
IBM Cúram Social Program Management
Version 7.0.1

Cúram Workflow Reference Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 129

Edition

This edition applies to IBM Cúram Social Program Management v7.0.1 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Cúram Workflow Reference 1
Overview 1

Prerequisites 1
How to use the guide 1
Structure of this Document 1

Workflow Processes 1
Data Flow 2
Activities 2
Flow Control 4
Development and Runtime 4
Inbox Configuration and Customization . . . 5

Creating a Workflow Process 5
Process definition lifecycle 5

Process creation 5
Process visualization. 5
Releasing a process 6
Process versions (process editing) 7
Process import, export, and copy 7
Localization 8

Process execution 9
Basic engine behavior 9
Executing multiple versions 9
Process Instance Administration 9

Method Reference Library 10
Referencing Cúram methods. 10
Method types. 10

WDO templates 11
Metadata 12
Import and syncing. 12
Validations 13

Process Definition Metadata 13
Metadata 13
Validations 16
Description of Context WDOs 16

Workflow Data Objects 16
Metadata 18
Validations 21
List of Context WDOs 21
Runtime Information 23

Process Enactment 24
Code enactment (enactment service API) . . . 24

Metadata 25
Validations 26
Code 27

Event enactment. 27
Configuration data 28
Validations 29

Base Activity 30
Metadata 30

Localized Text 30
Validations 31

Basic Activity Types 31
Route Activity 31
Start/End Process Activity 32

Automatic 32
Prerequisites 32
Cúram Business Methods. 32

Metadata 33
Validations 33
Code 33

Input Mappings 34
Metadata 34
Validations 39
Runtime Information 40

Output Mappings 40
Metadata 40
Validations 44
Runtime information 44

Description of Context WDOs 44
Event Wait 45

Prerequisites 46
List of events 46

Metadata 46
Validations 47
Code 48
Runtime Information 49

Deadline 49
Prerequisites 49
Metadata 50
Validations 51
Code 52
Runtime Information 52
Description of Context WDOs 52

Output Mappings 53
Metadata 53
Validations 54
Runtime Information 54
Description of Context WDOs 54

Reminders 54
Metadata 55
Validations 55
Code 56
Runtime Information 56

Manual 56
Prerequisites 56
Task details 56

Metadata 58
Validations 61
Code 62
Runtime Information 63
Description of Context WDOs 63

Allocation strategy 63
Prerequisites 63
Metadata 64
Validations 68
Code 70
Runtime Information 71

© Copyright IBM Corp. 2012, 2017 iii

Description of Context WDOs 72
Business Object Associations. 72

Metadata 72
Validations 73
Code 73
Runtime Information 73

Event Wait 73
Prerequisites 74
Description of Context WDOs 74

Decision 74
Prerequisites 74
Task Details 74

Metadata 75
Validations 76
Runtime Information 78

Question Details 78
Metadata 79
Validations 81
Runtime Information 82
Description of Context WDOs 82

Subflow 83
Prerequisites 83
Subflow Process 83

Metadata 83
Validations 83

Input Mappings 84
Metadata 84
Validations 85

Output Mappings 85
Metadata 85
Validations 86

Loop Begin and Loop End 87
Prerequisites 87
Overview 87

Loop Type 87
Metadata 87

Loop Begin Activity 87
Loop End Activity 88

Runtime Information 89
Description of Context WDOs 89

Parallel 89
Prerequisites 89
Metadata 90

Generic Metadata for a Parallel Activity . . . 90
Metadata for a Parallel Manual Activity . . . 90
Metadata for a Parallel Decision Activity . . 91
Validations 93
Runtime Information 93
Description of Context WDOs 93

Activity Notifications 94
Notification Details 94

Metadata 94
Validations 96
Code 98
Runtime Information 98

Notification Allocation Strategy. 98

Prerequisites 98
Code 98

Transitions 101
Metadata 101
Validations 103
Runtime Information 103

Conditions 104
Metadata 104
Validations 107

Split/Join. 108
Choice XOR Split 109

Metadata 109
Parallel AND split 109

Metadata 109
Workflow Structure 110

Graph Structure 110
Block Structure 111

An Analogy for Blocks 111
Block Types Supported by Workflow . . . 111

Structural Rules 112
Graph Structure Rules 112
Block Structure Rules 113

Validations 114
Simple Syntactic Checks 114
Graph Checks 114
Block Checks 114

Workflow Web Services 115
Exposing a workflow web service 115

Process Enactment 116
Process completion callback 116

Invocation from BPEL processes 116
File Locations 117

Workflow Process Definition Files 118
Customizing Workflow Process Definition
Files 118

Event Definition Files. 119
Configuration 119

Application Properties 119
JMSLite 121

What JMSLite Does 121
Why JMSLite? 121
Using JMSLite 122
Debugging workflows 122

Inbox and Task Management 122
Inbox Configuration 122

Inbox List Sizes Configuration Settings . . . 122
Get Next Task Configuration Settings . . . 123
Task Redirection and Allocation Blocking
Settings 124

Inbox Customization 125
How to customize the Inbox 126

Notices 129
Privacy Policy considerations 131
Trademarks 131

iv IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Figures

1. Visualization of Close Case Workflow Process
Definition 6

2. Process Enactment Port Type 116

3. Callback Port Type 117
4. WSDL extensions for BPEL 117

© Copyright IBM Corp. 2012, 2017 v

vi IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Tables

1. Description of the ProcEnactmentEvt Table 28
2. Description of the ProcEnactEvtData Table 28
3. Subject Text Data Conversion 59
4. Condition Expression Operators 106

5. Inbox List Sizes Configuration Settings 123
6. Get Next Task Configuration Settings 124
7. Security Identifiers and Associated Actions 124
8. Customization Points 125

© Copyright IBM Corp. 2012, 2017 vii

viii IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Cúram Workflow Reference

The Cúram Workflow Management system is used to define processes to achieve
certain business goals. A process definition is the central component that describes
the business process. Process definition metadata is the top-level concept in a
process definition. It contains information to identify and describe the process
definition. In-depth descriptions of the workflow metadata can be entered. The
effects of that metadata at run time can be set.

Overview
The Workflow Reference Guide is intended to provide detailed explanations of the
concepts of the Cúram Workflow Management System (WMS). It aims to describe
how to define a process to achieve certain goals by giving in-depth descriptions of
the workflow metadata as well as the effects of that metadata at runtime. The
guide is not intended as a tutorial document but rather a concise description of all
the features available in Cúram workflow.

Prerequisites
The guide assumes some familiarity with workflow concepts and how they are
realized in the Cúram WMS.

In particular it assumes that you have at least read the Business Analyst Guides:
Cúram Workflow Overview Guide.

How to use the guide
As the guide is a reference manual, the sections are as independent of others as
possible. The intent is that a reader is aware of a concept that they want to get
further details on, finds the relevant section in the guide and need read only that
section. While it is not expected that this document be read from cover to cover it
is structured in such a way as to make such a reading possible and productive.

Some parts of the Cúram WMS itself draw heavily on each other and as such the
documentation reflects this. These external references come in two flavors:
prerequisites, which are pointers to information that is indispensable in
understanding the section at hand and general links, which highlight related but
not required information.

Structure of this Document
The guide can be also viewed in a number of distinct sections each of which
reflects an area of the Cúram WMS and how these interact with each other. The
following sections include a summary of what these logical sections are, what
other sections are included in those logical sections and what areas of the Cúram
WMS are covered within those related sections.

Workflow Processes
The Workflow Processes section of the document describes the metadata that is
associated with a workflow process definition. The lifecycle of a process definition
is also described.

© Copyright IBM Corp. 2012, 2017 1

“Creating a Workflow Process” on page 5 describes how to create and visualize a
workflow process by using the Cúram workflow system. Releasing a process is
also described while its effect on the versioning associated with process definitions
is also detailed. Importing and exporting process definitions is discussed while the
localization of the text contained within a process is outlined. Running a workflow
process by using the Cúram workflow engine is described in detail. A description
of the method library and the workflow data object (see “Workflow Data Objects”
on page 16) template library is also provided.

“Process Definition Metadata” on page 13 describes the metadata that is associated
with a workflow process definition. Each metadata field is outlined while the
validations and context workflow data objects associated with the workflow
process as a whole are detailed.

Data Flow
The Data Flow section of the document describes how data is stored and
manipulated in a process instance. In particular issues of how data is conveyed
from the outside world (at process enactment) and between activities and
transitions within the process is described.

“Workflow Data Objects” on page 16 describes the objects that are used to
maintain and pass data around in the workflow engine. The metadata that
constitutes workflow data objects and their attributes is outlined in detail.
Validations that pertain to the creation and modification of workflow data objects
are discussed. Finally, the context workflow data objects that are made available by
the Process Definition Tool and workflow engine are also described in the section.

“Process Enactment” on page 24 describes the starting of a process instance (that
is, the performing of the work that is defined in the process definition). The
enactment service API is described while the enactment mappings metadata
associated with the enactment of a process is discussed. Associated validations and
code examples are also provided. It is also possible to start a process in response to
an event being raised and this is also described in the section. The configuration
data to perform this action is outlined in detail. Any validations that are run when
the mappings between events and workflow processes are created is described.

Activities
Activities are central in a workflow process as they are the steps at which the
business processing for the workflow takes place. The various activity types that
are supported by the Cúram WMS are all described in the Activities section of the
document. As notifications are also pertinent to each activity type, they are also
described in the guide.

“Base Activity” on page 30 describes the metadata details common to all of the
supported activity types in the Cúram workflow system. The validations that are
run when creating or modifying an activity are also outlined. Finally, some of the
more simple activity types are described including the route activity and the start
and end process activities.

“Automatic” on page 32 describes the metadata details associated with an
automatic activity. Both the input and output mappings that are specified for the
method that is associated with the automatic activity are discussed in detail. The
validations run when creating or modifying the metadata for an automatic activity
are outlined. Finally, the Context_Result and Context_Error workflow data objects
that are available for use in transitions from automatic activities are also described
in the section.

2 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

“Event Wait” on page 45 describes the metadata details associated with an event
wait activity. This includes the list of events, the deadline details (including any
deadline reminders) associated with an event wait and also any output mappings
that can be specified. The validations that are run when creating or modifying
event wait metadata are also described. The runtime information that is associated
with the execution of event wait activities by the workflow engine is also outlined
in detail. Finally, the Context_Event and Context_Deadline workflow data objects
that are available for use in transitions from event wait activities are also detailed
in the section.

“Manual” on page 56 describes the metadata details associated with a manual
activity. This includes the manual task details, the allocation strategy, the business
object associations, and the event wait associated with the manual activity. The
validations that are run when creating or modifying manual activity metadata are
also described. The runtime information that is associated with the execution of
manual activities by the workflow engine is also outlined in detail. Finally, a
description of the Context_Task workflow data object that is available for use in
the various mappings that are associated with a manual activity is also provided in
the section.

“Decision” on page 74 describes the metadata details associated with a decision
activity. This metadata includes the decision task details (which is similar to the
manual activity task details) and the question details for multiple choice and free
text questions. The various validations that are run when creating or modifying the
task or question details that are associated with a decision activity are outlined.
The section also includes a description of the runtime information that is present
when the workflow engine ran a decision activity. A description of the
Context_Decision workflow data object is also provided in the section.

“Subflow” on page 83 describes the metadata details associated with a subflow
activity. This includes details of the subflow process that is associated with the
subflow activity and any input mappings that are required to enact that subflow
process. The various validations that are run when creating or modifying this
metadata and a description of these is also provided in the section.

“Loop Begin and Loop End” on page 87 describes the metadata details associated
with a loop begin and loop end activity. The loop type, loop condition, and end
loop activity reference of a loop begin activity are described. The section also
includes a description of the runtime information that is present when the
workflow engine runs a loop in a workflow process definition. A description of the
Context_Loop workflow data object is also provided in this section.

“Parallel” on page 89 describes the metadata details associated with a parallel
activity. Parallel activities wrap existing activity types including “Manual” on page
56 activities and “Decision” on page 74 activities. Since the metadata that is
associated with these activity types remains the same, it is not described again in
the section. The validations run when creating or modifying parallel activity
metadata are also described. The runtime information that is associated with the
execution of parallel activities by the workflow engine is also outlined in detail.
Finally, a description of the Context_Parallel workflow data object that is
available for use in the various mappings that are associated with a parallel
activity is also provided in the section.

“Activity Notifications” on page 94 describes the metadata details associated with
an activity notification. These details include the delivery mechanism, the subject,
the body, the allocation strategy, and actions associated with the notification. A

Cúram Workflow Reference 3

number of validations that are run when creating or modifying notification
metadata are also outlined in the section. A description of the runtime information
when the workflow engine creates a notification is also provided. Finally, there are
a number of implementation details that are required in the Cúram application to
allow notifications to be delivered correctly. These are also discussed in the section.

Flow Control
A workflow process models the flow of information through an organization,
passing through steps that are carried out by human agent or computer software
to achieve a business goal. The Flow Control section of the document details how
such information flow (between activities) is specified in and managed by the
Cúram WMS.

“Transitions” on page 101 describes the links between activities. The metadata that
is associated with transitions is described in detail. Validations that pertain to the
creation and modification of transitions are also discussed. The runtime
information that is associated with the processing of transitions by the workflow
engine is also described.

“Conditions” on page 104 describes the process definition metadata construct that
represents a condition. Validations that pertain to the creation and modification of
conditions are also discussed.

“Split/Join” on page 108 describes the metadata that is associated with activity
splits and joins, when they are used and the various types available.

“Workflow Structure” on page 110 describes the structure of a workflow process as
determined by the activities in the process and the transitions between them. The
constraints present when a process definition is constructed to ensure that it is a
valid block structure are outlined while validations that are executed as part of
these constraints are discussed.

Development and Runtime
The Development and Runtime section of the document describes the specifics of the
development and runtime environment for Cúram workflows. Specifically, it
details how to run, configure, and debug workflows.

“Workflow Web Services” on page 115 describes the steps necessary to allow
process enactment through web services by exposing Cúram workflow process as a
web services.

“File Locations” on page 117 details where the various outputs of such utilities as
the Process Definition Tool and other administration user interfaces are exported to
and version controlled. These outputs include process definition metadata files and
also the source files that are associated with events.

“Configuration” on page 119 describes the workflow-related application properties,
their names, their default settings and what they are used for in the Cúram
workflow system.

“JMSLite” on page 121 details the Cúram lightweight JMS server that can run
alongside the RMI testing environment in a supported Integrated Development
Environment. The steps that are required to start the JMSLite server are outlined
while a detailed description of how to debug workflows by using JMSLite is also
discussed.

4 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Inbox Configuration and Customization
The Inbox Configuration and Customization section of the document describes the
configuration and customization options that are available in the Inbox and Task
Management section of the Cúram WMS. Specifically, it details how to configure
the number of tasks that are displayed on the various lists that are displayed in the
Inbox and also how to customize the various Inbox and Task Management actions
that are available in the system.

“Inbox and Task Management” on page 122 describes the configuration options
available to be used in the Inbox. It also details how to customize the available
Inbox and Task Management functions by using the Google Guice framework.

Creating a Workflow Process

Process definition lifecycle
The process definition is the central concept in any workflow system so naturally
how it is created and used is of critical importance. The section describes the
facilities that are provided by the Cúram workflow system to create and administer
process definitions.

Process creation
The Cúram workflow system provides a Process Definition Tool (PDT) for creating
and maintaining process definitions, which can then be interpreted by the
workflow engine. Creating a process definition involves by using the Process
Definition Tool to describe the wanted process behavior in terms of activities and
transitions.

A number of utilities are provided as part of the Process Definition Tool that can
aid in process creation. The PDT allows a process definition to be visualized
during design. Processes can also be copied, imported, and exported by using the
PDT.

Process visualization
A read-only graphical utility is provided as part of the Process Definition Tool,
which enables process administrators to visualize processes as they are being
created or modified. This tool allows administrators to view all activities and
transitions in a process definition and provides a high-level view of all the possible
paths through the workflow process during execution. The following figure shows
an example of a graphical representation of a workflow process definition.

Cúram Workflow Reference 5

The visualized process comprises a number of nodes on a graph that represents the
activities in the process. The nodes are linked by graph edges and these reflect the
transitions that are defined in the process definition. Clicking an activity in the
graph displays the details of the activity in the PDT. Similarly, clicking a transition
between activities on the graph displays the details of the transition in the PDT.

The graphical tool displays the following information for each process visualized:
v The type and name of each activity. Each activity type is identified by a specific

icon.
v The notifications that are defined for each activity (See “Activity Notifications”

on page 94). If an activity has an associated notification, it is represented as an
envelope, which is click-able through to the associated activity notification page.

v The split/join type. See “Split/Join” on page 108 for each activity. A split or join
type of "choice" on an activity is represented as a circle, while a split or join type
of "parallel" is represented as a square.

v The transitions between activities. Where a transition between activities has an
associated transition condition (See “Conditions” on page 104), this is
represented as an asterisk. The details of the condition are displayed when the
mouse is placed over that asterisk.

v The ordering of each choice split (See “Split/Join” on page 108) from an activity.
As the ordering of a choice split from an activity is important (the first eligible
transition in the list is followed), the order of each transition from the activity is
displayed as a number on that transition.

Releasing a process
When a process definition is created and is ready for use, it must be released
before it can be run by the workflow engine.

See “Process execution” on page 9. As a process is being released by using the
PDT, it is examined to ensure all the information the engine needs to run the
process is present and internally consistent. The validations that are required to
release a process are described in the various metadata sections of this document.

Figure 1. Visualization of Close Case Workflow Process Definition

6 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Only processes that are passed all of the required validations can be released and
made available to the workflow engine. After a process definition is released, it
becomes read-only and can no longer be edited by the Process Definition Tool
without creating a new version.

Process versions (process editing)
Changes can be required to a released process over time, but as a released process
is read-only, a new version is required before any modifications can be applied.
Attempting to edit a released process in the PDT automatically creates a new
unreleased version of that process.

There can be only one unreleased version of a process at any time. If the
administrator wants to edit a released process, any existing unreleased versions
must first be released or deleted.

Process import, export, and copy
The import and export functionality allows developers to move process definitions
as required. For example, a process definition might be developed on a
development system and only moved to a production system after testing is
completed.

Exporting a process exports the process metadata to the file system. This metadata
can then be imported by using the import process option in the PDT. A process
that is imported in this way is assigned the highest version number available, and
is unreleased regardless of its released state when imported. This is to ensure that
imported process definitions are subject to the same release validations as other
definitions developed locally. An overwrite option is available when importing that
ensures any existing unreleased version of the process is overwritten with the
imported version.

There can be situations where a process definition differs only slightly from
another in the workflow system. A copy process option is available, which allows
an existing process to be copied to a new process when required. The new process
is always unreleased when copied with a version set to 1, regardless of the status
of the original process.

Validations:

v A process definition cannot be imported if an unreleased version of a process
exists already with the same name, and the overwrite option is not selected.

v A process definition cannot be imported if a name for that process is not
specified.

v A process definition cannot be imported if a process exists with the same name
and different process identifier. This validation ensures that an imported
definition cannot inadvertently overwrite an existing process definition unless
the process identifiers match.

v When an existing process is copied, the name of the new process must be
unique within the workflow system.

v The length of the name of the workflow process definition to be imported must
not exceed the maximum length that is allowed for such a name. This length is
254 characters.

v The length of the names of any of the workflow data objects that are contained
in the workflow process definition to be imported must not exceed the
maximum length that is allowed for such a name. This length is 75 characters.

Cúram Workflow Reference 7

v The length of the names of any of the workflow data object attributes contained
in the workflow process definition to be imported must not exceed the
maximum length that is allowed for such a name. This length is 75 characters.

v Any code table values that are contained in the workflow process definition to
be imported must be valid (that is, the code table must exist and the specified
code must exist in that codetable).

v For each localizable text in the process definition to be imported, there must
exist at least an entry for the English (that is, "en") locale. Entries in other locales
can also exist (for example, the different user locales that are supported by the
application) but each translation must be accompanied by an entry for the
English locale.

v The identifiers for activities, transitions, transition condition expressions, loop
condition expressions, events, and reminders must be unique in the workflow
process definition to be imported.

Localization
Workflow process definitions contain metadata text that needs to be viewed in
different languages by different users. For example, when a manual activity is run,
it creates a task, which has an associated subject. The Process Definition Tool
enables the process developer to localize this subject string for each of the locales
that are supported by the application.

Localizable strings can be identified in a process definition by the metadata that is
specified in “Localized Text” on page 30. Any localizable text strings that are
specified in a process definition must at least have a corresponding entry for the
English (that is, "en") locale. When a localized string is added to a process
definition, the PDT by default adds the string to both the user's and the English
locales. Any subsequent changes to localized text (that is, additions, deletions or
modifications) can be made through the localization screen of the PDT.

The following is a list of the localizable text strings that can be specified in a
process definition.
v Process display name
v Process description
v Workflow Data Object display name
v Workflow Data Object description
v Workflow Data Object attribute display name
v Activity name
v Activity description
v Manual Activity Task message
v Manual Activity Task Action message
v Parallel Manual Activity Task message
v Parallel Manual Activity Task Action message
v Decision Activity Action message
v Decision Activity Question message
v Decision Activity Secondary Action message
v Decision Activity Answer display value
v Parallel Decision Activity Action message
v Parallel Decision Activity Question message
v Parallel Decision Activity Secondary Action message
v Parallel Decision Activity Answer display value

8 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v Activity Notification Subject message
v Activity Notification Body message
v Activity Notification Action message
v Reminder Notification Subject message
v Reminder Notification Body message
v Reminder Notification Action message

The LocalizableStringResolver API provides routines that resolve and return the
various localizable strings for tasks and notifications that exist in a workflow
process definition for the locale of the current user. Where a text string is not
localized for the current user locale, the text for the English (that is, "en") locale is
returned instead.

Process execution
A workflow process definition describes the tasks and flow of a business process in
terms that are understood by the Cúram Workflow Management System. To
perform the work that is described in the specified process definition, an instance
of it must be created and run by the workflow engine. The mechanism by which
this is done is described in this section. A process instance can be considered as the
runtime data for an enacted workflow process definition.

Basic engine behavior
The Cúram Workflow Management System includes a workflow engine, which
provides the runtime execution environment for a process instance.

There are various mechanisms available to enact a workflow process and these are
discussed in “Process Enactment” on page 116. When a process is enacted, the
workflow engine examines the relevant database table and uses the latest released
version of the specified process definition to create the process instance to run.

As each activity is run, an associated activity instance record is created and
managed by the workflow engine. This record contains the runtime data for an
activity instance in the enacted workflow. As the workflow progresses, the engine
evaluates the transitions (see “Transitions” on page 101) for the various activities to
decide which path through the process to take. This involves determining the types
of splits and joins (see “Split/Join” on page 108) that the activity possesses and
also running any conditions (see “Conditions” on page 104) that the various
transitions in the process can have. Transition instance records (which contain the
runtime data for a workflow transition) for each transition that is followed in the
workflow process are also created and managed by the engine.

Executing multiple versions
Modifying and releasing a new version of a process does not affect any currently
running instances of that process. A process runs to completion in the workflow
engine with the version that it was started with, regardless of any subsequent
versions that might be released.

Process Instance Administration
A workflow administrator can influence the execution of a running process
instance through the Cúram Workflow Administration interface.

The following functions are available for this purpose:

Suspend a Process Instance
Any currently running process instance can be suspended. When this

Cúram Workflow Reference 9

occurs, the workflow engine allows all activity instances that are in progress
within that process instance to complete. However, the next set of activities
that are required to be run for that process instance are started by the
workflow engine and immediately suspended. Any synchronous subflow
processes (see “Subflow” on page 83) associated with the process instance
to be suspended is also suspended by the workflow engine.

Resume a Process Instance
Any workflow process instance that is suspended can be resumed. When
this occurs, the activity instances that were previously suspended for that
process instance are restarted by the workflow engine. Any suspended
synchronous subflow processes (see “Subflow” on page 83) associated with
that process instance is also resumed by the workflow engine.

Aborting a Process Instance
Any currently running or suspended process instance can be aborted. All
activities that are in progress in the aborted process instance are completed.
If the process contains any manual or decision activities that are in
progress, the associated tasks are closed by the workflow engine when the
process instance is aborted. No new activities that are associated with an
aborted process instance are started by the workflow engine. Any
synchronous subflow processes (see “Subflow” on page 83) associated with
the process instance is also aborted. An aborted process instance cannot be
resumed.

Method Reference Library
Several situations exist in the Cúram Workflow Management System where it is
necessary to interact with the Cúram application by calling some business process
or entity methods.

See “Cúram Business Methods” on page 32 for one example of such an interaction.
Any business process object (BPO) or entity method in the application can be
called by the workflow engine. However, there are far too many such methods to
present to a process designer for use in their process definitions in an acceptable
way. The purpose of this library is to allow an administrator to assign methods
that are likely to be of use in process definitions to a more manageable list for use
in process design. Of course, it is not necessary to pre-populate the library with all
methods that might be used in the future. New methods can be added to the
library as required.

Referencing Cúram methods
Business process object (BPO) or entity methods must be added to the Method
Reference Library before they can be referenced in a process definition. The
method type that is defined when the library is added to, dictates where that
method is available for use within a process definition.

Removing a method reference from the Method Reference Library does not remove
it from any process definitions that reference it. If the method is still a valid Cúram
application method any process definitions that reference it remains valid.

Method types
A Cúram business process object (BPO) or entity method must be added to the
Method Reference Library with one of the three defined method types. A method
can be associated with more than one method type, but the method must be added
repeatedly with the different method type each time. Detailed here are different
method types in the Method Reference Library, along with the restrictions on their
use.

10 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

General
Methods with a type of General are only available as application methods
to be started from automatic activities. See “Cúram Business Methods” on
page 32. The Process Definition Tool restricts access to only these methods
when a method to be started is selected from an automatic activity.

Allocation
Methods in the library with an Allocation type are only available for use as
allocation strategy functions associated with manual activities, decision
activities, parallel activities, and activity notifications. See “Allocation
strategy” on page 63. All methods that are specified with an allocation
method type must have a return type of
curam.util.workflow.struct.AllocationTargetList.

Deadline
Methods of type Deadline in the method library can be referenced only as
deadline handler methods associated with event-wait, manual, decision,
and parallel activities. See “Deadline” on page 49.

WDO templates
Data is maintained and passed around in the workflow engine as workflow data
objects (see: “Workflow Data Objects” on page 16) The workflow data objects that
a process can use are defined within the process definition itself. However it is
conceivable that some workflow data objects are useful in many process
definitions. Therefore, it would be convenient if they might be imported from some
pool instead of having to be re-created in each individual process. This is the
purpose of this library.

Cúram Workflow Reference 11

Metadata

The metadata that is defined for workflow data object templates is the same as that
defined for workflow data objects. For a full description of this metadata, see
“Workflow Data Objects” on page 16. The workflow data object template library is
stored on the WDOTemplateLibrary database table.

The initialize-attributes element of a workflow data object and the
required-at-enactment, process-output, and the constant-value elements of a
workflow data object attribute are not available for editing in workflow data object
templates. These elements are automatically initialized to their default values in
the associated metadata.

Import and syncing
The templates that are defined in the workflow data object template library are
available for use when process definitions are created. Importing a workflow data
object template from the library adds the workflow data object and all its attributes
to the current process definition.

After a workflow data object template is imported into a process definition, it can
be synchronized with its corresponding entry in the workflow data object template
library at any time. Synchronizing the template for a process definition forces the

<wdo is-list-wdo="false" initialize-attributes="false">
<wdo-name>TaskCreateDetails</wdo-name>
<display-name>

<localized-text>
<locale language="en">TaskCreateDetailsName</locale>

</localized-text>
</display-name>
<description>

<localized-text>
<locale language="en">The Task Create Details WDO

Template</locale>
</localized-text>

</description>
<attributes>

<attribute>
<attribute-name>subject</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task Subject</locale>

</localized-text>
</display-name>
<type>STRING</type>
<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<constant-value/>

</attribute>
<attribute>

<attribute-name>dueDate</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task Due Date</locale>

</localized-text>
</display-name>
<type>DATE</type>

<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<constant-value/>

</attribute>
</attributes>

</wdo>

12 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

name and display name of the workflow data object to be updated from the
template library. Along with this, any new attribute entries that exist in the
template library entry is automatically added to the workflow data object in the
process definition. The user can optionally decide to override existing attributes in
the workflow data object with those from the template library when synchronizing.
Overriding existing attributes can invalidate the process definition and require
updates where the old attribute values are used.

Validations
v A workflow data object cannot be imported from a template if one exists already

in the associated workflow process definition with the same name.

Process Definition Metadata
The process is the top-level concept in a process definition. Primarily, it contains
information to identify and describe the process definition. This information
includes the identifier and the version of the process definition, its name, and a
brief description. It also includes a description of the failure allocation strategy that
can be specified for a process. The following sections describe this top-level
information.

Metadata

workflow-process
The parent tag of all process definition metadata.

id This is a 64-bit identifier that is supplied by the Cúram key server
when a process is created in the process definition tool. The

<workflow-process id="100" process-version="2"
language-version="1.0"
released="false" category="PC5"
createdBy="testuser"
creationDate="20050812T135800">

<name>ApprovePlannedItem</name>
<process-display-name>

<localized-text>
<locale language="en">Approve Planned Item</locale>

</localized-text>
</process-display-name>
<description>

<localized-text>
<locale language="en">This workflow process may be
enacted to approve a planned item.</locale>

</localized-text>
</description>
<documentation>Refer to the approve planned

item documentation.
</documentation>
<web-service expose="true">

<callback-service>wsconnector.ApprovePlannedItem
</callback-service>

</web-service>
<failure-allocation-strategy>

<allocation-strategy type="target"
identifier="FAILUREALLOCATIONSTRATEGY" />

</failure-allocation-strategy>

...

</workflow-process>

Cúram Workflow Reference 13

process identifier is required to be unique in the Cúram workflow
system. The reason for this is that the process identifier along with
the process version number is how the workflow engine
distinguishes one process definition record from another for
database reads.

process-version
This number represents the version of a workflow process
definition. A workflow process definition record is uniquely
identified by its identifier and version number. A process definition
may have many released versions and one version that is in edit.
When a process definition is released, a new version is created and
it can no longer be updated. Any subsequent updates require a
new version to be created and this version are not active until it is
released. When a process is enacted the highest released version
number is used. Process instances that begin with a version
number remain bound to that version until completion.

language-version
The process definition metadata is the Cúram workflow language.
As new features and enhancements are added, this language can
change. This version number allows either the workflow engine to
run old language versions different from newer ones or more likely
upgrade tools to convert old process definitions to new language
versions.

released
This represents a Boolean flag that indicates if the process
definition is released. Only process definitions that are released can
be enacted or selected as subprocesses in a subflow activity (see:
“Subflow” on page 83).

category
A process definition must be placed into a category. The category
must be selected in the Process Definition Tool and is taken from
the ProcessCategory code-table. This attribute is intended to be
used for process definition search functionality and has no
functional effect on the process in the workflow engine.

createdBy
This represents the name of the user that created the workflow
process definition. This attribute is intended to be used for process
definition search functionality and has no functional effect on the
process in the workflow engine.

creationDate
This represents the date and time that the workflow process
definition was created. This attribute is intended to be used for
process definition search functionality and has no functional effect
on the process in the workflow engine.

process-display-name
This is the display name of the process definition. This is the name of the
process that the user sees in the PDT. It is presented in the user's locale.
The process display name is localizable and can be edited in the
localization screen.

name This is the technical identifier of the process definition. It is the means by
which the process is identified for enactment. The enactment service (the
API used to enact a process in code) identifies the process to enact by its

14 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

name. As such this name is required to be unique within the workflow
system and cannot be changed when the process is created. Since the
process name is effectively a constant, it is not localizable like an activity
name.

description
A process can also have an optional description that briefly specifies what
the process does for the benefit of those editing the process definition in
the future. This is localizable text field in the same format as all localizable
fields in a process definition (see: “Localized Text” on page 30).

documentation
A process can also have a link to some documentation that can explain the
process in a more descriptive fashion. This is a free-form text field where
the developer can enter the name of a document pertinent to the workflow
process or indeed a link to such a document.

web-service
This optional element describes the web service details of a workflow
process. A process can be marked as a Web Service by setting this
metadata value, which indicates that the process should be exposed as a
Web Service. This allows the process to be able to participate in a BPEL
(Business Process Execution Language) orchestrated process and means
that the process can be called from a BPEL process. Further details on this
functionality can be seen in “Workflow Web Services” on page 115.

expose
This attribute represents a Boolean flag that indicates if the process
definition should be exposed as a Web Service. A workflow process
definition is not exposed as a Web Service by default.

callback-service
This is an optional element because not all invocations from a
BPEL process require a callback. The value is a fully qualified
name of a class that extends the org.apache.axis.client.Service
class (which is part of the Service (Axis API) of the Apache Axis
project). The org.apache.axis.client.Service class is generated by
the Cúram web services connector functionality for outbound web
services.

failure-allocation-strategy
A process can also have an optional failure allocation strategy that is
specified for it. When a task is allocated (associated with a “Manual” on
page 56 or “Decision” on page 74 activity), the workflow engine starts the
associated allocation strategy to retrieve the list of allocation targets. If no
allocation targets are returned from this invocation, the workflow engine
then checks for the presence of a failure allocation strategy and uses this
strategy to attempt to allocate the task. Since the allocation strategy of type
TARGET specifies an allocation target directly, there is never a need to fall
back to the failure allocation strategy. The failure allocation strategy is a
process-wide strategy and if specified is used for all the manual and
decision activities in the process when required.

allocation-strategy
This describes the failure allocation strategy that is used for the
process. The failure allocation strategy must be of type TARGET. If
the work resolver cannot assign the task to a user, an
organizational object (for example, organization unit, position, or
job) or a work queue by using the specified allocation target the

Cúram Workflow Reference 15

task is assigned to the default work queue. The identifier attribute
represents the identifier of the allocation target that is used as the
failure allocation strategy.

Validations
v A workflow process must have a unique process name. This means that a

process cannot be created if the process name is empty or if a process with the
same name exists.

v A workflow process must have a process display name in the English (that is,
"en") locale. A display name in the user's locale should also be specified, but this
is optional.

v A workflow process is required to specify a category.
v A released version of workflow process cannot be deleted when it is enacted.

This is required as even if a newer version of a process exists, process instances
that are in progress when the new version becomes available run to completion
with the version that they started with. Process definitions are also a necessary
historical record that is drawn upon to create auditing information.

v A released version of workflow process cannot be deleted if it is referenced by a
subflow activity in a released version of another process, where that released
version is the latest released version.

v If a failure allocation strategy is specified for the workflow process, then its type
must be TARGET.

v The callback service class name cannot be specified if the workflow process is
not exposed as a webservice.

v The callback service class name must represent a class that can be found on the
application classpath.

v The callback service class name must represent a class that extends the
org.apache.axis.client.Service class.

Description of Context WDOs
Certain generic system runtime information about the workflow engine is required
to be made available to the activities and the transitions during the lifetime of a
process instance.

Details of the Context_RuntimeInformation workflow data object that provides this
information can see be seen in the following location: “List of Context WDOs” on
page 21.

Workflow Data Objects
Data is maintained and passed around in the workflow engine as workflow data
objects and list workflow data objects. These are logical objects that are defined in
the process definition that have a name and a list of attributes of various types to
which data can be assigned. They are conceptually similar to objects in
programming languages although their manifestation in the workflow system is
quite different. Workflow data object values can be written at process enactment or
from the output of various activity types.

Workflow data object instances and list workflow data object instances exist as
soon as the process is enacted and exist until the process completes. As such they
are available to be used in the activities and the transitions throughout the lifetime
of that process instance. Therefore, it is the responsibility of the process designer to

16 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

ensure that attributes of workflow data objects are populated before they are used.
Attempts to use workflow data object attributes before they are populated results
in failures at runtime.

Cúram Workflow Reference 17

Metadata

<workflow-process id="32456" >
<name>CreateManualTask</name>
.....
</description>
<enactment-mappings>

......
</enactment-mappings>
<wdos>

<wdo is-list-wdo="false" initialize-attributes="true">
<wdo-name>TaskCreateDetails</wdo-name>
<display-name>

<localized-text>
<locale language="en">Task Create Details</locale>

</localized-text>
</display-name>
<description>

<localized-text>
<locale language="en">This workflow data object
contains the attributes required for the
manual creation of a task.</locale>

</localized-text>
</description>
<attributes>

<attribute>
<attribute-name>subject</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task subject</locale>

</localized-text>
</display-name>
<type>STRING</type>
<required-at-enactment>true</required-at-enactment>
<process-output>true</process-output>

</attribute>
<attribute>

<attribute-name>participantRoleID</attribute-name>
<display-name>

<localized-text>
<locale language="en">Participant Role ID</locale>

</localized-text>
</display-name>
<type>INT64</type>
<required-at-enactment>true</required-at-enactment>
<process-output>true</process-output>

</attribute>
<attribute>
<attribute-name>deadlineDateTime</attribute-name>
<display-name>

<localized-text>
<locale language="en">Deadline date</locale>

</localized-text>
</display-name>
<type>DATETIME</type>
<required-at-enactment>true</required-at-enactment>
<process-output>false</process-output>

</attribute>
<attribute>

<attribute-name>deadlineDuration</attribute-name>
<display-name>

<localized-text>
<locale language="en">Deadline Duration</locale>

</localized-text>
</display-name>
<type>INT32</type>
<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<initial-value>300</initial-value>

</attribute>
<attribute>

<attribute-name>priority</attribute-name>
<display-name>

<localized-text>
<locale language="en">Task priority</locale>

</localized-text>
</display-name>
<type>INT32</type>
<required-at-enactment>false</required-at-enactment>
<process-output>false</process-output>
<constant-value>TP1</constant-value>

</attribute>
</attributes>

</wdo>
<wdo is-list-wdo="true" initialize-attributes="false">

<wdo-name>ChildDetails</wdo-name>
<display-name>

<localized-text>
<locale language="en">Child Details</locale>

</localized-text>
</display-name>
<description>

<localized-text>
<locale language="en">This workflow data object
contains the details of all the children
associated with the claimant.</locale>

</localized-text>
</description>
<attributes>

<attribute>
<attribute-name>identifier</attribute-name>
<display-name>

<localized-text>
<locale language="en">Identifier</locale>

</localized-text>
</display-name>
<type>INT64</type>
<required-at-enactment>true</required-at-enactment>
<process-output>true</process-output>

</attribute>
<attribute>

<attribute-name>fullName</attribute-name>
<display-name>

<localized-text>
<locale language="en">The full name of the

child.</locale>
</localized-text>

</display-name>
<type>STRING</type>
<required-at-enactment>true</required-at-enactment>
<process-output>false</process-output>

</attribute>
<attribute>

</attributes>
</wdo>

</wdos>
<activities>

....
</activities>

....
</workflow-process>

18 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

wdos This is optional (as a workflow process definition does not have to contain
any workflow data objects) and contains the details of all the workflow
data objects that are defined for the workflow process definition.

wdo This contains the details of one the workflow data objects that are defined
for the workflow process definition. This includes the generic details of the
workflow data object itself and also details of each of its attributes. The
metadata that describe a workflow data object and its attributes are
described here:

is-list-wdo
This contains a BOOLEAN value, which indicates whether the specified
workflow data object is a list workflow data object or not. When set to
true, the specified workflow data object acts as a list and thus can be used
to make lists of data available throughout the workflow.

initialize-attributes
This contains a BOOLEAN value, which indicates whether the attributes
that are associated with the workflow data object should be initialized
when the workflow data object is first used. The default values that are
used are the same as would be set in a Cúram struct.

wdo-name
This contains the name of the workflow data object.

display-name
This contains the display name of the workflow data object. This name
represents a short description of the workflow data object and is displayed
throughout the Process Definition Tool. It is a localizable string that does
not contain any parameters. For more details on the localized text and
associated metadata, see “Localized Text” on page 30.

description
This contains a more detailed description of the workflow data object. It is
also a localizable string with no parameters. For more details on the
localized text and associated metadata, see “Localized Text” on page 30.

attributes
This contains the details of all of the attributes that are associated with the
workflow data object.

attribute
This contains the details of one of the attributes that are associated with
the workflow data object. The following metadata described here make up
a workflow data object attribute:

attribute-name
This contains the name of the workflow data object attribute.

display-name
This represents the display name of the workflow data object
attribute. This name represents a short description of the workflow
data object attribute. It is a localizable string that does not contain
any parameters. For more details of the localized text and
associated metadata, see “Localized Text” on page 30.

type Each workflow data object attribute that is defined must specify a
type, which must be a valid Cúram base domain. When creating a
workflow data object attribute in the Process Definition Tool this
type is selected from the DomainType codetable. This codetable
should be consulted to obtain the full list of types available for

Cúram Workflow Reference 19

workflow data object attributes. The type of a workflow data object
attribute is used to ensure that the data mappings that are
contained within a workflow process are compatible and does not
cause failures at runtime. An example of this would be that if a
business process object method parameter field was of type
STRING, then the workflow data object attribute used to map the
data into that field must also be of type STRING.

required-at-enactment
Enactment mappings represent the minimum amount of data that
the workflow requires to be enacted. They must contain an entry
for each workflow data object attribute that has its required at
enactment flag set to true. Conversely, setting this flag to false
(the default) means that this workflow data object attribute is not
required for the enactment of the associated process. The Process
Definition Tool is used to create these enactment mappings and it
does so by examining each workflow data object attribute that is
defined and creating a mapping for those that have the required at
enactment flag set to true. When a released workflow process
definition is selected as a subflow process in a subflow activity (see
“Subflow” on page 83), all of the workflow data objects that are
marked as required for enactment in the subflow process must be
mapped before that parent process definition can be released.

process-output
A workflow process can be marked as a Web Service by setting a
metadata value, which indicates that the process should be
exposed as a Web Service. This allows the process to be able to
participate in a BPEL (Business Process Execution Language)
orchestrated process and means that the process can be called from
a BPEL process either synchronously or asynchronously. It can also
be necessary to map data out from a workflow process back into
the BPEL process that called it. When set to true, this optional
element indicates that the data from this workflow data object
attribute should be passed back to the calling BPEL process when
the Cúram workflow process completes. The default for this
element is false.

constant-value
This optional element indicates if the workflow data object
attribute represents a constant value. In numerous places
throughout a workflow process definition, workflow data object
attributes are used in input mappings (that is, allocation function
mappings, deadline function mappings and so on.). In some of
these cases, it is required to be allowed to use constants in some of
these mappings. By providing a constant value, workflow data
object attributes of this type can be used for this purpose. A
workflow data object attribute cannot have its required for
enactment flag set to true and also contain a constant value. Data
that is passed in as enactment data is deemed to be dynamic and
subject to change. The data that is specified in a constant workflow
data object attribute is not suitable for this purpose as its value is
already known.

initial-value
This element indicates if the workflow data object attribute has an
initial value. This feature can be useful in the situations where a
workflow data object attribute is used in the workflow before it is

20 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

populated by an automatic activity or otherwise (that is, to prevent
having to use an automatic activity to populate workflow data
object attributes just to ensure that these attributes are not null
when they are used as part of transition conditions later in the
workflow). When this element is populated, the workflow data
object attribute is initialized to the specified value the first time it
is used. The initial value of a workflow data object attribute can be
overwritten later by the various output mappings that exist in a
workflow process. A workflow data object attribute cannot have
both a constant value and an initial value that is specified for it.

Validations
v A workflow process must contain only one Context_RuntimeInformation

workflow data object.
v A workflow data object name must be unique in the context of the containing

workflow process definition.
v The name of a workflow data object must be a valid Java™ identifier.
v A user-defined workflow data object name cannot contain the prefix Context_ as

this is a reserved prefix in the Cúram workflow system.
v Each workflow data object specified in the workflow process definition must

contain at least one associated attribute.
v The workflow data object attribute name must be a valid Java identifier.
v A workflow data object attribute cannot be created with the name "value". This

is a reserved attribute name in the Cúram workflow system.
v The type of a workflow data object attribute must be a valid Cúram base

domain and must be contained in the DomainType codetable.
v A workflow data object attribute cannot be both marked as required for

enactment and also marked as a constant value.
v A workflow data object attribute cannot have both a constant value and an

initial value that is specified for it.
v If a workflow data object attribute is marked as a constant, then a constant value

must be supplied. Conversely, if the attribute is not marked as a constant, then
no such value should be specified.

v If the workflow data object attribute is marked as a constant, then a blank value
can be specified only for that attribute if the type of the attribute is a STRING.

v If the workflow data object attribute is specified with an initial value, then a
blank initial value can be specified only for that attribute if the type of the
attribute is a STRING.

v If the workflow data object attribute is marked as a constant, then the value that
is specified as that constant must be compatible with the type of the associated
attribute.

v If the workflow data object attribute is specified with an initial value, then the
value that is specified as that initial value must be compatible with the type of
the associated attribute.

v The process output flag can be set only to true for a specified workflow data
object attribute if the associated workflow process is exposed as a webservice.

List of Context WDOs
Context workflow data objects are those that are not explicitly defined in the
workflow process definition metadata but are made available by the Process
Definition Tool and workflow engine at various places during the execution of a

Cúram Workflow Reference 21

process. The following is a brief description of these context workflow data objects
and links are provided to where further information can be found about them.

Context_RuntimeInformation Workflow Data Object
The Context_RuntimeInformation workflow data object is a workflow data
object that is made available and maintained by the workflow engine. It
contains information that is pertinent throughout the lifecycle of a
workflow process instance and the attributes available reflect this. These
attributes are as follows:
v processInstanceID : The system generated identifier of the process

instance (taken from the Cúram key server by using the workflow key
set).

v enactingUser : The username of the user whose actions in the
application resulted in the workflow process that is enacted.

v enactmentTime : The date and time at which the process was enacted.

Context_Result Workflow Data Object
A transition from an automatic activity should be able to use the return
value of the started method in its condition directly without the need for
mappings to workflow data object attributes. However, due to the
transactional model of the workflow engine this data must persist outside
the transaction of the business process object method invocation. To
achieve this, a workflow data object definition is created at runtime if the
return value is used in outbound transition conditions. These return value
definitions never need to be persisted as they are inferred wherever needed
in the workflow engine. The actual workflow data object data is persisted
until after the transitions from the activity instances in question are
evaluated, at which point they are deleted. For more details on the
Context_Result workflow data object, see “Description of Context WDOs”
on page 44

Context_Event Workflow Data Object
The Context_Event workflow data object is available for use in a data item
or function conditions (see “Conditions” on page 104) for a transition from
an activity that contains an event wait. It makes available certain
information (for example, the event class and event type of the event
raised, the time the event was raised and so on.) contained in the event
raised to complete that activity instance. This information can then be used
to model the path from that specified activity. For more details on the
Context_Event workflow data object, see “Description of Context WDOs”
on page 54.

Context_Decision Workflow Data Object
The Context_Decision workflow data object is available for use in a data
item or function condition (see “Conditions” on page 104) for a transition
from a decision activity. The attributes available depend on the answer
format that is defined for the decision activity. For more details on the
Context_Decision workflow data object, see “Description of Context
WDOs” on page 82

Context_Task Workflow Data Object
The Context_Task workflow data object is available for use in various
mappings that are associated with a manual activity task (for example,
Allocation Function Input mappings, Deadline Function Input mappings,
Manual Activity Action Link parameters). This context workflow data
object makes available the identifier of the task that is created as a result of

22 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

the execution of the containing activity. For more details on the
Context_Task workflow data object, see “Description of Context WDOs” on
page 63.

Context_Loop Workflow Data Object
The Context_Loop workflow data object is available for use when the loop
condition that is associated with a loop-begin activity is created. It is also
available for creating outgoing transition conditions for any activity within
a loop, and for when input mappings, text parameters and action link
parameters for some activities and functions that are contained within a
loop are specified. This context workflow data object makes the number of
times that a loop is iterated over available for such mappings. For more
details on the Context_Loop workflow data object, see “Description of
Context WDOs” on page 89.

Context_Deadline Workflow Data Object
The Context_Deadline workflow data object is available for use when
creating a data item or function condition (see “Conditions” on page 104)
for a transition from an activity that has an event wait with a deadline
specified for it. It is available to allow a developer to model different paths
of execution from an activity that contains a deadline depending on
whether that deadline is expired. For more details on the Context_Deadline
workflow data object, see “Description of Context WDOs” on page 52.

Context_Parallel Workflow Data Object
The Context_Parallel workflow data object is available for use in the
various mappings that are associated with a parallel manual activity (for
example, task subject and task action text parameters, allocation strategy
mappings and so on) and a parallel decision activity (for example, decision
action text parameters, secondary action text parameters, question text
parameters and so on). It makes available the index of the item from the
Parallel Activity List Workflow Data Object that is used to create the
specified instance of the wrapped activity. For more details on the
Context_Parallel workflow data object, see “Description of Context WDOs”
on page 93.

Context_Error Workflow Data Object
The Context_Error workflow data object is available for use in a data item
or function condition (see “Conditions” on page 104) for a transition from
an automatic activity. It allows a process developer to model an exception
path out of an automatic activity, that is, a transition that is followed if the
automatic activity fails due to an unhandled exception. For more details on
the Context_Error workflow data object, see “Description of Context
WDOs” on page 44

Runtime Information
Instances of workflow data objects and list workflow data objects exist as soon as a
workflow process is enacted and exist until the process completes. These workflow
data object instances are thus available to be used in the activities (for example,
pass data to a BPO method) and the transitions (for example, make data available
in the evaluation of transition conditions) throughout the lifetime of that process
instance.

The enactingUser attribute of the Context_RuntimeInformation Workflow Data
Object is set to the username of the user whose actions in the application resulted
in the workflow process that is enacted. This does not result in the same value
being assigned to the transaction when a BPO method is subsequently started in

Cúram Workflow Reference 23

the workflow process instance. This is due to the transaction demarcation in the
workflow engine when automatic activities (that is, BPO methods) are started in
the application server. Due to the asynchronous nature of this invocation and the
requirement to ensure that the call to the application code is in its own transaction,
the BPO method is started by the workflow engine (SYSTEM user) rather than the
user who enacted the workflow process in the first place. Indeed in a real business
sense, the person who enacted the workflow cannot even know that they have
started that BPO method.

In a similar fashion, it should be noted that the enacting user of a workflow
process instance is not passed into any of the subflow process instances that can be
started from the parent process. If the enacting user of the parent process instance
is required in any of the subflow process instances, it should be passed explicitly
by using a workflow data object attribute in the input mappings for that subflow
process.

Care should also be taken when updating workflow data object attribute instance
data while running parallel automatic activities in a workflow process instance. If
such automatic activities start the same BPO method and that method attempts to
update the data for the exact same workflow data object attribute, then a database
record deadlock situation can occur. The workflow process designer should
alleviate such situations that occur by designing the workflow process definition to
ensure automatic activities run in parallel do not update the same workflow data
object attribute.

Process Enactment
A process definition defines the structure of a business process and to start
performing the work that is defined in that process definition an instance of the
process must be created.

The starting of a process instance is referred to as process enactment. Most process
definitions require a minimum set of initial data, which is used primarily to
identify the specific business objects the process instance operates on. All
enactment mechanisms must have a way to accept the input data for starting a
process. This input data is known as the enactment data for a process.

Currently, there are four enactment mechanisms that are supported by Cúram
workflow:
v Enactment from code
v Enactment from an event
v Enactment as a subflow
v Enactment through a web service

The first two mechanisms are described in this section. The subflow enactment
mechanism is described in “Subflow” on page 83. The web service enactment
mechanism is described in “Workflow Web Services” on page 115.

Code enactment (enactment service API)
The most direct way of enacting a process is by identifying a location in the
application from which a process instance must be started. Code must then be
inserted at that point to call the enactment service API. This API allows the
developer to specify the name of the process to start and to supply the enactment
data that is required by the process.

24 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

While enacting a process in this way is simple and intuitive, it does have the draw
back of being hardcoded in the application logic. This being the case, alterations
such as removing the enactment, changing the process to start or indeed even
minor changes to the required enactment data requires code changes and
redeployment of the application.

Metadata

enactment-mappings
Contains a list of mappings that can be used as initial data in enacting the
associated process instance. A process definition is not required to have
enactment mappings that are defined in order for it to be enacted.

mapping
A mapping represents a data item that is supplied from a Cúram struct
attribute to be used in enacting the associated process instance.

source-attribute
This represents a Cúram struct attribute to be used in populating the
enactment data for the process and is mandatory in an enactment
mapping.

struct-name
The name of a Cúram struct that contains an attribute that is
required to enact the workflow process. Aggregated and list structs
can also be used to pass enactment data into a workflow process,
as illustrated in the metadata snippet here.

name The name of the attribute of a Cúram struct that is required to
enact the associated workflow process. Where a field from an
aggregated struct or list struct is being used, this name represents
the fully qualified name of that field. In such a case, the name
consists of the role name from the association between the parent

<enactment-mappings>
<mapping>

<source-attribute
struct-name="curam.core.sl.struct.TaskCreateDetails"
name="subject" />

<target-attribute
wdo-name="TaskCreateDetails"
name="subject" />

</mapping>
<mapping>

<source-attribute
struct-name="curam.core.sl.struct.GroupMemberDetails"
name="dtls.memberName" />

<target-attribute
wdo-name="MemberCreateDetails"
name="memberName" />

</mapping>
<mapping>

<source-attribute
struct-name="curam.core.sl.struct.ChildDetailsList"
name="dtls.identifier" />

<target-attribute
wdo-name="ChildDetails"
name="identifier" />

</mapping>

...

</enactment-mappings>

Cúram Workflow Reference 25

and child struct in addition to the actual field name. This is
illustrated in the metadata snippet here.

target-attribute
This represents a workflow data object attribute, which is to be populated
with enactment data for the process and is mandatory in an enactment
mapping.

wdo-name
The name of a Cúram workflow data object containing the target
attribute to be mapped. (See “Workflow Data Objects” on page 16).

name The name of a Cúram workflow data object attribute that is
marked as being required for enactment. The value of the
corresponding Cúram struct source attribute is mapped to this
attribute when the process is enacted.

Validations
v The Cúram struct attribute used as a source attribute in an enactment mapping

must be valid and be of the correct type for the associated target workflow data
object attribute.

v The target workflow data object attribute in an enactment mapping must be
valid and must be marked as being required for enactment.

v If the target attribute of the enactment mapping is from a list workflow data
object, then the source attribute must be a field from a list struct.

26 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Code

v The EnactmentService API is provided to allow for the enacting of workflow
processes from application code. The list of Cúram structs provided to the
startProcess() method must be sufficient to fully populate the enactment
mappings of the associated process. Enacting a process in this way is
asynchronous and the process gets kicked off when the current application
transaction completes.

v The startProcessInV3CompatibilityMode method is provided for the use of the
core application Task API only. Direct use of this method in custom code is not
supported and can hamper future upgrades.

Event enactment
It is possible to start a process in response to an event being raised. This requires
the setup of some configuration data (either through an administration interface or
as pre-configured database entries). The configuration specifies the
process/processes to start in response to a specific event being raised. Mappings of
event data to the enactment data that is required by the process can also be
configured in this way.

Process enactment event configuration is stored on the database and a user
interface is supplied to allow the manipulation of this data. As such process
enactment that is created in this way can be enabled, disabled, changed, and even
removed at runtime. The main drawback of this approach is that since events have

// Create the list we will pass to the enactment service.
final List enactmentStructs = new ArrayList();

final TaskCreateDetails taskCreateDetails =
new TaskCreateDetails();

taskCreateDetails.subject = "The subject of a Task";
taskCreateDetails.reservedBy = "someUser";

enactmentStructs.add(taskCreateDetailsStruct);

// An aggregated struct.
GroupMemberDetails groupMemberDetails

= new GroupMemberDetails();

groupMemberDetails.dtls.memberName = "Test User";

enactmentStructs.add(groupMemberDetails);

// A list struct.
ChildDetailsList childDetailsList

= new ChildDetailsList();

ChildDetails recordOne = new ChildDetails();
recordOne.identifier = 1;
childDetailsList.dtls.add(recordOne);

ChildDetails recordTwo = new ChildDetails();
recordTwo.identifier = 2;
childDetailsList.dtls.add(recordTwo);

enactmentStructs.add(childDetailsList);

EnactmentService.startProcess(
"TASKCREATEWORKFLOW", enactmentStructs);

Cúram Workflow Reference 27

a finite amount of information, only process definitions that require such a small
amount of enactment data can be enacted in this way.

A Process Enactment Event Handler is supplied with Cúram and is automatically
registered to listen for events that are raised in the application. Where a process is
configured to be enacted from an event, the data from the event is mapped into
the enactment data of the process, and the process is started.

Configuration data
Enabling an event to enact a process requires an event-process association to be
configured. Every event raised in the application checks to see if any processes are
associated and are required to be enacted. The latest released version of a process
is always enacted for an associated event.

The registration of an event to trigger a process is stored as a record on the
ProcEnactmentEvt table. The process enactment event handler searches a cached
representation of this table for matching entries when an event is raised in the
application and enacts any matching processes. The following table describes the
data that is required to populate the ProcEnactmentEvt table.

Table 1. Description of the ProcEnactmentEvt Table

Entity Field Name Description of Field

procStartEventID The unique identifier of the
event-process association.

eventClass The event class of the event that is
specified to enact the workflow
process.

eventType The event type of the event that is
specified to enact the workflow
process.

processToStart If an event containing the specified
event class and type describe here is
raised, the latest released version of
the workflow process that is specified
by this name is enacted.

enabled This Boolean flag indicates if the
event-process association is enabled.
This allows the enactment of a
workflow process by a specified event
to be enabled/disabled at runtime.

The ProcEnactEvtData table stores the data to be mapped from a business event to
the workflow being enacted when that specified event is raised. The following
table describes the data that is required to populate the ProcEnactEvtData table.

Table 2. Description of the ProcEnactEvtData Table

Entity Field Name Description of Field

procEventMappingID The unique identifier of the process
enactment event data mapping.

28 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Table 2. Description of the ProcEnactEvtData Table (continued)

Entity Field Name Description of Field

procStartEventID The unique identifier of the
event-process association. This field is
the unique key on the associated
ProcEnactmentEvt table and is used to
associate all of the data that is
required to enact the workflow
process when a specified event is
raised.

eventField This indicates which of the three
fields of an event are used to populate
the workflow data object attribute.
The values for this field are taken
from the EventField codetable and are
described in more detail here.

wdoAttribute The fully qualified name of a
workflow data object attribute to
populate with data from the event
field when a process is enacted. This
table includes an entry for each
workflow data object attribute that is
marked as required for enactment in
the process being enacted by the
raised event.

There are three fields of an event can be used as enactment mappings. These are
enumerated in the EventField codetable and are described here.

primary event data
A unique identifier that is related to the event class from which the event
is raised. For example, where the business object type that is specified for
an event is equal to 'Case', the event data might be case identifier.

secondary event data
This can be any numeric value and is intended for events that must
represent an association between two entities.

raised by user
The Cúram username of the user who raised the event.

Validations
v The data available from an event must be sufficient to fully populate the

enactment data for the associated process definition.
v Where a process is already configured for event-based enactment, subsequent

modifications to the processes enactment data must satisfy the existing event
data mappings.

v Where a process is configured to be enacted from an event, it cannot have its
latest released version that is deleted if the next latest released version is unable
to have its enactment data that is fully populated from the event.

Cúram Workflow Reference 29

Base Activity
All the activity types that are supported by Cúram workflow have some base
details in common. This information allows them to be uniquely identified by the
workflow engine and displayed both textually and graphically in the Process
Definition Tool. Every activity has a name and an optional description, both of
which are localizable. This allows various administration user interfaces to display
the information in the appropriate locale.

This base level uniformity allows activities to be identified and run by the
workflow engine without the knowing the specific type of the activity. Each
activity type knows its own metadata and how to behave when run. This
arrangement allows the addition of new activity types, if required, without
affecting the core behavior of the workflow engine.

Metadata

id This is a 64-bit identifier that is supplied by the Cúram key server when
activities are created in the process definition tool. The activity identifier is
required to be unique within a process definition but global uniqueness
within all of the process definitions on the system is not required.

category
An activity can optionally be placed into a category. The category must be
selected in the Process Definition Tool and is taken from the
ActivityCategory code-table. This attribute is intended to be used for
searching functionality based on activities and has no functional effect on
the activity.

name The name of the activity is the means by which the activity is identified for
the purpose of display. This is in contrast to the activity identifier, which is
used to identify the activity for the purpose of execution by the workflow
engine.

description
An activity can also have an optional description that briefly specifies what
the activity does for the benefit of those editing the process definition in
the future.

Localized Text
As shown in the XML fragment above, the activity name and description are not
just text fields, but are defined in terms of a localized-text element. This is

<automatic-activity id="1" category="AC1">
<name>

<localized-text>
<locale language="en">ApproveCase</locale>

</localized-text>
</name>
<description>

<localized-text>
<locale language="en">This automatic activity
will be executed to approve a case.</locale>

</localized-text>
</description>

...

</automatic-activity>

30 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

general purpose element that is used throughout the process definition metadata
where ever text is required to be localizable.

A valid localized-text element must have at least one locale child element.
Except for the localization screen, any localizable text that is entered in the process
definition tool is saved under both the user's and the English (that is, "en") locales.

locale This contains the text for the locale that is specified by the language and
country attributes. Note: A locale is uniquely identified by both the
language and the country that mean that en, en_US and en_GB all represent
different locales.

language
This is mandatory and is the two letter ISO language code.

country
This is optional and is the two letter ISO country code.

Validations
v The activity name is mandatory and must be unique within a specified

workflow process definition. However, the activity name is also a localizable
string. This validation also ensures that a specified activity name is also unique
for each locale specified.

v An activity must be one of the permitted activity types. In practice this rule is
self-satisfying as there is no way to create activities without selecting an
appropriate type in the process definition tool. Even when process definitions
are constructed manually in a text editor, the activity type names correspond to
the metadata element names making it impossible to create valid markup that
represents a nonexistent activity type.

Basic Activity Types
Namely, some activity types route, start-process, and end-process activities have no
additional metadata other than that common to all activity types. Their behavior is
also sufficiently intuitive to be described here. All of the other activity types have
dedicated sections.

Route Activity
A route activity is an activity that performs no business functionality. It can be
considered a null activity as its execution does not affect the application data nor
the business process in any way.

The primary purpose of the route activity is to help flow control. Route activities
are often used as branch (split) and synchronization (join) points. They are also
useful when the activities that are required by a business process do not naturally
form a valid block structure that the workflow engine can run.

Since all activity types can have notifications that are associated with them (see:
“Activity Notifications” on page 94), route activities can be used to provide the
effect of a pure notification that is not connected to any other functionality.

<localized-text>
<locale language="en">ApproveCase</locale>
<locale language="en" country="US">ApproveCase</locale>
<locale language="fr">ApprouverAffaire</locale>
<locale language="fr" country="CA">ApprouverAffaire</locale>

</localized-text>

Cúram Workflow Reference 31

Start/End Process Activity
The start-process and end-process activities provide markers for the beginning and
end of a process. They are anchor points to which other activities can be attached
by using transitions thus creating a series of steps from the start to the end of the
process.

In a valid process definition that traverses all the transitions between activities
starting from the start-process activity should lead to end-process activity (note
that in a running process instance not all paths is necessarily traversed, for
example if a split (see “Split/Join” on page 108) is encountered only some of the
paths can be followed depending on the evaluation of transition conditions). As
such the simplest (and incidentally the most useless) process definition is one that
contains only these two activities and a transition from the start-process to the
end-process activity.

Every process definition must have exactly one start-process and exactly one
end-process activity. When a process by using the Process Definition Tool is
defined, these two activities are created automatically on process creation and are
not required to be (in fact cannot be) explicitly created by the user.

The start-process and end-process activities form the outermost block of a validly
block-structured process definition as required by Cúram workflow.

Automatic
An automatic activity is a step in a workflow process that is wholly automated and
under normal circumstances no human intervention is required for the completion
of such a step. An automatic activity step starts a method in the application to
perform some processing that is required as part of the overall business process.
Typical uses for automatic activities include: performing calculations, updating
entities in the application and pulling data into the workflow engine.

Prerequisites
The base details common to all the activity types that are supported by Cúram
workflow are described in “Base Activity” on page 30 and are applicable to the
automatic activity that is described here.

Cúram Business Methods
Much of the processing for an automatic activity is performed in the application
code that is started. Automatic activities do their work by starting Cúram business
methods (both BPO (business process object) and entity methods are supported).
Technically these are public methods on Cúram business process objects and
entities. A critical part of the automatic activity definition is the method to start
and the parameters to pass to it.

The following sections describe these.

32 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Metadata

bpo-mapping
This contains the details of the Cúram business method that is started
when the associated automatic activity is run. These details include the
name of the interface and associated method and also any input and return
mappings that are associated with the method that is started. The input
and output mappings are described in the following sections. The
mandatory attributes of a business process object (BPO) mapping are
described here.

interface-name
This represents the fully qualified name of the Cúram interface that
contains the method that is associated with the automatic activity.

method-name
This represents the method on the specified Cúram interface that is
started when the automatic activity is run.

Validations
v Both the interface and method names must be specified for the automatic

activity business process object method mapping.
v The interface name that is specified must be a valid class and this class must

exist on the Cúram application classpath.
v The method name must be a valid method name and must exist on the specified

interface.

Code
Any valid public Cúram business method (BPO or entity) can be associated with
an automatic activity in a workflow process and hence be started when that
activity is run. In general, a failure of such a method when an automatic activity is
run causes the Workflow Error Handling strategy to be started.

This can cause, for example, the activity that is associated with the failed method
to be retried a number of times. Based on this fact, the methods that are associated
with automatic activities do not throw in general exceptions. If the modeled
exceptions feature is being used, then when a BPO method throws an exception
and is retried the required number of times, all of the transitions from the
automatic activity that contain the Context_Error workflow data object are
evaluated. If any of these transitions evaluate to true, their paths are followed and
in this way, remedial processing can take place after the automatic activity BPO
method failed.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

...

</formal-parameters>
</bpo-mapping>

</automatic-activity>

Cúram Workflow Reference 33

Input Mappings
There must be a way to supply the parameters that are required by a method to
start it in the workflow engine. The workflow engine has a pool of data at its
disposal in the form of workflow data objects.

Refer to “Workflow Data Objects” on page 16. Input mappings are used to declare
which workflow data object attributes are used to populate the values of the
specific method parameters when the method is started. Input mappings are
optional where struct fields are specified as method parameters. However,
primitive base type parameters must be mapped.

Metadata

The following metadata is common to all three types of parameter input mappings
(base type, struct, and aggregated structs) and hence are not described again.

formal-parameters
This contains the list of formal parameters as defined in the automatic
activity business method signature.

formal-parameter
This contains the details of one formal parameter input mapping as
defined in the associated business method signature. In this instance, a
formal parameter mapping entry exists for each parameter that is defined
in the associated business method.

index This represents the position of the formal parameter in the list of
formal parameters that are defined for the specified method. It is a
zero-based index.

Input mappings for base type parameters: Base type parameters provide the
simplest type of input mapping. In this instance, input mappings are created for
each base type formal parameter contained in the business method associated with
the automatic activity. A base type parameter in a Cúram business method
represents a domain definition (see the Cúram Modeling Reference Guide for details
on domain definitions).

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createDelivery">
<formal-parameters>

<formal-parameter index="0">
<base-type type="STRING">

<wdo-attribute wdo-name="SPProductDeliveryPI"
name="description"/>

</base-type>
</formal-parameter>
<formal-parameter index="1">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</formal-parameter>
</formal-parameters>

</bpo-mapping>
</automatic-activity>

34 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

base-type
This contains the details of one base type input mapping. A base type
mapping indicates that the field being mapped to is primitive (unlike the
struct and nested struct mappings described below). A base type input
mapping contains the following mandatory attribute:

type This describes the type of the primitive field being mapped to. For
a base type input mapping, this is the type of the domain
definition specified as the formal parameter in the method.

wdo-attribute
This contains the details of the workflow data object (see “Workflow Data
Objects” on page 16) attribute containing the data that will be used to
populate the associated base type parameter when the automatic activity
business method is invoked. The mandatory attributes are described below:

wdo-name
This describes the name of the workflow data object used in the
input mapping.

name This describes the name of the attribute on the specified workflow
data object used in the input mapping.

Input mappings for struct parameters: Structs may be specified as parameters to
business process object methods. This section describes the metadata of the input
mappings associated with such parameters.

struct This contains the details of one struct input mapping, including the type of
the struct and mappings for each field defined in that struct. A struct input
mapping contains the following mandatory attribute:

type This describes the type of the struct that has been specified as the

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
<struct
type="curam.struct.SampleBenefitPlanItemDetails">

<field name="description">
<base-type type="STRING">

<wdo-attribute wdo-name="SPProductDeliveryPI"
name="description"/>

</base-type>
</field>
<field name="plannedItemIDKey">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</field>
<field name="plannedItemName">

<base-type type="STRING" />
</field>

</struct>
</formal-parameter>

</formal-parameters>
</bpo-mapping>

</automatic-activity>

Cúram Workflow Reference 35

formal parameter in the method. This is represented as the fully
qualified name of the struct specified as the formal parameter.

field This contains the details of the input mapping for one of the fields defined
in the struct parameter. A field contains the details of the input mapping
for the primitive base type associated with that field as well as the
following mandatory attribute:

name This describes the name of the field as defined in the struct
specified as the formal parameter.

base-type
This contains the details of one base type input mapping for the specified
field. A base type input mapping contains the following mandatory
attribute:

type This describes the type of the primitive field being mapped to.

wdo-attribute
This contains the details of the workflow data object (see “Workflow Data
Objects” on page 16) attribute containing the data that will be used to
populate the associated base type field when the method is invoked. This
will not be present if the user has not specified an input mapping for this
method parameter. This element, when specified, contains the following
mandatory attributes:

wdo-name
This describes the name of the workflow data object used in the
input mapping.

name This describes the name of the attribute on the specified workflow
data object used in the input mapping.

Input mappings for aggregated struct parameters: Aggregated structs (see the
Cúram Modeling Reference Guide for details on struct aggregation) may be specified
as parameters to business methods. In this instance, the metadata is similar to that
described above for struct formal parameters (see “Input mappings for struct
parameters” on page 35). The subtle difference is, however, that a field in the struct
parameter defined may resolve down to another struct and not to a primitive type
as seen in the struct mappings example. In this scenario, the field name is not the
name of the field being mapped associated with the struct parameter but is the
name of the role contained in the association between the specified struct and the
struct it aggregates. The following metadata snippet provides an example of such
input mappings. The metadata elements have been previously described above in
the struct input mappings section.

36 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Input mappings for list struct parameters: Input mappings for list structure
parameters may now also be specified. In this instance, the metadata is similar to
that described above for aggregate formal parameters (see “Input mappings for
aggregated struct parameters” on page 36). The type of the struct specified in the
metadata for a list struct parameter is the name of the list structure. The name of
the first field specifies the name of the role contained in the association between
the specified list struct and the child struct it aggregates. Typically, this field then
resolves down to another struct (the child struct contained within the list struct).
The workflow data object specified in such a mapping is a list workflow data
object. The following metadata snippet provides an example of such input
mappings. The metadata elements have been previously described above in the
struct input mappings section.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createBenefit">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.struct.PlannedItemDetails">

<field name="description">
<base-type type="STRING">

<wdo-attribute wdo-name="SPProductDeliveryPI"
name="description"/>

</base-type>
</field>
<field name="plannedItemID">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</field>
<field name="dtls">

<struct type="curam.struct.PlannedItemKey">
<field name="subject">

<base-type type="STRING">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="subject"/>
</base-type>

</field>
<field name="concernRoleID">

<base-type type="INT64">
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="concernRoleID"/>
</base-type>

</field>
</struct>

</field>
</struct>

</formal-parameter>
</formal-parameters>

</bpo-mapping>
</automatic-activity>

Cúram Workflow Reference 37

Input mappings and indexed items from list workflow data objects: For
activities contained within loops, an item from a list workflow data object can be
used in an input mapping to populate a formal parameter field. When this type of
input mapping is used, each time the loop containing the activity is iterated over,
the formal parameter field will be populated with the next value from that list
workflow data object. This is highlighted here as the metadata syntax for such a
mapping is subtly different than that of the other input mapping types. The
metadata snippet provides an example of such input mappings. The name of the
list workflow data object used to populate the formal parameter field is qualified
with the [Context_Loop.loopCount] syntax. This is used by the workflow engine at
runtime to determine which iteration of the loop is being executed and hence
which item from the list workflow data object to retrieve the data to populate the
formal parameter field with.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="processClaimantDependents">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.sample.struct.

ClaimantDependentDetailsList">
<field name="dtls">

<struct type="curam.sample.struct.
ClaimantDependentDetails">

<field name="identifier">
<base-type type="INT64">

<wdo-attribute wdo-name="ClaimantDependent"
name="identifier"/>

</base-type>
</field>
<field name="firstName">

<base-type type="STRING">
<wdo-attribute wdo-name="ClaimantDependent"
name="firstName"/>

</base-type>
</field>
<field name="surname">

<base-type type="STRING">
<wdo-attribute wdo-name="ClaimantDependent"
name="surname"/>

</base-type>
</field>

</struct>
</field>

</struct>
</formal-parameter>

</formal-parameters>
</bpo-mapping>

</automatic-activity>

38 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Validations
v The workflow data object attributes specified in the input mappings must be

valid. The criteria that defines a valid workflow data object attribute can be seen
in “Validations” on page 21

v The type of the formal parameter that is mapped to and the type of the
workflow data object attribute being used in that input mapping must be
compatible. For example, if the input mapping that is created is a struct field
that has a type of STRING, then the workflow data object attribute being used
for that mapping must also be of type STRING.

v The Context_Task workflow data object cannot be used in an input mapping if
the associated activity is not a manual or decision activity.

v The Context_Loop workflow data object cannot be used in an input mapping if
the associated activity is not contained within a loop.

v A validation warning is displayed if all struct parameters that are defined in the
business process object method do not contain an associated input mapping.

v All primitive base type formal parameters that are defined in the business
process object method, which must contain an associated input mapping.

v If the formal parameter field that is mapped is a base type parameter, then an
attribute from a list workflow data object cannot be used.

v If the formal parameter field that is mapped is from a list structure, then it must
be mapped to an attribute from a list workflow data object.

v If the indexed item from a list workflow data object (that is,
ClaimantDependent[Context_Loop.loopCount]) is being used in an input
mapping, then the associated workflow data object must be a list workflow data
object and the activity that contains the input mappings must be contained
within a loop.

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="retrieveClaimantDependentDetails">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.sample.struct.

ClaimantDependentDetails">
<field name="identifier">

<base-type type="INT64">
<wdo-attribute name="identifier"
wdo-name=

"ClaimantDependent[Context_Loop.loopCount]"/>
</base-type>

</field>
<field name="fullName">

<base-type type="STRING">
<wdo-attribute name="fullName"
wdo-name=

"ClaimantDependent[Context_Loop.loopCount]"/>
</base-type>

</field>
</struct>

</formal-parameter>
</formal-parameters>

</bpo-mapping>
</automatic-activity>

Cúram Workflow Reference 39

Runtime Information
The values of the workflow data object attributes that are defined in the input
parameter mappings are provided as input data to the specified method before it is
started when the associated automatic activity is run.

Output Mappings
Workflow data objects are the workflow engines data store. Some of the attributes
on the specified workflow data objects are populated when the process is enacted.
However, it is useful to update or set the values of workflow data object attributes
as the workflow process is run. In support, some activity types can map data back
into the workflow engine. This is useful for automatic activities as the business
methods they start might conceivably access data that is stored on any entity in the
application and return it for use in subsequent activities in the workflow process.
These return mappings from a business process object method that is associated
with an automatic activity are optional.

See “Workflow Data Objects” on page 16.

Metadata
In a similar fashion to input mappings, output mappings are supported for
primitive return types, struct return types, nested (aggregated) struct return types
and list struct return types.

See “Input Mappings” on page 34. If the return type is a primitive type, one return
mapping entry can be specified. If the return type is a struct, an aggregated struct
or a list struct, return mappings for one or more of the fields in the specified struct
can be created. The following metadata snippets provide examples of such
mappings:

Primitive return type:

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="plannedItemID"/>
</base-type>

</return>
</bpo-mapping>

</automatic-activity>

40 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Struct return type:

<automatic-activity id="1" category="AC1">
...

<bpo-mapping
interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<struct>
<field name="description">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="description"/>
</base-type>

</field>
<field name="subject">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="subject"/>
</base-type>

</field>
</struct>

</return>
</bpo-mapping>

</automatic-activity>

Cúram Workflow Reference 41

Aggregated struct return type:

<automatic-activity id="1" category="AC1">
...
<bpo-mapping

interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="createAssociatedProductDeliveryForPlannedItem">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<struct>
<field name="description">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="description"/>
</base-type>

</field>
<field name="subject">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="subject"/>
</base-type>

</field>
<field name="dtls">

<struct>
<field name="concernRoleID">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="concernRoleID"/>
</base-type>

</field>
<field name="participantID">

<base-type>
<wdo-attribute wdo-name="SPProductDeliveryPI"

name="participantID"/>
</base-type>

</field>
</struct>

</field>
</struct>

</return>
</bpo-mapping>

</automatic-activity>

42 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

List struct return type:

return This contains the details of the output mappings that are specified for the
business method that is associated with the automatic activity. For a
primitive return type, one entry of the base type metadata is present as
shown in the example here (see “Primitive return type” on page 40). For a
struct, aggregated struct and list struct return types, the struct metadata
tag is specified and contains fields whose base types are mapped by using
workflow data object attributes.

struct This contains the details of the struct output mapping. A struct output
mapping contains the following mandatory attribute.

field This contains the details of the output mapping for one of the fields that
are defined in the struct return type. A field contains the details of the
output mapping for the primitive base type that is associated with that
field and the following mandatory attribute:

name This represents the name of the field as defined in the struct that is
specified as the return type. For non-aggregated struct return
types, this represents the name of the field on the specified return
struct that is being mapped. For aggregated struct and list struct
return types, the field name represents the name of the role that is
contained in the association between the specified struct and the
struct it aggregates.

<automatic-activity id="1" category="AC1">
...
<bpo-mapping

interface-name="curam.sample.facade.intf.SampleBenefit"
method-name="readClaimantDependentDetails">
<formal-parameters>

<formal-parameter index="0">
...

</formal-parameter>
</formal-parameters>
<return>

<struct>
<field name="dtls">

<struct>
<field name="identifier">

<base-type>
<wdo-attribute wdo-name="ClaimantDependent"
name="identifier"/>

</base-type>
</field>
<field name="firstName">

<base-type>
<wdo-attribute wdo-name="ClaimantDependent"
name="firstName"/>

</base-type>
</field>
<field name="surname">

<base-type>
<wdo-attribute wdo-name="ClaimantDependent"
name="surname"/>

</base-type>
</field>

</struct>
</field>

</struct>
</return>

</bpo-mapping>
</automatic-activity>

Cúram Workflow Reference 43

base-type
This contains the details of one base type output mapping for the specified
field or a primitive return type.

wdo-attribute
This contains the details of the workflow data object (see “Workflow Data
Objects” on page 16) attribute that the data present in the associated return
type field will be mapped into and persisted. The mandatory attributes are
described below:

wdo-name
This represents the name of the workflow data object used in the
output mapping.

name This represents the name of the workflow data object attribute that
is used in the output mapping.

Validations
v No duplicate output parameter mappings are allowed. In other words, a

workflow data object attribute can be specified only once in any list of output
return mappings.

v All of the workflow data object attributes specified in the output mappings must
be valid workflow data object attributes in the context of the containing
workflow process definition.

v The type of the return field that is mapped from and the type of the workflow
data object attribute being mapped to must be compatible.

v Output mappings cannot be created for workflow data object attributes that are
marked as constant workflow data object attributes. Constant workflow data
object attributes represent data that remain constant for the lifetime of the
process instance (see “Metadata” on page 18). If these attributes were allowed to
be used in output mappings, this data would be overwritten with that specified
in the output mappings.

v If the return struct is a list return struct, then the workflow data object used in
the return mapping must be a list workflow data object.

Runtime information
The values of the return type fields that are defined in the output parameter
mappings are persisted by using the specified workflow data object attributes after
the associated automatic activity is run.

Description of Context WDOs
There are two context workflow data objects that are available when data item and
function conditions for transitions from an automatic activity are created. These
data objects are described here.

Context_Result Workflow Data Object
The Context_Result workflow data object is available for use in a data item
or function conditions (see “Conditions” on page 104) for a transition from
an automatic activity. This allows the use of the return value of the started
method in the said conditions. The conventions for the attributes available
for the Context_Result workflow data object are as follows:
v If the return type is a base type, the attribute available is called value

(that is, Context_Result.value).
v If the return value is a struct then the Context_Result attribute values

available are all the fields present on the struct return class (that is,
Context_Result.description, and so on).

44 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v If the return value is a nested (aggregated struct) then the
Context_Result attribute values available are the fields available in the
containing struct (that is, Context_Result.description and so on) and
also the fully qualified names of those fields in the nested structs (that
is, Context_Result.dtls:concernRoleID and so on). Regardless of the
depth of the nesting of the return value struct, there is only one
Context_Result workflow data object available with the names of the
nested structs that form part of the attribute names. The separator
between a nested struct and its fields is a colon as seen in the example
here.

v If the return type is a list struct, the Context_Result workflow data
object is not available.

Context_Error Workflow Data Object
A BPO method that is called by an automatic activity can sometimes fail
(that is, throw an exception that causes the activity transaction to roll
back). When this happens, it can be useful to be able to model follow-on
actions after the failure. The Context_Error workflow data object enables
this type of "error path" modeling. It is available for use in a data item or
function conditions (see “Conditions” on page 104) for a transition from an
automatic activity. The Context_Error workflow data object has one
attribute exceptionOccurred, which is described here:
v The exceptionOccurred attribute is a boolean value that indicates

whether the BPO method that is associated with an automatic activity
failed. It defaults to false and is set to true if the associated BPO method
fails.

At runtime, if the BPO method that is called in an automatic activity fails
(and is retried the prerequisite number of times and still fails), the
workflow engine sets the exceptionOccurred attribute of Context_Error to
true. Any transitions by using the Context_Error workflow data object are
then evaluated and followed if they resolve to true. This enables a
workflow process instance to proceed along the defined error path even
though the automatic activity failed.

If the BPO method that is called fails and there are no transitions by using
the Context_Error workflow data object, then the activity is halted and an
entry is created in the Failed Messages Admin console.

Note: The Context_Error workflow data object takes no account of the
cause of the failure, only whether there was one.

Event Wait
The Cúram application can raise events at various points to inform any registered
listeners of what is happening. A number of different event listeners can be
registered to listen for a specified event. These event listeners are application
functions that implement the curam.util.events.impl.EventHandler interface.

When a specified event is raised, the workflow engine starts the associated event
handler function (see the Cúram Server Developers Guide for more details on events
and event handlers).

Workflow uses this facility in a slightly different way through event wait activities.
An event wait activity pauses the execution of a particular branch of a process
instance until a particular event occurs.

Cúram Workflow Reference 45

Prerequisites
The base details common to all the activity types that are supported by Cúram
workflow are described in “Base Activity” on page 30 and are applicable to the
event wait activity described here.

List of events
It is not correct to say that an event wait activity pauses a workflow process until a
particular event is raised. An event wait can in fact specify any number of events
to wait for. If it is specified not to wait for all of these events to be raised to
complete the activity, the first event that matches one of the specified events waits
completes the activity and progresses the workflow.

In this scenario, whether the rest of the events ever get raised has no effect on the
process. It is also possible to specify that all of the event waits must be matched by
associated raised events before completing the activity and continuing the
workflow process.

Metadata

event-wait
This contains the details of the event wait associated with the specified
activity. This includes the details of all the events for the event wait.

wait-on-all-events
The value of this flag indicates to the workflow engine if it can
wait for events to be raised for all of the specified event waits
before the associated activity is completed. If set to false, the first
event that matches one of the specified event waits results in the
completion of associated activity and the workflow progressing.

<event-wait-activity id="1" category="AC1">

...

<event-wait wait-on-all-events="true">
<events>

<event event-class="Task" event-type="Close"
identifier="1">

<event-match-attribute name="taskID"
wdo-name="Context_Task"/>

</event>
<event event-class="Parent" event-type="Approve"

identifier="1">
<event-match-attribute name="identifier"

wdo-name="ParentList[Context_Loop.loopCount]"/>
</event>
<event event-class="Child" event-type="Approve"

identifier="2">
<event-match-attribute name="identifier"

wdo-name="ChildDetails"/>
<multiple-occurring-event>

<list-wdo-name>ChildDetails</list-wdo-name>
</multiple-occurring-event>

</event>
</events>

</event-wait>

...

</event-wait-activity>

46 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

When set to true, an event must be raised for each of the event
waits specified for the activity before the activity is completed and
the workflow progressed.

events This contains the details of all of the events that the specified activity is
waiting on.

event This contains the details of one specific event that this activity is waiting
on. The event details contain the following mandatory attributes:

event-class
This represents the class of business event that this process is
waiting on.

event-type
This represents the type of business event that this process is
waiting on. The combination of event-class and event-type denotes
the business event required.

identifier
This represents the unique identifier of this event. The identifier is
required to be unique only within the list of events for this activity.

event-match-attribute
This represents the workflow data object attribute (see “Workflow Data
Objects” on page 16) that is used to match the required instance of the
specific event. For example, in the first event that is specified in the
metadata above, the workflow data object attribute would refer to the task
identifier associated with the closing of a specific task. When this event is
raised, the workflow engine uses the data in the event match attribute to
uniquely identify the task to close.

multiple-occurring-event
This signifies that this event represents a multiple occurring event. This
means that if this metadata is specified for an event, the workflow engine
creates one event wait record for each item in the list workflow data object
specified as the multiple occurring event when that activity is executed.
This allows the workflow engine to wait on multiple occurrences of the
same event.

If the multiple occurring event is specified for an event, then an attribute
from the associated list workflow data object must be used as the event
match data for the event. This ensures that each event that is generated by
the workflow engine for the multiple occurring event is unique.

list-wdo-name
This represents the name of the list workflow data object to be
used as the multiple occurring event.

Validations
v A least one event must be defined for the event wait information that is

associated with an event wait activity.
v The event class and type that is specified for each business event must be valid

entries on the relevant event database tables.
v An event and associated event match attribute can be defined only once in an

event wait activity. That is, the same event class, event type and event match
attribute can be used only once as a specific event that is waited on for an event
wait activity.

Cúram Workflow Reference 47

v The workflow data object attribute mapped to the event match attribute for an
event must be valid, and as it is used as a unique identifier in the event
matching mechanism, it must be of type LONG to reflect the 64-bit identifiers
that are used in Cúram.

v The Context_Task workflow data object can be used only as the event match
data workflow data object attribute if the activity is either a manual or parallel
manual activity and the event is not a multiple occurring event.

v If an indexed item from a list workflow data object (that is,
ParentList[Context_Loop.loopCount]) is used as the event match data, then the
workflow data object must be a list workflow data object and the activity that
contains the event mapping must be contained within a loop.

v If an indexed item from the Parallel List Workflow Data Object is used as the
event match data, then the activity that contain the mapping must be a Parallel
Activity (that is, ParallelListWDO[Context_Parallel.occurrenceCount]). The
workflow data object being indexed by the Context_Parallel Workflow Data
Object must be the Parallel Activity List Workflow Data Object.

v If the multiple occurring event list workflow data object is not specified for the
event and the activity that contains the event mapping is not a parallel activity,
then an attribute from a list workflow data object cannot be used as the event
match data for that event.

v If the multiple occurring event list workflow data object is specified for the
event, then an attribute from this list workflow data object must be used as the
event match data for that event.

v The workflow data object attribute that is mapped as the multiple occurring
event must be valid. It must also be a list workflow data object.

Code
A Workflow Event Handler is supplied with Cúram and is automatically registered
to listen for events raised in the application. Multiple event waits can be registered
for a particular activity instance in a workflow process. If the waitOnAllEvents flag
is set to false for the specified event wait data, only one of these event waits is
required to be matched to complete that activity instance.

The Workflow Event Handler will process that event by completing the specified
activity instance and driving the process forward by starting the next set of
activities in the process. All of the other event wait records that were registered for
the completed activity instance are then removed. If output mappings (see “Output
Mappings” on page 53) is specified for the event wait, they is persisted by the
workflow engine and can be used in subsequent activities and transitions in the
process.

When the waitOnAllEvents is set to true, all of the event waits specified for the
activity instance must be matched by raised events to complete the activity and
progress the workflow. For each raised event that matches an associated event wait
for the activity instance, the Workflow Event Handler processes the event by
deleting the associated event wait record and persisting any output mappings (see
“Output Mappings” on page 53) that are specified for the event wait. This
processing continues until all of the associated event waits are matched by raised
events. It is only then that the Workflow Event Handler will complete the specified
activity instance and drive the process forward by starting the next set of activities
in the process.

48 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Runtime Information
An event that is raised in the application can cause only a process instance to
continue if the event matches that being waited on and the event match attribute
that is specified for the event wait matches the primary event data of the event.

Deadline
An event wait pauses a workflow process in lieu of some event to be raised.
However, in many cases it is not desirable for a process to wait indefinitely. It is
possible for a chain of events to occur that means the event that the process is
waiting on can never be raised.

For example, by chance the event might be raised before the process reaches the
event wait activity. To mitigate against this risk, it is possible to optionally specify
a deadline for an event to be raised after which a deadline handler is invoked.

Prerequisites
Deadline handler methods that are specified for an event wait deadline are Cúram
business process object methods. The input mappings for the formal parameters of
these methods and their associated metadata are described in “Automatic” on page
32. Therefore, this section is referenced for a description of these mappings.

Cúram Workflow Reference 49

Metadata

complete-activity
This represents a boolean flag, which indicates whether the activity can
complete if the deadline duration expires. The default for this flag is false.

duration
This represents the duration of time that can elapse before the deadline
handler method is invoked. The duration can be represented in either of
the formats below which is then be to calculate the deadline date time for
the event wait:

<event-wait-activity id="1" category="AC1">

...

<deadline complete-activity="true">
<duration>

<mapped-duration>
<wdo-attribute wdo-name="TaskCreateDetails"

name="deadlineDuration" />
</mapped-duration>

</duration>
<deadline-handler interface-name=

"curam.core.sl.intf.WorkflowDeadlineFunction"
method-name="defaultDeadlineHandler">
<formal-parameters>

<formal-parameter index="0">
<struct type="curam.core.struct.TaskKey">

<field name="taskID">
<base-type type="INT64">

<wdo-attribute wdo-name="Context_Task"
name="taskID" />

</base-type>
</field>

</struct>
</formal-parameter>
<formal-parameter index="1">

<struct type="curam.core.struct.ChildKey">
<field name="identifier">

<base-type type="INT64">
<wdo-attribute wdo-name=

"ClaimantDependents[Context_Loop.loopCount]"
name="identifier" />

</base-type>
</field>

</struct>
</formal-parameter>

</formal-parameters>
</deadline-handler>
<deadline-output-mappings>

<duration-expired wdo-name="TaskDeadlineDetails"
name="booleanValue" />

<deadline-expiry-time wdo-name="TaskDeadlineDetails"
name="dateTimeValue" />

</deadline-output-mappings>
</deadline>

...

</event-wait-activity>

50 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

seconds
The number of seconds that can elapse before the deadline handler
is started

mapped-duration
The attribute of a workflow data object that can be mapped as
representing the number of seconds that can elapse before the
deadline handler is started.

deadline-handler
This represents the method that is to be started once the deadline duration
is expired. The following metadata must be specified for a deadline
handler:

interface-name
This represents the fully qualified name of the deadline handler
interface class name.

method-name
This represents the required method in the deadline handler
interface that is required to be started when the deadline expires.

formal-parameters
This contains a list of the deadline handler method parameters and
associated workflow data object attributes that are mapped to
those parameters when the deadline handler is started. For details
on method parameter mappings see “Input Mappings” on page 34.

deadline-output-mappings
This contains the deadline output data, which can be optionally mapped to
workflow data object attributes. This data indicates whether the deadline
duration expired and the date and time the deadline duration expired.

Validations
v If a deadline handler is specified, it must reference a valid Cúram business

method that exists on the application's classpath.
v The workflow data object attributes specified in the input mappings must be

valid. The criteria that defines a valid workflow data object attribute can be seen
in “Validations” on page 21

v The type of the formal parameter being mapped to and the type of the workflow
data object attribute being used in that input mapping must be compatible. For
example, if the input mapping being created is a struct field that has a type of
STRING, then the workflow data object attribute being used for that mapping
must also be of type STRING.

v If the indexed item from a list workflow data object (that is,
ClaimantDependent[Context_Loop.loopCount]) is being used in an input
mapping, then the associated workflow data object must be a list workflow data
object and the activity that contains the input mappings must be contained
within a loop.

v If the Context_Parallel workflow data object is being used in an input
mapping, then the activity that contains the input mappings must be a Parallel
activity.

v If an indexed item from the Parallel List Workflow Data Object is being used in
an input mapping, then the activity contains the mapping must be a Parallel
Activity (i.e. ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow
data object being indexed by the Context_Parallel Workflow Data Object must be
the Parallel Activity List Workflow Data Object.

Cúram Workflow Reference 51

v The deadline duration can be specified by using a deadline duration in seconds
or a workflow data object attribute mapping, but not both.

v If the deadline duration is specified by using a workflow data object attribute,
the attribute must be valid and be of type INTEGER.

v If a deadline is specified for an activity, then a deadline handler function must
be specified or the complete activity flag must be set to true (or both). If not the
workflow would not do anything when the deadline is reached.

v If the duration expired value of the deadline output mappings is mapped to a
workflow data object attribute, then the attribute must be valid and of type
BOOLEAN.

v If the deadline expiry time value of the deadline output mappings is mapped to
a workflow data object attribute, then the attribute must be valid and of type
DATETIME.

v The complete activity flag cannot be set to true if the activity that contains the
deadline is a parallel activity. This is because parallel activities do not support
modeled deadlines.

Code
v Any return parameters that are associated with the deadline handler method are

not used in the workflow engine and are therefore irrelevant.
v The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines()

is provided to allow the scanning of event wait deadlines that exceed their
specified duration. Any such event waits are processed and their associated
handler function started or the associated activity completed.

Runtime Information
When the workflow engine runs an activity that contains deadline metadata, it
creates the deadline date time as follows:
v If the duration is specified in seconds, then the calculation is the current date

time + seconds defined in metadata = deadline date time.
v If the duration is specified as a workflow data object attribute, then the

calculation is the current date time + the value as defined in workflow data
object attribute = deadline date time

Deadlines that expire are processed by starting the ScanTaskDeadlines batch job.
This batch job in turn starts the Workflow Deadline Scanner API described above
which retrieves a list of all of the deadlines that are expired and processes them. If
a deadline handler method is specified for the deadline, the values of the
workflow data object attributes defined in the parameter mappings are provided as
input parameters to the deadline handler method and it is started. If the complete
activity flag is set to true, then the associated activity is completed. Any deadline
output mappings (duration that is expired and deadline expiry time) that might be
specified are persisted here. The attributes of the Context_Deadline workflow data
object are also persisted during this processing to allow them to be used in
transitions that emanate from the activity that contains the deadline.

Description of Context WDOs
The Context_Deadline workflow data object is available for use in a data item or
function condition.

Refer to “Conditions” on page 104 for a transition from an activity with an event
wait that has a deadline. The Context_Deadline workflow data object attributes
available are:

52 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Context_Deadline.durationExpired
Represents a boolean indicating whether the deadline duration that is
associated with the activity is expired.

Context_Deadline.expiryTime
An attribute that contains the date and time at which the deadline duration
expires.

Output Mappings
The event that is raised has some information in it that can be worth mapping
back into the workflow engine. The event has both primary and secondary event
data. The primary event data is what was used to match the event in the first place
so there is little point in mapping this back into the process. However, the
secondary event data can be unknown to the workflow engine and so can be
mapped in.

Also, since an event wait activity can wait on any number of events, the actual
event that was raise can be of interest and so can also be mapped into the
workflow engine. Finally, the Cúram user that raises the event might be of interest
and so this can also be mapped into the workflow engine.

If an activity instance waits for all of its associated event waits to be matched, any
event output mappings that exist for the activity instance are processed each time
that an event is raised that matches one of the event waits.

Metadata

event-output-mappings
This tag contains the data that can be optionally mapped to the workflow
engine from the event that was raised.

event-type
This tag contains the business event that was raised which the activity
instance was waiting on.

output-data
This tag contains the secondary event data that is to be mapped into the
workflow engine.

raised-by
This tag contains the username of the Cúram user that caused the event to
be raised.

<event-wait-activity id="1" category="AC1">

...

<event-output-mappings>
<event-type wdo-name="CaseEventResult"

name="eventType" />
<output-data wdo-name="TaskCreateDetails"

name="concernRoleID" />
<raised-by wdo-name="CaseEventResult"

name="eventRaisedBy" />
<time-raised wdo-name="CaseEventResult"

name="timeRaised" />
</event-output-mappings>

...

</event-wait-activity>

Cúram Workflow Reference 53

time-raised
This tag contains the date and time that the event was raised.

Validations
v The event type event output mapping, if specified, must be a valid workflow

data object attribute and must be of type STRING.
v The raised by user name event output mapping, if specified, must be a valid

workflow data object attribute and must be of type STRING.
v The output data event output mapping, if specified, must be a valid workflow

data object attribute and must be of type LONG.
v The time raised output mapping, if specified, must be a valid workflow data

object attribute and must be of type DATETIME.

Runtime Information
When an event is raised in the application that an activity instance is waiting on,
any workflow data object attributes contained in event output mappings that are
defined for the event wait are populated and persisted with the relevant data from
the event.

Description of Context WDOs
The Context_Event workflow data object is available for use in a data item or
function condition.

Refer to “Conditions” on page 104 for a transition from an activity with an event
wait. The Context_Event workflow data object attributes available are:

Context_Event.raisedByUserName
The username of the Cúram user who raised the event.

Context_Event.timeRaised
The time at which the event was raised.

Context_Event.fullyQualifiedEventType
The fully qualified (both event class and event type) name of the business
event that was raised.

Context_Event.outputData
The secondary event data that is associated with the raised event.

Reminders
A reminder can be set on any deadline that is associated with a manual, decision,
event wait, parallel manual, or parallel decision activity. An arbitrary number of
reminders can be specified.

Reminders use the notification metadata that is described in the activity
notification (see “Activity Notifications” on page 94) section. This means that the
typical notification subject, body, allocation strategy, and actions can be specified
for a reminder.

54 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Metadata

reminders
This tag is optional and encapsulates all reminder tags for the deadline.

reminder
This tag contains all reminder metadata for the deadline including the
associated notification metadata.

delivery-offset
This tag refers to a value from the codetable ReminderDeliveryOffset
indicating what the seconds or mapped-delivery-time are offset from. For a
deadline, it is offset from the deadline expiry time. This is currently the
only offset supported.

delivery-time
This tag contains either the seconds or mapped-delivery-time tag
depending on which is specified.

seconds
This tag represents the seconds before the deadline expiry time that the
reminder is sent.

mapped-delivery-time
This tag represents a workflow data object containing the seconds before
the deadline expiry time that the reminder is sent.

Validations
v A reminder cannot be created if a deadline is not associated with the relevant

activity. In addition, if a deadline does exist, but the deadline handler is not set,
or the complete activity indicator is set to false, a reminder cannot be created.

v Each reminder has an identifier. This must be unique to the deadline upon
which it is associated.

v Either a mapped-delivery-time or seconds must be specified for a reminder.
v If a second is specified, it must be before the deadline expiry time.
v The workflow data object attribute that is referenced by the

mapped-delivery-time must be of type INTEGER.

<reminders>

<reminder id="1" delivery-offset="DO1">
<delivery-time>

<seconds>93660</seconds>
</delivery-time>

or...

<delivery-time>
<mapped-delivery-time>

<wdo-attribute wdo-name="CaseWDO"
name="caseID"/>

</mapped-delivery-time>
</delivery-time>

...
<notification delivery-mechanism="DM1">

...standard notification metadata
</notification>

</reminder>

</reminders>

Cúram Workflow Reference 55

v All existing validations for activity notifications (see “Activity Notifications” on
page 94) are applicable to the notification metadata associated with reminders.

Code
The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines()
includes a call to the function deliverReminders(), which processes and delivers
any reminders that reach their delivery time.

Runtime Information
When an activity that contains reminders is run, the reminders are persisted onto
the Reminders entity. The time that a reminder is due to be sent on is calculated as
follows:
v The delivery duration for the reminder is retrieved in seconds. This may be

specified directly in seconds or in a workflow data object attribute.
v The duration for the deadline that is associated with the reminder is retrieved in

seconds. This may be specified directly in seconds or in a workflow data object
attribute.

v If the delivery duration for the reminder is a positive number and this number
is less than the deadline duration (reminder deliveries cannot be specified for
times that are greater than the deadline date time for obvious reasons), then the
time to deliver the reminder notification is calculated as the deadline duration -
the reminder delivery duration. This duration in seconds is then converted into
a date time and added to the date time the reminder is being created on. This is
then stored on the reminder record as the date time that the reminder
notification is due to be sent on.

Reminders that are configured for deadlines are processed and sent by starting the
ScanTaskDeadlines batch job. This batch job starts the DeadlineScanner.
scanDeadlines() function, which scans for reminders that are due and sends the
associated reminder notifications (by using the reminder notification allocation
strategy to determine the users to send the notifications to). The reminders that are
sent are removed from the Reminders entity to ensure that they are not sent again.
When the activity completes any reminders that were configured for that activity
but that were not sent are removed.

Manual
In any automated business process there is a need to interact with human agents
to make decisions, supply more data or to perform tasks in the real world such as
telephoning a client. In Cúram workflow, such steps in a process are modeled by
using manual activities. A manual activity specifies where in the business process
human intervention is required. It also specifies the information that the user
receives when notified that they must perform a task and also the selection of the
agents to which the work is assigned.

Prerequisites
The base details common to all the activity types that are supported by Cúram
workflow are described in “Base Activity” on page 30 and are applicable to the
manual activity described here.

Task details
To notify a user that they are required to do some work as part of some automated
business process, a task is assigned to them. A task is a message that appears in
the users inbox. This inbox specifies the work that the user is expected to do. The

56 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

task can also have a list of actions that are associated with it. Actions are links to
Cúram application pages where the work required to complete the task can be
performed.

Cúram Workflow Reference 57

Metadata

<manual-activity id="1">
...
<task>

<message>
<message-text>

<localized-text>
<locale language="en">The following

case %1n for %1s must be approved</locale>
</localized-text>

</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="caseID"/>

<wdo-attribute wdo-name=
"Claimant[Context_Loop.loopCount]"
name="caseID"/>

</message-parameters>
</message>
<actions>

<action page-id="Case_viewHome" principal-action="false"
open-modal="false">
<message>

<message-text>
<localized-text>

<locale language="en">
Case Home Page for case: %1n</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="caseID"/>

</message-parameters>
</message>
<link-parameter name="childID">

<wdo-attribute wdo-name="ChildDependents"
name="identifier"/>

</link-parameter>
<link-parameter name="fullName">

<wdo-attribute wdo-name="ChildDependents"
name="fullName"/>

</link-parameter>
<multiple-occurring-action>

<list-wdo-name>ChildDependentList</list-wdo-name>
</multiple-occurring-action>

</action>
<action page-id="Person_confirmPersonDetails"

principal-action="true"
open-modal="true">

<message>
<message-text>

<localized-text>
<locale language="en">

Confirm Person Details for
person: %1s</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"PersonDetailsList[Context_Loop.loopCount]"

name="fullName"/>
</message-parameters>

</message>
<link-parameter name="identifier">

<wdo-attribute wdo-name="
PersonDetailsList[Context_Loop.loopCount]"

name="identifier"/>
</link-parameter>

</action>
</actions>
<task-priority>
<priority>TP1</priority>

</task-priority>
<allow-deadline-override>false

</allow-deadline-override>
<allow-task-forwarding>true

</allow-task-forwarding>
<administration-sid>MaintainCase.closeCase

</administration-sid>
<initial-comment>

<wdo-attribute wdo-name="TaskCreateDetails"
name="subject"/>

</initial-comment>
</task>
...

</manual-activity>

58 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

task This contains all of the details of a task including the message and details
of the associated actions. The various metadata that is associated with a
task are described here.

message
This contains the details of the parameterized message. When a manual
activity is run, a task is created. When a user views their tasks in the
inbox, this message represents the subject of that task.

message-text
This contains the details of the message text. The text of the subject can
contain replaceable strings (%k), which is replaced with the associated text
parameters. A text parameter is a mapping to a workflow data object
attribute. Parameter k in the list replaces %k in the text string, where k is
the order of the parameter in the list. %k can be repeated within the string
and thus each workflow data object attribute must be mapped only once.
A format for the replaceable strings can optionally be specified by placing
another letter after the replaceable string, for example, %1d, where d will
format the value as a date.

Table 3. Subject Text Data Conversion

Formatting Letter Format As

s string

n numeric

d date

z date/time

t time

localized-text
This contains details of the localizable task message text. For more details
of the localized text and associated metadata, see “Localized Text” on page
30.

message-parameters
A task message can have parameters that are associated with it. This
contains the details of the workflow data object attribute parameters that
are used to replace the placeholders in the associated text. For details on
workflow data objects and workflow data object attributes see “Workflow
Data Objects” on page 16.

actions
This contains the details of all of the actions that are associated with the
manual activity task. These actions are links to Cúram application pages
where the work required to perform the task can be performed.

action This contains the definition of a hyperlink to a Cúram page on which a
task can be performed. The following fields that are associated with the
task action are described here:

page-id
This represents the identifier of the target Cúram page on which a
user can perform the required action.

principal-action
Actions can be defined as primary or secondary actions. Principal
actions usually contain the links to the Cúram pages on which a
user can perform the actual required work. Secondary actions

Cúram Workflow Reference 59

usually contain links to supporting information that the user who
is assigned to do the work can refer to while the assigned task is
carried out.

open-modal
The pages that are linked from a task action can be specified to
open in a modal dialog. If this indicator is set to true, then the
page that is specified by the action link is opened in a modal
dialog. If set to false (the default) then the client infrastructure
decides how to open the link in the same fashion as it does with
any other link in the application (that is, if the page is part of a tab
configuration, then it opens the appropriate tab - if not then it
replaces just the action link home page in the content area of the
current tab).

message
This contains the details of the parameterized message that is associated
with the action to be performed, including the message text and the
optional parameters that can be associated with the text.

link-parameter
The links to the Cúram pages where the actual work for the task is
performed must contain a page identifier (described here) and optional
page parameters. These page parameters are described by this metadata
and they represent a name/value pair where the name attribute is the
name of a link parameter (the page parameter name in the associated
Cúram client page) and the value is provided by a workflow data object
attribute. The following field that is associated with the link parameter is
described here:

name The name of the link parameter.

multiple-occurring-action
This signifies that this action represents a multiple occurring action. This
means that if this metadata is specified for an action, the workflow engine
creates one action record for each item in the list workflow data object
specified as the multiple occurring action, when that activity is run.

When the multiple occurring action is specified for an action, then an
attribute from the associated list workflow data object must be used as a
link parameter for the action.

list-wdo-name
The name of the list workflow data object for use with the multiple
occurring action.

wdo-attribute
The value used in the action link parameter is provided by the workflow
data object attribute mapping that is specified in this piece of metadata.

task-priority
A task can optionally contain a priority and this metadata contains those
details. The priority of a task is represented in either of the formats here:

priority
In this instance, the priority is selected in the Process Definition
Tool and is taken from the TaskPriority code-table.

mapped-priority
The priority of a manual task can be mapped by using a workflow

60 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

data object attribute. The following metadata snippet provides an
example of how this can be achieved:

initial-comment
This allows an initial comment mapping to be specified for the manual
task. The value of the workflow data object attribute that is used in this
mapping is used to place a record in the TaskHistory table when the
associated manual activity is run.

Validations
v A subject must be defined for the manual activity task. This is a localizable

string.
v All of the workflow data objects that are used as subject text parameters in the

manual activity task subject message must be valid workflow data object
attributes in the context of the containing workflow process definition.

v If an indexed item from a list workflow data object (that is,
PersonDetailsList[Context_Loop.loopCount]) is used as a subject text parameter,
then the workflow data object must be a list workflow data object and the
activity that contains the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a subject text parameter,
then the activity that contains the mapping must be a Parallel manual activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a
subject text parameter, then the activity that contains the mapping must be a
Parallel Activity (that is, ParallelListWDO[Context_Parallel.occurrenceCount]).
The workflow data object being indexed by the Context_Parallel Workflow Data
Object must be the Parallel Activity List Workflow Data Object.

v If actions are specified for the manual activity task, any workflow data object
attributes used as mappings for action text parameters must be valid in the
context of the containing workflow process definition.

v If actions are specified for the manual activity task, any workflow data object
attributes used in the action link parameter mappings of a manual activity
action must be valid in the context of the containing workflow process
definition.

v If an indexed item from a list workflow data object (that is,
PersonDetailsList[Context_Loop.loopCount]) is used in the action text or action

<manual-activity id="1">
...
<task>

<message>
......

</message>
<actions>

<action page-id="Case_viewHome" principal-action="true">
.....

</action>
</actions>
<task-priority>

<mapped-priority>
<wdo-attribute wdo-name="WorkflowTestWDO"

name="taskPriority"/>
</mapped-priority>

</task-priority>
.....

</task>
...

</manual-activity>

Cúram Workflow Reference 61

link parameter mappings, then the workflow data object must be a list workflow
data object and the activity that contains the mapping must be contained within
a loop.

v If the Context_Parallel workflow data object is used in the action text or action
link parameter mappings, then the activity that contains the mapping must be a
Parallel manual activity.

v If an indexed item from the Parallel List Workflow Data Object is used in the
action text or action link parameter mappings, then the activity that contains the
mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v The number of placeholders that are used in the subject text and action text of
the manual activity task must equal the number of mapped workflow data
object attributes for all the locales defined.

v The priority of a manual task can be specified by using a codetable code value
or a workflow data object attribute mapping, but not both.

v If a mapped priority is specified for the manual activity task, the workflow data
object attribute that is specified for it must be valid in the context of the
containing workflow process definition. It must also be of type STRING.

v If an initial comment mapping is specified for the manual activity task, the
workflow data object attribute that is specified for it must be valid in the context
of the containing workflow process definition. It must also be of type STRING.

v The workflow data object specified for use in the multiple occurring action must
be a valid workflow data object in the context of the containing workflow
process definition. It must also be a list workflow data object.

v At least one attribute from the multiple occurring action list workflow data
object must be used in the link parameters that are specified for a multiple
occurring action.

Code
Action Pages and Action Page Parameters

The actions that are specified for the manual activity task are links to
Cúram application pages where the work required to complete the task can
be performed. The pages that are specified in the task actions must be
valid Cúram pages and must be available in the Cúram application. The
parameters in these pages must match the parameters that are specified as
action link parameters in the associated task actions.

LocalizableStringResolver TaskStringResolver API
The task subject and associated task action messages are displayed in the
user's inbox to inform them of the work that is required to be completed
for the associated task. The
LocalizableStringResolver.TaskStringResolver API contains the
functions to resolve both the task subjects and action messages for the
correct user locale. The replacement of the placeholders with the associated
workflow data object attribute values that are specified in the associated
mappings is also carried out as part of these functions.

Task Admin API
A number of functions are provided on the TaskAdmin class to allow the
manipulation of tasks. For further details of the functions available, see the
associated Javadoc specification for the TaskAdmin class.

62 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Task History Admin API
Various lifecycle events for a task (that is, when a task is created; when a
task is allocated; when a task is closed) are written to the TaskHistory
table during the lifetime of a task. A number of search functions are
provided on this API class to allow these entries to be examined. For
further details of the functions available, see the associated Javadoc
specification for the TaskHistoryAdmin entity.

Workflow Deadline Admin API
A number of functions are provided on the WorkflowDeadlineAdmin class to
allow the manipulation of workflow deadlines. For further details of the
functions available, see the associated Javadoc specification for the
WorkflowDeadlineAdmin class.

Runtime Information
When a manual activity is run by the workflow engine, a task is created and is
allocated to an agent to perform that work (see “Allocation strategy”).

Description of Context WDOs
The Context_Task workflow data object allows the unique identifier of the task that
is created as part of the execution of the associated manual activity to be available
for use in the various metadata mappings that are associated with a manual
activity.

Examples of some of these mappings include event match data mappings (see
“List of events” on page 46) and deadline function input mappings (see “Deadline”
on page 49). The one attribute available on this workflow data object is:

Context_Task.taskID
The taskID attribute represents the unique identifier of the task that is
created when the associated manual activity is run.

Allocation strategy
An organization typically has many human agents at various levels of
responsibility that can perform work for a process definition. To select a specific
agent or group of agents that can do the work for a specific manual activity, an
allocation strategy is assigned to the activity. There are four types of allocation
strategies that are currently supported by Cúram workflow: function, Classic rules,
Cúram Express rules (CER), and target.

When an allocation strategy of type target is selected, the agent or group of agents
to assign the work to are named directly. Selecting a function allocation strategy
results in the invocation of the specified allocation function when the associated
activity is run by the workflow engine. Finally, if a classic or Cúram Express rules
(CER) allocation strategy is selected, the specified ruleset is run when the
associated activity is run.

Prerequisites
If the allocation strategy that is associated with a manual activity is of type
Function, these allocation functions are Cúram business methods with a specific
signature.

The input mappings for the formal parameters of these methods and their
associated metadata are described in “Automatic” on page 32. Therefore, this is
referenced for a description of these mappings.

Cúram Workflow Reference 63

Metadata
As described previously, there are four types of allocation strategies. The required
metadata for each of these types is described in the following sections.

allocation-strategy
This contains the details of the allocation strategy that is defined for the
manual task. The following fields that are associated with an allocation
strategy are described here:

type This contains the type of the allocation strategy. The four types of
allocation strategies that are currently supported by Cúram
workflow are function, classic rules, CER rules, and target.

identifier
This represents the identifier of the allocation strategy. For an
allocation strategy of type function, this identifier represents the
fully qualified name of the allocation function that is used. For an
allocation strategy of type rule or curam express rule, this identifier
represents the identifier of the ruleset that is used. Finally, when an
allocation strategy of type target is selected, this identifier
represents the identifier of the allocation target that is used.

64 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Function Allocation Strategy:

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy

identifier="curam.core.sl.intf.
WorkflowAllocationFunction.manualAllocationStrategy"

type="function">
<function-mappings>

<formal-parameters>
<formal-parameter index="0">

<base-type type="INT32">
<wdo-attribute wdo-name="Context_Task"

name="taskID"/>
</base-type>

</formal-parameter>
<formal-parameter index="1">

<base-type type="INT64">
<wdo-attribute

wdo-name="Context_RuntimeInformation"
name="processInstanceID"/>

</base-type>
</formal-parameter>
<formal-parameter index="2">

<struct type="curam.struct.TaskDetails">
<field name="taskID">

<base-type type="INT64">
<wdo-attribute wdo-name="Context_Task"

name="taskID"/>
</base-type>

</field>
<field name="category">

<base-type type="STRING">
<wdo-attribute wdo-name="TaskCreateDetails"

name="category"/>
</base-type>

</field>
</struct>

</formal-parameter>
<formal-parameter index="3">

<struct type="curam.struct.PersonDetails">
<field name="identifier">

<base-type type="INT64">
<wdo-attribute wdo-name=

"PersonDetailsList[Context_Loop.loopCount]"
name="identifier"/>

</base-type>
</field>
<field name="fullName">

<base-type type="STRING">
<wdo-attribute wdo-name=

"PersonDetailsList[Context_Loop.loopCount]"
name="fullName"/>

</base-type>
</field>

</struct>
</formal-parameter>

</formal-parameters>
</function-mappings>

</allocation-strategy>
<event-wait>

...
</event-wait>

</manual-activity>

Cúram Workflow Reference 65

function-mappings
This contains the details of the input mappings for the formal parameters
of the specified allocation function. Allocation functions are Cúram
business methods (similar to those that are specified for automatic
activities) that have a distinct return signature (allocation functions must
have a return type of curam.util.workflow.struct.AllocationTargetList).
Therefore, the metadata that is used for these mappings are the same as
those used for the input mappings for the business process object methods
that are associated with automatic activities. The reader can refer to the
“Input Mappings” on page 34 section of the automatic activity chapter for
further details of this metadata and it's meaning.

Classic Rules Allocation:

ruleset-mappings
This contains the details of all the mappings for the ruleset specified in the
allocation identifier. It is not required to map all of the rules data object
attributes specified in the ruleset (mappings for a subset of them may be
created).

rdo-mapping
This contains the details of one mapping between a rules data object
attribute that is specified in the allocation ruleset and its associated
workflow data object attribute. The following metadata constitute a valid
mapping:

source-attribute
This contains the details of the source attribute in the mapping
(that is, where the data is provided from at runtime). A source
attribute consists of a workflow data object name and its associated
attribute name (see “Workflow Data Objects” on page 16).

target-attribute
This contains the details of the target attribute in the mapping (that

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy type="rule"

identifier="PRODUCT_1">
<ruleset-mappings>

<rdo-mapping>
<source-attribute wdo-name="TaskCreateDetails"

name="caseID" />
<target-attribute rdo-name="TaskDetails"

name="caseID" />
</rdo-mapping>
<rdo-mapping>

<source-attribute wdo-name="TaskCreateDetails"
name="concernRoleID" />

<target-attribute rdo-name="TaskDetails"
name="concernRoleID" />

</rdo-mapping>
</ruleset-mappings>

</allocation-strategy>
<event-wait>

...
</event-wait>
...

</manual-activity>

66 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

is, where the data is mapped into at runtime). A target attribute
consists of a rules data object name and its associated attribute
name.

CER Rules Allocation:

cer-set-mappings
This contains the details of all the mappings for the CER rule set specified
in the allocation identifier. The primary-class metadata tag must point to a
CER rule class that contains an attribute called targets. This is required as
the workflow engine uses an attribute of this name to determine the list of
allocation targets for the specified allocation strategy. Mappings must be
created for all of the attributes that are marked as specified in all of the
CER rule classes that are used for the allocation strategy.

cer-class-mapping
This contains the details of one mapping between a rule class attribute that
is specified in the CER rule set and its associated workflow data object

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy type="curam express rule"

identifier="Sample Allocation Rules">
<cer-set-mappings primary-class="SampleAllocationClass">

<cer-class-mapping>
<source-attribute wdo-name="TaskCreateDetails"

name="caseID" />
<target-attribute cer-class-name="SampleAllocationClass"

name="caseID" />
</cer-class-mapping>
<cer-class-mapping>

<source-attribute wdo-name="TaskCreateDetails"
name="subject" />

<target-attribute cer-class-name="RuleClassA"
name="subject" />

</cer-class-mapping>
<cer-class-mapping>

<source-attribute wdo-name="ListTaskDetails"
name="employerIDs" />

<target-attribute cer-class-name="RuleClassA"
name="listOfEmployerIDs" />

</cer-class-mapping>
<cer-class-mapping>

<source-attribute wdo-name="ListTaskDetails"
name="concernRoleID" />

<target-attribute cer-class-name="SampleAllocationClass"
name="listConcernRoleIDs" />

</cer-class-mapping>
<cer-class-mapping>

<source-attribute wdo-name="ListTaskDetails"
name="participantIDs" />

<target-attribute cer-class-name="SampleAllocationClass.listRuleClassB.RuleClassB"
name="participantIDs" />

</cer-class-mapping>
</cer-set-mappings>

</allocation-strategy>
<event-wait>

...
</event-wait>
...

</manual-activity>

Cúram Workflow Reference 67

attribute. One of these mappings must exist for each CER rule class
attribute that is marked as specified being used in the allocation strategy.
The following metadata constitutes a valid mapping:

source-attribute
This contains the details of the source attribute in the mapping
(that is, where the data is provided from at runtime). A source
attribute consists of a workflow data object name and its associated
attribute name (see “Workflow Data Objects” on page 16).
Attributes of list workflow data objects can also be used here if the
mapping that is created is related to a CER rule class attribute list
type.

target-attribute
This contains the details of the target attribute in the mapping (that
is, where the data is mapped into at runtime). A target attribute
consists of a CER class name and its associated attribute name.
Some but not all CER rule class attribute types are supported for
use in allocation strategy mappings. The supported types include
String, Boolean, Number, Date and DateTime. A list of rule classes can
also be specified as well as lists of the base types that are outlined
previously.

Target Allocation Strategy:

No further metadata is required to describe an allocation strategy of type target. As
stated previously, the identifier in this case is the identifier of the allocation target
that contains the agent or group of agents that the task is assigned to.

Validations
v An allocation strategy must be defined for a manual task.
v If the allocation strategy is of type function, the function that is specified must

be a valid and must exist on the Cúram application classpath.
v If the allocation strategy is of type function, the return type of the function must

be curam.util.workflow.struct.AllocationTargetList.
v If the allocation strategy is of type function, any of the input parameters of the

specified function that are mapped must be to valid workflow data object
attributes and the type of the workflow data object attribute must match the
type of the input parameter field.

v If the allocation strategy is of type function and an indexed item from a list
workflow data object is used in an input mapping, then the workflow data
object must be a list workflow data object and the activity that contains the
mapping must be contained within a loop.

v If the allocation strategy is of type classic or CER rule, the specified ruleset must
be valid.

<manual-activity id="1" category="AC1">
...
<task>
...
</task>
<allocation-strategy type="target"

identifier="HEARINGSCHEDULER"/>
<event-wait>
...
</event-wait>
...

</manual-activity>

68 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v If the allocation strategy is of type CER rule, a primary CER rule class name
must be specified.

v If the allocation strategy is of type CER rule, the specified primary CER rule
class must exist in the specified CER ruleset.

v If the allocation strategy is of type CER rule, the specified primary CER rule
class must extend the required abstract Workflow Allocation CER rule class.

v If the allocation strategy is of type CER rule, the specified primary CER rule
class must contain an attribute that is named targets.

v If the allocation strategy is of type CER rule, if CER rule classes other than the
primary CER rule classes are specified in the input mappings, then the CER
primary class must contain attributes that refer to those classes, one for each
class.

v If the allocation strategy is of type CER rule, all of the source attributes specified
in the mappings must be valid workflow data object attributes in the context of
the containing workflow process definition. All of the target attributes must be
valid CER class attributes in the context of the specified ruleset. The type of the
workflow data object attribute that is specified as the source attribute must
match the type of the CER class attribute that is specified as the target attribute
in the mapping.

v If the allocation strategy is of type CER rule, no duplicate target attribute
mappings are allowed. In other words, a CER rule class attribute can be
specified only once in any list of CER class mappings.

v If the allocation strategy is of type CER rule, all of the attributes that are marked
as specified for all of the CER rules classes that are used for the allocation
strategy must contain an input mapping. CER class attributes that are not
marked as specified must not contain an input mapping.

v If the allocation strategy is of type classic rule, all of the source attributes
specified in the mappings must be valid workflow data object attributes in the
context of the containing workflow process definition. All of the target attributes
must be valid rules data object attributes in the context of the specified ruleset.
The type of the workflow data object attribute that is specified as the source
attribute must match the type of the rules data object attribute that is specified
as the target attribute in the mapping.

v If the allocation strategy is of type classic rule, no duplicate target attribute
mappings are allowed. In other words, a rules data object attribute can be
specified only once in any list of ruleset mappings.

v If an indexed item from a list workflow data object (i.e.
PersonDetailsList[Context_Loop.loopCount]) is used in the function, classic rule,
or CER rule allocation strategy mappings, then the workflow data object must
be a list workflow data object and the activity that contains the mapping must
be contained within a loop.

v If the Context_Parallel workflow data object is used in the function, classic or
CER rule allocation strategy mappings, then the activity that contains the
mapping must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is used in the
function, classic or CER rule allocation strategy mappings, then the activity that
contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

Cúram Workflow Reference 69

Code
As stated previously, any business process object method that is specified as an
allocation function must return a structure of type
curam.util.workflow.struct.AllocationTargetList.

As is the case with business methods that are associated with automatic activities,
a failure of the allocation function when a manual activity is run causes the
Workflow Error Handling strategy to be started. This can cause, for example, the
activity that is associated with the failed method to be retried a number of times.
Based on this fact the allocation functions associated with the allocation strategies
of manual or decision activities should in general not throw exceptions unless an
unrecoverable situation occurs.

The application must implement the curam.util.workflow.impl.WorkResolver
callback interface to determine how tasks are allocated in the application. The
application property curam.custom.workflow.workresolver must refer to the
curam.util.workflow.impl.WorkResolver implementation class in the application as
the workflow engine uses this property to determine the correct function to
allocate the task.

The curam.util.workflow.impl.WorkResolver class has an overloaded method
resolveWork because the various allocation strategy types return the allocation
targets in different formats. However, this is an implementation detail that
developers of custom work resolver classes must not deal with especially since the
business processing for all versions of the method should be the same.

To mitigate this issue the curam.core.sl.impl.DefaultWorkResolverAdapter
provides a more convenient mechanism for implementing a work resolver. This
class implements the different methods and converts their input parameters into
allocation target lists allowing developers of custom work resolution logic to
extend this class and implement one method that is called regardless of the source
of the allocation targets.

package curam.util.workflow.impl;

...

public interface WorkResolver {

void resolveWork(
final TaskDetails taskDetails,
final Object allocationTargets,
final boolean previouslyAllocated);

void resolveWork(
final TaskDetails taskDetails,
final Map allocationTargets,
final boolean previouslyAllocated);

void resolveWork(
final TaskDetails taskDetails,
final String allocationTargetID,
final boolean previouslyAllocated);

...
}

70 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

In addition to this adapter class, the application comes with a work resolver
implementation that is used immediately after first use. This class is called
curam.core.sl.impl.DefaultWorkResolver and it also serves as an example of how
to extend the adapter.

Runtime Information
When a manual activity is run, the workflow engine processes the allocation
strategy that is defined in the metadata to retrieve the list of allocation targets for
that task.

If the allocation strategy is of type function, the workflow engine processes the
input mappings that are defined for the associated allocation function and starts it
to retrieve the list of allocation targets.

If the allocation strategy is of type classic rule, the workflow engine processes the
mappings for the specified ruleset and calls the rules engine to run the ruleset to
retrieve the list of allocation targets.

If the allocation strategy is of type CER rule, the workflow engine processes the
CER class mappings that are specified for the allocation strategy. The data from the
workflow data object attributes is mapped into the corresponding CER class rule
attributes. The primary class is then retrieved and the targets attribute is queried to
retrieve the list of allocation targets.

If the allocation strategy is of type target, the allocation target is the one specified
in the metadata and no further processing is required.

As described in the metadata for a workflow process (see “Process Definition
Metadata” on page 13), a failure allocation strategy can be specified for a process.
This strategy is processed and used if the invocation of the allocation strategy that
is associated with the task results in no allocation targets being returned.

The workflow engine then uses the curam.custom.workflow.workresolver property
to determine the implementation of the function that is used to allocate tasks in the
application. This function is then called by the workflow engine passing to it the
list of allocation targets as determined by the allocation strategy and also details of
the task to be allocated.

After the work resolver is called for the task, the workflow engine makes a call to
the method checkTaskAssignment in the
curam.core.sl.impl.TaskAssignmentChecker class. This function checks the
assignment status of the task (that is, to ensure that it is assigned to at least one
user or organizational object (organization unit, position, or job) or to a work

package curam.core.sl.impl;

...

public abstract class DefaultWorkResolverAdapter
implements curam.util.workflow.impl.WorkResolver {

public abstract void resolveWork(
final TaskDetails taskDetails,
final AllocationTargetList allocationTargets,
final boolean previouslyAllocated);

...
}

Cúram Workflow Reference 71

queue). If the task is not assigned, the application property
curam.workflow.defaultworkqueue is examined to see what is specified as the
default work queue for workflow. The task is then assigned to that work queue.

If the task is assigned to one user and only one user after the work is resolved, the
system checks the value of the application property
curam.workflow.automaticallyaddtasktousertasks. This flag controls whether the
system automatically adds the specified task being processed to the list of that
user's tasks to allow them to work on it. The default value for the property is NO
but if it is specified as YES, then the system automatically adds that task to the
user's My Tasks list in their Inbox to allow them to work on it.

Description of Context WDOs
The Context_Task workflow data object is available for both allocation function,
classic and CER ruleset mappings. This context workflow data object and its
attribute are already described here.

See “Description of Context WDOs” on page 63.

Business Object Associations
Manual activities, and indeed workflow in general, perform operations on entities
that exist in the application. For this reason, it can be useful to associate a task
with the entities that are related to it for that process. Business object associations
essentially provide links between a task and any application entities of interest for
that process. The quintessential examples in Cúram include the Case and Concern
entities.

Metadata

biz-object-associations
This tag contains the details of all the business object associations that are
specified for the manual activity.

biz-object-association
This tag contains the details of one business object association that are
specified for that manual activity. This includes the business object type
and the workflow data object attribute mapping that is associated with that

<manual-activity id="1" category="AC1">
...
<task>

...
</task>
<allocation-strategy type="target"

identifier="1"/>
<event-wait>

...
</event-wait>
<biz-object-associations>

<biz-object-association biz-object-type="BOT1">
<wdo-attribute wdo-name="TaskCreateDetails"

name="caseID"/>
</biz-object-association>
<biz-object-association biz-object-type="BOT2">

<wdo-attribute wdo-name=
"PersonDetailsList[Context_Loop.loopCount]"

name="identifier"/>
</biz-object-association>

</biz-object-associations>
</manual-activity>

72 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

type. This workflow data object attribute mapping represents the unique
identifier of the business object in the association (that is, for a business
object association of type Case, this would represent the unique identifier
of the case that is linked to the task).

biz-object-type
This tag details the actual business object type for the business
object association for the manual activity. The business object type
must be selected in the Process Definition Tool and is taken from
the BusinessObjectType code-table.

Validations
v The business object type that is specified must be a valid codetable code that is

contained within the BusinessObjectType codetable.
v The workflow data object attribute mapped to the business object type of a

manual activity business object association must be valid. This attribute type
must be assignable to a type LONG as this attribute represents a mapping to a
unique identifier (for example, a case identifier or participant identifier).

v If an indexed item from a list workflow data object (that is,
PersonDetailsList[Context_Loop.loopCount]) is used in a business object
association mapping, then the workflow data object must be a list workflow data
object and the activity that contain the mapping must be contained within a
loop.

v If the Context_Parallel workflow data object is used in a business object
association mapping, then the activity that contains the mapping must be a
Parallel manual activity.

v If an indexed item from the Parallel List Workflow Data Object is used in a
business object association mapping, then the activity that contains the mapping
must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

Code
Business Object Association Admin API

A number of functions are provided on the
BusinessObjectAssociationAdmin class to allow the manipulation of
business object associations. For further details of the functions available,
see the associated Javadoc specification for the
BusinessObjectAssociationAdmin class.

Runtime Information
Business object associations have no functional impact on the execution of a
manual activity. The workflow engine examines the metadata and places a record
on the BizObjAssociation entity for each business object association specified. The
business object type, the value of the workflow data object attribute mapping and
the identifier of the newly created task that is associated with the manual activity
are all used in this record creation.

Event Wait
Since a manual activity requires some action to be taken by a user before it can be
completed and the process can continue, there must be some way to notify the
workflow engine when the work required is performed. Since this semantic is
similar to that of the event wait activity the event wait mechanism is reused for
manual activities.

Cúram Workflow Reference 73

Prerequisites
The details of an event wait and its associated metadata (which are also applicable
to a manual activity) can be found in “Event Wait” on page 45.

Description of Context WDOs
The Context_Task workflow data object is available for use in the input mappings
for deadline functions that are associated with the event wait of a manual activity.
It is available for the input mappings that are associated with allocation function,
classic, or CER rule input mappings. It is also available to use as a mapping for the
event match data of a specified event wait associated with a manual activity.

This context workflow data object and its attribute are already described here (see
“Description of Context WDOs” on page 63).

Decision
A typical requirement in business processes is to have a human agent make
decisions that have simple answers. An example of such a decision is to approve
or reject a case or to supply some simple information such as the age of the
claimant. Using manual activities to solicit such information would require that a
different user interface screen for each question be available in the application. This
is cumbersome and since process definitions can change over time, such user
interface screens would be somewhat temporary.

The Decision activity is a specialization of a Manual activity that drives a metadata
driven user interface for asking simple questions. The questions and possible
answers are in the activity metadata thus allowing a single user interface to be
used for a wide range of questions. Two types of questions are currently
supported. These are multiple choice type questions and questions that require an
answer that can be supplied in one field on the user interface.

Prerequisites
v The base details common to all the activity types that are supported by Cúram

workflow are described in “Base Activity” on page 30 and are applicable to the
decision activity described here.

v The workflow metadata constructs are common between manual activities and
decision activities (that is, allocation strategy, task subject, task deadline, and so
on). The details of these can be found in “Manual” on page 56.

Task Details
Decision activities notify users that they are required to do some work, and assign
a task to them based on the allocation strategy defined.

This activity is similar to a “Manual” on page 56. The task automatically links to a
user interface page in the application that assembles the decision question from the
decision activity question metadata and moves the workflow forward after the
decision answer is provided. Therefore, a decision activity can have only one
associated task action and requires no action page to be defined for that action.

In addition to the task action, a decision activity can have zero or more secondary
actions that are associated with it. Secondary actions contain a link to a page,
which can provide supplementary information to help the user answer the decision
question.

74 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Metadata

<decision-activity id="1">

...

<allocation-strategy type="target" identifier="1" />
<message>

<message-text>
<localized-text>

<locale language="en">
Decide the age of the user %1s for Case %2n.</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="userName" />

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>
<decision-action>

<message>
<message-text>

<localized-text>
<locale language="en">
Participant Home Page %1n for Case %2n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="concernRoleID" />

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>

</decision-action>
<secondary-actions>

<secondary-action page-id="Case_viewDetails">
<message>

<message-text>
<localized-text>

<locale language="en">View case details.</locale>
</localized-text>

</message-text>
</message>

</secondary-action>
<secondary-action page-id="Case_viewUserDetails">

<message>
<message-text>

<localized-text>
<locale language="en">View details for user %1s.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"ChildDependents[Context_Loop.loopCount]"
name="userName" />

</message-parameters>
</message>
<link-parameter name="userName">

<wdo-attribute wdo-name="ChildDependents"
name="childName" />

</link-parameter>
<multiple-occurring-action>

<list-wdo-name>ChildDependents</list-wdo-name>
</multiple-occurring-action>

</secondary-action>
</secondary-actions>
<deadline>

...

</deadline>
</decision-activity>

Cúram Workflow Reference 75

allocation-strategy
This tag describes the allocation strategy that is used to determine the user
who is assigned to the associated task. For details on allocation strategies,
see “Allocation strategy” on page 63.

message
This tag represents the parameterized subject message of the task created.
For full details on parameterized messages, see “Manual” on page 56.

decision-action
This tag represents the parameterized action text message that is associated
with the task. The user clicks this action text to open the auto-generated
user interface decision screen with the relevant question.

deadline
This tag describes the deadline details for the decision activity. If an
answer is not provided for the decision activity within the deadline
duration that is specified, the associated deadline handler method is
started. For more details on deadlines, see “Deadline” on page 49.

secondary-actions
This tag describes any optional secondary actions, which can be included
with the decision activity.

secondary-action
A secondary action contains a parameterized message and a
parameterized link to supporting information to help the user
answer the decision question. For details of parameterized
messages and parameterized links within actions, see “Metadata”
on page 58

page-id
This tag represents the identifier of the target Cúram page,
which contains the supplementary information that is
linked to by the secondary action.

multiple-occurring-action
This tag signifies that this secondary action represents a
multiple occurring action. This means that if this metadata
is specified for a secondary action, the workflow engine
creates one secondary action record for each item in the list
workflow data object specified as the multiple occurring
action, when that activity is run.

If the multiple occurring action is specified for a secondary
action, then an attribute from the associated list workflow
data object must be used as a link parameter for the
secondary action.

list-wdo-name
The name of the list workflow data object for use with the
multiple occurring action.

Validations
v An activity subject must be defined.
v Every workflow data object attribute mapped to the decision activity subject

must be a valid workflow data object attribute.
v If an indexed item from a list workflow data object (that is,

CaseList[Context_Loop.loopCount]) is used as a decision subject text parameter,

76 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

then the workflow data object must be a list workflow data object and the
activity that contains the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a decision subject text
parameter, then the activity that contains the mapping must be a Parallel
decision activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a
decision subject text parameter, then the activity that contains the mapping must
be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v The number of placeholders that are used in the subject text and action text
must equal the number of mapped workflow data object attributes (for all
locales).

v If an indexed item from a list workflow data object (that is,
CaseList[Context_Loop.loopCount]) is used as a decision task action text
parameter, then the workflow data object must be a list workflow data object
and the activity that contains the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a decision action text
parameter, then the activity that contains the mapping must be a Parallel
decision activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a
decision action text parameter, then the activity that contains the mapping must
be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v An allocation strategy must be defined.
v The allocation target, function, classic, or CER rule set specified as an allocation

strategy must be valid. If the allocation type is function, it must be a valid
Cúram business method and must exist on the application classpath. If the
allocation type is classic or CER rule, it must be a valid ruleset.

v The optional deadline handler, if specified, must be a valid Cúram business
method.

v All deadline handler input mappings must be valid. This means that all the
input parameter fields that are required by the specified method are mapped to
valid workflow data object attributes of the correct type.

v Each secondary action must have a page link that is specified, which cannot
contain white spaces.

v Each secondary action must have a message that is specified.
v Secondary action message text must contain a number of placeholders equal to

the number of message parameters specified.
v Secondary action message parameters must be mapped to valid workflow data

object attributes of the correct type.
v Secondary action page link parameters must be mapped to valid workflow data

object attributes.
v If an indexed item from a list workflow data object (that is,

ChildDependents[Context_Loop.loopCount]) is used in the secondary action text
or secondary action link parameter mappings, then the workflow data object
must be a list workflow data object and the activity that contains the mapping
must be contained within a loop.

Cúram Workflow Reference 77

v If the Context_Parallel workflow data object is used in the secondary action
text or secondary action link parameter mappings, then the activity that contains
the mapping must be a Parallel decision activity.

v If an indexed item from the Parallel List Workflow Data Object is used in the
secondary action text or secondary action link parameter mappings, then the
activity that contains the mappings must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v The workflow data object specified for use in the multiple occurring action must
be a valid workflow data object in the context of the containing workflow
process definition. It must also be of type List.

v At least one attribute from the multiple occurring action list workflow data
object must be used in the link parameters that are specified for a multiple
occurring action.

Runtime Information
When a decision activity is run, the workflow engine creates the associated task. A
snapshot of the workflow data object data that is required for the decision activity
subject and action text parameters, and any secondary action message text and link
parameters, is taken and stored. The allocation strategy that is associated with the
decision activity is started to determine the users who are assigned the decision
task.

The workflow engine also creates an event wait for the DECISION.MADE event with
the associated task identifier as the event match data. The workflow is then
paused, awaiting the raising of this event, which indicates the result of the decision
made.

Question Details
The decision activity currently supports both multiple choice and free text
questions as question formats. The auto-generated decision page examines the
question format that is required and generates the relevant question from the
question metadata when the user clicks the action that is associated with the task.

78 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Metadata

Multiple Choice:

question
This tag represents the question that is associated with the decision
activity, which for a multiple choice question contains the metadata that is
outlined here.

<decision-activity id="1">

...

<question>
<message>

<message-text>
<localized-text>

<locale language="en">
Is the claimant, %1s, for Case %2n, over 18?
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="Participant"
name="userName" />

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>
<answers multiple-selection="false">

<answer name="yesAnswer">
<answer-text>

<localized-text>
<locale language="en">Yes</locale>

</localized-text>
</answer-text>
<choice-output-mapping>

<wdo-attribute wdo-name="DecisionResult"
name="ageBracket" />

<selected-value>18-65/selected-value>
<not-selected-value>0-17</not-selected-value>

</choice-output-mapping>
</answer>
<answer name="noAnswer">

<answer-text>
<localized-text>

<locale language="en">No</locale>
</localized-text>

</answer-text>
<choice-output-mapping>

<wdo-attribute wdo-name="DecisionResult"
name="ageBracket" />

<selected-value>0-17</selected-value>
<not-selected-value>18-65</not-selected-value>

</choice-output-mapping>
</answer>

</answers>
</question>

...

</decision-activity>

Cúram Workflow Reference 79

message
This tag represents the parameterized text of the question to be asked for
all locales.

answers
This tag represents a list of answers the user can choose from for the
multiple choice question.

multiple-selection
This tag represents a flag that indicates if the user can select
multiple answers from those supplied, or whether only one can be
selected.

answer
This tag represents an answer that the user can select. There must be at
least one answer that is supplied for a multiple choice question.

name This tag represents the name of the answer. After the user selects an
answer or answers, the names of the selected answers are passed to the
workflow engine and the process is progressed. As the engine treats these
answers similar to workflow data object attributes, answer names must be
valid Java identifiers.

answer-text
This tag represents the answer text that the user can select for all locales.

choice-output-mapping
This tag encloses the metadata that describes how the output from a
multiple choice answer is persisted.

wdo-attribute
The name of the workflow data object attribute used to store the
value of the multiple choice answer.

selected-value
If specified, the value in this element is persisted to the workflow
data object attribute if that answer is selected by the user. If the
workflow data object attribute is a Boolean type this value need
not be specified, it gets a default value of true.

not-selected-value
If specified, the value in this element is persisted to the workflow
data object attribute if that answer is not selected by the user. If the
workflow data object attribute is a Boolean type this value need
not be specified, it gets a default value of false.

80 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Free Text:

question
This tag represents the question that is associated with this decision
activity, which for a free text question contains the metadata that is
outlined here.

message
This tag represents the parameterized text of the question to be asked for
all locales.

free-text
This tag contains the details of the free text answer that the user must
supply.

type This tag represents the required data type of the free text answer that must
be supplied.

wdo-attribute
This tag represents the workflow data object attribute that maps the free
text answer back into the workflow engine.

Validations
v The answer format and question text must be specified for a decision activity.
v The number of placeholders that are used in question text must equal the

number of mapped workflow data object attributes (for all locales).
v If an indexed item from a list workflow data object (that is,

CaseList[Context_Loop.loopCount]) is used as a question text parameter, then
the workflow data object must be a list workflow data object and the activity
that contains the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a question text
parameter, then the activity that contains the mapping must be a Parallel
decision activity.

<decision-activity id="1">

...

<question>
<message>

<message-text>
<localized-text>;

<locale language="en">
What is the age of the claimant, %1s?
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="Participant"
name="userName" />

</message-parameters>
</message>
<free-text type="INT32">

<wdo-attribute wdo-name="DecisionResult"
name="ageOfClaimant" />

</free-text>
</question>

...

</decision-activity>

Cúram Workflow Reference 81

v If an indexed item from the Parallel List Workflow Data Object is used as a
question text parameter, then the activity that contains the mapping must be a
Parallel Activity (that is, ParallelListWDO[Context_Parallel.occurrenceCount]).
The workflow data object being indexed by the Context_Parallel Workflow Data
Object must be the Parallel Activity List Workflow Data Object.

v For a question with a Free Form Text answer format, the answer data type must
be specified and the workflow data object attribute that is mapped must be valid
and match the answer data type. The workflow data object attribute that is
mapped cannot be a constant workflow data object attribute.

v For a question with a List answer format, at least one answer option must be
listed. All answer names must be valid Java attribute names.

Runtime Information
When an answer for a decision activity question is supplied, the DECISION.MADE
event is raised with the task identifier of the decision activity task that is used as
the event match data. The workflow event handler processes this event and this
causes the workflow process to be progressed.

If the answer supplied is a free text answer, it is mapped to the specified workflow
data object attribute for use later in the process where required.

Description of Context WDOs
The Context_Decision workflow data object is available for use in a data item or
function condition.

See “Conditions” on page 104 for a transition from a decision activity. The
attributes available depend on the answer format that is defined for the activity.

Free Text Answer
If the answer format is a free text, answer the attribute available is:

Context_Decision.value
The value of the free text answer supplied. This can be used in
transition conditions and can be mapped to a specified workflow
data object attribute.

Multiple Choice Answer
In this instance, the Context_Decision workflow data object is populated
with attributes for each of the answers available, each being of type
Boolean. This indicates whether that answer is selected or not. In the
multiple choice answer metadata snippet here, (“Multiple Choice” on page
79, if the user selected the first answer (Yes), this would be reflected with
the following Context_Decision workflow data object attribute that is set to
true:

Context_Decision.yesAnswer
This represents a Boolean that indicates whether the yes answer for
the question is selected. This can be used only in transition
conditions from the decision activity.

Alternatively, if the user selected the second answer (No), this would be
reflected with the following Context_Decision workflow data object
attribute that is set to true:

Context_Decision.noAnswer
This represents a Boolean that indicates whether the no answer for
the question is selected. This also can be used only in transition
conditions from the decision activity.

82 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Subflow
When a complex business process is designed, it might become too large to
manage as one monolithic process definition. A subflow activity allows another
process definition to be enacted as part of another process.

It can be a prudent decision to design process definitions as a set of subflows
regardless of whether there are concerns over size. This would allow sections of
the business process to change without affecting others. Also, the subflow
processes might act as reusable components that customers can reuse in building
their own higher-order process definitions.

Prerequisites
v The base details common to all the activity types that are supported by Cúram

workflow are described in “Base Activity” on page 30 and are applicable to the
subflow activity described here.

Subflow Process
To enact a process as a subflow, the subflow activity must identify the process that
is enacted by name. As with the other process enactment mechanisms, the released
version of the process is the one that is enacted.

Subflows can be enacted synchronously. This means that the branch of the parent
workflow that contains the subflow activity that started the subflow process waits
for that subflow process to finish before continuing.

Alternatively, a subflow can be enacted asynchronously. This means that after the
subflow activity starts the subflow process, the branch that contains that subflow
activity continues immediately with the outcome of the subflow process that has
no effect on the parent process.

Metadata

subflow

workflow-process
The name of the workflow process to start when the activity is run.
Process names are case-sensitive and the process name that is
specified here must exactly match that of the process to start as a
subflow.

synchronous
A flag to indicate whether the subflow is run synchronously or not
(see: “Subflow Process”) relative to its parent process.

Validations
v A workflow process for the subflow activity must be specified.
v The workflow process that is specified as the subflow must have at least one

released version.

<subflow-activity id="1">
...

<subflow workflow-process="ApproveCase" synchronous="true"/>

...
</subflow-activity>

Cúram Workflow Reference 83

Input Mappings
Data is supplied to the subflow when it is enacted from the parent process
workflow data objects. The subflow activity defines the mapping between the
parent process's workflow data objects and the subflows enactment data.

Metadata

input-mappings
This tag specifies how data is mapped from the currently running process
to a subprocess as enactment data when the subprocess is started. The
process that is specified as a subflow cannot have any workflow data
object attributes that are marked as required at enactment in which case no
input mappings are required.

mapping
A mapping represents the data that is pushed from a workflow data object
attribute to an attribute in the process that is enacted as a subflow. If a list
of data is required to enact the subflow process, attributes from list
workflow data objects can be used for this purpose. The number of
mappings that are specified is governed by how many attributes are
marked as required at enactment in the subflow process, since all such
attributes must be populated when the process starts.

source-attribute
This tag represents a workflow data object attribute from the parent
process to use to populate the associated attribute in the subflow when it is
enacted.

<subflow-activity id="1">
...

<input-mappings>
<mapping>

<source-attribute wdo-name="ManintainCase"
name="caseID" />

<target-attribute wdo-name="ApproveCase"
name="caseID" />

</mapping>
<mapping>

<source-attribute wdo-name="MaintainCase"
name="concernRoleID" />

<target-attribute wdo-name="ApproveCase"
name="concernRoleID" />

</mapping>
<mapping>

<source-attribute wdo-name=
"PersonDetailsList[Context_Loop.loopCount]"

name="identifier" />
<target-attribute wdo-name="PersonDetails"

name="identifier" />
</mapping>
<mapping>

<source-attribute wdo-name="ChildDetailsList"
name="identifier" />

<target-attribute wdo-name="ClaimantDependentList"
name="identifier" />

</mapping>
</input-mappings>

</subflow-activity>

84 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

target-attribute
This tag represents a workflow data object attribute from the subflow to be
populated with data from the associated attribute in the parent process at
enactment time.

source/target-attribute

wdo-name
This tag represents the name of a Cúram workflow data object as
described in “Workflow Data Objects” on page 16).

name This tag represents the name of a Cúram workflow data object
attribute as described in “Workflow Data Objects” on page 16).

Validations
v Every workflow data object attribute that is marked as required for enactment in

the subflow must be specified in the input mappings. If no workflow data object
attributes are marked as required for enactment in the subflow process, then no
input mappings are specified.

v The data type of the workflow data object attribute that is specified by the
target-attribute tag must match or be assignable from the attribute that is
specified by the source-attribute tag.

v If an indexed item from a list workflow data object (that is,
PersonDetailsList[Context_Loop.loopCount]) is specified in the source-attribute
tag of the subflow input mapping, then that workflow data object must be a list
workflow data object and the subflow activity that contains the input mapping
must be contained within a loop. The data type of the workflow data object
attribute that is specified by the target-attribute tag must match or be
assignable from the attribute that is specified by the source-attribute tag.

v If the specified subflow input mapping uses a list workflow data object, then the
workflow data object attributes for both the parent source-attribute and
subflow process target-attribute must be list workflow data objects.

Output Mappings
Output Mappings are only applicable to synchronous subflow activities as
asynchronous subflows can continue without completing the activity. Data is
supplied to the parent process from the subflow activity after it completed. The
subflow activity defines the mapping between a subflow workflow data object
attribute and the parent process's workflow data object attribute.

Metadata

Cúram Workflow Reference 85

output-mappings
This tag specifies how data is mapped from the started subprocess to the
parent process when the subprocess is completed. The process that is
specified as a subflow cannot have any output mappings that are defined,
in which case the subflow completes as normal.

mapping
This tag represents the data that is pushed from a subflow workflow data
object attribute to an attribute in the parent process. If a list of data is
being pushed from the subflow process to the parent process, attributes
from list workflow data objects can be used for this purpose. The number
of mappings that are specified is governed by the number of output
mappings specified.

source-attribute
This tag represents a workflow data object attribute from the subflow
process, which is used to populate the associated attribute in the parent
process upon completion.

target-attribute
This tag represents a workflow data object attribute from the parent to be
populated with data from the associated attribute in the subflow process
when completed.

source/target-attribute

wdo-name
This tag represents the name of a Cúram workflow data object (as
described in “Workflow Data Objects” on page 16).

name This tag represents the name of a Cúram workflow data object
attribute (as described in “Workflow Data Objects” on page 16).

Validations
v The parent target-attribute and subflow source-attribute workflow data

object attributes used in the subflow output mapping must be valid within the
context of the containing process definition.

v The data type of the workflow data object attribute that is specified by the
parent target-attribute tag must match or be assignable from the attribute that
is specified by the subflow source-attribute tag.

<subflow-activity id="1">
...

<output-mappings>
<mapping>

<source-attribute wdo-name="SubflowCaseWDO"
name="participantName" />

<target-attribute wdo-name="CaseWDO"
name="participantName" />

</mapping>
<mapping>

<source-attribute wdo-name="SubflowChildDetailsList"
name="identifier" />

<target-attribute wdo-name="ChildDetailsList"
name="identifier" />

</mapping>
</output-mappings>

...
</subflow-activity>

86 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v If the specified subflow output mapping uses a list workflow data object, then
the mapped workflow data object attributes for both the parent
target-attribute and subflow process source-attribute must be of type list.

Loop Begin and Loop End
Many business processes are required to repeat until some condition is met. In
Cúram, this is implemented by using the loop-begin and loop-end activities. All
activities that are between a loop-begin and its associated loop-end activity are
repeated until the loop completes.

Prerequisites
v The base details common to all the activity types that are supported by Cúram

workflow are described in “Base Activity” on page 30 and are applicable to the
loop begin/loop end activities described here.

Overview
In a process definition, loop begin and loop end activities come in pairs, and the
metadata allows each loop-begin to know its associated loop-end and vice versa.
To add a sequence of activities to a loop, a transition is created from the loop-begin
activity to the first activity to be repeated. Subsequent activities in the sequence are
linked by using transitions as would normally be done outside a loop; however,
the last activity in the sequence has a transition to the loop-end activity. A common
impulse is to also add a transition from the loop-end activity to the start to create
the cycle; however, this is incorrect and results in an invalid process definition.

A loop must also specify the criteria that the loop uses to determine whether to
terminate. To support this, a loop in Cúram workflow has a loop-exit condition.

Loops can contain other loops when they are fully nested and do not interleave
each other. Therefore, this ensures that the loops and the process definition remain
a valid block structure as required by the Cúram workflow engine (see “Workflow
Structure” on page 110).

Loop Type
In addition to the loop-exit condition, a loop also specifies whether the condition
should be tested before the loop runs (a while loop) or at the end of a loop
execution (a do-while loop). A while loop can never run the activities in the loop
and jump to the activity that follows the loop if the exit condition is met at the
start of the loop, whereas a do-while loop runs the activities in the loop at least
once.

Metadata

Loop Begin Activity

Cúram Workflow Reference 87

loop-type
The loop-type specifies how the loop is executed as detailed in “Loop
Type” on page 87. The only two valid values for the name attribute are
while and do-while.

condition
The condition tag specifies the condition that is evaluated based on
Workflow Data Object values (see: “Workflow Data Objects” on page 16).
When list workflow data objects are present in the workflow, two
attributes that are not part of that workflow data object metadata are made
available when creating a loop condition expression by using a list
workflow data object. These are as follows:
v size() : This evaluates to a number (of type INTEGER) to indicate the

number of items in the list.
v isEmpty() : This evaluates to a BOOLEAN flag to indicate if the list

contains any elements or not.

The actual condition metadata is used in other places in the process
definition metadata and is thus described in the dedicated chapter,
“Conditions” on page 104.

block-endpoint-ref
The block-endpoint-ref in this context allows the loop-begin-activity to
recognize its associated loop-end-activity. This information is useful to
the workflow engine when the loop is run. For example, when a while
loop's exit condition evaluates to true before the loop runs, the
block-endpoint-ref tells the workflow engine which activity to jump to
and continue the execution of the process.

Loop End Activity

block-endpoint-ref
The block-endpoint-ref in this context allows the loop-end-activity to
recognize its associated loop-begin-activity. This information is useful to
the workflow engine when the loop is run. For example, if after the
execution of a loop the exit condition evaluates to false, the
block-endpoint-ref tells the workflow engine which activity to jump to in
order to begin another iteration of the loop.

<loop-begin-activity id="1">
...

<loop-type name="do-while"/>

...

<condition>
<expression id="1" data-item-lhs="Context_Loop.loopCount"

operation="<" data-item-rhs="UserAccountWDO.size()"/>
</condition>

<block-endpoint-ref activity-id="5"/>

</loop-begin-activity>

<loop-end-activity id="3">
...

<block-endpoint-ref activity-id="1"/>

</loop-end-activity>

88 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Runtime Information
It is expected that any activity within a loop is run more than once during the
execution of a process instance. To prevent the process instance data for the
activity that is becoming corrupted by subsequent iterations, each activity instance
is associated with a specific iteration and so is uniquely identifiable by the
workflow engine regardless of the number of times the loop is run.

Description of Context WDOs
The Context_Loop workflow data object is available on the following occasions:
v When creating the loop condition associated with a loop-begin activity.
v When creating the outgoing transition conditions from a loop-begin activity, or

from any activity that is contained within a loop (see “Conditions” on page 104).
v When creating the input mappings for any automatic activity or subflow activity

within a loop.
v When creating the input mappings for any allocation strategy function or

deadline handler function present in an activity within a loop.
v When specifying a subject text parameter for a Manual or Decision Activity that

is contained within a loop, or for a notification that is attached to an activity that
is contained within a loop.

v When specifying action text parameters and action link parameters for a Manual
or Decision Activity that is contained within a loop, or for a notification that is
attached to an activity that is contained within a loop.

v When specifying the identifier for a business object association for a Manual
Activity that is contained within a loop.

v When specifying a question text parameter for both a free-form or multiple
choice question for a Decision Activity that is contained within a loop.

v When specifying a body text parameter for a notification that is attached to an
activity that is contained within a loop.

The Context_Loop workflow data object attributes available are:

Context_Loop.loopCount
The number of times that a loop is iterated over.

Parallel
In business processes, it can be required to send multiple tasks to different human
agents at the same time to expedite the progress of the overall process. When the
number of parallel paths are known at development time, this can easily be
achieved by using a split. However, in some cases the number of paths is not
known until runtime. Such situations can be modeled by using parallel activities.

A parallel activity acts as a wrapper around existing activities. The effect of using
one of these new activities at runtime is that multiple instances of the wrapped
activity are run in parallel. To date, the only supported types of wrapped activity
are Manual (“Manual” on page 56) and Decision (“Decision” on page 74) activities.
Therefore, running a parallel activity currently equates to the creation and
allocation of multiple tasks in parallel.

Prerequisites
v The base details common to all the activity types that are supported by Cúram

workflow are described in “Base Activity” on page 30 and are applicable to the
parallel activity described here.

Cúram Workflow Reference 89

v As parallel activities wrap existing activities in a workflow process definition,
the metadata that is described in “Manual” on page 56 and “Decision” on page
74 is also relevant to the parallel activity described here.

Metadata
A parallel activity must specify the type of activity it wraps. A list workflow data
object must also be associated with the parallel activity. The number of items in
this list workflow data object then determines the number of instances of that
wrapped activity that is created by the workflow engine at runtime.

Generic Metadata for a Parallel Activity

manual-activity/decision-activity
This reflects the type of activity that is wrapped by the parallel activity.
Currently, two types of wrapped activities are supported, “Manual” on
page 56 and “Decision” on page 74 activities. The types of activity that can
be wrapped by a parallel activity can be seen in the ParallelActivityType
codetable.

list-wdo-name
Each parallel activity must have a list workflow data object associated with
it. The number of instances of the wrapped activity that are created at
runtime is determined by the number of items in this list workflow data
object.

Metadata for a Parallel Manual Activity
This example illustrates the metadata that is associated with the wrapped activity
of type Manual.

This metadata is exactly the same that as that seen for a manual activity that is
described in “Manual” on page 56 and hence is not described here again. Any
validations that pertain to the parallel manual activity mappings are also described
in “Manual” on page 56. The Context_Parallel Workflow Data Object and an

<parallel-activity id="1" category="AC1">
<list-wdo-name>EmployerDetailsListWDO</list-wdo-name>
<manual-activity>

<name>
<localized-text>

<locale language="en">
CheckEmployerDetailsTasks</locale>

</localized-text>
</name>
..........

</manual-activity>
</parallel-activity>

or

<parallel-activity id="1" category="AC1">
<list-wdo-name>ChildDetailsListWDO</list-wdo-name>
<decision-activity>

<name>
<localized-text>

<locale language="en">ValidateChildDetails</locale>
</localized-text>

</name>
..........

</decision-activity>
</parallel-activity>

90 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

indexed item from the Parallel Activity List WDO can be used in all the available
mappings for a Parallel Manual Activity. Examples of such usage can be seen here:

Metadata for a Parallel Decision Activity
This example illustrates the metadata that is associated with the wrapped activity
of type Decision.

This metadata is exactly the same as that seen for a decision activity that is
described in “Decision” on page 74 and hence is not described here again. Any
validations that pertain to the parallel decision activity mappings are also
described in “Decision” on page 74. The Context_Parallel Workflow Data Object
and an indexed item from the Parallel Activity List WDO can be used in all the
available mappings for a Parallel Decision Activity. Examples of such usage can be
seen here:

<parallel-activity id="1" category="AC1">
<list-wdo-name>EmployerDetailsListWDO</list-wdo-name>
<manual-activity>

...
<task>

<message>
<message-text>

<localized-text>
<locale language="en">Check employer
details for %1s. This is employer number: %1n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
name="fullName" />

<wdo-attribute
wdo-name=
"Context_Parallel" name="occurrenceCount" />

</message-parameters>
</message>
...

</task>
...
<event-wait wait-on-all-events="false">

<events>
<event identifier="1" event-class="EMPLOYER"

event-type="DETAILSCHECKED">
<event-match-attribute wdo-name=

"EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
name="identifier" />

</event>
</events>

</event-wait>
<biz-object-associations>

<biz-object-association biz-object-type="BOT2">
<wdo-attribute
wdo-name=

"EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
name="identifier" />

</biz-object-association>
</biz-object-associations>

</manual-activity>
</parallel-activity>

Cúram Workflow Reference 91

<parallel-activity id="1" category="AC1">
<list-wdo-name>ChildDetailsListWDO</list-wdo-name>
<decision-activity>

...
<message>

<message-text>
<localized-text>

<locale language="en">In this task the details
for child %1s must be validated. This is child
number: %1n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
name="fullName" />

<wdo-attribute
wdo-name=
"Context_Parallel" name="occurrenceCount" />

</message-parameters>
</message>
<decision-action>

<message>
<message-text>

<localized-text>
<locale language="en">Validate the child details
for %1s associated with this case %2n.</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
name="fullName" />
<wdo-attribute wdo-name="CaseDetails"

name="identifier" />
</message-parameters>

</message>
</decision-action>
...
<question>

<message>
<message-text>

<localized-text>
<locale language="en">Are the details for this
child whose first name is %1s and second name
%2s correct?</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute
wdo-name=

"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
name="firstName" />
<wdo-attribute

wdo-name=
"ChildDetailsListWDO[Context_Parallel.occurrenceCount]"

name="surname" />
</message-parameters>

</message>
<answers multiple-selection="false">

<answer name="answerYes">
<answer-text>

<localized-text>
<locale language="en">Yes</locale>

</localized-text>
</answer-text>

</answer>
<answer name="answerNo">

<answer-text>
<localized-text>

<locale language="en">No</locale>
</localized-text>

</answer-text>
</answer>

</answers>
</question>
...

</decision-activity>
</parallel-activity>

92 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Validations
v A workflow data object must be specified for a parallel activity. This must be a

list workflow data object and it must be valid in the context of the containing
workflow process definition.

v All of the other validations that pertain to parallel activities are described in the
sections that describe the activities that a parallel activity can wrap (that is,
“Manual” on page 56 and “Decision” on page 74).

Runtime Information
The workflow engine loads the instance data for the list workflow data object
associated with the parallel activity. For each item in the list workflow data object,
a new instance of the wrapped activity is created and run.

The details of what occurs when these instances of the wrapped activity are run
can be found in the relevant sections that describe the activities that a parallel
activity can wrap (“Manual” on page 56 and “Decision” on page 74).

At runtime, the Workflow Engine treats a Parallel Activity as if it were multiple
activities, contained within a Parallel (AND) Split/Join block. One Activity Instance
is created per item in the Parallel Activity List WDO (for example, if that list
contains three items, then three Activity Instances is created). This ensures that all
of the activity instances that are associated with the parallel activity must be
completed before the actual parallel activity is deemed to be complete and the
workflow can progress.

To resolve the mappings that are associated with a Parallel Activity, each instance
of the wrapped activity is associated with one item from the Parallel Activity List
WDO. The item is indexed by using the Context_Parallel Workflow Data Object
(for example, ChildDetailsListWDO[Context_Parallel.occurrenceCount]).

Description of Context WDOs
Each Parallel Activity Instance is associated with one item from the Parallel
Activity List WDO. This item is accessed by using the Context_Parallel Workflow
Data Object to index the Parallel Activity List WDO (for example,
ChildDetailsListWDO[Context_Parallel.occurrenceCount]). Indexed items can then
be used to map data in the usual way.

Examples of such mappings can be seen in the metadata examples that are shown
here (see “Metadata for a Parallel Manual Activity” on page 90 and “Metadata for
a Parallel Decision Activity” on page 91. The one attribute available on this
workflow data object is:

Context_Parallel.occurrenceCount
Each Parallel Activity Instance is associated with one item from the Parallel
Activity List WDO. The occurrenceCount attribute is the index of that item
within the Parallel Activity List WDO. It is of type INTEGER and is a
zero-based index.

Cúram Workflow Reference 93

Activity Notifications
The workflow engine is able to notify interested users about the progress of a
workflow process instance. Essentially the workflow engine can raise a notification
when an activity runs if the notification is specified in the associated process
definition metadata. A notification is specified for an activity as more metadata
that can be attached to any activity type.

When the workflow engine runs an activity it checks whether a notification is
configured for that activity. If one exists, a notification is created by the workflow
engine that details that a particular step in the workflow process is performed. The
delivery of these notifications to the user is determined by the notification delivery
mechanism that is configured in the Cúram application. Notifications can be
delivered by using emails, as alerts sent to a user's inbox, or by using both emails
and alerts.

Notification Details
A notification is simply information that is sent to a human agent when a step in
the process executes. Notifications manifest themselves as alerts in a user's inbox
or as emails.

The agents to which the notification must be sent are determined by the allocation
strategy (see “Notification Allocation Strategy” on page 98) specified for the
notification. The details that are displayed to the user in the alert or email are
specified as part of the notification metadata.

Metadata

94 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

<manual-activity id="1" category="AC1">

...

<notification delivery-mechanism="DM1">
<subject>
<message>

<message-text>
<localized-text>

<locale language="en">
The case number %1n for Claimant %2s has
been closed.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

<wdo-attribute wdo-name="PersonDetails"
name="userName" />

</message-parameters>
</message>

</subject>
<body>

<message>
<message-text>

<localized-text>
<locale language="en">
This case concerned %1n and claimant %2s.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

<wdo-attribute wdo-name="PersonDetails"
name="fullName" />

</message-parameters>
</message>

</body>
<allocation-strategy type="target" identifier="1" />
<actions>

<action page-id="viewTaskHome" principal-action="false">
<message>

<message-text>
<localized-text>

<locale language="en">
View the task associated with the %1n case.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name="TaskCreateDetails"
name="caseID" />

</message-parameters>
</message>
<link-parameter name="childID">

<wdo-attribute wdo-name="ChildDependents"
name="childID" />

</link-parameter>
<multiple-occurring-action>

<list-wdo-name>ChildDependents</list-wdo-name>
</multiple-occurring-action>

</action>
<action page-id="viewCaseHome" principal-action="false">

<message>
<message-text>

<localized-text>
<locale language="en">
View the case details for %1n.
</locale>

</localized-text>
</message-text>
<message-parameters>

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</message-parameters>
</message>
<link-parameter name="caseID">

<wdo-attribute wdo-name=
"CaseList[Context_Loop.loopCount]"
name="identifier" />

</link-parameter>
</action>

</actions>
</notification>

...
</manual-activity>

Cúram Workflow Reference 95

delivery-mechanism
This tag describes the mechanism that is used to deliver the notification.
The delivery mechanisms available are specified in the application
codetable DeliveryMechanism. Both the Cúram application and customers
can extend this codetable and add further delivery mechanisms if required.
The delivery mechanism that is specified plays no functional role in the
workflow engine as it calls the delivery mechanism that is configured in
the application to deliver the newly created notification.

subject
This tag represents a parameterized text message that details the subject of
the notification for all locales. This subject is displayed in the user's inbox
for the notification alert. For details on parameterized messages, see
“Manual” on page 56.

body This tag represents a parameterized text message that represents the body
of the text that is associated with this notification for all locales. When the
user clicks the notification subject in the inbox, this body text is displayed
as the full text of the notification.

allocation-strategy
This tag represents the allocation strategy that is used to determine the
agents to which this notification is sent to (see “Notification Allocation
Strategy” on page 98).

actions
In the same way a “Manual” on page 56 can have actions that are
associated with its task, a notification can associate actions that the notified
user can take. This piece of metadata represents the details of these
notification actions and the metadata details for actions is detailed in “Task
details” on page 56.

multiple-occurring-action
This tag signifies that this notification action represents a multiple
occurring action. This means that if this metadata is specified for a
notification action, the workflow engine creates one action record for each
item in the list workflow data object specified as the multiple occurring
action, when that activity is run.

If the multiple occurring action is specified for a notification action, then
an attribute from the associated list workflow data object must be used as
a link parameter for the notification action.

list-wdo-name
The name of the list workflow data object for use with the multiple
occurring action.

Validations
v A subject must be defined for the notification.
v Every workflow data object attribute mapped to a notification subject must exist

in the containing process definition and be a valid workflow data object.
v If an indexed item from a list workflow data object (that is,

CaseList[Context_Loop.loopCount]) is used as a notification subject text
parameter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a notification subject
text parameter, then the activity that contains the notification must be a Parallel
activity.

96 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v If an indexed item from the Parallel List Workflow Data Object is used as a
notification subject text parameter, then the activity that contains the mapping
must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v A notification body must be defined.
v Every workflow data object attribute mapped to a notification body must exist

in the containing process definition and be a valid workflow data object.
v If an indexed item from a list workflow data object (that is,

CaseList[Context_Loop.loopCount]) is used as a notification body text parameter,
then the workflow data object must be a list workflow data object and the
activity that contains the mapping must be contained within a loop.

v If the Context_Parallel workflow data object is used as a notification body text
parameter, then the activity that contains the notification must be a Parallel
activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a
notification body text parameter, then the activity that contains the mapping
must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v An allocation strategy must be defined for an activity notification.
v If a function is specified as the notification allocation strategy, it must be a valid

Cúram business method that returns an AllocationTargetList object.
v If the allocation type is classic or CER rule, then the specified ruleset must be

valid.
v A delivery mechanism must be defined for an activity notification.
v The workflow data object attributes mapped to the notification action text and

notification action link parameters for a notification action must exist in the
containing process definition.

v If an indexed item from a list workflow data object (that is,
PersonDetailsList[Context_Loop.loopCount]) is used as a notification action text
or notification action link parameter mapping, then the workflow data object
must be a list workflow data object and the activity that contains the mapping
must be contained within a loop.

v If the Context_Parallel workflow data object is used as a notification action text
or notification action link parameter mapping, then the activity that contains the
notification must be a Parallel activity.

v If an indexed item from the Parallel List Workflow Data Object is used as a
notification action text or notification action link parameter mapping, then the
activity that contains the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the
Parallel Activity List Workflow Data Object.

v The number of placeholders that are used in the notification subject text,
notification action text and notification body text must equal the number of
mapped workflow data object attributes (for all locales).

v The workflow data object specified for use in the multiple occurring action must
be a valid workflow data object in the context of the containing workflow
process definition. It must also be of type List

Cúram Workflow Reference 97

v At least one attribute from the multiple occurring action list workflow data
object must be used in the link parameters that are specified for a multiple
occurring action.

Code
For each action defined, the action page must refer to a valid Cúram page in the
application whose page parameters are fully populated by the action link
parameters that are contained in the notification metadata.

A LocalizableStringResolver API is provided to the application, which allows for
parameterized message strings to be resolved. The methods in this API resolve and
return the specified message for the required locale. Along with this, any workflow
data objects to be used in the message placeholders is resolved and included as
part of the string returned.

As part of the LocalizableStringResolver API, a NotificationStringResolver
interface is provided for resolving the parameterized messages that are associated
with notifications. The notification subject, body, and action text can be resolved
for use in the application by using the methods that are contained in this API. The
application should use these methods to process the notification when the
workflow engine starts the associated notification delivery method in the
application.

Runtime Information
After the workflow engine is completed running an activity, it checks whether an
associated notification is defined for that activity. If one is defined, the engine
determines the users to be notified from the allocation strategy that is employed
and calls the notification delivery method in the application with the notification
details.

Notification Allocation Strategy

Prerequisites
The notification allocation strategy determines the user or users to be notified
when the associated activity occurs.

Defining the notification allocation strategy to be used is the same as that used for
manual activity tasks (see “Allocation strategy” on page 63).

Code
The application must implement the NotificationDelivery callback interface to
determine how notifications are handled in the application.

The workflow engine calls the deliverNotification method in the
curam.util.workflow.impl.NotificationDelivery implementation class to process
the notification. The engine passes both the list of allocation targets that are
determined by the allocation strategy and the details of the required notification to
this application method.

The application property curam.custom.notifications.notificationdelivery defines
what implementation of the NotificationDelivery interface is used by the
workflow engine to process the notification.

The deliverNotification method in this default implementation class is
overloaded. This is because the various allocation strategy types return the
allocation targets in different formats. However, this is an implementation detail

98 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

that developers of custom notification delivery classes should not have to deal
with especially since the business processing for all versions of the method should
be the same.

To mitigate against this issue the
curam.core.sl.impl.DefaultNotificationDeliveryAdapter provides a more
convenient mechanism for implementing a work resolver. This class implements
the different methods and converts their input parameters into allocation target
lists allowing developers of custom notification delivery logic to extend this class
and implement one method that is called regardless of the source of the allocation
targets.

In addition to this adapter class the application includes with a notification
delivery implementation that is ready for immediate use. This class is called
curam.core.sl.impl.DefaultNotificationDelivery and it also serves as an
example of how to extend the adapter.

The notification delivery strategies are listed in the DELIVERYMECHANISM code
table. Adding a new strategy is a matter of extending this code table with a new
strategy (for example SMS) and implementing a delivery strategy that recognizes
this code and performs the appropriate logic. However, since the notification
delivery class is set by using a single application property, replacing the
curam.core.sl.impl.DefaultNotificationDelivery class would disable the
immediately available delivery mechanisms. If the goal is to extend rather
replacing the immediately available delivery mechanisms, custom classes should
extend the curam.core.sl.impl.DefaultNotificationDelivery in a way that

package curam.util.workflow.impl;

...

public interface NotificationDelivery {

boolean deliverNotification(
final NotificationDetails notificationDetails,
final Object allocationTargets);

boolean deliverNotification(
final NotificationDetails notificationDetails,
final Map allocationTargets);

boolean deliverNotification(
final NotificationDetails notificationDetails,
final String allocationTargetID);

...
}

package curam.core.sl.impl;

...

public abstract class DefaultNotificationDeliveryAdapter
implements curam.util.workflow.impl.NotificationDelivery {

public abstract boolean deliverNotification(
final NotificationDetails notificationDetails,
final AllocationTargetList allocationTargets);

...
}

Cúram Workflow Reference 99

preserves the original functionality. The
curam.core.sl.impl.DefaultNotificationDelivery class is implemented with this
in mind.

The curam.core.sl.impl.DefaultNotificationDelivery class implements the
deliverNotification method from the abstract adapter but immediately delegates
the identification of the mechanism to use to a protected method. The protected
selectDeliveryMechanism method can be overridden by subclasses to identify any
custom delivery mechanisms and perform the appropriate operations as shown in
the example here:

Notice that the selectDeliveryMechanism method in the custom class first delegates
to its super class before running any of its own logic. Extending the functionality
in this was allows custom classes to start the immediately available delivery

package curam.core.sl.impl;

public class DefaultNotificationDelivery
extends DefaultNotificationDeliveryAdapter {

public boolean deliverNotification(
NotificationDetails notificationDetails,
AllocationTargetList allocationTargetList) {

return selectDeliveryMechanism(
notificationDetails, allocationTargetList);

}

protected boolean selectDeliveryMechanism(
NotificationDetails notificationDetails,
AllocationTargetList allocationTargetList) {

boolean notificationDelivered = false;
if (notificationDetails.deliveryMechanism.equals(

curam.codetable.DELIVERYMECHANISM.STANDARD)) {
notificationDelivered = standardDeliverNotification(

notificationDetails, allocationTargetList);
} else if (
...
return notificationDelivered;

}

...

}

public class CustomNotificationDeliveryStrategy
extends DefaultNotificationDelivery {

protected boolean selectDeliveryMechanism(
NotificationDetails notificationDetails,
AllocationTargetList allocationTargetList) {

boolean notificationDelivered = false;
boolean superNotificationDelivered = false;
superNotificationDelivered = super.selectDeliveryMechanism(

notificationDetails, allocationTargetList);
if (notificationDetails.deliveryMechanism.equals(

curam.codetable.DELIVERYMECHANISM.CUSTOM)) {
notificationDelivered = customDeliverNotification(

notificationDetails, allocationTargetList);
}
return (superNotificationDelivered || notificationDelivered);

}
}

100 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

mechanism without having to know the specific codes the parent class recognizes.
This approach is also upgrade-friendly as if a future version of Cúram supports
more delivery mechanisms immediately available a custom class that is
implemented as shown here does not need to change to avail of the new
functionality.

The Boolean flag that is returned from the notification delivery function here is
used to indicate to the Workflow Engine if the notification was delivered to at least
one user on the system. If it was not, then the engine writes a workflow audit
record that details this fact.

Transitions
Transitions provide the links between activities. They are the primary flow control
construct and dictate the order in which activities are run. Transitions are
unidirectional and an activity can have multiple outgoing and incoming transitions
that form branch and synchronization points in each case.

Since every process definition must have one start and one end activity, a process
definition can be thought of informally as a directed graph in which activities are
the vertices, transitions are the arcs and every path from the start activity
eventually leads to the end activity. See “Base Activity” on page 30.

Metadata

Cúram Workflow Reference 101

transitions
A workflow process definition must contain at least one transition. This tag
contains the details of all of the transitions between the activities in the
specified workflow process definition.

transition
This tag contains the details of one transition between two activities in the
specified workflow process definition. The following mandatory fields that
constitute a transition are described here:

id This attribute is a 64-bit identifier that is supplied by the Cúram
key server when transitions are created in the Process Definition
Tool (PDT). The transition identifier is required to be unique within

<workflow-process id="32456" >
<name>WorkflowTestProcess</name>
...
<wdos>
...
</wdos>
<activities>

<start-process-activity id="512">
...

</start-process-activity>
<route-activity id="513" category="AC1">

...
</route-activity>
<route-activity id="514" category="AC1">

...
</route-activity>
<end-process-activity id="515">

...
</end-process-activity>

</activities>
<transitions>

<transition id="1" from-activity-idref="512"
to-activity-idref="513" />

<transition id="2" from-activity-idref="513"
to-activity-idref="514">

<condition>
<expression id="5"

data-item-lhs="TaskCreateDetails.reservedByInd"
operation="==" data-item-rhs="true"
opening-brackets="2"/>

<expression id="6"
data-item-lhs="TaskCreateDetails.subject"
operation="&gt;"
data-item-rhs="&quot;MANUAL&quot;"
conjunction="and" closing-brackets="1"/>

<expression id="7"
data-item-lhs="TaskCreateDetails.status"
operation="!="
data-item-rhs="&quot;OPEN&quot;"
conjunction="or"/>

<expression id="8"
data-item-lhs="TaskCreateDetails.status"
operation="&lt;="
data-item-rhs="&quot;INPROGRESS&quot;"
conjunction="or" closing-brackets="1"/>

</condition>
</transition>
<transition id="3" from-activity-idref="514"

to-activity-idref="515">
</transitions>

</workflow-process>

102 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

a process definition but global uniqueness within all of the process
definitions on the system is not required.

from-activity-idref
This attribute is the 64-bit identifier of the source activity of the
transition.

to-activity-idref
This attribute is the 64-bit identifier of the target activity of the
transition.

condition
Transitions can optionally have a condition to decide whether the
transition is followed. A condition is a list of expressions that perform
logical operations on workflow data objects attributes. Conditions are
described in more detail in “Conditions” on page 104.

Validations
v The source activity that is defined for the transition must be a valid activity

within the containing workflow process definition.
v The target activity that is defined for the transition must be a valid activity

within the containing workflow process definition.
v The source and target activities that are defined for a transition cannot be the

same activity.
v The start process activity in a workflow process definition must not contain any

incoming transitions.
v The end process activity in a workflow process definition must not contain any

outgoing transitions.
v All activities that are defined in the workflow process definition, except for the

end process activity, must contain at least one inbound transition.
v All activities that are defined in the workflow process definition, except for the

start process activity, must contain at least one outbound transition.

Runtime Information
Activities that perform some application-related work (as opposed to workflow
engine work only such as route and end process activities) require a clear
transactional boundary between the engine and application code. It is also useful
to have asynchronous invocations between the workflow engine and the
application (for example, a user should not have to wait while workflow
transitions to the next activity before control is returned to them in the user
interface).

To this end, there are three distinct functions present in a workflow activity,
start(), execute() and complete(). After the completion of an activity in the
workflow process instance, the workflow engine calls the function to continue the
process. This function evaluates the outgoing transitions from that activity to
determine which one(s) are followed.

For each activity to be followed, the corresponding start() function is called. The
appropriate activity instance data is then set up for that activity. If the activity is to
be run directly with no JMS (Java Message Service (JMS) API is a part of Java EE)
messaging required (that is, a route activity is always run directly as there is no
application-related work that is involved), the execute() method is called here.
Otherwise, a JMS message is sent to run the specified activity (that is, an automatic

Cúram Workflow Reference 103

activity). The workflow message handler resolves the process and activity that is
specified in the message and calls the execute() function on the activity.

After the application code is called to complete the work that is specified by the
activity, another message is sent to complete the activity. Again, the workflow
message handler resolves the process and activity that is specified in the message
and calls the complete function for the activity. After the activity is marked as
complete, the function to continue the process is called again to resolve the set of
transitions to be followed from the completed activity and the process begins
again.

Conditions
The flow control constructs require or support the evaluation of conditions to
determine how the workflow proceeds. The Loop Begin activities must have some
metadata that specifies the loop exit conditions, while transitions can optionally
have a condition to decide if the transition is followed.

See “Transitions” on page 101 and “Loop Begin and Loop End” on page 87.

This section describes the process definition metadata construct that represents a
condition. A condition is a list of expressions that perform logical operations on
workflow data objects attributes. The condition itself is a compound whose value
is conjunction or disjunction of its constituent expressions. The parent constructs
(loops and transitions) are responsible for taking appropriate actions as a result of
the evaluation of conditions.

Metadata

104 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

condition
This metadata is mandatory for a loop begin activity (as a loop must have
an exit condition that is specified for it) but optional for a transition (a
transition cannot have a condition that is specified for it). It contains the
details of all the expressions that are defined for the condition.

<workflow-process id="32456" >
...
<activities>
...
</activities>
<transitions>

<transition id="1" from-activity-idref="512"
to-activity-idref="513">

<condition>
<expression id="5"

data-item-lhs="TaskCreateDetails.reserveToMeInd"
operation="==" data-item-rhs="true"
opening-brackets="2"/>

<expression id="6"
data-item-lhs="TaskCreateDetails.caseID"
operation="&amp;gt;"
data-item-rhs="2" conjunction="and"
closing-brackets="1"/>

<expression id="7"
data-item-lhs="TaskCreateDetails.status"
operation="!="
data-item-rhs=""Completed""
conjunction="or"/>

<expression id="8"
data-item-lhs="TaskCreateDetails.status"
operation="&amp;lt;="
data-item-rhs=""Closed""
conjunction="or" closing-brackets="1"/>

</condition>
</transition>
<transition id="2" from-activity-idref="512"

to-activity-idref="513">
<condition>

<expression id="9" function="isNothing"
data-item-rhs="TaskCreateDetails.subject"/>

</condition>
</transition>
<transition id="3" from-activity-idref="513"

to-activity-idref="514">
<condition>

<expression id="10"
data-item-rhs="TaskCreateDetails.reserveToMeInd"
conjunction="and" function="not" />

</condition>
</transition>
<transition id="4" from-activity-idref="514"

to-activity-idref="515">
<condition>

<expression id="6"
data-item-lhs
="ClaimantDependents[Context_Loop.loopCount]"
operation="&amp;gt;"
data-item-rhs="20"
conjunction="and"
closing-brackets="1"/>

</condition>
</transition>

</transitions>
</workflow-process>

Cúram Workflow Reference 105

expression
This metadata tag contains the details of one expression that is contained
in a condition. There may be one or many expressions that are specified for
an associated condition. Two types of expression can be defined in a
condition. These are function expressions (using one of two predefined
functions, not() and isNothing()) and data item expressions (where the
condition expression created applies the chosen operator to either two
workflow data object attributes, or a workflow data object attribute and a
constant). A transition expression consists of the following attributes:

id This attribute represents a 64-bit identifier that is supplied by the
Cúram key server when transition expressions are created in the
PDT. The expression identifier is required to be unique within a
process definition but global uniqueness within all of the process
definitions on the system is not required.

data-item-rhs
This metadata tag represents the name of the data item to use on
the right side of the condition expression. For a data item condition
expression, it can represent a workflow data object attribute (see
“Workflow Data Objects” on page 16 or a constant value that the
chosen operator is applied to. For function condition expressions,
this represents a workflow data object attribute that either of the
two predefined functions are used against to evaluate the
condition.

data-item-lhs
This metadata tag is optional as it is not required for a function
condition expression. For a data item condition expression, it
represents the name of the data item to use on the left side of the
condition (that is, a workflow data object attribute).

operation
This metadata tag is optional as it is not required for a function
condition expression. For a data item condition expression, it
represents an identifier for the logical operation that is applied to
either two workflow data object attributes or a workflow data
object attribute and a constant value. The following is the list of
valid operators that can be used in a data item condition
expression:

Table 4. Condition Expression Operators

Operator Explanation

== equal to

!= not equal to

<= less than or equal to

>= greater than or equal to

< less than

> greater than

conjunction
This metadata tag represents an identifier for a logical conjunction
that can be used in either a function or data item condition
expression. There are two possible values for this attribute, and (the

106 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

default) and or. When a condition consists of multiple expressions,
the logical conjunction is used in the evaluation of the complete
condition.

function
This metadata tag is optional as it is only used when a function
condition expression is specified. As stated previously, there are
two predefined functions, Not() and isNothing(). The Not()
function acts as a logical inversion operator. In normal cases, this is
applied to a Boolean value. The isNothing() function is applied to
any workflow data object attribute type other than a Boolean
value. It is used to test the scenarios where required data does not
exist or is not provided. The function returns a Boolean value of
True if the workflow data object attribute being examined does not
contain any data.

opening-brackets
This metadata tag is optional (the default is 0) as it cannot be
specified for either type of condition expression. It represents the
number of opening brackets to insert at the start of the expression.

closing-brackets
This metadata tag is optional (the default is 0) as it cannot be
specified for either type of condition expression. It represents the
number of closing brackets to insert at the end of the expression.

The number of opening and closing brackets that are specified for
an individual expression do not have to match (unless there is only
one expression in the condition). The overall number of opening
and closing brackets in the condition as a whole (with all of the
expressions included) must be the same. Therefore, care should be
taken when the number and position of opening and closing
brackets are specified within an individual expression, and the
condition as a whole, as these brackets help determine how the
condition and the individual expressions within that condition are
evaluated. The same care should be taken when the conjunction of
an expression is specified as failure to do so can lead to
unexpected results.

Validations
v The workflow data object attribute that is specified as the right side data item of

the condition expression must be a valid workflow data object attribute in the
context of the containing workflow process definition.

v The workflow data object attribute that is specified as the left side data item of
the condition expression must be a valid workflow data object attribute in the
context of the containing workflow process definition.

v The operator that is specified in a data item condition expression must be a
valid and supported operator.

v The function that is specified in a function condition expression must be a valid
and supported function.

v The conjunction that is specified in a condition expression must be valid and
supported conjunction.

v The number of opening brackets and the number of closing brackets must be
equal in the context of the overall condition.

Cúram Workflow Reference 107

v If the function Not() is specified for a function condition expression, then the
type of the workflow data object attribute that is specified as the right side data
item of the expression must be of type BOOLEAN.

v If the function isNothing() is specified for a function condition expression, then
the type of the workflow data object attribute that is specified as the right side
data item of the expression must not be of type BOOLEAN.

v If the right side data item of a data item condition expression is a workflow data
object attribute, the type of this attribute must be compatible with the
corresponding left side data item workflow data object attribute. Likewise, if the
right side data item is specified as a constant value, it must be compatible with
the type of the corresponding left side data item workflow data object attribute.

v If either the right side or left side of a transition condition expression contains
an indexed item from a list workflow data object (that is,
ChildDependents[Context_Loop.loopCount].age), then the associated workflow
data object must be a list workflow data object and the activities that are
involved in the transition must be contained within a loop.

v For a loop condition expression, if either the right side or left side of the
expression specifies the size() attribute for a workflow data object, then that
workflow data object must be a list workflow data object.

v For a loop condition expression, if either the right side or left side of the
expression specifies the size() attribute for a workflow data object, then the item
on the other side of the expression must be assignable to the type INTEGER.

v For a loop condition expression, if either the right side or left side of the
expression specifies the isEmpty() attribute for a workflow data object, then that
workflow data object must be a list workflow data object.

v For a loop condition expression, if either the right side or left side of the
expression specifies the isEmpty() attribute for a workflow data object, then the
item on the other side of the expression must be assignable to the type
BOOLEAN.

Split/Join
Transitions link activities in a process definition. In the most basic configuration of
activities and transitions, each activity has only one incoming and one outgoing
transition. However it is often useful to follow more than one path out of an
activity that result in a split (that is, multiple transitions that emanate from an
activity).

To support a valid block structure in a process definition (see “Workflow
Structure” on page 110), each split must be matched by a join (that is, multiple
transitions meeting at one activity). In general, a split allows multiple threads of
work to be done at the same time while a join is the reciprocal synchronization
point for those threads.

There are two reasons for an activity to have a split (and by extension some other
activity down the line to have a join). The first is to allow work that does not have
dependencies to be done in parallel while the second is to allow a choice to be
made between a number of different paths in the workflow.

At the metadata level, each activity has a split and a join type. When the activity
has only one outgoing or incoming transition, a type of none is assigned to the
split or join in each case. The other two split and join types, choice (also known as
XOR) and parallel (also known as AND), are self-explanatory and are the primary
subject of this section.

108 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Choice XOR Split

Metadata

split This tag is present for each activity and it contains the details of the split
from the activity. This includes a list of the transitions from the specified
activity that is resolved by the workflow engine when the associated
activity is completed to examine if they can be followed or not.

The order of the transitions in this list is important for a split type of XOR
as it is the first transition that is eligible in the ordered list of transitions
that are followed by the workflow engine. In the metadata example here, if
the transition conditions for transition identifiers 2, 3 and 4 are satisfied, it
is the transition with the identifier of 2 that is followed as this is the first
eligible transition in the list of ordered transitions.

type This attribute represents the type of the split. As described here,
there are three possible split types. A split type of none indicates
that there is only one outgoing transition from the specified
activity. A split type of xor indicates a choice and this means that
the first eligible transition from the list of ordered transitions is
followed. A split type of and indicates a parallel path of execution,
which ensures that all of the eligible transitions listed in the
ordered list of transitions are followed in parallel.

transition-id
This tag contains a reference to the specified transition. There are multiple
entries of this metadata tag when the split type is xor or and.

idref This attribute contains a reference to a transition in the workflow
process definition.

Parallel AND split

Metadata

<manual-activity id="1" category="AC1">
...
<join type="and"/>
<split type="xor">

<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>
<task>

...
</task>
<allocation-strategy type="target"

identifier="HEARINGSCHEDULE"/>
<event-wait>

...
</event-wait>

</manual-activity>

Cúram Workflow Reference 109

The metadata for the split type of and is similar to the split type of xor (see
“Choice XOR Split” on page 109). The difference is that the type of split is
specified as and. This ensures that when the workflow engine is determining the
list of transitions to follow from a specified activity, the order of the transitions in
this list is not important as all eligible transitions in an and split is followed. The
ordered list of transitions is maintained in this instance for this split type to
facilitate the changing of the split type from and to an xor, in which case the order
of the transitions becomes important again.

Workflow Structure
The structure of a workflow process is determined by the activities in the process
and the transitions between them. Hence a workflow forms a Graph in which the
activities are vertices. The transitions are arcs (the graph that is formed by a
workflow can be viewed by using the Visualize Workflow Process feature in the
Process Definition Tool).

In order for the workflow engine to successfully interpret and run a process, the
graph that is formed by that process must meet certain criteria. The section
presents those criteria under two main headings: Graph Structure and Block
Structure.

Graph Structure
Since a set of activities and transitions in a process form a Graph, Graph Theory
can be applied to detect several well-known structural problems before a process is
ever run.

Graph Theory: Graph Theory is a branch of mathematics. Fortunately, those parts
of graph theory that are relevant to workflow are simple. Hence, the section does
not require any prior knowledge of graph theory (a degree in mathematics is
definitely not required!). There is a wealth of information about graph theory on
the Internet, where further discussion on many of the topics that are discussed in
the section can be easily found.

For example: consider a process in which an activity has a transition to another
activity, which in turn has a transition back to the first activity. This forms a cycle
in the process graph.

<manual-activity id="1" category="AC1">
...

<join type="none"/>
<split type="and">

<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>
<task>

...
</task>
<allocation-strategy type="target"

identifier="HEARINGSCHEDULE"/>
<event-wait>

...
</event-wait>

</manual-activity>

110 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

If there were no conditions on the transitions, the process would be guaranteed to
end up in an infinite loop. These loops are known as informal loops (or 'ad hoc'
loops) and their presence renders several useful structural validations impossible.
For this reason (among others), Cúram workflow provides formal constructs for
delimiting iterative sections of a process (the loop-begin and loop-end activities).
This allows it to detect the presence of ad hoc loops in processes and prevents
such processes from being released.

Code Analogies: Many developers are familiar with the programming-language
GOTO statement and the curly braces that are commonly used to delimit the start
({) and end (}) of a formal loop.

GOTO is analogous to ad hoc loops in a workflow. The curly braces are analogous
to the formal loop-begin and loop-end activities in a workflow.

Block Structure
There are several workflow elements, which can affect the choice of flow path (or
paths) through a workflow at run time.

These include:
v “Choice XOR Split” on page 109
v “Parallel AND split” on page 109
v “Loop Begin and Loop End” on page 87

These elements always come in pairs. This is because they demarcate areas where
the process should exhibit a specific behavior (one related to the flow of control).
These areas are normally referred to as 'blocks', because they have a specific
start-point that must have a corresponding end point.

Consider a process with a structure where all paths that are emerging from a
Choice Split (guaranteed to follow only one outbound path) all converge at a
Parallel Join (which waits until all inbound paths complete before the next activity
is run). In this case, the process is guaranteed to stall at the Parallel Join. This is an
example of a problem with the block-structure that can be detected by validations
before a process is even run.

An Analogy for Blocks
A common analogy for how "blocks" work in a workflow is the way that brackets
(like this!) work in a sentence. Brackets have an explicit start point '(', which is
always matched by a specific end point ')'. They demarcate an area of the sentence
that has a specific meaning.

The way that brackets work in a mathematical expression is a closer analogy. In
addition to matching opening and closing brackets, a mathematical expression can
use several types of brackets. The bracketed expressions can be nested inside one
another, but cannot be interleaved. Blocks work similarly in a workflow.

Block Types Supported by Workflow
The following sections describe the different types of blocks in Cúram workflow,
how they begin/end and what their purpose is.

Cúram Workflow Reference 111

'Choice' (XOR) Block:

A Choice Block is started at a Choice (XOR) Split and ended at a Choice (XOR) Join
(the 'brackets'). It indicates that, of the possible paths within the block, no more
than one can be followed.

The split has several transitions outbound from it, indicating the possible paths
that a process instance might follow. Since this is a Choice block, the paths are
mutually exclusive - only one is followed by a process instance.

The Choice Split must be matched by a corresponding Choice Join. This indicates
the point at which the process ceases to be distinct for each path, so the paths are
merged back together (that is, the remaining process is common).

'Parallel' (AND) Block:

A Parallel Block is started at a Parallel (AND) Split and ended at a Parallel (AND)
Join (the 'brackets'). It indicates that, of the possible paths within the block, many or
all can be followed.

The split has several transitions outbound from it, indicating the possible paths
that a process instance might follow. Since this is a Parallel block, any number of
the paths can be followed in parallel (assuming their transition conditions are met).

The Parallel Split must be matched by a corresponding Parallel Join. This indicates
the point at which all the parallel paths must be synchronized before the workflow
can continue.

'Loop' Block:

A Loop Block is started at a loop-begin activity and ended at a loop-end activity
(the 'brackets'). It indicates that the section of the workflow that is delimited by the
loop-begin and loop-end activities should be repeated when the loop condition is
met.

The loop-begin activity marks the point to which execution should return if the
loop condition is met (that is, the place to return to if the engine determines that
the loop should iterate). The loop-end activity marks the point to which execution
should jump if the loop condition is not met.

Structural Rules
There are certain structural rules that workflow designers should be aware of
when process definitions are constructed. When a Cúram workflow process is
validated, the validations assess whether the structure of the process conforms to
these rules. Like all validations, the aim is to ensure that the process can be run by
the workflow engine.

Graph Structure Rules
A Cúram process must form a graph that has the following properties: directed,
connected, and acyclic. This might sound complicated, but these are just the
technical terms for some simple graph properties.
v A "directed" graph is one in which each edge goes only one way (it is usually

referred to as a digraph). In workflow terms, this means that a transition from
activity A to activity B cannot be used to get from B back to A. This is a given in

112 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Cúram workflow. It is mentioned here only because the 'acyclic' property (see
here) is defined differently for graphs and digraphs.

v A "connected" graph is one in which every vertex can be reached. In workflow
terms, this means that every Activity in the process must be reachable on at least
one path from the start activity to the end activity.
This prevents workflows from having a structure such that one or more
activities might never be run.

v Finally, an "acyclic" digraph is one in which there are no directed cycles. In
workflow terms, this means that there can be no ad hoc loops (that is, loops
constructed by using transitions instead of loop-begin and loop-end activities).
Ad hoc loops might seem convenient, but (like GOTO statements in
programming languages) they can make a process difficult to read and
understand. Using explicit loop constructs leads to clearer, more understandable
process definitions.
In addition, it allows the engine to know where looping can occur, so it can
track how many times a loop iterates at run time.

Block Structure Rules
As mentioned earlier, the way that brackets work in a mathematical expression is a
close analogy for how "blocks" work in a workflow. Recall - there are several types
of blocks: Choice, Parallel, and Loop.

In Cúram workflow:
v Any block-starting constructs (Choice Split, Parallel Split, or Loop- Begin

Activity) must be terminated by a corresponding block-ending construct (Choice
Join, Parallel Join, or Loop- End Activity in each case).
In the case of Splits and Joins - all paths outbound from a split must converge at
the corresponding Join.

Rationale: Requiring Splits and Joins (for example) to be matched improves
readability. In a section that contains multiple paths, it makes it clear whether a
single path (or many) can be followed. This in turn makes it clear whether
synchronization is required at the point where the paths merge.

If they were not required to match, it would be possible (easy!) to model
processes that would be guaranteed to stall, or ones in which the end of the
process could be reached before some activities were finished running.

v Blocks can be nested within each other (that is, a Choice Split inside a Loop),
but they cannot be interleaved (for example, none of the transitions from the
choice split can go to an activity outside the loop).
This helps avoid situations that are difficult for the engine to process and are
unintuitive for workflow developers.
Consider a Loop that contains a Join, where the Join has two inbound
transitions: one from an activity inside the loop, the other from an activity
outside the loop.
It is difficult in this situation to decide how the join synchronization should
work. One inbound transition can fire only once, the other can fire multiple
times. Any rules for handling such a situation would be arbitrary and hence
unintuitive.
Workflows that are defined by using Choice, Parallel, and Loop blocks have a
clear, simple structure whose meaning can be understood at a glance.

Cúram Workflow Reference 113

Validations
A valid Cúram workflow must form a directed, connected, acyclic graph that is
block-structured. Usually these properties (directed, connected, acyclic) are discrete
and so they can be checked independently by the Process Definition Tool (PDT)
before a process is released.

The structural validations that are performed on a process definition are done in a
distinct order and these are outlined here.

Simple Syntactic Checks
The first set of structural validations that are carried out are simple syntactic checks.

These checks ensure that the activity joins and splits (see “Split/Join” on page 108)
in the process definition are set up correctly. These validations include:
v All activities except the start and end activities must have at least one inbound

and one outbound transition.
v Any activity with more than one inbound transition must have a join type

specified (that is, a join type not equal to NONE).
v Any activity with more than one outbound transition must have a split type

(that is, a split type not equal to NONE).
v Any activity with exactly one inbound transition must have a join type of NONE.
v Any activity with exactly one outbound transition must have a split type NONE.
v The split type for a Parallel activity must be NONE.
v The join type for a Parallel activity must be NONE.
v A Parallel activity must have exactly one inbound transition.
v A Parallel activity must have exactly one outbound transition.
v The split type of the activity on the far side of the incoming transition to a

Parallel activity must be NONE.
v The join type of the activity on the far side of the outgoing transition from a

Parallel activity must be NONE.

Graph Checks
The second set of structural validations carried out are graph checks. These ensure
that the flow graph is a directed, connected acyclic graph.

These validations include:
v The workflow must form a 'connected' graph. This means that each activity must

appear on at least one path from the start activity to the end activity.
v The workflow must form an acyclic digraph. This means that there can be no

path through the workflow that completes the same activity twice. This
validation checks for cycles that are created by transitions only - cycles that are
created with loop-begin and loop-end activities are perfectly valid.

v Every instance subgraph within the workflow graph must correctly stop. This
means that starting at the start activity, every possible path through the
workflow must end up at the end activity.

Block Checks
The third set of structural validations carried out are block checks. These ensure
that the flow graph is correctly block-structured.

114 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

The block-start constructs are: Start Process Activity, Loop Begin Activity, Parallel
(AND) Split and Choice (XOR) Split. Their corresponding block-end constructs are:
End Process Activity, Loop End Activity, Parallel (AND) Join and Choice (XOR)
Join.

Based on these, the following block-structure validations are run:
v For every block start, there must be a corresponding block end (that is, if there is

a Loop Begin activity in the workflow, then there must be a corresponding Loop
End activity).

v The block start/end types must match (that is, if there is a Parallel (AND) Split
present in the workflow graph, then this must be matched by a corresponding
Parallel (AND) Join).

v Blocks can be nested but not interleaved.

Workflow Web Services
Cúram workflows can inter-operate with other workflow systems through support
for specific aspects of the Oasis group's Business Process Execution Language (BPEL)
standard. BPEL processes can enact Cúram workflow processes and be notified
when the process completes.

The Cúram workflow engine is not intended to be a fully fledged BPEL
orchestration engine. Instead, the Cúram workflows participate in BPEL
orchestrated processes. This is done by providing functionality to expose Cúram
workflow processes as web services that can be started from BPEL process partner
links.

Exposing a workflow web service
Workflow web services build over the existing Cúram web services support.

In particular the workflow engine requires a Business Process Object (BPO)
modeled as a Document Oriented Web Service (see the Cúram Inbound Web Services
chapter of the Cúram Modeling Reference Guide for details).

The web service BPO is just a front end to the workflow enactment API
(curam.util.workflow.impl.EnactmentService). This being the case only one such
BPO is required per application. An appropriate BPO is already provided in the
Cúram application: Logical View::MetaModel::Curam::Facades::
Workflow::WebService::WorkflowProcessEnactment.

To use workflow web services, the BPO named Logical
View::MetaModel::Curam::Facades::
Workflow::WebService::WorkflowProcessEnactment must be assigned a server
component of stereotype webservice.

Cúram web services can be customized in other ways, for example, making them
secure by using WS-Security as described in the Secure Web Services section of the
Cúram Modelling Reference Guide. All customizations for workflow web services
must be made to this BPO.

Note: Since all workflow web services are handled by the same BPO, any
customizations affect all process definitions that are exposed as web services.

Cúram Workflow Reference 115

Process Enactment
Exposing a Cúram workflow process definition as a web service requires marking
it as such in the Process Definition Tool (PDT).

Or directly in the metadata as described in “Process Definition Metadata” on page
13. After the process definitions are marked as web services the server, the server
EAR and the web services EAR file must be rebuilt.

Like other Cúram web services, the WSDL for the service can be accessed only
when the web services EAR is deployed. The name of workflow web service is the
same as the process name. Thus the WSDL can be accessed at a URL similar to the
following: http://testserver:9082/CuramWS/services/<ProcessName>?wsdl

The content of the WSDL is determined in part by the input to the process (the
WDO attributes that are marked as required for enactment) and the process output
(the WDO attributes marked as process output) (see “Metadata” on page 18). The
WSDL port type is the process name and the operation to enact a process is always
startProcess.

Process completion callback
An external system (probably but not necessarily a BPEL process) that enacts a
Cúram workflow through web services often requires notification that the process
that is completed and possibly some output data from the process definition.
Doing this requires a web service that is started when the process completes to be
specified for each process definition.

The callback web service is specified in the process definition metadata by using
the PDT or directly in the metadata as described in “Process Definition Metadata”
on page 13.

Note: Before use in a workflow process definition the callback web service must
be registered as a Cúram outbound web service connector as described in the
Cúram Outbound Web Service Connectors chapter of the Cúram Modeling Reference
Guide.

The callback web service must be implemented by an external system but conform
to a port type definition specified by the Cúram workflow web service,
“Invocation from BPEL processes” has further details.

Invocation from BPEL processes
The creation of BPEL processes that enact Cúram workflow processes is out of the
scope of this document. However, the WSDL for each workflow process web
service contains information that can be used by BPEL processes.

<wsdl:portType name="SomeCuramWorkflow">
<wsdl:operation name="startProcess">

<wsdl:input message="intf:startProcessRequest"
name="startProcessRequest"/>

<wsdl:output message="intf:startProcessResponse"
name="startProcessResponse"/>

<wsdl:fault message="intf:InformationalException"
name="InformationalException"/>

<wsdl:fault message="intf:AppException"
name="AppException"/>

</wsdl:operation>
</wsdl:portType>

Figure 2. Process Enactment Port Type

116 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Callback Port Type
There is a port type in WSDL for a Cúram workflow web service that is
not implemented by the service itself. The name of this port type is the
name of the process with the word "Complete" appended to it
(<ProcessName>Complete).

The purpose of this unimplemented port type is to define the web service
interface that a Cúram workflow web service expects to be implemented
by the BPEL process that enacted it. This port type that must be
implemented by the callback web service that is configured in the process
definition (see “Process completion callback” on page 116).

Partner Link Type
Technically the only thing necessary to allow a Cúram workflow process to
participate in a BPEL orchestrated process is to expose the process as a
web service. However it is possible to add some metadata to assist the
BPEL process developer by defining the port types that are involved in the
partner link and the roles they play.

The BPEL specification allows partner link types to be defined in the
WSDL for the service to be started in the partner link by using the WSDL
extension mechanism. The WSDL generated for a Cúram workflow web
service defines the partner link type that it expects to participate in and
specifies the port types that play each role.

File Locations
While there are utilities like the Process Definition Tool PDT and other
administration user interfaces, the outputs of such tools often need to be exported
and version controlled. Of course these externalized files need to be put back into
the runtime system when Cúram is built or installed.

The pattern in Cúram is to place such files into a predefined source folder from
which they are loaded onto the database (perhaps after some pre-processing). This
section describes the location of workflow-related source files.

<!--Implemented by the BPEL process-->
<wsdl:portType name="SomeCuramWorkflowComplete">

<wsdl:operation name="processCompleted">
<wsdl:input message="intf:processCompletedRequest"

name="processCompletedRequest"/>
</wsdl:operation>

</wsdl:portType>

Figure 3. Callback Port Type

<!--Partner link type-->
<partnerLinkType name="CuramWorkflowPartnerLink"

xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
<role name="curamService">

<portType name="tns1:SomeCuramWorkflow"/>
</role>
<role name="partnerService">

<portType name="tns1:SomeCuramWorkflowComplete"/>
</role>

</partnerLinkType>

Figure 4. WSDL extensions for BPEL

Cúram Workflow Reference 117

Workflow Process Definition Files
Workflow process definitions (both released and unreleased) can be imported onto
the relevant database table by using the standard build database target.

These workflow process definitions must be stored in XML files in a workflow
subdirectory under the relevant Cúram server component directory (for example,
...\EJBServer\components\core\workflow for the core component or
...\EJBServer\components\Appeal\workflow for the Appeal component and so on).

Each component in the Cúram application can have a workflow directory that
contains the process definition XML files relevant to it. Any process definition files
that are stored in these workflow directories are automatically imported when the
build database target is run. If the process definition files are not valid or if the
name and version of the definitions do not match those used in the filenames, the
import fails.

The workflow process definition XML files on the file system must follow a strict
naming convention. This is as follows: Process Name_vProcess Version.xml where:
v Process Name is the name of the workflow process.
v Process Version is the version of the workflow process.

The same version of a process definition can exist in multiple components in the
Cúram application. The version that is imported is always taken from the
component with the highest component order precedence. Component order
precedence is configured by using the COMPONENT_ORDER_PRECEDENCE
environment variable.

Each process definition when imported is assigned a new process definition
identifier that is unique for the database it is imported onto. Different versions of
the same process definition are assigned the same unique identifier and only one
unreleased version of a process definition can be imported. To handle invalid
workflow process definitions that are loaded during the build database target,
strict validations are in place in the workflow engine. These ensure that a
workflow process definition cannot be loaded into the process definition cache and
run unless it passes all of the process validations first. These validations are
described in the earlier chapters of this document.

Customizing Workflow Process Definition Files

Creating New Workflow Process Definition Files:

All new workflow process definition files must be created in the workflow
subdirectory of the ...\EJBServer\components\custom directory. To create a new
process definition file, the PDT can be used to create the required definition and
enter all the details. The definition can then be exported to a file by the tool and
placed in the location that is specified here.

Changing An Existing Workflow Process Definition File:

Using the PDT, view the latest version of the process definition that requires
modification. Create a version of that process definition by using the tool. Make
the changes, validate it and release the workflow.

118 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Export the newly released workflow process definition by using the PDT and place
it into the workflow subdirectory of the ...\EJBServer\components\custom
directory.

Event Definition Files
Events provide a mechanism for loosely-coupled parts of the Cúram application to
communicate information about state changes in the system. When one module in
the application raises an event, one or more other modules receive notification of
that event occurring provided that they are registered as listeners for that event.

To use this functionality, some events must be defined, some application code must
raise these events, and some event handlers must be defined and registered as
listeners to such events.

Events are defined in Cúram in XML files, that specify both the event classes and
the event types. These files are created with a .evx extension and are placed in the
events of a Curam component (for example, ...EJBServer\components\core\
events) from where they are picked up and processed by the build scripts.

There are two types of output that is generated by the evgen command; .java files
(for code constants that use events less error prone) and .dmx files (Cúram
database scripts for loading event definitions onto the database). The Java artifacts
that are produced from a merged event file are placed in the /build/svr/events/
gen/[package] directory, where [package] is the package attribute that is specified
in the event definition file. The database scripts that are produced from a merged
event file are placed in the /build/svr/events/gen/dmx directory.

The Cúram Server Developer's Guide provides a comprehensive description of events
and how they can be used in the Cúram application.

Configuration
Usually, configuration options are not global across all workflow process
definitions. Rather they are specific to each definition and hence are held within
the actual process definition itself. That said, there are a few application properties
that affect the Cúram Workflow Management System as a whole. This section
describes those properties.

Application Properties
The following application properties can be set in the Application.prx file:

Property Name Description

curam.custom.
workflow.workresolver

Purpose: The fully-qualified name of the application class that
implements the WorkResolver callback interface. See “Allocation
strategy” on page 63 for further information.

Type: String

Default Value: curam.core.sl.impl.DefaultWorkResolver

curam.workflow.
automaticallyaddtasktousertasks

Purpose: After the resolution of the allocation targets for a task, if
that task is assigned to one user and one user only and the value
of this property is set to yes/true, the system will automatically
add this task to a user's My Tasks list in their Inbox to allow
them to work on it.

Type: String

Default Value: NO

Cúram Workflow Reference 119

Property Name Description

curam.custom.notifications.
notificationdelivery

Purpose: The fully-qualified name of the application class that
implements the NotificationDelivery callback interface. See
“Notification Allocation Strategy” on page 98 for further
information.

Type: String

Default Value: curam.core.sl.impl.NotificationDeliveryStrategy

curam.workflow.disable.audit.
wdovalueshistory.before.activity

Purpose: The process instance WDO data auditing table,
'WDOValuesHistory' is populated by the workflow engine at
three distinct points during the execution of a workflow process
instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an
activity). When specified to true, this property ensures that no
data is written to the WDO data auditing table before an activity
is run.

Type: BOOLEAN

Default Value: FALSE

curam.workflow.disable.audit.
wdovalueshistory.after.activity

Purpose: The process instance WDO data auditing table,
'WDOValuesHistory' is populated by the workflow engine at
three distinct points during the execution of a workflow process
instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an
activity). When specified to true, this property will ensure that no
data is written to the WDO data auditing table after an activity is
been run.

Type: BOOLEAN

Default Value: FALSE

curam.workflow.disable.audit.wdovalueshistory
.transition.evaluation

Purpose: The process instance WDO data auditing table,
'WDOValuesHistory' is populated by the workflow engine at
three distinct points during the execution of a workflow process
instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an
activity). When specified to true, this property ensures that no
data is written to the WDO data auditing table before the
transitions from an activity are evaluated..

Type: BOOLEAN

Default Value: FALSE

curam.custom.workflow.processcachesize Purpose: The workflow engine caches released versions of process
definitions in memory (to minimize processing when looking up
metadata). This property controls the maximum number of
process versions stored in the cache. When this number is
reached, the engine begins ejecting process versions from the
cache, by using a least-recently-used ejection policy. Runtime
modifications to the value of this property will take effect the
next time the workflow engine attempts to insert a process
version in the cache.

Type: Integer

Default Value: 250

curam.batchlauncher.dbtojms.
notification.batchlaunchermode

See Cúram Batch Processing Guide, Section 5.3 for further
information.

curam.batchlauncher.dbtojms.
notification.encoding

See Cúram Batch Processing Guide, Section 5.3 for further
information.

curam.batchlauncher.dbtojms.
notification.host

See Cúram Batch Processing Guide, Section 5.3 for further
information.

curam.batchlauncher.dbtojms.
messagespertransaction

See Cúram Batch Processing Guide, Section 5.3 for further
information.

curam.batchlauncher.dbtojms.
notification.port

See Cúram Batch Processing Guide, Section 5.3 for further
information.

120 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

JMSLite
JMSLite is a Cúram-developed lightweight Java Message Service (JMS) server that
runs alongside the RMI-based test environment. Hence it can run inside supported
Integrated Development Environments (IDEs).

This allows process definitions to be tested inside an Integrated Development
Environment, that is, without requiring the application to be deployed to an EJB
server. When used along with the Process Definition Tool, JMSLite allows
developers to define, deploy, and enact workflows - all within their Integrated
Development Environment.

What JMSLite Does
JMSLite is a JMS server that implements only those sections of the JMS
specification necessary to support Integrated Development Environment based
testing of Cúram workflows: namely transactional, point-to-point messaging. This
means that JMSLite supports ACID transactions that involve the application
database and the infrastructure-defined workflow queue destinations.

It does not support custom (application-defined) queues or the publish-subscribe
domain (that is, topics).

So, JMSLite allows the workflow enactment service and workflow engine to send
JMS messages asynchronously. This means that application calls to
workflow-related infrastructure APIs (such as the enactment service and event
service) are non-blocking. The APIs pass messages to the workflow engine, which
drives process instances asynchronously (for example, runs automatic activities,
creates and allocates Tasks, and so forth).

Why JMSLite?
The purpose of JMSLite is to make the workflow engine behave in an Integrated
Development Environment in the closest possible way to how it behaves when
deployed on an application server. This increases the likelihood of detecting
problems early (while testing in the Integrated Development Environment) rather
than late (when testing on an application server). Both risk and cost are
consequently are reduced.

For example, consider the following situation: Suppose the WMS (running in an
Integrated Development Environment) were to enact workflows synchronously.

Reminder: In production, workflows are enacted asynchronously because they are
assumed to be long-lived (on the order of hours, days or weeks) relative to normal
user operations (order of seconds or milliseconds).
Suppose also that a developer were to write a method that enacted an automated
case-approval workflow and then (immediately after the call to the enactment
service) tried to do something with the result (for example, check if the case was
automatically approved). Since the test environment operates in a different manner
(synchronously) from the production environment - the code would work fine in
test, but would fail in production (this is an example of a 'temporal coupling' bug).

However, since JMSLite runs asynchronously - this problem would show up in the
Integrated Development Environment in the same way as it would on an
application server, consequently allowing the developer to detect it early.

Cúram Workflow Reference 121

Using JMSLite
The JMSLite server polls queues and unpacks any messages that it finds on them.
These messages result in calls from the JMSLite server to the RMI server that is
required for Integrated Development Environment -based testing of Cúram
methods (commonly referred to as StartServer). The JMSLite server is launched as
a thread when the (StartServer) process is started.

Since the JMSLite server dispatches messages to the workflow engine that runs on
the RMI server, it is necessary to start the StartServer in debug mode when
workflow methods are debugged.

Debugging workflows
Normally, Cúram infrastructure methods are started by the application. However,
in workflow the call is often made the other way around, that is, the workflow
engine (infrastructure) calls an application method (for example, a Work Allocation
method).

In these cases, it is not possible for an application developer to step from the call
to the curam.util.workflow.impl.EnactmentService.startProcess() method into
their application (Work Allocation) method. In this case, the developer must set
breakpoints within the method they want to debug and then run the method that
enacts the workflow. The workflow engine will then (asynchronously) start the
application method, therefore causing the breakpoint to be reached. The debugger
then suspends execution at the specified breakpoint, so allowing normal
debugging.

Application methods that fall into the above category are:
v Automatic Activity methods
v Work Allocation Functions
v The application Notification Delivery Method
v The application Work Resolver Method

Inbox and Task Management
The following sections describe the configuration and customization options that
are available for the Inbox and Task Management areas of the Cúram WMS.

Tasks are used to assign and track the work of system users and are generated
when “Manual” on page 56, “Decision” on page 74 or “Parallel” on page 89
activities are run by the Workflow Engine. The Inbox and the associated task
management functions are used by the users of the Cúram application to manage
these tasks.

Inbox Configuration

Inbox List Sizes Configuration Settings
There are a number of task list views available in the Inbox.

These include the following:
v My Open Tasks : A list of tasks that the user is working on.
v My Deferred Tasks : A list of tasks that the user is working on but is deferred to a

later date.
v Available Tasks : A list of tasks that are available to the user to work on.

122 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

v Task Query Search Results : A list of tasks that are the result of running a task
query.

v Work Queue Tasks : A list of tasks that are assigned to a work queue.

There is also a list in the Inbox that displays the notifications that are delivered to
a user.
v My Notifications : A list of notifications that are delivered to the user.

The Inbox list views can be configured to limit the number of records that are
returned to the user. The following application properties can be set in the
Application.prx file to effect this change.

Table 5. Inbox List Sizes Configuration Settings

Property Name Description

curam.inbox.max.task.list.size Purpose: The value of the property controls the
number of tasks that are displayed in the various
Inbox task list views. The Inbox task lists pages
that are affected by the value of this property
include the following: My Open Tasks; My
Deferred Tasks; Available Tasks; Task Query
Search; Work Queue Tasks. If the number of tasks
to be displayed exceeds the specified value, then a
message is displayed informing the user that not
all the records that match the search criteria of the
page are being displayed. This message displays
both the number of tasks that are being displayed
and also the total number of tasks that match the
search criteria.

Type: Integer

Default Value: 100

curam.notification.max.list.size Purpose: The value of the property controls the
number of notifications that are displayed in the
Inbox My Notifications list view. If the number of
notifications to be displayed exceeds the specified
value, then a message is displayed informing the
user that not all the records that match the search
criteria of the page are being displayed. This
message displays both the number of notifications
that are displayed and also the total number of
notifications that match the search criteria.

Type: Integer

Default Value: 100

Get Next Task Configuration Settings
There are a number of shortcut functions available in the Inbox to retrieve the next
task to work on.

These functions include the following:
v Get Next Task - retrieves the next task from the tasks available to the user.
v Get Next Task From Preferred Org Unit - retrieves the next task assigned to the

user's preferred organization unit.

Cúram Workflow Reference 123

v Get Next Task From Preferred Queue- retrieves the next task assigned to the
user's preferred work queue.

v Get Next Task From Queue- retrieves the next task assigned to a work queue
that the user selects.

The algorithm that is used by these shortcut functions to retrieve the next task can
be configured by using the following application properties in the Application.prx
file:

Table 6. Get Next Task Configuration Settings
Property Name Description

curam.workflow.
reservenexttaskwithpriorityfilter

Purpose: The value of the property controls whether the get next
task algorithm uses the priority of a task to determine the next
task to retrieve. If set to YES, the default, the priority of the task
is used for this purpose (the priorities as specified in the
curam.workflow.taskpriorityorder) property. Otherwise, the task
to be retrieved is based on tasks that are assigned to the user for
the longest period of time.

Type: String

Default Value: Yes

curam.workflow.taskpriorityorder Purpose: There are three task priorities that are specified in the
Workflow Management System, namely High, Medium and Low
(which correspond to the codetable codes TP1, TP2 and TP3 in
the TaskPriority codetable). In some cases, customers can have a
requirement to add a task priority (for example, Critical with a
codetable code value of TP4). Retrieving tasks by using the task
priority that contains this value would therefore ensure that
critical tasks would appear after those that have a low priority
(when the intention would be that tasks with this priority should
be retrieved first). This property allows the task priorities to be
specified in whatever order is required to satisfy the customer's
requirements.

Type: String

Default Value: TP1,TP2,TP3

Task Redirection and Allocation Blocking Settings
Task redirection enables the user to redirect tasks to another user, organizational
object (organization unit, position or job), or work queue for a specified period of
time. Task allocation blocking enables the user to ensure that no tasks are assigned
to them for a specified period of time. This functionality is available to the user in
the Task Preferences area of the Inbox.

However, all users on the system cannot require access to set up task redirection or
task allocation blocking periods for themselves. To facilitate this requirement, these
areas of functionality in the Inbox can be disabled for specific users by using
security identifiers. The following table details the security identifiers that a user
must have to avail of this functionality.

Table 7. Security Identifiers and Associated Actions

Security Identifier Name Action Allowed

UserTaskRedirection.
listTaskRedirectionHistoryForUser

Allows a user to view all of the task redirection
periods that are specified for them.

UserTaskRedirection.
redirectTasksForUser

Allows a user to create a task redirection period
for themselves.

UserTaskRedirection.
clearTaskRedirectionForUser

Allows a user to clear one of their task redirection
periods.

124 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Table 7. Security Identifiers and Associated Actions (continued)

Security Identifier Name Action Allowed

UserTaskAllocationBlocking.list.
TaskAllocationBlockingHistoryForUser

Allows a user to view all of the task allocation
blocking periods that are specified for them.

UserTaskAllocationBlocking.
blockTaskAllocationForUser

Allows a user to create a task allocation blocking
period for themselves.

UserTaskAllocationBlocking.
clearTaskAllocationBlockForUser

Allows a user to clear one of their task allocation
blocking periods.

Inbox Customization
The default behavior of the Inbox Actions, Task Actions, and Task Search
functionalities can be changed by using Guice to call custom code, which overrides
the default behavior.

Note: Guice is a framework that is developed by Google and is beyond the scope
of this document. For more information on Guice please refer to the Guice user's
guide.

The Cúram Workflow Management System contains the following customization
points and their corresponding default implementations:

Table 8. Customization Points

Customization Point Interface Class
Default Implementation
Class

Inbox Actions curam.core.hook.
task.impl.InboxActions

curam.core.hook.
task.impl.InboxActionsImpl

Task Actions curam.core.hook.
task.impl.TaskActions

curam.core.hook.
task.impl.TaskActionsImpl

Task Search and Available
Task Search

curam.core.hook.
task.impl.SearchTask

curam.core.hook.
task.impl.SearchTaskImpl

Task Query curam.core.hook.
task.impl.TaskQuery

curam.core.hook.
task.impl.TaskQueryImpl

Task Search SQL generation curam.core.hook.
task.impl.SearchTaskSQL

curam.core.hook.
task.impl.SearchTaskSQLImpl

The following Inbox Actions can be customized:
v Get Next Task
v Get Next Task From Preferred Organization Unit
v Get Next Task From Preferred Queue
v Get Next Task From Work Queue
v Subscribe User To Work Queue
v Unsubscribe User From Work Queue

The following Task Actions may be customized:
v Add Comment
v Close
v Create
v Defer
v Restart

Cúram Workflow Reference 125

v Forward
v Modify Time Worked
v Modify Priority
v Modify Deadline
v Reallocate
v Add To My Tasks

The following Task Search and Available Task Search methods can be customized:
v countAvailableTasks

v countTasks

v searchAvailableTasks

v searchTask

v validateSearchTask

The following Task Query methods can be customized:
v createTaskQuery

v modifyTaskQuery

v runTaskQuery

v validateTaskQuery

The following Task Search SQL generation methods can be customized. These
methods are used to generate the SQL for all of the task search functionalities
shown here.
v getBusinessObjectTypeSQL

v getCategorySQL

v getCountSQLStatement

v getCreationDateSQL

v getDeadlineSQL

v getFromClause

v getOrderBySQL

v getOrgObjectSQL

v getPrioritySQL

v getReservedBySQL

v getRestartDateSQL

v getSelectClause

v getSQLStatement

v getStatusSQL

v getTaskIDSQL

v getWhereClause

How to customize the Inbox
The following is a description of how to customize the Inbox action
curam.core.hook.task.impl.InboxActionsImpl.getNextTask. The same process can
be followed to customize any of the other customization points.

A custom hook point class must be created. This class must extend the default
implementation class:

126 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

CustomTaskActionsImpl class
The CustomTaskActionsImpl class implements the getNextTask method and
it implements the TaskActionsImpl class.

TaskActionsImpl class
The TaskActionsImpl class implements the following methods:
v getNextTask
v getNextTaskFromWorkQueue
v getNextTaskFromPreferredWorkQueue
v getNextTaskFromPreferredOrgUnit
v subscribeUserToWorkQueue
v unsubscribeUserFromWorkQueue

The TaskActionsImpl class implements the TaskActions interface
class:

TaskActions interface class
The TaskActions interface class implements the following
methods:
v getNextTask
v getNextTaskFromWorkQueue
v getNextTaskFromPreferredWorkQueue
v getNextTaskFromPreferredOrgUnit
v subscribeUserToWorkQueue
v unsubscribeUserFromWorkQueue

Note: The custom class must never directly implement the interface class, as this
might lead to compile time exceptions during an upgrade if new methods were
added to the interface. In this case, the custom class would not implement the new
methods and hence the contract between the interface class and the
implementation class would be broken leading to compile-time exceptions.

Customizing the default implementation:

The signature of the getNextTask function on the
curam.core.hook.task.impl.InboxActions interface is as follows:
package curam.core.hook.task.impl;

@ImplementedBy(InboxActionsImpl.class)
public interface InboxActions {

public long getNextTask(String userName);

.

.

.

.
}

The default implementation for the function is specified in the
curam.core.hook.task.impl.InboxActionsImpl class
package curam.core.hook.task.impl;

public class InboxActionsImpl implements InboxActions {

public long getNextTask(String userName) {
// Default implementation code is here....

Cúram Workflow Reference 127

}

.

.

.

.
}

To customize getNextTask, the method must be implemented in the new custom
class created earlier, which extends the default
curam.core.hook.task.impl.InboxActionsImpl implementation class.
package custom.hook.task.impl;

public class CustomInboxActionsImpl extends InboxActionsImpl {

public long getNextTask(final String userName) {
// Custom implementation code goes here

}

}

To ensure that the application runs the new custom class rather than the default
implementation a new class custom.hook.task.impl.Module.java, which extends
com.google.inject.AbstractModule must be written with the configure method
implemented as the following example shows:
package custom.hook.task.impl;

public class Module extends com.google.inject.AbstractModule {
protected void configure() {
bind(

curam.core.hook.task.impl.InboxActions.class).to(
custom.hook.task.impl.CustomInboxActionsImpl.class);

}
}

Finally, the custom.hook.task.impl.Module class name must be inserted into the
ModuleClassName column of the ModuleClassName database table. This can be
inserted by adding an extra row to the ModuleClassName.DMX file or directly into
the database table if required.

Using this approach, when the application is redeployed, the system now starts the
customized version of the getNextTask function rather than the default
implementation.

128 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Notices

This information was developed for products and services offered in the United
States.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM® product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21,
Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2012, 2017 129

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk,
NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

130 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “ Copyright and
trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 131

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

132 IBM Cúram Social Program Management: Cúram Workflow Reference Guide

Notices 133

IBM®

Printed in USA

	Contents
	Figures
	Tables
	Cúram Workflow Reference
	Overview
	Prerequisites
	How to use the guide
	Structure of this Document
	Workflow Processes
	Data Flow
	Activities
	Flow Control
	Development and Runtime
	Inbox Configuration and Customization

	Creating a Workflow Process
	Process definition lifecycle
	Process creation
	Process visualization
	Releasing a process
	Process versions (process editing)
	Process import, export, and copy
	Validations

	Localization

	Process execution
	Basic engine behavior
	Executing multiple versions
	Process Instance Administration

	Method Reference Library
	Referencing Cúram methods
	Method types

	WDO templates
	Metadata
	Import and syncing
	Validations

	Process Definition Metadata
	Metadata
	Validations
	Description of Context WDOs

	Workflow Data Objects
	Metadata
	Validations
	List of Context WDOs
	Runtime Information

	Process Enactment
	Code enactment (enactment service API)
	Metadata
	Validations
	Code

	Event enactment
	Configuration data
	Validations

	Base Activity
	Metadata
	Localized Text

	Validations
	Basic Activity Types
	Route Activity
	Start/End Process Activity

	Automatic
	Prerequisites
	Cúram Business Methods
	Metadata
	Validations
	Code

	Input Mappings
	Metadata
	Input mappings for base type parameters
	Input mappings for struct parameters
	Input mappings for aggregated struct parameters
	Input mappings for list struct parameters
	Input mappings and indexed items from list workflow data objects

	Validations
	Runtime Information

	Output Mappings
	Metadata
	Primitive return type
	Struct return type
	Aggregated struct return type
	List struct return type

	Validations
	Runtime information

	Description of Context WDOs

	Event Wait
	Prerequisites
	List of events
	Metadata
	Validations
	Code
	Runtime Information

	Deadline
	Prerequisites
	Metadata
	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Output Mappings
	Metadata
	Validations
	Runtime Information
	Description of Context WDOs

	Reminders
	Metadata
	Validations
	Code
	Runtime Information

	Manual
	Prerequisites
	Task details
	Metadata
	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Allocation strategy
	Prerequisites
	Metadata
	Function Allocation Strategy
	Classic Rules Allocation
	CER Rules Allocation
	Target Allocation Strategy

	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Business Object Associations
	Metadata
	Validations
	Code
	Runtime Information

	Event Wait
	Prerequisites
	Description of Context WDOs

	Decision
	Prerequisites
	Task Details
	Metadata
	Validations
	Runtime Information

	Question Details
	Metadata
	Multiple Choice
	Free Text

	Validations
	Runtime Information
	Description of Context WDOs

	Subflow
	Prerequisites
	Subflow Process
	Metadata
	Validations

	Input Mappings
	Metadata
	Validations

	Output Mappings
	Metadata
	Validations

	Loop Begin and Loop End
	Prerequisites
	Overview
	Loop Type

	Metadata
	Loop Begin Activity
	Loop End Activity

	Runtime Information
	Description of Context WDOs

	Parallel
	Prerequisites
	Metadata
	Generic Metadata for a Parallel Activity
	Metadata for a Parallel Manual Activity
	Metadata for a Parallel Decision Activity
	Validations
	Runtime Information
	Description of Context WDOs

	Activity Notifications
	Notification Details
	Metadata
	Validations
	Code
	Runtime Information

	Notification Allocation Strategy
	Prerequisites
	Code

	Transitions
	Metadata
	Validations
	Runtime Information

	Conditions
	Metadata
	Validations

	Split/Join
	Choice XOR Split
	Metadata

	Parallel AND split
	Metadata

	Workflow Structure
	Graph Structure
	Block Structure
	An Analogy for Blocks
	Block Types Supported by Workflow
	'Choice' (XOR) Block
	'Parallel' (AND) Block
	'Loop' Block

	Structural Rules
	Graph Structure Rules
	Block Structure Rules

	Validations
	Simple Syntactic Checks
	Graph Checks
	Block Checks

	Workflow Web Services
	Exposing a workflow web service
	Process Enactment
	Process completion callback

	Invocation from BPEL processes

	File Locations
	Workflow Process Definition Files
	Customizing Workflow Process Definition Files
	Creating New Workflow Process Definition Files
	Changing An Existing Workflow Process Definition File

	Event Definition Files

	Configuration
	Application Properties

	JMSLite
	What JMSLite Does
	Why JMSLite?
	Using JMSLite
	Debugging workflows

	Inbox and Task Management
	Inbox Configuration
	Inbox List Sizes Configuration Settings
	Get Next Task Configuration Settings
	Task Redirection and Allocation Blocking Settings

	Inbox Customization
	How to customize the Inbox
	Customizing the default implementation

	Notices
	Privacy Policy considerations
	Trademarks

