. See
“SCRIPT” on page 102 for more details.

Where a page is configured to contain a large number of scrollable list and cluster
elements (approximately 15), it may cause JSP compile issues in Weblogic. This is
due to a Weblogic system limitation in how big a page can be rendered at run
time. To overcome this restriction, arrange the display of the required scrollable
lists and clusters over a number of pages.

PAGE_PARAMETER
The PAGE_PARAMETER element declares a parameter to the current page. Once a
parameter is declared, it can be used as the source of a connection by setting the
connection source bean NAME attribute to PAGE.

Attributes:
The PAGE_PARAMETER element has the following attributes:

Table 41. Attributes of the PAGE_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the parameter to use in
SOURCE connection end-points.

Child Elements:
The PAGE_PARAMETER element contains no child elements.

PAGE TITLE
The PAGE_TITLE element defines the title that appears at the top of a page's main
content area. A title is constructed by concatenating a number of connection
sources together. These can include localized strings and data from server
interfaces.

Note: The PAGE_TITLE element defines the text for the tab title bar where the UIM
page is used as a context panel page. See “Context panel UIM” on page 152 for
more information.

Attributes:

Cúram web client reference 101

The PAGE_TITLE element has the following attributes:

Table 42. Attributes of the PAGE_TITLE Element

Attribute Name Required Default Description

DESCRIPTION No A reference to a localized string that
provides a more detailed description of
the page than the title alone. This will
be displayed with the title in the page's
main content area.

STYLE No The name of the CSS class to use when
displaying the title on the page.

ICON No A reference to an entry in the
Image.properties file specifying the
image file to use beside the title in the
main content area.

Child Elements:
The PAGE_TITLE element can contain child elements as follows:

Table 43. Child Elements of the PAGE_TITLE Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE
elements can be included (one SOURCE per CONNECT).
Sources can be server interface properties or, with the
NAME attribute set to TEXT, references to strings from a
properties file.

DESCRIPTION 0..1 The “DESCRIPTION” on page 71 element has the
same behavior as the DESCRIPTION attribute but allows
the description to be built up from a number of
sources. If both are specified, this element takes
precedence over the corresponding attribute.

SCRIPT
The SCRIPT element defines an exit point to allow the invocation of a script
(JavaScript) in response to an event. Scripts are supported for pages, read-write
fields and action controls. These elements are not applicable and not supported for
fields within a LIST or read-only fields.

Attributes:
The SCRIPT element has the following attributes:

102 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 44. Attributes of the SCRIPT Element

Attribute Name Required Default Description

EVENT Yes The JavaScript name of the event as
defined in the W3C HTML
recommendations.

JavaScript events are valid within the
PAGE, FIELD or ACTION_CONTROL elements,
with the exception of FIELD elements
within a LIST or read-only FIELD
elements.

Note that the ONCLICK event will be
ignored for ACTION_CONTROL with a TYPE
of CLIPBOARD (for further information see
“ACTION CONTROL” on page 56.).

In addition, please note that by default
when a link is clicked in the Cúram
application the link is processed by
Cúram specific code. If you are adding
some scripting to a link and do not want
this default processing to occur, the
event should be stopped using the
JavaScript APIs available.

ACTION Yes The JavaScript to be invoked if the event
occurs. This must be a function call
including parameters, if any. For
example; someFunction() or
someFunction(someParam) where
someParam may be a global variable
defined in script file.

SCRIPT_FILE No The name of the script file containing
the JavaScript functions that are
specified in the ACTION attribute of the
SCRIPT element. If no SCRIPT_FILE
attribute is set on a particular SCRIPT
element within a FIELD or
ACTION_CONTROL the PAGE script file is
used by default. The script file should
be added in a component. If another
script file has the same name in another
component, the version in the highest
priority component will be used. If not
specified, the SCRIPT will expect to find
the functions in the page-level script file
specified with the PAGE element's
SCRIPT_FILE attribute.

EXPRESSION No The name of the a JavaScript function
identifier (excluding the parenthesis)
that will be used to evaluate whether a
dynamic conditional cluster will be
displayed or not. The name should
ideally reflect the encapsulated logic
within the function.

Child Elements:
The SCRIPT element contains no child elements.

Cúram web client reference 103

SERVER INTERFACE
The SERVER_INTERFACE element defines a server interface to which other elements
of the page can connect.

Attributes:
The SERVER_INTERFACE element has the following attributes:

Table 45. Attributes of the SERVER_INTERFACE Element

Attribute Name Required Default Description

NAME Yes A unique name for this instance of the
server interface on this page.

CLASS Yes The name of the server interface class.

OPERATION Yes The name of the server interface
operation on the class.

PHASE No DISPLAY The phase of the page in which the
server interface is called. This can be
DISPLAY (the default) or ACTION. Server
interfaces set to the DISPLAY phase are
called as the page is displayed (i.e., the
execution of the JSP page).

Server interfaces set to the ACTION phase
are only called in response to the
activation of an ACTION_CONTROL with a
TYPE of SUBMIT. It is recommended that
only one SERVER_INTERFACE is set to the
ACTION phase per PAGE.

ACTION_ID_PROPERTYNo Specifies a name of the server access
bean property that will be populated
with ACTION_ID of the action control
used to make the server call. The value
of this attribute must be a valid property
name of the corresponding server access
bean. The use of shorthand notation is
allowed (for example specify
theProperty instead of the fully
qualified dtls$theProperty).

This attribute is only valid on server
interfaces with PHASE = ACTION and must
be specified on all server interfaces
within the page or not specified on any
of them.

If multiple server interfaces specify
ACTION_ID_PROPERTY with different
domains the value of ACTION_ID on all
action controls within the page must be
suitable for all of the domains. Failing to
comply with this rule will lead to error
at runtime when the corresponding
action control is activated.

If this attribute is specified then the
ACTION_ID attribute of ACTION_CONTROL
element must also be specified.

104 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note: It is technically possible to specify multiple SERVER_INTERFACE elements set
to the ACTION phase. However, this is not recommended. Each SERVER_INTERFACE is
essentially a separate transaction and when an invocation fails, no further
invocations of other server interfaces are made and completed transactions are not
rolled back.

For example, three SERVER_INTERFACE elements are defined, each set to the ACTION
phase. When the page is executed, the first server interface invocation succeeds
and the second fails. In this scenario, the third server interface is never invoked
and the action of the first will not be rolled back.

Child Elements:
The SERVER_INTERFACE element contains no child elements.

SOURCE
The SOURCE element defines the source end-point of a data connection. The source
can be the value of a server interface property, the value of a parameter to the
page (which must be declared via the PAGE_PARAMETER element), or the value of an
externalized string.

Attributes:
The SOURCE element has the following attributes:

Table 46. Attributes of the SOURCE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value, or PAGE, if the source is the
value of a page parameter, or TEXT (or
CONSTANT) if the source is the value of an
externalized text string. TEXT or CONSTANT
can only be used when TARGET has a
server interface defined in the ACTION
phase.

PROPERTY Yes The name of the server interface property,
the name of the input page parameter, or
the string reference to the externalized
string whose value is required.

Child Elements:
The SOURCE element contains no child elements.

TAB_NAME
The TAB_NAME element defines the text used for the tab in the tab bar, where the
UIM page is used as a context panel UIM page. The text is constructed by
concatenating a number of connection sources together. These can include localized
strings and data from server interfaces.

This element only applies where the TYPE attribute of the PAGE element is set to
DETAILS. See “Context panel UIM” on page 152 for more information.

Child Elements:
The TAB_NAME element can contain child elements as follows:

Cúram web client reference 105

Table 47. Child Elements of the TAB_NAME Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE
elements can be included (one SOURCE per CONNECT).
Sources can be server interface properties or, with the
NAME attribute set to TEXT, references to strings from a
properties file.

DESCRIPTION 0..1 The “DESCRIPTION” on page 71 element has the
same behavior as the DESCRIPTION attribute but allows
the description to be built up from a number of
sources. If both are specified, this element takes
precedence over the corresponding attribute.

TARGET
The TARGET element defines the target end-point of a data connection. The target
can be the value of a server interface property or the value of a parameter to be
exported from the page.

Attributes:
The TARGET element has the following attributes:

Table 48. Attributes of the TARGET Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the target of the
property value, or PAGE, if the target is
the value of a page parameter.

PROPERTY Yes The name of the server interface
property, or the name of the output page
parameter whose value is to be set.

Child Elements:
The TARGET element contains no child elements.

TITLE
The TITLE element defines the title that appears at the top of a CLUSTER or LIST
element. A TITLE is constructed by concatenating a number of connection sources
together. These can include localized strings and data from server interfaces.

Attributes:
The TITLE element has the following attributes:

Table 49. Attributes of the TITLE Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the
separator between the elements within the container.

Child Elements:
The TITLE element can contain child elements as follows:

106 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 50. Child Elements of the TITLE Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE
elements can be included (one SOURCE per CONNECT).
Sources can be server interface properties or, with the
NAME attribute set to TEXT, references to strings in a
properties file.

VIEW
The VIEW element is the root element of a UIM document that defines elements to
be included in a UIM page document. A view cannot include other views using the
INCLUDE element.

Attributes:
The VIEW element has no attributes.

Child Elements:
The VIEW element can contain child elements as follows:

Table 51. Child Elements of the VIEW Element

Element Name Cardinality / Description

PAGE_TITLE See the PAGE element.

SHORTCUT_TITLE See the PAGE element.

SERVER_INTERFACE See the PAGE element.

MENU See the PAGE element.

ACTION_SET See the PAGE element.

PAGE_PARAMETER See the PAGE element.

CONNECT See the PAGE element.

JSP_SCRIPTLET See the PAGE element.

CLUSTER See the PAGE element.

LIST See the PAGE element.

SCRIPT See the PAGE element.

UIM Reference for Widgets

Introduction
Widgets are used when the handling of data in the client application is too
complicated to do with the automatic domain definition recognition of the FIELD
element. Widgets allow several different sources of data to be connected to a
control that can then supply data to several different targets.

There are a number of predefined types of WIDGET element. Each type of WIDGET can
contain one or more WIDGET_PARAMETER elements. The configuration of these
WIDGET_PARAMETER elements depends on the type of the widget. These are described
in the sections below.

Most widget types can only be defined within CLUSTER elements (exceptions to this
are described below). There may also be restrictions on how many widgets of a
particular type can be included in a single UIM document.

Cúram web client reference 107

WIDGET
The WIDGET element is used to define the type of widget to include and it holds the
WIDGET_PARAMETER elements that configure the widget.

Attributes:
The WIDGET element has the following attributes:

Table 52. Attributes of the WIDGET Element

Attribute Name Required Default Description

TYPE Yes The type of WIDGET. This can be one of
the following:

v EVIDENCE_COMPARE

v FILE_EDIT

v FILE_UPLOAD

v MULTISELECT

v SINGLESELECT

v RULES_SIMULATION_EDITOR

v FILE_DOWNLOAD

v IEG_PLAYER

LABEL No A reference to an externalized string
that should be used as the associated
label string for this widget.

WIDTH No The width of the control specified in the
appropriate units.

WIDTH_UNITS No PERCENT The units in which the width is
interpreted. This can be PERCENT to
indicate the percentage of the space
available to the widget, or CHARS to
indicate the number of visible characters
wide the widget will be.

HEIGHT No 1 A HEIGHT value that may be used by the
widget.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the
widget. Can be set to LEFT, RIGHT,
CENTER, or DEFAULT. The value DEFAULT
corresponds to the CSS class default in
curam_common.css. Currently the default
is to be left aligned.

HAS_CONFIRM_PAGE No false Attribute to be used only on widget of
type of MULTISELECT. Used to specify
that the widget selection data is to be
submitted to the confirmation page. Can
be true or false. See “Confirmation
Pages” on page 122.

Child Elements:
The WIDGET element can contain the following child element:

Table 53. Child Elements of the WIDGET Element

Element Name Cardinality / Description

WIDGET_PARAMETER 1..n. The parameters depend on the type of widget.

108 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

WIDGET_PARAMETER
The WIDGET_PARAMETER element is used to define the properties of an individual
widget. In particular, the WIDGET_PARAMETER elements allow connections to be made
between named properties of the widget and various source and target data
end-points.

Attributes:
The WIDGET_PARAMETER element has the following attribute:

Table 54. Attributes of the WIDGET_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the property on the WIDGET
that this element configures.

Child Elements:
The WIDGET_PARAMETER element can contain the following child element:

Table 55. Child Elements of the WIDGET_PARAMETER Element

Element Name Cardinality / Description

CONNECT A WIDGET_PARAMETER can be connected in one of two
ways depending on the specification for the particular
WIDGET. The first way is similar to that of FIELD
elements:

1..n. The parameter can contain multiple CONNECT
elements. Usually (the FILE_DOWNLOAD WIDGET is an
exception to this) a WIDGET_PARAMETER contains up to
three CONNECT elements, SOURCE, TARGET, and INITIAL
connection end-points. The valid types of source or
target depend on the individual parameter.

The second way to connect a parameter is similar to
the CONNECT elements in a LINK element.

1..n. CONNECT elements that each connect a SOURCE
end-point to a TARGET end-point.

The EVIDENCE_COMPARE Widget
The EVIDENCE_COMPARE widget displays the differences between two sets of
evidence. These differences are high-lighted using the following colors: evidence
items that have changed are shown in red; new items are shown in green; deleted
items are shown in gray.

This widget should be the sole element in a CLUSTER. Its TYPE should be set to
EVIDENCE_COMPARE and its WIDGET_PARAMETER elements should be set as follows:

Table 56. Parameters to the EVIDENCE_COMPARE Widget

Parameter Name Required Description and Connections

OLD_EVIDENCE Yes This parameter must include a
single CONNECT element that must
specify a SOURCE end-point.

The SOURCE end-point should
specify a property of the
EVIDENCE_TEXT domain that
contains the original evidence.

Cúram web client reference 109

Table 56. Parameters to the EVIDENCE_COMPARE Widget (continued)

Parameter Name Required Description and Connections

NEW_EVIDENCE Yes This parameter must include a
single CONNECT element that must
specify a SOURCE end-point.

The SOURCE end-point should
specify a property of the
EVIDENCE_TEXT domain that
contains the new evidence.

The FILE_EDIT Widget
The FILE_EDIT widget allows a user to edit a Microsoft Word document on their
local computer and then save it to the IBM Cúram database. A document can be
created automatically from a template where the template details can be set before
the document is presented to the user for editing.

The FILE_EDIT widget uses either a Java applet to manage the interaction between
the user's browser and Word (for the browsers which support Java) or the Native
Messaging API for Chrome.

In either case only the source and target documents and the template details are
required. If key details, or other data, are required by the server interfaces that
handle the document, these should be provided by page parameters and page-level
connections.

NOTE: the Chrome Native Messaging API solution requires a separate
installation/configuration which is is detailed in the appropriate documentation.
See “User Machine Configuration for the Native Messaging version” on page 115

Once the page with the FILE_EDIT widget loads, it immediately launches the File
Edit Control Panel in the modal dialog. This panel displays the informational
messages about the editing session initialization and other background events as
well as error messages if there are any. It does also allow for some minimal
interaction with the application server.

The Control panel modal dialog can be closed up to the point that the Microsoft
Word application initializes correctly and the document opens. Thereafter, the close
option is not available because closing the Word application will end the process.

Once the document loads and is ready for editing, it is automatically saved locally
and displays along with the corresponding notification in the Word status bar and
also the Windows task bar (if so configured, see the “FILE_EDIT Widget
Configuration” on page 112). The user can now edit the document and save it as
they wish.

Each document Save operation within the Word application triggers the notification
message in the application status bar and from the Windows task bar to notify the
user that their changes are saved locally but not to the database. In order to save
the interim versions of their document back to the database the user has the
possibility to go back to the browser where there is the Commit changes button in
the File Edit Control Panel. The button is initially disabled. It will be enabled
once the document is saved in the Word application. Once the user presses this
button, the current document version is passed back to the server and saved to the

110 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

database. The user is notified of the result of this interim save in the panel and the
Commit changes button is disabled again until the next Save operation in Word.

Because of the specific invocation of the server interfaces by the FILE_EDIT widget,
it is not permitted to use any property of the ACTION phase server interface in a
SOURCE connection of the submit button's LINK element.

After the user finishes editing the document, they finish the editing session by
closing either the document being edited (if there are multiple documents open) or
the Word application itself. At this stage the application in the browser displays
the final save confirmation dialog asking if the user wants to save their final
changes to the server or discard them.

NOTE: The dialog is only displayed if it has been configured, see “FILE_EDIT
Widget Configuration” on page 112.

Please note, that if there were interim saves as above described, the database will
contain the latest committed copy of the document even if the user chooses Cancel
at this stage. However it is also possible to discard all the changes altogether if
there were no interim changes and the user decides not to save them.

Once the final save(or cancel) is performed, the application transfers the user to the
page that it has been configured to go to as specified by the ACTION_CONTROL of
TYPE="SUBMIT" in the UIM page containing the FILE_EDIT widget. If there is no
page specified, this “landing” page is assumed to be the last visited page.

There are circumstances where this “landing” page is not available. In this case the
application performs a search to identify which page should be opened first based
on configuration. Once a page is identified, it is used as the landing page,
potentially changing the tab if necessary.

The FILE_EDIT widget can be used as follows: the WIDGET element should have the
TYPE attribute set to FILE_EDIT. Two WIDGET_PARAMETER elements are required:

Table 57. Parameters to the FILE_EDIT Widget

Parameter Name Required Description and Connections

DOCUMENT Yes Defines the source document
(usually a template) and the target
to which to write the saved
document. The parameter must
contain a CONNECT element with a
SOURCE set from a DISPLAY phase
sever interface and a TARGET set
from an ACTION phase sever
interface. Both fields should be
Word documents.

The data-type for both the source
and target document must be
SVR_BLOB.

Cúram web client reference 111

Table 57. Parameters to the FILE_EDIT Widget (continued)

Parameter Name Required Description and Connections

DETAILS Yes The template details that should be
set in the document before
presenting it to the user for editing.
The parameter must contain a
CONNECT element with a SOURCE set
from a DISPLAY phase sever
interface. The details are in XML
format, described below.

The data-type for the template
details must be SVR_BLOB.

The template details must be provided in a simple XML format. An example of the
format is shown below:

It is recommended that your XML uses UTF-8 encoding to handle multi-byte
characters. To preserve the correct encoding it is important that any code that
manipulates the XML honors the encoding of the document. If the encoding is not
honored, this can lead to characters being displayed incorrectly when opened in
Microsoft Word.

Each FIELD element identifies the name of a field in the document template and
the value to which it should be set.

While editing the document in Word, the user can not navigate to another browser
page (which the modal File Edit Control Panel and absence of the closing button
there would prevent) or close the browser. If the user attempts to close the
originating browser window in the middle of the editing session, the browser
warning is displayed notifying the user of the consequences.

If the user chooses to remain on the page, they can proceed with the editing or end
the session by closing Word application/the document being edited. If, however,
they choose to leave the page, the editing session will be terminated, and the
document or Word application (if it was the only document open) closes along
with the browser; the user changes are not saved in this case, however any saved
interim changes before this termination happens are persisted in the database.

FILE_EDIT Widget Configuration:
There are some configuration settings which allow for the bigger flexibility as
regards the widget usage or the widget solution itself. They are summarized in the
table below.

<?xml version="1.0" encoding="UTF-8"?>
<FIELDS>

<FIELD NAME="personName" VALUE="John Smith"/>
<FIELD NAME="AddressLine1" VALUE="1 Main Street"/>
<FIELD NAME="AddressLine2" VALUE="Newtown"/>
<FIELD NAME="AddressLine3" VALUE="Erehwon"/>

</FIELDS>

Figure 46. Sample Template Details

112 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 58. FILE_EDIT Widget Configuration settings summary

Setting Name
Location
(.properties file) Required

Default
value Description

fileedit.chrome.messaging.enabledApplicationConfigurationYes false Allows for using the Native
Messaging API for Chrome
browser (starting from
Chrome 29 which introduces
this technology). In order to
use the solution the user's
machine should have the
Native Messaging solution
parts installed and configured
as described in the
appropriate documentation.
See “User Machine
Configuration for the Native
Messaging version” on page
115

If this is set to false, which is
the default value, the applet
based solution will be used
for any browser including
Chrome which should work
as long as Java is supported
by the Chrome version used.

Note that there could be
further restrictions imposed
by Chrome in order to enable
and use the Java plug-in
which they intend to drop
soon; these restrictions are
beyond IBM control and the
user should take the
necessary measures to have
the supported JRE and
browser plug-in installed and
properly enabled as described
in the “User Machine
Configuration for the Applet
version” on page 114.

fileedit.save.autoconfirm CDEJResources No - Can be set to either true or
false if added and replaces
the final save confirmation
dialog with the predefined
action for either saving the
latest changes automatically
or discarding them if set to
true or false
correspondingly. The
confirmation dialog is not
displayed in this situation.

Cúram web client reference 113

Table 58. FILE_EDIT Widget Configuration settings summary (continued)

Setting Name
Location
(.properties file) Required

Default
value Description

fileedit.taskbar.messages CDEJResources No - Can be set to either true or
false values; prevents from
the Word status messages
being duplicated by the
Window task bar notification
messages. If set to false, no
task bar notification will be
displayed, while setting it to
true or not having that
property in
CDEJResources.properties at
all would cause the task bar
notification messages to be
displayed.

Please keep in mind that
suppressing the additional
task bar notification could
affect the accessibility of the
FILE_EDIT widget.

fileedit.log.on CDEJResources Yes false Can be set to either true or
false values; when set to
true, it causes the log
(service) messages to be
displayed in the File Edit
Control panel dialog in
addition to the regular status
messages.

These log messages do not
have value to the end user
and therefore are not
translated (display in
English). Turning on the
logging should not normally
be needed but might be
useful when reporting or
tracing the problems with the
widget.

User Machine Configuration for the Applet version:
The applet version of the FILE_EDIT widget is used for the browsers which
support the Java plug-in. Google announced dropping the Java plug-in support for
Chrome browser. While the applet based solution will work in this until the
plug-in is working (if properly allowed to run and the application is configured
accordingly, see “FILE_EDIT Widget Configuration” on page 112), this is expected
to be just a temporary situation and therefore the Native Messaging Bridge version
of the FILE_EDIT widget is generally recommended to be used in Chrome, see
“User Machine Configuration for the Native Messaging version” on page 115.

On first use of a new version of the integration applet the user will be presented
with a pop up dialog window to confirm if the code from publisher “International
Business Machines Corporation” should be allowed to run. The checkbox “Always
trust the content from this publisher” should be selected and dialog confirmed,
which will ensure the widget executes successfully and the prompt is not

114 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

displayed again on subsequent uses. New versions of the widget will be
downloaded to the user's machine automatically when the Cúram application is
upgraded to a new version.

When a user attempts to edit a Word document, execution of the integration applet
may be blocked depending on security settings of the Java browser plugin on that
particular machine. This causes the editing session to fail. If you experience these
kind of issues issues, please check the following:
v Microsoft Word (supported version) should be installed on the user's machine.
v Word installation should be working as expected on the user's machine when

started manually.
v The Web browser Popup blocker feature on the user's machine should be

disabled.
v For supported browsers other than Internet Explorer if you are getting a

message about the missing Java plugin even though it is installed on the
machine, verify the following option is enabled:Control Panel -> Java ->
Advanced -> Default Java for browsers-> Mozilla family

v Generally if you are getting message about the missing Java plugin even though
it is installed on the machine, check if a slide-down message is displayed in the
small popup window that opens when you attempt to edit a Word document. If
so, then confirm that you want to always run code from this publisher and
reload the application in the browser.

Note to users of Windows 7 or higher: Word integration is currently only
supported for non-Administrator users. You may experience issues if the user is
logged into Windows as Administrator or if Internet Explorer is started in
administration mode.

Please also note that Chrome browser requires the opposite: it should be launched
with Administrator privileges for the FILE_EDIT applet to initialize successfully.
This is only required when running Word integration in Chrome for the first time.

If you are using this feature in an environment supporting the TLS v1.2 protocol
you will need to utilize an operating system, browser, and JDK environment with
compatible support for the client, in conjunction with the application being hosted
on a compliant server (e.g. WebSphere configured for SP800-131a). The specific
steps for configuring the client environment are dependent on the operating
system, browser, and JDK you are using, but all must support TLS v1.2. Assuming
a TLS v1.2-configured server environment and all the required software that
supports TLS v1.2 is installed on the client, you must configure the browser to use
the appropriate JDK and to utilize the TLS v1.2 protocol.

Additional security dialog pops up on the first run of the applet asking user's
permission for the website to access and control the Java application published by
the “International Business Machines Corporation”. The check box “Do not show
this again for this app and web site” should be selected and the permission
confirmed by clicking the “Allow” button in the dialog.

User Machine Configuration for the Native Messaging version:
When running the Word Integration in Chrome, a different underlying technology
is used (if configured, see “FILE_EDIT Widget Configuration” on page 112),
therefore the user should not be presented by any additional dialogs.

However the Native Messaging technology used requires additional installation on
the users machine which should normally be handled by the system administrator.

Cúram web client reference 115

If these installations are missing the user will be notified in the File Edit Control
Panel and could return to the application from there. If the required additions are
installed but the Word application is missing on the machine, the user will also be
notified.

Otherwise using the FILE_EDIT widget in Chrome should not be different.

The FILE_UPLOAD Widget
The FILE_UPLOAD widget is a type of widget through which users can specify a file
on a local computer to be uploaded to the server. Usually, the widget is displayed
as a text field with a Browse button beside it. The user can click the button to
open a file dialog box and select a file for upload.

Button appearance: The button is created by the browser. Therefore, the actual
appearance of the button can vary depending on the browser that is being used.
The normal widget attributes WIDTH and WIDTH_UNITS do not apply to the
FILE_UPLOAD widget. Some browsers do not permit the width of the file name entry
box to be set for security reasons. For example, if the width is set to zero width,
the file name entry box could be hidden while it was still active.

Also, because the FILE_UPLOAD widget uses browser-specified controls, the text on
the button is displayed in whatever locale the browser is set to, regardless of the
locale that is configured in the application.

File Size Validation: There are settings to limit the maximum size of a file that is
allowed to be uploaded. The validations for these settings are carried out on the
server side after the file is fully uploaded to a temporary directory. Therefore, it
should be kept in mind that large files could be uploaded consuming a large
amount of disk space. We recommend checking the file upload folder at intervals
to ensure disk space usage meets requirements.

There are three application-level configuration settings for the FILE_UPLOAD widget.
These control how the web-server handles the incoming files. Default settings are
already present, but the default values can be overridden by adding configuration
settings to the ApplicationConfiguration.properties file. The settings follow the
same name = value format of all the other entries there. The settings are as follows:

uploadMaximumSize
This is the maximum size of a file that can be uploaded to the server. The
number is specified in bytes. If the number is negative, there is no limit to
the file size. By default, the value is -1 (no limit).

uploadThresholdSize
This is maximum number of bytes of the file's content that the web-server
will hold in memory while the file is being uploaded. Once the number of
bytes uploaded exceeds this limit, the web-server will begin to store the
file on disk to save memory. By default, the value is 1024.

uploadRepositoryPath
This is the path to the folder on the disk in which the files will be stored
as they are uploaded if they exceed the threshold size. By default, the
value is the JVM defined temp folder, so this folder must be present on
your system. If it is not on your system, you can create it or explicitly set
the uploadRepositoryPath to a folder of your choice.

The WIDGET element should have the TYPE attribute set to FILE_UPLOAD. The widget
supports the following WIDGET_PARAMETER elements:

116 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 59. Parameters to the FILE_UPLOAD Widget

Parameter Name Required Description and Connections

CONTENT Yes This parameter indicates the target connection
for the actual content of the uploaded file.

A single CONNECT element with a TARGET that
connects to a property of an ACTION phase
server interface is required.

FILE_NAME No This parameter represents the name of the file
to be uploaded. The parameter can be set to
provide a default name for the file to be
uploaded, and can also supply the name of
the file chosen by the user.

If present, the parameter can include CONNECT
elements for either or both end-points: a
SOURCE end-point for the initial name of the
file, and a TARGET end-point for the file that
was actually chosen. The SOURCE end-point
can specify a property of a DISPLAY phase
server interface. The TARGET end-point can
specify a property of an ACTION phase server
interface.

Note: Many browsers do not allow a default value
for the name of a file to be uploaded. In this case,
setting a SOURCE connection will have no effect.

CONTENT_TYPE No This parameter indicates the target connection
for the content type of the uploaded file. The
content type describes the format of the
uploaded data. For example, a simple text file
would have a content type of “text/plain”
and a Microsoft Word document would have
a content type of “application/msword”.

A single CONNECT element with a TARGET that
connects to a property of an ACTION phase
server interface is required.

ACCEPTABLE_CONTENT_TYPES No A HTML page only allows certain types of
content to be uploaded by default (the actual
default types are dependent on the browser).
This parameter can specify the types of
content that the page will accept. The value
of the parameter should be a
comma-separated list of content types. If
there is more than one FILE_UPLOAD widget
on a page, the acceptable content types of all
widgets are pooled together and define what
is acceptable for that page (this is a limitation
of the HTML specification.)

A single CONNECT element with a SOURCE that
connects to a TEXT property is allowed.

File Upload Widget Considerations:

File Upload Considerations in Chrome.

Cúram web client reference 117

In Chrome, if the file upload widget is used adjacent to another field, once
selected, the longer file name once selected might overlap with the label of that
other field. To avoid this issue, do not have a file upload adjacent to another field,
or allow for enough space in between the fields.

The FILE_DOWNLOAD Widget
A WIDGET with the TYPE set to FILE_DOWNLOAD results in the generation of a
hyperlink on the page. Clicking on the hyperlink invokes a special FileDownload
servlet included in the Cúram CDEJ that returns the contents of a file from the
database. The FileDownload servlet is configured with the server interface to call to
get the file contents and the parameters to pass to identify that file. The
configuration is performed in the curam-config.xml file. A single server interface
can be configured for each page of the application that includes a file download
widget. An example configuration is shown in “File Downloads” on page 56.

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD can also be used to
generate a hyperlink to download a file. You should use the ACTION_CONTROL
element when the hyperlink text is a fixed value retrieved from the page's
corresponding properties file. The FILE_DOWNLOAD WIDGET allows the hyperlink text
to be a dynamic value retrieved from a server interface property.

The FILE_DOWNLOAD widget can also be utilized within the Actions menu of the
Context Panel. The menu item TYPE must be set to FILE_DOWNLOAD. The menu item
PAGE-ID must match the PAGE_ID attribute of the FILE_DOWNLOAD widget
configuration. The file identifier must be available as a page parameter in the
respective.tab file for the menu. This page parameter must match the PAGE_PARAM
attribute of the FILE_DOWNLOAD widget configuration.

The WIDGET element should have the TYPE attribute set to FILE_DOWNLOAD. The
widget supports the following WIDGET_PARAMETER elements:

Table 60. Parameters to the FILE_DOWNLOAD Widget

Parameter Name Required Description and Connections

LINK_TEXT Yes This parameter indicates the source
connection for sourcing content of the link
text which will appear on the screen.

A single CONNECT element with a SOURCE that
connects to a property of a DISPLAY phase
server interface is required. If you want to
use a fixed text value, you should use an
ACTION_CONTROL with the TYPE set to
FILE_DOWNLOAD instead of a WIDGET.

118 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 60. Parameters to the FILE_DOWNLOAD Widget (continued)

Parameter Name Required Description and Connections

PARAMS No This optional parameter supplies the
FileDownload servlet with the necessary
parameters.

The parameter can include CONNECT elements
with a SOURCE end-point for the page
parameter supplying a value for the
FileDownload servlet, and a TARGET end-point
for specifying the servlet parameter to supply
the value to. The SOURCE end-point should
refer to a parameter on the page declared by
a corresponding PAGE_PARAMETER element. The
TARGET end-point can specify a parameter
whose name corresponds to a configured
FileDownload servlet parameter name. Thus
both end-points should have a NAME attribute
set to PAGE.

The MULTISELECT Widget
The MULTISELECT widget allows you to specify that the first column in a LIST
should contain a check-box on each row and to allow several rows to be selected.
A “Select All” feature can be enabled which displays a check-box in the column
header. See “ENABLE_SELECT_ALL_CHECKBOX” on page 39 for further details.

Each check box can represents multiple entities in the row. For each check box that
is selected, the fields on that row will be compiled into a “ | ” delimited string and
each row will be tab delimited and passed as a page parameter when a specific
type of page link is activated.

The UIM document in “The MULTISELECT Widget” is an example of a page with
multiple rows with check boxes. When the form is submitted, a single string,
containing multiple fields for each selected row, is passed to the in$tabbedString
field on the target page. Following the UIM is a detailed description of each
relevant part of the UIM that implement this functionality.

Cúram web client reference 119

The main points to note in the above UIM example are:

<PAGE PAGE_ID="MultiSelectWidgetTest"
xsi:noNamespaceSchemaLocation="CuramUIMSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SERVER_INTERFACE NAME="DISPLAY" CLASS="MyBean"
OPERATION="Display" PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION" CLASS="MyBean"
OPERATION="Submit" PHASE="ACTION"/>

<LIST TITLE="List.Title">
<ACTION_SET BOTTOM="false">

<ACTION_CONTROL TYPE="SUBMIT">
<LINK PAGE_ID="MultiSelectWidgetResult">

<CONNECT>
<SOURCE NAME="ACTION"

PROPERTY="in$tabbedString"/>
<TARGET NAME="PAGE"

PROPERTY="referenceNumTabString"/>
</CONNECT>

</LINK>
</ACTION_CONTROL>

</ACTION_SET>
<CONTAINER LABEL="List.Multiselect.Header" WIDTH="5"

ALIGNMENT="CENTER">
<WIDGET TYPE="MULTISELECT"

HAS_CONFIRM_PAGE="true">
<WIDGET_PARAMETER NAME="MULTI_SELECT_SOURCE">

<CONNECT>
<SOURCE PROPERTY="personID" NAME="DISPLAY"/>

</CONNECT>
<CONNECT>

<SOURCE PROPERTY="caseID" NAME="DISPLAY"/>
</CONNECT>

</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_TARGET">

<CONNECT>
<TARGET PROPERTY="in$tabbedString" NAME="ACTION"/>

</CONNECT>
</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_INITIAL">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="out$tabString"/>

</CONNECT>
</WIDGET_PARAMETER>

</WIDGET>
</CONTAINER>

<FIELD LABEL="Field.Title.ReferenceNumber" WIDTH="35">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Title.Forename" WIDTH="30">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Surname" WIDTH="30">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="surname"/>

</CONNECT>
</FIELD>

</LIST>
</PAGE>

Figure 47. MULTISELECT Example

120 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v The WIDGET of TYPE equal to MULTISELECT is a child node of a CONTAINER element.
The container's label will be used as the column header unless the select all
check box is enabled in curam-config.xml. See
“ENABLE_SELECT_ALL_CHECKBOX” on page 39 for further details.

v Up to three WIDGET_PARAMETER elements are allowed within the WIDGET element.
MULTI_SELECT_SOURCE and MULTI_SELECT_TARGET are mandatory and
MULTI_SELECT_INITIAL is optional.

v The MULTI_SELECT_SOURCE can have multiple CONNECT elements, each with one
SOURCE element. Each SOURCE is added to the “ | ” delimited string. If only one
SOURCE element is specified the string will not contain any “ | ” delimiters. Then
each select row will be delimited by a tab character.

v The MULTI_SELECT_TARGET element must contain only one CONNECT element with
only one TARGET element. This TARGET element specifies the field on the action
phase bean that the “ | ” and tab-delimited string will be assigned to when the
page is submitted.

v The MULTI_SELECT_INITIAL contains only one CONNECT element with a single
SOURCE element. This contains a “ | ” and tab-delimited string which specifies
the rows that are selected when the page is loaded.

v In the LIST element the ACTION_SET has one ACTION_CONTROL element.
v Optional HAS_CONFIRM_PAGE attribute is used to indicate that the page with

MULTISELECT widget submits to a confirmation page, where user selection is
re-displayed for confirmation. See “Confirmation Pages” on page 122

Below is an example of the delimited string passed as a parameter to the specified
page.

NOTE: The MULTISELECT widget does not support the list pagination feature and
all it's items will be displayed within one scrollable list. See “PAGINATION” on
page 40 and “LIST” on page 89 for more details on pagination support.

Table 61. Parameters to the MULTISELECT Widget

Parameter Name Required Description and Connections

MULTI_SELECT_SOURCE Yes This parameter can include multiple
CONNECT elements that must specify
a SOURCE end-point.

The SOURCE end-point must be a list
property containing the key data for
the row.

MULTI_SELECT_TARGET
Yes This parameter must include one

CONNECT element that must specify a
TARGET end-point.

The TARGET end-point must be a
string property containing the key
data for selected rows.

101|case121 102|case122 103|case123

Cúram web client reference 121

Table 61. Parameters to the MULTISELECT Widget (continued)

Parameter Name Required Description and Connections

MULTI_SELECT_INITIAL
No This parameter must include one

CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point must be a
string property containing the key
data for the rows that are initially
check when page is loaded.

Confirmation Pages:
MULTISELECT widget has a specific mechanism allowing for confirming user
selection on a separate page. This confirmation page is supposed to re-display
values selected by an user on the MULTISELECT widget offering a choice to
review these values and confirm them or re-visit the previous page to refine the
selection.

Confirming user selection can become a problem where there is a lot of selected
values from a big MULTISELECT widget to be passed to the confirmation page.
There are request length limitations in place, so in order to pass bigger amounts of
data possible in this case different request mechanism (request forwarding) has to
be used.

MULTISELECT widget with the selection to be confirmed is specified by
HAS_CONFIRM_PAGE optional attribute on the WIDGET element. The attribute is to be
set to true. It is only valid for a widget of TYPE of MULTISELECT.

Some things to keep in mind with confirmation pages:
v As request forwarding is used to carry the data in this case, the URL for the

confirmation page will not be displayed with the forwarding page URL shown
instead.

v Even though the mentioned attribute is set on a MULTISELECT widget, the
setting applies to the whole page (as there is only one form per page). So, in
case where multiple submit buttons exist on a page with MULTISELECT widget
to be confirmed, a confirmation step should be assumed for all of these buttons
(i.e., there is no way to have a submit with confirmation and another without
confirmation on that page).

v The confirmation is to be the immediate step carried out on submitting the form
with user selection; no resolve page should be used in the middle.

v It is recommended to have a read-only page for user selection confirmation,
allowing user to cancel and return to the previous page if the selection is to be
refined.

The SINGLESELECT Widget
The SINGLESELECT widget allows you to specify that the first column in a LIST
should contain a radio button on each row. This widget functions in same way as
the MULTISELECT widget, except you are limited to selecting a single item via radio
buttons instead of check boxes. See “The MULTISELECT Widget” on page 119 for
further details.

122 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

NOTE: The SINGLESELECT widget does not support the list pagination feature
and all it's items will be displayed within one scrollable list. See “PAGINATION”
on page 40 and “LIST” on page 89 for more details on pagination support.

Table 62. Parameters to the SINGLESELECT Widget

Parameter Name Required Description and Connections

SELECT_SOURCE Yes This parameter must include
multiple CONNECT elements that
must specify a SOURCE end-point.

The SOURCE end-point must be a list
property containing the key data for
the rows to be displayed.

SELECT_TARGET Yes This parameter must include one
CONNECT element that must specify a
TARGET end-point.

The TARGET end-point must be a
string property containing the key
data for selected row.

SELECT_INITIAL No This parameter must include one
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point must be a
string property containing the key
data for the row that is initially
checked when page is loaded.

The RULES_SIMULATION_EDITOR Widget
The RULES_SIMULATION_EDITOR widget is used to edit or create data used when
simulating the execution of a rule-set. The widget generates clusters of fields that
correspond to the fields of Rules Data Objects (RDO). A normal cluster is used to
display the fields of a basic RDO and a multi-column cluster is used for a list
RDO. A standard list is not used, as a list RDO with many fields would result in a
list that had too many columns to be displayed on the screen.

The user can enter or modify values on the page corresponding to the RDO fields
and, for list RDO s displayed in a multi-column cluster, press a button to create
additional columns for field values.

The WIDGET element should have the TYPE attribute set to RULES_SIMULATION_EDITOR.
The parameters to the widget are as follows:

Cúram web client reference 123

Table 63. Parameters to the RULES_SIMULATION_EDITOR Widget

Parameter Name Required Description and Connections

VALUES Yes The simulation data values. A
previous set of values can be
displayed and edited or a new set
of values can be created.

The parameter should contain a
CONNECT element with a SOURCE set
to a DISPLAY phase bean field
containing the values and a TARGET
set to an ACTION phase bean field
that will receive the edited values.
If the SOURCE has no values set, the
editor will create them.

META_DATA Yes The simulation meta-data. The
meta-data contains details about the
structure of the RDO s necessary to
generated the input fields.

The parameter should contain a
CONNECT element with a SOURCE set
to a DISPLAY phase bean field
containing the meta-data.

ADD_BUTTON_CAPTION Yes The caption to use on the button
displayed at the bottom of each
multi-column cluster and used to
add a new column of extra data to
a list RDO. If an image is also
specified, this caption is used as the
“alt” text of the image.

The parameter should contain a
CONNECT element with a SOURCE that
gets a localized string from a TEXT
source.

ADD_BUTTON_IMAGE No The path to the image file to use if
an image button is to be used in
place of a standard button. The
path is relative to the WebContent
folder.

The parameter should contain a
CONNECT element with a SOURCE that
gets a localized string from a TEXT
source.

The widget should be placed in a CLUSTER element. The clusters for the RDO s will
be rendered within that cluster. The SHOW_LABELS attribute should be set to false.
The LABEL_WIDTH attribute of the CLUSTER element will be inherited by the clusters
that are generated by the widget, so it can be used to control the layout. An
ACTION_CONTROL element in the cluster or on the page should be added to save and
process the simulation data created by the widget in the usual manner.

When a widget is not supplied with any simulation data values, it will display
empty fields. For list RDO s, a single empty column of fields will be displayed;
values can be entered and more columns added as needed. If values are supplied,

124 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

they will be displayed. In a multi-column cluster, pressing the defined “add”
button will add a single empty column to the right of any existing columns. All
other empty columns will be removed at this time, so deleting the values in one or
more columns has the effect of removing those columns from the multi-column
cluster.

The IEG_PLAYER Widget
Consult the Cúram Intelligent Evidence Gathering (IEG) guide for details.

Dynamic UIM Cross Reference
Dynamic UIM as its name implies, is UIM that is cached in the resource store -
rather than static UIM (described in earlier sections) which resides on the file
system - so that the server and client do not have to be rebuilt in order for a page
to be displayed in an application. All string values in dynamic UIM documents
must be externalized in properties files, which must also be cached in the resource
store.

When creating a dynamic UIM document, only the PAGE element is a valid root
element. All the UIM features (elements and attributes) referenced in “UIM
Reference for Pages and Views” on page 54 are supported for dynamic UIM,
except for those which are listed in “Unsupported Features in Dynamic UIM” on
page 304.

Refer to “Maintaining Dynamic UIM Pages” on page 300 on details about how to
maintain dynamic UIM pages in the Resource Store.

Dynamic UIM System Initialization
There are two ways in which the Dynamic UIM system can be initialized; when
the application is started, or the first time that there is a request for a Dynamic
UIM page in the running application. By default the Dynamic UIM system is
initialized when the application is started. In order to override the default
initialization of the Dynamic UIM system - so that it is initialized when a Dynamic
UIM page is first requested - a configuration setting can be added to the
ApplicationConfiguration.properties file. This setting follows the same name =
value format of all the other entries there. It should be set as follows:

dynamicUIMInitModelOnStart
This value should be set to false in order to override the default setting.

If a developer intends to access dynamic UIM pages in the application, then the
default initialization of the dynamic UIM system must be used. Otherwise, if the
developer is not using dynamic UIM pages and finds their Tomcat start-up time is
too slow, the default initialization of the dynamic UIM should be overridden, as
described above.

Application Configuration
An application in the Cúram user interface is a collection of user interface
elements, based on UIM.pages, that are combined to create specific content for a
particular user or role. Develop Cúram web client applications by configuring
application configuration files.

An application comprises of an application banner and one or more application
sections. Each section, contains an optional section shortcut panel and one or more
tabs. A tab represents a business object or logical grouping of information. In the

Cúram web client reference 125

following figure, the features of an application user interface are numbered and are
cross-referenced by subsequent topics in the section. Subsequent topics outline how
to develop an application by using the relevant XML configuration files.

Related concepts:
“Cúram applications” on page 7
When a user logs into the Cúram application they are presented with a view that
is specific to their role, which an application. An application in the Cúram user
interface is a collection of user interface elements, mainly based on UIM pages,
combined to create specific content for a particular user or role.
“Application user interface overview” on page 4
The application user interface contains elements that are implemented through
user interface metadata. Other topics in the section describe how each of the user
interface elements can be configured in an application.
Related reference:
“UIM Reference” on page 52
Learn about the Cúram User Interface Meta-data (UIM) format used to specify the
contents of the Cúram web application client pages.

Configuration files
Configure applications, sections, tabs and related elements in XML-based
configuration files.

1 1.1

1.2 1.31.42

3

4 5

6

7

7.1

7.1.1

8

9 10

11

12

13

14

15

16

17

18

19

20

21

Issues and Proceedings tab

21.1

Figure 48. Application User Interface Overview

126 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The configuration files are in the <server-dir>\components\<component-name>\
clientapps directory. See “Application Configuration Files” on page 34 for more
information about the clientapps directory, and best practices for working with
application configuration files.

Each configuration file has a specific extension and an associated schema file
detailing the supported attributes. The following table provides a summary of the
file extensions and related schema files.

Table 64. Configuration Files

File
Extension Schema File Description

.app application-view.xsd Configuration file to define an application,
including the application banner, referenced
sections and application search.

.sec section.xsd Configuration file to define the referenced
tabs and section shortcut panel in a section.

.ssp section-shortcut-panel.xsd Configuration file to define the contents of
a section shortcut panel.

.tab tab.xsd Configuration file to define a tab, including
the context panel and referenced navigation
and actions menu.

.nav navigation.xsd Configuration file to define the content of a
tab navigation bar.

.mnu menubar.xsd Configuration file to define the content of a
tab actions menu.

The schema files are all located in the <sdej-dir>\lib directory and can be used
during development for validation in any XML editor.

The configuration files for applications, sections and tabs are processed as part of
the database target and stored on the database for use at runtime. A standalone
target, inserttabconfiguration, is also available for processing the configuration
files only. This command is useful during development because it is more efficient
than the full database target. For more information on these targets please consult
the Cúram Server Developers Guide.

The inserttabconfiguration validates all the configuration files, ensuring that they
conform to the XML schema, in addition to ensuring that all mandatory elements
and attributes are specified. All files are processed before the build fails, listing all
validation errors.

Web client properties
Configure the title that is displayed in the browser tab in the
CDEJResources.properties file. The CDEJResources.properties file contains values
for properties that are used throughout the web client.

The core file is located in %CURAM_DIR%\CuramCDEJ\doc\defaultproperties\curam\
omega3\i18n. %CURAM_DIR% is the Cúram installation directory, which by default is
C:\IBM\Curam\Development.

This properties file can be localized as per Locales. Images defined in this file can
also be customized per locale.

Cúram web client reference 127

Customizing the CDEJResources.properties file
To customize the CDEJResources.properties file, use the procedure that is outlined
in the following task.

Procedure
1. Create a custom copy in the custom component, for example,

webclient\components\custom.
2. Include only the properties that are being overridden.

Configuring the browser title
To customize the browser title, configure the properties that are outlined in the
following task.

Procedure

Add the properties from the following list to the custom
CDEJResources.Properties file:

browser.tab.title
Defines the application name that is used in the browser tab title.

browser.tab.title.separator
Defines the text that is used to separate the page title and application
name strings.

browser.tab.title.application.name.first
Controls whether the browser tab title displays the application name before
the current page title.

Applications
An application is a particular view of the Cúram client defined for a specific user
or role. The application definition file details the application banner and a
reference to the sections that are part of the application.

An application banner provides the user with the context of the application they
are currently accessing. The banner contains the following elements:
v The name of the application. Refer to User Interface Element 1.1 in “Application

Configuration” on page 125 to see an example of an application name
configured in the User Interface.

v The role of the user that this application is intended for.
v A welcome message for the user. Refer to User Interface Element 1.2 in

“Application Configuration” on page 125 to see an example of a welcome
message configured in the User Interface.

v An application menu, which includes links to the User Preferences dialog,
application help, the about box, and to logout of the application. Refer to User
Interface Element 1.3 in “Application Configuration” on page 125 to see an
example of an application menu configured in the User Interface.

v A configurable application logo, which defaults to the IBM logo, placed at the
far right of the application banner. It can be customized or removed.

v A quick search facility for the application. Refer to User Interface Element 1.4 in
“Application Configuration” on page 125 to see an example of an application
search configured in the User Interface.

The application search is an optional addition to the application banner which
provides a quick search facility. The application search supports:

128 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v A text entry field where the user can enter their search criteria.
v An optional search type combo box, which lists the types of object which can be

searched on.
v A search button to trigger the actual search.
v An optional link to more search options.

Refer to User Interface Element 1.4 in “Application Configuration” on page 125 to
see an example of a fully configured application search in the User Interface. This
example has both the optional search type combo box, and optional link with more
search options enabled

Application definition
An application is defined by creating an XML file with the extension .app in the
clientapps directory.

The root XML element in the .app file is the application element and the
attributes allowed on this element are defined in the following table. The
application banner is configured by using these attributes.

Table 65. Attributes of the application Element

Attribute Description

id Mandatory.

The unique identifier for the application, which must match
the name of the file. This id matches to an
APPLICATION_CODE entry and is used to determine the
application to display for a particular user.

See “Associate an application with a user” on page 138 for
more information.

title Optional.

The text for the title that will be displayed as part of the
application banner. The attribute must reference an entry in
the associated properties file.

sub-title Optional.

The text for the subtitle that will be displayed as part of the
application banner. The attribute must reference an entry in
the associated properties file.

user-message Optional.

The text for the welcome message that will be displayed as
part of the application banner. The attribute must reference an
entry in the associated properties file.

The text can contain a placeholder, %user-full-name, which
will be replaced with the users full name. The full name is
determined based on the FirstName and Surname fields on the
Users database table.

hide-tab-container Optional.

When set to true, this indicates that there is only one section
in the application and the section tab should not be displayed.
The default is false.

Cúram web client reference 129

Table 65. Attributes of the application Element (continued)

Attribute Description

header-type Optional.

This indicates that an additional header is to be used and
what type of content will be provided. The values supported
are static and dynamic.

See “Application optional header” on page 136 for more
information.

header-source Optional.

A reference to the source that will be used as an additional
header. The value of this depends on the value of header-type.
For static content, the attribute should reference a filename of
a file in the resource store. For dynamic content, the attribute
should reference a custom widget.

See “Application optional header” on page 136 for more
information.

logo Optional.

A reference to the path of an image, e.g. CDEJ/themes/v6/
images/large-application-logo.png or an image name, e.g.
large-application-logo.png, where the named image is stored
in the application resource store. This is used to configure a
custom application logo displayed at the far right of the
application banner. The custom application logo will only be
displayed when the attribute logo-required is set to true,
otherwise this setting is ignored.

Note: Only images with the same height as the default IBM
logo (26 pixels in the internal application and 61 pixels in the
external application) are supported.

logo-alt-text Optional.

The alternative text for the custom application logo specified
by the attribute logo. It is only used when the custom
application logo is displayed on the application banner.
Otherwise, the setting for this attribute is ignored.

logo-required Optional.

When not set, a default IBM logo is displayed on the
application banner. When set to true, in conjunction with the
logo attribute, the referenced custom application logo is
displayed. When set to false, the application logo is not
displayed on the application banner.

The application element supports the child elements detailed in “Application
definition” on page 129.

130 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 66. Supported Child Elements of the application Element

Element Description

section-ref 1..n.

The application must contain a minimum of one section-ref
element. Each section-ref element references a section to be
included in the application. See “Application section-ref
element” on page 134 for more information.

application-menu Optional.

Allows for the optional addition of links to the application
banner. The links supported include the user preferences
editor, application logout and help. See “Application
application-menu element” for more information.

application-search Optional.

Allows for the optional addition of a quick search facility on
the application banner. See “Application application-search
element” on page 132 for more information.

timeout-warning Optional.

Allows for the optional addition of a session timeout modal
dialog. See “Application timeout-warning element” on page
134 for more information.

Application application-menu element:

The application menu forms part of the application banner, and allows for the
optional addition of up to three links; specifically a link to the application help, a
link to log out of the application and a link to open the user preferences dialog.

Each link is defined as a child element of application-menu element and the
supported elements are detailed in the following table.

Table 67. Supported child elements of the application-menu element

Element Description

preferences Optional.

Defines a link to the user preferences dialog. This dialog
allows a user to configure customizations for the application
view.

The title of the preferences link is defined using the
supported title attribute. The value of the title attribute
should be a reference to an entry in the associated properties
file.

help Optional.

Defines a link to the general help for the Cúram application.

The title of the help link is defined using the supported title
attribute. The value of the title attribute should be a
reference to an entry in the associated properties file.

Cúram web client reference 131

Table 67. Supported child elements of the application-menu element (continued)

Element Description

logout Optional.

Defines a link to allow a user to end their session and logout
of the application.

The title of the logout link is defined using the supported
title attribute. The value of the title attribute should be a
reference to an entry in the associated properties file.

Application application-search element:

To define the application search, use the application-search element.

Refer to user interface element 1.4 in “Application Configuration” on page 125 to
see an example of a fully configured application search in the user interface.

In its simplest form, the application-search element requires two attributes,
which are used when there is only one type of search and no combo box is to be
displayed:

Table 68. Attributes of the application-search element

Attribute Description

default-search-page Optional.

A reference to the UIM page that will be displayed when the
search button is clicked.

When this attribute is used, it is assumed there is only one
type of search and no search type combo box is displayed.

initial-text Optional.

The text to be displayed in the text entry field as a prompt.
This text should describe what type of information can be
provided for the search, e.g. Enter a participant reference
number.

The attribute must reference an entry in the associated
properties file.

The application-search element supports two child elements that are used for
more complex style searches, as shown in the following table.

Table 69. Supported child elements of the application-search element

Element Description

search-pages Optional.

Defines multiple types of search. See “search-pages” on page
133 for more information.

further-options-link Optional.

Defines a link to a more advanced search page. See
“further-options-link” on page 134 for more information.

132 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

search-pages

The search-pages element is used when multiple search types are required, e.g.
Person, Case, or types of search, e.g. Person Surname, Person Reference Number.
Each search type is listed in a combo box and a different prompt is displayed in
the text entry field depending on the selected entry in the combo box.

The search-pages element supports the child elements detailed in the following
table.

Table 70. Supported child elements of the search-pages element

Element Description

search-page 1..n.

Defines a single search type. The attributes of the search-page
element are defined in Table 71.

Note: Where the search-pages element is used to define multiple types of search,
the initial-text and default-search-page must not be specified.

Table 71. Attributes of the search-page element

Attribute Description

type Mandatory.

The unique identifier for the type of search. It will be passed
as a parameter (searchType) to the UIM page invoked when
the application search is performed.

description Mandatory.

The text to be displayed for the search option in the combo
box. The attribute must reference an entry in the associated
properties file.

page-id Mandatory.

A reference to a UIM page that will be displayed when the
search button is clicked.

initial-text Mandatory.

The text to be displayed as a prompt in the text entry field
when that business object is selected in the combo box. The
attribute must reference an entry in the associated properties
file.

default Optional.

A boolean indicating if this entry is the default entry to be
selected in the combo box. One, and only one, entry should
have the default specified as true.

Note: Blank values are not allowed in the search type combo box, so if the user
requires a generic search (i.e. across all business objects), they must provide
configuration data for this. For example, a business object of "All" linked to a page
that will carry out the search across all the business objects that have been defined.

Cúram web client reference 133

Search pages are linked using a reference to the UIM page to be opened when the
search button is clicked. The UIM pages defined for a search can expect a number
of parameters to be passed to them and used as part of the search:
v searchText

The search text that has been entered in the text entry field.
v searchType

The selected search type. This is only applicable where multiple search types
have been defined.

For more information on creation of UIM pages see “UIM Reference” on page 52

further-options-link

In addition to multiple search types, the application search also supports a link to
a more advanced search page. This is specified using the further-options-link
element, which requires the following attributes:

Table 72. Attributes of the further-options element

Attribute Description

description Mandatory.

The text of the link. The attribute must reference an entry in
the associated properties file.

page-id Mandatory.

A reference to a UIM page that will be displayed when the
link is clicked. This UIM page should require no page
parameters.

Application section-ref element:

An application must reference a minimum of one section, and up to a maximum of
five sections, by using the section-ref element.

See “Sections” on page 138 for more information.

Table 73. Attributes of the section-ref element

Attribute Description

id Mandatory.

The id of a section configuration file (.sec).

Application timeout-warning element:

Define the session timeout warning by using the timeout-warning element.

In its simplest form, the timeout-warning element does not require any mandatory
attributes. If attributes are omitted default values will be used.

A browser session is timed from when data was most recently sent to or received
from the server. In some cases, a user might enter much data into the application
without realizing that the current session has timed out. When the user does
initiate a server call, for example to submit the entered data, the browser prompts
the user to reauthenticate to the application. Therefore, the user loses all the data

134 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

that the user had entered into the application. To prevent users from losing data
when their session times out, you can configure a session timeout warning.

Table 74. Attributes of the timeout-warning element

Attribute Description

title Optional.

Configures the title on the session timeout warning dialog.

A reference to a property within the associated properties file.
This value is used to display the title on the timeout warning
dialog.

user-message Optional.

Configures the main user message on the session timeout
warning dialog.

A reference to a property within the associated properties file.
This value is used to display the main user message within
the timeout warning dialog.

quit-button Optional.

Configures the text on the quit button of the session timeout
warning dialog.

A reference to a property within the associated properties file.
This value is used to display the text on the quit button within
the timeout warning dialog.

continue-button Optional.

Configures the text on the continue button of the session
timeout warning dialog.

A reference to a property within the associated properties file.
This value is used to display the text on the continue button
within the timeout warning dialog.

width Optional.

Configures the width of the session timeout warning dialog.

A reference to the width of the timeout warning dialog, in
pixels.

height Optional.

Configures the height of the session timeout warning dialog.

A reference to the height of the timeout warning dialog, in
pixels.

timeout Optional.

Configures the period of time in seconds that the user has to
take action within the timeout warning dialog.

A reference to the period of time in seconds that the user has
to take action within the dialog before the session expires. The
countdown timer displayed within the modal will start at this
value and countdown to 0:0 until the session times out.

Cúram web client reference 135

Application optional header
You can specify a custom header in addition to, or instead of, the application
banner. Define the optional header by using the header-type and header-source
attributes on the application element. Define the optional header as either a static
HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optional
attributes of the applications element, as listed in “Application definition” on
page 129, should be omitted.

The header-type attribute is restricted to the values static or dynamic. Setting a
static value indicates that a HTML fragment is to be placed within the header. In
this instance, the header-source attribute should reference a file that is stored in
the resource store. This file must be stored with a content type of text/xml.

If the header-type attribute is set to dynamic, the header-source attribute should
reference the custom widget to be used to display the content. This reference will
be the same as that specified with the relevant styles-config.xml. For more
information on creating and referencing custom widgets please consult the Cúram
Custom Widget Development Guide.

Whether a custom widget or HTML fragment is used it must always start with a
<div> element.

Application example
An example shows an application that is stored in a file called SimpleApp.app.

136 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note: In the above example a namespace, ac has been declared and all elements
are prefixed with the namespace. This is recommended practice. Consult
“Application Configuration Files” on page 34 for more information.

The SimpleApp.app should have a corresponding SimpleApp.properties file, which
details the localizable content. For example:

In the above example, the Cúram logo image is referencing the default logo image
shipped with the Cúram Client Development Environment (CDEJ). A custom logo
can be added to the Images folder in the component and referenced directly as
Images/my-custom-logo.png.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application

id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:application-search>
<ac:search-pages>

<ac:search-page type="SAS01"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>

<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />

</ac:search-pages>
<ac:further-options-link

description="Search.Further.Options.Link.Description"
page-id="Person_search" />

</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Figure 49. Simple.app

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=Cúram
SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout
Search.Person.LastName.Description=Surname
Search.Person.LastName.InitialText=Enter surname to search for
Search.Person.Gender.Description=Gender
Search.Person.Gender.InitialText=Enter gender to search for
Search.Further.Options.Link.Description=Advanced Search

Cúram web client reference 137

Note: In the properties file for the SimpleApp.app example, the ú in Cúram is
added using the Unicode escape sequence. An alternative approach is to add the ú
directly and ensure the file is saved in the UTF-8 format. Both approaches are
supported for the application configuration files.

Associate an application with a user
Map a user to the application and the home page that will be displayed when the
user initially logs on. The home page is the initial page, which is displayed in its
associated tab.

To map a user to an application and to a home page, configure the following
mapping:
v APPLICATIONCODE field on the Users database table

maps to
v an entry in the APPLICATION_CODE codetable

maps to
v the id attribute of an application

When a user logs in, the value of the APPLICATIONCODE field in the Users database
table is used to determine both the application and home page to display.

The value field of the code table entry must match the name of the application
(.app) file to use and the description field of the code table entry indicates the
name of the UIM page to be displayed as the home page. The following example
shows a subset of a code table definition:

Note: For more information on code tables see the Cúram Server Developers Guide.

In this example, a code table entry SimpleApp has been defined, with a description
of SimpleHome. The code SimpleApp, matches the id of the SimpleApp.app example.
The description, SimpleHome, indicates the UIM page to be displayed as the home
page. This page must be associated with the relevant application. For more details
on how to associate pages with an application, see “Opening tabs and sections” on
page 165.

Sections
An application can contain one or more application sections, where a section is a
collection of tabs and an optional section shortcut panel. A section shortcut panel
supports quick links to open tabs and dialogs within a section.

<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">

<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">

<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>

</locale>
</code>

</codetable>

Figure 50. CT_APPLICATIONCODE.ctx

138 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Refer to user interface element 2 in the previous figure to see sections configured
in the user interface. The section that is open is a lighter shade of color than the
other sections.

It is recommended that a maximum of five sections be used, each representing a
different set of activities that can be performed by a user. The following list
outlines the five recommended types of sections:

Home The Home section is intended to contain only one tab, with a single page
that acts as a home page for the user. The home page should provide a
summary of significant information and quick links to common activities.

Workspace
The Workspace section is where the majority of tasks relating to the user
role will be performed.

Inbox The Inbox section represents the area of the application where the user can
access the work currently allocated to them.

Calendar
The Calendar section contains a calendar of the users activities and
schedules.

Reports
The Reports section contains a number of reports relevant for the particular
user.

1 1.1

1.2 1.31.42

3

4 5

6

7

7.1

7.1.1

8

9 10

11

12

13

14

15

16

17

18

19

20

21

Issues and Proceedings tab

21.1

Figure 51. Application User Interface Overview

Cúram web client reference 139

Section definition
A section is defined by creating an XML file with the extension .sec in the
clientapps directory.

The root XML element in the .sec file is the section element and the attributes
allowed on this element are defined in the following table.

Table 75. Attributes of the section Element

Attribute Description

id Mandatory.

The unique identifier for the section, which must match the
name of the file. This is used when referenced from an
application (.app) configuration file.

title Mandatory.

The text for the title that will be displayed on the section tab.
The attribute must reference an entry in the associated
properties file.

hide-tab-container Optional.

When set to true, this indicates that there is only one tab in
the section and the tab bar should not be displayed. The
default is false.

default-page-id Optional.

A reference to a UIM page that should be opened by default
when the section is opened. The UIM page referenced must be
directly associated with a tab. For more information on
associating pages with tabs, consult “Tabs” on page 145.

This attribute ensures that an anchored default tab is always
open when the section is opened. An anchored tab does not
contain an option to close it.

Note: The default-page-id attribute must not be used on the "Home" or first
section of an application. The user's home page, and its associated tab are opened
automatically when a user logs into an application. See “Associate an application
with a user” on page 138 for more information.

The section element supports the child elements detailed in the following table.

Table 76. Supported Child Elements of the section Element

Element Description

tab 1..n.

A reference to a tab to be included in this section. See “Section
tab element” on page 141 for more information.

shortcut-panel-ref Optional.

A reference to the section shortcut panel to be included in this
section. See “Section shortcut-panel-ref element” on page 141
for more information.

140 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Section tab element:

A section is a collection of tabs. To associate a tab with a section, use the tab
element. A section must define at least one tab element and tabs must only ever
be referenced by one section in any application. Therefor tabs can be reused in
different sections, as long as the section is included in a separate application.

The attributes of the tab element are detailed in the following table.

Table 77. Attributes of the tab element

Attribute Description

id Mandatory.

The id of a tab configuration file (.tab). See “Section tab
element” for more information.

Section shortcut-panel-ref element:

Use the shortcut-panel-ref element to define the section shortcut panel to add to
a section.

Specify only one shortcut-panel-ref per section. See “Section shortcut panel” on
page 142 for more information.

The attributes of the shortcut-panel-ref element are detailed in the following
table.

Table 78. Attributes of the shortcut-panel-ref element

Attribute Description

id Mandatory.

The id of a section shortcut panel (.sec). See “Section shortcut
panel” on page 142 for more information.

Section example
An example shows a section that is stored in a file called
SimpleWorkspaceSection.sec.

The SimpleWorkspaceSection.sec should have a corresponding
SimpleWorkspaceSection.properties file, which details the localizable content. For

<?xml version="1.0" encoding="UTF-8"?>
<sc:section

id="SimpleWorkspaceSection"
title="SimpleWorkspaceSection.title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

<sc:tab id="Person" />
<sc:tab id="Employer" />
<sc:tab id="Case" />
...

</sc:section>

Figure 52. SimpleWorkspaceSection.sec

Cúram web client reference 141

example:

Section shortcut panel
Each section can optionally contain a section shortcut panel which provides quick
links to open content and perform actions within the section. The menu items in
the shortcut panel can be divided into categories.

Refer to User Interface Element 7 of “Application Configuration” on page 125 to
see an example of a configured section shortcut panel.

When a section is first opened, the section shortcut panel is collapsed by default.
The double arrow beside the title of the shortcut panel can be used to expanded,
and subsequently collapse, the panel.

Menu items in a shortcut panel which open modal dialogs are identified by an
ellipses (...), which indicates that further actions are required. Refer to User
Interface Element 7.1.1 of “Application Configuration” on page 125 to see an
example of a configured menu item in an expanded category of a shortcut panel.

Section shortcut panel definition
A section shortcut panel is defined by creating an XML file with the extension .ssp
in the clientapps directory.

The root XML element in the .ssp file is the section-shortcut-panel element and
the attributes allowed on this element are defined in the following table.

Table 79. Attributes of the section-shortcut-panel Element

Attribute Description

id Mandatory.

The unique identifier for the section shortcut panel, which
must match the name of the file. This is used when referenced
from a section (.sec) configuration file.

title Mandatory.

The text for the title that will be displayed for the sections
shortcut panel, both when it is expanded and when it is
collapsed. The attribute must reference an entry in the
associated properties file.

The section-shortcut-panel element supports the child elements detailed in the
following table.

Table 80. Supported Child Elements of the section-shortcut-panel Element

Element Description

nodes Mandatory.

Groups together multiple child node elements. See “Section
shortcut panel node element” on page 143 for more
information.

SimpleWorkspaceSection.title=Workspace

142 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Section shortcut panel node element:

Use the node element to represent menu items and categories that are used within
the shortcut panel.

There are three supported types of node element and the type attribute is used to
define this:
v group

A group node in a shortcut panel represents a category and is used to categorize
a number of menu items as described in “Section shortcut panel” on page 142.
“Registration” are defined using node Each category is defined using node
elements of type group. This type of node supports child node elements of type
leaf and separator.

v leaf

A leaf in a shortcut panel is a menu item within a category, which can open a
page in an existing or new tab, or open a modal dialog3. Where a menu item
opens a modal dialog, an ellipsis is appended to the text displayed to indicate
more information is required.

v separator

A separator can be used to add extra space between menu items within a node
of type group (i.e. a category).

The attributes supported by the node element are detailed in the following table.

Table 81. Attributes of the node element

Attribute Description

id Mandatory.

The identifier for the node. This must be unique within the
.ssp file.

type Mandatory.

The type of node, where three types are supported:

v group

v leaf

v separator

title Mandatory.

The text for the title of the node. The attribute must reference
an entry in the associated properties file.

Note: This is not required where the type is specified as
separator.

page-id Optional.

A reference to the UIM page to be displayed when the menu
item is selected. This is only applicable for node elements with
a type of leaf.

3. A modal dialog is a UIM page opened in a new window, where the parent window cannot be accessed while it is open. Consult
“Modal Dialogs” on page 88 for more information.

Cúram web client reference 143

Table 81. Attributes of the node element (continued)

Attribute Description

open-as Optional.

Where set, this attribute indicates the UIM page to be
displayed when the menu item is selected should be opened
as a modal dialog. The only value supported is modal.

This is only applicable for node elements with a type of leaf.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to the menu item which opens in a modal dialog
should be disabled. The default is true. The attribute is
applicable only where the type attribute is leaf and the
open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute
has not been set will not add the ellipsis to the menu item.

Section shortcut panel example
An example shows a section shortcut panel that is stored in a file called
SimpleShortcutPanel.ssp.

The SimpleShortcutPanel.ssp should have a corresponding
SimpleShortcutPanel.properties file, which details the localizable content. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<sc:section-shortcut-panel

id="SimpleShortcutPanel"
title="SimpleShortcutPanel.Title">

<sc:nodes>
<sc:node id="Searches" type="group"

title="Searches.Title">
<sc:node id="PersonSearch" type="leaf"

page-id="Person_search"
title="PersonSearch.Title" />

...
</sc:node>
<sc:node id="QuickLinks" type="group"

title="QuickLinks.Title">
...

</sc:node>
<sc:node id="Registration" type="group"

title="Registration.Title">
<sc:node id="RegisterEmployer" type="leaf"

page-id="Employer_register"
title="RegisterEmployer.Title"
open-as="modal"/>

...
<sc:node type="separator" id="separator"/>
...

</sc:node>

</sc:nodes>
</section-shortcut-panel>

Figure 53. SimpleShortcutPanel.ssp

144 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Tabs
A tab typically represents a business object, for example, a Case or a Participant,
though it can also be used to represent a logical grouping of information.

The following figure shows an annotated example of a configured tab in an
application.

The following list describes the annotated tab elements that are in the previous
figure:

Tab Title Bar (4)
The title bar contains text to identify the current tab.

Tab Actions Menu (5)
The actions menu provides actions associated with the business object

SimpleShortcutPanel.Title=Shortcuts Panel
Searches.Title=Searches
PersonSearch.Title=Person Search
QuickLinks.Title=Quick Links
Registration.Title=Registration
RegisterEmployer.Title=Register an Employer

1 1.1

1.2 1.31.42

3

4 5

6

7

7.1

7.1.1

8

9 10

11

12

13

14

15

16

17

18

19

20

21

Issues and Proceedings tab

21.1

Figure 54. Application User Interface Overview

Cúram web client reference 145

represent by the tab. The actions can be a mix of menu items and other
menus, each of which links to a page that will be displayed in the tab
content area or a modal dialog.

Tab Context Panel (6)
The context panel is typically used to present summary information about
the business object. The summary information is available for every page
that is displayed in the content area. The context panel can be collapsed
and expanded to provide more space for the tab content area.

Tab Content Area
A tab comprises of one or more pages of information. The pages are
displayed in the content area and can be navigated using the navigation
bar.

Navigation Bar (8)
The navigation bar contains a number of navigation tabs, each of
which link to a page or set of pages that are part of the tab. The
navigation bar can be used to separate the business object
information into logical groupings of pages.

Page Group Navigation Bar (16)
Where a tab links to a set of pages, the pages are displayed as a
page group navigation bar, with the first one selected by default.

Page Content (15)
Selecting a navigation tab or page group entry will display the
corresponding UIM page content within the content area.

Smart panel (20)
A smart panel is an optional panel, displaying a UIM page, that is added
to the right of the content area in a tab. It can be collapsed and expanded,
and is collapsed by default. In addition, the size of the smart panel can be
increased and decreased when it is expanded.

A tab supports the ability to dynamically enable or disable, and hide or show,
entries in the tab actions menu, the tab navigation bar and the page group
navigation bar. The dynamic content is updated based on configured refresh
events. A refresh event updates the specified part of the tab based on the
submission of a modal dialog page or when a specific UIM page is loaded in the
content area.
Related reference:
“Tab tab-refresh element” on page 150
The tab-refresh element allows the tab actions menu, tab navigation and context
panel to be refreshed based on different events.

Tab definition
A tab is defined by creating an XML file with the extension .tab in the clientapps
directory.

The root XML element in the .tab file is the tab-config element and the following
table shows the required attributes.

146 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 82. Attributes of the tab-config Element

Attribute Description

id Mandatory.

The identifier for the tab, which must match the name of the
file.

The id attribute is used to reference the tab configuration from
section configuration files (.sec). See “Section tab element” on
page 141 for more information.

The tab-config element supports the child elements that are shown in the
following table. See the child topics for more information.

Table 83. Supported Child Elements of the tab-config Element

Element Description

page-param 0..n.

Defines a parameter required when opening a tab.

menu Optional.

A reference to the actions menu configuration.

context Mandatory.

A reference to the UIM page to be used as the tab context
panel, or alternatively details of the tab name and title.

navigation Mandatory.

A reference to the tab navigation configuration, or
alternatively the name of the UIM page that will be opened in
this tab.

smart-panel Optional.

A reference to the UIM page to be used for the smart panel.

tab-refresh Optional.

Defines what part of a tab should refresh under what
circumstances.

Tab page-param element:

The page-param element allows for multiple page parameters to be defined for a
tab. Each page parameter that is defined maps to the name of a name-value pair.
The name-value pair is passed to all UIM pages that are opened from both the tab
actions menu and the navigation bar.

Page parameters are also used to identify unique instances of a tab. For example, a
tab is defined for a Person object. Two instances of this tab can be opened, one for
James Smith and one for Linda Smith. The instances are uniquely identified by the
page parameter, id, which has been defined for the tab. The id parameter maps to
the unique id for the person and will be different for both James Smith and Linda
Smith.

Cúram web client reference 147

Table 84. Attributes of the page-param Element

Attribute Description

name Mandatory.

A unique identifier for the page parameter.

Related reference:
“Opening tabs and sections” on page 165
You can open new sections and tabs by using several methods.

Tab menu element:

The menu element contains a reference to the tab action menu configuration which
is maintained in a separate .mnu configuration file.

The following table shows the attributes of the menu element.

Table 85. Attributes of the menu element

Attribute Description

id Mandatory.

A reference to the id of a tab action menu configuration file
(.mnu).

Related reference:
“Tab actions menu” on page 153
The tab actions menu is a drop-down menu in the tab title bar. Each menu item
corresponds to a tab-specific action.

Tab context element:

The context element defines a context panel by referencing a UIM page which
forms the content of the context panel.

The context element is mandatory. If no context panel is to be defined, then a tab
name and tab title must be specified.

The tab title bar and tab name can be populated with data using either the context
panel UIM page or using the tab-name and tab-title attributes in the .tab file.
Where the context panel UIM page is used only to add content to the tab name
and tab title, the height attribute should be set to zero.

Table 86. Attributes of the context element

Attribute Description

page-id Optional.

A reference to the UIM page that will be used for the content
of the context panel. If this is not specified, the tab-name and
tab-title attributes must be specified.

tab-name Optional.

The text that will be displayed in the tab bar. The attribute
must reference an entry in the associated properties file.

148 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 86. Attributes of the context element (continued)

Attribute Description

tab-title Optional.

The text that will be displayed in the tab title bar. The
attribute must reference an entry in the associated properties
file.

height Optional.

The pixel height of the context panel. This is only relevant if a
page-id attribute has been specified to define a context panel.

The default value if not specified is 150 pixels.

Related reference:
“Context panel UIM” on page 152
A context panel is a specific type of UIM page identified by the PAGE element that
contains an attribute of TYPE="DETAILS".

Tab navigation element:

The navigation element defines what pages are opened within a tab.

A single page can be defined using the page-id attribute, or multiple pages can be
defined using a reference to the tab navigation configuration file (.nav).

Note: The navigation element is mandatory and one of either page-id or id must
be specified.

Table 87. Attributes of the navigation element

Attribute Description

page-id Optional.

A reference to the UIM page that will be opened in the tab.
When a link to this UIM page is selected, it will automatically
trigger the page to be opened in a new tab.

id Optional.

A reference to a tab navigation configuration file (.nav).

Related reference:
“Tab navigation” on page 160
The various UIM pages are grouped as part of a tab that can be navigated to
within a tab. Tab navigation includes the Content Area Navigation Bar and the
Page Group Navigation Bar components.

Tab smart-panel element:

The content of the smart panel is defined by a UIM page, referenced by the
page-id attribute.

Similar to the context panel, the UIM elements that can be used are limited. Refer
to User Interface Element 20 of “Tabs” on page 145 for an example of a smart
panel configured in an application.

Cúram web client reference 149

Table 88. Attributes of the smart-panel element

Attribute Description

page-id Mandatory.

A reference to the UIM page that will be displayed in the
smart panel of the tab.

title Mandatory.

The text for the title that will be displayed for the smart panel,
both when it is expanded and when it is collapsed. The
attribute must reference an entry in the associated properties
file

width Optional.

The initial width of the smart panel when it is expanded. The
default value if this attribute is not set is 250 pixels.

collapsed Optional.

Boolean indicating if the smart panel should be expanded or
collapsed by default. The default value if this attribute is not
set is true.

Related reference:
“Context panel UIM” on page 152
A context panel is a specific type of UIM page identified by the PAGE element that
contains an attribute of TYPE="DETAILS".

Tab tab-refresh element:

The tab-refresh element allows the tab actions menu, tab navigation and context
panel to be refreshed based on different events.

By default, only the content area of a tab is refreshed when a modal dialog is
submitted. When a modal dialog is either closed or canceled without an action
being performed, the content area is not refreshed.

The tab actions menu, tab navigation and context panel can all be refreshed based
on two events. The first event is when a specific UIM page is loaded in the content
area, and the second event is when a UIM page is submitted from a modal or the
content area. The following list describes how each element of a tab is refreshed:

Tab Actions Menu
Refreshing the tab actions menu results in updating the entries in the
menu that can be dynamically disabled or hidden. See the related link for
more information about dynamic support.

Tab Navigation
Refreshing the tab navigation results in updating the entries in the tab
navigation bar and page group navigation bar that can be dynamically
disabled or hidden. See the related link for more information about
dynamic support.

Context Panel
Refreshing the context panel reloads the UIM page that is displayed in the
context panel.

Content Area
Refreshing the content area reloads the UIM page that is displayed in the

150 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

content area. This refresh option is available for use only where a modal
dialog has been opened from the list drop-down panel of a nested
expandable list.

By default only the parent of a list drop-down panel is updated when the
modal dialog is submitted. Where the list drop-down panel exists in a
nested expandable list, this will result in the parent list reloading and not
the entire content area.

The two different type of refresh events can be configured by using the child
elements that are detailed in the following table.

Table 89. Supported child elements of the tab-refresh element

Element Description

onload 1..n.

Defines a refresh event, where when the specified page is
loaded in the content area, the defined parts of the tab are
updated.

onsubmit 1..n.

Defines a refresh event, where when the specified page is
submitted from a modal or in the content area, the defined
parts of the tab are updated.

onsubmit/onload

The onsubmit and onload elements both require the same set of attributes, as
described in the following table.

Table 90. Attributes of the onload/onsubmit Elements

Attribute Description

page-id Mandatory.

A reference to the UIM page to associate with the refresh
event.

context Optional.

Boolean indicating if the context panel should be update when
the specified page is loaded or submitted.

menu-bar Optional.

Boolean indicating if the tab actions menu should be updated
when the specified page is loaded or submitted. See the
related link for more information about dynamic support.

navigation Optional.

Boolean indicating if the tab navigation should be updated
when the specified page is loaded or submitted. See the
related link for more information about dynamic support.

Cúram web client reference 151

Table 90. Attributes of the onload/onsubmit Elements (continued)

Attribute Description

main-content Optional.

Boolean indicating if the main content area should be updated
when the specified page is loaded or submitted.

This type of refresh event must only be used for modal
dialogs that are opened from a list dropdown panel in a
nested expandable list.

Related reference:
“Tab actions menu dynamic support” on page 158
The tab actions menu supports the ability to dynamically enable or disable entries,
and hide or show entries. This feature is supported using a combination of the
dynamic attribute of the menu-item element, the loader-registry element and a
Java loader implementation.

Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that
contains an attribute of TYPE="DETAILS".

This type of UIM page can only use a subset of existing UIM elements, as
indicated in the following list:
v SERVER_INTERFACE can only be used with a DISPLAY phase
v ACTION_CONTROL can only be used with an ACTION type
v The following elements are not supported:

– MENU

– SHORTCUT_TITLE

– JSP_SCRIPTLET

– DESCRIPTION

– INFORMATIONAL

– SCRIPT

– INCLUDE

– VIEW

Note: These same limitations apply to the smart panel UIM pages, but are not
enforced.

A mandatory TAB_NAME element is required for context panel UIM pages, which
allows for dynamic information to be added to the tab name. Additionally, a
mandatory PAGE_TITLE element is required to add information to the tab title bar.
Related reference:
“TAB_NAME” on page 105
“PAGE TITLE” on page 101

Tab example configuration file
An example is provided of a tab configuration file.

The following example shows a tab configuration file named SimpleTab.tab.

152 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The SimpleTab.tab file should have a corresponding SimpleTab.properties file,
which details the localizable content, for example:

Tab actions menu
The tab actions menu is a drop-down menu in the tab title bar. Each menu item
corresponds to a tab-specific action.

The menu items support opening UIM pages in the content area of a tab, or
alternatively opening a modal dialog to perform some action - these are identified
by an ellipses (...). Additionally, it is possible to download a file directly from a
menu item.

The tab actions menu also supports the ability to dynamically hide and show
items, and enable and disable items in the menu. Refer to User Interface Element 5
of “Tabs” on page 145 for an example of a tab actions menu configured in an
application. The menu items that are dynamically hidden are disabled in the menu.

Tab actions menu definition
Define a tab actions menu by creating an XML file with the extension .mnu in the
clientapps directory.

The root XML element in the .mnu file is the menu-bar element and the attributes
allowed on this element are defined in the following table.

<?xml version="1.0" encoding="UTF-8"?>
<tc:tab-config

id="SimpleTab">

<tc:page-param name="concernroleid"/>

<tc:menu id="SimpleMenu"/>

<tc:context page-id="SimpleDetailsPanel"
tab-name="simple.tab.name" />

<tc:navigation id="SimpleNavigation"/>

<tc:smart-panel page-id="SimpleSmartPanel"
title="smart.panel.title"
collapsed="true"
width="300" />

<tc:tab-refresh>
<tc:onload page-id="SimpleHome" navigation="true"/>
<tc:onsubmit page-id="ModifySomething"

context="true" menu-bar="true"/>
</tc:tab-refresh>

</tc:tab-config>

Figure 55. SimpleTab.tab

simple.tab.name=Simple Tab
smart.panel.title=Smart Panel

Cúram web client reference 153

Table 91. Attributes of the menu-bar element

Attribute Description

id Mandatory.

The unique identifier for the menu, which must match the
name of the file. The identifier is used when a menu is
included in a tab configuration by using the menu element.

A menu definition can be reused and referenced by multiple tab configurations.
The menu itself comprises of menu items and submenus, which are used to group
menu items. The child elements outlined in the following table are used to define
the structure of the menu. See the child topics for more information.

Table 92. Supported child elements of the menu-bar element

Element Description

menu-item 0..n.

Defines a single entry in the menu, which links to a UIM page
that can be opened in a modal dialog or in the content area of
a tab.

submenu 0..n.

Defines a grouping of menu items, which form a sub menu.

menu-separator 0..n.

Defines a separator line between entries in the menu.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically
change the state of the menu-items.

Tab actions menu menu-item element:

An action entry in the tab actions menu is defined by the menu-item element.

The attributes of the menu-item element are defined in the following table.

A menu-item can do the following actions:
v Open a UIM page in the content area of a tab.
v Open a UIM page in a modal dialog.
v Download a file.

Menu items which open modal dialogs are identified by an ellipsis (...), which
indicates that further actions are required.

Table 93. Attributes of the menu-item element

Attribute Description

id Mandatory.

The unique identifier for the menu-item, which must be unique
within the configuration file.

154 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 93. Attributes of the menu-item element (continued)

Attribute Description

page-id Mandatory.

A reference to the UIM page to open when the menu-item is
selected.

title Mandatory.

The text that will be displayed for the menu-item. The attribute
must reference an entry in the associated properties file.

open-as Optional.

Where set, this attribute indicates that the UIM page to be
displayed should be opened as a modal dialog. The only value
supported is modal.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to menu-item s which open in a modal dialog
should be displayed. The default is true. The attribute is
applicable only where the open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute
has not been set will not add the ellipsis to the menu-item.

window-options Optional.

Defines the height and width of a modal dialog opened from
the menu-item. This is only applicable where the open-as
attribute is set to modal.

The format for the attribute is:

width=<pixel value>,height=<pixel value>

For example:

window-options="width=500,height=300"

The height portion of the window-options is optional and if
not specified, the height of the dialog will be automatically
calculated.

dynamic Optional.

Boolean indicating that the menu-item can be dynamically
disabled or hidden. For more information see the related link.

visible Optional.

Boolean indicating if the menu-item is hidden or visible. The
default is true.

type Optional.

Defines a menu-item that downloads a file when selected. The
only value supported is FILE_DOWNLOAD. For more information
see the related link.

description Optional.

Defines text which forms a description for the menu-item. This
is used for administration purposes only. The attribute must
reference an entry in the associated properties file.

Cúram web client reference 155

Related reference:
“Tab actions menu dynamic support” on page 158
The tab actions menu supports the ability to dynamically enable or disable entries,
and hide or show entries. This feature is supported using a combination of the
dynamic attribute of the menu-item element, the loader-registry element and a
Java loader implementation.
“File download menu item” on page 158
A menu-item can reference a FILE_DOWNLOAD configuration by using the
type="FILE_DOWNLOAD" attribute.

Tab actions menu submenu element:

A submenu is a group of menu items and is defined by using the submenu element.

The attributes of the submenu element are defined in the following table.

Table 94. Attributes of the submenu element

Attribute Description

id Mandatory.

The unique identifier for the submenu, which must be unique
within the configuration file.

title Mandatory.

The text that will be displayed for the submenu. The attribute
must reference an entry in the associated properties file.

description Optional.

Defines text which forms a description for the submenu. This is
used for administration purposes only. The attribute must
reference an entry in the associated properties file.

The submenu element allows for further submenus to be defined, in addition to
including menu items and menu separators. Use the supported child attributes that
are defined in the following table:

Table 95. Supported child elements of the submenu element

Element Description

menu-item 0..n.

Defines a single entry in the submenu, which links to a UIM
page that can be opened in a modal dialog or in the content
area of a tab.

submenu 0..n.

Defines a further sub grouping of menu items.

menu-separator 0..n.

Defines a separator between entries in the submenu.

Tab actions menu menu-separator element:

A tab actions menu, including associated submenus, can include a line separator to
divide the entries in the menu.

156 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Define a line separator by using a menu-separator element. The attributes of the
menu-separator are outlined in the following table.

Table 96. Attributes of the menu-separator element

Attribute Description

id Mandatory.

The unique identifier for the menu-separator.

Tab actions menu loader-registry element:

The loader-registry element defines a list of loader implementations that is used
to dynamically enable or disable, and to hide or show the menu items in the tab
actions menu.

The following table shows the supported child elements of the loader-registry
element.

Table 97. Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used
to dynamically set the visibility and enabled state of the menu
items.

Related reference:
“Tab actions menu dynamic support” on page 158
The tab actions menu supports the ability to dynamically enable or disable entries,
and hide or show entries. This feature is supported using a combination of the
dynamic attribute of the menu-item element, the loader-registry element and a
Java loader implementation.

Tab actions menu loader element:

The loader element defines a single loader implementation that will dynamically
set the state of the menu items in a tab actions menu.

The following table shows the attributes of the loader element.

Table 98. Attributes of the loader Element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicMenuStateLoader interface.

Related reference:
“Tab actions menu dynamic support” on page 158
The tab actions menu supports the ability to dynamically enable or disable entries,
and hide or show entries. This feature is supported using a combination of the
dynamic attribute of the menu-item element, the loader-registry element and a
Java loader implementation.

Cúram web client reference 157

Tab actions menu dynamic support
The tab actions menu supports the ability to dynamically enable or disable entries,
and hide or show entries. This feature is supported using a combination of the
dynamic attribute of the menu-item element, the loader-registry element and a
Java loader implementation.

The Java loader implementation registered in the navigation configuration will be
called when the tab is first loaded and based on the refresh options configured for
a tab. The refresh options are configured in the tab configuration file (.tab).

A menu item can be specified as dynamic in the menu configuration file (.mnu) by
adding dynamic="true" to the relevant menu-item element.

Where the dynamic attribute is set, a loader-registry is then required and should
define the fully qualified classname which implements the
curam.util.tab.impl.DynamicMenuStateLoader interface.

The DynamicMenuStateLoader interface requires one method, loadMenuState, to be
implemented. The loadMenuState method is passed the following parameters:
v a list of menu item identifiers
v a set of name-value page parameters pairs

The loader implementation must decide which menu items to disable or hide. The
method returns an object that represents the state of a given menu bar. A state
must be set for all identifiers in the list. For more information on this interface,
consult the Java Documentation.

Note: The list of menu item identifiers passed to the loadMenuState method are
only those that have been identified as dynamic by the dynamic attribute on the
menu-item element.
Related reference:
“Tab tab-refresh element” on page 150
The tab-refresh element allows the tab actions menu, tab navigation and context
panel to be refreshed based on different events.

File download menu item
A menu-item can reference a FILE_DOWNLOAD configuration by using the
type="FILE_DOWNLOAD" attribute.

The following sample code shows an example of using the FILE_DOWNLOAD element
in the curam-config.xml file:

The page-id attribute must match the page-id attribute specified for the
FILE_DOWNLOAD element.

When configuring the FILE_DOWNLOAD element in curam-config.xml, only the
parameters defined for the tab can be used as values for the PAGE_PARAM attribute
of the INPUT element.

The following example shows a fragment of the FILE_DOWNLOAD configuration from
the curam-config.xml file. In this example, the fileID page parameter must be
specified as a page-param element in the tab configuration file (.tab).

<mc: menu-item id="filedownloadItem" title="some.text.title"
type="FILE_DOWNLOAD" page-id="FileDownload"/>

158 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note also that the PAGE_ID attribute value of FileDownload matches the page-id
attribute in the example above.

Related reference:
“File Downloads” on page 56

Tab actions menu example configuration file
An example is provided of a tab actions menu configuration file.

The following example shows an example tab actions menu configuration file
named SimpleMenu.mnu.

The SimpleMenu.mnu should have a corresponding SimpleMenu.properties file,
which details the localizable content, for example:

<FILE_DOWNLOAD CLASS="some.pkg.readFile"
PAGE_ID="FileDownload">

<INPUT PAGE_PARAM="fileID"
PROPERTY="key$fileID"/>

<FILE_NAME PROPERTY="result$name"/>
<FILE_DATA PROPERTY="result$contents"/>
<CONTENT_TYPE PROPERTY="result$contentType"/>

</FILE_DOWNLOAD>

Figure 56. FILE_DOWNLOAD Configuration from curam-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<mc:menu-bar

id="SimpleMenu"

<mc:loader-registry>
<mc:loader class="some.pkg.SimpleMenuStateLoader"/>

</mc:loader-registry>

<mc:submenu id="Person">

<mc:menu-item id="dynamicLink"
title="dynamicLink.title"
page-id="SomeDynamicContent"
dynamic="true"/>

<mc:menu-separator id="separator1"/>

<mc:menu-item id="simpleLink"
title="simpleLink.title"
page-id="SimplePage"/>

</mc:submenu>

<mc:menu-item id="OpenModal"
title="openmodal.title"
page-id="DoSomethingInModal"
open-as="modal"
window-options="width=600"/>

</mc:menu-bar>

Figure 57. SimpleMenu.mnu

dynamicLink.title=Some Dynamic Link
simpleLink.title=A Simple Link
openmodal.title=Open a Modal

Cúram web client reference 159

Tab navigation
The various UIM pages are grouped as part of a tab that can be navigated to
within a tab. Tab navigation includes the Content Area Navigation Bar and the
Page Group Navigation Bar components.

The following list describes the tab navigation components:

Navigation Bar
The navigation bar contains a number of tabs, each of which can map to a
single UIM page or alternatively a set of UIM pages. The tabs in the
navigation bar are referred to as navigation tabs. Refer to User Interface
Element 8 of “Tabs” on page 145 for an example of a navigation bar
configured in an application.

Page Group Navigation Bar
Where a navigation tab maps to a set of UIM pages, these UIM pages are
displayed as a page group navigation bar. Each link in the page group
navigation bar is referred to as a navigation page. Refer to User Interface
Element 16 of “Tabs” on page 145 for an example of a page group
navigation bar configured in an application.

Selecting a navigation tab or navigation page will result in displaying the relevant
UIM page in the content area of the tab. For navigation tabs that have a page
group navigation bar, the first navigation page in the page group navigation bar is
selected when the navigation tab is selected.

If a user selects a subsequent navigation page and then changes to a different
navigation tab, the selected navigation page is remembered when the user returns
to the original navigation tab and the page is reloaded.

The tab navigation configuration defines when new tabs are opened and
determines what UIM page is associated with what tab.

Tab navigation definition
Tab navigation is defined by creating an XML file with the extension .nav in the
clientapps directory.

The root XML element in the .nav file is the navigation element and the attributes
allowed on the element are defined in the following table.

Table 99. Attributes of the navigation element

Attribute Description

id Mandatory.

The unique identifier for the navigation configuration, which
must match the name of the file. The identifier is used when a
navigation configuration is included in a tab configuration,
using the navigation element.

The child elements outlined in the following table are used to define the structure
of the navigation. For more information, see the child topics.

160 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 100. Supported child elements of the navigation element

Element Description

nodes Mandatory.

Groups navigation pages and navigation tabs together.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically
change the state of the navigation tabs and navigation pages.

Tab navigation nodes element:

The nodes element groups together the elements that represent navigation tabs and
navigation pages.

The elements are outlined in the following table.

Table 101. Supported child elements of the nodes element

Element Description

navigation-page 1..n.

Defines a navigation tab that has no page group navigation
bar.

navigation-group 1..n.

Defines a navigation tab which contains a page group
navigation bar. This element groups together navigation-page
elements that form the page group navigation bar.

Tab navigation navigation-group element:

The navigation-group element defines a navigation tab that contains a page group
navigation bar.

The attributes of the element are outlined in the following table.

Table 102. Attributes of the navigation-group element

Attribute Description

id Mandatory.

The unique identifier for the navigation-group, which must be
unique within the configuration file.

title Mandatory.

The text that will be displayed for the navigation tab in the
navigation bar. The attribute must reference an entry in the
associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab can be dynamically
disabled or hidden.

Cúram web client reference 161

Table 102. Attributes of the navigation-group element (continued)

Attribute Description

visible Optional.

Boolean indicating if the navigation tab is hidden or visible.
The default is true.

description Optional.

Defines text which forms a description for the navigation tab.
This is used for administration purposes only. The attribute
must reference an entry in the associated properties file.

The navigation-group element groups together navigation-page elements to form
the page group navigation bar. The first navigation-page element defined indicates
the UIM page to display the first time a navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab, will
remember the previously selected navigation page.

Table 103. Supported child elements of the navigation-group element

Element Description

navigation-page 1..n.

Defines the set of navigation pages that are grouped together
to form the page group navigation bar.

Related reference:
“Tab navigation dynamic support” on page 164
The tab navigation bar and page group navigation bar support the ability to
dynamically enable or disable, and hide or show, navigation tabs and navigation
pages.

Tab navigation navigation-page element:

A navigation-page element can represent both a navigation tab and navigation
page.

If the navigation-page element is defined as a child element of the nodes element,
it represent a navigation tab which is part of the navigation bar. If the
navigation-page element is defined as a child element of the navigation-group
element, it represent a navigation page which is part of the page group navigation
bar.

The attributes of the navigation-page element are outlined in the following table.

Table 104. Attributes of the navigation-page element

Attribute Description

id Mandatory.

The unique identifier for the navigation-page, which must be
unique within the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the navigation tab
or navigation page is selected.

162 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 104. Attributes of the navigation-page element (continued)

Attribute Description

title Mandatory.

The text that will be displayed for the navigation tab or
navigation page. The attribute must reference an entry in the
associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab or navigation page
can be dynamically disabled or hidden.

visible Optional.

Boolean indicating if the navigation tab or navigation page is
hidden or visible. The default is true.

description Optional.

Defines text which forms a description for the navigation tab
or navigation page. This is used for administration purposes
only. The attribute must reference an entry in the associated
properties file.

Related reference:
“Tab navigation dynamic support” on page 164
The tab navigation bar and page group navigation bar support the ability to
dynamically enable or disable, and hide or show, navigation tabs and navigation
pages.

Tab navigation loader-registry element:

The loader-registry element defines a list of loader implementations that are used
to dynamically enable or disable, and hide or show both the navigation pages and
navigation tabs.

The following table shows the supported child elements of the loader-registry
element.

Table 105. Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used
to dynamically set the visibility and enabled state of the
navigation pages and navigation tabs.

Related reference:
“Tab navigation dynamic support” on page 164
The tab navigation bar and page group navigation bar support the ability to
dynamically enable or disable, and hide or show, navigation tabs and navigation
pages.

Tab navigation loader element:

The loader element defines a single loader implementation that will dynamically
set the state of the navigation pages and navigation tabs.

Cúram web client reference 163

The following table shows the attributes of the loader element.

Table 106. Attributes of the loader element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicNavStateLoader interface.

Related reference:
“Tab navigation dynamic support”
The tab navigation bar and page group navigation bar support the ability to
dynamically enable or disable, and hide or show, navigation tabs and navigation
pages.

Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to
dynamically enable or disable, and hide or show, navigation tabs and navigation
pages.

Dynamic support is implemented through a combination of the dynamic attribute
of the navigation-page and navigation-group elements, the loader-registry
element and a Java loader implementation.

The Java loader implementation registered in the menu configuration will be called
when the tab is first loaded and based on the refresh options configured for a tab.
The refresh options are configured in the tab configuration file (.tab).

A navigation tab and navigation page can be specified as dynamic in the
navigation configuration file (.nav) by adding dynamic="true" to the relevant
navigation-page or navigation-group elements.

Where a dynamic attribute is set, a loader-registry is then required and should
define the fully qualified classname which implements the
curam.util.tab.impl.DynamicNavStateLoader interface.

The DynamicNavStateLoader interface requires one method, loadNavState, to be
implemented. The loadMenuState method is passed the following parameters:
v A list of navigation-group and navigation-page identifiers
v A set of name-value page parameters pairs

The loader implementation must decide which items to disable or hide. The
method returns an object that represents the state of the navigation tabs and
navigation pages. A state must be set for all identifiers in the list. For more
information on this interface, consult the Java Documentation.

Note: The list of navigation identifiers passed to the loadNavState method are
only those that have been identified as dynamic by the dynamic attribute on the
navigation-page or navigation-group elements.

In addition, a navigation-page and navigation-group element cannot use the same
identifier. The identifiers must be unique for all elements within the file.
Related reference:
“Tab tab-refresh element” on page 150
The tab-refresh element allows the tab actions menu, tab navigation and context

164 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

panel to be refreshed based on different events.

Tab navigation example configuration file
An example tab navigation configuration file is provided.

The following example shows an example tab navigation configuration file named
SimpleNavigation.nav.

The SimpleNavigation.nav should have a corresponding
SimpleNavigation.properties file, which details the localizable content. For
example:

Opening tabs and sections
You can open new sections and tabs by using several methods.
v A section can be opened directly by clicking the relevant section tab control.
v A tab can be opened directly by clicking the relevant tab control.
v Any link in the application has the potential to open a new tab.
v A section can be opened when a new tab is opened that is associated with any

section except the current section.

<?xml version="1.0" encoding="UTF-8"?>
<nc:navigation

id="SimpleNavigation"

<nc:loader-registry>
<nc:loader class="some.pkg.SimpleNavStateLoader"/>

</nc:loader-registry>

<nc:nodes>
<nc:navigation-page id="Home"

page-id="Home"
title="Home.Title"/>

<nc:navigation-group id="Background"
title="Background.Title">

<nc:navigation-page id="Addresses"
page-id="ParticipantAddressList"
title="Addresses.Title"/>

<nc:navigation-page id="PhoneNumbers"
page-id="ParticipantPhoneNumbers"
title="Phone.Title"/>

</nc:navigation-group>

<nc:navigation-page id="Identity"
title="Identity.Title"
page-id="ParticipantIdentity"
dynamic="true"/>

</nc:nodes>

</nc:navigation>

Figure 58. SimpleNavigation.nav

Home.Title=Home
Background.Title=Background
Addresses.Title=Addresses
Phone.Title=Phone Numbers
Identity.Title=Identity

Cúram web client reference 165

Opening a section or tab by clicking the relevant tab control is straightforward. To
open a tab that is already open, but not in focus, the tab control is selected and
focus is given to the tab.

Opening a section by clicking the relevant section tab control will give focus to
that section. Any tabs already open in that section will then be accessible.

When a section is opened (directly) for the first time, it may contain no tabs or
may result in the automatic opening of a default tab, depending on the section
configuration.

Opening a section or tab as a result of selecting a link is more complicated. When
a link is selected, before the relevant UIM page is opened, the Cúram client will
automatically determine if it should be opened in a new tab and if that tab should
be opened in a new section. This is determined based a number of factors that will
be detailed in the following sections.

Using links to open tabs and sections
One of the actions that can trigger opening a new tab or new section is selecting a
link to a UIM page. There are many different ways in the Cúram application to
open a UIM page and many different contexts in which a UIM can be displayed.

A UIM page can be displayed in the following areas of an application:
v A content area
v A tab context panel
v A tab smart panel
v A modal dialog
v A list dropdown panel

A UIM page in any of these contexts can define links to another UIM page. There
are different types of links:
v Page level actions menu (content area only)
v Modal button bar (modal dialog only)
v Buttons
v Hyperlinked text
v List actions menu

In addition to links on a UIM page, a UIM page can be opened via the following
actions:
v Selecting an entry in the tab actions menu
v Selecting a link in the section shortcut panel
v Selecting a navigation bar tab
v Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be
defined in a UIM page, see the related link. For the purposes of this section,
selecting a link will apply to any action that can open a new UIM page.
Related reference:
“UIM Reference” on page 52
Learn about the Cúram User Interface Meta-data (UIM) format used to specify the
contents of the Cúram web application client pages.

166 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Page to tab and tab to section associations
A page is associated with a tab based on the navigation configuration for the tab.
A tab is associated with a section through the section configuration file.

Page to tab associations

The navigation for a tab is configured using the navigation element in the tab
configuration file (.tab) and also, if defined, the navigation configuration file
(.nav).

Where no tab navigation is defined for a tab, the navigation element defines a
single UIM page (via the page-id attribute) that will result in opening the tab. A
link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using a page-id attribute in
the navigation configuration file (.nav) is considered to be associated with the tab.
This means that a link to any of these referenced UIM pages will result in opening
the relevant tab.

The page to tab association must be unique. This means that a page can be referenced only
once by the navigation configuration for a tab. As a result, a navigation configuration
cannot be re-used across multiple tabs.

There are a number of exceptions to this rule, but they are limited:
v The same UIM page can be referenced by more than one navigation

configuration file (.nav), where the page is only ever linked-to from within the
context of the tab.
This means that any links to the UIM page are always within the same tab. For
example, a Notes UIM page is referenced by both the Person and Employer tabs.
The only link to the Notes UIM page is from the page group navigation bar. The
Notes UIM page is never referenced from a shortcut panel or linked by a UIM
page that is not displayed within the context of the Employer or Person tabs.

v The same UIM page can be referenced by more than one navigation
configuration for a tab, where the tabs are included in different application
configurations (.app).

v A navigation configuration file (.nav) can be reused by two tabs, where the tabs
are included in two different application configurations (.app).

Resolve Pages: Because of the way in which the Cúram client application handles
resolve pages and opening new tabs, it is recommended not to use resolve pages in
a navigation configuration. A resolve page is a specific type of UIM page that
contains only a JSP_SCRIPTLET element.

When a link to a resolve page is selected, the Cúram client recognises that it is a
resolve page and executes the content of the JSP_SCRIPTLET. The resulting UIM
page that the JSP_SCRIPTLET redirects to is then used to determine what tab the
page should be opened in.

Tab to section associations

A tab is associated with a section by listing it through the tab element in the
section configuration file (.sec).

When a new tab is opened as a result of selecting a link, the tab is opened in the
associated section and focus is given to that section and tab.

Cúram web client reference 167

Related reference:
“Tab navigation” on page 160
The various UIM pages are grouped as part of a tab that can be navigated to
within a tab. Tab navigation includes the Content Area Navigation Bar and the
Page Group Navigation Bar components.
“JSP SCRIPTLET” on page 81

Tab and section page parameters
The client determines if a new tab is opened based on the page to tab to section
association. In addition, existing open tabs, and values of the parameters that are
passed to a tab, are also considered.

Two instances of the same tab can be opened, where each instance is identified by
the page parameters that have been provided. For example, James Smith and Linda
Smith are uniquely identified by their concern role ID. The concern role ID is
defined as a page parameter for the Person tab.

When a link to James Smith is selected, a new tab is opened showing the details
for James Smith. A subsequent link to Linda Smith is selected and a new instance
of the same tab configuration is opened, displaying Linda Smiths details.

When a link is selected, the Cúram client application automatically determines
what tab, and section, it is associated with. It then compares this information,
along with the page parameters to determine what action to take.

The rules for opening tabs are detailed in the following table.

Note: The parameters passed when a link is selected must match the names of the
page parameters defined in the tab configuration file.

Where not all required page parameters are provided, the behavior of those tabs
within the application is not guaranteed. Any extra parameters provided will be
ignored and not passed to the tab.

Table 107. Tab Opening Rules

Page to Tab Association Page Parameter Values Action

Page maps to current tab Match Page opens in current tab

Page maps to current tab Differ Page opens in new instance of tab

Page maps to existing
open tab

Differ Page opens in a new instance of
existing tab

Page maps to existing
open tab

Match Page opens in existing tab

Page maps to new,
unopened tab

N/A Page opens in new tab

Limitations: There are a number of limitations and notes to be aware of when
designing UIM pages to open in new tabs.
v Links in a modal dialog obey dialog rules first and only obey the rules for

opening a tab when the dialog is closing.
v A link defined to open a modal dialog ignores the tab rules.
v Links in a tab navigation bar and page group navigation bar will always open

within the context of the current tab.

168 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v A submit link within the content area cannot open a new tab, even if the UIM
page is configured to be associated with a different tab.

v If a UIM page is configured to be associated with a tab then the same page
cannot be used as INLINE_PAGE in expandable lists.

Tab ordering
A default tab ordering is configured in the application that applies when you open
a new tab. You can change the default tab ordering.

The default behavior when opening a new tab in the application is that the tab
opens at the end of the tab list. This behavior can be changed to open new tabs
next to the tab where the request was made. This is known as tab ordering.

The Application property curam.environment.enable.sequential.tabs controls tab
ordering. The default value for the tab ordering is set to false.

Working with the Cúram user interface
Use this information to develop user interface elements with the Cúram Client
Development Environment for Java. User interface elements that can be created
with the Cúram Client Development Environment for Java include shortcut panels,
tabs, modal dialogs, tab navigation, and lists.

The topics show how to create a simple client application, and then expand the
application with more complex features.
Related concepts:
“Cúram web client reference,” on page 1
Provides a reference for the Cúram web client application. The Cúram web client
has an HTML user interface that is generated by a middle-tier web application. It
conforms to the Java EE architecture and is driven by JavaServer pages and servlet
technology that is based on the Apache Struts framework. This HTML user
interface uses standard browser and Web 2.0 technologies, including JavaScript and
cascading style sheets.

Prerequisites for configuring the user interface
Before you start configuring the Cúram user interface, ensure that you have an
understanding of the necessary development environments.

You must have an understanding of development using both the Cúram Client
Development Environment for Java (CDEJ) and the Cúram Server Development
Environment for Java (SDEJ).

In addition, it is useful to have a basic understanding of Java Platform, Enterprise
Edition (Java EE) development environments, Extensible Markup Language (XML),
and web technologies such as Hypertext Transfer Protocol (HTTP), JavaServer
Pages (JSP), Cascading Style Sheets (CSS), and JavaScript.

It is assumed that the necessary steps to install the Cúram application and the
related third-party tools have been completed.

Creating a simple application
The topics in the following section describe how to create a simple application that
has a single section and a single page of content.

Cúram web client reference 169

The simple application contains the following items:
v Application name
v Application subtitle
v Welcome message
v Application menu
v Section
v Tab

After the Cúram application and the related third-party tools have been installed,
two main projects are used for development, the EJBServer project and the
webclient project. To create a simple application, you must create and modify files
in the following directories:
v webclient\components\component-name\

v EJBServer\components\component-name\clientapps

v EJBServer\components\component-name\codetable

v EJBServer\components\component-name\Data_Manager

v EJBServer\project\config

In each of the previous examples, component-name is the name of the custom
component that is used to store customer-specific content to the Cúram
application.

Defining an application
Define a simple application that will contain a single section. An application is a
particular view of the Cúram client that is defined for a specific user or role.

Define an application by using an XML configuration file with the extension .app.
The .app files, are in the EJBServer\components\component-name\clientapps
directory, where component-name is a custom component.

The SimpleApp.app XML configuration file requires a corresponding
SimpleApp.properties file that details the localizable content for the application, as
shown in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:section-ref id="SimpleAppHomeSection"/>

</ac:application>

Figure 59. SimpleApp app

170 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The SimpleApp.app XML configuration file configures the following elements in the
application banner of the application:
v An application name (title)
v An application subtitle (subtitle)
v A welcome message (user-message)
v An application menu (application-menu)

Adding a section to an application
Add a section to an application, where an application can define between one and
five sections. You can configure each section to display multiple object tabs.

The SimpleApp.app application file references one section by using the
SimpleAppHomeSection id attribute. The id attribute refers to a section configuration
file, which is an XML configuration file with the extension .sec. Similar to the
SimpleApp.app file, you must add the .sec file to the EJBServer\components\
component-name\clientapps directory, and the id attribute must match the name of
the file.

The following figure shows an example section file, SimpleAppHomeSection.sec.

The SimpleAppHomeSection.sec file has a corresponding
SimpleAppHomeSection.properties file that details the localizable content, for
example:

The title attribute defines the name of the section tab. In addition, because only
one tab is defined for the section, which is SimpleHome, the hide-tab-container
attribute is used to hide the object tab bar.

Adding a tab to a section
Add a tab to section, where a tab represents a business object, for example, a case
or a participant. However, a tab can also represent a logical grouping of
information.

The SimpleAppHomeSection.sec file references one tab by using the id SimpleHome.
The id refers to a tab configuration file, which is an XML configuration file with
the extension .tab. Similar to the .app and .sec files, the tab configuration file is

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=C\u00FAram
SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:section

id="SimpleAppHomeSection"
title="Section.Home.Title"
hide-tab-container="true">

<sc:tab id="SimpleHome"/>

</sc:section>

Figure 60. SimpleAppHomeSection.sec

Section.Home.Title=Home

Cúram web client reference 171

added to the EJBServer\components\component-name\clientapps directory. The id
attribute must match the name of the file.

The SimpleHome.tab file has a corresponding SimpleHome.properties file that
details the localizable content, for example:

The tab-title attribute defines what is displayed on the tab title bar. As the object
tab bar is turned off in the .sec file, the tab-name attribute is ignored.

SimpleHome.tab references a single UIM page by using the page-id attribute of the
navigation element.

Add a UIM page to a tab
Add a Cúram user interface meta-data (UIM) format page to a tab. In a UIM page,
you define page content by using files that have the extension .uim. The .uim files
are in the webclient\components\component-name directory.

The SimpleHome.tab file references the SimpleHome UIM page.

The SimpleHome.uim file has a corresponding SimpleHome.properties file that
details the localizable content, for example:

The SimpleHome.uim file defines a UIM page that has no main content and only a
page title, PAGE_TITLE. The content includes the following items that are common
to most UIM pages:
v Tab title
v Page title
v Refresh button

<?xml version="1.0" encoding="ISO-8859-1"?>
<tc:tab-config

id="SimpleHome">

<tc:context tab-name="home.tab.name"
tab-title="home.tab.name"/>

<tc:navigation page-id="SimpleHome"/>

</tc:tab-config>

Figure 61. SimpleHome.tab

home.tab.name=Home

<?xml version="1.0" encoding="UTF-8"?>

<!-- This is a sample home page. -->
<PAGE PAGE_ID="SimpleHome">

<PAGE_TITLE>
<CONNECT><SOURCE NAME="TEXT"

PROPERTY="PageTitle.StaticText"/>
</CONNECT>

</PAGE_TITLE>

</PAGE>

Figure 62. SimpleHome.uim

PageTitle.StaticText=Simple Home

172 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v Print button
v Help button

Associating a user with an application
After you create the content for a simple application, create and link a user to the
application.

A user exists as an entry on the Users database tab. Create a user by using a dmx
file and adding the file to the EJBServer\components\component-name\Data_Manager
directory.

You must reference the Users.dmx file in the datamanager_config.xml file that is in
the EJBServer\project\config directory, for example:

When the entry is referenced from the Users.dmx file, it is included in the database
when the database target is executed.

The previous Users.dmx file example shows the creation of a single user who is
named simple with a password of password. The APPLICATIONCODE field links the
user to a particular application by referencing a code table entry in the
APPLICATION_CODE code table. When a user logs on, the value of the
APPLICATIONCODE field in the Users database table is used to determine both the
application and the user's home page. The value of the code matches the name of
the application .app file to use. The description of the code value indicates the
name of the UIM page to be displayed as the home page. The home page is
displayed when a user first logs on.

<table name="USERS">

...

<row>
<attribute name="USERNAME">

<value>simple</value>
</attribute>
...
<attribute name="ROLENAME">

<value>SUPERROLE</value>
</attribute>
<attribute name="APPLICATIONCODE">

<value>SimpleApp</value>
</attribute>
...
<attribute name="DEFAULTLOCALE">

<value>en</value>
</attribute>
<attribute name="FIRSTNAME">

<value>Simple</value>
</attribute>
<attribute name="SURNAME">

<value>User</value>
</attribute>

</row>

</table>

Figure 63. Users.dmx

<entry name="components/custom/Data_Manager/USERS.dmx"
type="dmx" base="basedir"/>

Cúram web client reference 173

The following example shows a CT_APPLICATION_CODE.ctx file that is in the
EJBServer\components\component-name\codetable directory:

The example defines a SimpleApp code with a description of SimpleHome. The
SimpleApp code matches the id of the SimpleApp.app application. The description,
SimpleHome, maps to the SimpleHome.uim file.

Build targets required to create a simple application
To create a simple application requires several files to be added and modified,
which requires several build targets to be executed.

The following table summarizes the files that are added and modified when you
create a simple application, and the build targets that process each of the files.

Table 108. Files required to create an application and corresponding build targets

File Location Build target

SimpleApp.app and associated
properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleAppHomeSection.sec and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleHome.tab and associated
properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleHome.uim and associated
properties file

webclient\components\
component-name\

client

Users.dmx EJBServer\components\
component-name\
Data_Manager

database

datamanager_config.xml EJBServer\project\config database

CT_APPLICATION
_CODE.ctx

EJBServer\components\
component-name\codetable

server

Note: The inserttabconfiguration target is included in the database target.

After all build targets have been completed and the server and client applications
have been started, the application can be accessed by using the following URL:

To view the simple application, log on as the simple user, with the password
password.

<?xml version="1.0"?>
<codetables package="curam.util.testmodel.codetable">

<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">

<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">

<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>

</locale>
</code>

</codetable>
</codetables>

Figure 64. CT_APPLICATION_CODE.ctx

http://localhost:9080/’server_name’/AppController.do

174 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Adding a shortcut panel
Extend a simple application to include a new section that contains an example of a
shortcut panel. A shortcut panel provides quick links to open content and to
perform actions within the section.

The new section will be named Workspace and will contain the following items:
v Shortcut Panel
v Group Node
v Leaf Node
v Workspace Section
v Search Tab

Adding a section
Add a section that includes a shortcut panel to a simple application.

The following example shows a simple app file that includes a workspace section
in addition to a home section.

The workspace section is defined in the SimpleAppWorkspaceSection.sec file, which
defines a structure with two tabs. A shortcut panel has also been added to the
section by including a shortcut-panel-ref element, as shown in the following
example.

The corresponding .properties contains the localizable content for the section:

<ac:application
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:section-ref id="SimpleAppHomeSection"/>
<ac:section-ref id="SimpleAppWorkspaceSection"/>
</ac:application>

Figure 65. SimpleApp.app

<sc:section
id="SimpleAppWorkspaceSection"
title="Section.Home.Title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

<sc:tab id="SimpleSearch"/>
<sc:tab id="SimplePerson"/>

</sc:section>

Figure 66. SimpleAppWorkspaceSection.sec

Section.Home.Title=Workspace

Cúram web client reference 175

Defining the contents of a section shortcut panel
A section shortcut panel provides quick links to open content and perform actions
within the section. Users can expand and collapse the shortcut panel as required.

Configure the contents of a shortcut panel in an XML configuration file that has an
extension of .ssp and a corresponding properties file. The following example
shows an example SimpleShortcutPanel.ssp file:

The corresponding .properties contains the localizable content for the shortcut
panel:

The structure of the section shortcut panel consists of nodes of two different types,
which are group and leaf nodes. The type is configured through the type attribute.
Group nodes allow for logical grouping of leaf nodes. Each leaf node represents a
link that is displayed on the section shortcut panel.

Both group and leaf nodes have a title attribute that allows the configuration of
the text to be displayed. Additionally, leaf nodes must specify a page-id attribute
that configures the target page of the link.

The SimpleShortcutPanel.ssp file defines a group node and a leaf node, where the
group node contains the leaf node that in turn contains a hyperlink to the search
tab. Clicking the hyperlink link causes the search tab to be opened.

Defining a search tab
Define a search tab in a section that contains a single page where users can search
for a person.

The following example shows the configuration of the search tab in a section.

The corresponding .properties contains the localizable content for the tab:

<sc:section-shortcut-panel
id="SimpleShortcutPanel"
title="Panel.Title">

<sc:nodes>
<sc:node type="group" title="Group.Title" id="UI">

<sc:node type="leaf" id="search" page-id="SimpleSearch"
title="Link.Title.Search"/>

</sc:node>
</sc:nodes>

</sc:section-shortcut-panel>

Figure 67. SimpleShortcutPanel.ssp

Panel.Title=Shortcuts
Group.Title=Quick Links
Link.Title.Search=Person Search

<tc:tab-config
id="SimpleSearch">

<tc:context tab-name="search.tab.name"
tab-title="search.tab.title"/>

<tc:navigation page-id="SimpleSearch"/>

</tc:tab-config>

Figure 68. SimpleSearch.tab

176 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Define the Search Page:

The Person Search page has two distinct areas, a cluster that allows the user to
enter search criteria and a list to display the results of a search.

Figure 69 shows a screen shot of the page to search a person (named as Person
Search) below.

1. Cluster
2. Action Control
3. List

The following is the UIM code for the page:

search.tab.name=Search
search.tab.title=Person Search

Figure 69. Person Search Page

Cúram web client reference 177

The following are the main elements of note on this UIM page:
v The SERVER_INTERFACE element defines which server interface method is called

by the server when the form is submitted.

<PAGE PAGE_ID="SimpleSearch">

<SERVER_INTERFACE NAME="ACTION" CLASS="PersonFacade"
OPERATION="advancedSearch" PHASE="ACTION"/>

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>

</CONNECT>
</PAGE_TITLE>

<CLUSTER TITLE="Cluster.Title.Search" NUM_COLS="2">
<FIELD LABEL="Field.Label.LastName">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="key$dtls$lastName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Gender">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="key$dtls$gender"/>

</CONNECT>
</FIELD>
<ACTION_SET TOP="false">

<ACTION_CONTROL LABEL="Control.Label.Search"
TYPE="SUBMIT">
<LINK PAGE_ID="THIS"/>

</ACTION_CONTROL>
</ACTION_SET>

</CLUSTER>

<LIST TITLE="List.Title.Results">
<CONTAINER LABEL="Container.Label.Actions">

<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</CONTAINER>
<FIELD LABEL="Field.Label.FirstName">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="firstName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.LastName">

<CONNECT>
<SOURCE NAME="ACTION"

PROPERTY="result$dtls$dtls$lastName"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Label.Title">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="title"/>

</CONNECT>
</FIELD>

</LIST>
</PAGE>

Figure 70. SimpleSearch.uim

178 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v The CLUSTER defines the cluster on the page that contains two fields that allow
the user to enter the search criteria. These are mapped to the input parameters
of the server interface method. Refer to User Interface Element 1 in Figure 69 on
page 177.

v An ACTION_CONTROL element defines the action control on the page that allows
the search to be submitted. Refer to User Interface Element 2 in Figure 69 on
page 177.

v The LIST defines the list on the page that contains the results of a submitted
search. For each result a row is displayed which displays the person's details,
and an ACTION_CONTROL which defines a link to that person's home page. Refer to
User Interface Element 3 in Figure 69 on page 177. Selecting this link will open
the person tab which will be defined next.

The corresponding .properties should contain the localizable content for the
search page:

Build targets required to add a shortcut panel
To add a shortcut panel requires several files to be added and modified, which
requires several build targets to be executed.

Table 109. Files required to add a shortcut panel and corresponding build targets

File Location Build target

SimpleApp.app and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleWorkspaceSection.sec
and associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.uim and
associated properties file

webclient\components\
component-name\

client

Adding tab content
Extend a simple application to add more complex structured tabs to a section,
including a context panel and a content area.

In a section, configure a person tab that displays details about a person and whose
content includes a context panel and a content area that displays a person page.

Defining a person tab
A person tab contains a single page that displays the details of a person.

PageTitle.StaticText=Person Search

Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Control.Label.View=View

Container.Label.Actions=Actions

Cluster.Title.Search=Search Criteria
List.Title.Results=Results
Control.Label.Search=Search

Cúram web client reference 179

The following example shows the configuration of the person tab and the context
panel. The configuration requires a parameter to be passed to the tab when it is
opened, as defined by the page-param element.

The corresponding .properties file contains the localizable content for the person
tab:

Defining a context panel:

A context panel is displayed at the top of the tab's content area and provides
important contextual information. If configured, the context panel is always
displayed regardless of the information that is displayed in the page below it.

Define a context panel by using a UIM page. Some limitations apply to the UIM
that you can use. The following example shows the UIM code for the context panel
that is defined in the person tab:

Note the following elements and attributes in the example:

TYPE attribute
Can specify that a UIM page is intended as a context panel.

<tc:tab-config>
<tc:page-param name="personID"/>
<tc:context page-id="SimplePersonContext"/>
<tc:navigation page-id="SimplePerson"/>

</tc:tab-config>

Figure 71. SimplePerson tab

no.property.required=true

<PAGE PAGE_ID="SimplePersonContext" TYPE="DETAILS">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>

</CONNECT>
</PAGE_TITLE>

<TAB_NAME>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Tab.title"/>
</CONNECT>

</TAB_NAME>

<PAGE_PARAMETER NAME="personID"/>

<CLUSTER>
<FIELD LABEL="Field.Label.ContextPanelFor">

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</FIELD>

</CLUSTER>

</PAGE>

Figure 72. SimplePersonContext.uim

180 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

TAB_NAME element
Defines the content that is used as the name of the tab.

PAGE_TITLE element
Defines the tab title.

PAGE_PARAMETER element
Must match the page-param value that is specified in the tab configuration.

In the example, the context panel contains only one single field that outputs the
unique identifier of the person.

The corresponding .properties file contains the localizable content for the context
panel:

Defining a person page:

Configure a person page that is displayed in the content area of a person tab.

The following example shows the UIM that is required to display a person page in
a person tab:

PageTitle.StaticText=Person Context Panel
Tab.title=Person Tab

Field.Label.ContextPanelFor=Context Panel for user with ID:

Cúram web client reference 181

This UIM is similar to what has been previously defined.

<PAGE PAGE_ID="SimplePerson">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>

</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<SERVER_INTERFACE NAME="DISPLAY"
CLASS="PersonFacade"
OPERATION="readPerson" />

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="DISPLAY" PROPERTY="key$personID"/>

</CONNECT>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Label.LastName">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="lastName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Title">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="title"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Gender">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="gender"/>

</CONNECT>
</FIELD>

</CLUSTER>
<CLUSTER TITLE="Cluster.Title.ContactDetails" NUM_COLS="2">

<FIELD LABEL="Field.Label.Email">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="email"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Label.PhoneNumber">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="phoneNumber"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Address">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="address"/>

</CONNECT>
</FIELD>

</CLUSTER>
</PAGE>

Figure 73. SimplePerson uim

182 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The corresponding .properties should contain the localizable content for the page:

Build targets required to add tab content
To add tab content requires several files to be added and modified, which requires
several build targets to be executed.

Table 110. Files required to add tab content and corresponding build targets

File Location Build Target

SimpleSearch.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.uim and
associated properties file

webclient\components\
component-name\

client

SimplePerson.tab and
associated properties file

EJBServer\components\component-
name\clientapps

inserttabconfiguration

SimpleContextPerson.uim
and associated properties
file

webclient\components\
component-name\

client

SimplePerson.uim and
associated properties file

webclient\components\
component-name\

client

Configuring modal dialogs
A modal dialog is a window that is displayed in the user interface where users can
view or edit certain types of data in the application. Configure modal dialogs and
the content that is displayed in them. You can also configure a wizard progress bar
that displays a sequence of modal dialogs to create a wizard that can be used to
edit more complex data or a larger set of data.

Modal dialogs are widely used for editing data in the Cúram application because
they facilitate the transactional editing of data. The user is forced to either submit
changes or cancel them, and ambiguity is avoided by preventing users from
switching context while they configure a particular set of data.

The topics in this section demonstrate how to extend the application to add an
employment history modal dialog for a person. The modal dialog will contain the
following items:
v Title bar
v Close button
v Action controls

Page.Title=Person Home Page

Cluster.Title.Details=Details
Cluster.Title.ContactDetails=Contact Details

Field.Value.Welcome=Field Value
Field.Label.Welcome=Field Label
Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Field.Label.Email=Email
Field.Label.PhoneNumber=Phone Number
Field.Label.Address=Address

Cúram web client reference 183

The user cannot switch focus back to the parent interface until the modal dialog is
closed, either by submitting it or canceling it.

Opening a modal dialog
Add page level action controls to a page that open modal dialogs.

For this example, the person page that was defined in “Defining a person page” on
page 181 will be extended. The extended page will contain two action controls, one
of which opens a basic modal dialog and another that opens a wizard progress bar.

The following example shows the extended SimplePerson.uim file.

The corresponding .properties file is extended to include the label properties for
the action controls:

Defining the content of the modal dialog
Define the content of a modal dialog. The content of a modal dialog is a standard
UIM page, although it is styled differently when it is displayed by the browser.

The key features of the modal dialog that is defined in the following example are
outlined in the following list:
v The title is displayed in the title bar of the window.
v The action controls are displayed in a bar at the bottom of the window.
v The user can click the close button on the title bar to close the window without

submitting changes.

The following example shows the UIM code for the modal dialog:

<PAGE PAGE_ID="SimplePerson">

...
<ACTION_SET>

<ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
<LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
<ACTION_CONTROL LABEL="Control.Label.CreateEmploymentWizard">

<LINK PAGE_ID="CreateEmploymentWizard_pageOne"
OPEN_MODAL="true">
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

...

</PAGE>

Figure 74. SimplePerson uim

Control.Label.CreateEmployment=Add Employment History
Control.Label.CreateEmployment=Add Employment in Wizard

184 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note the WINDOW_OPTIONS attribute of the PAGE element. In the example, the width is
set to 250. Because the height is not set, it is automatically calculated when the
dialog is displayed.

The corresponding .properties file contains the localizable content for the modal
dialog:

<PAGE PAGE_ID="CreateEmployments" WINDOW_OPTIONS="width=250">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>

</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>

</CONNECT>

<SERVER_INTERFACE NAME="ACTION"
CLASS="EmploymentFacade"
OPERATION="createEmployment"
PHASE="ACTION"/>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">
<FIELD LABEL="Field.Label.EmployerName">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="employerName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.JobTitle">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.FromDate">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fromDate"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.ToDate">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="toDate"/>

</CONNECT>
</FIELD>

</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Save" TYPE="SUBMIT">
<ACTION_CONTROL LABEL="Control.Label.Cancel" TYPE="SUBMIT"/>

</ACTION_SET>

</PAGE>

Figure 75. CreateEmployments.uim

Cúram web client reference 185

Adding a wizard progress bar
In scenarios where users need to edit a more complex set of data or a larger set of
data, you might want to split the data modifications over several windows. In the
Cúram application, you configure a wizard progress bar to create a wizard.

A modal dialog that is configured within a wizard includes the following items:

Wizard progress bar
Indicates the sequence of pages in the wizard, and highlights the current
page in the sequence.

Step title
Indicates the title of the current page in the sequence.

Step description
Describes the content of the current page.

To illustrate the use of a wizard, the example in this section shows how to add an
employment history to the application by splitting the data entry over a sequence
of two pages.

Defining the wizard progress bar configuration file:

Define the wizard configuration in the CreateEmploymentWizard.properties file

The following example shows the configuration file for the wizard progress bar.
The wizard has two pages and the configuration specifies the text that is displayed
in the progress bar, the step title, and the step description for each page.

Page.Title=Create Employment
Cluster.Title.Details=Details
Field.Value.Welcome=Here’s the details panel for a person

Control.Label.Save=Save
Control.Label.Cancel=Cancel

Field.Label.PersonID=Person ID
Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title
Field.Label.FromDate=From
Field.Label.ToDate=To

Number.Wizard.Pages=2

CreateEmploymentWizard_pageOne.Wizard.Item.Text=Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Title=

Step 1: Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Desc=

Capture some details about Employer
Wizard.PageID.1=CreateEmploymentWizard_pageOne

CreateEmploymentWizard_pageTwo.Wizard.Item.Text=Employment Dates
CreateEmploymentWizard_pageTwo.Wizard.Page.Title=Step 2:

Employment Period
CreateEmploymentWizard_pageTwo.Wizard.Page.Desc=

Record the time person worked for employer
Wizard.PageID.2=CreateEmploymentWizard_pageTwo

Figure 76. CreateEmploymentWizard.properties

186 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

To load the wizard configuration file into the data, add the following lines to the
AppResource.dmx file:

Defining wizard pages:

An example shows how to configure a UIM file to define the content of a wizard
for adding employment history for a person. The wizard contains two pages,
where the first page requires the user to enter employer details and the second
page requires the user to enter dates.

The following example shows the UIM that implements the first page of the
wizard:

<row>
<attribute name="resourceid">

<value>1</value>
</attribute>
<attribute name="localeIdentifier">

<value/>
</attribute>
<attribute name="name">

<value>CreateEmploymentWizard</value>
</attribute>
<attribute name="contentType">

<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">

<value>inline</value>
</attribute>
<attribute name="content">

<value>./blob/CreateEmploymentWizard.properties</value>
</attribute>
<attribute name="internal">

<value>1</value>
</attribute>
<attribute name="lastWritten">

<value>2008-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">

<value>1</value>
</attribute>
<attribute name="category">

<value>RS_PROP</value>
</attribute>

</row>

Cúram web client reference 187

The wizard progress bar items are added to the page by including a MENU element
with the attribute MODE="WIZARD_PROGRESS_BAR". The element references a property
that is named Wizard, which is defined in the Constants.properties file as
CreateEmploymentWizard. The Wizard property associates the page with the wizard
progress bar configuration file that is loaded into the database.

<PAGE PAGE_ID="CreateEmploymentWizard_pageOne">

<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>

<SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
</CONNECT>

</MENU>

<SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
OPERATION="validateEmployerAndJobTitle" PHASE="ACTION"/>

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>

</PAGE_TITLE>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>

</CONNECT>

<PAGE_PARAMETER NAME="personID"/>

<CLUSTER TITLE="Cluster.Title.Details">
<FIELD LABEL="Field.Label.EmployerName">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="employerName"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.JobTitle">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>

</CONNECT>
</FIELD>

</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Next" TYPE="SUBMIT">

<LINK PAGE_ID="CreateEmploymentWizard_pageTwo"
DISMISS_MODAL="false">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="employerName"/>
<TARGET NAME="PAGE" PROPERTY="employerName"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="jobTitle"/>
<TARGET NAME="PAGE" PROPERTY="jobTitle"/>

</CONNECT>
</LINK>
</ACTION_CONTROL>

</ACTION_SET>
</PAGE>

Figure 77. CreateEmploymentWizard_pageOne.uim

188 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The corresponding .properties file for the first page of the wizard includes the
localizable content for the page:

The following example shows the UIM that implements the second page of the
wizard:

Page.Title=Create Employment
Cluster.Title.Details=Details

Control.Label.Next=Next

Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title

Cúram web client reference 189

<PAGE PAGE_ID="CreateEmploymentWizard_pageTwo">

<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>

<SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
</CONNECT>

</MENU>

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>

</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>

</CONNECT>

<PAGE_PARAMETER NAME="employerName"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="employerName"/>
<TARGET NAME="ACTION" PROPERTY="employerName"/>

</CONNECT>

<PAGE_PARAMETER NAME="jobTitle"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="jobTitle"/>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>

</CONNECT>

<SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
OPERATION="createEmployment" PHASE="ACTION"/>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

<FIELD LABEL="Field.Label.FromDate">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="fromDate"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Label.ToDate">

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="toDate"/>

</CONNECT>
</FIELD>

</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Save" TYPE="SUBMIT">

<LINK PAGE_ID="Employments" DISMISS_MODAL="TRUE">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="personID" />
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

</PAGE>

Figure 78. CreateEmploymentWizard_pageTwo.uim

190 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The corresponding .properties file includes the localizable content for the page:

Build targets required to add modals and wizard progress bars
To add modal dialogs and wizard progress bars requires several files to be added
and modified, which requires several build targets to be executed.

Table 111. Files required to add modal dialogs and corresponding build targets

File Location Build target

SimplePerson.uim and
associated properties file

webclient\components\
component-name\

client

CreateEmployments.uim
and associated properties
file

webclient\components\
component-name\

client

CreateEmployments
Wizard_pageOne.uim and
associated properties file

webclient\components\component-name\ client

CreateEmployments
Wizard_pageTwo.uim and
associated properties file

webclient\components\
component-name\

client

CreateEmploymentsWizard
.properties

EJBServer\components\
component-name\Data_Manager\scripts\blob

client

APPRESOURCES.DMX EJBServer\components\
component-name\Data_Manager\scripts

client

Adding tab navigation
Add navigation features to a tab. An example shows how to modify a person tab
to include a navigation bar.

The modified person tab will contain a content area navigation bar within one
navigation tab, and a page group navigation bar with two navigation pages.

Defining a navigation bar
Configure a tab file to contain a navigation bar in the content area. Then, configure
a nav file to include a navigation group with two navigation pages.

To configure a tab to contain a navigation bar in the content area, it is necessary to
include the id of the navigation bar configuration in the navigation element of the
tab.

The following example shows the modified version of a SimplePerson.tab file.

Page.Title=Create Employment
Cluster.Title.Details=Details
Control.Label.Save=Save

Field.Label.FromDate=From
Field.Label.ToDate=To

Cúram web client reference 191

Define the navigation bar configuration by using an XML configuration file with
the extension .nav. Similar to other tab configuration artifacts, the .nav files are in
the EJBServer\components\component-name\clientapps directory, where
component-name is a custom component.

The following example shows the contents of the SimplePersonNav.nav file. It
defines one navigation group, with two navigation pages.

The corresponding .properties file contains the localizable content for the page:

Build targets required to add tab navigation
To add a navigation bar to a tab requires several files to be added and modified,
which requires several build targets to be executed.

Table 112. Files required to add tab navigation and corresponding build targets

File Location Build target

SimplePersonNav.nav and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimplePerson.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

Working with lists
Extend a person search page to add an expandable list and a list actions menu.

The examples in this section show how to add an expandable list and a list actions
menu to the person search page that is defined in “Define the Search Page” on
page 177.

<tc:tab-config
id="SimplePerson">

<tc:page-param name="personID"/>

<tc:context page-id="SimplePersonContext" height="60"/>
<tc:navigation id="SimplePersonNav"/>
</tc:tab-config>

Figure 79. SimplePerson Tab

<nc:navigation id="SimplePersonNav">
<nc:nodes>

<nc:navigation-group id="PersonHome" title="PersonHome"
description="Person Details Group">

<nc:navigation-page id="SimplePerson" page-id="SimplePerson"
title="PersonDetails.Title"/>

<nc:navigation-page id="Employments" page-id="Employments"
title="EmploymentHistory.Title"/>

</nc:navigation-group>
</nc:nodes>
</nc:navigation>

Figure 80. SimplePersonNav.nav

PersonHome.Title=Person Home
EmploymentHistory.Title=Employment History
PersonDetails.Title=Person Details

192 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Defining an expandable list
Add an expandable list to a person search page. In an expandable list, users can
see more information than is displayed in a simple list, without having to navigate
away from the page that contains the list.

In an expandable list, expand each row by clicking a toggle control. In the
expanded state, a page that is relevant to the row is displayed. Note the following
key points:
v A toggle control is added to the start of each row that enables the row to be

expanded and collapsed. It is possible to expand more than one row at a time
and the size of the content area adjusts automatically.

v Page level action sets are displayed as buttons in a page.

The following SimpleSearch.uim example shows a person search page UIM file
that has been modified to include an expandable list.

A new element, the DETAILS_ROW, has been added to the LIST element. The
DETAILS_ROW element defines the inline page that is displayed when a row is
expanded, including the parameters that are passed to the page for each row.

Defining a list actions menu
Add a list actions menu to a person page. A list actions menu contains a set of
actions that are associated with a particular row.

A list actions menu icon is displayed at the end of each row. Clicking the icon
expands the list actions menu. The list actions menu contains one or more menu
items, which are defined by action controls.

The following SimpleSearch.uim example shows a person search page UIM file
that has been modified to include a list actions menu.

<PAGE PAGE_ID="SimpleSearch">

<SERVER_INTERFACE NAME="ACTION"
CLASS="PersonFacade"
OPERATION="advancedSearch"
PHASE="ACTION"/>

...

<LIST TITLE="List.Title.Results">
<DETAILS_ROW>

<INLINE_PAGE PAGE_ID="SimplePerson">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</INLINE_PAGE>

</DETAILS_ROW>
...

</LIST>
</PAGE>

Figure 81. SimpleSearch.uim

Cúram web client reference 193

Note the following points:
v An ACTION_SET that contains the three action controls has been added to the list.
v The attribute TYPE has been set to LIST_ROW_MENU to indicate that the action

controls that are in this set are to be displayed on a list actions menu.
v Because the View action control has been added to the list actions menu, the

column that contains it is no longer necessary, and therefore the corresponding
UIM code has been commented out.

<PAGE PAGE_ID="SimpleSearch">

...

<LIST TITLE="List.Title.Results">

...
<ACTION_SET TYPE="LIST_ROW_MENU">

<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>

<ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
<LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
<ACTION_CONTROL

LABEL="Control.Label.CreateEmploymentWizard">
<LINK PAGE_ID="CreateEmploymentWizard_pageOne"

OPEN_MODAL="true">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

<!-- Removing Actions Column -->
<!--<CONTAINER LABEL="Container.Label.Actions">

<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</CONTAINER>-->

...

</LIST>
</PAGE>

Figure 82. SimpleSearch.uim

194 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Localizable labels for the new action controls are in the corresponding .properties
file content, for example:

Build targets required to add lists and list actions
To add and expandable list and list actions menu requires several files to be added
and modified, which requires several build targets to be executed.

Table 113. Files required to add an expandable list and a list actions menu, and
corresponding build targets

File Location Build target

SimpleSearch.uim and
associated properties file

webclient\components\component-name\ client

Session Management
Learn how browser sessions are handled in the Cúram application. A browser
session can be defined as a continuous period of user activity in the web browser,
where successive events are separated by no more than 30 minutes.

The following are common examples of when a Cúram browser session is started
or finished:
v A session starts when a user first logs into the application.
v As long as the user is actively using the browser, the session remains active.

If the browser is left inactive for a period of time, the session will timeout. In
this case, the user will be required to log back in and a new session is started.
The default timeout is 30 minutes, but this can be configured using the
application server's configuration settings. See the Cúram Deployment Guide for
more information on application server configuration.

v The user can explicitly logout, using the logout link in the application banner.
The session is terminated in this case and logging back in will start a new one.

v The browser is shutdown and a new browser instance is started. In this case, a
new session is started and the user will be required to log in.

Session Overview
There is a maximum limit on the number of tabs that can be opened per section of
an application. The system administrator can configure this limit by updating the
curam.environment.max.open.tabs property in the system administration
application. The default value for the maximum limit of open tabs per section of
an application is set to fifteen.

If a user requests to open a tab and the number of open tabs reaches the maximum
limit within the current section then an informational modal dialog will be
displayed immediately after the tab is initially opened (before content in the tab is
displayed). As instructed in this modal dialog, existing open tabs within the
current section should be closed before any new tabs can be opened in an
application. If the information displayed in the informational dialog is ignored and
the user attempts to open more tabs within the current section of an application,
the requested tabs will not be opened and an error modal dialog will be displayed
instructing that new tabs can only be opened after existing open tabs within the

Control.Label.CreateEmployment=Create Employment
Control.Label.CreateEmploymentWizard=Create Employment Wizard

Cúram web client reference 195

current section of the current application are closed. An error modal dialog can
simply be dismissed by clicking on the button on the bottom of the dialog.

The message and title of both the dialog can be customized by customizing by
adding the GenericModalError.js.properties file within the custom component.
For more information on localizing JavaScript property files, consult “Java
properties files” on page 44.

The text on the button can be customized by changing the value of the Text.Ok
property in CDEJResources.properties. For more information on localizing
CDEJResources.properties, please see “CDEJResources.properties” on page 51.

The current set of open tabs for a particular user is restored each time the user logs
out of the application and logs back in. In addition, if the browser is refreshed (e.g.
using the F5 button), the currently open tabs are also restored. There are two
exceptions to this:
v If the the system administrator has decreased the maximum limit of tabs that

can be opened within a section of an application since the termination of the last
session then only the new maximum number of tabs within each section will be
restored. An error dialog will be displayed informing the user that the maximum
limit of open tabs has been exceeded.

v If the system administrator has updated the tab configuration to remove tabs
from sections via the User Interface administration screens, then the removed
tabs will not be restored.

The browser session plays an important role in the expected behavior when
restoring tabs, and this chapter will detail how browser sessions interact with the
restoration of tabs. In addition, a number of configuration options for the tab
restoration feature are detailed.

Tab Restoration
The list of currently open tabs per user is stored temporarily in the web tier,
associated with the browser session, and more permanently on the database so that
it can be restored after a user logs out of the application.

The data is persisted from the web tier to the database intermittently. As a result,
there are cases where the last few changes to the open tabs may not be restored
when the user logs in. This is most likely to happen where the session times out or
the browser is restarted.

The behavior of tab restoration is different depending on whether it was the result
of a browser refresh (F5) or the start of a new session (i.e. the user has logged in).
v Browser Refresh

If the browser is refreshed, tabs are restored to their current state from the web
tier session data, for the current user. No tab changes will be lost.
– The tab that was last selected for the current user in the selected section will

remain the selected tab.
– The selected tab for the current user in other sections will revert to the first

tab in those sections.
– The expanded or collapsed states of the shortcut panel, smart panel and page

contents for the current user are not restored.
v New Session

196 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

When a new session starts, usually requiring the user to login, the tabs are
restored to their current state using the session data stored on the database.
– The “Home” tab is restored as the selected tab.
– The selected tab in other sections will revert to the first tab in those sections.
– The expanded or collapsed states of the shortcut panel, smart panel and page

contents are not restored.
– If no previous tab session data is available, only the “Home” tab is opened.

Note: See “Direct browsing” on page 10 for a special case of tab restoration, where
pages are directly accessed through the browser navigation bar.

Session Configuration
Each time a new tab is opened, a tab is closed or the content area of a tab is
updated, the information is stored in the web tier. The tab session data is persisted
from the web tier to the database intermittently. How often the data is persisted
can be configured using the following options, which can be set in the
ApplicationConfiguration.properties file.
v tabSessionUpdateCountThreshold

Specifies the number of tab session data updates that must be received before
the data is persisted from the web tier to the database. Once the threshold is
reached, the recent updates are written and counting starts again from zero until
the threshold is reached. A value of one causes writes on every update. A value
of zero (or a negative or invalid value) disables writing based on update counts.
The default is every 10 updates.

v tabSessionUpdatePeriodThreshold

Specifies the number of seconds that must have elapsed since the last time
session data was persisted from the web tier to the database before a new
update will trigger another write. A value of zero (or a negative or invalid
value) disables writing based on update periods. The default value is 120
seconds, or 2 minutes.

The properties work together based on which value is reached first. In other
words, if the update count threshold (tabSessionUpdateCountThreshold) is not
reached, but the update period threshold (tabSessionUpdatePeriodThreshold) has
been reached, a write will occur, and vice versa.

If the update count threshold is set to one, the update period threshold is ignored.
The reason for this is that writes will happen on every update, so there is no need
to write based on a time period.

Note: Tab session data is persisted to the database when the user logs out,
regardless of the value of the current update count and update period. The
exception to this is if both the update count threshold and the update period
threshold are set to zero.

Each user account has one persistent tab session database record for an application.
The same user logging in to the application from different browser sessions will
cause some interference and unpredictability in what data is persisted across
sessions.

The interference and unpredictability of the persisted data, when multiple users are
using the same login ID, is most likely encountered in a testing environment. It is
recommended that the tabSessionUpdatePeriodThreshold and

Cúram web client reference 197

tabSessionUpdateCountThreshold properties are set to zero for testing
environments to prevent this. Setting both properties to zero ensures that the tab
session data is only persisted for the length of a browser session and not across
sessions, i.e. login and logout.

It is also recommended that these settings are used where an "external" application
is deployed and the external users all share the same generic user account.

Session Timeout Warning
A browser session is timed from when data was most recently sent to or received
from the server. In some cases, a user might enter much data into the application
without realizing that the current session has timed out. When the user does
initiate a server call, for example to submit the entered data, the browser prompts
the user to reauthenticate to the application. Therefore, the user loses all the data
that the user has entered into the application. To prevent users from losing data
when their session times out, a system administrator can configure a session
timeout warning.

Before a browser session times out, a session timeout warning dialog is displayed
to users at a configured time. The dialog contains a timer that indicates the
remaining period before the session times out. Users can either reset the session
timeout and continue working in the application, or end the session and quit the
application.

In IBM Cúram Social Program Management, the session timeout warning is
enabled by default. Default configuration values are defined for the session
timeout warning in properties.

Session timeout warning default values
The session timeout warning uses default values that are defined in the
ApplicationConfiguration.properties file and in the CDEJResources.properties
file.

CDEJ resources properties

You can configure the default values of the following properties that are defined in
the CDEJResources.properties file:

timeout.warning.modal.title
Configures the title that is displayed on the timeout warning modal dialog.
The default value is Timeout Warning.

timeout.warning.modal.user.message
Configures the message that is displayed to the user before the session
expires. The default value is You will be timed out when the countdown
reaches 0 seconds. Click Continue to resume using the application or
Quit to exit.

timeout.warning.modal.expired.user.message
Configures the message that is displayed to the user after the session
expires. The default value is You have been automatically timed out due
to a period of inactivity on your account.

timeout.warning.modal.continue.button
Configures the text that is displayed on the Continue button in the modal
dialog that is displayed to the user before the session expires. The default
value is Continue.

198 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

timeout.warning.modal.quit.button
Configures the text that is displayed on the Quit button in the modal
dialog that is displayed to the user before the session expires. The default
value is Quit.

Application configuration properties

The following default values are defined in the
ApplicationConfiguration.properties file:

Session timeout warning modal width
Configures the default width of the session timeout warning modal in
pixels. The default value is 580. You can override the default property
value only by customizing the timeout-warning element in an application.

Session timeout warning modal height
Configures the default height of the session timeout warning modal in
pixels. The default value is 150. You can override the default property
value only by customizing the timeout-warning element in an application.

Default buffering period
Configures the default buffering period in seconds to allow a server more
time to respond to a client request over a slow network. The default value
is 20. You cannot override the default property value.

Customizing the session timeout warning in the caseworker
application
Customize the session timeout warning in the caseworker application by
configuring system application properties, and CDEJ resource properties.

About this task

Settings that you customize in CDEJ properties apply to the whole of IBM Cúram
Social Program Management.

If the timeout-warning element is configured for a specific application, the
application configuration takes precedence over the corresponding values that are
configured in the application configuration properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:
1. Log on to IBM Cúram Social Program Management as a system administrative

user.
2. Click System Configurations.
3. In the Shortcuts panel, click Application Data > Property Administration.
4. Search for and edit each property that you want to configure.
5. To publish the property change, click Publish.

Procedure

Application configuration properties

v Customize the following application configuration properties for the session
timeout warning as required:

Enable or disable the session timeout warning
Edit the curam.environment.internal.enable.timeout.warning.modal
application configuration property. The property configures whether the

Cúram web client reference 199

session timeout warning is displayed to users, A valid Boolean value is
required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.internal.timeout.warning.modal.time
application configuration property. The property configures the notice
period that users are given in seconds, through the display of the session
timeout warning, that their browser session is about to time out. For
example, if the default browser session length is 30 minutes, and the
timeout attribute value is configured to 120, which corresponds to a
value of 2 minutes, the session timeout warning is displayed after 28
minutes of inactivity. Then, users must click a button in the user
interface to prevent the session from automatically timing out. A valid
integer value is required, where the default value is 120.

Customize the session expiry logout page
Edit the
curam.environment.internal.timeout.warning.modal.logoutpage
application configuration property, where the default value is
internal-logout-wrapper. The property configures the logout page that
is displayed when a user's session expires and the user is automatically
logged out. The property value must be a valid UIM page.

CDEJ resource properties

v Customize the following CDEJ resource properties for the session timeout
warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property
configures the title that is displayed on the timeout warning modal
dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.user.message CDEJ property. The
property configures the message that is displayed to the user before the
session expires. The default value is You will be timed out when the
countdown reaches 0 seconds. Click Continue to resume using the
application or Quit to exit.

Customize the session expiry message
Edit the timeout.warning.modal.expired.user.message CDEJ property.
The property configures the message that is displayed to the user after
the session expires. The default value is You have been automatically
timed out due to a period of inactivity on your account.

Customize the Continue button text in the session timeout warning modal
dialog Edit the timeout.warning.modal.continue.button CDEJ property. The

property configures the text that is displayed on the Continue button in
the modal dialog that is displayed to the user before the session expires.
The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The
property configures the text that is displayed on the Quit button in the
modal dialog that is displayed to the user before the session expires. The
default value is Quit.

200 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Customizing the session timeout warning in Universal Access
Customize the session timeout warning in Universal Access by configuring system
application properties, and CDEJ resource properties.

About this task

Settings that you customize in CDEJ properties apply to the whole of IBM Cúram
Social Program Management.

If the timeout-warning element is configured for a specific application, the
application configuration takes precedence over the corresponding values that are
configured in the application configuration properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:
1. Log on to IBM Cúram Social Program Management as a system administrative

user.
2. Click System Configurations.
3. In the Shortcuts panel, click Application Data > Property Administration.
4. Search for and edit each property that you want to configure.
5. To publish the property change, click Publish.

Procedure

Application configuration properties

v Customize the following application configuration properties for the session
timeout warning as required:

Enable or disable the session timeout warning
Edit the curam.environment.enable.timeout.warning.modal application
configuration property. The property configures whether the session
timeout warning is displayed to users, A valid Boolean value is required,
where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.timeout.warning.modal.time application
configuration property. The property configures the notice period that
users are given in seconds, through the display of the session timeout
warning, that their browser session is about to time out. For example, if
the default browser session length is 30 minutes, and the timeout
attribute value is configured to 120, which corresponds to a value of 2
minutes, the session timeout warning is displayed after 28 minutes of
inactivity. Then, users must click a button in the user interface to prevent
the session from automatically timing out. A valid integer value is
required, where the default value is 120.

Customize the session expiry logout page
Edit the curam.environment.timeout.warning.modal.logoutpage
application configuration property, where the default value is
LogoutWrapper. The property configures the logout page that is
displayed when a user's session expires and the user is automatically
logged out. The property value must be a valid UIM page.

CDEJ resource properties

v Customize the following CDEJ resource properties for the session timeout
warning as required:

Cúram web client reference 201

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property
configures the title that is displayed on the timeout warning modal
dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.user.message CDEJ property. The
property configures the message that is displayed to the user before the
session expires. The default value is You will be timed out when the
countdown reaches 0 seconds. Click Continue to resume using the
application or Quit to exit.

Customize the session expiry message
Edit the timeout.warning.modal.expired.user.message CDEJ property.
The property configures the message that is displayed to the user after
the session expires. The default value is You have been automatically
timed out due to a period of inactivity on your account.

Customize the Continue button text in the session timeout warning modal
dialog Edit the timeout.warning.modal.continue.button CDEJ property. The

property configures the text that is displayed on the Continue button in
the modal dialog that is displayed to the user before the session expires.
The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The
property configures the text that is displayed on the Quit button in the
modal dialog that is displayed to the user before the session expires. The
default value is Quit.

Customizing the timeout warning in an application
You can configure the session timeout warning individually for each application by
configuring the optional timeout-warning element.

About this task

Optionally, configure the timeout-warning element in the application configuration
XML file, which has the extension .app. If you configure the timeout-warning
element in the application, the values takes precedence over both the values that
are configured in the system application configuration properties and the default
values.

Procedure
v Configure the following attributes as required in an application's configuration

file:

title Configures the title that is displayed on the timeout warning dialog.

user-message
Configures the message that is displayed to the user before the session
expires.

expired-user-message
Configures the message that is displayed to the user after the session
expires.

quit-button
Configures the text that is displayed on the Quit button in the modal
dialog that is displayed to the user before the session expires.

202 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

continue-button
Configures the text that is displayed on the Continue button in the
modal dialog that is displayed to the user before the session expires.

timeout
Configures the notice period that users are given in seconds, through the
display of the session timeout warning, that their browser session is
about to time out. For example, if the default browser session length is
30 minutes, and the timeout attribute value is configured to 120, which
corresponds to a value of 2 minutes, the session timeout warning is
displayed after 28 minutes of inactivity. Then, users must click a button
in the user interface to prevent the session from automatically timing
out.

width Configures the width of the session timeout warning modal in pixels.

height Configures the height of the session timeout warning modal in pixels.
v For an application in Universal Access, you can enable a specific logout page to

be associated with the Quit button for a modal dialog. On the logout banner
menu item that is on the person banner menu, you must set the logout attribute
to true, as shown in the following example:
<ac:banner-menu type="person" title="person.title" page-id="somPageID"/>
<ac:menu-item id="logout" title="menu.logout.title" text="menu.logout.text"
page-id="LogoutWrapper" logout="true"/>
<ac:banner-menu/>
<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"
expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"
quit-button="timeout.logout"
timeout="300"
width="650"
height="300"/>

Example

The following example demonstrates how to specify values for the
timeout-warning attributes:
<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"
expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"
quit-button="timeout.logout"
timeout="300"
width="580"
height="200"/>

Configuring a customized logon page
If a browser session times out because of no user interaction, users are redirected
to an application logon page that is specified by the configuration properties. The
logon page displays a session expiry message that tells users that they have been
logged out because of a period of inactivity on their account.

About this task

In the configuration properties, you can specify the application logon page that is
displayed both in the IBM Cúram Social Program Management application and in
the Universal access application.

If the application is configured to display a customized logon page instead of the
default page, then use the following procedure to insert a customized session
expiry message into the customized logon page. If a user's session times out
automatically, the customized session expiry message is then displayed in the
customized logon page that the user is redirected to.

Cúram web client reference 203

Procedure
1. To configure the custom logon JSP page, do the following steps:

a. Import the class JSPUtil by using the following page directive:
<jsp:directive.page import="curam.util.client.jsp.JspUtil"/>

b. Insert the scriptlet to print the session expired message on the page:
<jsp:scriptlet>
<![CDATA[JspUtil. printSessionExpiredMessage(pageContext);]]>

</jsp:scriptlet>

2. To configure the custom logon renderer class, do the following steps:
a. Create a div with a custom ID on your logon page to wrap the session

expired message.
b. Call the following method and pass in the ID of the div as a parameter:

JspUtil.getSessionExpiredMessageScript(div.id);

Tab Session Limitations
The tab session data records a limited number of tabs. The limit imposed relates to
the total size of the tab session data and is approximately 70-80 tabs. Once this
limit has been exceeded, tab session data is maintained only in the web tier and is
no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected.
However, if a user logs out with more tabs open than can be recorded for a
session, only the state of the tabs at the time the limit was first exceeded will be
restored.

Closing tabs will reduce the size of the tab session data and writing to the
database will then resume as normal.

Browser Specific Session Management
The version of the browser used can have an effect on when new sessions are
started and when they are shared. Two browser instances that share the same
session will result in the same set of open tabs displayed in both instances. This
can cause similar interference and unpredictability of the persisted data as with
two users using the same login ID from different machines.

Example Session Issue: A user logs into the Cúram application in one browser
instance as the 'admin' user. They then open a new browser tab, which is sharing
the same session. From here, they directly access the Cúram login page and login
as a 'caseworker' user.

In this situation, the original browser tab still displays the tabs for the admin user.
If the user performs a refresh in this original tab then the tabs and application
view will be restored for the caseworker application. Alternatively, if the user
opens new tabs that apply to the admin application only, these will not be
persisted for the caseworker user.

Within the same browser session, a user must always logout to end the session and
be able to login as a new user.

The most common browsers supported are Internet Explorer 7 and Internet
Explorer 8 and they share sessions across browser instances in different ways:
v Internet Explorer 7

204 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

If a new browser instance, or browser tab, is opened in Internet Explorer 7 using
the File > New Tab or File > New Window options, from an existing browser
instance, the session is shared across the instances. This means that if the user
was already logged into the Cúram application in the original browser instance,
they will also be logged into Cúram in the new tab or window.
If a new browser instance is started using the Internet Explorer link in the Start
menu, the sessions are not shared and the user must login again to Cúram.

v Internet Explorer 8

Sessions are always shared in Internet Explorer 8, no matter where the browser
instance or tab was started from. This is the default behavior.
To start a new instance of the browser that does not share the existing session,
the File > New Session option should be used.

For further information on browser specific behavior, please consult the relevant
online documentation.

Browser Management
Configure the browser that users use to view the IBM Cúram Social Program
Management user interface. For example, notifications can alert users about when
to upgrade their browser version. Notifications can request confirmation when a
user attempts to leave the current page in a browser.

Optimal Browser Support
Learn about optimal browser support and how to notify the user when they are
using a sub-optimal browser with the Cúram application.

Users can be notified when they are not using the optimal version of a supported
web browser. The user's web browser is considered sub-optimal if it is below the
supported minimum version of the browser, or above the supported maximum
version of the browser. The supported minimum/maximum version of a web
browser is configurable. The out of the box settings for these versions of the web
browser is in line with those supported by IBM for external applications.

Note: IBM Cúram external applications are public facing applications, where
mode="external" is set in the application configuration file (*.app). Health Care
Reform and Universal Access are examples of this type of application.

This feature appears in the form of a message at the top of the banner, which can
be dismissed. Once the optimal browser message is dismissed and if the browser is
not updated, the message will be displayed again when a certain number of days
have elapsed. This is assuming that the fully qualified URL to the application
remains the same. An example of a fully qualified URL might be
https://myserver.ibm.com:9044/CitizenPortal/application.do.The number of
days that have elapsed before the next optimal browser check is configurable and
by default it is sixty days in the future. The out of the box optimal browser
message by default has a link to a website which assists the user to take action and
update their version of the web browser to an optimal one.

The optimal browser message essentially has three components as follows:
v Warning Icon

The warning icon gets the attention of the user that they should update their
web browser.

v Optimal Browser Message Content

Cúram web client reference 205

The message content that will be displayed to the user. It will consist of plain
text and optionally a hyperlink which directs the user to a website where they
can take action to update their web browser. Please refer to “Text Configuration”
on page 207 for more information on configuring the message content.

v Optimal Browser Message Exit Icon

Allows the user to dismiss the optimal browser message.
Related reference:
“Configuring the Application” on page 22
“CDEJResources.properties” on page 51

Feature Configuration
All aspects of the optimal browser message feature, with the exception of the text,
are configured in the ApplicationConfiguration.properties file. Please refer to
“Text Configuration” on page 207 for how to configure the text associated with this
feature.

The following properties within the ApplicationConfiguration.properties file can
be used to configure whether the feature is enabled/disabled, and the number of
days before the next optimal browser check will take place:

optimal.browser.detection.enabled
Example: optimal.browser.detection.enabled=true. This is an application
wide setting. It allows this feature to be enabled or disabled. Valid values
for this property are; “true”, and “false”. The default value is “false”.

optimal.browser.next.check
Example: optimal.browser.next.check=20. This property configures the
number of days that will elapse before the next check is done to determine
if a user's web browser is at an optimal level.

Note: This must an integer value. It is recommended to use a value
between 1 and 60 (inclusive). The default value is set to 60.

If this value is incorrectly configured it will be set to the default value.
Additionally, an exception will be reported in the server logs when client
side tracing is enabled. Please see “Tracing” on page 26 for more
information on setting client side tracing. It should be noted that if this
value is changed, it will not take effect until the optimal browser message
is displayed again.

A number of properties within the ApplicationConfiguration.properties file are
available to define what constitutes an optimal minimum and maximum browser
for each supported web browser.

Note: The value of these properties must be an integer or double value, otherwise
a default value of “0” will be set and the optimal browser feature will not work as
expected when using the an application in the associated web browser. An
exception will be reported in the server logs if client side tracing is enabled.

The default value for each of these properties is in line with that supported by IBM
for external applications.

The following are the properties that define what constitutes an optimal browser:

ie.min.version
Example: ie.min.version=9. This property is used to configure the
minimum supported version of the Internet Explorer web browser. Any

206 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

version below this is not considered an optimal Internet Explorer web
browser when using a IBM Cúram application.

ie.max.version
Example: ie.max.version=11. This property is used to configure the
maximum supported version of the Internet Explorer web browser. Any
version above this is not considered an optimal Internet Explorer web
browser when using a IBM Cúram application.

chrome.min.version
Example: chrome.min.version=29. This property is used to configure the
minimum supported version of the Chrome web browser. Any version
below this is not considered an optimal Chrome browser when using a
IBM Cúram application. The default value is set to zero because there is no
minimum supported version for Chrome.

chrome.max.version
Example: chrome.max.version=35. This property is used to configure the
maximum supported version of the Chrome web browser. Any version
above this is not considered an optimal Chrome browser when using a
IBM Cúram application. The default value is set to zero because there is no
maximum supported version for Chrome.

ff.min.version
Example: ff.min.version=18. This property is used to configure the
minimum supported version of the Firefox web browser. Any version
below this is not considered an optimal Firefox browser when using a IBM
Cúram application. The default value is set to zero because there is no
minimum supported version for Firefox.

ff.max.version
Example: ff.max.version=20. This property is used to configure the
maximum supported version of the Firefox web browser. Any version
above this is not considered an optimal Firefox browser when using a IBM
Cúram application. The default value is set to zero because there is no
maximum supported version for Firefox.

safari.min.version
Example: safari.min.version=5.0. This property is used to configure the
minimum supported version of the Safari web browser. Any version below
this is not considered an optimal Safari browser when using a IBM Cúram
application.

safari.max.version
Example: safari.max.version=5.1. This property is used to configure the
maximum supported version of the Safari web browser. Any version above
this is not considered an optimal Safari browser when using a IBM Cúram
application.

Text Configuration
The following properties can be used to configure the text associated with the
optimal browser message:

optimal.browser.msg.description
Example: optimal.browser.msg.description=optimal browser message
banner. This property configures the text for the description of the optimal
browser support feature so that it can be read by the screen reader. A
default value is provided.

optimal.browser.msg.text
Example: optimal.browser.msg.text=For a better experience, please

Cúram web client reference 207

{0.link:http://www.whatbrowser.org/}update your browser{0.end}. This
property configures content of the optimal browser message. The text
between the {0.link: and {0.end} mark-up tags configures the hyperlink
and hyperlink text. These mark-up tags are optional. If they are omitted
from the value of this property then the optimal browser message will be
displayed as plain text. If the mark-up tags are included but not specified
correctly, i.e. the specified hyperlink (URL) is not in the correct format or
the format of the markup tags themselves are not correct, then the optimal
message content will not be displayed as expected.

optimal.browser.msg.info
Example: optimal.browser.msg.info=Rendering... This property is used to
configure the text while the optimal browser message is being rendered. A
default value for this property is provided.

optimal.browser.dismiss
Example: optimal.browser.dismiss=dismiss. This property is used to
configure the tooltip text associated with the button to dismiss the optimal
browser message. A default value for this property is provided.

optimal.browser.warning
Example: optimal.browser.warning=warning. This property is used to
configure the text for the warning icon so that it can be read by the screen
reader. A default value for this property is provided.

Configuring Browser Back, Refresh, and Close Button
Behavior

The IBM Cúram Social Program Management application does not support using
the browser back and refresh buttons to navigate the application. Also, if users
click the close button to close the application, they might lose data. In both the
caseworker user interface and the Universal Access user interface, if users click
either the back, refresh, or close browser buttons, by default a warning message is
displayed in a confirmation window. The warning message asks users whether
they want to either stay on the page, or leave the page as requested. You can
configure properties to either enable or disable the confirmation message from
being displayed.

Before you begin

You must log on to IBM Cúram Social Program Management as a system
administrative user.

About this task

Use the following procedure to either enable or disable confirmation messages
from being displayed when users click either the back, refresh, or close browser
buttons in either the caseworker user interface or the Universal Access user
interface.

The content of the confirmation message depends on the browser, and cannot be
customized.

Note: Browser specific behavior

All browsers

208 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

In all browsers, when a warning message confirmation window is
displayed after clicking either the back, refresh, or close browser buttons,
the following actions are recommended:
v If users click the back, refresh, or close button and a warning message

confirmation window is displayed that asks users whether they want to
leave the page, it is recommended that users do not click the Leave
button. Clicking the Leave button causes unpredictable results that
depend on the browser that is being used, and on where users are
within the application. Instead, it is recommended that users click the
Stay button in the warning message confirmation window.

v If users click the browser refresh button and a warning message
confirmation window is displayed that asks users to confirm whether
they want to reload the page, it is recommended that users do not click
the Reload button. Clicking the Reload button causes unpredictable
results that depend on the browser that is being used, and on where
users are within the application. Instead, it is recommended that users
click the Don't Reload button in the warning message confirmation
window.

Users can then use the supported navigational options that are provided in
the application to perform the wanted action.

Chrome and Microsoft Edge

If you enable the confirmation message to be displayed, both Chrome and
Microsoft Edge display an extra check box that users can select to stop the
page from opening more message or confirmation windows. If users select
the check box, the message or confirmation window is not displayed again
when users click the back, refresh, or close buttons. It is recommended that
users do not select the check box.

Firefox

In Universal Access, if a user has not interacted with a page by clicking,
touching, scrolling, or typing on the elements, the warning message is not
displayed when the user clicks the Back button. In this case, data will not
be lost if the user leaves the page.

Procedure
1. Click System Configurations.
2. In the Shortcuts panel, click Application Data > Property Administration.
3. Choose one of the following options:
v To enable or disable the confirmation window in the IBM Cúram Social

Program Management user interface, search for and edit the value of the
curam.internal.app.guard.against.leaving property.

v To enable or disable the confirmation window in the Universal Access user
interface, search for and edit the value of the
curam.app.guard.against.leaving property.

4. To publish the property change, click Publish.

Domain-Specific Controls
Learn about the domain-specific controls that are provided by the Cúram Client
Development Environment (CDEJ). Domain-specific controls are employed to
provide a more sophisticated interface for user information than the standard set of
HTML controls.

Cúram web client reference 209

Examples of domains that require sophisticated controls include dates, date-times,
the meeting view, and the rules decision tree. Any Cúram User Interface Metadata
(UIM) page tat contains a server access bean with fields of this nature will have a
web page generated containing a custom control appropriate to the type. For
example, when a server bean contains the CALENDAR_XML_STRING domain, a calendar
is generated that expects server information in a particular XML format. Each of
the following sections details the custom controls converted for particular domains.

Dates
Dates are mapped to the SVR_DATE domain. Any server access bean that contains
fields of this type shows a date selector to the user for data input. These selectors
are HTML fields with an adjacent pop-up icon that causes a menu to be displayed
allowing the user to select a date or date time with ease.

Note: This function is based on JavaScript and it is important that the user enable
JavaScript in their browser for this selector to work. The appearance of the date
selector pop-up can be altered by overriding its dedicated cascading stylesheet. For
more information, see “Cascading Stylesheets” on page 33.

The initially configured date dialog has three input controls; a drop-down field for
the month, a text input field for the year, and the days of the month are displayed
so that a day can be selected. When the day of the month is selected, this selection
populates the date field.

The date format string that is associated with date format validations are
customizable in the file CDEJResources.properties and defined by the property
curam.validation.calendar.dateFormat:

If this value is not set, the date format string will default to the date format setting
that is specified in the ApplicationConfiguration.properties file.

Three Field Date Selector
Dates can be mapped to the THREE_FIELD_DATE domain to enable use of an
alternative date selector widget. Server access beans that contain fields of this type
will display three drop-down elements to the user for data input.

The order of the drop-down elements and the display values of the month element
reflect the date format, as configured by the dateformat property in the
ApplicationConfiguration.properties file. The day drop-down is populated with
numbers that range 1 - 31. Validation at the infrastructure level prevents users
from selecting an invalid date, for example, February 31, 2015. The year
drop-down element is populated with values that start 100 years in the past to 30
years in the future. The range and order of the options are not configurable.

A selection from the drop-down elements is made either by scrolling to the wanted
value or by typing the value when the drop-down element is active.

To use the Three Field Date Selector widget, model a property on a struct to use a
data type derived from the THREE_FIELD_DATE domain.

curam.validation.calendar.dateFormat=M/dd/yyyy

Figure 83. Customizing the date format

210 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Date-Times
Date-times are mapped to the SVR_DATETIME domain. Any server access bean that
contains fields of this type will display a date selector (as described in the Dates
topic) next to a time entry field.

Similar to the date selector, the pop-up here requires JavaScript to function
correctly. An extra control exists for entering time as hours and minutes. It is
displayed as two side-by-side drop-down lists for selecting the hour and minute
values.

Note: The user needs to enable JavaScript in their browser for these selectors to
work.

The date input field will not be displayed when the CURAM_TIME domain (a
descendant of the SVR_DATETIME domain) is used,

The date time format string that is associated with date-time format validations are
customizable in the file CDEJResources.properties and defined by the property
curam.validation.calendar.dateTimeFormat:

If this value is not set, the date time format string will default to HH mm ss.
Related reference:
“Dates” on page 210
Dates are mapped to the SVR_DATE domain. Any server access bean that contains
fields of this type shows a date selector to the user for data input. These selectors
are HTML fields with an adjacent pop-up icon that causes a menu to be displayed
allowing the user to select a date or date time with ease.

Representing Time-Only Values
As is described in related topics, Cúram has a base type for date-only and
date-time values. No specific base type exists for time-only values.

A CURAM_TIME domain is provided in the initial configuration of Cúram and this
configuration is used by the client infrastructure to display a corresponding
time-only widget. The widget also initiates certain processing when parsing and
formatting values based on this domain. However, the underlying data
representation is the same as for SVR_DATETIME and when it is working with
time-only domains the corresponding server-side code must ignore completely the
date part of the value.

Because time-only domains are based on the SVR_DATETIME domain, the default
values also will be the same. The zero date time of 0001-01-01 00:00:00 is the
value sent to the server if the field is left blank. If the field is set to 00:00, then
00:00 time value of today's date is sent.

The time input field that is rendered for CURAM_TIME domain is an editable
combination box as the following example shows. The time input field contains
selectable time values for every 30 minutes. The exact time value also can be
entered directly in the field.

curam.validation.calendar.dateTimeFormat=HH:mm

Figure 84. Customizing the Date-Time format

Cúram web client reference 211

The values to be selected are in the application-wide format set in
ApplicationConfiguration.properties, including AM/PM for the 12-hour display.
A manually typed value ends to follow the same format.

Customizing the Time Format
The application-wide time format setting can be changed by setting or modifying
the timeformat and timeseparator values in the
ApplicationConfiguration.properties file

For more information, see “Configuring the Application” on page 22.

Frequency Pattern Selector
In the frequency pattern selector pop-up, users can configure a frequency pattern;
for example, daily, weekly, monthly, bi-monthly or yearly. Frequency patterns are
mapped to the FREQUENCY_PATTERN domain. Any server access bean
containing fields of this type will display a frequency pattern selector to the user
for data input. These selectors are non editable HTML text fields with an adjacent
pop-up icon which causes a pop-up menu to be displayed allowing the user to
select a frequency pattern with ease.

Note that the functionality is based on JavaScript and it is important that the user
have JavaScript enabled in their browser for this selector to work. The appearance
of the frequency pattern selector pop-up can be altered by overriding its dedicated
cascading stylesheet. See “Cascading Stylesheets” on page 33 for more details.

It is worth noting that the frequency pattern text selected varies in length,
depending on the pattern selected. This makes the display of the selected pattern
prone to re-sizing and wrapping, depending on the layout of the UIM page and
the display space available.

Selection Lists
Within the Cúram application, the use of the standard HTML selection list i.e. the
select element is supported. Selection lists will truncate long data strings in order
to preserve the correct page layout. To combat this, the data's full value is available
as a tooltip for each item in the list. The list can be populated with data in a
number of ways as described in the following sections.

Populated from a Code-Table
If a FIELD has a target connection mapped to a property based on a code-table
domain, a drop-down selection list will be displayed containing all code-table
entries that are marked as “enabled”. The entries will be sorted alphabetically
according to their code descriptions. This can be overridden by setting the “sort
order” of each entry. Consult the Cúram Server Developers Guide for full details on
creating code-tables in a Cúram application.

When the selection list is displayed the initially selected item is evaluated as
follows:
1. The code value specified by the source connection of the field.
2. The default code of the code-table if the FIELD element's USE_DEFAULT attribute

is not set to false.
3. The first item in the selection list, if no default code is defined or the default

code is marked as “disabled”.
4. Blank, if the FIELD element's USE_DEFAULT attribute is set to false.

212 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A drop-down selection list can also be displayed as a scrollable selection list where
a number of entries are initially displayed instead of just one. To do this simply set
the HEIGHT attribute of the FIELD element to a value greater than 1.

Populated from Server Interface Properties
Data retrieved through server interface properties can also be used to populate a
selection list. The INITIAL connection end-point is used in this case. The following
are examples of a selection list on an insert and a modify page.

In this example the field has an INITIAL connection end-point to populate the
selection list and a TARGET connection end-point to specify what field the selected
value should be mapped to. The PROPERTY attribute of the INITIAL connection
end-point is the list of values you want the user to see in the selection list. When
the list is displayed, the first item in the list will initially be selected. The
HIDDEN_PROPERTY attribute specifies a list of corresponding values, when selected,
will be mapped to the property specified in the TARGET connection end-point. The
target property is a single field, not a list. In this example a list of people's names
will be displayed but it is the selected person's unique ID that will be mapped to
the target property. In certain circumstances the set of values visible to the user
may also be what you want mapped to the target property. In this case do not use
the HIDDEN_PROPERTY attribute.

The following example shows the same selection list, but used on a modify page.
The only difference is a SOURCE connection end-point is used to specify what is
selected in the list when the page is first displayed.

Drop-down, Scrollable and Checkboxed List types

Drop-down and Scrollable List:
The selection list can be displayed as a drop-down list or as a scrollable selection
list with a number of entries visible. A drop-down selection list is displayed by
default. To change this to a scrollable selection list set the HEIGHT attribute of the
FIELD element to a value greater than 1.The appearance of a selection list differs
from a drop-down list in two noticeable ways. For a drop-down list only the

<FIELD LABEL="Field.Label">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>

</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 85. Selection List on an Insert Page

<FIELD LABEL="Field.Label">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="sourcePersonID" />
</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 86. Selection List on a Modify Page

Cúram web client reference 213

default value is displayed and all the other selectable values are displayed only
when the drop down arrow is selected. Additionally the drop-down list is not
scrollable. However, a scrollable selection list does not have the drop-down arrow,
a subset of the values are initially displayed - the size of the subset is dependent
on the value of the HEIGHT that is set. This list has a scrollbar which can be used to
scroll the list, and view and select the remainder of the selectable values.

Checkboxed List:
Checkboxed selection list offers an alternative method of selecting individual
entries, in this case using the check box control. This variation will be used if
CONTROL attribute is set to CHECKBOXED_LIST. It is just an alternative way of
representation, so everything else applicable to Scrollable List applies for
Checkboxed List without change.

Adding an Empty Entry to a List for Non-Mandatory Fields
Browsers will select the first item in a selection list by default if no item is marked
as selected. In certain cases you may not want to “suggest” a value to the user. A
blank entry would be more suitable. Set the USE_BLANK attribute of the FIELD
element to true to add a blank entry as the first item on the selection list.

Enabling Multiple Selection
Browsers allow multiple items to be selected in a selection list. To enable this first
use a scrollable list as described above (you cannot select multiple items from a
drop-down list). Then add the following to the curam-config.xml file.

For each domain which you want to enable multiple selection add a DOMAIN child
element to the MULTIPLE_SELECT element. If a FIELD has a target connection which
is based on a domain listed in the MULTIPLE_SELECT element, multiple selection will
be enabled. When the form containing the selection list is submitted, the selected
values will be packaged into a tab-delimited string. Therefore the target property
must be based on a string domain. The same way, the source property in this case
is also expected in the form of a tab-separated string of values to be selected
initially (the values should match some of those specified via HIDDEN_PROPERTY).

Transfer List Widget

Overview:
The Transfer List widget is a control used to facilitate multiple selections for a user
(i.e. it is used as an alternative to an regular list which has multiple selection
enabled). It consists of two HTML select controls placed side by side. The left
control contains the items from which selections can be made (see See
“Drop-down, Scrollable and Checkboxed List types” on page 213 for more details
on selection lists.), the one to the right displays already selected items. Four
buttons between the lists allow for selecting/de-selecting individual or all items
(transferring them from one list to another and back as required).

Configuration:
The Transfer List widget is displayed instead of a regular HTML multiple selection
control when configured in one of the two ways described below. In order for all
multiple selection controls in an application to be displayed as Transfer List
widgets, curam-config.xml should contain the TRANSFER_LISTS_MODE element with
its value is set to true. Alternatively, individual multiple select controls might be

<MULTIPLE_SELECT>
<DOMAIN NAME="MY_DOMAIN" MULTIPLE="true"/>

</MULTIPLE_SELECT>a

Figure 87. Enabling multiple selection in curam-config.xml

214 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

configured to be displayed that way by setting the CONTROL attribute on the
appropriate UIM FIELD to be TRANSFER_LIST. This setting is applicable just for
fields rendered as multiple selection controls on the resulting UIM page and will
be ignored in any other case.

The Transfer List widget requires the same data and the same configuration for
enabling multiple selection as a regular selection list.

User Preferences Editor
The User preferences editor allows a user to edit a user preference value for use
anywhere within the application. For details on the definition of user preferences
please consult the Cúram Server Developers Guide.

The editor may be accessed from the taskbar by clicking the preferences button. On
clicking this button a popup window should be displayed with a list of all visible
user preferences. Those preferences that are editable will appear as either a text
field, radio buttons or a drop-down menu, depending on the type.

If the user wishes, they may edit the value of a preference and save the value
using the Submit Changes link. When the user returns to the editor the updated
values will appear. Any changes to user preferences using the editor will be
applied immediately.

To return the values to those that were originally defined, the user should click the
Reset to Default link. Selecting either of these buttons will close the popup
window.

Rules Trees

Introduction
The RESULT_TEXT domain contains information about the success or failure of a
particular claim against a set of rules. When the server supplies this information it
is translated into a tree view displaying all rules.

The RULES_DEFINITION domain also produces a rules tree, in this case displayed
with the rules editor. For more details on the rules editor see “Rules Editor” on
page 220.

It is possible to use the FIELD element's CONTROL attribute to change the format of
the rules display. The following sections will describe the various options for this
attribute. Furthermore, the FIELD element's CONFIG attribute can be used to
configure these rules trees.

Behavior of Summary and Highlight-On-Failure Rules Flags:
The summary-flag has no effect in this view. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a different
color to those that have succeeded.

Default Rules View
The default rules view of the rules tree, specified by setting the CONTROL attribute of
the FIELD element to DEFAULT, shows data in an expanded tree view using standard
HTML. This view should be visible in most standard web browsers. However, as
the rules result is often quite verbose, the resulting output can be confusing to the
viewer of your web page.

Cúram web client reference 215

Summary Rules View
To display a summary rules view, set the CONTROL attribute of the FIELD element to
SUMMARY. The view of this tree is very similar to the default rules tree view except
that the details about why a rule failed or succeeded are not displayed in the tree.

Any rules, regardless of type, marked as summary items are displayed. The
following section, “Failed Rules View,” describes a similar view that only displays
rules items whose type is explicitly set to rule. This view can be configured in the
same manner as the dynamic rules view mentioned below. See “Dynamic Rules
View.”

Failed Rules View
To display a failed rules view, set the CONTROL attribute of the FIELD element to
FAILURE. This view is similar in layout to the previously mentioned summary view.
See “Summary Rules View”

Any rules whose type is rule (and not objective or rule group for example) and
are marked as summary items are displayed. This view can be configured in the
same manner as the dynamic rules view mentioned below. See “Dynamic Rules
View”

Dynamic Rules View
When the CONTROL attribute is set to DYNAMIC, this causes an expanding/contracting
version of the decision to be displayed instead of a static tree. In this view the
entire tree is not displayed. The view is “compressed” into multiple trees for each
rules-item that has failed coupled with the “summary” flag on the item. See
“Behavior of Summary and Highlight-On-Failure Indicator” on page 218 for more
details on the summary flag. This is accomplished using scalable vector graphics
(SVG) content displayed in the Adobe SVG Viewer instead of HTML. Refer to the
Cúram v6 Supported Prerequisites document to see the supported version of this Web
Browser Plugin.

Although the dynamic view requires an extra browser plug-in, it provides the user
with a much more comprehensive and interactive view of the rules data. The rules
tree is more comprehensively organized with a supplementary conjunction text
displayed next to the rules.

There is no need to set a HEIGHT or WIDTH as the rules window resizes itself
automatically. The developer is limited to two dynamic rules windows per page.

Localization of the text to display within the viewer is accomplished through
JavaScript property files as described in “JavaScript Externalized Strings” on page
47. The name of these JavaScript property files should be SVGText. For example,
SVGText.js_es.properties would be the name of the Spanish language version of
SVGText.js.properties file.

All style information related to the dynamic rules widgets is held in a separate file
called curam_svg.css. For further details see “Cascading Stylesheets” on page 33.

The developer can configure the rules tree using an XML configuration file. For all
rules widgets based on the RESULT_TEXT domain this configuration is read from
RulesDecisionConfig.xml. A version of this file should be in your components
directory. This XML configuration file is merged during the build process in a
similar method to other XML configuration files.

216 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The CONFIG attribute of the FIELD displaying rules is used to specify an ID
matching a CONFIG element in the RulesDecisionConfig.xml file. The following is a
sample of a RulesDecisionConfig.xml file:

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This
attribute is mandatory and should match an ID attribute value on a CONFIG element
in this document. The default configuration contains the icon information as well

<RULES-CONFIG DEFAULT="default-config">
<CONFIG ID="default-config" HYPERLINK-TEXT="false">

<TYPE NAME="PRODUCT"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ASSESSMENT"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SUBRULESET"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE_LIST_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE_LIST_GROUP"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>

</CONFIG>
<CONFIG ID="Rules.Config.Core"

HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>
</RULES-CONFIG>

Figure 88. Sample RulesDecisionConfig.xml File

Cúram web client reference 217

as the default nodes to link to if no configuration is required for a widget. These
are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE attributes
respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify
whether the text next to a rules node in the widget is also to be used as a
hyperlink to the link page set by the EDIT-PAGE for the TYPE in question.

Note that the CONFIG with the ID of value of Rules.Config.Core has the optional
attribute OPEN-NODE-PARAM. This attribute is the name of a page parameter whose
value is the ID of a node to open when the page is loaded. This configuration file
is also used for configuration of the dynamic full tree rules view described in the
next section.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to
identify a page parameter whose value will be the source for a new parameter
(named by the DECISION-ID-TARGET) appended to each link on the widget. The
above example will look for a page parameter called source-Decision-ID and pass
on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean
instead of from a page parameter. This is achieved by adding DECISION-ID-SOURCE-
BEAN and DECISION-ID-SOURCE-FIELD attributes to the CONFIG element instead of a
DECISION-ID-SOURCE attribute. A validation error is thrown if all three are present.
The DECISION-ID-SOURCE attribute should be the name of a bean on the page and
the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field
providing the decision ID value. The following is an example of this configuration:

Behavior of Summary and Highlight-On-Failure Indicator:
The highlight-on-failure indicator on a rules item does not have any effect in this
view.

If an item fails and is marked as a summary item, this item should only be
displayed as a separate tree if no item along its parent path (i.e. any group that
contains it) has failed and is marked as a summary item. Consider the following
tree of rule groups and rules and note the result and summary attributes on each
item. Note that this is purely for illustrative purposes and does not represent the
data-format created by the Rules Engine.

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>

Figure 89. Example of Decision ID Sourced from a Bean

218 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A rule that fails and is marked as "not a summary item" may still display as long
as it is contained within another node that fails and has summary set to "true". A
rule that fails and is marked as "not a summary item" will never display as the
root of a tree in the dynamic rules view. So, the data above will result in separate
“trees” as follows.
- D

- E
-- F
-- G

From the first rule-group “B”, only the item “D” is displayed because it has failed
and is marked as a summary item. It appears as a single-node tree.

The rule-group “E” is marked as a summary item and it has failed, therefore it and
all it's child nodes are displayed no matter what the success\failure status or
summary flag on the child nodes is.

The entire rule-group “H” is filtered out. “H” itself, and “I” have succeeded and
will not be displayed. Although “J” has failed it is not marked as a summary item
and therefore is not displayed.

Dynamic Full Tree Rules View
When the CONTROL attribute is set to DYNAMIC_FULL_TREE a view, similar in
functionality to the dynamic rules view described in the previous section, is
displayed. The main difference is that the entire rule set is displayed, similar to the
default rules view, although the tree is interactive thus requiring the SVG viewer.
There is no filtering of the display of rule groups in this view, potentially making it
difficult to understand for someone who is not familiar with the rules engine.
Configuration of this view is through the RulesDecisionConfig.xml file described
in the previous section.

<decision>
<rules-item id="B" type="rule-group"

result="success" summary="true">
<rules-item id="C" type="rule"

result="success" summary="false" />
<rules-item id="D" type="rule"

result="fail" summary="true" />
</rules-item>
<rules-item id="E" type="rule-group"

result="fail" summary="true">
<rules-item id="F" type="rule"

result="fail" summary="false" />
<rules-item id="G" type="rule"

result="success" summary="false" />
</rules-item>
<rules-item id="H" type="rule-group"

result="success" summary="true">
<rules-item id="I" type="rule"

result="success" summary="true" />
<rules-item id="J" type="rule"

result="fail" summary="false" />
</rules-item>

</decision>

Figure 90. Example of Rules Tree Items with Summary Flag

Cúram web client reference 219

Rules Editor
The RULES_DEFINITION domain produces the rules editor. This control has a
default HTML-only view or, if the FIELD 's CONTROL attribute is set to DYNAMIC, an
SVG view. See “Default Rules View” on page 215 and “Dynamic Rules View” on
page 216 for more information.

This widget uses the CONFIG attribute to specify an ID attribute value matching the
ID attribute value of a CONFIG element in the RulesEditorConfig.xml file. This XML
configuration file is merged during the build process in a similar method to other
XML configuration files. The following is a sample of RulesEditorConfig.xml:

220 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<RULES-CONFIG DEFAULT="DefaultConfig">
<CONFIG ID="DefaultConfig" HYPERLINK-TEXT="true">

<TYPE NAME="Product"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Assessment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SubRuleSet"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ObjectiveGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ObjectiveListGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Objective"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SubRuleSetLink"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RuleGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RuleListGroup"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Rule"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>

<TYPE NAME="DataItemAssignment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

</CONFIG>
<CONFIG ID="Editor.Config"

HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

<TYPE NAME="Product" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Assessment" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSet" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Objective" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSetLink" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Rule"/>
<TYPE NAME="DataItemAssignment" EDIT-PAGE="RulesResult"/>

</CONFIG>
</RULES-CONFIG>

Figure 91. Sample RulesEditorConfig.xml File

Cúram web client reference 221

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This
attribute is mandatory and should match an ID on a CONFIG element in this
document. The default configuration contains the icon information as well as the
default nodes to link to if no configuration is present for a widget. These are
covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify
whether the text next to a rules node in the widget is also to be used as a
hyperlink to the link page set by the EDIT-PAGE for the TYPE in question.

Note that the CONFIG with the ID of value of Editor.Config has the optional
attribute OPEN-NODE-PARAM. This attribute is the name of a page parameter whose
value is the ID of a node to open to when the page is opened.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to
identify a page parameter whose value will be the source for a new parameter
(named by the DECISION-ID-TARGET) appended to each link on the widget. The
above example will look for a page parameter called source-Decision-ID and pass
on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean
instead of from a page parameter. This is achieved by adding DECISION-ID-SOURCE-
BEAN and DECISION-ID-SOURCE-FIELD attributes to the CONFIG element instead of a
DECISION-ID-SOURCE attribute. A validation error is thrown if all three are present.
The DECISION-ID-SOURCE attribute should be the name of a bean on the page and
the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field
providing the decision ID value. The following is an example of this configuration:

Meeting View

Overview
The meeting view is a control that displays scheduling information in a chart
format. It is associated with the USER_DAILY_SCHEDULE domain. The data to
display in the meeting view is in XML format. Configuration settings for the
meeting view must be in a file called MeetingViewConfig.xml in a component. The
format for the XML data and configuration settings are described below. Finally,
the control has two modes of operation: single and multiple selection.

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>

Figure 92. Example of Decision ID Sourced from a Bean

222 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Single Selection Mode
In the single selection mode meeting view, the first column contains a list of users.
The second column indicates the duration of the event to be scheduled. The third
column displays the times during the day that the user is available or busy. The
available times are hyperlinks that can be clicked to indicate the schedule the start
time for the meeting. Note that any parameters passed to a page containing the
meeting view will be included in any links within the view. Only start times that
can accommodate the relevant meeting duration will be hyperlinks. For example, if
John Smith is busy from 10:30 until 12:30, it is not possible to select 10:00 as the
start time for a meeting with a duration of one hour and the 10:00 time slot will
not be a hyperlink.

Note that any parameters passed to a page containing the meeting view will be
included in any links within the view.

Multiple Selection Mode
This view returns a tab-delimited list of the user IDs of selected rows. The meeting
view widget in this mode is the same as that described above for the single
selection mode except that it has an extra column which is inserted as the first
column in the list and has a selectable checkbox for each list item. The users in this
mode of widget are chosen by selecting their associated check boxes. Time slots are
not hyperlinked and are for display only.

XML Formats
The meeting view control expects information in a specific XML format. Below is
an example of this:

Note that in the format above: the MODE attribute is either Single or Multiple; the
DURATION attribute is in minutes; START and END attributes are date-times in the
format “yyyy-MM-dd HH:mm:ss”. The READ_ONLY attribute, if set to false,
indicates that no time slot will be selectable as a hyperlink. The DATE attribute
contains the date of the current scheduling and must be supplied. It should be in
the format “yyyy-MM-dd”. Finally, the TYPE attribute associates the schedule
information with configuration settings which are also specified in an XML format
as below:

<SCHEDULE MODE="Single|Multiple" TYPE="User"
READ_ONLY="False" DATE="2003-30-10">

<USER NAME="John Smith" ID="12345" DURATION="90">
<BUSY START="2003-30-10 10:30:00" END="2003-30-10 12:30:00"/>
<BUSY START="2003-30-10 15:45:00" END="2003-30-10 16:15:00"/>

</USER>
<USER NAME="James Smith" ID="12346" DURATION="90">

<BUSY START="2003-30-10 12:30:00" END="2003-30-10 13:30:00"/>
<BUSY START="2003-30-10 15:00:00" END="2003-30-10 18:15:00"/>

</USER>
</SCHEDULE>

<SCHEDULE_CONFIG>
<CONFIG TYPE="User" INTERVAL="15" START="08:00" END="16:00">

<USER_HOME PAGE="PersonHome"
ID_PARAM="UserID" NEW_WINDOW="True" />

<NEW_EVENT PAGE="AddNewEvent" ID_PARAM="UserID"
START_PARAM="start" END_PARAM="end" />

<MULTI_SELECT PAGE="SelectedUsers"
TAB_STRING_PARAM="selectedUsers"
DATE_PARAM="eventDate" />

</CONFIG>
</SCHEDULE_CONFIG>

Cúram web client reference 223

Where INTERVAL is the duration in minutes of each segment of the time line. This
can be 15, 30, or 60. Only these values are acceptable. The START and END attributes
detail the beginning and end times of the time line. They are in the form
“HH:mm”. Each CONFIG element can have the following sub-elements:

USER_HOME
The PAGE attribute details which page to link to when clicking on the user's
name. The ID_PARAM attribute is the name of the parameter to supply with
the user's ID as a value. NEW_WINDOW attribute, true by default, specifies if
the link opens in a new window or not.

NEW_EVENT
The PAGE attribute details which page to link to when clicking on a time
slot. The ID_PARAM attribute is the name of the parameter to supply with
the user's ID as a value. The START_PARAM attribute is the name of the
parameter to supply with the start time of the new event. Similarly, the
END_PARAM describes the name of the end time parameter. Both of these
attributes will be in the current application's date-time format.

MULTI_SELECT
The PAGE attribute details which page to link to when the submit button on
the multi-select view is pressed. TAB_STRING_PARAM is the name of the link
parameter to supply containing the tab-delimited string of selected users.
DATE_PARAM is the name of another link parameter containing the date of
the event in question. The date value is taken from the value of the DATE
attribute on the SCHEDULE element.

Charts

Overview
Charts are displayed when one of the domains of CHART_XML,
LINE_CHART_XML, PIE_CHART_XML or BARCHART_XML domains (or any
derivation of them) is used as the source of a field.

Note: Charts are rendered in the browser using Adobe Flex technology. which
requires Adobe Flash Player. Refer to the Cúram Third-Party Tools Installation Guide
for Windows document to see the supported version of Adobe Flash Player.

Chart appearance
A bar chart displays a number of rows horizontally with a horizontal and vertical
axis. Each row represents a unit of information comprised of a caption and a stack
of differently colored bars of variable length. Their length represents the quantity
of the unit in question and can be ascertained using the numbered marks on the
horizontal axis, or a data tip which is available when you hover over the unit, as
described below. The chart scale is chosen to fit the biggest stack of bars (this
might be overriden by a configuration setting). Each bar is a hyperlink to a page
containing further information. The vertical axis of this chart displays captions,
describing each bar stack category. Captions might be dates, date ranges or textual
values. They are optionally rendered as hyperlinks leading to pages with
additional information, in which case captions are additionally visually indicated
when hovered over. Both bar links and caption links are configurable, as described
in “Chart configuration” on page 225.

Textual captions might get longer than one line. In such a case long captions are
wrapped within the category segment. If a caption text exceeds two lines, though,
it is truncated at that point and an additional tool tip with the full label text is
displayed when such a label is hovered over.

224 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Both bar links and caption links are configurable, as described in “Chart
configuration.”

A column chart is similar to the bar chart and configurable the same way, except
that units of information are displayed in column stacks rather than bars, and axes
are interchanged accordingly. It is also possible to configure a column chart so that
it has a legend that describes what each of the possible shaded areas in a column
represents. The user can hover over a shaded area in a column, which displays
what it represents when mapped to an entry in the legend.

Another way of presenting chart information is to use a line chart. In this chart,
information is rendered as points in each category group, with points of the same
type joined by straight lines (e.g. to represent data changes over time). Line charts
differ from bar and column charts in that neither the points nor lines are currently
hyperlinks. The same applies to line chart captions.

The last available chart type is a pie chart. Charts of this type are typically used to
illustrate relative magnitudes, frequencies or percentages. The arc length of each
sector is proportional to the quantity it represents. Together, the sectors create a full
disk. Pie charts use callout-like labels, which provide details of the item
represented by a sector and its percentage in the pie. Sectors are rendered as
hyperlinks, leading to pages with additional information; however, chart labels are
not currently available as hyperlinks.

By default, charts are displayed without a legend so that all the available space can
be dedicated to the chart itself. However, charts can be configured to include a
legend which shows extra information on what is represented by the elements of
the chart.

Data tips are displayed on a chart when you hover the mouse over a particular
chart data element. Data tips are shown regardless of whether a legend is included
or not.
v The data tip for bar and column charts shows absolute and relative quantitative

information attributed to the element and the element stack, the category
(group) to which that element belongs and the type of the element
(corresponding to an entry in the legend, if present).

v As line charts are not stacked, relative quantity information is not shown in their
data tips; line chart data tips are also displayed only when the mouse is over a
data point and not over a line.

v For a pie chart, a data tip displays absolute quantitative information for the
particular sector and the percentage of the sector within the disk.

Note: Line charts always display a legend and this is currently not configurable.

Chart configuration
Various aspects of charts can be configured. This is accomplished by setting the
CONFIG attribute on the UIM field in question. The appropriate XML configuration
file must contain a configuration section with a unique identifier matching the text
in the CONFIG attribute.

All the necessary chart configuration files are to be in your component directory.

Different types of charts are currently configured in separate configuration files:
v Bar charts and column charts both use ChartConfig.xml and are also backward

compatible with the previous configuration file version, BarChartConfig.xml

Cúram web client reference 225

(data is taken from whichever of those two files contains a configuration with
the required ID; if configurations with the same ID exist in both files, the one
found in ChartConfig.xml takes precedence).

v LineChartConfig.xml configuration file is used to look for line chart
configuration data.

v Pie chart configuration data is to be placed into file PieChartConfig.xml

The following is a sample of a chart configuration file:

The CHART-CONFIG root element contains only CONFIG elements. The CONFIG element
contains all configuration for a particular field, identified by the ID attribute. The
following table describes all attributes of the CONFIG element. BarChart.properties
referred to in this table is a properties file in the client application's
<CLIENT_DIR>\components\core folder, used to look up values required.

<CHART-CONFIG>
<CONFIG ID="Column.Chart.Config" ORIENTATION="VERTICAL"

X_AXIS_LABEL="Vert.BarChart.X-Axis"
Y_AXIS_LABEL="Vert.BarChart.Y-Axis">

<LEGEND CODETABLE="Attendance">
<ITEM CODE="CR1"/>
<ITEM CODE="CR2"/>
<ITEM CODE="CR3"/>

</LEGEND>
<LINK LOCATION="ComponentRedirect">

<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"

USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>

</LINK>
<CAPTION_LINK LOCATION="AnotherPage">

<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"

USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>

</LINK>
</CONFIG>

<CONFIG ID="BarChart.Config" ORIENTATION="HORIZONTAL"
CAPTION="Status.Caption"
CAPTION_TEXT_CODETABLE="Cars"
MIN_HEIGHT="200" MAX_HEIGHT="500">

<LEGEND VISIBLE="true" CODETABLE="OldCars">
<ITEM CODE="CR1"/>
...

</LEGEND>
<LINK LOCATION="TransferPage">

<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
...

</LINK>
</CONFIG>
<CONFIG ID="BarChart.Config" TYPE="line"

CAPTION="Line.Chart.Caption">
<LEGEND>

<ITEM CODE="CR1"/>
...

</LEGEND>
<LINK LOCATION="ComponentRedirect">

<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
...

</LINK>
</CONFIG>

</CHART-CONFIG>

226 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 114. Attributes of the CONFIG element

Attribute Description

ID Unique identifier for this CONFIG element.

TYPE Can be either line or pie, depending on required type of
chart. If not present, ORIENTATION attribute will be used to
define if bar or column chart is to be displayed.

ORIENTATION Can be either HORIZONTAL or VERTICAL, depending on required
type of chart, HORIZONTAL meaning bar chart and VERTICAL -
column chart.

CAPTION_TEXT_CODETABLE Code table currently used for label captions throughout a
chart. If not specified, literal values from chart data will be
used.

MAX_VALUE Maximum value for a numeric axis of column or bar chart.
Automatically calculated to fit the maximum element, if not
specified.

MAX_INCREMENT Maximum increment value for a numeric axis of a chart.
Numbered ticks are drawn on a chart at the specified
intervals. If not specified, numbered ticks are placed at
uniform intervals along the numeric axis, taking into account
it's maximum value.

X_AXIS_LABEL Key to a text property in BarChart.properties. This text is
used as the label for the x-axis in the column or line chart, or
y-axis in the bar chart. Not used on pie chart.

Y_AXIS_LABEL Key to a text property in BarChart.properties. This text is
used as the label for the y-axis in the column or line chart, or
x-axis in the bar chart. Not used on pie chart.

MIN_HEIGHT This setting is used to define minimum chart object height and
is to be specified in pixels. Where a chart contains a small
number of items and would be short based on that content
size, minimum height introduced by this setting is used. The
setting is optional, so 250px default minimum height is used if
MIN_HEIGHT is not specified.

MAX_HEIGHT This setting is used to define the maximum chart object height
on screen and should be specified in pixels. Where a chart
contains numerous items and its contents exceeds the
MAX_HEIGHT specified, this setting is used for the chart object
height and a vertical scrollbar appears to allow for access to
the rest of the items in the chart. The setting is optional and a
default of 250px is used if the attribute is not specified. A
value of -1 for MAX_HEIGHT means that the chart takes
whichever height its content needs to be displayed in full. It is
worth noting that the minimum height setting, either default
or explicit, is still taken into account in this case. As a result,
charts with little content will not be shorter than minimum or
default height implies. Finally, a chart with MAX_HEIGHT set to
-1 will not display its vertical scrollbar and the browser
scrollbar will appear once the chart is too big to fit into the
screen area available.

CAPTION Key to a text property in BarChart.properties. This text is
used as the label for the whole chart.

Note: The example lists sample ChartConfig.xml contents. The older format in
BarChartConfig.xml is almost the same except that the root element is called
BARCHART-CONFIG.

Cúram web client reference 227

The older versions of BarChartConfig.xml do not contain configuration for label
links. This element might be added, if required to this file directly; it is preferable,
though, to create appropriate full configuration with the same ID in the
ChartConfig.xml which will override the older version.

MIN_HEIGHT and MAX_HEIGHT settings currently do not apply to line or pie charts
and will be ignored for these types.

The CONFIG element has three child elements: LEGEND, LINK and optional
CAPTION_LINK.
v The LEGEND element defines the items available for use in the TYPE attribute of a

BLOCK element in chart data returned from the server. The element has an
optional CODETABLE attribute, specifying the code table used for legend item
translation, and an optional VISIBLE attribute which indicates if the legend
should be seen on screen or not. This attribute has a default value of false, so it
must be explicitly set to true in order for the legend to be displayed.
The ITEM child element of specifies each legend entry. Its CODE attribute is the
text or code table code used to identify a legend item. The code table containing
the CODE value will be ascertained first from the CAPTION_TEXT_CODETABLE value
of the CONFIG element, then the CODETABLE attribute on the LEGEND element value,
or, in case neither of these attributes are present or do not apply to a particular
CODE, the literal value will be used as a caption. The same caption is used for a
context data tip displayed when mouse pointer is over a corresponding chart
element.

v The LINK child element is used to configure hyperlinks on bar chart bars and
column chart columns or pie chart segments. Its LOCATION attribute is the ID of
the UIM page to link to. A LINK element can have any number of PARAMETER
child elements. The NAME attribute of a PARAMETER is the name to give the
parameter when transferred as part of hyperlink. The VALUE attribute is the name
of the attribute on the BLOCK element or the CAPTION element in the chart input
data returned from the server (see below) to use as a parameter value unless
USE_PAGE_PARAM is true, in which case VALUE is the name of a page parameter.

v Finally, the CAPTION_LINK element is used whenever chart captions are intended
to be rendered as links and contains separate settings for such links. The
CAPTION_LINK element contents are similar to those of the LINK element. When
this element is skipped, captions are displayed as static text. Also, captions as
links are currently supported on bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by creating
a properties file called BarChart.properties in the client application's
<CLIENT_DIR>\components\core folder and placing there values under keys,
corresponding to the ones specified among CONFIG element parameters as described
above.

In addition, the text displayed for the word total displayed in the bar tool-tips is
customizable using the key total.tooltip.text in the BarChart.properties file.

Note: Bar colors are not customizable in charts and are automatically calculated by
Adobe FLEX.

Collapsible Cluster Support: Collapsible clusters are not supported for any cluster
containing this widget.

Chart Data Formats
The data to be displayed in a chart comes from the server in XML format.

228 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Below is example of the XML used to create a chart:

The root element, CHART, can contain any number of UNIT elements. These elements
are used to group related information into groups (clusters) and contain one
CAPTION element and one or more BLOCK child elements.

The CAPTION element displays an appropriate caption depending on what attributes
are set:
v If either the START_DATE or both START_DATE and END_DATE attributes are set, then

the caption will be either a single start date or a range of dates.
v If the TEXT attribute is set, then the caption text is first looked for in the code

table specified in the CAPTION_TEXT_CODETABLE attribute of the CONFIG element
(see above), then looked for as a property in BarChart.properties using the
TEXT value as a key, or, if neither attempt is a match, the literal TEXT value is
rendered as a caption.

Each BLOCK element represents a block to be drawn on a chart as a bar, column,
line chart point or pie chart sector. This element must have an associated TYPE
attribute to match it with a particular item. The LENGTH attribute is necessary to
define the measurement of the block. In the bar or column chart this is the
length/height of a bar/column; in a line chart it's the position of an edge point; in
a pie chart it's the relative sector arc length. The ID attribute is a unique
identifier for a block and can be used as a parameter for any hyperlinks. The
optional DUE_DATE attribute can also be used as an ID parameter for hyperlinks on
a particular block. It represents the due date for a given block.

Note:

v There are no restrictions on the number or names of the attributes of BLOCK
element. This facilitates passing an arbitrary set of attributes in the links from a
chart (provided the configuration is updated appropriately). However, one
should keep in mind, that the names of the attributes provided in this section
are reserved and bound to the particular elements, i.e. even though START_DATE
attribute could be added to a BLOCK element, in this case it will be interpreted as
a literal value and not a date as it would be in the context of CAPTION element.

v Due to the nature of pie chart, no more than one BLOCK element will be
processed and displayed in this type of chart.

<CHART>
<UNIT>

<CAPTION TEXT="TR1" START_DATE="2004-12-31"
END_DATE="2005-03-06"/>

<BLOCK ID="1" TYPE="CR1" DUE_DATE="2005-01-01" LENGTH="33"/>
<BLOCK ID="2" TYPE="CR3" DUE_DATE="2005-02-01" LENGTH="14"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR2" START_DATE="2004-12-31" />
<BLOCK ID="3" TYPE="CR3" DUE_DATE="2005-01-02" LENGTH="11"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR3" END_DATE="2005-03-08" />
<BLOCK ID="4" TYPE="CR1" DUE_DATE="2005-01-03" LENGTH="22"/>
<BLOCK ID="5" TYPE="CR2" DUE_DATE="2005-01-09" LENGTH="15"/>
<BLOCK ID="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>

</UNIT>
</CHART>

Figure 93. Sample Horizontal Bar Chart XML

Cúram web client reference 229

Heatmap Widget

Overview
The Heatmap widget is a control which displays a grid of items of different
importance. Items in the widget are presented by color shades varying from red to
blue, indicating their importance level from highest to lowest.

The widget is inserted into the page when the XML_HEATMAP domain is
associated with UIM source property of a FIELD.

The Heatmap widget expects XML data from the server in the following format:
<HEATMAP>

<REGION REGION_ID="R1" LABEL="highest importance"/>
<REGION REGION_ID="R2" LABEL="middle importance">
<ITEM ITEM_ID="id9" LABEL="0009" />
<ITEM ITEM_ID="id10" LABEL="0010"/>
<ITEM ITEM_ID="id21" LABEL="0021"/>

</REGION>
<REGION REGION_ID="R3" LABEL="lowest importance">
<ITEM ITEM_ID="id22" LABEL="0022"/>

</REGION>
...

</HEATMAP>

Here, the REGION elements specify the importance level ("heat") of their contained
ITEM s. There should be at least two regions in a heatmap widget. The color will
always start from red, so if no items of that importance are there, empty REGION
elements should be inserted for the widget to render properly.

Configuration
Different types of heatmap can be configured by creating entries in the
HeatmapConfig.xml file in your components directory, using the following format:
<HEATMAP_CONFIG>

<CONFIG ID="Map1" NUM_COLS="10" NUM_ROWS="4"
LEGEND_POSITION="LEFT"
LEGEND_TITLE="Deadline"
LEGEND_TITLE_PROPERTY="Localised.Legend.Title">

<ITEM_LINK PAGE_ID="Sample_page">
<PARAM NAME="configParameter" VALUE="ITEM_ID"/>

</ITEM_LINK>
</CONFIG>
<CONFIG ID="Map2" NUM_COLS="6">
...

</CONFIG>
</HEATMAP_CONFIG>

The attributes of a CONFIG element are summarized in the following table:

Table 115. Attributes for CONFIG element

Attribute Description

NUM_COLS This attribute allows you to set the number of items displayed
in each row of the Heatmap

NUM_ROWS This attribute allows you to specify the number of visible rows
in the Heatmap. If this attribute is set to less rows than are
required to display the data, a vertical scrollbar will be
provided. If this attribute is not present, the widget will
expand to display as many rows as are required.

230 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 115. Attributes for CONFIG element (continued)

Attribute Description

LEGEND_POSITION By default, the Heatmap legend is drawn to the right of the
widget. This attribute can be used to draw the legend to the
left instead, by setting it's value to LEFT.

LEGEND_TITLE The default title for a legend is Legend. This attribute can be
used to specify a more logical title to use.

LEGEND_TITLE_PROPERTY Optional attribute used to customize/localize the displayed
title. The value here is the key in the
CDEJResources.properties file or its localized version (see
“Localization” on page 43 for more details on localization).

The ITEM_LINK element can be used to specify the page to which to link when a
user clicks on an item in the Heatmap, by setting it's PAGE_ID attribute. The PARAM
child element can be used to specify what page parameters to pass (the NAME
attribute) and what data items to use as their value (the VALUE attribute). Values
which don't match any attributes in the ITEM elements in the Heatmap XML are
assumed to be literal values.

To specify which configuration to use for a given instance of the Heatmap widget,
the CONFIG attribute of the field containing the widget should be set to the ID of
the desired configuration.

Workflow

Overview
A workflow depicts a series of steps that routinely take place in order for a unit of
work to be completed. The WORKFLOW_GRAPH_XML domain, or any derivation
of it, causes a workflow to be displayed. The data to be displayed in a workflow
comes from the server in XML format. Configuration settings for the Workflow
must be in a file called WorkflowConfig.xml, of which there can be only one per
component. The format for the XML data and configuration settings are described
below. Any static text for this view can be customized and localized by creating a
properties file called Workflow.properties in the client application's
<CLIENT_DIR>\components\core folder.

Workflow Details
In a workflow view, a box, along with a representative icon, represents a discrete
unit of work and is called an activity. Any line connecting nodes is called a
transition and is intended to illustrate the flow of work. For this reason, the start
and end activities are represented by icons only. Workflow proceeds from the left
and ends at the right-most activity. An activity is a hyperlink to a tab containing
further details on that activity. An activity can have a second, smaller icon
indicating that there is a notification on this activity. Clicking on the notification
icon (a small envelope in the image below) will open a separate tab with details of
the notification.

An activity has an entry point and an exit point for a transition, on the right and
the left respectively. When two or more transitions leave an exit point this is called
a split. The transitions in a split can be given a number to indicate their relative
progression. When two or more transitions meet at an activity's entry point this is
called a join. If either a join or a split is an “and” type, also called a “conjunction”,
then it is represented as a small square. This implies that a series of transitions
have to take place together in order for the workflow to proceed. If a join or a split

Cúram web client reference 231

is an “xor” type, an either-or situation, then a small circle is used. There are
examples of both in the figure below. Finally, a transition can have an associated
transition condition. This means that certain criteria have to be met in order for a
transition to proceed. This is represented by an asterisk on the transition and the
full condition information is displayed in a pop-up if the user hovers the mouse
over the symbol.

Workflow XML Formats
The workflow widgets require XML data that conforms to the workflow schema
defined in the workflow.xsd file located in the lib\curam\xml\schema folder of your
CDEJ installation folder. Below is an example of workflow XML data:

Figure 94. Workflow

232 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The root element, WORKFLOW, can have any number of NODE (activity) and EDGE
(transition) elements. The ID attribute on WORKFLOW identifies this particular
workflow as does the PROCESS-VERSION attribute.

The NODE element represents a single activity in the workflow. All attributes of a
node are defined in the following table:

Table 116. Attributes of a Node

Attribute Description

ID Unique identifier for this element, supplied as a parameter in
the row header hyperlink.

X An x-coordinate for an element on the workflow graph.

Y A y-coordinate for an element on the workflow graph.

TEXT The text of an activity.

ACTIVITY-TYPE-CODE Code for an activity type. Used as a parameter in a hyperlink.

HIDDEN Boolean property to indicate if an edge or node is to be
hidden. If true the node will not be displayed.

IS-EXECUTED Boolean property to indicate if an activity has already been
executed for a particular process instance. If set to true then
the activity has been executed.

SPLIT-TYPE The split type associated with an activity.

JOIN-TYPE The join type associated with an activity.

ACTIVITY-INSTANCE-ID The unique identifier of an activity instance for a particular
process instance.

START-DATE-TIME The start date time of an activity instance or transition
instance for an executed or currently executing process.

END-DATE-TIME The end date time of an activity instance or transition instance
for an executed or currently executing process.

STATUS The current status of an activity instance.

TASK-STATUS Code for the status of a task.

TASK-RESERVED-BY The name of the user reserving the task.

TASK-TOTAL-TIME-WORKED The total time worked on a task in seconds.

<WORKFLOW ID="4791830003522207744" PROCESS-VERSION="1">
<NODE ID="6953557824660045824" X="2.0" Y="1.0"

TEXT="Loop Activity [End]" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT9" HAS-NOTIFICATION="true"
IS-EXECUTED="false" SPLIT-TYPE="AND" JOIN-TYPE="AND"
TASK-ID="1"/>

<NODE ID="-3566850904877432832" X="3.0" Y="1.0"
TEXT="EndProcessActivity" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT7" IS-EXECUTED="false"
JOIN-TYPE="AND" TASK-ID="2"/>

<NODE ID="2702159776422297600" X="1.0" Y="2.0"
TEXT="Activity 1" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT5" IS-EXECUTED="false"
SPLIT-TYPE="AND" JOIN-TYPE="AND" TASK-ID="3"/>

<EDGE FROM="6953557824660045824" TO="-3566850904877432832"
HIDDEN="false" TRANSITION-ID="1621295865853378560"
IS-EXECUTED="false" REVERSE-ARROW="false"/>

<EDGE FROM="3566850904877432832" TO="2702159776422297600"
HIDDEN="false" TRANSITION-ID="0" IS-EXECUTED="false"
REVERSE-ARROW="true"/>

</WORKFLOW>

Cúram web client reference 233

Table 116. Attributes of a Node (continued)

Attribute Description

NUMBER-ITERATIONS The number of times the activity contained in a node has been
executed.

TASK-ID The unique identifier for the task.

The EDGE element represents a single transition in the workflow. All attributes of an
edge are defined in the following table:

Table 117. Attributes of an Edge

Attribute Description

FROM The ID of the node this edge is from.

TO The ID of the node this edge is to.

TRANSITION-ID The unique identifier of a transition.

IS-FOLLOWED Boolean property to indicate if a particular transition has
already been followed for a process instance.

TRANSITION-INSTANCE-ID The unique identifier of a transition instance for a particular
process instance.

REVERSE-ARROW Boolean property to indicate if an arrow on an edge should be
reversed. In this case, the arrow will be going into the FROM
node instead of the TO node.

IS-EXECUTED Boolean property to indicate if an activity has already been
executed for a particular process instance. If set to true then
the activity has been executed.

TRANSITION-CONDITION The condition associated with a transition in an edge.

REAL_FROM ID of a node that this edge is actually from as opposed to an
intermediate hidden node identified by the FROM attribute.

REAL_TO ID of a node that this edge is actually to as opposed to an
intermediate hidden node identified by the TO attribute.

ENABLED Boolean property to indicate if an edge is to be enabled as a
hyperlink. This attribute is false by default.

ORDER Indicates the order of an edge relative to other edges.

As mentioned above, workflow charts are configurable. This is accomplished by
setting the CONFIG attribute on the UIM field in question. The WorkflowConfig.xml
XML configuration file must contain a configuration section with a unique
identifier matching the text in the CONFIG attribute. The XML schema format for
this file is defined in the workflow-config.xsd file located in the
lib\curam\xml\schema folder of your CDEJ installation folder. The following is a
sample of this file:

234 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The WORKFLOW_CONFIG root element contains CONFIG elements and ICON elements.
The CONFIG element contains all configuration for a particular field, identified by
the ID attribute. The following table describes all attributes of the CONFIG element:

Table 118. Attributes of Workflow CONFIG element

Attribute Description

ID Unique identifier for this configuration.

DETAILS_PAGE ID of a UIM page to use as a destination for a
hyperlink on a node.

HEIGHT Height in pixels of a workflow chart. If height is not
specified, a height will be chosen that attempts to
maximize the use of available space.

ACTIVITY_CODETABLE Codetable name for resolving ACTIVITY-TYPE-CODE
attribute values.

TASKSTATUS_CODETABLE Codetable name for resolving TASK-STATUS attribute
values.

PROCESSSTATUS_CODETABLE Codetable name for resolving the status of a process
instance (e.g. In Progress, Completed, Suspended or
Aborted).

SHOW_INSTANCE_DATA Determines if the chart should display a text area
containing all instance data information. Valid
settings are true and false.

START_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the
start process type. This activity will be drawn
without a box.

END_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the
end process type. This activity will be drawn without
a box.

NOTIFICATION_PAGE ID of a UIM page to use as a destination for a
hyperlink on a notification icon.

READONLY_VIEW Determines if the links on a workflow graph should
be disabled.

HIGHLIGHT_ACTIVITY_PARAM Represents the parameter used to determine the
current activity in a workflow. The value of the
parameter is matched with a corresponding attribute
in the XML data returned from the server to indicate
which node has to be highlighted.

<WORKFLOW_CONFIG>
<ICON CODE="AT1" PATH="Images/manual.gif"/>
<ICON CODE="AT2" PATH="Images/automatic.gif"/>
<ICON CODE="AT4" PATH="Images/subflow.gif"/>
<ICON CODE="AT5" PATH="Images/route.gif"/>
<ICON CODE="AT6" PATH="Images/eventwait.gif"/>
<ICON CODE="AT7" PATH="Images/endprocess.gif"/>
<ICON CODE="AT8" PATH="Images/loopbegin.gif"/>
<ICON CODE="AT9" PATH="Images/loopend.gif"/>
<ICON CODE="AT10" PATH="Images/decision.gif"/>
<ICON CODE="AT11" PATH="Images/startprocess.gif"/>
<ICON NOTIFICATION="true"

PATH="CDEJ/cdej-images/notification.gif"/>
<CONFIG ID="WorkFlow.Config"

NOTIFICATION_PAGE="viewActivityNotification"
DETAILS_PAGE="componentRedirect"
START_PROCESS_TYPE="AT11" END_PROCESS_TYPE="AT7"/>

</WORKFLOW_CONFIG>

Cúram web client reference 235

The ICON child element of the WORKFLOW_CONFIG root element defines all icons for
the workflow chart. Either the CODE attribute or the NOTIFICATION attribute defines
what kind of icon this is. If CODE is set then the ACTIVITY-TYPE-CODE on a NODE is
used to match an icon to a particular activity type. If the NOTIFICATION attribute is
set to true then this icon is used as a graphic depicting a notification present on an
activity. The PATH attribute on ICON is used to point to an image file, relative to
your project's WebContent directory.

Evidence View
This view has two modes for displaying and comparing evidence data.

Evidence Display Mode
The EVIDENCE_XML domain results in a table displaying evidence items. There
are three columns in the table. The first displays the evidence item name, the
second shows the group to which evidence item belongs and the value of the item
is displayed in the third column. The value of the item will be formatted based on
it's domain.

Evidence Comparison Mode
The EVIDENCE_XML_COMPARE domain results in three tables displaying
evidence comparison results. The comparison results consist of three tables to
display items which were modified, added or deleted. All three tables follow the
same format: the first column displays the evidence item name; the second column
displays the group which the evidence item belongs to and corresponding values
are displayed in the third (the modified evidence table will have a fourth fourth
column to show previous values against current values) column.

Configuration
The evidence view is configurable by changing settings in appropriate properties
files. For Evidence Display mode this is the DisplayEvidence.properties file and
for Evidence Comparison mode configuration, ComparedEvidence.properties file is
used. These properties files should be created in the <CLIENT_DIR>\components\
core folder.

Configuration files contain table headers and captions for all the columns as well
as visibility settings for each column. There is also a links section for specifying
links to pages for each evidence item and item group column if needed. If a link is
not required, leave the value empty rather than deleting the property itself. Also
there are properties containing textual substitution for an empty value case and
textual insert used in evidence item name.

Note: The properties specifying visibility settings are not localizable strings and
should contain either “true” or “false” depending on desired visibility of the
corresponding column.

Below is an example of the configuration settings for display evidence mode:

236 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The following is an example of the configuration settings for the evidence
comparison mode:

Data Format
The Evidence view expects the following XML format. Below is an example for
Evidence Comparison mode:

#Textual descriptions for comparison sections.
Table.Summary.Single=This table contains evidence items.

Comparison section labels
Evidence.Table.Label=Evidence Items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Value.Column.Header=Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Value.Column.Visible=true

Localizable messages
Message.No.Value=This item is not set
Message.Item.Joint=referenced by rule item

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

#Textual descriptions for comparison sections.
Table.Summary.MODIFIED=This table contains modified evidence
Table.Summary.NEW=This table contains newly added evidence items.
Table.Summary.REMOVED=This table contains removed evidence.

Comparison section labels
Evidence.Label.MODIFIED=Modified evidence
Evidence.Label.NEW=Newly added evidence items
Evidence.Label.REMOVED=Removed evidence items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Oldval.Column.Header=Previous Value
Value.Column.Header=New Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Oldval.Column.Visible=true
Value.Column.Visible=true

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

Cúram web client reference 237

The following is an example of the Evidence Display mode:

<EVIDENCE_COMPARE>
<EVIDENCE TYPE="MODIFIED">

<GROUP ID="mod1ID"
DESCRIPTION="en|EvidenceGroup1">

<EVIDENCE_ITEM ID="modItem1ID"
DESCRIPTION="en|Number of Children"
OLDVAL="11" VALUE="13"
DOMAIN="SVR_INT32"/>

</GROUP>
<GROUP ID="mod2ID"

DESCRIPTION="en|EvidenceGroup2">
<EVIDENCE_ITEM ID="modItem3ID"

DESCRIPTION="en|Are you married"
OLDVAL="false" VALUE="true"
DOMAIN="SVR_BOOLEAN"/>

</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="NEW">

<GROUP ID="new1ID"
DESCRIPTION="en|EvidenceGroup1">

<EVIDENCE_ITEM ID="newItem1ID"
DESCRIPTION="en|Number of cars"
VALUE="6"
DOMAIN="SVR_INT32"/>

</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="REMOVED">
<GROUP ID="del1ID"

DESCRIPTION="en|Deletion">
<EVIDENCE_ITEM ID="delItem1ID"

DESCRIPTION="en|Number of houses"
OLDVAL="1"
DOMAIN="SVR_INT32"/>

</GROUP>
</EVIDENCE>

</EVIDENCE_COMPARE>

238 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The display-name attribute represents a description for every item or group, the
description does the same for the value element. Group ids, evidence item names
and value descriptions are supplied by the evidence text returned from the rules
engine. The type attribute is used to select particular representation for different
data types from the server. The name attribute of item and the id attribute of group
are used as link parameters if a link is specified for the first or second column.

Calendar
The calendar is used by any UIM page which displays a field from a server access
bean containing a CALENDAR_XML_STRING domain. This view allows for
scheduling of events from different time-frames; monthly, weekly and daily.

Programmatically, the calendar expects to be populated with information about
events in an XML format.

The following is an example of what the XML received from the server might look
like:

<evidence>
<group id="group1" display-name="EvidenceGroup1">

<item name="item11"
display-name="Number of Children"
initial-value="13" no-value="false"
type="SVR_INT32"/>

<item name="item12"
display-name="item with no value"
initial-value="" no-value="true"
type="SVR_STRING"/>

</group>
<group id="group2" display-name="EvidenceGroup2">

<item name="item21"
display-name="Are you married"
initial-value="true" no-value="false"
type="SVR_BOOLEAN"/>

<item name="item22"
display-name="Some important dates"
initial-value="" no-value="false"
type="SVR_DATE">

<value position="10" description="Important date 1"
value="20050401T000000">

<value position="18" description="Important date 2"
value="20050601T000000">

<value position="5" description="Important date 3"
value="20051231T000000">

</item>
</group>

</evidence>

Cúram web client reference 239

Notice that there can be two kinds of event elements contained within the
CURAM_CALENDAR_DATA XML data: EVENT and SINGLE_DAY_EVENT. In the schema of the
XML data expected the root element, CURAM_CALENDAR_DATA, can hold any number
(zero to many) of EVENT and SINGLE_DAY_EVENT elements; CURAM_CALENDAR_DATA can
optionally have a TYPE attribute which associates this sequence of events with a
particular calendar configuration (see example below).

The following tables describe the schema definitions for each of the attributes
allowed on the EVENT and the SINGLE_DAY_EVENT elements respectively.

Table 119. EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event.

DATE The date of the event in xs:date format:
(CCYY-MM-DD) I.e. 21- Aug-2002 is represented
as 2002-08-21.

No

STARTTIME The start time in xs:time format: (hh:mm:ss). I.E.
1:34 pm and 56 seconds is represented as
13:34:56.

ENDTIME The start time in xs:time format: (hh:mm:ss). No

DURATION The duration of the event in minutes. This
should be an integer.

No

DESCRIPTION A Description of the event. No

STATUS The status of the event. This node is limited to
values stored in the ActivityTimeStatus code
table in the reference application.

No

PRIORITY The priority of the event. This node is limited to
values stored in the ActivityPriority code table
in the reference application.

No

<CURAM_CALENDAR_DATA TYPE="UserCalendar">
<EVENT>

<ID>1</ID>
<DATE>2002-10-10</DATE>
<STARTTIME>10:10:10</STARTTIME>
<ENDTIME>10:10:10</ENDTIME>
<DURATION>0</DURATION>
<DESCRIPTION>Hello World!</DESCRIPTION>
<STATUS>ATS1</STATUS>
<PRIORITY>AP1</PRIORITY>
<LEVEL>AL1</LEVEL>
<RECURRING>false</RECURRING>
<READ_ONLY>false</READ_ONLY>
<ALL_DAY>false</ALL_DAY>
<ATTENDEE>true</ATTENDEE>
<ACCEPTANCE>true</ACCEPTANCE>

</EVENT>
<SINGLE_DAY_EVENT>

<ID>2</ID>
<DATE>2003-04-01</DATE>
<TYPE>ET1</TYPE>
<DESCRIPTION>April Fool’s Day</DESCRIPTION>

</SINGLE_DAY_EVENT>
</CURAM_CALENDAR_DATA>

Figure 95. Calendar XML Stream

240 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 119. EVENT attributes in schema (continued)

Attribute Name Description Required

LEVEL Code that shows the level of the activity. This
node is limited to the values stored in the
ActivityLevel code table in the reference
application.

No

RECURRING Recurring indicator: true if this event is a
recurring event. Otherwise false.

No

READ_ONLY Read-only indicator: true if this event is a
read-only event. Otherwise false.

No

ALL_DAY All-day indicator: True if this is an all-day event.
Otherwise false.

No

ATTENDEE Attendee indicator: true if the user is attending
a meeting. Otherwise false.

No

ACCEPTANCE Acceptance indicator: True if the user has
accepted an invitation to a meeting. Otherwise
false.

POSITION For a spanning event, indicates first or last
component of the event.

No

Table 120. SINGLE_DAY_EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event. No

DATE The date of the event in xs:date format. No

TYPE The type of a single day event. No

DESCRIPTION A Description of the event. No

Once a field based on the CALENDAR_XML_STRING domain returns XML
information formatted according to the aforementioned schema, it will be
displayed in the appropriate time position by the calendar. Any web page
containing a calendar can be set to open on different dates and views by specifying
the startDate and calendarViewType parameters in the page's URL. The startDate
parameter should be formatted according to the date format expected by the
application and the calendarViewType parameter should be one of the following
codes.

Table 121. Calendar View Type Values

Code Value

CVT1 Day view

CVT2 Week view

CVT3 Month view

You can configure the display of calendar information using the
CalendarConfig.xml file. There should be at least one copy of this in the
components folder. This file should contain configuration information for each type
of calendar, the TYPE attribute of the CURAM_CALENDAR_DATA element mentioned
above associates a calendar data stream with a particular type. The following is an
example of the structure of the CalendarConfig.xml

Cúram web client reference 241

The overall schema for this configuration file specifies the CONFIGURATION element
as the root element. The CONFIGURATION has an optional MONTH_CELL_HEIGHT
attribute which sets the maximum number of rows to display in a single cell in the
month view. The default value is three. The SHOW_REPEAT_EVENT_TEXT optional
attribute, if set to true, will display the event description in each month cell if an
event spans multiple days. This attribute is false by default.

The CONFIGURATION root element can hold any number of CALENDAR elements and a
single EVENT_TYPES element. The TYPE attribute of CALENDAR associates this
configuration information with an XML stream returned from the server. The
DESCRIPTION_LOCATION element of CALENDAR is for constructing a link to a page
containing more information on any event in the calendar. The following table lists
the parameters passed with this hyperlink.

Table 122. Parameters Passed to Event Description Pages

Parameter Name Description

ID the event ID

RE Recurrence indicator

AT Attendee indicator

RO Read-only indicator

LV_ Activity level

AC Acceptance indicator

The CALENDAR element should also contain an element called DAY_VIEW_TIME_FORMAT.
The valid values for this element are 12 and 24. They specify whether the time in
the day view is displayed using a 12 or 24 hour format.

The EVENT_TYPES element is used for mapping images to display as icons next to
single day events. The NAME attribute of the TYPE element must match a TYPE
element on a SINGLE_DAY_EVENT supplied by the server for the image specified by
the ICON attribute to be displayed.

The schema for the calendar configuration file (CalendarConfiguration.xsd) and
the schema for the CALENDAR_XML_STRING domain (CuramCalendar.xsd) are
located in your project's WebContent/WEB-INF/CDEJ/schema folder.

Payment Statement View
The payment statement view is used for displaying under or over payment within
the Cúram application framework.

<CONFIGURATION MONTH_CELL_HEIGHT="4"
SHOW_REPEAT_EVENT_TEXT="true">

<CALENDAR TYPE="UserCalendar">
<DESCRIPTION_LOCATION>DetailsPage.do</DESCRIPTION_LOCATION>
<DAY_VIEW_TIME_FORMAT>24</DAY_VIEW_TIME_FORMAT>

</CALENDAR>
<EVENT_TYPES>

<TYPE NAME="ET1" ICON="Images/mandatory.gif"/>
<TYPE NAME="ET2" ICON="Images/case.gif"/>
<TYPE NAME="ET3" ICON="Images/concern.gif"/>

</EVENT_TYPES>
</CONFIGURATION>

Figure 96. CalendarConfig.xml Example

242 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The payment statement view supports the display of benefits as well as liabilities.
The domain BENEFIT_REASSESSMENT_RESULT_TEXT should be used for a
benefit payment statement view. The domain
LIABILITY_REASSESSMENT_RESULT_TEXT should be used for a liability
payment statement view. It is expected that all string data returned for this field
follows a specific tab-delimited format. Examples of using these domains can be
found in the Cúram reference application.

There is also a properties file associated with this view:
PaymentStatement.properties in the <CLIENT_DIR>\components\core folder. The
link to a page providing further details on a statement can be defined using a set
of four parameters:
PaymentStatement.RowLink.Benefit.PageID
PaymentStatement.RowLink.Benefit.ParameterName
PaymentStatement.RowLink.Benefit.Label
PaymentStatement.RowLink.Benefit.Image

There is one set of parameters for Benefit pages and one for Liability pages. PageID
is the name of the page to link to. ParameterName is the name of the parameter to
be passed to this page to identify the id of the payment in question. Label supplies
the text of the link, if Image is not used. Otherwise it supplies the tool-tip for the
image-based link.

The remaining properties are simply externalized strings for the widget.

Batch Function View
The batch function view is generated from the PARAM_TAB_LIST domain. It
allows you to enter parameters to submit a batch program for execution. The labels
of each field are provided to the view by a single tab-delimited string.

PaymentStatement.RowLink.Benefit.PageID=FromBenefit
PaymentStatement.RowLink.Liability.PageID=FromLiability

PaymentStatement.RowLink.Benefit.ParameterName=param1
PaymentStatement.RowLink.Liability.ParameterName=param2

PaymentStatement.RowLink.Benefit.Label=Link Text 1
PaymentStatement.RowLink.Liability.Label=Link Text 2

#PaymentStatement.RowLink.Benefit.Image=Images/icon.gif
PaymentStatement.RowLink.Liability.Image=Images/icon.gif

PaymentStatement.Text.fromToDateSeparator=\ to
PaymentStatement.Text.Action=Action
PaymentStatement.Text.Period=Period
PaymentStatement.Text.Desc=Description
PaymentStatement.Text.Actual=Actual
PaymentStatement.Text.Reassessed=Reassessed
PaymentStatement.Text.Liability.Received=Received
PaymentStatement.Text.Diff=Difference
PaymentStatement.Text.GrossTotal=Total Gross Over Payment
PaymentStatement.Text.TaxTotal=Total Tax Deduction
PaymentStatement.Text.UtilityTotal=Total Utility Deduction
PaymentStatement.Text.LiabilityTotal=Total Liability Deduction
PaymentStatement.Text.NetTotal=Net Under or Over Payment

Figure 97. A Sample PaymentStatement.properties File

Cúram web client reference 243

Addresses
The ADDRESS_DATA domain type maps to a tag for entering and displaying
addresses. Although the user sees several fields, addresses are stored as a single
string field. Each of the fields displayed as part of the out-of-the-box address are
text input fields except for the state field which is drop-down field.

To parse the address and display it, the elements that make up the address have to
be defined in the curam-config.xml file. Different address configurations for
different locales in the Cúram application can be defined. “Addresses”
demonstrates how to set this configuration using the ADDRESS_CONFIG element.

The ADDRESS_CONFIG element is built using multiple LOCALE_MAPPING and
ADDRESS_FORMAT elements. In Cúram application deployments with multiple locales,
a developer may wish to use a different address format for each locale. To do this
we use the LOCALE_MAPPING element. This element contains a LOCALE attribute which
defines the locale and an ADDRESS_FORMAT_NAME attribute which defines the
ADDRESS_FORMAT element to be mapped. By default, the OOTB Cúram application
has a number of ADDRESS_FORMAT elements defined which are mapped to specific
locales. As these locales are already mapped it is not required to define

<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_US"

ADDRESS_FORMAT_NAME="US"/>
<LOCALE_MAPPING LOCALE="en_GB"

ADDRESS_FORMAT_NAME="UK"/>
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">

<ADDRESS_ELEMENT LABEL="Address.Label.AptSuite"
NAME="ADD1"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Street.1"
NAME="ADD2"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Street.2"
NAME="ADD3"/>

<ADDRESS_ELEMENT LABEL="Address.Label.City"
NAME="CITY"/>

<ADDRESS_ELEMENT CODETABLE="AddressState"
LABEL="Address.Label.State"
NAME="STATE"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Zip"
NAME="ZIP"/>

</ADDRESS_FORMAT>

<ADDRESS_FORMAT NAME="UK" COUNTRY_CODE="GBR">
<ADDRESS_ELEMENT LABEL="Address.Label.Address.1"

MANDATORY="true" NAME="ADD1"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.2"

NAME="ADD2"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.3"

NAME="ADD3"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.4"

NAME="ADD4"/>
<ADDRESS_ELEMENT LABEL="Address.Label.County"

NAME="ADD5"/>
<ADDRESS_ELEMENT LABEL="Address.Label.City"

NAME="CITY"/>
<ADDRESS_ELEMENT LABEL="Address.Label.PostCode"

NAME="POSTCODE"/>
<ADDRESS_ELEMENT CODETABLE="Country"

LABEL="Address.Label.Country"
NAME="COUNTRY"/>

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

Figure 98. Address Configuration in curam config xml

244 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

LOCALE_MAPPING elements for them, however customers are free to modify these or
create new configuration(s) as per their implementation needs. Figure 76 above
illustrates how the LOCALE_MAPPING element is used for the US and UK address
formats. The following address formats and their corresponding locale mappings
are available OOTB.

Table 123. Address Format configurations

Address Format Name Locale Mapping

US en_US

UK en_GB

DE de

CA en_CA

KR ko

JP ja

TW zh_TW

CN zh_CN

The ADDRESS_FORMAT has an optional COUNTRY_CODE attribute which is used in the
address header when an address is first created. If it is not set, the COUNTRY_CODE
defaults to GBR when the address format specified is UK and to US for everything
else. The COUNTRY_CODE is not used by the infrastructure. It is one of the fields in
the address string used by the application, but infrastructure provides an initial
value for it.

The ADDRESS_FORMAT elements contain ADDRESS_ELEMENT elements which defines the
fields in the address tag. The ADDRESS_ELEMENT element has a LABEL attribute which
refers to properties contained in the CDEJResources.properties file. The address is
then built using ADDRESS_ELEMENT tags which must be given a name and label. Note
that a code table can also be specified for each ADDRESS_ELEMENT. When a code table
is specified, a drop-down list will display the code table entries and the default
code will be pre-selected.

The optional MANDATORY attribute specifies if an address element is required to be
filled in. The Mandatory indicator is an asterisk beside the field label as shown in
the example above. Please note, that in order for MANDATORY settings in
curam-config.xml to work, the field supplying the address data should be marked
mandatory in application model.

Schedule View
The schedule view is used for any domain of the type SCHEDULE_DATA. This
view displays a grid of time-line information for the hours between 8 am and 8
pm. Each row in this grid represents a person whose full name is displayed in the
row header. Each cell in the person's row represents a half hour period containing
an indicator for whether they are available or not. If a user clicks on a free cell,
they should be linked to a page allowing them to enter further schedule events.

The information and setup of this particular view involves a particular setup in a
page's UIM file. “Schedule View” is an example of the UIM for a schedule field.

Cúram web client reference 245

The Cúram page generator expects any schedule FIELD element to be followed by a
LINK element which details the PAGE_ID of the page to go to when a free cell is
clicked on. The following three CONNECT elements should be fields which provide
the following attributes to the link: the date of the day in question (the time is
appended to this date); the full name of the user; and the user's unique identifier.
The order of these CONNECT elements is important or the schedule view will not
contain the correct links.

The SCHEDULE_DATA domain is expected to be a list of user names and 32 bit
schedule fields separated by a tab. An example of one such element of this list
would be:

John Smith<tab>16777212

Please note that 16777212 is the integer value which translates to the bit field
00000000111111111111111111111100. A one represents a half hour when Mr. Smith is
busy and a zero stands for free time. The bit field is read from the least significant
bit first, i.e. from right to left, with 8 am represented by the right-most bit. As we
are dealing with a twelve hour period and each bit stands for a half hour, only the
first 24 bits are important. The last byte is disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks (per
user), with each block representing half an hour. Half hour blocks of free time are
displayed differently than the other blocks (busy) in terms of color and size.

Radio Button Group
An alternative way to present a set of code table values is as a radio button group,
each radio button representing a code table item. To display in the form of radio

<FIELD>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="schedule"/>
</CONNECT>
<CONNECT>

<LINK PAGE_ID="IncomeScreening_confirmAppointment">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="appointmentDate"/>
<TARGET NAME="PAGE" PROPERTY="date"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="userFullName"/>
<TARGET NAME="PAGE" PROPERTY="fullUserName"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="userName"/>
<TARGET NAME="PAGE" PROPERTY="userName"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="caseID"/>
<TARGET NAME="PAGE" PROPERTY="caseID"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="PAGE" PROPERTY="pageDescription"/>
<TARGET NAME="PAGE" PROPERTY="pageDescription"/>

</CONNECT>
</LINK>

</FIELD>

Figure 99. UIM Example of Schedule View

246 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

buttons, a field representing a code table value should be mapped to the
SHORT_CODETABLE_CODE domain or to a domain directly inheriting from
SHORT_CODETABLE_CODE.

Pop-up Pages
This section describes how to set up a pop-up page. The Cúram application has a
number of built-in pop-up pages such as the Date Selector pop-up described
earlier which are “helpers” used to enter data. Developers are also allowed to
specify their own pop-up pages. For example, when scheduling a meeting for a
person you don't want the user to have to know or fill in that persons unique ID.
Instead the user should be provided with a search facility or a pre-populated list of
valid options they can select from. This is achieved in Cúram with pop-up pages.

The out-of-the-box pop-up widget has a input field (grey in color) with a search -
in the form of a magnifying glass - and a clear icon beside it. When the user clicks
on the search icon this will activate a pop-up page. The user can select an item
from the pop-page which will populate the text input field on the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

Configure the Pop-up Page
The first step is to configure the pop-up page. This is performed by the
POPUP_PAGES element in curam-config.xml.

On the root element the DISPLAY_IMAGES attribute can be used to configure whether
images or text is used for the actions which open a pop-up or clear the currently
selected value.

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a “clear this text” button.
Note that this is an application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there must be
instance of this element. Up to two pop-ups can be associated with a single
domain; one to search for an existing item, another to create a new item. The
following attributes and child elements control various aspects of how the pop-up
is presented to the user.

<POPUP_PAGES DISPLAY_IMAGES="true|false">
<CLEAR_TEXT_IMAGE>Images/minus.gif<CLEAR_TEXT_IMAGE>
<POPUP_PAGE PAGE_ID="PersonSearch"

CREATE_PAGE_ID="RegisterPerson"
CONTROL_TYPE="textunderline|textinput"
CONTROL_EDITABLE="true|false"
CONTROL_INSERT_MODE="overwrite|insert|append">

<DOMAIN>PERSON_ID</DOMAIN>
<WIDTH>800</WIDTH>
<HEIGHT>600</HEIGHT>
<SCROLLBARS>true</SCROLLBARS>
<IMAGE>Images/search.gif</IMAGE>
<LABEL>Search</LABEL>
<CREATE_IMAGE>Images/new.gif</CREATE_IMAGE>
<CREATE_LABEL>New</CREATE_LABEL>

</POPUP_PAGE>
</POPUP_PAGES>

Figure 100. Pop-up Configuration Example

Cúram web client reference 247

Table 124. Attributes of the POPUP_PAGE element.

Name Description

PAGE_ID Specifies the UIM page id of the pop-up page to open to
search for an existing item.

CREATE_PAGE_ID Specifies the UIM page id of the the pop-up page to open to
create a new item.

CONTROL_TYPE Specifies the type of control where the value returned from the
pop-up will be written to. The default value is textunderline
which displays static text with an underline. To display a text
input field set the value to textinput. When a a text input
control is configured, on the UIM FIELD which uses a pop-up,
the HEIGHT attribute can be used to change from a single line
text input to a multi-line text area.

CONTROL_EDITABLE This attribute is only valid when CONTROL_TYPE is set to
textinput. It controls whether the text input field is editable
or not. Set to true to create a editable field and false to create
a non-editable field. Note that Internet Explorer does not give
any visual indication that the text input field is not editable.

CONTROL_INSERT_MODE This attribute is only valid when CONTROL_TYPE is set to
textinput. It allows you to configure how a value selected
from a pop-up is inserted into the associated input control.
The default is overwrite which means the selected value will
overwrite the previous contents. Setting the attribute to insert
means the selected value will be inserted at the current cursor
position. Setting the attribute to append means the selected
value will be appended to the previous contents of the input
control.

Table 125. Child elements of the POPUP_PAGE element.

Name Description

DOMAIN Domain used to identify this pop-up page. If a FIELD element
with a TARGET connection is based on this domain, a pop-up
will be used instead of a standard text entry box.

CT_CODE This is a second way to identify a pop-up page. The attribute
contains a code table code value and is used when associating
multiple pop-up pages with a single field and is described in
further detail below.

WIDTH Width in pixels of pop-up dialog. This element is optional. If
not included, the default width of 600 pixels will be used.

HEIGHT Height in pixels of pop-up dialog. This element is optional. If
not included, the height will be automatically calculated based
on the page contents.

IMAGE Location of image which when clicked launches the pop-up
defined by the POPUP_PAGE element's PAGE_ID attribute.

IMAGE_HOVER Location of image that is displayed when a user hovers over
the search pop-up icon. Set the IMAGE_HOVER element if the
IMAGE element has been set to a location other than the default
location. If the IMAGE_HOVER element is not set, then a default
image is displayed when a user hovers over a search pop-up
icon.

248 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 125. Child elements of the POPUP_PAGE element. (continued)

Name Description

IMAGE_PROPERTY Optional key in the CDEJResources.properties file under
which the locale-specific location of the pop-up launcher
image otherwise specified by IMAGE attribute is stored. If the
IMAGE is also specified for the same configuration, it will take
precedence over the IMAGE_PROPERTY and this attribute will be
ignored.

HIGH_CONTRAST_IMAGE Location of the high contrast image which when clicked
launches the pop-up defined by the POPUP_PAGE element's
PAGE_ID attribute.

HIGH_CONTRAST_IMAGE_PROPERTYOptional key in the CDEJResources.properties file under
which the locale-specific location of the pop-up launcher
image otherwise specified by HIGH_CONTRAST_IMAGE attribute is
stored. If the HIGH_CONTRAST_IMAGE is also specified for the
same configuration, it will take precedence over the
HIGH_CONTRAST_IMAGE_PROPERTY and this attribute will be
ignored.

LABEL Alternate text for the image defined by the IMAGE element. If
the POPUP_PAGE element's DISPLAY_IMAGES attribute is set to
false, this text will be displayed instead of the image.

LABEL_PROPERTY Optional key in the CDEJResources.properties file under
which the locale-specific value of the label attribute otherwise
specified by the LABEL attribute is stored. If LABEL is also
specified for the same configuration, it will take precedence
over the LABEL_PROPERTY and this attribute will be ignored.

CREATE_IMAGE Location of image which when clicked launches the pop-up
defined by the POPUP_PAGE element's CREATE_PAGE_ID attribute.

CREATE_IMAGE_PROPERTY Optional key in the CDEJResources.properties file under
which the locale-specific location of the pop-up launcher
image otherwise specified by CREATE_IMAGE attribute is stored.
If the CREATE_IMAGE is also specified for the same
configuration, it will take precedence over the
CREATE_IMAGE_PROPERTY and this attribute will be ignored.

CREATE_LABEL Alternate text for the image defined by the CREATE_IMAGE
element. If the POPUP_PAGE element's DISPLAY_IMAGES attribute
is set to false, this text will be displayed instead of the image.

CREATE_LABEL_PROPERTY Optional key in the CDEJResources.properties file under
which the locale-specific value otherwise specified by the
CREATE_LABEL attribute is stored. If the CREATE_LABEL is also
specified for the configuration, it will take precedence over the
CREATE_LABEL_PROPERTY and this attribute will be ignored.

Create the Pop-up Page
A Cúram pop-up page is written in UIM. It can be written to display a set of
existing items for the user to select from or to register a completely new item.

A pop-up which returns existing items:
The following is an example of a pop-up page which accepts user input, displays a
list of search results, one of which can be selected and its unique identifier
returned to the parent page.
<PAGE PAGE_ID="Person_search" POPUP_PAGE="true">

<PAGE_TITLE ICON="PersonSearchPageIcon">
<CONNECT>

<SOURCE NAME="TEXT"

Cúram web client reference 249

PROPERTY="PageTitle.StaticText1"/>
</CONNECT>

</PAGE_TITLE>
<SERVER_INTERFACE NAME="ACTION"
CLASS="Person"
OPERATION="search"
PHASE="ACTION"

/>
<CLUSTER NUM_COLS="2" TITLE="Cluster.Title.SearchCriteria">

<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL LABEL="ActionControl.Label.Search"
TYPE="SUBMIT" DEFAULT="true">
<LINK PAGE_ID="THIS"/>

</ACTION_CONTROL>
<ACTION_CONTROL LABEL="ActionControl.Label.Cancel"
IMAGE="CancelButton" TYPE="DISMISS"/>

</ACTION_SET>

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>
<TARGET NAME="ACTION"

PROPERTY="personSearchKey$referenceNumber"/>
</CONNECT>

</FIELD>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">
<CONTAINER LABEL="Container.Label.Action">

<ACTION_CONTROL LABEL="ActionControl.Label.Select"
TYPE="DISMISS" >
<LINK>

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />

</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />

<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>

</LINK>
</ACTION_CONTROL>

</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$referenceNumber"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.FirstName">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personName"/>

</CONNECT>
</FIELD>

</LIST>
</PAGE>

The points to note about this example are:
v The PAGE_ID attributes of the UIM PAGE element and the POPUP_PAGE element in

curam-config.xml must match.
v The POPUP_PAGE attribute of the UIM PAGE element must be set to true.
v The submit action is linked to THIS. This means the page will be redisplayed

after the submit button is pressed.

250 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v To cancel the pop-up an action control of type DISMISS is used. If the action
control does not have a child LINK element, the pop-up will be closed without
returning any values to the parent page which opened it.

v The search results list in this example is made up of three columns. The first
contains a link which will close the pop-up and return the selected values, the
remaining columns display further information about the person.

v To close the pop-up and return values, an action control of type DISMISS is used.
This is placed in a CONTAINER so it is the first column in the search results list.
The user can click this link to select one of the search results.

v To specify what values should be returned a child LINK element is added to the
action control. When used in an action control to close a pop-up all standard
attributes of the LINK element (e.g. PAGE_ID) have no meaning and will be
ignored.

v For Cúram pop-up pages two values must always be returned. These are
specified using CONNECT elements. Both connections must use a target of PAGE
and have the PROPERTY set to value and description. The value connection
specifies the value required on the page that opened the pop-up, in this example
the persons unique record ID. The description connection specifies descriptive
text to be shown to the user, in this example the person's name. So, on the page
which opened the pop-up, the person's name will be displayed to the user, but it
is their unique ID which will be submitted to the server.

It is not necessary for pop-up pages to accept input. For example, the LIST can be
populated from a display phase server interface if necessary.

A pop-up which creates a new item:
A pop-up may also create a new item and have the newly generated unique
identifier for that item returned to the parent page. To do this create a page which
a ACTION_CONTROL of type SUBMIT_AND_DISMISS must be used. For example;
<ACTION_CONTROL TYPE="SUBMIT_AND_DISMISS" LABEL="Button.Submit">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />

</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION"

PROPERTY="dtls$personFullName" />
<TARGET NAME="PAGE" PROPERTY="description" />

</CONNECT>
</ACTION_CONTROL>

Once the type attribute is set to SUBMIT_AND_DISMISS the rules for the child LINK
and CONNECT element is the same as described in the previous section for a DISMISS
action control. After the form is successfully submitted the pop-up will be
dismissed and the new values returned to the parent page.

Using the Pop-up Page
Pop-up pages are opened using standard UIM FIELD elements. If the field has a
target connection which is based on a domain as configured in curam-config.xml a
link to open the pop-up will be generated rather than a standard text entry field.
This is illustrated in the screen shot above with the “Preferred Office” input field.

The following is the most basic example of a FIELD opening a pop-up. It is from an
insert page so only a target connection is specified. Using the current example, the
person's unique ID will be assigned to the field specified in the target connection
and the person's name will only be used for visual purpose to display to the user.

Cúram web client reference 251

The following example is from a modify page which means the field will have a
source value which must be displayed to the user. It is slightly more complex that
standard fields on a modify page because there are actually two source values to
handled. The person's unique ID and the person's name. In this case the INITIAL
connection is used to specify the person's name. This will only be used to display
to the user and note that is not submitted to the server. Following that the field is
just like any other on a modify page. The source connection specifies the existing
value of the field, the target connection specifies where the value should be
submitted to.

When invoking a pop-up it is also possible to supply page parameters to the
pop-up. This is a slight variation on the two examples above and involves the use
of the LINK element. The following is an example of two parameters passed to a
pop-up page, one sourced from an existing page parameter, the other from a server
interface property. When a LINK element is used in this context no attributes such
as PAGE_ID should be specified. Also a TEXT source connection cannot be used to
supply a parameter to a pop-up page.

Using Multiple Pop-up Search Pages for a Single Field
In some cases we need to search for different types of Cúram entities but that
search is associated with a single field. For example you may have a requirement
to search for a Cúram client which has a generic domain of CURAM_CLIENT_ID. This

<FIELD LABEL="Field.Label.person">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 101. Opening a Pop-up from an Insert Page

<FIELD LABEL="Field.Label.person">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"/>
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Figure 102. Opening a Pop-up from a Modify Page

<FIELD LABEL="Field.Label.person">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
<LINK>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="param1"/>

</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personName"/>
<TARGET NAME="PAGE" PROPERTY="param2"/>

</CONNECT>
</LINK>

</FIELD>

Figure 103. Supplying Parameters to a Pop-up Page

252 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

could be a person, an employer, a product provider etc. Individual search pages
may already exist for these types so you should be able to reuse them. Assuming
the pop-up search pages already exist, this involves two extra steps which are
described in the following sections and. The resulting pop-up widget is as
described in “Pop-up Pages” on page 247 except that there is an additional
drop-down field rendered to the left of the text input field. In order to activate the
pop-up page for this widget, the user first selects the type of search to be
performed from the drop down list and then clicks on the search icon.

Configure the Multiple Pop-up Page
This can be configured through the MULTIPLE_POPUP_DOMAINS element in
curam-config.xml. The following is an example:

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a “clear this text” button.
This is an application wide setting.

MULTIPLE_POPUP_DOMAIN : For each domain which you wish to associate multiple
pop-up windows create an instance of this element.

DOMAIN : The name of the domain which is associated with multiple pop-up
windows

IMAGE : Location of image to be used for pop-up icon.

LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is required
to select the pop-up type. This drop-down list is populated as normal from a
code-table. The code-table codes are the link between the drop-down list and
pop-up that is opened. This requires the CT_CODE child element of the POPUP_PAGE
element to be set to the code-table code value.

Using the Multiple Pop-up Page
Once the configuration is done the final step is the write the UIM necessary to
display the pop-up search.

<MULTIPLE_POPUP_DOMAINS>
<CLEAR_TEXT_IMAGE>Images/clear.gif</CLEAR_TEXT_IMAGE>
<MULTIPLE_POPUP_DOMAIN>

<DOMAIN>CURAM_CLIENT_ID</DOMAIN>
<LABEL>Search</LABEL>
<IMAGE>Images/search.gif</IMAGE>

</MULTIPLE_POPUP_DOMAIN>
</MULTIPLE_POPUP_DOMAINS>

Figure 104. Multiple Pop-up Domains

Cúram web client reference 253

The main points to note are:
v A CONTAINER and two FIELD elements are required, one for the drop-down list,

the other for the value which will be returned from the pop-up. The container
must not include any other FIELD elements.

v The first field should be based on a code-table domain which contains a list of
codes which corresponds to the CT_CODE element described earlier.

v The second field should have a target connection which is based on a domain
using the MULTIPLE_POPUP_DOMAIN element.

Agenda Player
The Agenda Player (or player for short) is a wizard-like control which provides
guided navigation through a specified set of screens. As the name implies the
screens in the Agenda Player are supposed to be part of a certain agenda or
scenario, most typically involving step-by-step collecting of information.

Note: Agenda Player widget is not supported outside the modal dialog context, an
attempt to open it in the tab content panel or elsewhere (e.g., as the inline page of
an expandable list) will lead to an explicit error message stating this.

Agenda Player screen structure
Depending on how the Agenda Player player is configured, the screen is divided
into either three or four parts:
v Along the top is the Agenda Player header. It contains a customizable Agenda

Player title on the left and, where appropriate, a progress bar on the top right,
which shows the user's progress through the agenda. The steps completed in the
progress bar will be shaded in color whereas the steps that have yet to be
completed will not.

v On the left of an Agenda Player, a navigation panel (optional) shows the list of
pages in the current agenda. The user's progress through the sequence is
continuously displayed there (in addition to progress bar) by highlighting of the
current page. The appearance and behavior of the other pages in the agenda
depends on the mode used (see below). The pages in an agenda can be grouped
into sections and the player provides the ability to collapse and expand visited
sections.
At the bottom of the navigation panel is the summary link, which allows users
to jump directly to the player summary page (they would also get there by
navigating through all the pages in the agenda). The summary link is only
displayed if there is an appropriate element specified in the agenda XML. The
navigation panel is not displayed in the navigator-less (claimant) view of the
Agenda Player.

<CONTAINER LABEL="Label.person">
<FIELD LABEL="Field.Label">

<CONNECT>
<TARGET PROPERTY="popupType" NAME="ACTION"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label">

<CONNECT>
<TARGET PROPERTY="clientID" NAME="ACTION"/>

</CONNECT>
</FIELD>

</CONTAINER>

Figure 105. UIM to Use Multiple Pop-up Windows

254 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

v Along the bottom, a set of buttons is displayed to allow the user to step forward
and back through the Agenda Player. There are also buttons to jump to the
summary page (displayed optionally) and to quit the Player.

Note: The text used for these buttons can be customized (see below). However,
for the remainder of this section they are further referred as the Back, Next,
Finish and Cancel buttons, which are their default captions.

v The main area of the screen is the content area. This area displays normal client
pages which might also be used outside of the Agenda Player.

Navigation modes
In addition to using the back and next buttons to navigate through an agenda, the
player can provide additional options in the navigation panel, depending on the
mode used.

The Agenda Player can be configured to operate in one of three navigation modes:
basic, incremental or full, with incremental mode being the default.
v The basic mode is used for strictly sequential navigation through the agenda

pages. In this mode the navigation panel is just used for additional information,
indicating which page the user is currently on. The only navigation means are
the standard player buttons.

v The incremental mode expands on the basic mode by providing links in the
navigation panel to any pages which have already been visited. A user can use
these links to skip back and forward between previously visited pages, but will
still need to use the next button to progress any further.

v The full mode is actually a non-sequential mode as all the navigation panel
elements are initially rendered as links. Sequential advancing is possible here as
well, as the player buttons are fully functional, but there are no restrictions
placed on the order in which you navigate through the agenda. This, however,
means that things related to the sequential progress might be unavailable, or not
work properly in this mode (for example, the progress bar is not displayed for
this mode at all; dynamic parameters might not be available if a screen which
expects these parameters is visited before the one where these parameters are
initialized, etc.). Because of this the full navigation mode should be used where
specifically required and the agenda should be designed/configured keeping in
mind the possible consequences.
Agenda Player mode configuration is described in “Agenda Player
Configuration” on page 256

Note: Within the Player screens there might be hyperlinks leading to other pages,
which open in the client area, yet do not belong to the specified Player screen set.
In this case all the navigation means on the Player, including buttons and links
rendered for incremental or full mode are disabled until the flow returns back to
an Agenda Player screen. This means in particular that such a 'side' page should
provide means of returning to the AgendaPlayer page flow (by linking to the
appropriate page or closing the modal opened from the Player).

Navigator-less View
By default, an Agenda Player is displayed with all the screen parts present.
However, in some situations, you may like to simplify the view and behavior of
the player using the view without the navigation panel (also called Claimant view
after the expected usage - i.e. online claimants). In this view Agenda Player is
displayed without the navigation panel. Only the standard player buttons can be
used for navigation, so the mode setting is effectively ignored.

Cúram web client reference 255

The fourth player button, Finish, is automatically available on the button bar at the
bottom of the page for the Claimant view. The button makes it possible to jump
directly to the summary page rather than having to advance to it through all the
pages. It is shown only when there is a summary page present in the agenda XML
returned from the server.

Player configuration to allow for Claimant view is described in the section below.

Agenda Player Configuration
The Agenda Player can be configured by adding/modifying entries in
AgendaConfig.xml. A version of this file should be in your components directory.

The following is an example of the Agenda Player configuration file contents:
<AGENDA>

<PLAYER ID="DefaultConfig" TITLE="Default.Title"
MODE="incremental" CONFIRM-QUIT="false"/>

...
<PLAYER ID="Claimant.Config" TITLE="Claimant.Title"

NAVIGATOR-HIDDEN="true" MODE="incremental"
CONFIRM-QUIT="true"/>

</AGENDA>

The attributes that can be used for particular configuration (PLAYER element) are as
follows.

Table 126. Attributes of the PLAYER element

Attribute Description

ID The ID of this particular configuration (referred to by
CONFIG attribute of FIELD element in UIM which
contains Agenda Player).

TITLE Title key for Agenda Player title, displayed on its
header. This key is used to look up
customized/localized title from appropriate
properties file as described in “Agenda Player
Customization.”

MODE This attribute allows for specifying Agenda Player
navigation mode. It might have values of basic,
incremental or full, incremental being the default
one, used if the attribute is skipped in an
configuration.

NAVIGATOR-HIDDEN When this attribute is specified and set to true,
Agenda Player will be displayed in Claimant View
(see above).

CONFIRM-QUIT This attribute can be used to display a confirmation
dialog when a user clicks on the Cancel button.
When present and set to true, a confirmation dialog
will be displayed to confirm the user's intention to
quit the Agenda Player or to cancel and return to the
player.

Agenda Player Customization
The Agenda Player comes with support for customization/localization of certain
elements. The elements which can be customized are the player title, Progress Bar
text, the player button texts, the quit confirm dialog text and descriptions for each
of the frames in the player.

256 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Player related properties are kept in the files <client-dir>/components/
<component_name>/CDEJResources.properties and <client-dir>/components/
<component_name>/AgendaPlayer.properties. where <component_name> represents
the name of the component where the customizations are being applied.

Player title is customized by specifying custom value under the key used for it in
AgendaConfig.xml (see above). The value under the key is to be placed into
AgendaPlayer.properties.

The Progress Bar text is customized within an Agenda Player header by modifying
the AgendaPlayer.properties file to include values for the keys:
Progress.Bar.Prefix, Progress.Bar.Middle, Progress.Bar.Suffix. Please note that all
three keys must be present with blank values for unused ones in order to ensure
clean rendering of the customized Progress Bar text. If this is not the case then a
situation may occur where a non-blank default value is used instead of one
undefined.

The text strings associated with Agenda Player control buttons are customizable in
the file CDEJResources.properties and defined by properties
wizard.button.back.title, wizard.button.forward.title, wizard.button.finish.title, and
wizard.button.quit.title.

The frame descriptions are useful for users of screen readers but don't appear
visually on the screen. The entries for frame description customizations in
CDEJResources.properties are wizard.frameset.title, wizard.header.frame.title,
wizard.navigation.frame.title, wizard.content.frame.title, wizard.button.frame.title.

Note: The Agenda Player was formerly known as the Wizard widget, so several
attribute and property names still refer to wizard.

In order to change the default question in the quit confirmation dialog, the
property Quit.Dialog.Question should be added/changed in
AgendaPlayer.properties.

Player data
There are some specific UIM pages related with Agenda Player:
v Navigation page: Each Player requires a navigation page that will become the

navigation panel of the Agenda Player. This page has two required
characteristics. First, the root PAGE element has a TYPE of SPLIT_WINDOW. This
indicates that the page will form part of a frame-set. Second, the page contains a
field with a single source connection and domain type AGENDA_XML. This field
supplies the Agenda Player with the list of pages, parameters and other
information that drives the Agenda Player.

v Summary page: This page is optional and might just be a regular UIM page.
However, summary page, specifically displaying summary of visited and
unvisited pages is also available. If this information is to be displayed in a
summary page, a WIDGET element with TYPE attribute set to WIZARD_SUMMARY
should be present among page elements.

v Exit page: This is a regular UIM page to which the user is forwarded after
quitting the player.

The following is an example of the UIM used to specify the navigation page. It
contains a single field which supplies the agenda XML data.

Cúram web client reference 257

<PAGE PAGE_ID="WizardTest" TYPE="SPLIT_WINDOW">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="page.title"/>
</CONNECT>

</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY" CLASS="Agenda"
OPERATION="getAgenda"/>

<PAGE_PARAMETER NAME="agendaRef"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="agendaRef"/>
<TARGET NAME="DISPLAY" PROPERTY="key$agendaRef"/>

</CONNECT>

<CLUSTER SHOW_LABELS="false">
<FIELD>

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="agendaXML"/>

</CONNECT>
</FIELD>

</CLUSTER>

</PAGE>

The following is an example of a specific summary page:
<PAGE PAGE_ID="WizardSummary">

<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>

</PAGE_TITLE>

<CLUSTER SHOW_LABELS="false" TITLE="Cluster.Title">
<WIDGET TYPE="WIZARD_SUMMARY"/>

</CLUSTER>

</PAGE>

The agenda data that drives the Player looks like this:
<?xml version="1.0" encoding="UTF-8"?>

<agenda>
<page-flow>
<section description="First section"

status="SCT1">
<page id="Person_homePage" description="Home"

status="SC1" initial="true"
submitonnext="true"/>

</section>
<section description="Second section"

status="SCT2">
<page id="Person_listAddress" status="SC2"

description="Addresses"/>
<page id="Person_listBankAccount" status="SC1"

description="Bank Accounts"
submitonnext="true"/>

<page id="Person_listCommunication" status="SC3"
description="Communications"/>

<page id="Person_listTask" status="SC2"
description="Tasks"/>

<page id="Person_listCitizenship" status="SC2"
description="Citizenships"/>

258 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<page id="Person_listFinancial" status="SC2"
description="Financial"/>

<page id="Person_listNote" status="SC4"
description="Notes"/>

</section>
<summary id="WizardSummary"

description="Summary Page"
close-on-submit="true"
status="SCT3"/>

</page-flow>
<parameters>
<parameter name="concernRoleID" value="101"/>
<parameter name="dynamicParam" value="0"/>

</parameters>
<exit-page id="Person_homePage">
<parameters>

<parameter name="concernRoleID" value="101"/>
</parameters>

</exit-page>
</agenda>

There is one page element per screen to be displayed in the Agenda Player. The
attributes that can be used in this element are as follows.

Table 127. Attributes of the page element

Attribute Description

id The page id for the page (as set in the PAGE_ID of the
PAGE element in the page's UIM definition).

description The description of the page that will be displayed in
the Navigation Panel.

status A status code that is mapped to an image.

initial Set to true if this is the page that should be
displayed when the Agenda Player is first opened.

disableback Set to true if the Back button should be disabled on
this page.

disableforward Set to true if the Forward button should be disabled
on this page.

submitonnext Set to true if the Forward button should submit the
form on this page.

close-on-submit This attribute applies to summary element only and
allows for alternative way of quiting the player, as
described below.

The important features to note are:
v The sequence of screens in the Agenda Player is exactly as listed in the agenda

data.
v One of the pages in the Agenda Player can be marked as the start page by

setting the initial attribute to true. When the Agenda Player is first displayed,
this page will be loaded but it will still be possible to navigate back to previous
pages. If the Player is configured to use incremental mode, pages prior to the
initial pages on the navigation panel will be rendered as hyperlinks; for a full
navigation mode all the page items except current one will be hyperlinks.

v In the XML sent back by the application server, the page elements might be
contained within section elements or there might be no section element at all.
The optional summary element, however, is to be always placed directly within
page-flow.

Cúram web client reference 259

v All pages in the Agenda Player take the same set of parameters or a subset
thereof. These parameters are specified in the agenda data.

v Page parameters can also be dynamic. These parameters initially carry special
value of 0 (note dynamicParam in the Agenda Player sample data above) and are
intended to be initialized during user interaction with Agenda Player (e.g., user
ID is only available after a user registers herself).

v The exit-page denotes the page which the user will be taken to when the
Cancel button is clicked. This page will completely replace the Agenda Player
and can be any page in the application with any parameters (matching those
specified by exit-page parameter sub-elements in agenda XML from the server).

v When submitonnext is set for a page, the submit button on that page (there
should only be one) will be hidden when it is displayed within the player. The
player's Next button can be used to submit the form instead and will proceed to
the next page if no validation error occurs. If there are validation errors, the
page will return to itself displaying the validation errors on the top, as it would
for any other application page.
To allow for pages where the record itself is optional (i.e. you could move on to
the next screen without creating one), but some of the fields are mandatory, if
you do try to create a record, the infrastructure will not perform mandatory field
validations if no value has been entered/chosen for any field on the page. The
appropriate server interface will still be called, so it is up to the application logic
to work out what was intended (e.g. don't create a record, delete an existing
record, etc.). This behavior only applies when using the submitonnext feature.

v The summary page can provide an alternative way to quit the Player. In order to
do this, the summary page should contain a submit button, and the summary
element in the agenda XML from the server should have close-on-submit
specified and set to be true. If the user clicks on the submit button on such a
summary page and the submit succeeds, the player closes down and the user is
forwarded to whatever page is specified by the link associated with the submit
button.

v Each page can be assigned a status code using the status. These status codes
can be anything at all as long as they are mapped in the ImageMapConfig.xml file
under the domain AGENDA_XML. When the list of pages is displayed in the left
column, each will have an icon attached corresponding to its status code.

The following is an example of mapping status codes to images the
ImageMapConfig.xml file.
<domain name="AGENDA_XML">

<locale name="en">
<mapping value="SC1" image="Images/Wizard/status1.gif"

alt="English text..."/>
...
<mapping value="SC4" image="Images/Wizard/status4.gif"

alt="English text..."/>
</locale>
<locale name="fr">
<mapping value="SC1" image="Images/Wizard/status1.gif"

alt="French text..."/>
...

</locale>
</domain>

The appearance of the Agenda Player control buttons, the summary screen and the
navigation is defined in CSS. For details, please see “Cascading Stylesheets” on
page 33.

260 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The UIM CONDITION element allows for the conditional display of action controls,
clusters or lists on a page that is displayed within an Agenda Player (see See
“CONDITION” on page 68 for more details on the condition element). To
hide/display elements based on whether the page is in an Agenda Player or not,
the NAME and PROPERTY attributes can only have the values CONTEXT and inWizard
respectively.

This indicates that the action set should be displayed only when that Action Set is
on a page that is displaying within a Agenda Player.

LOCALIZED_MESSAGE Domain
The LOCALIZED_MESSAGE domain allows entries in a server message catalog to
be displayed on a client screen. The domain is string based but expects the string
to be formatted in specific way. The Cúram Server Development Environment
(SDEJ) provides support for formatting a message catalog entry in this way so it
can be returned to the client. See the Cúram Server Developers Guide for full details
on working with message catalogs.

Once the message catalog entry has been formatted on the server side it should be
assigned to a field which is based on the LOCALIZED_MESSAGE domain and
returned to the client. The message entry will be displayed according to the current
locale and values will be assigned to the message placeholders.

Decision Assist: Decision Matrix Widget

Overview
The Decision Matrix widget is a control that is used to construct questionnaires.
Refer to the Decision Assist Administration Class and Widget Overview chapter in the
Inside Cúram Decision Assist Guide for more details.

Custom Data Conversion and Sorting
Use this information to learn about data formatting, parsing, validation, and
sorting behavior in the Cúram web application.

Custom data conversion and sorting allows most aspects of the management of
data in the presentation layer of Cúram applications to be customized.
Customizations can control how data is formatted, parsed, validated and sorted;
error reporting can also be customized and controlled. Operations are performed
on data values according to a well-defined data life-cycle and, at each stage, the
operations can be customized. To understand how, when, and where to customize
the operations, you must first understand the operations available and how they fit
into the life-cycle.

warning: Unsupported Customizations

This chapter describes the supported mechanisms for the customization of data
conversion and comparison operations. For completeness, and to aid

<ACTION_SET ...>
<CONDITION>

<IS_TRUE NAME="CONTEXT" PROPERTY="inWizard"/>
</CONDITION>
...

</ACTION_SET>

Figure 106. Condition example:

Cúram web client reference 261

understanding, some operations are described, but the corresponding
customization mechanisms are not documented, as customization of these
operations is not supported (or not supported using the programmatic mechanisms
described here).

The descriptions of the Java interfaces and classes presented here may be
incomplete, as unsupported methods may be omitted from their descriptions for
clarity. However, the JavaDoc documentation for these interfaces and classes may
include more information and describe more comprehensive customization
mechanisms, but only the mechanisms described here are supported.

Data Conversion and Sorting Operations
The are a number of operations that are carried out on data values by the client
infrastructure. Some are controlled by the domain definition options that were set
in the UML model and are performed automatically, others are controlled by
domain-specific plug-ins that can be overridden and customized; these plug-ins
will be described later. First, the operations that are performed on the data values
need to be understood:

format
When data is retrieved from the application server, it is represented by a
Java object appropriate to the root domain of the data. For example, a
value in the SVR_INT64 domain is represented as a java.lang.Long object.
The format operation is responsible for converting these objects to their
string representation, as it is the string representation that must be
embedded in the XHTML stream returned to the web browser.

A format operation is only required to return a non-null string; there are
no other limitations. However, each domain-specific formatter will usually
return a string representation of the Java object according to the usual
conventions. For example, a money value may have a currency symbol
added during formatting and be limited to two significant digits after the
decimal point. For most data values, the formatter should generate a string
representation that can later be converted back into the original data value.

pre-parse
When a user enters values in a form on an application page and submits
the form to the client application, the web browser submits all of these
values in string format. These string values need to be parsed to create the
appropriate Java object representations, but first a pre-parse operation is
performed to prepare the string for parsing.

The UML model supports several domain definition options that are
recognized by the pre-parse operation (see the Cúram Modeling Reference
Guide for more information on domain definition options). The domain
definition options may indicate that leading and trailing whitespace
characters should be trimmed from the string, that all sequences of
whitespace characters should be compressed to single space characters, and
that the string should be converted to upper-case. The pre-parse operation
applies these options automatically to the string values and the modified
string values are then ready to be parsed. The pre-parse operation is
controlled and customized by setting these domain definition options in
the UML model.

parse After the pre-parse operation has completed, the parse operation must
convert the resulting string value into its Java object representation before
it can be submitted to the application server. In general, the parse
operation is the reverse of the format operation. If the format operation

262 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

formatted a money value to a string and added a currency symbol and
grouping separator (e.g., thousands separator) characters, the parse
operation must be able to remove these additions and create a Java object
representation of the actual money value.

All that is required of the parse operation is to produce a Java object, it
does not validate that value. However, while not explicitly a validation
operation, the parse operation usually needs to perform some validation to
ensure that the value can be parsed correctly. For example, a date may
later be determined to be invalid if it is out of range, but the parse
operation must first determine what the date value is and may fail if the
string does not represent a date in any recognized format.

pre-validate
Like the pre-parse operation, the pre-validate operation is performed to
apply domain definition options defined in the UML model. However,
unlike the pre-parse operation, different domain definition options are
applied to data values depending on the domain. The data is not modified.
String and BLOB values are tested to ensure that they do not exceed their
maximum or minimum defined sizes (or lengths), while numeric values
are tested to ensure that they do not exceed their maximum or minimum
values. Any failures will be reported as errors. See “Converter Plug-ins” on
page 272 for a detailed description of the actual validations performed.

validate
The pre-validate operation is convenient and is applied automatically, but
there are situations where it may not be able to validate data sufficiently.
The validate operation is a catch-all that allows any kind of validation to be
performed that is not possible using UML domain definition options alone.
For example, ID values may be tested to see if their check-digit is valid.
Errors can be reported if any value does not meet such specific conditions.
Data is not modified by this operation.

compare
When a list of data is returned from the server, the sort order of the values
in the list is determined using the compare operation. This sort order is
used to support the sorting of lists on application pages when users click
on the column headers. The compare operation is passed two data values
(in their Java object representations, not in their formatted string
representations) and must return a positive or negative number to indicate
which comes first in the sort order. Like the format operation, the compare
operation is not restricted in what calculations it performs, but it will
typically sort values alphabetically or numerically.

Each data conversion operation has access to information about the active user's
locale and to information about the domain being processed. It is also possible for
one operation to access and execute any of the operations should that be necessary.
For example, a format operation might format values differently for each locale
and a compare operation might invoke the format operation before making a
comparison.

Data Conversion Life Cycle
The CDEJ infrastructure is responsible for the retrieval of data from the application
server, the display of this data, the processing of user input, and the submission of
data back to the application server. This process has a well-defined life cycle.
Operations at each stage in the life cycle are performed in a domain-specific
manner.

Cúram web client reference 263

Not all data goes through each stage in the life cycle. Some data is displayed but
not modified or resubmitted by the user (read-only); some data is created by the
user and submitted without any initial value being retrieved from the application
server (write-only); and some data is retrieved, modified by the user, and then
resubmitted to the application server (read-write).

In the context of the value of a single property, the life cycle for reading the value
is as follows:
1. The value is fetched from the application server by invoking a business

operation.
2. If the value is one of a list of values for the same property, the related values

are sorted using the compare operation and the resulting sort order is recorded.
3. The value is formatted to a string representation by the format operation and is

stored for later display.
4. When the page is displayed, the value is retrieved and inserted into the

XHTML stream.

The life cycle for writing a value is as follows:
1. A string representation of the value is entered on a form by the user and the

value submitted.
2. The domain definition options for whitespace compression and trimming and

for upper-case translation are applied to the string value by the pre-parse
operation. The value remains in string form.

3. If the business operation has declared the value to be mandatory, the value is
checked to ensure that it is not empty or null. An error will be reported if this
check fails.

4. The value is parsed from its string representation by the parse operation and
the resulting native Java object replaces the string value.

5. The domain definition options for the size range, value range, and pattern
match are applied by the pre-validate operation is applicable. The value is not
modified by this operation. If a validation fails, an error will be reported.

6. The value is validated by the validate operation to apply any arbitrary
validation rules. Again, the value is not modified by this operation and
validation failures are reported.

7. The parsed and validated value is sent to the application server.

For a value that is treated as read-write, the life cycle is simply the combination of
the read-only life cycle followed by the write-only life cycle.

The Domain Hierarchy and Domain Plug-ins
At each step in data life-cycle, knowledge of a value's domain is required to ensure
that the correct processing is performed. Embedding this domain information in
the application is one of the tasks performed by the application code generators.
With this information available, the application can invoke data conversion and
comparison operations tailored for each domain.

Not only is information about each domain available at run-time, information
about the relationships between these domains is also available. A model of the
domain hierarchy is maintained in memory using tree structures and all the
necessary information about how values in the domains should be processed
“hangs” from these trees.

264 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The domain hierarchy is composed of nodes implementing the
curam.util.common.domain.Domain interface. The main methods declared in this
interface are listed below. For more information see the Cúram JavaDoc
documentation for this interface.
v getName()

This method is used to get the name of this domain.
v getParent()

This method is used to get the parent domain of this domain if it exists.
v getRootDomain()

This method is used to get the ultimate root domain of this domain.
v getChildren()

This method is used to get the list of children of this domain.
v getPlugIn()

This method is used to get the named plug-in object associated with this
domain.

For the purposes of writing custom data conversion and comparison operations,
this interface is rarely used directly, but it is instructive of the mechanism by which
custom code is integrated into an application.

Each domain has a unique name: the name defined for it in the UML model. As
domains can be derived from other domains, parent-children relationships exist,
and these are also represented. Also, the root domain (the ultimate ancestor of any
domain) is readily accessible. A root domain is one that does not have a parent
domain. Several root domains (for dates, strings, integers, etc.) are supported in the
Cúram application, so the domain hierarchy is represented by a “forest” of
separate trees, rather than a single tree. All information about a domain, other than
its name and relationships to other domains, is provided via domain plug-ins.

As described in the list above, the curam.util.common.domain.Domain interface also
describes a method for the retrieval of plug-ins, getPlugIn, that takes the name of
the type of plug-in required. The method returns the plug-in configured for the
domain or the equivalent plug-in configured for the nearest ancestor domain if
none has been configured directly; this is the simple inheritance mechanism.
Domain plug-ins are Java classes that implement the data conversion and
comparison operations and other features that are specific to each domain. There
are four supported plug-in types, each with a unique plug-in name:

“converter”
Converter plug-ins are responsible for implementing the format, pre-parse,
parse, pre-validate, and validate operations for each domain. Converter
plug-ins can be customized to influence the appearance of values on an
application page, to support the parsing of new data formats, and to
prevent the submission of invalid data.

“comparator”
Comparator plug-ins are responsible for implementing the compare
operation for each domain. Comparator plug-ins can be customized to
influence the sorting of data.

“default”
Default plug-ins are responsible for providing default values for each
domain when no value is available. While this type of plug-in can be
customized freely, there will rarely be any need to modify the
implementations provided within the Cúram application.

Cúram web client reference 265

“options”
Options plug-ins are responsible for providing access to the domain
definition options that were defined in the UML model. This type of
plug-in is built into the client infrastructure and cannot be customized.

The mechanism used to configure the domain plug-ins exploits the domain
hierarchy to simplify the configuration dramatically: very few domains need to be
configured, as domains that are not configured will inherit the configuration from
their ancestor domains. Each root domain needs to be configured (so that every
domain has an ancestor from which it can inherit its configuration), and a small
number of specialized sub-domains are also configured further (the most notable
being CODETABLE_CODE, a derivative of the root domain SVR_STRING). In all,
less than 1% of domains are directly configured, so the configuration information is
very manageable. The Cúram application comes complete with plug-in
implementations and configuration information for all the domains used by the
reference application; modifications are only required to handle specialized custom
extensions.

Overview of Domain Plug-ins

Common Features of Plug-ins
Domain plug-ins are just Java classes that conform to a well-defined interfaces.
There is a base interface that describes common features of all domain plug-ins
and more specialized interfaces for each type of plug-in. At run-time, the
infrastructure co-ordinates instantiation and invocation of all plug-ins, so the
process of writing plug-ins is straightforward: methods need to be implemented
that perform the data conversion and comparison operations and very little else
needs to be considered.

All plug-in classes implement the curam.util.common.domain.DomainPlugIn
interface. This defines some common operations and provides access to basic
information that the plug-in may require. The main methods declared in this
interface are listed below. For more information see the Cúram JavaDoc
documentation.
v getName()

This method is used to get the name of this plug-in (one of the four plug-in
names described above).

v getLocale()

This method is used to get the locale associated with this plug-in instance.
v getDomain()

This method is used to get the domain applicable to this plug-in instance.
v getInstance()

The final method is used to get an instance of a domain plug-in; it is not
invoked in custom code. Instantiation issues are described in more detail in
“Plug-in Instance Management” on page 295. You should use the default
implementations of these methods provided by the Cúram plug-in classes.

The methods of the DomainPlugIn interface do not really do anything interesting.
Derived interfaces define the specific operations that each type of plug-in
performs.

266 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Converter Plug-ins
The DomainConverter interface is the one most likely to be used for customizations.
It defines several simple methods that perform the main data conversion
operations. They are listed as follows. For more information see the Cúram
JavaDoc documentation for this interface.
v format()

This method is used to format the given object to a string representation.
v parse()

This method is used to parse the given string representation into an object.
v validate()

This method is used to validate an object according to the domain-specific
constraints. It may throw an exception if the object is invalid, but does not
modify the object or return any value.

v getDomainClass()

This method returns the class object that indicates the required type of the object
that is passed to the other converter methods or returned by them.

v getGenericLocale()

This method is used to get the locale to be used when formatting or parsing
generic values. This should be the “en_US” locale and you should not change
this value; it does not matter if this locale is not otherwise used in your
application.

v formatGeneric()

This method is used to format the given object to a generic string representation.
v parseGeneric()

This method is used to parse the given generic string representation into an
object of the appropriate type for the associated domain.

As described above, the formatGeneric and parseGeneric methods are similar to
the format and parse methods, but they are used when converting the values of
the domain definition options entered in the UML model by developers or of
values embedded in XML-based data. Domain definition option values, for
example: maximum date values, minimum size values, or regular expressions used
for pattern matching; are extracted from the UML model at build-time and are
parsed to their Java object representations at run-time, so that they can be used
when validating data entered by a user. A similar process is used when extracting
values from XML data returned from the application server and when constructing
XML data before it is returned to the application server. The default
implementations of the formatGeneric and parseGeneric methods are sufficient for
all purposes (see “Generic Parse Operations” on page 297 for information on
protecting the generic parse operation from side-effects).

It is by implementing these converter methods or overriding existing
implementations of them that most customizations are performed. The simple
method signatures disguise the fact that, via the inherited DomainPlugIn interface,
each method has access to the active user's locale and the full domain information
if necessary.

Implementations of the pre-parse and pre-validate operations are provided for all
of the root domains in the Cúram application. As these operations are controlled
completely by the setting of domain definition options in the UML model, there is
rarely any need to customize them programmatically. However, there are
circumstances where custom error messages are required, so you may need to

Cúram web client reference 267

“wrap” these operations to intercept and replace error messages (this is described
in detail in “Custom Error Reporting” on page 293). These operations are defined
on a separate ClientDomainConverter interface. They are listed as follows. For more
information about these methods, see the Cúram JavaDoc documentation for this
interface.
v preParse()

This method prepares a string for parsing by applying the relevant domain
options. For example, the string may have whitespace removed or compressed,
or may be converted to upper-case. The locale is used for the conversion to
upper-case, if that is required.

v preValidate()

This method performs the standard validation checks that are controlled by the
domain options specified in the UML model. The checks include the maximum
and minimum size, the maximum and minimum value, and the matching of a
pattern. The specific data-type of the object will determine which of these checks
are appropriate. The options and comparator are available from the domain.

Access to the ClientDomainConverter interface is only supported for the purposes
of error message interception. However, as all converter plug-ins created for use by
the client infrastructure must implement this interface, you must sub-class an
existing converter plug-in class (or abstract class) when creating custom converter
plug-ins to inherit an appropriate implementation.

Comparator Plug-ins
The DomainComparator interface is used to control sort orders and it extends the
DomainPlugIn interface and the standard java.util.Comparator interface. For more
information about DomainComparator, see the Cúram JavaDoc documentation.

The java.util.Comparator interface defines a compare method that takes two
java.lang.Object arguments and returns an integer that is positive if the first
argument comes before the second argument in the sort order, negative if it comes
after, and zero if the objects are equal. (See the JavaDoc documentation for the
java.util.Comparator interface for more details.) An equals method is also
defined by that interface, but it is of lesser importance; all Java classes inherit an
implementation of the equals method from java.lang.Object or from another
ancestor class and no further implementation is necessary.

Default Value Plug-ins
The DomainDefault interface is used to define default values for domains where no
default value is available. The main methods in this interface are listed as follows.
For more information about these methods, see the Cúram JavaDoc documentation
for this interface.
v getAssumedDefault()

This method is used to get the default value that will be assumed when a user
clears a field on a form and submits no value.

v getDisplayedDefault()

This method is used to get the default value that should be displayed when an
input field has no initial value to display.

From the methods listed above, we can see there are two types of default value:
the value assumed when no value is available to send to the application server,
and the value displayed when no initial value has been defined for a form field on
an application page. The two default values are often the same, but there are some
cases where they need to be different.

268 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The assumed default value is needed when a form is submitted and the form data
contains no value for a field that was not defined to be mandatory. The web client
never submits null data values to the application server, so it must assume some
value for the field and then submit that. The assumed value is nearly always
intuitive: zero for any kind of number, an empty string for any string value, or a
zero date or date-time for such values. The actual assumed default values used in
the Cúram application are listed in “Default Value Plug-ins” on page 280.

The displayed default value is needed when a form field has not been initialized
with any other value (as is usual on forms used to create new entities). The UIM
FIELD element has a USE_DEFAULT attribute that defaults to true, so, unless that
attribute is set to false, the displayed default value may be used. The displayed
default value for numbers and strings is usually the same as that used as the
assumed default value, but for dates and times, the current date and time is used
instead of the zero date and time. Like the assumed default values, the displayed
default values are likely to be sufficient for most applications, so you are unlikely
to need to customize them.

There is also a third source for default values: there is a domain definition option
for a default value supported in the UML model. However, if no such option is set,
it is the plug-in's displayed default value that is used as a fallback, so the two can
be treated in the same way. If only the displayed default value needs to be
customized, it is easier to do this using the UML domain definition option rather
than writing and configuring a new plug-in class, but the assumed default value
can only be modified via a plug-in.

The default code used for values in a code-table domain is controlled via the
application's code-table administration interface. You should not attempt to control
it programmatically.

Domain Plug-in Configuration
Domain plug-ins are configured by means of an XML configuration file. The
format is simple: the file contains a domains root element; for each domain to be
configured, a domain element is inserted; within that element, plug-in elements are
used to specify the name of the type of plug-in and the Java class that implements
the operations of that type of plug-in. The domain elements are not nested within
other domain elements to reflect the domain hierarchy. The configuration
information is relatively “flat”; each entry configures a separate domain and the
inheritance of plug-ins is determined automatically. Here is a sample of such a
configuration file:

<dc:domains>
<dc:domain name="SVR_INT64">

<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.SvrInt64Converter"/>

<dc:plug-in name="comparator" class=
"curam.util.client.domain.compare.SvrInt64Comparator"/>

<dc:plug-in name="default" class=
"curam.util.client.domain.defaults.SvrInt64Default"/>

</dc:domain>
<dc:domain name="INTERNAL_ID">

<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.InternalIDConverter"/>

</dc:domain>
</dc:domains>

Figure 107. Sample Domain Configuration

Cúram web client reference 269

The configuration elements are defined in the XML namespace shown above. In
the example, the namespace declaration assigns the prefix “dc” to this namespace,
so that prefix is used before the element names. While you must declare this
namespace in your configuration file, you can declare it to be a default namespace
and omit the prefix, or even use a different prefix, but you must not omit the
namespace declaration.

The example shows the configuration of two domains (these are the actual default
configurations for these domains, as provided in the out-of-the-box Cúram
application). Three plug-ins are configured for the Cúram root domain SVR_INT64.
This is a complete set of plug-ins, as the “options” plug-in is built-in and is never
directly configured. All descendant domains of SVR_INT64 will inherit these
plug-ins unless further configured. Such a configuration is provided for the
INTERNAL_ID domain. This domain is a descendant of SVR_INT64, but a
different converter plug-in is configured; the comparator and default plug-ins will
be inherited from SVR_INT64. This particular configuration is used within the
Cúram application to override the format operation for INTERNAL_ID values so
that grouping separators are not used in the string representations of the integers.
An integer formatted by the SvrInt64Converter plug-in as “1,234,567” will be
formatted by the InternalIDConverter class as “1234567”. This ensures that values
such as case identifiers (the CASE_ID domain is a descendant of the
INTERNAL_ID domain) are not represented as ordinary numerical values, but as
more abstract unique key values. However, sorting and the calculation of default
values remains unchanged, as these plug-ins are not overridden and the inherited
plug-ins will be used.

There is a master configuration file called domains-config.xml located in your
CDEJ installation's lib/curam/xml/config folder. This file contains the complete
domain configuration information for all of the Cúram root domains and some
descendant domains. You must not make any changes to this file; it is overwritten
each time the development environment is upgraded. However, the information in
this file is useful when you need to make customizations. You can override or
extend any configuration setting in this file using the mechanism described here.

Domain plug-in configuration follows the typical pattern used for when
configuring other aspects of application components. You create configuration files,
place them in component folders, and the component order determines which
parts of each file take precedence when the files are merged together. A single
custom configuration results and this may override or extend the master
configuration without limitation. The domain elements in the configuration are
merged where they have the same domain name defined in the name attribute. The
plug-in elements of the merged domains are then collected and those with the
same name attribute value as an existing plug-in element take precedence over that
setting. New domain configurations can also be introduced. If the newly
configured domain has descendant domains, they will inherit the new
configuration. When configuring plug-ins, the name returned by a plug-in's
getName method must match the name attribute value defined on the plug-in
element in the configuration file; this helps to avoid mistakes in the configuration
file.

The configuration files that you place in your component folders must be named
DomainsConfig.xml (a slightly different name to the master configuration file to
prevent confusion of the two). You can create one or more of these files (one in
each component), but a single file is probably sufficient for most purposes. The
format is just that shown in the example above. Further configuration examples are
included in “Customization Guidelines” on page 284.

270 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Out-of-the-Box Domain Plug-ins

Extending Existing Plug-ins
Domain plug-ins for all of the root domain definitions (and a few others) are
provided in the out-of-the-box Cúram application. Rather than write your own
plug-in implementation from scratch, it is far easier to extend one of these existing
plug-ins. The supplied plug-ins are suitable for the majority of uses, but all can be
overridden in whole or in part as necessary, or used as the basis for new plug-ins
that customize the processing of values in new domains. The details of these
supplied plug-ins and the behavior of their operations are described in the sections
below.

Abstract plug-in classes are also provided to be used as the basis of new plug-ins.
These abstract classes are used by the Cúram plug-ins themselves and provide
some useful functionality that is rarely necessary to override. The abstract classes
you might use are:
v curam.util.client.domain.convert.AbstractConverter

v curam.util.client.domain.compare.AbstractComparator

v curam.util.client.domain.defaults.AbstractDefault

Their behavior is as follows:

Table 128. Behavior of the Abstract Plug-in Classes

Abstract Plug-in Class Behavior

AbstractConverter Returns the correct name for this type of plug-in:
“converter”.

Formats an object that is an instance of
java.lang.Number using the standard Java
locale-specific number format. Other object types are
formatted by calling their toString method.

Pre-parses an object by trimming leading and trailing
whitespace, compressing sequences of spaces, and
converting to upper-case if specified by the UML
domain definition options for the domain.

Does not implement any parse operation.

Pre-validates an object by checking its maximum and
minimum values if these are specified by the UML
domain definition options for the domain.

Validates an object by throwing a
java.lang.NullPointerException if an object is null,
but otherwise performs no validation.

Performs generic parsing by invoking the ordinary
parse operation that must be implemented in the
sub-class. See “Generic Parse Operations” on page
297 for information on protecting the generic parse
operation from side-effects.

Performs generic formatting by invoking the object's
toString method.

Returns the correct value for the generic locale.

Cúram web client reference 271

Table 128. Behavior of the Abstract Plug-in Classes (continued)

Abstract Plug-in Class Behavior

AbstractComparator Returns the correct name for this type of plug-in:
“comparator”.

AbstractDefault Returns the correct name for this type of plug-in:
“default”.

Defines constants with suitable assumed default
values for each of the root domains.

Returns the displayed default value by looking up
the default value defined in the UML domain
definition options, or, if not found there, returns the
assumed default value.

Does not implement getAssumedDefault.

These abstract classes are used by the Cúram plug-in classes and all extend the
curam.util.common.domain.AbstractDomainPlugIn class. This class implements the
locale and domain properties of the DomainPlugIn interface and also provides the
plug-in instance management implementation that should be used by all plug-ins
(see “Plug-in Instance Management” on page 295 for details).

While it is possible to write plug-ins from scratch, you should follow the
guidelines presented in this chapter and extend either the existing plug-in classes
or their abstract base classes. Other approaches cannot be supported due to the
complexity of some features, such as instance management and generic parsing,
that are best avoided and the default implementations used. Reusing these classes
will also ensure that your code will be protected from changes to the plug-in
interfaces, as default implementations of new interface methods will be inherited
during upgrades and no custom code changes should be necessary.

Converter Plug-ins
Converter plug-ins implement the format, parse, validate, and related operations.
The following converter plug-ins are provided out-of-the-box. While most are
pre-configured against certain domains, others are left to be configured as
described in “Domain Plug-in Configuration” on page 269 (all of the plug-ins are
in the curam.util.client.domain.convert Java package):

Table 129. Out-of-the-Box Converter Plug-ins

Domain Converter Plug-in Class

SVR_BLOB SvrBlobConverter

SVR_BOOLEAN SvrBooleanConverter

SVR_CHAR SvrCharConverter

SVR_DATE SvrDateConverter

SVR_DATETIME DateTimeConverter

CURAM_TIME CuramTimeConverter

SVR_DOUBLE SvrDoubleConverter

SVR_FLOAT SvrFloatConverter

SVR_INT8 SvrInt8Converter

SVR_INT16 SvrInt16Converter

SVR_INT32 SvrInt32Converter

272 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 129. Out-of-the-Box Converter Plug-ins (continued)

Domain Converter Plug-in Class

SVR_INT64 SvrInt64Converter

INTERNAL_ID InternalIDConverter

SVR_MONEY SvrMoneyConverter

SVR_STRING SvrStringConverter

SVR_UNBOUNDED_STRING SvrStringConverter

LOCALIZED_MESSAGE LocalizedMessageConverter

CODETABLE_CODE CodeTableCodeConverter

N/A SvrInt8BareConverter

N/A SvrInt16BareConverter

N/A SvrInt32BareConverter

N/A SvrInt64BareConverter

The format operations of these plug-ins determine the string representations of
data values that appear on application pages. The format operations behave as
follows:

Table 130. Behavior of the Format Operations

Plug-in Class Formatting Behavior

SvrBlobConverter Formatted as base-64 encoded strings. The
base-64 encoding scheme is defined in RFC
2045.

SvrBooleanConverter Formatted as the string values true or false.
These values are not locale-aware. Cúram
application pages rarely display formatted
Boolean values directly, instead, check-boxes
are used or values are translated to
locale-specific strings.

SvrCharConverter Formatted as Unicode characters, not as
numbers.

SvrDateConverter Formatted using the application date format.
If the format includes month or day names,
these are localized using the active user's
locale. If the date is the system “zero” date,
an empty string is returned.

DateTimeConverter Formatted using the application date and
time formats and the user's preferred time
zone. If the format includes month or day
names, these are localized using the active
user's locale. If the date-time is the system
“zero” date-time, an empty string is
returned.

CuramTimeConverter Formatted using the application time format.
If the date-time is the system “zero”
date-time, an empty string is returned.

SvrDoubleConverter Formatted as numbers with grouping
separator (e.g., thousands separator) and
decimal point characters appropriate for the
active user's locale.

Cúram web client reference 273

http://ietf.org/rfc/rfc2045.txt
http://ietf.org/rfc/rfc2045.txt

Table 130. Behavior of the Format Operations (continued)

Plug-in Class Formatting Behavior

SvrFloatConverter Formatted in the same manner as the
SvrDoubleConverter.

SvrInt8Converter Formatted as numbers with grouping
separator (e.g., thousands separator)
characters appropriate for the active user's
locale, but without any decimal point.

SvrInt16Converter Formatted in the same manner as the
SvrInt8Converter.

SvrInt32Converter Formatted in the same manner as the
SvrInt8Converter.

SvrInt64Converter Formatted in the same manner as the
SvrInt8Converter.

InternalIDConverter Formatted as numbers in a
non-locale-specific manner without grouping
separator characters.

SvrInt8BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt16BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt32BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt64BareConverter Formatted in the same manner as
InternalIDConverter.

SvrMoneyConverter Formatted in the same manner as the
SvrDoubleConverter, but with exactly two
significant digits after the decimal point.

SvrStringConverter Formatted literally, i.e., strings are not
changed by the format operation.

LocalizedMessageConverter Formatted by decoding the message
information, localizing the string indicated
by the message catalog details, and replacing
any encoded string arguments. The active
user's locale is used throughout.

CodeTableCodeConverter Formatted as the code description
corresponding to the code value using the
active user's locale and the domain's
associated code-table.

Pre-parse operations are used to perform string-related operations, indicated by
domain definition options set in the UML model, before the strings are parsed to
their Java object representations. The operations performed are the same for all
root domains and are as follows: trimming of leading whitespace, trimming of
trailing whitespace, compression of sequences of whitespace characters to a single
space character, and conversion to upper-case. The pre-parse operations should be
customized via the domain definition options in the UML model. Customization of
these options via domain plug-ins is not necessary and not supported.

Parse operations are used to interpret string values submitted from a form on an
application page or via parameters to a URL and convert then to their Java object
representations. The string values received from the web browser are interpreted as

274 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

being in the UTF-8 encoding. This encoding is used when creating the Unicode
Java strings that are passed to the parse operations. The parse operations behave as
follows:

Table 131. Behavior of the Parse Operations

Plug-in Class Parsing Behavior

SvrBlobConverter Parsed as a base-64 encoded string.

SvrBooleanConverter Recognizes any of true, yes, or on as
Boolean true values, and any of false, no,
or off as Boolean false values. The parsing
is not case-sensitive or locale-aware. Other
values are reported as errors.

SvrCharConverter Parsed as a single Unicode character. The
presence of extra characters is reported as an
error.

SvrDateConverter Parsed using the application date format
and the active user's locale.

DateTimeConverter Parsed using the application date and time
formats and the active user's locale. The
user's preferred time zone is assumed.

CuramTimeConverter Parsed using the application time format.
The server's time zone is assumed.

SvrDoubleConverter Parsed as a number with optional grouping
separator characters and decimal point
characters appropriate for the active user's
locale.

SvrFloatConverter Parsed in the same manner as
SVR_DOUBLE values.

SvrInt8Converter Parsed as a number with optional grouping
separator characters appropriate for the
active user's locale. The presence of a
decimal point is treated as an error.

SvrInt16Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt32Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt64Converter Parsed in the same manner as the
SvrInt8Converter.

InternalIDConverter Parsed in a non-locale-specific manner.
Grouping separators are not permitted and
for negative values the minus sign must be
on the left.

SvrInt8BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt16BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt32BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt64BareConverter Parsed in the same manner as the
InternalIDConverter.

Cúram web client reference 275

Table 131. Behavior of the Parse Operations (continued)

Plug-in Class Parsing Behavior

SvrMoneyConverter Parsed in the same manner as
SVR_DOUBLE values, but the magnitude of
the values are limited to 1e13 to avoid the
possibility of rounding errors.

SvrStringConverter Parsed literally, i.e., strings are not changed
by the parse operation.

LocalizedMessageConverter Parsed literally in the same manner as the
SvrStringConverter. Localized messages are
not supported as input values, so this parser
is never invoked.

CodeTableCodeConverter Parsed literally as a code value in the
domain's associated code-table. An error is
reported if the code is not defined in that
code-table.

Pre-validate operations are used to perform validation checks, indicated by domain
definition options set in the UML model, after values have been parsed to their
Java object representations. The checks performed are not the same for all domains.
The possible validation checks are: maximum size (length), minimum size (length),
maximum value, minimum value, and pattern match. The maximum and
minimum values are checked using the compare operation. The pre-validate checks
applied as follows:

Table 132. Behavior of the Pre-Validate Operations

Plug-in Class
Max./Min.
Size

Max./Min
Value Pattern Match

SvrBlobConverter Yes No No

SvrBooleanConverter No Yes No

SvrCharConverter No Yes No

SvrDateConverter No Yes No

DateTimeConverter No Yes No

CuramTimeConverter No Yes No

SvrDoubleConverter No Yes No

SvrFloatConverter No Yes No

SvrInt8Converter No Yes No

SvrInt16Converter No Yes No

SvrInt32Converter No Yes No

SvrInt64Converter No Yes No

InternalIDConverter No Yes No

SvrInt8BareConverter No Yes No

SvrInt16BareConverter No Yes No

SvrInt32BareConverter No Yes No

SvrInt64BareConverter No Yes No

SvrMoneyConverter No Yes No

LocalizedMessageConverter Yes No Yes

276 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 132. Behavior of the Pre-Validate Operations (continued)

Plug-in Class
Max./Min.
Size

Max./Min
Value Pattern Match

SvrStringConverter Yes No Yes

CodeTableCodeConverter Yes No No

The pre-validate operations should be customized via the domain definition
options in the UML model. Customization of these options via domain plug-ins is
not necessary and not supported.

The default implementations of the validate operations do not perform any extra
validations.

Comparator Plug-ins
Comparator plug-ins implement the compare operations that determine the sort
order of lists of values. Comparator plug-ins are provided for the following
domains (all of the plug-ins are in the curam.util.client.domain.compare
package):

Table 133. Out-of-the-Box Comparator Plug-ins

Domain Plug-in Class Behavior

SVR_BLOB SvrBlobComparator Not sorted, as there is no
useful sort order for these
non-human-readable values.

SVR_BOOLEAN SvrBooleanComparator Sorted with Boolean true
values before false values.

SVR_CHAR SvrCharComparator Sorted strictly numerically
with no locale-aware
processing.

SVR_DATE SvrDateComparator Sorted chronologically with
the earliest date first.

SVR_DATETIME SvrDateTimeComparator Sorted chronologically with
the earliest date-time first.

CURAM_TIME CuramTimeComparator Sorted chronologically with
the earliest time first.
CURAM_TIME is based on
the SVR_DATETIME domain,
so values may included date
information, but for
comparisons, the date part is
ignored and only the time
part is used to determine the
sort order.

SVR_DOUBLE SvrDoubleComparator Sorted numerically; smallest
value first.

SVR_FLOAT SvrFloatComparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT8 SvrInt8Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT16 SvrInt16Comparator Sorted in the same manner
as SVR_DOUBLE values.

Cúram web client reference 277

Table 133. Out-of-the-Box Comparator Plug-ins (continued)

Domain Plug-in Class Behavior

SVR_INT32 SvrInt32Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT64 SvrInt64Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_MONEY SvrMoneyComparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_STRING SvrStringComparator Sorted lexicographically
based on the numeric
Unicode value of each
character in the string. The
comparison is not
locale-aware.

SVR_STRING SvrStringCaseInsensitiveComparatorSorted identically to
SvrStringComparator except
the case is ignored.

SVR_STRING SvrStringLocaleAwareComparatorSorted according to the
sorting rules defined by
Unicode Collation Algorithm
for the locale. See “Localized
(Cultural-aware) string
sorting” on page 279 for
details.

SVR_UNBOUNDED_STRING SvrStringComparator Sorted in the same manner
as SVR_STRING values.

CODETABLE_CODE CodeTableCodeComparator Sorted according to the
defined code-table sort order
for the code values. If the
defined sort orders are equal,
the code descriptions are
sorted lexicographically
based on the numeric
Unicode value of each
character in the string. The
comparison is not
locale-aware.

CODETABLE_CODE CodeTableCodeCaseInsensitiveComparatorSorted identically to
CodeTableCodeComparator
except case is ignored.

CODETABLE_CODE CodeTableCodeLocaleAwareComparatorSimilar to the above, but the
comparison of code
descriptions uses the sorting
rules defined by Unicode
Collation Algorithm for the
locale. See “Localized
(Cultural-aware) string
sorting” on page 279 for
details.

The SvrStringComparator and CodeTableCodeComparator classes are configured by
default to sort values in the SVR_STRING and CODETABLE_CODE domains
respectively. If locale-aware sorting is required, the default plug-in configuration
can be overridden to use the SvrStringLocaleAwareComparator and

278 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

CodeTableCodeLocaleAwareComparator classes instead. If case-insensitive sorting is
required, override using SvrStringCaseInsensitiveComparator and
CodeTableCodeCaseInsensitiveComparator. See “Domain Plug-in Configuration” on
page 269 above for details on overriding the default plug-in configuration. Using
these locale-aware comparators, lists will be sorted according to the expected
sorting rules of the active locale. However, applying these sorting rules takes more
time, so there will be some performance degradation. The implementation of
locale-aware sorting uses Java's built-in sorting rules, so the availability of correct
sorting rules for each locale depends on the Java JRE being used.

Localized (Cultural-aware) string sorting:
When sorting the textual strings, Unicode Collation Algorithm implementation is
used to ensure the sort order expected by the users in different cultural
environments.

The sorting order depends on both the current user locale and the so called
collation strength. This strength is configurable to ensure the exact requirements
for different languages and applications.

In order to change the default strength the application property
'curam.collator.strength' should be set to one of the valid values summarized in
the table Table 134 below.

'curam.collator.strength' is a static property and requires a server restart upon
changing.

Table 134. Collation strength summary

'curam.collator.strength' Strength Name Description

1 PRIMARY Alphabetical sorting which
accounts for the base letter
differences.

2 SECONDARY Diacritic sort order which takes
into account character accents.

3 TERTIARY Character case based refinement of
the sort order.

This is the default value of the
'curam.collator.strength' and also
the fall-back value where the set
value cannot be interpreted.

4 QUATERNARY Used to ignore punctuation when
setting the sort order, and to
account for minor differences. This
level should also be used when
sorting Japanese text according to
JIS X 4061 standard.

5 IDENTICAL The tie-breaking level, the
character code point values are
compared at this stage.

Note: If any value beyond the acceptable range is entered for the
'curam.collator.strength', a runtime fall-back to the default strength will occur. The
notification of this will be recorded in the application server logs.

Cúram web client reference 279

Note: As the collation strength is increased this can have an impact on
performance.

Default Value Plug-ins
Default value plug-ins supply the default values used when no values are
available. Default value plug-ins are provided for the following domains (all of the
plug-ins are in the curam.util.client.domain.defaults package):

Table 135. Out-of-the-Box Default Value Plug-ins

Domain Plug-in Class
Assumed
Value

Displayed
Value

SVR_BLOB SvrBlobDefault Empty BLOB Empty BLOB

SVR_BOOLEAN SvrBooleanDefault False False

SVR_CHAR SvrCharDefault Character zero Character zero

SVR_DATE SvrDateDefault Zero date Current date

SVR_DATETIME SvrDateTimeDefault Zero date-time Current
date-midnight

SVR_DATETIME SvrDateTimeDefaultCurrTime Zero date-time Current date -
Current time

SVR_DOUBLE SvrDoubleDefault Zero Zero

SVR_FLOAT SvrFloatDefault Zero Zero

SVR_INT8 SvrInt8Default Zero Zero

SVR_INT16 SvrInt16Default Zero Zero

SVR_INT32 SvrInt32Default Zero Zero

SVR_INT64 SvrInt64Default Zero Zero

SVR_MONEY SvrMoneyDefault Zero Zero

SVR_STRING SvrStringDefault Empty string Empty string

SVR_UNBOUNDED_STRINGSvrStringDefault Empty string Empty string

CODETABLE_CODE CodeTableCodeDefault Empty code
string

Empty code
string

Within the Cúram application, the zero date and time is represented as midnight
on January 1,0001; this is interpreted as if no date and time has been set at all.

Also, the default value for a code-table code is an empty code string; a different
mechanism is used to define default code-table codes during code-table
administration.

SvrDateTimeDefault plug-in is time zone aware and the displayed value it returns
is offset by the difference between the user and server time zones. The configured
converter plug-in is expected to also consider time zone settings and offset the
value accordingly. The end result is that the time part of date-time value is set to
midnight regardless the time zone settings.

Error Reporting

Infrastructure Errors
There are many built-in, infrastructure errors, for which the developer can perhaps
do no more than retry the page or restart the web application. If these problems
persist, technical support should be notified.

280 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

These errors should be reported by keeping a copy of the error page source. Since
we are in a browser environment, this is achieved by simply selecting File-->Save
As... from the menu, or selecting View-->Source to bring up a text editor and then
saving the document. The information in the source of the page may be useful in
identifying and resolving the error.

Exception Classes
Many customizations require the addition of exception handling and error
reporting code. All the necessary infrastructure is provided to make this as simple
as possible. A simple formulaic approach can be followed that will provide all of
the necessary functionality. Before looking at how you can write customizations,
you must first learn the necessary error reporting techniques.

All of the plug-in methods that throw exceptions, throw one of two exception
types:
v curam.util.common.domain.DomainException

v curam.util.client.domain.convert.ConversionException

ConversionException is derived from DomainException, so instances of these
exceptions can both be treated as DomainException objects when convenient. The
ConversionException class is used for exceptions that are thrown by the methods
of converter plug-ins. Unlike a DomainException, a ConversionException can be
associated with a particular property of a server interface so that error messages
reported to a user can indicate the label of the field in error and an error icon can
be placed beside that field. The only exceptions that custom code normally needs
to throw are instances of ConversionException, so this is the only exception class
than needs to be understood to implement your own exception handling and
reporting.

Conversion exceptions (and most other exceptions in the client infrastructure) carry
information about the error message that needs to be reported, but not the error
message itself. When an exception is thrown, the identifier of the localized error
message string, the values that will be substituted for the placeholders in that
string, and any causal exception object are included in the exception details. Each
exception class can be associated with an error message catalog (a set of localized
Java properties files) that is used when the localized message string is resolved
from the message identifier. The localization and substitution steps are not
performed until the message is reported to the user, so the exception can be
propagated and augmented with more information for some time before the
message string becomes fixed. This allows, in the case of conversion exceptions,
the field label to be added automatically by the infrastructure after your custom
code has thrown the exception and makes it very easy to integrate your error
reporting requirements into the system.

Custom Exception Classes
The purpose of a custom exception class is to integrate the look-up of localized
message strings in a custom message catalog into the mechanism used for error
reporting in the client infrastructure. If you only need one error message catalog,
you will only need one custom exception class, but there is no restriction on the
number of exception classes or message catalogs you can create.

Implementing custom exception handling using a custom exception class is
formulaic. As the custom exception class must integrate into the existing message
reporting system, only numeric message identifiers are supported for custom

Cúram web client reference 281

exceptions and there is very little room for deviation from the prescribed approach.
You cannot, for example, use literal message strings in your code, you must use
references to externalized strings.

Here is an example of a custom exception class:

This class extends ConversionException and implements a number of constructors
simply by invoking the equivalent constructors in the super-class. You only need to
implement the constructors that you intend to use, the rest of the constructors in
the super-class can be ignored (Java classes do not inherit constructors, hence the
need to re-implement them). The available constructors are described in the
JavaDoc. Next, it defines a static MessageLocalizer field and instantiates it with a
CatalogMessageLocalizer object that takes your custom catalog name as its
argument. The getMessageLocalizer method then returns this static object. That is
all there is to it.

When you throw exceptions of this type, you need to pass your message identifier
and optional arguments to the relevant constructor. You can define constants for
your numeric message identifiers in this class if you wish. Your message strings
can contain placeholders such as “%1s”, “%2s”, etc., to be replaced by the
argument strings (only string types are supported). For an array of arguments,
“%1s” will be replaced by the first argument in the array (index zero), and so on.
The special argument “%0s” can be used to represent the name of the field in error,
but you will not need to provide any matching argument string for that value; it
will be substituted automatically. You can also use the same placeholder several
times in a single message if you want the same value to be inserted in more than
one place. Here is a sample message catalog file containing a single message:

The file is a standard Java properties file where each line contains a numeric
identifier and a message string separated by an equals character. A collection of

public class CustomConversionException
extends ConversionException {

private static final MessageLocalizer MESSAGE_LOCALIZER
= new CatalogMessageLocalizer("custom.ErrorMessages");

public CustomConversionException(int messageID) {
super(messageID);

}

public CustomConversionException(int messageID,
String[] messageArgs) {

super(messageID, messageArgs);
}

public CustomConversionException(int messageID,
String messageArg) {

super(messageID, messageArg);
}

public MessageLocalizer getMessageLocalizer() {
return MESSAGE_LOCALIZER;

}
}

Figure 108. Custom Exception Class

-200000=ERROR: The field ’%0s’ contains an invalid value ’%1s’.

Figure 109. Custom Message Catalog

282 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

properties files with the same base name but with locale codes appended is treated
as a single message catalog. The custom exception class in the example above
refers to the message catalog as “custom.ErrorMessages”, so the properties files
should be located on the Java classpath in the custom package folder and in files
named ErrorMessages.properties, ErrorMessages_en_US.properties,
ErrorMessages_fr_CA.properties, etc., as you would do for any other custom
properties files. There should be one properties file for each locale that your
application supports. The selection of the correct locale-specific properties file at
run-time is completely automatic once you have written your custom exception
class as shown above.

Ensuring that these files end up on the classpath is simply a matter of placing
them in their appropriate package folders below your web application's
<client-dir>/<custom>/javasource folder, where custom is the name of a custom
component. (see “CDEJ Project Folder Structure” on page 11 for details). The Java
source files for your custom exceptions should also be placed below the
<client-dir>/<custom>/javasource folder in the appropriate folders for the
package names you have used.

When throwing a custom exception, the code will look like this (assuming you
have decided not to use constants for your error message identifiers):

Remember, it is not necessary to pass any argument corresponding to the “%0s”
placeholder; it will be calculated and substituted automatically.

Numeric Message Identifiers: When creating message catalog files, try to ensure
that the error numbers do not conflict with the numbers of existing Cúram error
messages, as this may cause confusion when errors are being investigated. Values
below -200000 should be safe to use, though conflicting numbers will not actually
cause any application problems, as the message catalogs are separate from those
used by the infrastructure.

If you examine the constructors of the ConversionException class, you will note
that many accept a java.lang.Throwable object as the last argument. You can
implement similar constructors and pass Throwable objects (usually other exception
objects) to your custom exceptions when you want your custom exception to
include the exception that caused it. This is often very useful as error messages for
both exceptions will be reported automatically and both stack traces will be
included on an application error page if the error page is required. In fact, there is
no imposed limit to the length of the chain of exceptions that can be built this way;
the exception that you add to your own may already contain a reference to another
exception, and so on.

This example show how you can even report two separate error messages at once.
Perhaps one is a generic message that states that a field does not contain a valid
value and another suggests the expected format for that value. You will have to
implement the appropriate constructor to support this, but the reporting
mechanism is automatic.

throw new CustomConversionException(-200000, myInvalidValue);

Figure 110. Throwing a Custom Exception

Cúram web client reference 283

Java Object Representations
The data conversion and comparison operations manipulate strings and other Java
objects. Each value in a root domain is represented by an object of a corresponding
Java class. The Java class used by a root domain is the same for all descendant
domains of that root domain and cannot be changed. When customizing the
operations, knowledge of the type of data being processed is important. The table
below shows the Java class used for data objects for each of the root domains.

Table 136. Classes Used for Java Object Representations

Domain Java Class

SVR_BLOB curam.util.type.Blob

SVR_BOOLEAN java.lang.Boolean

SVR_CHAR java.lang.Character

SVR_DATE curam.util.type.Date

SVR_DATETIME curam.util.type.DateTime

SVR_DOUBLE java.lang.Double

SVR_FLOAT java.lang.Float

SVR_INT8 java.lang.Byte

SVR_INT16 java.lang.Short

SVR_INT32 java.lang.Integer

SVR_INT64 java.lang.Long

SVR_MONEY curam.util.type.Money

SVR_STRING java.lang.String

SVR_UNBOUNDED_STRING java.lang.String

CODETABLE_CODE curam.util.common.util.CodeItem

Though derived from SVR_STRING, the Java class used for CODETABLE_CODE is
different to that of its parent. This is the only exception to the rule that the Java
class used is the same for all descendant domains of a root domain.

Customization Guidelines

Where to Start
Most customizations aim to control one or more of the data conversion or sorting
operations. Guidelines are provided in the following sections to show you how
each of these operations can be customized. Following these guidelines will ensure
that your customizations are as simple and effective as possible.

When you have written your custom plug-ins, you need to configure them and
ensure that the Java classes are available at run-time.Configuration was described
in “Domain Plug-in Configuration” on page 269. The Java source files for your
custom plug-in classes are added to the web application in exactly the same way

throw new CustomConversionException(
-200000, myInvalidValue,
new CustomConversionException(-200003));

Figure 111. Throwing Multiple Exceptions

284 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

as the Java source code files for your custom exception classes (see “Custom
Exception Classes” on page 281): they are placed in their appropriate package
folders in your <client-dir>/<custom>/javasource folder, (where <custom> is the
name of a custom component).

Custom Formatting
Custom formatting may be required when a value displayed on an application
page is not in the required format. A custom formatter might be used to pad
values with extra characters, so that they appear to be the same length; insert a
currency symbol into money values; format numeric values without grouping
separator characters; or even take a date value based on the Gregorian calendar
and format it after converting it to another calendar system.
1. Identify an existing converter plug-in class that you want to customize. It will

most likely be the converter that is already configured for the domain in
question or inherited by it from an ancestor domain.

2. Create a new sub-class of the relevant converter plug-in and override the
format method.

3. In the implementation of the method, you can perform some processing before
or after invoking the super-class's method of the same name, or implement the
formatting code from scratch.

4. Configure your new plug-in for the relevant domains.

The calendar scenario is somewhat unrealistic because the date selector widget
would not be compatible, but inserting a currency symbol, or an analogous
operation, is something that you may want to do. If multiple currencies are
supported, then domains such as US_DOLLAR_AMOUNT or EURO_AMOUNT
might be used to represent values in each currency (though the out-of-the-box
Cúram application uses a different scheme for representing money values in
different currencies). Custom converter plug-ins may then be written to format
money values for each of these domains by adding the appropriate currency
symbol.

This example shows how a converter plug-in can be written that takes a money
value and prefixes the formatted numeric value with a dollar symbol. The
out-of-the-box Cúram application comes with a converter plug-in that formats
money values, but without any currency symbol, so you can reuse its format
operation to simplify the implementation.

The implementation is very trivial: the super-class does all the work and returns a
nicely formatted money value; the customization just adds the dollar symbol.

The configuration file for this customization is shown below. The file might also
include entries for other customizations that have been made. As the comparator

/**
* Converter that supports the use of a dollar symbol for
* money values.
*/

public class USDollarConverter
extends SvrMoneyConverter {

public String format(Object data)
throws ConversionException {

return "$" + super.format(data);
}

}

Figure 112. Custom Formatting for Currency Values

Cúram web client reference 285

and default value plug-ins have not been customized, they do not appear in the
configuration. These plug-ins will be inherited from the ancestors of the
US_DOLLAR_AMOUNT domain (probably the SVR_MONEY domain).

Values displayed on an application page (or even those passed behind the scenes
in hidden page connections) may be submitted back to the web application. If you
write a formatter that inserts a currency symbol, or you allow users to insert
currency symbols in values that they type in, then you will need to accommodate
such values in the parse operation. The next section will demonstrate the custom
parse operation required to match this custom format operation.

Another common need for custom formatting is to format integer values without
grouping separator characters. For example, an integer value that represents the
year “2005” should probably be formatted as “2005” and not “2,005”. If the year
value is represented by the YEAR_VALUE domain and that domain is derived
from the SVR_INT16 domain, the custom format operation would look like this:

This converter overrides the format method of the SvrInt16Converter class and
simply converts the data object (a java.lang.Short) to a string. Unlike the routines
used by the super-class, the toString method will not do any locale-aware
formatting or add any grouping separator characters. The parse method is not
overridden, so values that are entered with or without grouping separator
characters will be accepted. This converter is configured in the same way that the
currency symbol converter was configured.

Custom Parsing
Custom parsing is implemented when users must enter values in a form that
existing parse operations do not recognize or when some other processing must be
performed on values before they are submitted to the application server. Custom
parsing may be as simple as a routine that first removes a currency symbol from a
numeric value before parsing it, where the currency symbol may have been
entered by a user or added by a custom format operation. It could also be
something more unusual: a translation of a date to another calendar system, a
routine that pads string values, or an arbitrary calculation on numeric values.
1. Identify an existing converter plug-in class that you want to customize. It will

most likely be the converter that is already configured for the domain in
question or inherited by it from an ancestor domain.

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
<dc:plug-in name="converter"

class="custom.USDollarConverter"/>
</dc:domain>

</dc:domains>

Figure 113. Configuration for Custom Formatting

/**
* Converter that formats year values without adding grouping
* separator characters.
*/
public class YearValueConverter

extends SvrInt16Converter {
public String format(Object data)

throws ConversionException {
return data.toString();

}
}

Figure 114. Custom Formatting without Grouping

286 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

2. Create a new sub-class of the relevant converter plug-in and override the parse
method.

3. In the implementation of the method, you can perform some processing before
or after invoking the super-class's method of the same name, or implement the
parsing code from scratch.

4. Configure your new plug-in for the relevant domains.

The currency symbol scenario is continued in this example to complement the
example shown for a custom format operation above. The example below shows
the same class developed to format money values with a currency symbol; the
class is now extended with a corresponding parse operation. In a case like this,
you do not write separate converter plug-ins for formatting and parsing; you must
implement both operations in the same converter plug-in and then associate the
plug-in with the appropriate domain.

The value passed to the parse method is the same value that was entered by the
user; it is possible that it contains no currency symbol or it might contain space
characters between the currency symbol and the value. You can use the UML
domain definition options to ensure that the pre-parse operation will have
removed any whitespace before the currency symbol, or simply report an error if
the currency symbol or a digit is not the first character. The parse method above
assumes that the currency symbol is the optional first character and then leaves all
other decisions up to the parse method of the super-class. This is probably the best
approach, as it limits the number of formatting rules that a user needs to be aware
of and keeps the code as simple as possible.

The configuration for this plug-in is unchanged from that shown for the custom
format operation.

Custom Validation
Custom validation can be performed in two ways: by setting the domain definition
options in the UML model, or by implementing a validate operation in a custom
converter plug-in. It is also possible to combine both ways to meet your validation
requirements.

The domain definition options in the UML model are limited to a small number of
validations that are described in the Cúram Modeling Reference Guide and

/**
* Converter that supports the use of a dollar symbol for
* money values.
*/

public class USDollarConverter
extends SvrMoneyConverter {

public String format(Object data)
throws ConversionException {

return "$" + super.format(data);
}

public Object parse(String data)
throws ConversionException {

if (data.startsWith("$")) {
return super.parse(data.substring(1));

}
return super.parse(data);

}
}

Figure 115. Custom Parsing for Currency Values

Cúram web client reference 287

summarized in “Converter Plug-ins” on page 272 above. If the domain definition
options meet your needs, you should use them in preference to any programmatic
alternative. If the options meet only some of your needs, you should use them and
also create a custom converter plug-in to complete the validations. If the options
are not useful, you should create a custom converter plug-in and implement all the
validations there. Some uses for custom validation routines might include the
validation of check digits or the imposition of any other arbitrary restrictions on
the permitted values.
1. Identify an existing converter plug-in class that you want to customize. It will

most likely be the converter that is already configured for the domain in
question or inherited by it from an ancestor domain.

2. Create a new sub-class of the relevant converter plug-in and override the
validate method.

3. In the implementation of the method, invoke the super-class's method of the
same name to perform any existing validations (if that is appropriate).

4. Complete the implementation by performing your validations and throwing an
exception if any validation fails.

5. Configure your new plug-in for the relevant domains.

In this example, a new converter plug-in is created that extends the
InternalIDConverter plug-in with a validation that only permits even numbers.
The InternalIDConverter is derived from the SvrInt64Converter class that is
configured for use by the SVR_INT64 domain. Values in this domain are
represented by java.lang.Long objects.

The error message entry in the custom message catalog may look like this:

If this validation is to be applied to the EVEN_ID and the NOT_ODD_ID domains,
then the configuration will look like this:

/**
* Reports ID numbers as invalid if they are odd.
*/
public class EvenIDConverter

extends InternalIDConverter {
public void validate(Object data)

throws ConversionException {
// Perform any existing validations first.
super.validate(data);

if (((Long) data).longValue() % 2 != 0) {
throw new CustomConversionException(-200010);

}
}

}

Figure 116. Custom Validation for Odd Numbers

-200010=ERROR: The field ’%0s’ must be an even number.

Figure 117. Custom Validation Failure Message

288 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Custom Sorting
When lists of values are displayed in an application page, a user can sort the list
by clicking on the column headers. The sort order of the rows will be determined
by the sort order of the values in the selected column. Successive clicks on a
column header alternate between the forward and reverse sort order for that
column. The sort order for any type of data can be customized easily, though the
sort-order for code-table codes must be controlled using the code-table
administration interface. The sort order is calculated when responding to a user's
request, so the user's active locale is available by calling the inherited getLocale
method and can be used to influence the sort order in a locale-specific manner.

The domain comparator plug-ins are responsible for making the comparisons that
control the sort order. The sorting algorithms swap the position of values in their
value lists depending on the value returned by the compare method of the plug-in.
The comparator plug-ins used in the Cúram application behave as described in
“Comparator Plug-ins” on page 277. These sort orders are simple and intuitive, but
may not meet the needs of some specialized domains. In these cases, custom sort
orders may be required and there is no limitation on what order can be used.

What Values are Compared?: All compare operations are performed by invoking
the comparator plug-ins compare method. This takes two java.lang.Object
arguments. The method is invoked automatically by the client infrastructure before
the values are formatted. This means that the objects passed are of the types shown
in “Java Object Representations” on page 284, not formatted string representations
of the values.

In most cases, having access to Java object representations makes the comparisons
much easier to perform: comparing dates and numbers is much easier when they
are represented by objects that conveniently provide a compareTo method that
returns the same values that the compare method must return. However, there are
some situations where, for example, encoded strings are decoded by the format
operation and comparing them before they are formatted is not simple or would
involve the duplication of the formatting code. In these cases, it is possible to
invoke the appropriate formatter and compare the results. This will be described
later.

The general guidelines for implementing a custom comparator plug-in to control
the sort order for a domain are as follows:
1. Create a new sub-class of the AbstractComparator class described in “Extending

Existing Plug-ins” on page 271.
2. Implement the compare method to perform your custom comparison.
3. Configure your new plug-in for the relevant domains.

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
<dc:domain name="EVEN_ID">

<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>

</dc:domain>
<dc:domain name="NOT_ODD_ID">

<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>

</dc:domain>
</dc:domains>

Figure 118. Configuration for Custom Validation

Cúram web client reference 289

To illustrate this, you will see how to write a comparator that compares string
values as if they were numbers. Some of the entities in the Cúram application use
a string-based domain for their key values to support the use of identifiers that
may not just contain digits. Sorting of these types works well in most cases, but
there can be problems. Because the base domain is a string, the values are sorted
lexicographically, not numerically. If the values are all of the same length, this is
not a problem, but if the lengths differ, the sorting becomes confusing. For
example, the string values “22” and “33” will be sorted into the order “22”, “33”,
but if the values are “22” and “3”, the sort order will be “22”, “3”, because the
character “2” comes before the character “3” in a lexicographical sort and
representations of numbers with positional digits are not recognized.

There are a number of ways to solve this problem:
v The string values could be stored in the database with leading zeros used to pad

all values to the same length, this would trick the lexicographical sorting into
working correctly (the lexicographical sort order for “22” and “03” is “03”, “22”).
If the leading zeros were not desired for display purposes, they could be
stripped by the format operation and replaced by the parse operation. Legacy
data, however, would need to be updated to conform to the new format.

v Write a custom comparison routine that parses the numeric values from the
strings and then performs the comparison. This would work fine, but the
parsing is a little complicated and it may be complicated further if the values
have trailing check letters or other non-digit characters.

v Pad the value with zeros for the purposes of making the comparison, but do this
inside the compare operation, so that no other application changes are necessary.

The latter solution is, perhaps, the easiest to achieve. Here is an example of a
custom comparator plug-in that does this for values that are limited to no more
than ten characters:

The _pad method pads a value with leading zeros, so that all returned strings will
be ten characters long and numeric values will be compared correctly as the
positional digits will all be aligned correctly. No change needs to be made to the
format or parse operations or to any existing values in the database; the sort order
is entirely controlled by this simple comparator code. While the numeric values
could have been parsed from the strings and a numeric comparison made, this
sample code is much simpler and more efficient.

Another need for custom sorting arises when values are in an encoded form that is
decoded by the format operation. In this case, sorting of the encoded form may not

/**
* Compares string values after padding them with leading
* zeros to make the sorting work correctly for numeric
* values. Values must not be longer than ten characters.
*/
public class IDComparator

extends AbstractComparator {
public int compare(Object s1, Object s2) {

return _pad((String) s1).compareTo(_pad((String) s2));
}

private String _pad(String s) {
return "0000000000".substring(0, 10 - s.length()) + s;

}
}

Figure 119. Sorting Strings Numerically

290 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

be meaningful. For example, if a domain exists that uses an encoded string
containing several localized messages and their locale codes like this
“en|Hello|es|Hola”, calculating the sort orders for such strings is meaningless.
The string could be decoded, but, as decoding must be done by the format
operation, it is simpler to invoke the format operation instead and compare the
values that it returns.

This code retrieves the converter plug-in that implements the format operation for
the same domain as that of the values being compared. The returned converter will
also be aware of the active user's locale. The exact mechanism behind this is
unimportant, simply copying the code above is all that is needed. Other uses of the
ClientDomain class are not supported. The exception handling is simple: it does
nothing. The compare method is not declared to throw exceptions, and thrown
run-time exceptions trigger an application error page, so there is not much useful
error handling that can be performed. The reason that none is attempted at all is
that if the converter cannot be retrieved or the format operation fails, it will be for
reasons beyond the control of the comparator plug-in and these reasons will cause
failures in other places that will be reported in time. In fact, the sorting operation
is carried out just before the infrastructure formats all of the values ready for
display, so the very next operation will detect and report the errors that may have
been ignored by the comparator.

A final example shows how to make the Cúram application zero date (January
1,0001), appear after all other dates instead of before them:

/**
* Compares two encoded message strings using their
* formatted values.
*/

public class MessageComparator
extends AbstractComparator {

public int compare(Object value1, Object value2) {
final DomainConverter converter;

try {
converter = ((ClientDomain) getDomain())

.getConverter(getLocale());
return converter.format(value1)

.compareTo(converter.format(value2));
} catch (Exception e) {

// Do nothing except report the values to be equal.
return 0;

}
}

}

Figure 120. Sorting Formatted Values

Cúram web client reference 291

The comparator returns a negative number (the magnitude is not important) if the
first date is the zero date and the second date is not the zero date to indicate that
the first date comes after the second in the sort order. Likewise, a positive number
is returned if the first date is not the zero date and the second date is the zero date
to indicate that the order is correct. Otherwise, the dates are compared as normal.
This causes the zero date to be positioned after all other dates instead of before
them in the sort order.

This type of manipulation should be used with caution: the comparator plug-ins
are also used during pre-validation to check a value against the maximum and
minimum values defined for its domain in the UML model's domain definition
options. In this case, if the UML domain definition options define a maximum date
and no date is set, then the zero date will be assumed and this will appear to be
later than all other dates, including the maximum date, and the pre-validation
check will always fail with an error. If no maximum value is specified in the
model, then this comparator will work without problems.

To override the default comparator for all dates with this new comparator, the
configuration will look like this:

Now, all date values for all domains that are descendants of the root SVR_DATE
domain, and values in the root domain itself, will be sorted according to the new
rules. There is no need to configure any other domains, as they will all inherit this
new comparator (unless, of course, a descendant domain has been configured with
another comparator that will override any inherited comparator). This comparator
could also be applied more selectively to descendant domains of SVR_DATE.

/**
* Compares dates, but places the zero date at the end,
* rather than the start, or the sort order.
*/
public class ZeroDateComparator

extends AbstractComparator {
public int compare(Object value1, Object value2) {

final Date date1 = (Date) value1;
final Date date2 = (Date) value2;

if (Date.kZeroDate.equals(date1)
&& !Date.kZeroDate.equals(date2)) {

return -1;
} else if (!Date.kZeroDate.equals(date1)

&& Date.kZeroDate.equals(date2)) {
return 1;

}
return date1.compareTo(date2);

}
}

Figure 121. Sorting Zero Dates

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
<dc:domain name="SVR_DATE">

<dc:plug-in name="comparator"
class="custom.ZeroDateComparator"/>

</dc:domain>
</dc:domains>

Figure 122. Configuration for Custom Sorting

292 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Custom Error Reporting
It is possible that a plug-in performs the operations exactly as you require, but you
need to customize the error reporting. One area of the Cúram application where
this may happen is in the pre-validation operation when the pattern matching
option is applied. A pattern is a regular expression defined in the UML model.
When this validation fails, the error reports that the data was “not in a recognized
format”, as few users would be able to interpret the meaning of a regular
expression if presented to them. If the format is a common and intuitive one (a
phone number, say), then this message will probably suffice. However, if the
format is more obscure, the error message may need to be changed to present a
human-readable description of the format (correctly localized). There are two ways
to achieve this:
v Remove the pattern option from the UML model and implement your own

pattern match validation as you would for any type of custom validation.
v Intercept the exception from the pre-validation operation and replace it with a

different exception carrying your alternative error message.

A custom validation is possible and you will just need to follow the usual
guidelines for such a customization, but it is complicated by the need to access the
pattern information and perform the pattern matching operation. As you would
then need to report your custom error message, it is much simpler to let the
existing infrastructure do all the pattern matching and just focus on the error
message.

Custom error reporting is really only applicable to the parse and preValidate
methods of a converter plug-in. These are the only methods that may be invoked
and passed values that a user has entered and that a user may be able to correct in
response to an error message. The converter plug-ins supplied with the
out-of-the-box Cúram application do not report any errors from their validate
methods, so, unless you want to customize another custom converter plug-in, the
validate method can be ignored.
1. Identify the method that is generating the exception that carries the error

message that you want to customize. The likely candidates are the converter
plug-in's parse and preValidate methods.

2. Create a new sub-class of the relevant converter plug-in and override the
appropriate method.

3. In the implementation of the method, invoke the super-class's method of the
same name and catch any exception thrown.

4. Test the error number on the caught exception to ensure it is the one you want
to override.

5. If the error number is correct, throw a new exception carrying your error
message, otherwise, re-throw the caught exception, as it is not the one you
wish to override.

6. Configure your new plug-in for the relevant domains.

This example shows how this might be done to override the pattern match failure
message. The custom exception class described in “Custom Exception Classes” on
page 281 is used.

Cúram web client reference 293

The error message entry in the custom message catalog will look like this:

Domains that require this converter can be configured in the same manner as
shown for the other converters above.

When using the error messages interception, please keep in mind, that Cúram
error messages are subject to change without notice. However, in the specific case
of the pattern match failure message, the error -122128 - ERR_CONV_NO_MATCH
will be preserved, as the possible need to intercept this message is recognized.

Custom Default Values
It is unlikely that you will ever need to customize a default value plug-in for a
domain. The displayed default value can be customized using the respective UML
domain definition option. The predefined assumed default values for the domains
are probably sufficient for every need. However, in the unlikely event that you
need to customize an assumed default value, the steps are little different from
those for other plug-ins.

Another reason for customizing a default value plug-in is where the displayed
default value is not fixed and cannot be defined in the UML model. An example of
this is the use of the current date as a displayed default value.
1. Identify an existing default value plug-in class that you want to customize.
2. Create a new sub-class of the relevant default value plug-in and override the

getDisplayedDefault method.
3. The implementation of the method should simply return a value compatible

with the Java type used to represent values for the relevant root domain. These
Java types are listed in “Java Object Representations” on page 284.

4. Configure your new plug-in for the relevant domains.

In this example, the displayed default value for an interest rate is calculated
dynamically using a notional CentralBank class that somehow returns the current

/**
* Reports that social security numbers must match the format
* "xxx-xx-xxxx" when the regular expression defined in the
* UML model "\d{3}\-\d{2}\-\d{4}" does not match a social
* security number entered by a user.
*/
public class SSNConverter

extends SvrStringConverter {
public void preValidate(Object data)

throws ConversionException {
try {

super.preValidate(data);
} catch (ConversionException e) {

if (e.getMessageObject().getMessageID()
== e.ERR_CONV_NO_MATCH) {

throw new CustomConversionException(-200001);
}
throw e;

}
}

}

Figure 123. Custom Error Reporting

-200001=ERROR: The field ’%0s’ must use the format ’xxx-xx-xxxx’.

Figure 124. Custom Pattern Match Failure Message

294 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

interest rate.

The example assumes that the InterestRateDefault class will be associated with a
descendant of the SVR_FLOAT domain that requires a default value to be of the
java.lang.Float type. By extending the SvrFloatDefault class, the new default
value plug-in will automatically use zero as the assumed default interest rate
value.

The exception handling uses a CustomDomainException class. As the
getDisplayedDefault method throws a DomainException, and not a
ConversionException, you could create such a custom exception class by deriving
it from DomainException in exactly the same way as the
CustomConversionException class was derived from ConversionException in
“Custom Exception Classes” on page 281. You might note that, as the
DomainException class is an ancestor of the CustomConversionException class that
the CustomConversionException class could be used here instead. This will work,
but you must not attempt to report a message containing the “%0s” placeholder
for the field label, as automatic replacement of the field label is not supported
when a DomainException type is expected.

The example above shows the unknown exception thrown by the CentralBank class
being added to the new custom exception. You only need to implement the
appropriate constructor to support this. The super-class already has a constructor
with the same signature, so your constructor's implementation need only call that.
There is no need to extract a string value or stack trace from the exception; all will
be reported correctly when necessary.

Advanced Topics

Type Checking and Null Checking
You may have noticed that none of the examples in this chapter show the string or
object values passed to the methods being checked to see if they are null or of the
wrong type. The reason is that it is not necessary. The client infrastructure
guarantees that no method will be called with a null value and that no conversion
operation will be invoked for an object that is not compatible with the class
returned by the converter plug-in's getDomainClass method. Your custom code
need never include any error handling and reporting code for these checks.

Plug-in Instance Management
For efficiency, a Cúram client application pools the minimum number of domain
plug-in instances possible. This reduces the overhead involved in creating new

/**
* Returns the current interest rate by contacting the
* central bank!
*/

public class InterestRateDefault
extends SvrFloatDefault {

public Object getDisplayedDefault()
throws DomainException {

try {
return new Float(CentralBank.getInterestRate());

} catch (Exception e) {
throw new CustomDomainException(-200099, e);

}
}

}

Figure 125. Custom Default Date-Time Value

Cúram web client reference 295

plug-in instances each time their operations are invoked, but it does impose some
restrictions on the way plug-ins can be written.

Domain plug-ins maintain state information: a reference to the domain and the
active user's locale. Custom code can access this state information by calling the
getDomain and getLocale methods and use it as required. The potential for
concurrent access to plug-ins in typical multi-threaded servers impacts the way the
plug-in instances (with their state information) are managed. If concurrent requests
are received from users who are using different locales, then the same plug-in
instance cannot be used when servicing these requests, as only one locale value
can be set in a plug-in instance. However, as any Cúram application only supports
a finite number of locales, maintaining a single plug-in instance for each locale is
sufficient to avoid concurrency problems or synchronization overheads. This, of
course, has to be multiplied by the number of domains, as the domain information
also constitutes state. The result is that each domain in the domain hierarchy
accesses a pool of plug-in instances specific to that domain and each pool contains
one instance of each type of plug-in for each locale.

This instance management system is entirely driven by the plug-ins themselves.
Each type of plug-in can implement its own instantiation strategy most appropriate
to its needs. However, to avoid over-complicating instance management, the
AbstractDomainPlugIn class (see “Extending Existing Plug-ins” on page 271)
implements the single, consistent pooling strategy that balances efficiency against
other considerations.

While it would be more efficient to dispense with the domain and locale state
information and pass these values to the various converter and comparator
methods, this poses several other problems that make this approach less desirable:
v The method signatures would be complicated by values that may not be used.
v Some method signatures, such as the compare method of the

java.util.Comparator interface would not be compatible.
v The addition of new state information in the future would break all existing

implementations. Using accessor methods for state information allows the
abstract super-classes to implement the accessors and the signatures of the other
interface methods can remain unchanged. During an upgrade no changes would
need to be made to any existing custom code that has followed the guidelines
and extended these abstract super-classes or other classes derived from them.

It is this latter point that is most important, successful upgrades depend on custom
code that does not attempt to implement the plug-in interfaces from scratch. This
is why such an approach cannot be supported.

The pooling strategy used means that there is one main limitation on how plug-ins
can be written: plug-ins must not attempt to store any state information. In short,
no customization should add fields to a plug-in class and attempt to store information
in them; concurrent application requests will probably cause such a plug-in to fail
intermittently or introduce obscure bugs.

Domain plug-in classes must also provide a default constructor (i.e., a constructor
that takes no arguments). However, any Java class that does not explicitly define a
default constructor will automatically have one defined for it if the default
constructor of an ancestor class is visible. For custom plug-in classes that extend
the plug-in classes and abstract plug-in classes provided with the out-of-the-box
Cúram application, no explicit default constructor is required.

296 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Naming Conventions
Custom domain plug-in classes may implement utility methods to support the
implementation of the main interface methods. An example is the _pad method
shown in “Custom Sorting” on page 289. To avoid inadvertently overriding
another inherited method, or using a method name that conflicts with a method
introduced in a later Cúram release, you should prefix such utility methods with
an underscore character as shown. Underscore characters will not be used in the
client infrastructure, so they will guarantee that no naming conflict will arise in the
future. For similar reasons, do not create classes in packages that might conflict
with Cúram package names. All Cúram packages begin with “curam”, so avoiding
that name is sufficient. The examples in this chapter used the package name prefix
“custom”, but this is not a requirement.

Generic Parse Operations
The generic parse operation, performed by the DomainConverter interface's
parseGeneric method, needs some explanation, so that care can be taken not to
disable its operation by mistake. The generic parse operation is responsible for
parsing the string representation of values defined in the UML model's domain
definition options. Domain options for maximum, minimum and default values are
expressed in formats that are not locale-specific, as the UML model is not
locale-aware. Each of the root domains accepts values in a particular format (e.g.,
ISO-8601 format for SVR_DATE domains) and customization of this format is not
supported. Therefore, the default implementations of the parseGeneric method
must be respected.

For some domains, the format supported by the converter's parse method is the
same as the format supported by the parseGeneric method. The default
implementation of the parseGeneric method in the AbstractConverter class just
calls the parse method (which is not implemented in this class). Therefore, if you
sub-class the AbstractConverter class and implement a parse method, the same
implementation will be used by the parseGeneric method. This may be what you
require, but, if it is not, you may want to implement a different parseGeneric
method.

All of the out-of-the-box, concrete converter classes separate the implementations
of the two methods, so you can override one without changing the behavior of the
other. Again, this may be what you require, but, if it is not, you may want to
override both methods.

Code-Tables
Data conversion and sorting for code-table domains should be managed via the
code-table administration interface. While the client infrastructure uses the same
plug-in mechanism described here to manage code-table values, the customization
of code-table-related plug-ins is not supported. Code-table data is more complex to
handle (formatting and parsing are not symmetrical operations as they are for
other types) and all of the necessary customizations can be accomplished without
resorting to programmatic means.

The formatting of code-table values is achieved by modifying the descriptions of
each code. Parsing operations receive the code values and simply pass them on.
Pre-parsing, pre-validation, and validation are not important. Default codes and
custom sort orders are controlled entirely via the administration interface.

Cúram web client reference 297

Online Help Development
You can embed help information in the Cúram web client with the Cúram Online
Help system.

The online help framework is composed of the help entries that are located within
property files associated with UIM. These entries provide help about specific
properties -i.e., fields and actions - that have been defined in the associated UIM
file. Within these property files, help entries are situated on the line immediately
following the corresponding property definition. When the online help page is
generated, all field and action help definitions are listed in an easy to understand
table format.

Single Source Development
The online help is developed within UIM property files. Each property defined in a
property file is immediately followed by a corresponding help definition. This
enables online help developers to easily compare and update UIM properties and
help entries. In addition, having application properties and help within the same
file removes the need to maintain and synchronize a separate set of files for the
help system.

Integrated Localization
Online help localization is integrated with application localization. When localized
properties files are created for a particular locale, those property files will contain
localized entries for both UIM properties and the help properties.

Automatic Generation
Once the help content is added into the UIM property files, online help must be
generated as part of the "client" build target. At runtime online help is generated
dynamically and thus does not need to be deployed separately to the main
application. This aids developers in reviewing their online help pages quickly.

Accessing the Help Page
Access to each help page is provided in a context-sensitive manner; i.e., when a
user presses the help icon on an application page, it opens the corresponding help
page in a new window.

Accessibility Features
Curam online help contains accessibility features that enable the help to be
accessed by users with disabilities. The following accessibility features are used:

Alternative Text
Alternate text allows screen readers to provide additional descriptions for non-text
elements. Alternate text is provided for all help links and help buttons.

Elements of Online Help

Introduction to Curam Client Pages
Full Curam developer knowledge is not necessary to develop Curam Online Help
content, but a basic familiarity with the development structure is required. Client
pages are installed in the webclient/components directory of the Curam
installation. Each page has a UIM (User Interface Metadata) file associated with it
that defines its content - links, buttons, fields. The UIM file does not contain any

298 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

actual text - it uses externalized properties files, which map property names to text
strings. UIM files may also import VIM files. VIM files are in the same format as
UIM files, they basically define a fragment of a UIM file. They also have properties
files. The association between the UIM/VIM and the property file is simple - they
have the same name, apart from the file extension.

The online help content is composed of extra entries embedded in client property
files. Properties are lines of text of the form:
PropertyName=Value of Property

If a button on a page is labeled in the UIM file with the property Button. Save , the
following properties file entry will exist
Button.Save=Save

To explain this in the online help, create another property called Button. Save.Help
Button.Save.Help=Use this button to save.

The online help framework is responsible for generating this into the online help
format.

Page Descriptions
Use the Help.PageDescription property to provide a high-level overview of what
the page is for. This should not be used to provide details for each field or button -
this can be done elsewhere.

Links and Actions
If there are any labeled links or action controls on the page, a help entry can be
provided with a description for them. When creating help entries, the online help
system will create a table for them, complete with title and abstract.

Fields and Columns
Help entries can also be provided for labeled fields or columns on a page. The
online help system will generate a separate table for these help entries.

Adding or Updating Help content
Help can be added for any new properties within the existing property file.
However before updating online help it is important to read the chapter on
“Domain-Specific Controls” on page 209

Updating Help for non 'Domain Specific Controls'
In order to update the online help, the following steps should be followed:
1. Identify the correct property file to edit, in order to update the online help:

The help text for a particular page in the application is contained in the
property file with the same name. For example, if the online help for the
'Person Search' in the application needs to be updated then this means that

Help.PageDescription=This page allows you to view a clause
record. Clauses describe the precedents for a decision made
on an appeal and the legal articles that affect it. These
clauses can be dynamically inserted into decision documents.

ActionControl.Label.Save=Save
ActionControl.Label.Save.Help=The Save action creates a new record from the information entered on the page.

Field.Label.Language=Language
Field.Label.Language.Help=The language for the clause from the drop-down list of languages, e.g., English, French.

Cúram web client reference 299

some property/properties referenced by the Person_search.uim file will have to
be customized. In this case, these properties are contained in a file named
Person_search.properties.

2. Location where to update online help The property file that is being updated
should be modified in the 'webclient/components/custom' directory only. E.g.
If the 'webclient/components/core/Person/Search/Person_search.properties'
needs to be updated, then copy this file straight in to the 'webclient/
components/custom' directory. The 'Person/Search' directories don't need to be
created in the custom directory.

3. Modify the relevant property file as described in the earlier sections of this
chapter.

4. Build client after making all the changes. Help is built by default as part of the
client build target. The help is generated dynamically at runtime and does not
need to be explicitly included in the application.

Updating Help for 'Domain Specific Controls'
The address elements for a particular type of address would be a good example of
a Domain Specific Control. The field elements that are displayed on a page in the
application depend on the locale that is specified. For instance the format of the
address elements displayed for an address in the US would be different from those
displayed in the UK. For this reason, the online help cannot be specified for each
of the elements within an address. For example, in the 'Register Employer' page in
the application there is a registered address and a business address. The name of
the properties file which relates to this page is Employer_registerView.properties .
In order to update the online help regarding the Employer's business address and
registered we could add help properties as follows:

Maintaining Dynamic UIM Pages
Use this information to learn how to load dynamic UIM pages into the application
resource store.

The way you store your screens differs depending on whether you are working in
a development environment or a running system.

Important: Currently the development of custom dynamic UIM pages is only
supported for the presentation of decision details only. Development of dynamic
UIM for any purpose beyond this is not supported.

Working in a Development Environment
In order to load a dynamic UIM page into the resource store, you must add two
separate entries to the AppResource.dmx file in the custom component, each entry
corresponding to a dynamic UIM file and an associated properties file.

ADDING HELP HERE FOR REGISTERED ADDRESS
Field.Label.RegisteredAddress.Help=
The Employer can enter their registered address in the fields displayed.
The format of the
Employers registered address will depend on the Country in which they reside.
Field.Label.BusinessAddress=Business Address
ADDING HELP HERE FOR BUSINESS ADDRESS
Field.Label.BusinessAddress.Help=
The Employer can enter their business address in the fields displayed.
The format of the
Employers business address will depend on the Country in which they reside.

300 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The following is an example of how to add the DUIMSample dynamic UIM page to
the AppResource.dmx file, so that it will be loaded into the application resource
store at build time.

Cúram web client reference 301

Note: The value of the contentType attribute specifies the location on the file system
that each entry (dynamic UIM file and associated properties file) can be uploaded

<row>
<attribute name="resourceid">
<value>1</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.uim</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_XML</value>
</attribute>

</row>
<row>

<attribute name="resourceid">
<value>2</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample.properties</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.properties</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_PROP</value>
</attribute>

</row>

302 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

from. The value of the category attribute in the AppResource.dmx categorizes a
dynamic UIM page resource so that they can be distinguished from other kinds of
resources in the resource store. The dynamic UIM file should be categorized (as
shown in the example) as a RS_XML resource. The associated properties file
should be categorized as RS_PROP. Each dynamic UIM resource that is added to
the AppResource.dmx should also be given the same value so that they all belong to
the same category. See the section below for details of how new dynamic UIM
pages are loaded into the resource store at runtime. The value of the localeIdentifier
attribute should be empty (as in the example) if the user's required locale is
English. Otherwise the actual locale should be used as the value for this attribute
for both the UIM and properties file.

Working in a Running System
In order to navigate to the home dynamic UIM administration screen in the
application, the user must do the following:
v Log into the “admin” application.
v From the shortcut menu, select the “Dynamic UIM” menu item from the

“Dynamic UIM” category.This should open the home dynamic UIM
administration screen

A user can maintain dynamic UIM pages in the resource store by performing the
following actions:
v Add a dynamic UIM page to the Resource Store
v Edit a dynamic UIM page in the Resource Store
v Delete a dynamic UIM page from the Resource Store
v Validate a dynamic UIM page in the Resource Store

Search for Dynamic UIM Pages by Category
In order to view the current list of dynamic UIM pages in the resource store you
must perform a search based on the resource store category. This can be done from
the home dynamic UIM administration screen as follows:
v Select a menu item for the drop-down list on “Category Search” field.
v Click on the “Search” button. This will return the list of dynamic UIM pages for

the selected category.

Uploading a Dynamic UIM page to the Resource Store
From the home dynamic UIM administration screen, a dynamic UIM page can be
added to the resource store by doing the following
v Select the New... page level action control. This will open a modal dialog page

with four mandatory fields.
v Enter the value of the page Page ID field. The value must be the same as the

value of the PAGE_ID attribute in the UIM file that is being uploaded, otherwise
an error message will be displayed.

v Select the locale from the drop-down list on the locale field. The default is locale
is English.

v Use the “Browse” button on the “UIM File” field to navigate to the dynamic
UIM file that is to be uploaded to the resource store. As indicated, this is a
mandatory field.

v Use the “Browse” button on the “Properties File” field to navigate to the
associated properties file to upload to the resource store. As indicated, this is a
mandatory field.

Cúram web client reference 303

Editing a Dynamic UIM page in the resource store
From the home dynamic UIM administration, a dynamic UIM page can be added
to the resource store by doing the following:
v From the list of dynamic UIM pages displayed, navigate to the dynamic UIM

page that you would like to edit (by Page ID), and select the “Edit...” menu item
for the list action menu. This should open a modal dialog page with three fields.

v If you would like to download the current version of the dynamic UIM file and
associated properties file (to be edited) from the Resource Store the locale file
system, then select the “Download” button and save the zip file - containing
both aforementioned files - to the file system. The dynamic UIM file and
associated properties file can then be unzipped from the downloaded zip and
edited as required.

v Use the “Browse” button on the “UIM File” field to navigate to the dynamic
UIM file that is to be uploaded to the resource store. As indicated, this is a
mandatory field.

v Use the “Browse” button on the “Properties File” field to navigate to the
associated properties file to upload to the resource store. As indicated, this is a
mandatory field.

Deleting a Dynamic UIM File from the Resource Store
From the home dynamic UIM administration, a dynamic UIM page can be deleted
from the resource store by doing the following:
v From the list of dynamic UIM pages displayed, navigate to the dynamic UIM

page that you would like to edit (by Page ID), and select the “Delete...” menu
item for the list action menu. As a result of this action a modal dialog will be
displayed, with a message looking for confirmation that you want to delete the
selected dynamic UIM page from the resource store.

v The Yes button should be selected to delete the dynamic UIM page from the
resource store. A new search for dynamic UIM pages in the resource store
should reflect the fact that this dynamic UIM page has been removed from the
resource store.

Validating a dynamic UIM file in the resource store
From the home dynamic UIM administration, a dynamic UIM page can be
validated in the resource store by doing the following:
v From the list of dynamic UIM pages displayed, navigate to the dynamic UIM

page that you would like to edit (by Page ID), and select the “Validate...” menu
item for the list action menu. As a result of this action a modal dialog will be
displayed, with a message stating whether the validation has passed of failed. If
the validation fails, then the source of the error page will appear in the dialog
and the full details of the error can be found in the server logs.

Publish dynamic UIM files
The changes to the dynamic UIM files will not be made public until they are
intentionally published to the resource store. This can be done by selecting the
“Publish...” page action control from the home dynamic UIM administration
screen. This action will open a modal dialog page asking for confirmation that the
changes are to be published to the resource store.

Unsupported Features in Dynamic UIM
Learn about the elements and attributes that are not supported in dynamic UIM.

304 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

PAGE
Table 137. Unsupported PAGE Features

Name Feature Type

FIELD Child Element

CONTAINER Child Element

WIDGET Child Element

INCLUDE Child Element

SHORTCUT_TITLE Child Element

TAB_NAME Child Element

JSP_SCRIPTLET Child Element

SCRIPT Child Element

SCRIPT_FILE Attribute

POPUP_PAGE Attribute

APPEND_COLON Attribute

HIDE_CONDITIONAL_LINKS Attribute

COMPONENT_STYLE Attribute

TYPE Attribute

PAGE TITLE
For full details on the supported features of this element in static UIM, see “PAGE
TITLE” on page 101.

Table 138. Unsupported PAGE_TITLE Features

Name Feature Type

DESCRIPTION Child Element

ICON Attribute

CLUSTER
For full details on the supported features of this element in static UIM, see
“CLUSTER” on page 62.

Table 139. Unsupported CLUSTER Features

Name Feature Type
Supported/Unsupported
attribute values

TITLE Child Element

DESCRIPTION Child Element

WIDGET Child Element

SUMMARY Attribute

TAB_ORDER Attribute

LIST
For full details on the supported features of this element in static UIM, see “LIST”
on page 89.

Cúram web client reference 305

Table 140. Unsupported LIST Features

Name Feature Type
Supported/Unsupported
attribute values

TITLE Child Element

DESCRIPTION Child Element

FOOTER_ROW Child Element

ACTION_CONTROL Child Element

SUMMARY Attribute

SORTABLE Attribute

PAGINATED Attribute

DEFAULT_PAGE_SIZE Attribute

PAGINATION_THRESHOLD Attribute

FIELD
For full details on the supported features of this element in static UIM, see
“FIELD” on page 72.

Table 141. Unsupported FIELD Features

Name Feature Type

LABEL Child Element

SCRIPT Child Element

EDITABLE Attribute

LABEL_ABBREVIATION Attribute

DESCRIPTION Attribute

INITIAL_FOCUS Attribute

ALT_TEXT Attribute

CONTROL Attribute

CONFIG Attribute

CONTAINER
For full details on the supported features of this element in static UIM, see
“CONTAINER” on page 69.

Table 142. Unsupported CONTAINER Features

Name Feature Type

IMAGE Child Element

LABEL_ABBREVIATION Attribute

ACTION_SET
For full details on the supported features of this element in static UIM, see
“ACTION SET” on page 60.

306 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 143. Unsupported ACTION_SET Features

Name Feature Type

CONDITION Child Element

SEPARATOR Child Element

TOP Attribute

BOTTOM Attribute

WIDGET
For full details on the supported features of this element in static UIM, see
“WIDGET” on page 108.

Table 144. Unsupported WIDGET Features

Name Feature Type
Supported/Unsupported
attribute values

WIDTH Attribute

WIDTH_UNITS Attribute

ALIGNMENT Attribute

HAS_CONFIRM_PAGE Attribute

CONFIG Attribute

COMPONENT_STYLE Attribute

TYPE Attribute Only the value SINGLESELECT
and MULTISELECT are
supported, all other values are
unsupported

ACTION_CONTROL
For full details on the supported features of this element in static UIM, see
“ACTION CONTROL” on page 56.

Table 145. Unsupported ACTION_CONTROL Features

Name Feature Type
Supported/Unsupported
attribute values

CONNECT Child Element

SCRIPT Child Element

CONDITION Child Element

LABEL_ABBREVIATION Attribute

IMAGE Attribute

CONFIRM Attribute

DEFAULT Attribute

ACTION_ID Attribute

Cúram web client reference 307

Table 145. Unsupported ACTION_CONTROL Features (continued)

Name Feature Type
Supported/Unsupported
attribute values

TYPE Attribute Only the values ACTION and
SUBMIT (An action of type
SUBMIT is not supported
within a list action menu or a
page level action menu. A list
action menu is an
ACTION_SET element within
a LIST that has a value of
'LIST_ROW_MENU' on it's
'TYPE' attribute. A page level
action menu is an
ACTION_SET defined at the
PAGE level. See the “ACTION
SET” on page 60 for further
details. All other submit
actions are supported.) are
supported, all other values are
unsupported

(An action of type SUBMIT is
not supported within a list
action menu or a page level
action menu. A list action
menu is an ACTION_SET
element within a LIST that has
a value of 'LIST_ROW_MENU'
on it's 'TYPE' attribute. A page
level action menu is an
ACTION_SET defined at the
PAGE level. See the “ACTION
SET” on page 60 for further
details. All other submit
actions are supported.)

LINK
For full details on the supported features of this element in static UIM, see “LINK”
on page 84.

Table 146. Unsupported LINK Features

Name Feature Type

CONDITION Child Element

PAGE_ID_REF Attribute

SAVE_LINK Attribute

URL Attribute

URI_REF Attribute

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

SET_HIERARCHY_RETURN_PAGE Attribute

USE_HIERARCHY_RETURN_PAGE Attribute

HOME_PAGE Attribute

308 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

INLINE_PAGE
For full details on the supported features of this element in static UIM, see
“INLINE PAGE” on page 79.

Table 147. Unsupported INLINE_PAGE Features

Name Feature Type

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

MENU
For full details on the supported features of this element in static UIM, see
“MENU” on page 93.

Table 148. Unsupported MENU Features

Name Feature Type
Supported/Unsupported attribute
values

CONNECT Child Element

MODE Attribute Only the value IN_PAGE_NAVIGATION
is supported, all other values are
unsupported.

SERVER_INTERFACE
For full details on the supported features of this element in static UIM, see
“SERVER INTERFACE” on page 104.

Table 149. Unsupported SERVER_INTERFACE Features

Name Feature Type

ACTION_ID_PROPERTY Attribute

INFORMATIONAL
Only Informationals whose connections endpoints are associated with a server
interface defined in the DISPLAY phase, are supported. See “INFORMATIONAL” on
page 78 for more details on informationals.). Informationals with other any type of
connection endpoints are not supported.

UIM Support in Universal Access
Learn about the elements and attributes that have limited support or are not
supported in Universal Access.

Description

UIM Screens can be used in the Universal Access user interface. However, only a
subset of UIM features support the alternate look and feel in Universal Access.

UIM Support in UA
The following table summarizes the supported UIM elements in the Universal
Access, and the contexts they are supported in.

Cúram web client reference 309

Table 150. UIM in the Universal Access

UIM Element
Name

Parent
UIM
Element
Name

Main
Content
Panel
Context

Modal
Dialog
Context

DETAILS_ROW
Context Notes

ACTION_SET PAGE Support for
up to 2 items
divided by a
separator

Supported Unsupported The buttons
will be
displayed in
the Universal
Access look
and feel.

ACTION_SET CLUSTER Supported Supported Unsupported The buttons
will be
displayed in
the Universal
Access look
and feel.

ACTION_SET LIST Unsupported Unsupported Unsupported

ACTION_SET[@TYPE="LIST_ROW_MENU"]LIST Unsupported Unsupported Unsupported The
ACTION_CONTROL
element can
be used in
the column of
a LIST

ACTION_CONTROL CONTAINER Supported Supported Supported

PAGE_TITLE - Supported Supported n/a

DESCRIPTION - Supported Supported n/a

CLUSTER - Supported Supported Supported The
collapsible
behavior is
not
supported.
Nesting of
clusters is not
supported.

LIST - Supported Supported Supported The
collapsible
behavior is
not
supported.
Paginated
lists,
scrollable lists
and nested
lists are not
supported.

DETAILS_ROW LIST Supported Supported Supported Nesting of
expandable
lists is not
supported.

310 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 150. UIM in the Universal Access (continued)

UIM Element
Name

Parent
UIM
Element
Name

Main
Content
Panel
Context

Modal
Dialog
Context

DETAILS_ROW
Context Notes

FIELD - Support for
the following
input types
only: text
input, text
area, code
table
drop-downs,
date picker,
password

Support for
the following
input types
only: text
input, text
area, code
table
drop-downs,
date picker,
password

Unsupported Code-table
hierarchy and
all other
items not
defined in the
cell for Main
Content
Panel or
Modal Dialog
are not
supported

Cúram web client reference 311

312 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Notices

This information was developed for products and services offered in the United
States.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21,
Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2012, 2017 313

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

314 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “ Copyright and
trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 315

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

316 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Notices 317

IBM®

Printed in USA

	Contents
	Figures
	Tables
	Cúram web client reference
	Cúram web client overview
	User interface metadata
	Page content metadata

	Application user interface overview
	Cúram applications
	Page context
	Page appearance
	Application controller JSP
	Direct browsing

	Web Client Development
	Outline of the Client Development Process
	CDEJ Installation
	CDEJ Project Folder Structure
	Application Components
	Component Folders
	Component Order
	Localized Components

	Component Artifacts
	Application Locales
	Building an Application
	Build Targets
	Related Build Targets
	Full and Incremental Builds
	Dependency Checking
	Build Logs
	Error Reporting
	Server Interface Reference
	Page Previews
	UIM Generator Tool
	External Client Applications

	Deployment
	Overview
	Configuring the Application
	Tracing

	Customizing the Web Application Descriptor
	Customizing the 404 or Page Not Found error response.

	Customization
	Overview
	Adding New Artifacts
	Overriding or Merging Artifacts
	Externalized Strings
	Images
	Image Mapping
	CuramLinks.properties
	XML Runtime Configuration Files
	Login Pages
	JavaScript Files
	Cascading Stylesheets
	Application Specific CSS
	Media Specific CSS
	Browser Specific CSS

	Application Configuration Files
	General Configuration
	Overview
	POPUP_PAGES
	MULTIPLE_POPUP_DOMAINS
	ERROR_PAGE
	MULTIPLE_SELECT
	FILE_DOWNLOAD_CONFIG
	ENABLE_COLLAPSIBLE_CLUSTERS
	APPEND_COLON
	ADDRESS_CONFIG
	ADMIN
	STATIC_CONTENT_SERVER
	FIELD_ERROR_INDICATOR
	SECURITY_CHECK_ON_PAGE_LOAD
	ENABLE_SELECT_ALL_CHECKBOX
	TRANSFER_LISTS_MODE
	HIDE_CONDITIONAL_LINKS
	DISABLE_AUTO_COMPLETE
	SCROLLBAR_CONFIG
	PAGINATION
	Customizing Configuration Settings
	Dividing the Configuration File

	Custom Resources

	Localization
	Numbers
	File Encoding
	XML Files
	Java properties files
	Non-XML Files

	Locales
	Non JavaScript property files
	JavaScript property files

	UIM Externalized Strings
	JavaScript Externalized Strings
	Accessing properties in JavaScript

	Image.properties
	Infrastructure Widget Properties Files
	Frequency Pattern Selector Localization

	CDEJResources.properties
	ApplicationConfiguration.properties
	Application-wide Menu
	Tabbed Configuration Artifacts
	Runtime Messages

	UIM Reference
	Creating UIM Documents
	UIM Document Types
	UIM Pages
	UIM Views
	UIM Page Field Level Validations
	UIM Pages

	Externalized Strings
	UIM Reference for Pages and Views
	Introduction
	Connection Types
	ACTION CONTROL
	Cancel Button
	File Downloads
	Attributes
	Child Elements

	ACTION SET
	Attributes
	Child Elements

	CLUSTER
	Attributes
	Child Elements
	Dynamic Conditional Clusters

	CONDITION
	Attributes
	Child Elements

	CONNECT
	Attributes
	Child Elements

	CONTAINER
	Attributes
	Child Elements

	DETAILS_ROW
	Attributes
	Child Elements

	DESCRIPTION
	Attributes
	Child Elements

	FIELD
	Attributes
	Child Elements

	FOOTER_ROW
	Attributes
	Child Elements

	IMAGE
	Attributes
	Child Elements

	INCLUDE
	Attributes
	Child Elements

	INITIAL
	Attributes
	Child Elements

	INFORMATIONAL
	Attributes
	Child Elements

	INLINE PAGE
	Attribute
	Child Elements
	Restrictions on usage

	IS_FALSE
	Attributes
	Child Elements

	IS TRUE
	Attributes
	Child Elements

	JSP SCRIPTLET
	Attributes
	Child Elements

	LABEL
	Attributes
	Child Elements

	LINK
	Attributes
	Child Elements
	Modal Dialogs

	LIST
	List attributes
	Child Elements
	Editable Lists

	MENU
	Attributes
	Child Elements
	DYNAMIC and INTEGRATED_CASE type menus
	The IN_PAGE_NAVIGATION type menu
	WIZARD_PROGRESS_BAR menu
	The UIM wizard pages
	Wizard menu configuration

	PAGE
	Attributes
	Child Elements

	PAGE_PARAMETER
	Attributes
	Child Elements

	PAGE TITLE
	Attributes
	Child Elements

	SCRIPT
	Attributes
	Child Elements

	SERVER INTERFACE
	Attributes
	Child Elements

	SOURCE
	Attributes
	Child Elements

	TAB_NAME
	Child Elements

	TARGET
	Attributes
	Child Elements

	TITLE
	Attributes
	Child Elements

	VIEW
	Attributes
	Child Elements

	UIM Reference for Widgets
	Introduction
	WIDGET
	Attributes
	Child Elements

	WIDGET_PARAMETER
	Attributes
	Child Elements

	The EVIDENCE_COMPARE Widget
	The FILE_EDIT Widget
	FILE_EDIT Widget Configuration
	User Machine Configuration for the Applet version
	User Machine Configuration for the Native Messaging version

	The FILE_UPLOAD Widget
	File Upload Widget Considerations

	The FILE_DOWNLOAD Widget
	The MULTISELECT Widget
	Confirmation Pages

	The SINGLESELECT Widget
	The RULES_SIMULATION_EDITOR Widget
	The IEG_PLAYER Widget

	Dynamic UIM Cross Reference
	Dynamic UIM System Initialization

	Application Configuration
	Configuration files
	Web client properties
	Customizing the CDEJResources.properties file
	Configuring the browser title

	Applications
	Application definition
	Application application-menu element
	Application application-search element
	Application section-ref element
	Application timeout-warning element

	Application optional header
	Application example
	Associate an application with a user

	Sections
	Section definition
	Section tab element
	Section shortcut-panel-ref element

	Section example

	Section shortcut panel
	Section shortcut panel definition
	Section shortcut panel node element

	Section shortcut panel example

	Tabs
	Tab definition
	Tab page-param element
	Tab menu element
	Tab context element
	Tab navigation element
	Tab smart-panel element
	Tab tab-refresh element

	Context panel UIM
	Tab example configuration file

	Tab actions menu
	Tab actions menu definition
	Tab actions menu menu-item element
	Tab actions menu submenu element
	Tab actions menu menu-separator element
	Tab actions menu loader-registry element
	Tab actions menu loader element

	Tab actions menu dynamic support
	File download menu item
	Tab actions menu example configuration file

	Tab navigation
	Tab navigation definition
	Tab navigation nodes element
	Tab navigation navigation-group element
	Tab navigation navigation-page element
	Tab navigation loader-registry element
	Tab navigation loader element

	Tab navigation dynamic support
	Tab navigation example configuration file

	Opening tabs and sections
	Using links to open tabs and sections
	Page to tab and tab to section associations
	Tab and section page parameters
	Tab ordering

	Working with the Cúram user interface
	Prerequisites for configuring the user interface
	Creating a simple application
	Defining an application
	Adding a section to an application
	Adding a tab to a section
	Add a UIM page to a tab
	Associating a user with an application
	Build targets required to create a simple application

	Adding a shortcut panel
	Adding a section
	Defining the contents of a section shortcut panel
	Defining a search tab
	Define the Search Page

	Build targets required to add a shortcut panel

	Adding tab content
	Defining a person tab
	Defining a context panel
	Defining a person page

	Build targets required to add tab content

	Configuring modal dialogs
	Opening a modal dialog
	Defining the content of the modal dialog
	Adding a wizard progress bar
	Defining the wizard progress bar configuration file
	Defining wizard pages

	Build targets required to add modals and wizard progress bars

	Adding tab navigation
	Defining a navigation bar
	Build targets required to add tab navigation

	Working with lists
	Defining an expandable list
	Defining a list actions menu
	Build targets required to add lists and list actions

	Session Management
	Session Overview
	Tab Restoration
	Session Configuration
	Session Timeout Warning
	Session timeout warning default values
	Customizing the session timeout warning in the caseworker application
	Customizing the session timeout warning in Universal Access
	Customizing the timeout warning in an application
	Configuring a customized logon page

	Tab Session Limitations
	Browser Specific Session Management

	Browser Management
	Optimal Browser Support
	Feature Configuration
	Text Configuration

	Configuring Browser Back, Refresh, and Close Button Behavior

	Domain-Specific Controls
	Dates
	Three Field Date Selector

	Date-Times
	Representing Time-Only Values
	Customizing the Time Format

	Frequency Pattern Selector
	Selection Lists
	Populated from a Code-Table
	Populated from Server Interface Properties
	Drop-down, Scrollable and Checkboxed List types
	Drop-down and Scrollable List
	Checkboxed List

	Adding an Empty Entry to a List for Non-Mandatory Fields
	Enabling Multiple Selection
	Transfer List Widget
	Overview
	Configuration

	User Preferences Editor
	Rules Trees
	Introduction
	Behavior of Summary and Highlight-On-Failure Rules Flags

	Default Rules View
	Summary Rules View
	Failed Rules View
	Dynamic Rules View
	Behavior of Summary and Highlight-On-Failure Indicator

	Dynamic Full Tree Rules View
	Rules Editor

	Meeting View
	Overview
	Single Selection Mode
	Multiple Selection Mode
	XML Formats

	Charts
	Overview
	Chart appearance
	Chart configuration
	Chart Data Formats

	Heatmap Widget
	Overview
	Configuration

	Workflow
	Overview
	Workflow Details
	Workflow XML Formats

	Evidence View
	Evidence Display Mode
	Evidence Comparison Mode
	Configuration
	Data Format

	Calendar
	Payment Statement View
	Batch Function View
	Addresses
	Schedule View
	Radio Button Group
	Pop-up Pages
	Configure the Pop-up Page
	Create the Pop-up Page
	A pop-up which returns existing items
	A pop-up which creates a new item

	Using the Pop-up Page
	Using Multiple Pop-up Search Pages for a Single Field
	Configure the Multiple Pop-up Page
	Using the Multiple Pop-up Page

	Agenda Player
	Agenda Player screen structure
	Navigation modes
	Navigator-less View
	Agenda Player Configuration
	Agenda Player Customization
	Player data

	LOCALIZED_MESSAGE Domain
	Decision Assist: Decision Matrix Widget
	Overview

	Custom Data Conversion and Sorting
	Data Conversion and Sorting Operations
	Data Conversion Life Cycle
	The Domain Hierarchy and Domain Plug-ins
	Overview of Domain Plug-ins
	Common Features of Plug-ins
	Converter Plug-ins
	Comparator Plug-ins
	Default Value Plug-ins

	Domain Plug-in Configuration
	Out-of-the-Box Domain Plug-ins
	Extending Existing Plug-ins
	Converter Plug-ins
	Comparator Plug-ins
	Localized (Cultural-aware) string sorting

	Default Value Plug-ins

	Error Reporting
	Infrastructure Errors
	Exception Classes
	Custom Exception Classes

	Java Object Representations
	Customization Guidelines
	Where to Start
	Custom Formatting
	Custom Parsing
	Custom Validation
	Custom Sorting
	Custom Error Reporting
	Custom Default Values

	Advanced Topics
	Type Checking and Null Checking
	Plug-in Instance Management
	Naming Conventions
	Generic Parse Operations
	Code-Tables

	Online Help Development
	Single Source Development
	Integrated Localization
	Automatic Generation
	Accessing the Help Page
	Accessibility Features
	Alternative Text

	Elements of Online Help
	Introduction to Curam Client Pages
	Page Descriptions
	Links and Actions
	Fields and Columns

	Adding or Updating Help content
	Updating Help for non 'Domain Specific Controls'
	Updating Help for 'Domain Specific Controls'

	Maintaining Dynamic UIM Pages
	Working in a Development Environment
	Working in a Running System
	Search for Dynamic UIM Pages by Category
	Uploading a Dynamic UIM page to the Resource Store
	Editing a Dynamic UIM page in the resource store
	Deleting a Dynamic UIM File from the Resource Store
	Validating a dynamic UIM file in the resource store
	Publish dynamic UIM files

	Unsupported Features in Dynamic UIM
	PAGE
	PAGE TITLE
	CLUSTER
	LIST
	FIELD
	CONTAINER
	ACTION_SET
	WIDGET
	ACTION_CONTROL
	LINK
	INLINE_PAGE
	MENU
	SERVER_INTERFACE
	INFORMATIONAL

	UIM Support in Universal Access
	UIM Support in UA

	Notices
	Privacy Policy considerations
	Trademarks

