
IBM Cúram Social Program Management
Version 7.0.0

Cúram - Pod Developers Guide

IBM



Note
Before using this information and the product it supports, read the information in “Notices” on page 33

Edition

This edition applies to IBM Cúram Social Program Management v7.0.0 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.



Contents

Figures . . . . . . . . . . . . . . . v

Tables . . . . . . . . . . . . . . . vii

Developing pods . . . . . . . . . . . 1
Overview . . . . . . . . . . . . . . . 1

Prerequisites . . . . . . . . . . . . . 1
Further Reading . . . . . . . . . . . . 1

A Technical Overview . . . . . . . . . . . 1
What is a Pod? . . . . . . . . . . . . 1
What is a Pod page? . . . . . . . . . . . 1
How does it work? . . . . . . . . . . . 2

UIM Page . . . . . . . . . . . . . 2
PodContainer . . . . . . . . . . . . 2
PodLoader . . . . . . . . . . . . . 2
Database Tables . . . . . . . . . . . 2
Loading the Page . . . . . . . . . . . 2
Rendering the page . . . . . . . . . . 2
Saving the Page . . . . . . . . . . . 3
Configuring Pods . . . . . . . . . . . 3
Product Pods . . . . . . . . . . . . 3
User configuration of Pod Pages . . . . . . 3
Developing new Pods . . . . . . . . . 4

Getting Started . . . . . . . . . . . . . 4
Creating a page with a Pod container . . . . . 4
Identifying a Pod page . . . . . . . . . . 4
Configuring the database information about the
page . . . . . . . . . . . . . . . . 4
Testing the page . . . . . . . . . . . . 6

Hello World Pod . . . . . . . . . . . . . 6
Declaring a new Pod . . . . . . . . . . 6
Declaring a new PodLoader . . . . . . . . 7
Creating a Pod using a PodLoader . . . . . . 7
Adding a Pod to the Pod Container . . . . . 8
Viewing the Pod . . . . . . . . . . . . 9
Review . . . . . . . . . . . . . . . 9

Creating a Pod with a list . . . . . . . . . . 9
Creating a new list Pod. . . . . . . . . . 9

Register new Pod . . . . . . . . . . . 9
Create a new PodLoader . . . . . . . . 10
Create the list. . . . . . . . . . . . 11

Deconstructing the code . . . . . . . . . 12
Constructing the list . . . . . . . . . 12
Adding rows . . . . . . . . . . . . 12
Creating content in the cells . . . . . . . 12

Adding the list to a Pod . . . . . . . . 12
Adding a Pod filter . . . . . . . . . . . . 13

What is a Pod filter? . . . . . . . . . . 13
Types of filter. . . . . . . . . . . . . 13
Adding a Drop Down Filter . . . . . . . . 14

Creating the Pod Filter . . . . . . . . 14
Creating the options . . . . . . . . . 15
Creating the selections. . . . . . . . . 15
Setting the type of filter . . . . . . . . 15
Adding a label and CSS styling. . . . . . 16
Add the Filter to the Pod . . . . . . . . 16
Filtering your Pod . . . . . . . . . . 16

Creating new Pod filters . . . . . . . . . . 16
Create a Pod filter Renderer . . . . . . . . 17

Preparing to delegate . . . . . . . . . 17
Setting a source path . . . . . . . . . 17
Setting a target path . . . . . . . . . 18
Creating the input field . . . . . . . . 18

Create a configuration for the Pod filter Renderer 19
Create a new PodFilter in the PodLoader . . . 19

Localization in Pods . . . . . . . . . . . 20
The textresource property . . . . . . . . 20
Setting the text resource . . . . . . . . . 21
Localizing the My Favorite Movies Pod . . . . 22

Localizing the Pod . . . . . . . . . . 22
Localizing the filter . . . . . . . . . . 22
Localizing the movie list . . . . . . . . 23
Sharing properties files . . . . . . . . 23

Sample program listings . . . . . . . . . . 23
Sample: The movies DB: A Java class serving our
favorite movies . . . . . . . . . . . . 23
Sample: Hello World Pod-Loader . . . . . . 24
Sample: My favorite movies Pod-Loader. . . . 25
Sample: My Favourite Movies Pod-Loader for
Pod filter . . . . . . . . . . . . . . 25
Sample: PodTextFilterRenderer for new Pod filter
example . . . . . . . . . . . . . . 26
Sample: My Favorite Movies Pod-Loader for new
Pod filter . . . . . . . . . . . . . . 27
Sample: My Favourite Movies Pod-Loader for
localization . . . . . . . . . . . . . 29

Notices . . . . . . . . . . . . . . 33
Privacy Policy considerations . . . . . . . . 34
Trademarks . . . . . . . . . . . . . . 35

© Copyright IBM Corp. 2012, 2016 iii



iv IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Figures

© Copyright IBM Corp. 2012, 2016 v



vi IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Tables

1. Further Reading . . . . . . . . . . . 1
2. Database tables used to load Pods . . . . . 2
3. createPod method parameters. . . . . . . 8
4. Return object from createPod . . . . . . . 8
5. ListBuilder.addEntry(...) parameters . . . . 12

6. PodBuilder.addContent(...) parameters . . . 13
7. Filter Types . . . . . . . . . . . . 13
8. Target Path break down . . . . . . . . 18
9. Builders & Renderers . . . . . . . . . 21

© Copyright IBM Corp. 2012, 2016 vii



viii IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Developing pods

Use this information to develop Cúram pods. Pods are presented through a
standard UIM Page. The UIM includes the PodContainer.vim that contains the
predefined API for interacting with the pod. The PodContainer interface allows the
client to interact with the server. A PodLoader is required for each pod.

Overview
The guide is a cookbook for Developers who want to create Pods. The guide
coaches Developers through various scenarios beginning with the simplest
implementation of a Pod, then adding content to Pods using tools provided and
eventually introducing more advanced scenarios where the user requires
knowledge of the widget development process.

The guide is aimed at Developers who want to create new Pods and new Pod
Pages.

Prerequisites
Users of this guide need basic Java™ , XML, HTML and CSS skills and a
knowledge of the development environment. For the more advanced material the
user needs to be familiar with the rendering framework which is covered in the
Cúram Widget Development Guide.

Further Reading
Table 1. Further Reading

Guide Description

Cúram Custom Widget Development Guide A complete reference for developing custom
widgets

Cúram Personal Page Configuration Guide How to configure Personal Pages (Pod
Pages)

A Technical Overview

What is a Pod?
A Pod is a user interface widget that can be placed on a client page. In this respect,
it is no different to any other user interface widget that presents data such as a list
or cluster. Where a Pod differs from other types of widgets is that it can be placed
in a Pod-Container where a number of more features are activated, such as the
ability to be repositioned in the container and the persistence of user settings such
as whether the Pod is displayed and what filter settings are applied. A filter is an
optional feature of a Pod that allows the content to be customized by the user, it
can be accessed if available through the pen icon on the title bar of the Pod.

What is a Pod page?
A Pod page is a UIM page, which contains a Pod-Container widget. The
Pod-Container widget manages Pods. The widget is configured to present a
selection of Pods that can be viewed in the container. The addition and removal of

© Copyright IBM Corp. 2012, 2016 1



Pods from the container is managed through a customization-console. The
Pod-Container widget manages the movement of Pods to different locations within
the container. Where applicable it processes filters associated with Pods. In each
case, the last configuration of the Page is saved for the current user and retrieved
the next time that they load the page.

How does it work?
The next section provides an overview of the artifacts that work together to
present a Pod page.

UIM Page
The Pods are presented through a standard UIM Page. The UIM must include the
PodContainer.vim which contains the predefined API for interacting with the Pods
infrastructure including the display of the page and saving of user preferences.

PodContainer
The PodContainer is the interface through which the client interacts with the
server. At the display phase, the server interface invokes the loadData() method
on the PodContainer class. At action phase 1 of the save APIs processes the data
from the Pod-Container. The PodContainer.vim provides a reusable interface to the
Pod infrastructure, add the PodContainer.vim to your UIM page and you have a
fully functioning interface.

PodLoader
A PodLoader must be written for each Pod. The PodLoader defines the Pod and its
content. This book mainly deals with the development of PodLoaders.

Database Tables
A number of tables are used to manage Pods.

Table 2. Database tables used to load Pods

Table Description

PODTYPE A list of all existing Pods

PODLOADERBINDINGS A list of all existing PodLoaders mapped to a Pod
type

PAGECONFIG A list of configurations of Pod Pages

USERPAGECONFIG A list of user customizations of Pod Pages

Loading the Page
At the display phase, the server interface starts the loadData() method on the
PodContainer class. The PodContainer uses the PodContainerManager to identify all
the Pods to be displayed on the page that uses the information in the
PAGECONFIG and USERPAGECONFIG database tables. The
PodContainerManager then identifies the PodLoader for each Pod to be displayed
using the information in the PodType and PodLoaderBindings codetables. The
PodContainer manager starts the createPod() method on each PodLoader. The
PodLoader supplies the data for a single Pod and the PodContainerManger builds
up the cumulative data for all the Pods within the container.

Rendering the page
The page rendering is handled by a collection of renderers. The rendering begins
with the PodContainerRenderer, which receives the document from the loading
process and generates the PodContainer widget. It then delegates the rendering of
Pods to a Pod renderer, which in turn, delegates to other renderers by using

2 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



markers in the data it receives. Each renderer returns its own content that it either
generates itself or generates with the help of other renderers. This pattern of
delegation is repeated until all content is rendered.

For details about the rendering framework and how renderers interact, see
"Developing Custom Widgets".

Saving the Page
At the action phase, the server interface saves any changes that the user made to
the Pod selection and layout of the container back to the database again through
the PodContainer API. The page is saved by any of the following actions, clicking
the save button in the customization console, clicking the save button on a Pod
filter, dragging and dropping a Pod (each time a Pod is dropped the save action is
invoked to record the new layout of the page).

Configuring Pods
A Pod page can be configured through an Administration wizard, which allows
the layout and content of the Pod page to be defined. A full explanation of the
Administration wizard is available in the Curam Personal Page Configuration
guide.

Pod Dimensions:

The dimensions of a Pod are not directly specified by a Pod. This allows Pods to
dynamically resize to fit their environment and facilitates the reuse of Pods across
Pod containers.

Pod Height
The height of each Pod is determined by its content. A Pod's height
extends to display its content.

Pod Width
The width of a Pod is determined by the container it is being displayed in.
Each Pod container is configured with a number of equally sized columns.
The Pod width will dynamically size to fill the width of the column it is
placed in.

Tip: When deciding on a layout for your Pod page we recommend that you
consider the type of Pods you are adding to the container and how they might be
affected by resizing. Many of the predefined Pods are optimally sized for a 3
column layout. Using alternate layouts may distort the content of the Pods and
visually this could detract from the page.

Product Pods
A collection of Pods are provided with the product. The Home section of each
Application view is pre-configured with a set of Pods appropriate to that
Application view (Pods can be shared across Pod pages). The configuration for
each Application view can be updated by an administrator.

See the Curam Personal Page Configuration guide for details.

User configuration of Pod Pages
Each Pod page is pre-configured with a set of available Pods and a set of selected
Pods which are visible in the container.

An application user can further customize the workspace by...
v adding Pods from the available list by using the customization-console

Developing pods 3



v removing Pods by using the customization console
v removing Pods by using the close button on the title bar of the Pod
v moving Pods by dragging to a new location in the container
v filtering Pods by using the filter feature (where available).

Each time a user takes one of the actions that are listed above a record of the
current configuration of the page is saved. When the page reloads this saved
configuration is redisplayed.

Developing new Pods
In addition to reusing the Pods that are provided in the product, an Organization
may want to create new Pods. The Pod framework has the ability to create new
Pods with custom content. This guide presents examples of how this can be done.

Getting Started
Before creating a Pod you need to create a Page to host it. The page that hosts our
Pods needs a Pod container which manages the Pods allowing them to be
added/removed/moved and updated.

Creating a page with a Pod container
Starting with a page that is mapped to a section and tab in the application, add a
Pod Container to the page by including the PodContainer.vim file as in the
following example:
<PAGE PAGE_ID="MyPodContainer"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"

>

<CONNECT>
<SOURCE NAME="CONSTANT" PROPERTY="MyPodContainer"/>
<TARGET NAME="DISPLAY" PROPERTY="pageID$pageID"/>

</CONNECT>

<INCLUDE FILE_NAME="PodContainer.vim"/>

</PAGE>

Identifying a Pod page
Add a Constant.properties file to the same folder as the UIM file. Add a property
to the file that maps to the name of the constant used in the UIM to the page-id of
the UIM page. When the server interface is called this value is used to uniquely
identify the Pod page.

Constant.properties
MyPodContainer=MyPodContainer

Configuring the database information about the page
The Pod page requires 2 database records to operate. The PAGECONFIG table
stores information about which Pods are available on the page. The
USERPAGECONFIG table stores the users customizations.

Add the following DMX files to the component and run the database build target
to insert the records:

4 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



<?xml version="1.0" encoding="UTF-8"?>
<table name="PAGECONFIG">

<column name="pageConfigID" type="id"/>
<column name="userRoleName" type="text"/>
<column name="pageID" type="text"/>
<column name="config" type="text"/>
<column name="versionNo" type="number"/>

<row>
<attribute name="pageConfigID">

<value>9999</value>
</attribute>
<attribute name="userRoleName">

<value></value>
</attribute>
<attribute name="pageID">

<value>MyPodContainer</value>
</attribute>
<attribute name="config">

<value>
&lt;page-config&gt;
&lt;contexts&gt;
&lt;sequence domain="CURAM_CONTEXT"/&gt;
&lt;/contexts&gt;
&lt;availablePods&gt;
&lt;sequence domain="POD_TYPE_SELECT"&gt;
&lt;/sequence&gt;
&lt;/availablePods&gt;
&lt;layout&gt;
&lt;sequence domain="COL_SIZE"&gt;
&lt;value&gt;33&lt;/value&gt;
&lt;value&gt;33&lt;/value&gt;
&lt;value&gt;33&lt;/value&gt;
&lt;/sequence&gt;
&lt;/layout&gt;&lt;/page-config&gt;
</value>

</attribute>
<attribute name="versionNo">

<value>1</value>
</attribute>

</row>
</table>

USERPAGECONFIG.DMX
<?xml version="1.0" encoding="UTF-8"?>
<table name="USERPAGECONFIG">

<column name="userPageConfigID" type="id"/>
<column name="userRoleName" type="text"/>
<column name="userName" type="text"/>
<column name="pageID" type="text"/>
<column name="config" type="text"/>
<column name="defaultInd" type="bool"/>
<column name="versionNo" type="number"/>
<row>
<attribute name="userPageConfigID">

<value>9999</value>
</attribute>
<attribute name="userRoleName">

<value></value>
</attribute>
<attribute name="userName">

<value/>
</attribute>
<attribute name="pageID">

<value>MyPodContainer</value>
</attribute>

Developing pods 5



<attribute name="config">
<value>
&lt;user-page-config&gt;&lt;/user-page-config&gt;
</value>

</attribute>
<attribute name="defaultInd">

<value>1</value>
</attribute>
<attribute name="versionNo">

<value>1</value>
</attribute>

</row>
</table>

Testing the page
Build the application, launch it, login and go to the new Pod Page.

When the new Pod page loads it is empty except for few buttons in the top right
corner. The container is empty because you did not add any Pods to the page.
Clicking the Customize button opens the customization-console. When the console
opens it is empty except for the action buttons. Again, because you do not assign
any Pods to the container there are no Pods to select.
v The Save button stores the current users customizations.
v The Reset button deletes the current users customizations and revert to the

default for this Page.
v The Cancel button resets the selection in the customization-console and closes it.

In the next section you create a simple Pod and add it to the container.

Hello World Pod
In this section, you are going to create a basic Pod with a title and some text. You
also use the Admin Wizard to add the new Pod to the Pod page.

There are 4 basic steps to get the Pod on a page...
1. Declaring a Pod
2. Declaring a PodLoader
3. Implementing a PodLoader
4. Adding the Pod to the Pod Container

Declaring a new Pod
The first step is to declare a new Pod. The PodType codetable is used for this
purpose. Create a file CT_PodType.ctx in the component. Add a code and value for
the new Pod like the following example. The convention is to use the prefix PT for
the codetable value. The description field is used by the Administration wizard to
refer to the Pod.

Example CT_PodType.ctx, declaring a 'Pod-Type':
<?xml version="1.0" encoding="UTF-8"?>
<codetables package="codetable">

<codetable java_identifier="PODTYPE" name="PodType">
<code

default="false"
java_identifier="HELLOWORLD"
status="ENABLED"
value="PT9001"

6 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



>
<locale language="en" sort_order="0">
<description>Hello World!</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Related reference:
“Sample: The movies DB: A Java class serving our favorite movies” on page 23

Declaring a new PodLoader
Next, you need to declare the PodLoader. The PodLoader is the java class that
generates the fragment of XML that will populate the Pod. The
CT_PodLoaderBindings.ctx codetable entry binds a Pod-Type to a PodLoader.
When the infrastructure processes the Pod, it looks up the PodLoader class in this
codetable.
v The value field must match the value field on the PodType codetable. This is

what binds the 2 codetable entries.
v The description field contains the fully qualified name of the PodLoader class.

CT_PodLoaderBindings.ctx, declaring a 'PodLoader':
<?xml version="1.0" encoding="UTF-8"?>
<codetables package="codetable">

<codetable
java_identifier="PODLOADERBINDINGS"
name="PodLoaderBindings"

>
<code

default="false"
java_identifier="HELLOWORLD"
status="ENABLED"
value="PT9001"

>
<locale language="en" sort_order="0">
<description>pods.podloaders.HelloWorld</description>
<annotation/>

</locale>
</code>

</codetable>
</codetables>

Now that you added the codetable entries to the PodType and PodLoaderBindings
files you need to run the ctgen target to create the codetables and the database
target to insert the codetable values into the database.
Related reference:
“Sample: Hello World Pod-Loader” on page 24

Creating a Pod using a PodLoader
The next step is to create the PodLoader class. The PodLoader extends the class
curam.cefwidgets.pods.pod.impl.PodLoader and implements the createPod
method. Create a new class on the Server by copying this example into a class
named HelloWorld in the package pods.loaders.

A very simple PodLoader:
001 package pods.podloaders;
002
003 import java.util.Map;

Developing pods 7



004 import org.w3c.dom.Document;
005 import org.w3c.dom.Node;
006 import curam.cefwidgets.docbuilder.impl.PodBuilder;
007 import curam.cefwidgets.pods.pod.impl.PodLoader;
008 import curam.codetable.PODTYPE;
009
010 public class HelloWorld extends PodLoader {
011
012 @Override
013 public Node createPod(Document document, Map<String,Object> contexts) {
014 try{
015 PodBuilder helloWorld =
016 PodBuilder.newPod(document, PODTYPE.HELLOWORLD);
017 helloWorld.setTitle("Hello World");
018 return helloWorld.getWidgetRootNode();
019 }catch(Exception e){
020 throw new RuntimeException(e);
021 }
022 }
023 }

Input:

The createPod method receives 2 parameters from the infrastructure that calls it.

Table 3. createPod method parameters

Parameter Description

document
The Document parameter is an instance of a org.w3c.Document
class.

It is passed to the method by the infrastructure that calls it. The
Document instance is used to create and append the 'pod' Node
that describes the Pod.

context The context parameter is used to pass page level parameters to the
Pods. Currently this is not supported.

Output:

An instance of the org.w3c.Node object is returned by the createPod method.

Table 4. Return object from createPod

Return object Description

org.w3cNode The content of the Node that is returned must match a predefined
schema. The PodBuilder class provides an API to create a 'pod'
Node in the correct format.

In the example above, the simple Pod is created by creating a new instance of a
PodBuilder class on line 16. The Document instance from the PodLoader and the
codetable value from the PodType codetable are passed to the constructor. On line
17 we use the PodBuilder to set the title of the Pod. The PodBuilder builds a Node
tree representing the Pod which is returned on line 18 as a Node object.

Adding a Pod to the Pod Container
The last piece of the jigsaw is adding the Pod to the Pod-Container. You use the
wizard provided in the Administrator application. You must login to the
Administrator application, so you need the username and password assigned to
this application.

8 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



When you have logged in you must open the admin wizard by...
1. Selecting the Administration Workspace section
2. Selecting the User Interface tab
3. Selecting Personalized Pod Pages

When the Personalized Pod Pages tab loads you can see the MyPodContainer page
that you created in the list of Personal Pages. Selecting edit opens the wizard for
maintaining the Personal Page. The first step lists all the Pods available for
selection. In this list you find the Pod 'HelloWorld!'. Finally, select the Pod and
click next on the remaining steps saving the record. You have now added the Pod
to the Pod Container. Log out of the Administrator application and log into the
application that contains the Pod page.

Viewing the Pod
Now lets see the Pod in action. Login to the application and go to the Pod page.
When the page loads it is empty except for the buttons in the top right corner.
Click the customize button to open the customization-console. You can see the Pod
listed in the console. Select the checkbox beside the Pod and choose save. The page
reloads with the Pod defaulted to the top right corner.

You notice that the Pod contains some text NO CONTENT which is a place holder
added by the infrastructure when the Pod contains no content. In the next section
you create another Pod with some content and take a closer look at the PodBuilder
class.

Review
In this section, you completed the following:
v You started by adding the new Pod to the PodType and PodLoaderBindings

codetables.
v You then created a PodLoader where you used the PodBuilder class to create a

Pod and add the title.
v You used the wizard in the Administrator application to add the new Pod to the

PodContainer.
v You used the customization-console to select and view the new Pod.

In the next section you create a new Pod with some more interesting content.

Creating a Pod with a list
In this section you expand on what you did in the previous section by adding
some content to a Pod and you use the tools provided for creating the basic
content types.

Use a new Pod which you add to the Pod-Container in the same way you added
the Hello World! Pod in the previous section. You use a movies theme for the
examples, so now you can create a Pod with a short list of your favourite movies.

Creating a new list Pod

Register new Pod
In the same way you did in the previous section you are going to register a new
Pod and bind it to a PodLoader by adding the codetable entries in the PodType
and PodLoaderBindings tables by using the examples shown here.

Developing pods 9



Example 1: Adding a new PodType to CT_PodType.ctx
<code

default="false"
java_identifier="MYFAVMOVIES"
status="ENABLED"
value="PT9002"

>
<locale language="en" sort_order="0">

<description>My Favourite Movies</description>
<annotation/>

</locale>
</code>

Example 2: Adding PodLoader binding
<code

default="false"
java_identifier="MYFAVMOVIES"
status="ENABLED"
value="PT9002"

>
<locale language="en" sort_order="0" >

<description>pods.podloaders.MyFavouriteMovies</description>
<annotation/>

</locale>
</code>

Create a new PodLoader
Next, you add the PodLoader class to your loaders package remembering to
reference the new codetable value you created in the PodType codetable when you
construct the new Pod by using the PodBuilder.

Creating a PodLoader class:
001 package pods.podloaders;
002
003 import java.util.Map;
004 import org.w3c.dom.Document;
005 import org.w3c.dom.Node;
006 import curam.cefwidgets.docbuilder.impl.PodBuilder;
007 import curam.cefwidgets.pods.pod.impl.PodLoader;
008 import curam.codetable.PODTYPE;
009
010 public class MyFavouriteMovies extends PodLoader {
011
012 @Override
013 public Node createPod(Document document, Map<String,Object> contexts) {
014 try{
015 PodBuilder moviesPod =
016 PodBuilder.newPod(document, PODTYPE.MYFAVMOVIES);
017 moviesPod.setTitle("My Favourite Movies");
018 return moviesPod.getWidgetRootNode();
019 }catch(Exception e){
020 throw new RuntimeException(e);
021 }
022 }
023 }

Log into the Administrator application and add the new Pod to the Pod-Container
in the same way you did in the previous section.

Open the Pod page and ensure that the Pod is visible.

10 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Create the list
Now that you have a Pod in place you can add content to it. The PodBuilder class
provides an addContent(...) method to add the content to a Pod. In the movies
example you are going to delegate to the list widget which can generate a HTML
table.

To start you need to provide the movies for a list. The related information sample
below contains a full program-listing for a Java class that act as a simple read-only
DB of your favorite movies. Add this class to a package in the project where it can
be accessed by our PodLoader.

Next, you create a list in our PodLoader and populate it with the favorite movies.
In the PodLoader add the following code to the createPod method before the
return statement.

Adding a list to a Pod:
001 public Node createPod(Document document, Map<String,Object> contexts) {
002 try{
003 PodBuilder moviesPod =
004 PodBuilder.newPod(document, PODTYPE.MYFAVMOVIES);
005 moviesPod.setTitle("My Favourite Movies");
006
007 MoviesDB moviesDB = new MoviesDB();
008
009 Collection<MoviesDB.Movie> favMovieCollection =
010 moviesDB.getAllMovies();
011 Iterator<MoviesDB.Movie> movieList =
012 favMovieCollection.iterator();
013
014 // Create the list
015 ListBuilder myFavouriteMovies =
016 ListBuilder.createList(1, document);
017
018 int row = 1;
019 while(movieList.hasNext()) {
020 Movie movie = movieList.next();
021 String movieName = movie.title;
022 myFavouriteMovies.addRow();
023 myFavouriteMovies.addEntry(1, row++, movieName);
024 }
025
026 RendererConfig contentRenderer = new RendererConfig(
027 RendererConfigType.STYLE, "single-list");
028 moviesPod.addContent(myFavouriteMovies, contentRenderer);
029
030 return moviesPod.getWidgetRootNode();
031 }catch(Exception e){
032 throw new RuntimeException(e);
033 }

Compile your PodLoader class and reload the Pod page. The 'My Favourite
Movies' Pod are updated with the list of your favourite movies.

In the next section you can look in more detail at how the list was created.
Related reference:
“Sample: My favorite movies Pod-Loader” on page 25

Developing pods 11



Deconstructing the code

Constructing the list
A Pod does not need to know what its content will be. At run time the Pod
delegates to other widgets to produce the HTML that renders the content. Your
movies Pod is a list of movie names and it reuses another widget to return a
HTML table containing the list data. Like the PodBuilder the ListBuilder is an API
for creating lists that conform to the schema for a renderer called
ListBodyRenderer. The ListBuilder generates a fragment of XML that describes a
list and at run time the ListBodyRenderer translates this XML into the HTML that
can be added to the body of a Pod. To build the Pod content for a Pod the
PodLoader use the ListBuilder to produce the list of movies.

The first step in creating a list is to construct a new ListBuilder object. The
constructor on line 16 accepts an int value which is the number of columns in the
list. The second parameter is a org.w3c.Document. The document parameter
represents the overall PodContainer to which a Pod is added. The document object
is used to create the new Nodes that represent a Pod and its content. Those Nodes
is appended to some part of the document object.
015 ListBuilder myFavouriteMovies =
016 ListBuilder.createList(1, document);

Adding rows
Next, iterate over the movies. For each movie you add a new row (line 22).
019 while(movieList.hasNext()) {
020 Movie movie = movieList.next();
021 String movieName = movie.title;
022 myFavouriteMovies.addRow();
023 myFavouriteMovies.addEntry(1, row++, movieName);
024 }

Creating content in the cells
You use the addEntry(...) method to add content to cells. This method accepts a
column, a row and a Java Object, which represents the content to be added to the
cell.

Table 5. ListBuilder.addEntry(...) parameters

Parameter Type Description

col int The column index, offset 1.

row int The row index, offset 1.

content Object<?> A Java Object that represents the content. The
List Renderer can accept a number of different
types including CodetableItems and
LocalizedString objects which it processes for
display. (See Javadoc for ListBuilder)

In the movies Pod you want to add a list of movie names so you pass a Java
String in the content parameter. On lines 19 to 24 we iterate over the collection of
movies.
023 myFavouriteMovies.addEntry(1, row++, movieName);

Adding the list to a Pod
Now that the list is populated you insert it into the body of the Pod.

12 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



The addContent(...) method provides the mechanism for adding the Pod content.
The method accepts as its first parameter either a org.w3c.Node or a
WidgetDocumentBuilder object (which internally is converted to a Node using the
getWidgetRootNode operator of the WidgetDocumentBuilder object).

The second parameter is a configuration for a Renderer that creates the HTML for
our Pod content. The RendererConfig object specifies the type of configuration
(Style or Domain) and name of a renderer configuration entry. Configuring
renderers is covered in detail in the Curam Widget Development Guide.

Table 6. PodBuilder.addContent(...) parameters
param type descrption

content Node |
WidgetDocumentBuilder

The Node object is appended to the instance of
org.w3c.Document that was passed to the
constructor of the PodBuilder.

rendererConfig RendererConfig
The RendererConfig object nominates the Renderer
that processes the content parameter.

026 RendererConfig contentRenderer = new RendererConfig(
027 RendererConfigType.STYLE, "single-list");
028 moviesPod.addContent(myFavouriteMovies, contentRenderer);

The movies Pod uses the ListBodyRenderer which is invoked using a Style
configuration called "single-list". On line 28 we add the list widget with the
renderer configuration for a list to the body of the Pod.

The Pod is now complete. The content of your movies list is defined in the
ListBuilder object which is added to the Pod. The ListBodyRenderer generates the
HTML table which is appended to out Pod body.

Adding a Pod filter
In this section you explore Pod filters. You look at the existing filters available and
you use one to add a filter to the movies Pod.

What is a Pod filter?
A Pod can optionally include a Pod filter. The filter allows a user to refine the
information that is presented in the Pod. For example, some Pods display reports
as charts that are based on periods of time. A Pod filter may present a selection of
time periods which the user can select to redraw the Pod with a different chart
representing the selected time period.

Types of filter
The ChoiceRenderer is a generic renderer for a number of filter style renderers,
such as checkboxes, radiobuttons, and dropdowns. The ChoiceRenderer delegates
to a specific renderer depending on what displayType is selected by the
ChoiceBuilder.

The following table lists the existing filter renderers. The type and displayType
combine to select a specific renderer.

Table 7. Filter Types

Filter CT* Type Display Type Renderer

Checkbox Y multiple n/a CTCheckboxSelectRenderer

Radiobutton Y single n/a CTRadiobuttonSelectRenderer

Developing pods 13



Table 7. Filter Types (continued)

Filter CT* Type Display Type Renderer

Radiobutton N db-single n/a RadiobuttonSelectRenderer

Dropdown Y single dropdown CTDropdownSelectRenderer

Dropdown N single listdropdown ListDropDownSelectRenderer

Note: CT *, Denotes a filter based on the values in a specific codetable file.

Adding a Drop Down Filter
To demonstrate the use of filters you can create a filter for our movies Pod. The
filter selects movies by genre. As you did in the last section you insert the
complete code sample first to see the Pod in action, then you step through the
code to see what you did to create the filter.

Replace the original createPod method in the MyFavouriteMovies PodLoader with
the version in the Sample: My Favourite Movies Pod-Loader for Pod filter topic in
the links provided. Compile the PodLoader and start the Application.

When the page loads the Pod is updated to include a filter feature denoted by the
pen icon on the title bar.

Open the filter by clicking on the pen icon. Select a genre from the drop-down.
Use the Save button to save the selection and reload the list. The list only returns
movies that match the selected genre in the dropdown.

Lets look at the steps you took to create the filter.
Related reference:
“Sample: My Favourite Movies Pod-Loader for Pod filter” on page 25
“Sample: Hello World Pod-Loader” on page 24

Creating the Pod Filter
To add a filter to the Pod, you need to use the PodBuilder.addFilter(...) method
which accepts a parameter of type PodFilter. The PodFilter object specifies the id
of the filter and the renderer configuration that is used to invoke the render that
creates the filter.

In our example you are creating a filter with the id "genre" and we are using a
renderer called the ChoiceRenderer to render the content of the filter.

Creating the Pod Filter
010 RendererConfig filterRenderer =
011 new RendererConfig(RendererConfigType.DOMAIN, "CT_CHOICE");
012
013 // Create the PodFitler
014 PodFilter genreFilter =
015 new PodFilter("genre", document, filterRenderer);

On line 10-11 you create a renderer configuration which is mapped to a domain
'CT_CHOICE'. This configuration invokes a renderer called ChoiceRenderer. You
then create a PodFilter object passing an id, the document instance of the
PodLoader and the renderer configuration.

14 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Creating the options
Now that you have the basic framework of a filter you need to add the choices.
The filter can be described as a set of options and a set of selections, which are a
subset of the options. Collectively you refer to these as the 'choices'. As you are
using the ChoiceRenderer to create the drop-down list, so you can use the
ChoiceBuilder to create the content that you pass to the ChoiceRenderer. The
ChoiceBuilder accepts a HashMap which is the set of id's and values. In this case
the values are the list of genres that are displayed in the drop down.

In this simple example you use the lower case version of the value as the id.

Creating the set of Choices for the genre drop-down:
018 HashMap<String, String> genres = new HashMap<String, String>();
019 genres.put("all", "- All -");
020 genres.put("horror", "Horror");
021 genres.put("drama", "Drama");
022 genres.put("romance", "Romance");
023 genres.put("comedy", "Comedy");
024 genres.put("action", "Action");
025
026 // Create the options and selections using the ChoiceBuilder.
027 ChoiceBuilder choices =
028 ChoiceBuilder.newInstance(genres, document);

Creating the selections
The next step is adding the selected values. In most cases, you want this to be the
last saved selections. You can retrieve these values because they are saved for each
filter every time a save action occurs on the container. The PodLoader class
provides a getPodFilterById(...) which returns the selected values for each Pod
filter.

Retrieving the saved selections and adding them to the Pod filter:
031 Node genreSelectionNode =
032 getPodFilterById(PODTYPE.MYFAVMOVIES, "genre", document);
033
034 // Convert the Node to an ArrayList.
035 ArrayList<String> selectedGenres =
036 PodFilter.convertSelectionsNodeToArrayList(genreSelectionNode);
037
038 // Create a default genre selection.
039 if (selectedGenres.isEmpty()){
040 selectedGenres.add("all");
041 }
042 choices.addSelection(selectedGenres.get(0));

On line 32, you use the getPodFiltersById(...) method to return the saved
selections for the 'genre' filter on the 'MYFAVMOVIES' Pod. The values are
returned as a Node object in the raw format that they were encoded and stored as.
The PodFilter.converSelectionsNodeToArrayList(Node) utility is used to convert
the values into a list of String values. On line 42, you add the selected value, in
this case it is the only value that is returned in the array.

Setting the type of filter
In our example, you are using the ChoiceRenderer to create a dropdown list. The
ChoiceRenderer delegates to a specific renderer that depends on what displayType
is selected by the ChoiceBuilder. You are creating a drop down list, which is not
based on a codetable, so you selected "listdropdown" for the display type.

Setting the type of filter:

Developing pods 15



043 choices.setTypeOfDisplay("listdropdown");

Adding a label and CSS styling
Optionally you can add a label to the filter by passing a String * to the
addFitlerLabel(...) method. Custom styling can also be applied to the filter by
passing CSS class names to the addCSSClasses(...)

Note: * The filter label is configured for localization. The String passed to the
addFilterLabel method is assumed to be a key in a properties file associated with
the Pod. If no property value is returned by the key, the key is used as the label.

Adding a PodFilter to a Pod:
048 genreFilter.addFilterLabel("Genre");
049 genreFilter.addCSSClasses("genre-filter");

Add the Filter to the Pod
Next, you add the filter to the Pod by passing it to the PodFilter.addFilter(...)
method.

To add a PodFilter to a Pod:
050 moviesPod.addFilter(genreFilter);

Filtering your Pod
The final task is to filter the content of the Pod. In the movies example you want
to filter out all movies where the genre does not match the currently selected one.

To filter the movies by genre:
067 if (selectedGenre.equals(movie.genre)
068 || selectedGenre.equals("all")){
069
070 myFavouriteMovies.addRow();
071 myFavouriteMovies.addEntry(1, row++, movieName);
072 }

So that completes the filter. When the Pod is loaded for the first time no value is
stored for the filter. Every subsequent save stores the filter value, even if that is an
empty String. When the Pod reloads it uses the saved value to filter the list of
Movies, and it also passes the stored value back to the filter for display so that you
can see what filter is being applied.

Using the PodBuilder, PodFilter and ChoiceBuilder has meant that there was no
requirement to create Renderers. The builder classes allow you to reuse existing
renderers. There are however be occasions where you want to create a custom filter
type. In the next section, see how to create a new filter renderer.

Creating new Pod filters
In this section, you are going to create a new filter for a Pod to demonstrate how
to add form items to Pods.

To complete this section you need to create a Renderer so you need to be familiar with
building Renderers and topics such as source paths, target paths and marshallers. These are
covered in the Curam Widget Development Guide. This section assumes you have a good
working knowledge of the renderers.

Start with some simple definitions which you should already be familiar with from
the Curam Widget Development Guide

16 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Renderer
A Java class that generates HTML markup.

Marshaller
A Java class used to access properties of a server interface and
pre-processes data retrieved from a field

Source Path
A pointer used when accessing server interface properties.

Target Path
A pointer used for accessing the content of form fields.

In this example you create a simple text filter that filters by movie title. To create a
new filter you are going to...
v Create a Pod filter Renderer

– Map the source path
– Map the target path
– Create the text box

v Create a configuration for the Pod filter Renderer.
v Update our movies PodLoader.

– Create a new PodFilter that uses our new filter Renderer.

Create a Pod filter Renderer
The related information contains a program listing for a PodTextFilterRenderer.
Add this class to your component in the webclient project in a package that is
named sample under the javasource folder.

Below we step through the important code.
Related reference:
“Sample: PodTextFilterRenderer for new Pod filter example” on page 26

Preparing to delegate
You start our Renderer by creating a FieldBuilder. You do this because our
Renderer is not going to do all the work. It delegates the task of rendering the
input box to an existing Renderer. The FieldBuilder stores up the settings that you
pass to that Renderer.

Setting up a FieldBuilder
025 Field field = ((Field)component);
026
027 final FieldBuilder fieldBuilder =
028 ComponentBuilderFactory.createFieldBuilder();
029 fieldBuilder.copy(field);

Setting a source path
In the following code extract, you extend the source path received to access the
text for the filter. The text is stored in a Document Node named text-filter (you
create that later in the PodLoader). You use the data accessor to retrieve the text
that is added to the input box.

Setting the source path
032 String sourcePathExt = "text-filter";
033 Path sourcePath =
034 field.getBinding().getSourcePath().extendPath(sourcePathExt);
035 fieldBuilder.setSourcePath(sourcePath);

Developing pods 17



Setting a target path
Next, you extend the target path. You need to extend the target path to ensure the
form item value is processed by the Marshaller attached to the Pod-Container. The
Marshaller is configured to process a number of specific target paths. The
following example shows how to extend the target path in the correct format.

To set the target path:
038 String targetPathExt =
039 "choice/" + field.getID() + "/selected-options";
040 Path targetPath =
041 field.getBinding().getTargetPath().extendPath(targetPathExt);
042 fieldBuilder.setTargetPath(targetPath);

Note: The PodFiltersRenderer passes an Id value to the Renderer it invokes. The
Id is the concatenation of a podID and filterID in the format podID/filterID. The Id
value is retrieved by the called renderer using the getID() method. That renderer uses the
Id to uniquely identify itself.

Format of a Pod filter target path
choice/ podId

/
filterId
/selected-options
/option-value
|--1--|
--2--|
---3----|
--------4-------|
-----5------|

The extended target path is broken in to what are known as steps which are
divided by the '/' character. Each step in our target path is defined here.

Table 8. Target Path break down

Step Description

1 This acts as the marker for the marshal. The 'choice' text indicates that this field
is to be processed by the Pod-Container.

2 Contains the unique identifier (as specified in the PodType codetable) for the
Pod to which the filter is attached. For example, PT9001

3 Contains the unique identifier for the filter attached to the Pod. This Id is
created when the PodFilter is constructed in the PodLoader.

4 The selected-options step indicates that this is a filter. Knowing this, the
infrastructure processes the form values as a Pod filter.

5 The option-value step is optional and is used to uniquely identify selections in
multi-select filters. For example, a checkbox filter can select more than 1 value,
so each option gets an option-value step to distinguish it from its siblings.

In our code extract, you extended the target path using the id passed from the
PodFiltersRenderer to map our text input form item. At runtime its value will be...

Format of a target path for My Favourite Movies Pod text filter
choice/PT9001/title/selections

Creating the input field
The last section of the renderer creates the input field.

18 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



It actually delegates the task to an existing Renderer which can create the input
field. The TextRenderer is mapped to the TEXT_NODE Domain, so you simply set
the Domain on our FieldBuilder instance and call the render function on that. The
TextRenderer creates the form item and returns the input box which is appended
to the HTML document.

Rendering the input box
045 fieldBuilder.setDomain(context.getDomain("TEXT_NODE"));
046 DocumentFragment textFilter =
047 fragment.getOwnerDocument().createDocumentFragment();
048 context.render(fieldBuilder.getComponent(), fragment, contract);
049
050 fragment.appendChild(textFilter);

Create a configuration for the Pod filter Renderer
In the StylesConfig.xml in your component, add the following entry. The 'style'
name is used in the PodLoader to configure the PodFilter to use a new
PodTextFilterRenderer.

You need to execute the build target for the client to add this configuration.

Style configuration for Pod filter Renderer:
<sc:style name="pod-text-filter">

<sc:plug-in
class="sample.PodTextFilterRenderer"
name="component-renderer"

/>
</sc:style>

Create a new PodFilter in the PodLoader
After creating a filter, all that remains is to start it in the PodLoader and use the
saved value to filter the list of Movies. The related information contains the
updated version of the createPod(...) method.

The code extract here shows the specific code that creates the text filter and adds it
to the Pod.

Adding the Pod Text filter:
009 // Create the configuration for the filter renderer.
010 RendererConfig titleFilterRenderer =
011 new RendererConfig(RendererConfigType.STYLE, "pod-text-filter");
012
013 // Create the filter.
014 PodFilter titleFilter =
015 new PodFilter("title", document, titleFilterRenderer);
016 titleFilter.addFilterLabel("Title");
017
018 // Retrieve the saved filter value and extract to an array
019 Node titleTextNode =
020 getPodFilterById(PODTYPE.MYFAVMOVIES, "title", document);
021 ArrayList<String> titleTextArray =
022 PodFilter.convertSelectionsNodeToArrayList(titleTextNode);
023
024 // Create the Node that the filter Renderer expects and add the
025 // saved filter text to it.
026 String titleFilterText = "";
027 if (!titleTextArray.isEmpty()) {
028 titleFilterText = titleTextArray.get(0);
029 }
030 Element titleFilterNode = document.createElement("text-filter");

Developing pods 19



031 titleTextNode = document.createTextNode(titleFilterText);
032 titleFilterNode.appendChild(titleTextNode);
033 titleFilter.addFilter(titleFilterNode);
034
035 // Add the title filter to the Pod
036 moviesPod.addFilter(titleFilter);

Create a new filter:

In lines 10-11, create the configuration for the new filter by referencing the style
that was created in the StylesConfig.xml. You pass this to the PodFilter constuctor
along with the id of the filter, 'title' in this case.

Retrieve saved filter values:

In lines 19-22, use the utility functions to return the saved values for the 'title' filter
and convert them to an array for ease of use.

Create input to Renderer:

In lines 19-33, create the text Node that is passed to our Renderer. The Renderer is
expecting a Node named "text-filter" so you create this and add the filter text to it.
You add the Node to our PodFilter object using the addFilter(...) method.

Add the filter to the Pod:

Finally, pass the PodFilter object to the addFilter(...) method of our PodBuilder
object.

When you iterate over the movies, you only select movies whose title contains the
substring that was returned from the filter. When you put it all together you can
load the Pod, select the pen icon to open the filter, choose a genre and click save.
The page redraws with the new filtered list.
Related reference:
“Sample: My Favorite Movies Pod-Loader for new Pod filter” on page 27

Localization in Pods
In this section you are going to look at building Pods in a localizable manner. The
examples that are provided use non-locale-specific properties file, these can be
supplemented with locale-specific versions to return translated text if required. The
Curam Widget Development Guide has a Chapter on Internationalization and
Localization for widgets which covers this topic in more detail and the Curam
Regionalization Guide discusses building a locale aware product.

To demonstrate the features built into the framework of Pods to support
localization we will update our movies Pod to source various fields from property
resources.

The textresource property
For each of the existing renderers that are used with Pods a 'textresource' attribute
can be set that defines a resource property file. The code extract in the example
shows a renderer reading a property from a text resource file. The file name is
passed in the XML received by the renderer. (Refer to the example).

A Renderer reading a property from a text resource file:

20 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



private static final String RESOURCE_FILE_PATH = "@textresource";
...
...
String textResource = context.getDataAccessor().get(
field.getBinding().getSourcePath().extendPath(

RESOURCE_FILE_PATH));
Path textPath =
ClientPaths.GENERAL_RESOURCES_PATH.extendPath(textResource);

...

...
final String saveButtonText =
context.getDataAccessor().get(

textPath.extendPath("button.save.text"));

In the example above the Renderer is expecting to receive the name of the text
resource file in the 'textresource' attribute of the document Node it receives.

Example of a document Node input to a Pod renderer
<pod textresource="sample.i18n.MyFavouriteMovies" ...>

<config>
...

</config>
<data>

...
</data>

</pod>

The Renderer uses the ClientPaths class to create a pointer to the text resource file.
The value of the property is retrieved by extending the path into the file to point at
the specific property. The path extension is the property key. The value that is
returned is the property value. If the request is made for a specific locale, and the
resource file for that locale is provided then ClientPaths class accesses the property
in the appropriate resource file.

MyFavouriteMovies.properties
pod.title=My Favourite Movies

pod.filter.genre.label=Genre
....

The location of the properties file must be on the classpath of the client project.
Adding the properties file to the javasource folder achieves this. The convention is
to add property files to a folder called i18n to differentiate them.

Setting the text resource
A number of Renderers for producing standard content types in Pods are
provided. Each of these Renderers has an associated Builder class that acts as an
API for the Renderer to simplify the task of generating content to pass to the
Renderer.

Table 9. Builders & Renderers

Builder Renderer

PodBuilder PodBodyRenderer

ListBuilder ListBodyRenderer

PodListBuilder PodListBodyRenderer

LinkBuilder LinkRenderer

PodBuilder PodBodyRenderer

Developing pods 21



The builder classes provide a setTextResource(String) method. At run time each
instance of the Renderer uses the properties file received in the 'textresource'
attribute to retrieve values that can be localized. Refer to the next section.

Localizing the My Favorite Movies Pod
In this section you update the Movies Pod to read the values from properties files
instead of using hardcoded Strings. Start with a simple example, localizing the Pod
title. You create a properties file with a title property and then update the
PodBuilder to reference this property.

Note: The full listing for the createPod method for all examples that follow can be
found in the related reference information.
Related reference:
“Sample: My Favourite Movies Pod-Loader for localization” on page 29

Localizing the Pod
Create a new file called MyFavouriteMovies.properties in a folder called 'i18n'
under the javasource/sample folder in the webclient project (If you have not
already created that folder you can do so now). In the file add the key pod.title
with the value 'My Top Movies' which will distinguish it from the current title.

MyFavouriteMovie.properties:
pod.title=My Top Movies

Update the code used to construct our Pod by setting a text resource and use the
property key for the title of the Pod.

MyFavouriteMovies.java, sourcing the Pod title from a properties file
005 moviesPod.setTextResource("sample.i18n.MyFavouriteMovies");
006 moviesPod.setTitle("pod.title");

Compile the PodLoader class, build the client target and launch the application.
When the Pod is loaded you will see the new title "My Top Movies" which has
been read from the properties file.

Now we have a localizable Pod title.

Localizing the filter
Next, you add localizable text to the filter labels. The Pod filter is tied to the Pod
so it inherits the same resource file that you give to the Pod. In the same way that
you did for the Pod title, you use a property key for the labels and add the
property value to the properties file.

MyFavouriteMovies.properties:
pod.title=My Top Movies

pod.filter.title.label=Movie Title:
pod.filter.genre.label=Select Genre:

MyFavouriteMovies.java, by using the properties file for labels
...
017 titleFilter.addFilterLabel("pod.filter.title.label");

...
078 genreFilter.addFilterLabel("pod.filter.genre.label");

...

22 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



When you load the Pod you see that the label on the filter is changed to the value
specified in the properties file.

Localizing the movie list
Take one more example. This time you use a properties file with a list of movies.
To do so, you add a title to the list that is sourced from a properties file.
v Create a new properties file MoviesList.properties and add it to the i18n folder.
v Build the client to publish the properties.
v Update the list to use the properties file and add a column title as a property

key. See the example.

Adding a column title
091 myFavouriteMovies.setTextResource("sample.i18n.MoviesList");
092 myFavouriteMovies.addColumnTitle(1, "list.col1.title");

Sharing properties files
The last example of localizing the list illustrates the value of sharing properties
files. If you think about how a Pod is made up of various widgets, the complexity
of which might extend to any number of widgets, then having 1 property file per
widget would be difficult to maintain. For this reason, it makes sense to share the
properties files for aggregated widgets such as Pods even though it is not
technically necessary to do so.

In the example here, instead of creating a new properties file for the movies list
widget, you can reuse the MyFavouriteMovies.properties file. Using this technique
you have a single resource for all properties that are associated with the
'MyFavouriteMovies' Pod.

Sample program listings
This section contains the sample program listings for the My favorite movies pod.

Sample: The movies DB: A Java class serving our favorite
movies

This class is the helper for the examples. It is a simple read-only Java DB for our
favorite Movies.
package pods.podloaders;

import java.util.Collection;
import java.util.TreeMap;

/** Simple read-only Java DB for a movie collection */
public class MoviesDB {

private TreeMap<Integer, Movie> allMovies;

/** Constructor */
public MoviesDB() {

allMovies = new TreeMap<Integer, Movie>();
allMovies.put(1, new MoviesDB.Movie(1,"The Dark Knight", "action",
2008, "Christopher Nolan", "Christian Bale", 1));

allMovies.put(2, new MoviesDB.Movie(2,"Casablanca", "romance",
1942, "Michael Curtiz", "Humphrey Bogart", 3));

allMovies.put(3, new MoviesDB.Movie(3,"Schindler’s List", "drama",
1993, "Steven Spielberg", "Liam Neeson", 7));

allMovies.put(4, new MoviesDB.Movie(4,"Alien", "horror",
1979, "Ridley Scott", "Sigourney Weaver", 1));

Developing pods 23



allMovies.put(5, new MoviesDB.Movie(1, "The GodFather, Part II",
"drama", 1974, "Francis Ford Coppola", "Marlon Brando", 6));

allMovies.put(5, new MoviesDB.Movie(1, "Toy Story 3",
"comedy", 2010, "Lee Unkrich", "Tom Hanks", 2));
allMovies.put(6, new MoviesDB.Movie(6, "Toy Story 2",

"comedy", 1999, "John Lasseter", "Tom Hanks", 0));

}

/** Return all movies as a Collection */
public Collection<MoviesDB.Movie> getAllMovies(){

Collection<MoviesDB.Movie> movieCollection =
this.allMovies.values();

return movieCollection;
}
/** Return a movie by its Id */
public Movie getMovieById(Integer id) {

return allMovies.get(id);
}

class Movie {

public int id,year,oscars;
public String title, genre, director, leadrole, url;

public Movie(int id,String title,String genre,
int year,String director,String leadrole, int oscars){
this.id = id;
this.title = title;
this.genre = genre;
this.year = year;
this.director = director;
this.leadrole = leadrole;
this.oscars = oscars;

}
}

}

Sample: Hello World Pod-Loader
This is the simplest Pod-Loader you can have
001 package pods.podloaders;
002
003 import java.util.Map;
004 import org.w3c.dom.Document;
005 import org.w3c.dom.Node;
006 import curam.cefwidgets.docbuilder.impl.PodBuilder;
007 import curam.cefwidgets.pods.pod.impl.PodLoader;
008 import curam.codetable.PODTYPE;
009
010 public class HelloWorld extends PodLoader {
011
012 @Override
013 public Node createPod(Document document, Map<String,Object> contexts) {
014 try{
015 PodBuilder helloWorld =
016 PodBuilder.newPod(document, PODTYPE.HELLOWORLD);
017 helloWorld.setTitle("Hello World");
018 return helloWorld.getWidgetRootNode();
019 }catch(Exception e){
020 throw new RuntimeException(e);
021 }
022 }
023 }

24 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Sample: My favorite movies Pod-Loader
This version of the createPod method creates a list of movies using the MoviesDB
class
001 public Node createPod(Document document, Map<String,Object> contexts) {
002 try{
003 PodBuilder moviesPod =
004 PodBuilder.newPod(document, PODTYPE.MYFAVMOVIES);
005 moviesPod.setTitle("My Favourite Movies");
006
007 MoviesDB moviesDB = new MoviesDB();
008
009 Collection<MoviesDB.Movie> favMovieCollection =
010 moviesDB.getAllMovies();
011 Iterator<MoviesDB.Movie> movieList =
012 favMovieCollection.iterator();
013
014 // Create the list
015 ListBuilder myFavouriteMovies =
016 ListBuilder.createList(1, document);
017
018 int row = 1;
019 while(movieList.hasNext()) {
020 Movie movie = movieList.next();
021 String movieName = movie.title;
022 myFavouriteMovies.addRow();
023 myFavouriteMovies.addEntry(1, row++, movieName);
024 }
025
026 RendererConfig contentRenderer = new RendererConfig(
027 RendererConfigType.STYLE, "single-list");
028 moviesPod.addContent(myFavouriteMovies, contentRenderer);
029
030 return moviesPod.getWidgetRootNode();
031 }catch(Exception e){
032 throw new RuntimeException(e);
033 }

Sample: My Favourite Movies Pod-Loader for Pod filter
This version of the createPod method adds a filter to the Movies Pod.
001 public Node createPod(Document document, Map<String,Object> contexts) {
002 try{
003 PodBuilder moviesPod =
004 PodBuilder.newPod(document, PODTYPE.MYFAVMOVIES);
005 moviesPod.setTitle("My Favourite Movies");
006
007 MoviesDB moviesDB = new MoviesDB();
008
009 // Create the configuration for the drop down filter.
010 RendererConfig filterRenderer =
011 new RendererConfig(RendererConfigType.DOMAIN, "CT_CHOICE");
012
013 // Create the PodFitler
014 PodFilter genreFilter =
015 new PodFilter("genre", document, filterRenderer);
016
017 // Create genre list
018 HashMap<String, String> genres = new HashMap<String, String>();
019 genres.put("all", "- All -");
020 genres.put("horror", "Horror");
021 genres.put("drama", "Drama");
022 genres.put("romance", "Romance");
023 genres.put("comedy", "Comedy");
024 genres.put("action", "Action");
025

Developing pods 25



026 // Create the options and selections using the ChoiceBuilder.
027 ChoiceBuilder choices =
028 ChoiceBuilder.newInstance(genres, document);
029
030 // Return the last saved selection for the filter with id "genre".
031 Node genreSelectionNode =
032 getPodFilterById(PODTYPE.MYFAVMOVIES, "genre", document);
033
034 // Convert the Node to an ArrayList.
035 ArrayList<String> selectedGenres =
036 PodFilter.convertSelectionsNodeToArrayList(genreSelectionNode);
037
038 // Create a default genre selection.
039 if (selectedGenres.isEmpty()){
040 selectedGenres.add("all");
041 }
042 choices.addSelection(selectedGenres.get(0));
043 choices.setTypeOfDisplay("listdropdown");
044
045 genreFilter.addFilter(choices.getWidgetRootNode());
046
047 // Add a filter label
048 genreFilter.addFilterLabel("Genre");
049 genreFilter.addCSSClasses("genre-filter");
050 moviesPod.addFilter(genreFilter);
051
052
053 Collection<MoviesDB.Movie> favMovieCollection =
054 moviesDB.getAllMovies();
055 Iterator<MoviesDB.Movie> movieList =
056 favMovieCollection.iterator();
057
058 // Create the list
059 ListBuilder myFavouriteMovies =
060 ListBuilder.createList(1, document);
061
062 int row = 1;
063 while(movieList.hasNext()) {
064 Movie movie = movieList.next();
065 String movieName = movie.title;
066 String selectedGenre = selectedGenres.get(0);
067 if (selectedGenre.equals(movie.genre)
068 || selectedGenre.equals("all")){
069
070 myFavouriteMovies.addRow();
071 myFavouriteMovies.addEntry(1, row++, movieName);
072 }
073 }
074
075 RendererConfig contentRenderer = new RendererConfig(
076 RendererConfigType.STYLE, "single-list");
077 moviesPod.addContent(myFavouriteMovies, contentRenderer);
078
079 return moviesPod.getWidgetRootNode();
080 }catch(Exception e){
081 throw new RuntimeException(e);
082 }
083 }

Sample: PodTextFilterRenderer for new Pod filter example
The following renderer creates the text filter that you use to create new filters for
Pods:
001 package sample;
002
003 import org.w3c.dom.DocumentFragment;

26 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



004 import curam.util.client.ClientException;
005 import curam.util.client.model.Component;
006 import curam.util.client.model.ComponentBuilderFactory;
007 import curam.util.client.model.Field;
008 import curam.util.client.model.FieldBuilder;
009 import curam.util.client.view.RendererContext;
010 import curam.util.client.view.RendererContract;
011 import curam.util.common.path.DataAccessException;
012 import curam.util.common.path.Path;
013 import curam.util.common.plugin.PlugInException;
014 import curam.widget.render.infrastructure.AbstractComponentRenderer;
015
016 /**
017 * Creates a text input for use with a Pod Filter
018 */
019 public class PodTextFilterRenderer extends AbstractComponentRenderer {
020
021 public void render(Component component, DocumentFragment fragment,
022 RendererContext context, RendererContract contract)
023 throws ClientException, DataAccessException, PlugInException {
024
025 Field field = ((Field)component);
026
027 final FieldBuilder fieldBuilder =
028 ComponentBuilderFactory.createFieldBuilder();
029 fieldBuilder.copy(field);
030
031 // Update the source path to point at the text node
032 String sourcePathExt = "text-filter";
033 Path sourcePath =
034 field.getBinding().getSourcePath().extendPath(sourcePathExt);
035 fieldBuilder.setSourcePath(sourcePath);
036
037 // Update the target path to use the Pod filter id
038 String targetPathExt =
039 "choice/" + field.getID() + "/selected-options";
040 Path targetPath =
041 field.getBinding().getTargetPath().extendPath(targetPathExt);
042 fieldBuilder.setTargetPath(targetPath);
043
044 // Use TextRenderer to create input box
045 fieldBuilder.setDomain(context.getDomain("TEXT_NODE"));
046 DocumentFragment textFilter =
047 fragment.getOwnerDocument().createDocumentFragment();
048 context.render(fieldBuilder.getComponent(), fragment, contract);
049
050 fragment.appendChild(textFilter);
051 }
052 }

Sample: My Favorite Movies Pod-Loader for new Pod filter
This version of the create Pod method includes the creation of the movie title filter
001 public Node createPod(Document document, Map<String,Object> contexts) {
002 try{
003 PodBuilder moviesPod =
004 PodBuilder.newPod(document, PODTYPE.MYFAVMOVIES);
005 moviesPod.setTitle("My Favourite Movies");
006
007 MoviesDB moviesDB = new MoviesDB();
008
009 // Create the configuration for the filter renderer.
010 RendererConfig titleFilterRenderer =
011 new RendererConfig(RendererConfigType.STYLE, "pod-text-filter");
012
013 // Create the filter.
014 PodFilter titleFilter =

Developing pods 27



015 new PodFilter("title", document, titleFilterRenderer);
016 titleFilter.addFilterLabel("Title");
017
018 // Retrieve the saved filter value and extract to an array
019 Node titleTextNode =
020 getPodFilterById(PODTYPE.MYFAVMOVIES, "title", document);
021 ArrayList<String> titleTextArray =
022 PodFilter.convertSelectionsNodeToArrayList(titleTextNode);
023
024 // Create the Node that the filter Renderer expects and add the
025 // saved filter text to it.
026 String titleFilterText = "";
027 if (!titleTextArray.isEmpty()) {
028 titleFilterText = titleTextArray.get(0);
029 }
030 Element titleFilterNode = document.createElement("text-filter");
031 titleTextNode = document.createTextNode(titleFilterText);
032 titleFilterNode.appendChild(titleTextNode);
033 titleFilter.addFilter(titleFilterNode);
034
035 // Add the title filter to the Pod
036 moviesPod.addFilter(titleFilter);
037
038 // Create the configuration for the drop down filter.
039 RendererConfig filterRenderer =
040 new RendererConfig(RendererConfigType.DOMAIN, "CT_CHOICE");
041
042 // Create the PodFitler
043 PodFilter genreFilter =
044 new PodFilter("genre", document, filterRenderer);
045
046 // Create genre list
047 HashMap<String, String> genres = new HashMap<String, String>();
048 genres.put("all", "- All -");
049 genres.put("horror", "Horror");
050 genres.put("drama", "Drama");
051 genres.put("romance", "Romance");
052 genres.put("comedy", "Comedy");
053 genres.put("action", "Action");
054
055 // Create the options and selections using the ChoiceBuilder.
056 ChoiceBuilder choices =
057 ChoiceBuilder.newInstance(genres, document);
058
059 // Return the last saved selection for the filter with id "genre".
060 Node genreSelectionNode =
061 getPodFilterById(PODTYPE.MYFAVMOVIES, "genre", document);
062
063 // Convert the Node to an ArrayList.
064 ArrayList<String> selectedGenres =
065 PodFilter.convertSelectionsNodeToArrayList(genreSelectionNode);
066
067 // Create a default genre selection.
068 if (selectedGenres.isEmpty()){
069 selectedGenres.add("all");
070 }
071 choices.addSelection(selectedGenres.get(0));
072 choices.setTypeOfDisplay("listdropdown");
073
074 genreFilter.addFilter(choices.getWidgetRootNode());
075
076 // Add a filter label
077 genreFilter.addFilterLabel("Genre");
078 genreFilter.addCSSClasses("genre-filter");
079 moviesPod.addFilter(genreFilter);
080
081

28 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



082 Collection<MoviesDB.Movie> favMovieCollection =
083 moviesDB.getAllMovies();
084 Iterator<MoviesDB.Movie> movieList =
085 favMovieCollection.iterator();
086
087 // Create the list
088 ListBuilder myFavouriteMovies =
089 ListBuilder.createList(1, document);
090
091 int row = 1;
092 while(movieList.hasNext()) {
093 Movie movie = movieList.next();
094 String movieName = movie.title;
095 String selectedGenre = selectedGenres.get(0);
096 if (selectedGenre.equals(movie.genre)
097 || selectedGenre.equals("all")){
098
099 if (movieName.toUpperCase().indexOf(
100 titleFilterText.toUpperCase()) != -1) {
101 myFavouriteMovies.addRow();
102 myFavouriteMovies.addEntry(1, row++, movieName);
103 }
104 }
105 }
106
107 RendererConfig contentRenderer = new RendererConfig(
108 RendererConfigType.STYLE, "single-list");
109 moviesPod.addContent(myFavouriteMovies, contentRenderer);
110
111 return moviesPod.getWidgetRootNode();
112 }catch(Exception e){
113 throw new RuntimeException(e);
114 }
115 }

Sample: My Favourite Movies Pod-Loader for localization
001 public Node createPod(Document document, Map<String,Object> contexts) {
002 try{
003 PodBuilder moviesPod =
004 PodBuilder.newPod(document, PODTYPE.MYFAVMOVIES);
005 moviesPod.setTextResource("sample.i18n.MyFavouriteMovies");
006 moviesPod.setTitle("pod.title");
007
008 MoviesDB moviesDB = new MoviesDB();
009
010 // Create the configuration for the filter renderer.
011 RendererConfig titleFilterRenderer =
012 new RendererConfig(RendererConfigType.STYLE, "pod-text-filter");
013
014 // Create the filter.
015 PodFilter titleFilter =
016 new PodFilter("title", document, titleFilterRenderer);
017 titleFilter.addFilterLabel("pod.filter.title.label");
018
019 // Retrieve the saved filter value and extract to an array
020 Node titleTextNode =
021 getPodFilterById(PODTYPE.MYFAVMOVIES, "title", document);
022 ArrayList<String> titleTextArray =
023 PodFilter.convertSelectionsNodeToArrayList(titleTextNode);
024
025 // Create the Node that the filter Renderer expects and add the
026 // saved filter text to it.
027 String titleFilterText = "";
028 if (!titleTextArray.isEmpty()) {
029 titleFilterText = titleTextArray.get(0);
030 }

Developing pods 29



031 Element titleFilterNode = document.createElement("text-filter");
032 titleTextNode = document.createTextNode(titleFilterText);
033 titleFilterNode.appendChild(titleTextNode);
034 titleFilter.addFilter(titleFilterNode);
035
036 // Add the title filter to the Pod
037 moviesPod.addFilter(titleFilter);
038
039 // Create the configuration for the drop down filter.
040 RendererConfig filterRenderer =
041 new RendererConfig(RendererConfigType.DOMAIN, "CT_CHOICE");
042
043 // Create the PodFitler
044 PodFilter genreFilter =
045 new PodFilter("genre", document, filterRenderer);
046
047 // Create genre list
048 HashMap<String, String> genres = new HashMap<String, String>();
049 genres.put("all", "- All -");
050 genres.put("horror", "Horror");
051 genres.put("drama", "Drama");
052 genres.put("romance", "Romance");
053 genres.put("comedy", "Comedy");
054 genres.put("action", "Action");
055
056 // Create the options and selections using the ChoiceBuilder.
057 ChoiceBuilder choices =
058 ChoiceBuilder.newInstance(genres, document);
059
060 // Return the last saved selection for the filter with id "genre".
061 Node genreSelectionNode =
062 getPodFilterById(PODTYPE.MYFAVMOVIES, "genre", document);
063
064 // Convert the Node to an ArrayList.
065 ArrayList<String> selectedGenres =
066 PodFilter.convertSelectionsNodeToArrayList(genreSelectionNode);
067
068 // Create a default genre selection.
069 if (selectedGenres.isEmpty()){
070 selectedGenres.add("all");
071 }
072 choices.addSelection(selectedGenres.get(0));
073 choices.setTypeOfDisplay("listdropdown");
074
075 genreFilter.addFilter(choices.getWidgetRootNode());
076
077 // Add a filter label
078 genreFilter.addFilterLabel("pod.filter.genre.label");
079 genreFilter.addCSSClasses("genre-filter");
080 moviesPod.addFilter(genreFilter);
081
082
083 Collection<MoviesDB.Movie> favMovieCollection =
084 moviesDB.getAllMovies();
085 Iterator<MoviesDB.Movie> movieList =
086 favMovieCollection.iterator();
087
088 // Create the list
089 ListBuilder myFavouriteMovies =
090 ListBuilder.createList(1, document);
091 myFavouriteMovies.setTextResource("sample.i18n.MoviesList");
092 myFavouriteMovies.addColumnTitle(1, "list.col1.title");
093
094 int row = 1;
095 while(movieList.hasNext()) {
096 Movie movie = movieList.next();
097 String movieName = movie.title;

30 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



098 String selectedGenre = selectedGenres.get(0);
099 if (selectedGenre.equals(movie.genre)
100 || selectedGenre.equals("all")){
101
102 if (movieName.toUpperCase().indexOf(
103 titleFilterText.toUpperCase()) != -1) {
104 myFavouriteMovies.addRow();
105 myFavouriteMovies.addEntry(1, row++, movieName);
106 }
107 }
108 }
109
110 RendererConfig contentRenderer = new RendererConfig(
111 RendererConfigType.STYLE, "single-list");
112 moviesPod.addContent(myFavouriteMovies, contentRenderer);
113
114 return moviesPod.getWidgetRootNode();
115
116 }catch(Exception e){
117 throw new RuntimeException(e);
118 }
119 }

Developing pods 31



32 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



Notices

This information was developed for products and services offered in the United
States.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM® product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

© Copyright IBM Corp. 2012, 2016 33



IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings

34 IBM Cúram Social Program Management: Cúram - Pod Developers Guide



can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “ Copyright and
trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

Notices 35

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml


36 IBM Cúram Social Program Management: Cúram - Pod Developers Guide





IBM®

Printed in USA


	Contents
	Figures
	Tables
	Developing pods
	Overview
	Prerequisites
	Further Reading

	A Technical Overview
	What is a Pod?
	What is a Pod page?
	How does it work?
	UIM Page
	PodContainer
	PodLoader
	Database Tables
	Loading the Page
	Rendering the page
	Saving the Page
	Configuring Pods
	Pod Dimensions

	Product Pods
	User configuration of Pod Pages
	Developing new Pods


	Getting Started
	Creating a page with a Pod container
	Identifying a Pod page
	Configuring the database information about the page
	Testing the page

	Hello World Pod
	Declaring a new Pod
	Declaring a new PodLoader
	Creating a Pod using a PodLoader
	Adding a Pod to the Pod Container
	Viewing the Pod
	Review

	Creating a Pod with a list
	Creating a new list Pod
	Register new Pod
	Create a new PodLoader
	Create the list

	Deconstructing the code
	Constructing the list
	Adding rows
	Creating content in the cells
	Adding the list to a Pod


	Adding a Pod filter
	What is a Pod filter?
	Types of filter
	Adding a Drop Down Filter
	Creating the Pod Filter
	Creating the options
	Creating the selections
	Setting the type of filter
	Adding a label and CSS styling
	Add the Filter to the Pod
	Filtering your Pod


	Creating new Pod filters
	Create a Pod filter Renderer
	Preparing to delegate
	Setting a source path
	Setting a target path
	Creating the input field

	Create a configuration for the Pod filter Renderer
	Create a new PodFilter in the PodLoader

	Localization in Pods
	The textresource property
	Setting the text resource
	Localizing the My Favorite Movies Pod
	Localizing the Pod
	Localizing the filter
	Localizing the movie list
	Sharing properties files


	Sample program listings
	Sample: The movies DB: A Java class serving our favorite movies
	Sample: Hello World Pod-Loader
	Sample: My favorite movies Pod-Loader
	Sample: My Favourite Movies Pod-Loader for Pod filter
	Sample: PodTextFilterRenderer for new Pod filter example
	Sample: My Favorite Movies Pod-Loader for new Pod filter
	Sample: My Favourite Movies Pod-Loader for localization


	Notices
	Privacy Policy considerations
	Trademarks


