
IBM Cúram Social Program Management
Version 7.0.0

Cúram Person and Prospect Person
Evidence Developers Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 41

Edition

This edition applies to IBM Cúram Social Program Management v7.0.0 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Developing with Person and Prospect
Person Evidence 1
Overview 1

Pre-requisites 1
Sections in this Guide 1

Person/Prospect Person Evidence Overview 1
Person/Prospect Person Data as Evidence . . . 1
How Person or Prospect Person Evidence is
Managed 2

Person/Prospect Person Evidence Types . . . 2
Evidence Validations. 3
Evidence Sharing 3

Designing Person/Prospect Person Evidence
Solutions 4

Data: Dynamic Evidence Types 4
Structure. 4
Constraints 4

Flow: Evidence Broker 5
Cúram Express Rules: Case Eligibility/Entitlement
Calculations 6

Read participant data from the dynamic
evidence stored by the participant manager . . 6
Read participant data which has been brokered
onto cases 6
Continue to read from the legacy tables . . . 6

Dynamic Evidence Type Data Mappings 6
Address 6
Bank Account 7
Birth and Death 7
Contact Preferences 7
Email Address 8
Gender 8
Identification 8
Name. 8
Phone Number 9
Relationship 9
Snapshot Tables 9

Customizing Person/Prospect Person Evidence . . 10
Replicators 10

Replicator Extension 10

Example: Implementing a Person/Prospect
Person Evidence Replicator Extender 11
Why Implement a Replicator? 12
Implementing a Replicator 12
Example: Implementing a Person/Prospect
Person Evidence Replicator 12

Converters. 19
Why Extend a Converter? 19
Converter Extension 19
Example: Implementing a Person/Prospect
Person Evidence Populator 20
Why Implement a Converter? 21
Implementing a Converter 21
Example: Implementing a Person/Prospect
Person Evidence Converter 21

Evidence Sharing Automation 24
What is Evidence Sharing Automation? . . 24
Why use Evidence Sharing Automation? . . 24
Implementing an Automation Strategy . . . 24
Configuring an Automation Strategy . . . 25
Example Automation Strategy 26

Selection of Primary Information 28
Why Change the Selection of Primary
Information? 28
Changing the Selection of Primary
Information 28
Changing the Selection of Primary
Information Example 29

Reciprocal Evidence 31
Why Provide a Reciprocal Evidence
Implementation?. 31
Reciprocal Evidence Implementations. . . . 31
Reciprocal Evidence Implementation Example 32
Reciprocal Evidence Limitations 37

Participant Data Case Owner 37
Why Change the Participant Data Case
Owner?. 37
Changing the Participant Data Case Owner. . 37
Changing the Participant Data Case Owner
Example 38

Notices 41
Privacy Policy considerations 42
Trademarks 43

© Copyright IBM Corp. 2012, 2016 iii

iv IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Figures

© Copyright IBM Corp. 2012, 2016 v

vi IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Tables

1. Address Mapping 6
2. Bank Account Mapping 7
3. Birth and Death Mapping 7
4. Contact Preferences Mapping 7
5. Email Address Mapping 8

6. Gender Mapping 8
7. Identification Mapping 8
8. Name Mapping 8
9. Phone Number Mapping 9

10. Relationship Mapping 9

© Copyright IBM Corp. 2012, 2016 vii

viii IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Developing with Person and Prospect Person Evidence

Use this information to design a person/prospect person evidence solution. This
work involves a consideration of the data, its structure, evidence constraints, and
the flow of the data around the system. Some of the information that is stored
about persons and prospect persons is held as evidence, which can be shared
between cases on the system.

Overview
The purpose of this guide is to provide a high level technical understanding of
person/prospect person evidence and its components. This guide also outlines the
available customization options and extension points and provides instructions on
how to implement these customizations. This guide is intended for developers and
architects intending to implement a person/prospect person evidence solution.

Important: This guide is only applicable to those readers that are using the
participant application with person and prospect person dynamic evidence.

Pre-requisites
The guide assumes that the reader is familiar with the following.
v Cúram Evidence Guide

v Cúram Participant Guide

v Cúram Dynamic Evidence Configuration Guide

v Google Guice

Sections in this Guide
The following list describes the sections within this guide:

Person/Prospect Person Evidence Overview
This section provides a high level overview of the key technical aspects of
person/prospect person evidence.

Designing Person/Prospect Person Evidence Solutions
This section outlines some design considerations that should be taken into
account when designing a person/prospect person evidence solution.

Dynamic Evidence Type Data Mappings
This section describes the mapping of data from the dynamic evidence
types supplied with the application to legacy database tables.

Customizing Person/Prospect Person Evidence
This section describes the customization options and extension points
available for person/prospect person evidence.

Person/Prospect Person Evidence Overview

Person/Prospect Person Data as Evidence
Some of the information stored about persons and prospect persons is held as
evidence, which can be shared between cases on the system.

© Copyright IBM Corp. 2012, 2016 1

A number of Cúram components and technologies come together to enable the
storing of person and prospect person evidence and the flow of this evidence
through the system:
v Cúram Dynamic Evidence is used to store the captured person/prospect person

data and perform basic validations.
v Cúram Express Rules are used to execute complex validations against the

captured data.
v The Cúram Evidence Broker can optionally be used to broker the data between

cases.
v Cúram Verifications can optionally be used to apply verifications to the captured

data when it is brokered between cases.

Depending on the business requirements, some level of configuration,
customization or both may be required. The section describes at a high level how
the system manages person/prospect person data and identifies the points at
which configuration and/or customization might be required.

Note: Careful consideration should be given to the required business behavior of
the system during the design phase of a Cúram implementation. The starting point
for developing an understanding of how a system should be configured to support
the business requirements should be the Cúram Participant Guide and the Cúram
Evidence Guide.

How Person or Prospect Person Evidence is Managed
The management of person and prospect person data as evidence is underpinned
by the following key foundations:
v Each person and prospect person has an associated person or prospect person

case (Participant Data Case) created 'under the hood' following registration.
v Person and prospect person data is stored as evidence on dynamic evidence

tables and is described by the dynamic evidence types that are associated with
the person, a prospect person, or both.

v The data that is recorded as evidence is replicated back to the existing database
tables; the existing database tables need to be in sync with the dynamic
evidence.

v When a person or prospect person record is edited, the data is retrieved from,
and written to, the dynamic evidence tables (and again, replicated back to the
existing database tables).

v In some cases, application screens and processing continue to read from the
existing database tables.

v The person and prospect person case types can be configured to have participant
data brokered to and from other cases, by using the Cúram Evidence Broker.

Person/Prospect Person Evidence Types
A number of dynamic evidence types are provided and are associated with the
person and prospect person participants. These evidence types and their attributes
must not be removed or disassociated from the person and prospect person.

Where there is a requirement to manage additional data as person and prospect
person evidence, new evidence types can be created as described in the Cúram
Dynamic Evidence Configuration Guide and associated with the person and
prospect person in the administration component. Equally, new attributes can be
added to the existing dynamic evidence types. Where the data being added to new

2 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

or existing evidence types is already present on an existing legacy database table,
additional customization work must be performed:
v The code that replicates the data from the dynamic evidence tables to the legacy

database tables (the 'replicator') must be extended to replicate the additional
data being stored as evidence.

v Where data already exists on the legacy database tables, this data must be
copied to the equivalent dynamic evidence table(s). The code that performs that
operation (the 'converter') must be extended to convert the additional data into
evidence.

More detail and example implementations for both of these are provided in the
chapter 'Customizing Person/Prospect Person Evidence'.

Evidence Validations
Person and prospect person evidence is validated when created and edited.

These validations are implemented in one of two ways:
v Using the Dynamic Evidence Editor validations functionality. For example,

mandatory field validations.
v Using Cúram Express Rule Sets. For example, cross-evidence validations.

Where new dynamic evidence types or attributes are added, customers should use
one of these mechanisms to add any validations required. This is described in
more detail in the Cúram Dynamic Evidence Configuration Guide.

When evidence is brokered to the person and prospect person, these validations
are not checked. Brokered evidence is always accepted to prevent it being lost, as
there is no concept of 'incoming evidence' for a person and prospect person. When
person/prospect person evidence is entered, it is validated immediately. However,
evidence brokered in from another case is automatically accepted and activated,
even if the validation checks fail. For other case types, when person/prospect
person evidence is brokered onto the case, a validation failure prevents the
evidence from being activated.

Evidence Sharing
The evidence framework can share evidence between a person/prospect person,
application cases and ongoing cases. The Evidence Broker enables and mediates
this sharing of evidence. Evidence sharing is uni-directional and per evidence type.
This means that different targets can receive and share an evidence type in
different ways. If required, one case type might be able to receive shared evidence,
but might not be able to share its own evidence.

There are three main functions which triggers the evidence broker to broadcast
evidence:
v When a new person is added to a target case. For example, where

person/prospect person evidence such as identification evidence is configured
for sharing to an integrated case and a person is added to an integrated case, the
evidence broker first checks to see if that person has any person/prospect
person evidence. If evidence is found, the evidence broker then checks for active
identification evidence and shares it to the integrated case.

v When evidence changes are made to a source case. For example, when changes
are made to a person's identification evidence, the evidence broker shares those
changes to the integrated case.

Developing with Person and Prospect Person Evidence 3

v When a new target case is created. For example, any time a new integrated case
is created, the evidence broker searches for person/prospect person
identification evidence to be shared. If this evidence is found, the evidence
broker shares the identification evidence to the integrated case.

For more detailed information on the Evidence Broker, see the Cúram Evidence
Broker Guide.

Designing Person/Prospect Person Evidence Solutions
When designing a person/prospect person evidence solution the designer should
consider the data, its structure, constraints and the flow of that data around the
system.

Data: Dynamic Evidence Types

Structure
Person/Prospect Person evidence is primarily stored as dynamic evidence and the
data structures that represent it are dynamic evidence types. Dynamic evidence
types define the data, its type and behavior such as volatility, calculated attributes
and so on. Once new dynamic evidence types are defined they must be activated
and associated with the relevant case types, persons and prospect persons.

Further information on how to define dynamic evidence types can be found in the
Cúram Dynamic Evidence Configuration Guide.

Things to consider:
v Does the evidence vary over time?
v Is the evidence type reciprocal? If so, the evidence type should have participant

and related participant attributes.
v What case types should the evidence be available on?
v Consider making the evidence type 'Preferred', if it is to be commonly used. It

allows case workers to quickly create evidence for frequently recorded evidence
types.

Constraints

Validations:

A number of standard validations, frequently used in evidence processing, are
provided in the Dynamic Evidence Editor. More complex validations, such as
cross-evidence validations, can be included using Cúram Express Rules.

More information on validations can be found in the Cúram Dynamic Evidence
Configuration Guide.

Things to consider:
v What validations are required to ensure integrity of data?
v When person/prospect person evidence is entered, it is validated immediately;

however, evidence brokered in from another case is automatically accepted and
activated, even if the validation checks fail. For other case types, when
person/prospect evidence is brokered onto the case, a validation failure prevents
the evidence from being activated.

v Include any validations required to enforce succession constraints.

4 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

v Try to use standard validation patterns where possible. Validation rule sets
should only be developed if they cannot be implemented using standard
validations.

v If developing validation rule sets for more complex validations, be mindful of
how data retrieval is performed. If performed incorrectly, this can have a
significant impact on performance.

Important: System processes rely on the validations shipped with the application
and it is not compliant to remove or alter these validations.

Verifications:

This section is only applicable for those readers licensed to use the verifications
component. Verification is the process of checking the accuracy of evidence.

The verification of evidence can take a number of forms; it can be provided by
documents, for example, birth certificates or bank statements, or by verbal means,
for example, telephone calls. When evidence is captured, the verification engine is
invoked in order to determine if the evidence requires verification.

Note: With the exception of evidence brokered to a person/prospect person record,
evidence cannot be activated until all mandatory verification requirements are met.

For more information on verifications and their configuration, see the Cúram
Verification Guide.

Things to consider:
v Does the evidence require verification?
v What are the rules around verification?
v What information needs to be provided by the client?

Flow: Evidence Broker
The Evidence Broker is the mechanism that allows evidence to be shared
throughout the system. When the Evidence Broker broadcasts evidence to a
person/prospect person record, the evidence is automatically accepted and
activated on the person/prospect person record, so the user does not have to
manually accept and activate evidence.

For more information on Evidence Broker and configuration options, see the
Cúram Evidence Broker Guide. For the recommended brokering approach please
see the Cúram Evidence Guide.

Things to consider:
v Is the same evidence type used on more than one case type? If so, should

changes to this evidence be communicated to other cases?
v Should the target case be set up to automatically accept changes or should the

case worker be forced to intervene to decide on whether to accept this incoming
evidence?

v In order for system processing to function correctly, it is essential that
person/prospect person data recorded outside of the participant manager be
shared back to the participant manager.

Developing with Person and Prospect Person Evidence 5

Cúram Express Rules: Case Eligibility/Entitlement
Calculations

Areas where Cúram Express Rules are used to read participant data from legacy
database tables for the purposes of case eligibility and entitlement calculations,
should be analyzed to decide where this data should be sourced from.

There are three options, each of which have their own benefits and limitations:
v Read participant data from the dynamic evidence stored by the participant

manager
v Read participant data, which has been brokered onto cases
v Continue to read from the legacy tables

Read participant data from the dynamic evidence stored by the
participant manager
Things to consider:
v Working off primary data source
v Changes in evidence causes immediate recalculations
v No opportunity for case worker to review

Read participant data which has been brokered onto cases
Things to consider:
v This is the recommended option for any new development
v Changes only take place when evidence is activated
v Evidence type has to be configured to be brokered onto the case

Continue to read from the legacy tables
Things to consider:
v This option should be considered carefully and is only recommended for

upgrading customers.

Dynamic Evidence Type Data Mappings
The tables here show the data mappings from the dynamic evidence types to the
legacy database tables.

Note: Replicators perform this mapping and converters perform the reverse
mapping.

Address
Table 1. Address Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRoleAddress.concernRoleID (calculated using
caseParticipantRoleID)

address Address.addressData

fromDate ConcernRoleAddress.startDate

toDate ConcernRoleAddress.endDate

addressType ConcernRoleAddress.typeCode

comments ConcernRoleAddress.comments

6 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Bank Account
Table 2. Bank Account Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRoleBankAccount.concernRoleID (calculated
using caseParticipantRoleID)

accountName BankAccount.name

accountNumber BankAccount.accountNumber

iban BankAccount.iban

accountType BankAccount.typeCode

sortCode BankAccount.bankSortCode

bic BankAccount.bic

fromDate BankAccount.startDate

toDate BankAccount.endDate

accountStatus BankAccount.bankAccountStatus

jointAccountInd BankAccount.jointAccountInd

comments BankAccount.comments

Birth and Death
Table 3. Birth and Death Mapping

Dynamic Evidence Attribute Database Column

person Person/ProspectPerson.concernRoleID (calculated
using caseParticipantRoleID)

birthLastName Person/ProspectPerson.personBirthName

mothersBirthLastName Person/ProspectPerson.motherBirthSurname

dateOfBirth Person/ProspectPerson.dateOfBirth

dateOfDeath Person/ProspectPerson.dateOfDeath

comments N/A

Contact Preferences
Table 4. Contact Preferences Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRole.concernRoleID (calculated using
caseParticipantRoleID)

preferredLanguage ConcernRole.preferredLanguage

preferredCommunication ConcernRole.prefCommMethod

comments N/A

Developing with Person and Prospect Person Evidence 7

Email Address
Table 5. Email Address Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRoleEmailAddress.concernRoleID (calculated
using caseParticipantRoleID)

emailAddress EmailAddress.emailAddress

fromDate ConcernRoleEmailAddress.startDate

toDate ConcernRoleEmailAddress.endDate

emailAddressType ConcernRoleEmailAddress.typeCode

comments EmailAddress.comments

Gender
Table 6. Gender Mapping

Dynamic Evidence Attribute Database Column

person Person/ProspectPerson.concernRoleID (calculated
using caseParticipantRoleID)

gender Person/ProspectPerson.gender

comments N/A

Identification
Table 7. Identification Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRoleAlternateID.concernRoleID (calculated
using caseParticipantRoleID)

alternateID ConcernRoleAlternateID.alternateID

altIDType ConcernRoleAlternateID.typeCode

fromDate ConcernRoleAlternateID.startDate

toDate ConcernRoleAlternateID.endDate

comments ConcernRoleAlternateID.comments

Name
Table 8. Name Mapping

Dynamic Evidence Attribute Database Column

participant AlternateName.concernRoleID (calculated using
caseParticipantRoleID)

title AlternateName.title

firstName AlternateName.firstForename

middleName AlternateName.otherForename

lastName AlternateName.surname

suffix AlternateName.nameSuffix

initials AlternateName.initials

8 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Table 8. Name Mapping (continued)

Dynamic Evidence Attribute Database Column

nameType AlternateName.nameType

comments AlternateName.comments

Phone Number
Table 9. Phone Number Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRolePhoneNumber.concernRoleID (calculated
using caseParticipantRoleID)

phoneCountryCode PhoneNumber.phoneCountryCode

phoneAreaCode PhoneNumber.phoneAreaCode

phoneNumber PhoneNumber.phoneNumber

phoneExtension PhoneNumber.phoneExtension

fromDate ConcernRolePhoneNumber.startDate

toDate ConcernRolePhoneNumber.endDate

phoneType ConcernRolePhoneNumber.typeCode

comments PhoneNumber.comments

Relationship
Table 10. Relationship Mapping

Dynamic Evidence Attribute Database Column

participant ConcernRoleRelationship.concernRoleID (calculated
using caseParticipantRoleID)

relatedParticipant ConcernRoleRelationship.relConcernRoleID

fromDate ConcernRoleRelationship.startDate

toDate ConcernRoleRelationship.endDate

relationshipType ConcernRoleRelationship.relationshipType

endReason ConcernRoleRelationship.relEndReasonCode

comments ConcernRoleRelationship.comments

Snapshot Tables
When person/prospect person data is registered or maintained, this data is not
replicated to the following snapshot tables.
v AlternateNameSnapshot
v ConcernRoleAddressSnapshot
v ConcernRoleAlternateIDSnapshot
v ConcernRoleBankAccountSnapshot
v ConcernRoleRelSnapshot
v ConcernRoleSnapshot
v PersonSnapshot
v ProspectPersonSnapshot

Developing with Person and Prospect Person Evidence 9

Customizing Person/Prospect Person Evidence
This section describes the customization options and extension points available for
person/prospect person evidence. Some or all of these may be applicable to you
depending on your existing customizations and configurations.

There are five main areas to consider, listed below:
v Replicators
v Converters
v Selection of Primary Information
v Reciprocal Evidence
v Participant Data Case Owner

Each of these areas are described in detail and examples are also provided. Please
note, these are samples only.

Replicators
What is a Replicator?

A replicator reflects changes in evidence onto the relevant legacy tables for the
purposes of backward compatibility. The replicator takes the dynamic evidence
details and converts them to a struct containing the details to be stored on the
legacy tables. These details are then written to the relevant database tables, thus
ensuring that the information on the legacy tables is in sync with the primary data
source, the dynamic evidence. Default replicator implementations are provided for
each of the person/prospect person evidence types.

These default implementations contain extension points to allow replication to
custom fields, which is covered in the following section.

Note: Only the last version in a succession set is used to replicate data to the
legacy tables.

Replicator Extension
Why Extend a Replicator? - In cases where legacy database tables have been
extended, it may be necessary to extend a replicator.

It is possible to extend the replicators supplied with the application to allow
replication of person/prospect person evidence to custom database columns.
Interfaces are available for each supplied evidence type and can be found in the
package curam.pdc.impl, listed here.

Custom implementations can be written to use these interfaces, depending on the
evidence type.

Replicator Extender Interfaces:
v PDCAddressReplicatorExtender
v PDCAlternateIDReplicatorExtender
v PDCAlternateNameReplicatorExtender
v PDCBankAccountReplicatorExtender
v PDCBirthAndDeathReplicatorExtender
v PDCContactPreferencesReplicatorExtender

10 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

v PDCEmailAddressReplicatorExtender
v PDCGenderReplicatorExtender
v PDCPhoneNumberReplicatorExtender
v PDCRelationshipsReplicatorExtender

The majority of the interfaces have one method
assignDynamicEvidenceToExtendedDetails. It accepts two parameters:
v dynamicEvidenceDataDetails - the dynamic evidence details
v details - the struct containing the extended details for the legacy table

PDCBirthAndDeathReplicatorExtender and PDCGenderReplicatorExtender have two
methods, assignDynamicEvidenceToExtendedPersonDetails and
assignDynamicEvidenceToExtendedProspectPersonDetails.
assignDynamicEvidenceToExtendedPersonDetails accepts two parameters:
v dynamicEvidenceDataDetails - the dynamic evidence details
v details - the struct containing the extended person details for the legacy table

assignDynamicEvidenceToExtendedProspectPersonDetails also accepts two
parameters:
v dynamicEvidenceDataDetails - the dynamic evidence details
v details - the struct containing the extended prospect person details for the legacy

table

Example: Implementing a Person/Prospect Person Evidence
Replicator Extender
The following example outlines how to extend a replicator to map person/prospect
person evidence to custom fields. This example provides a very basic
implementation of an extension to the PDCPhoneNumberReplicatorExtender. In this
scenario, the PhoneNumber table is extended and contains a custom field
'phoneProvider'. The dynamic evidence configuration for Phone Number also
contains an attribute 'phoneProvider'. This example assumes that the struct
ParticipantPhoneDetails is already extended to include the custom field. For more
information on dynamic evidence configuration, see the Cúram Dynamic Evidence
Configuration Guide. The responsibility of the custom replicator extension
implementation is to map the dynamic evidence data to the struct attribute that
represents the 'phoneProvider' attribute on the extended PhoneNumber table.

Note: A mapping of data is all that is necessary; the default implementation
performs the actual replication of data.

The steps involved in extending a replicator are:
v Provide a replicator extension implementation that maps the custom data back

to the legacy table
v Add a binding to the new replicator extension implementation

Step 1: Provide a Replicator Extension Implementation: The first step is to
provide a new implementation that implements the relevant replication extension
interface for the evidence type and maps the custom data back to the legacy table.
The code snippet here demonstrates a custom implementation for
PDCPhoneNumberReplicatorExtender. It simply assigns the value of the dynamic
evidence attribute to the phoneProvider struct attribute. This information is then
inserted along with the other dynamic evidence attributes through the default
implementation for PDCPhoneNumberReplicatorExtender.

Developing with Person and Prospect Person Evidence 11

public class SampleReplicatorExtenderImpl
implements PDCPhoneNumberReplicatorExtender {

public void assignDynamicEvidenceToExtendedDetails(
DynamicEvidenceDataDetails dynamicEvidenceDataDetails,
ParticipantPhoneDetails details)
throws AppException, InformationalException {

details.phoneProvider =
dynamicEvidenceDataDetails.getAttribute("phoneProvider").getValue();

}
}

Step 2: Add a Binding to the New Replicator Extension Implementation: Guice
bindings are used to register the implementation.
public class SampleModule extends AbstractModule {

public void configure() {

// Register the replicator extension implementation
Multibinder<PDCPhoneNumberReplicatorExtender>

sampleReplicatorExtender =
Multibinder.newSetBinder(binder(),

PDCPhoneNumberReplicatorExtender.class);

sampleReplicatorExtender.addBinding().
to(SampleReplicatorExtenderImpl.class);
}
}

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

Why Implement a Replicator?
In cases where new dynamic evidence types are introduced, it may be necessary to
implement a new replicator.

Implementing a Replicator
Replicators can be easily developed to cater for scenarios such as new dynamic
evidence types. A detailed example is provided in the next section and outlines the
steps and artifacts necessary to get a new replicator up and running. Replicator
implementations are invoked through an event based mechanism.

When dynamic evidence is activated after an insert, modify or remove, an event is
thrown. For new evidence types an event listener needs to be developed to listen
for this event and invoke the replication process, this is discussed in more detail
later in this section. The next section demonstrates how to implement a replicator.

Example: Implementing a Person/Prospect Person Evidence
Replicator
The following example outlines how to implement a replicator. In this scenario,
Sample Foreign Residency is configured as a new dynamic evidence type. For
more information on how to configure a new evidence type, see the Cúram
Dynamic Evidence Configuration Guide. The new Sample Foreign Residency
evidence type has the following attributes,
v participant - the case participant role id of the person/prospect person that the

evidence is being entered for
v country - the country of residency

12 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

v fromDate - the date the residency started
v toDate - the date the residency ended
v reason - the reason for residency in this country

It is assumed that this dynamic evidence type is activated and is configured for
use with person/prospect person. Until now Sample Foreign Residency
information is stored as static evidence on the SampleForeignResidency database
table. It is now necessary to store this information as dynamic evidence. A new
replicator may be required to replicate evidence changes to the legacy database
table so that this table is in sync with the dynamic evidence.

The steps involved in implementing a replicator are:
v Provide a replicator interface for the dynamic evidence type
v Provide a replicator implementation that replicates dynamic evidence to the

legacy database table
v Implement an event listener that triggers the replication
v Add a binding to the new event listener implementation

Step 1: Provide a Replicator Interface: The new replicator interface should
contain three methods -

replicateInsertEvidence which replicates activated inserted Sample Foreign
Residency evidence to the Sample Foreign Residency legacy database table. It
accepts one parameter:
v evidenceDescriptorDtls the activated evidence descriptor details

replicateModifyEvidence which replicates activated modified Sample Foreign
Residency evidence to the Sample Foreign Residency legacy database table. It
accepts two parameters:
v evidenceDescriptorDtls the activated evidence descriptor details
v previousActiveEvidDescriptorDtls the evidence descriptor details for the

evidence that was active before the modify

replicateRemoveEvidence which replicates activated removed Sample Foreign
Residency evidence to the Sample Foreign Residency legacy database table. It
accepts one parameter:
v evidenceDescriptorDtls the activated evidence descriptor details
@ImplementedBy(SampleForeignResidencyReplicatorImpl.class)
public interface SampleForeignResidencyReplicator {

public void replicateInsertEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException;

public void replicateModifyEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls,
final EvidenceDescriptorDtls previousActiveEvidDescriptorDtls)
throws AppException, InformationalException;

public void replicateRemoveEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException;

}

Step 2: Provide a Replicator Implementation: The replicator implementation
should provide implementations for the three methods described in the previous

Developing with Person and Prospect Person Evidence 13

section. These methods should convert the dynamic evidence data to data suitable
to be written to the legacy database tables and update the legacy tables for this
evidence type.
public class SampleForeignResidencyReplicatorImpl

implements SampleForeignResidencyReplicator {

protected SampleForeignResidencyReplicatorImpl() {
}

public void replicateInsertEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();
SampleForeignResidencyDtls sampleForeignResidencyDtls =
new SampleForeignResidencyDtls();
UniqueID uniqueIDObj = UniqueIDFactory.newInstance();

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface) EvidenceControllerFactory

.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = evidenceDescriptorDtls.relatedID;
eiEvidenceKey.evidenceType = evidenceDescriptorDtls.

evidenceType;

EIEvidenceReadDtls eiEvidenceReadDtls =
evidenceControllerObj.readEvidence(eiEvidenceKey);

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails) eiEvidenceReadDtls.

evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate =
(Date) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate =
(Date) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason")

.getValue();

sampleForeignResidencyDtls.concernRoleID =
evidenceDescriptorDtls.participantID;

sampleForeignResidencyDtls.foreignResidencyID =
uniqueIDObj.getNextID();

sampleForeignResidencyDtls.statusCode =
RECORDSTATUS.NORMAL;

sampleForeignResidencyObj.insert(sampleForeignResidencyDtls);
}

public void replicateModifyEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls,
final EvidenceDescriptorDtls

previousActiveEvidDescriptorDtls)
throws AppException, InformationalException {

14 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

List<SampleForeignResidencyKey> sampleForeignResidencyKeyList =
new ArrayList<SampleForeignResidencyKey>();

SampleForeignResidencyDtls sampleForeignResidencyDtls =
new SampleForeignResidencyDtls();

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface)

EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID =

previousActiveEvidDescriptorDtls.relatedID;
eiEvidenceKey.evidenceType =

previousActiveEvidDescriptorDtls.evidenceType;

EIEvidenceReadDtls eiEvidenceReadDtls =
evidenceControllerObj.readEvidence(eiEvidenceKey);

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails)

eiEvidenceReadDtls.evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate =
(Date) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.
getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate =
(Date) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason").getValue();

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyReadMultiKey
sampleForeignResidencyReadMultiKey =

new SampleForeignResidencyReadMultiKey();
sampleForeignResidencyReadMultiKey.concernRoleID =
previousActiveEvidDescriptorDtls.participantID;

SampleForeignResidencyReadMultiDtlsList
sampleForeignResidencyReadMultiDtlsList =

sampleForeignResidencyObj.searchByConcernRole
(sampleForeignResidencyReadMultiKey);

for (SampleForeignResidencyReadMultiDtls
sampleForeignResidencyReadMultiDtls :

sampleForeignResidencyReadMultiDtlsList.dtls) {

if ((sampleForeignResidencyReadMultiDtls.countryCode.equals(
sampleForeignResidencyDtls.countryCode))

&& (sampleForeignResidencyReadMultiDtls.reasonCode.equals(
sampleForeignResidencyDtls.reasonCode))) {

SampleForeignResidencyKey sampleForeignResidencyKey =
new SampleForeignResidencyKey();

sampleForeignResidencyKey.sampleForeignResidencyID =
sampleForeignResidencyReadMultiDtls.sampleForeignResidencyID;

sampleForeignResidencyKeyList.add(sampleForeignResidencyKey);

Developing with Person and Prospect Person Evidence 15

}
}

for (SampleForeignResidencyKey sampleForeignResidencyKey
: sampleForeignResidencyKeyList) {

sampleForeignResidencyDtls = new SampleForeignResidencyDtls();

eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = evidenceDescriptorDtls.relatedID;
eiEvidenceKey.evidenceType = evidenceDescriptorDtls.evidenceType;

eiEvidenceReadDtls = evidenceControllerObj.readEvidence(eiEvidenceKey);

dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails) eiEvidenceReadDtls.evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate = (Date)
DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate = (Date)
DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason").getValue();

sampleForeignResidencyDtls.concernRoleID =
evidenceDescriptorDtls.participantID;

SampleForeignResidencyDtls sampleForeignResidencyReadDtls =
sampleForeignResidencyObj.read(sampleForeignResidencyKey);

sampleForeignResidencyReadDtls.assign(sampleForeignResidencyDtls);

sampleForeignResidencyObj.modify(sampleForeignResidencyKey,
sampleForeignResidencyReadDtls);

}
}

public void replicateRemoveEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

List<SampleForeignResidencyKey> sampleForeignResidencyKeyList =
new ArrayList<SampleForeignResidencyKey>();

SampleForeignResidencyDtls sampleForeignResidencyDtls =
new SampleForeignResidencyDtls();

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface) EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = evidenceDescriptorDtls.relatedID;
eiEvidenceKey.evidenceType = evidenceDescriptorDtls.evidenceType;

EIEvidenceReadDtls eiEvidenceReadDtls =
evidenceControllerObj.readEvidence(eiEvidenceKey);

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails) eiEvidenceReadDtls.evidenceObject;

16 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate =
(Date) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate =
(Date) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason").getValue();

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyReadMultiKey sampleForeignResidencyReadMultiKey =
new SampleForeignResidencyReadMultiKey();

sampleForeignResidencyReadMultiKey.concernRoleID =
evidenceDescriptorDtls.participantID;

SampleForeignResidencyReadMultiDtlsList
sampleForeignResidencyReadMultiDtlsList =

sampleForeignResidencyObj.
searchByConcernRole(sampleForeignResidencyReadMultiKey);

for (SampleForeignResidencyReadMultiDtls
sampleForeignResidencyReadMultiDtls :
sampleForeignResidencyReadMultiDtlsList.dtls) {

if ((sampleForeignResidencyReadMultiDtls.countryCode.equals(
sampleForeignResidencyDtls.countryCode))

&& (sampleForeignResidencyReadMultiDtls.reasonCode.equals(
sampleForeignResidencyDtls.reasonCode))) {

SampleForeignResidencyKey sampleForeignResidencyKey
= new SampleForeignResidencyKey();

sampleForeignResidencyKey.sampleForeignResidencyID =
sampleForeignResidencyReadMultiDtls.sampleForeignResidencyID;

sampleForeignResidencyKeyList.add(sampleForeignResidencyKey);
}

}

for (SampleForeignResidencyKey sampleForeignResidencyKey
: sampleForeignResidencyKeyList) {

sampleForeignResidencyDtls = sampleForeignResidencyObj.
read(sampleForeignResidencyKey);

sampleForeignResidencyDtls.statusCode
= RECORDSTATUS.CANCELLED;

sampleForeignResidencyObj.modify(sampleForeignResidencyKey,
sampleForeignResidencyDtls);

}
}

}

Step 3: Implement an Event Listener: A new event listener needs to be
implemented to listen for events raised of type Sample Foreign Residency that
occur as a result of evidence activation. This listener should implement the
interface curam.pdc.impl.PDCEvents and provide implementations for the three
methods. This is where the replication process can be kicked off and any other
custom processing that may need to happen.

Developing with Person and Prospect Person Evidence 17

public class SampleForeignResidencyEventsListener
implements PDCEvents {

@Inject
private SampleForeignResidencyReplicator

sampleForeignResidencyReplicator;

public void insertedEvidenceActivated(
EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

if (evidenceDescriptorDtls.evidenceType.equals
("SAMPLEFOREIGNRESIDENCY")) {

sampleForeignResidencyReplicator.replicateInsertEvidence
(evidenceDescriptorDtls);

}
}

public void modifiedEvidenceActivated(
EvidenceDescriptorDtls evidenceDescriptorDtls,
EvidenceDescriptorDtls previousActiveEvidDescriptorDtls)
throws AppException, InformationalException {

if (evidenceDescriptorDtls.evidenceType.equals
("SAMPLEFOREIGNRESIDENCY")) {

sampleForeignResidencyReplicator.replicateModifyEvidence
(evidenceDescriptorDtls,

previousActiveEvidDescriptorDtls);
}

}

public void removedEvidenceActivated(
EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

if (evidenceDescriptorDtls.evidenceType.equals
("SAMPLEFOREIGNRESIDENCY")) {

sampleForeignResidencyReplicator.replicateRemoveEvidence
(evidenceDescriptorDtls);

}
}

}

Step 4: Add a Binding to the New Event Listener Implementation: Guice
bindings are used to register the implementation.

public class SampleModule extends AbstractModule {

public void configure() {

// Register the event listener
Multibinder<PDCEvents> sampleEventListeners =

Multibinder.newSetBinder(binder(), PDCEvents.class);

sampleEventListeners.addBinding().to(
SampleForeignResidencyEventsListener.class);

}
}

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

18 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Converters
What is a Converter? - A converter is a mechanism for converting legacy
person/prospect person data to dynamic evidence. When legacy database tables
are populated external to the application, by using tools such as the Cúram Data
Manager(DMX files), converters can be used to convert this data to dynamic
evidence.

Default converter implementations are provided for each of the person/prospect
person evidence types. These default implementations contain extension points to
allow conversion of custom fields, which is covered in the following section.

Why Extend a Converter?
In cases where legacy database tables are extended, it may be necessary to extend
a converter. Converters are generally only used in a development environment or
for upgrade tooling and should not be used as part of everyday processing.

Converter Extension
The converters provided with the application can be extended to allow conversion
of custom database columns to person/prospect person dynamic evidence.
Interfaces are available for each evidence type and can be found in the package
curam.pdc.impl, these are listed below. Custom implementations can be written
that make use of these interfaces, depending on the evidence type.

Converter Extension (Populator) Interfaces:
v PDCAddressEvidencePopulator
v PDCAlternateIDEvidencePopulator
v PDCAlternateNameEvidencePopulator
v PDCBankAccountEvidencePopulator
v PDCBirthAndDeathEvidencePopulator
v PDCContactPreferencesEvidencePopulator
v PDCEmailAddressEvidencePopulator
v PDCGenderEvidencePopulator
v PDCPhoneNumberEvidencePopulator
v PDCRelationshipsEvidencePopulator

The majority of the interfaces have one method populate. It accepts varying
parameters depending on the evidence types.

PDCBirthAndDeathEvidencePopulator and PDCGenderEvidencePopulator, interfaces
have two methods, populatePerson and populateProspectPerson.

populatePerson accepts four parameters:
v concernRoleKey - unique identifier for the concern role that this evidence is

relating to
v caseIDKey - the unique identifier of the Participant Data Case
v personDtls - the struct containing the extended person details from the legacy

table
v dynamicEvidenceDataDetails - the dynamic evidence details

populateProspectPerson also accepts four parameters:
v concernRoleKey - unique identifier for the concern role that this evidence is

relating to

Developing with Person and Prospect Person Evidence 19

v caseIDKey - the unique identifier of the Participant Data Case
v prospectPersonDtls - the struct containing the extended prospect person details

from the legacy table
v dynamicEvidenceDataDetails - the dynamic evidence details

Example: Implementing a Person/Prospect Person Evidence
Populator
The following example outlines how to extend a converter to map custom database
columns to person/prospect person evidence. This example provides a very basic
implementation of an extension to PDCPhoneNumberEvidencePopulator. In this
scenario, the PhoneNumber table is extended and contains a custom column
'phoneProvider'. The dynamic evidence configuration for Phone Number also
contains an attribute 'phoneProvider'. The responsibility of the custom populator
implementation is to convert the struct attribute that represents the 'phoneProvider'
attribute on the extended PhoneNumber table to dynamic evidence data. For more
information on dynamic evidence configuration, see the Cúram Dynamic Evidence
Configuration Guide.

Note: The conversion of data is all that is necessary, the default converters will
look after the actual storage of the dynamic evidence.

The steps involved in extending a converter are:
v Provide a populator implementation that converts the custom field from the

legacy table to dynamic evidence data
v Add a binding to the new populator implementation

Step 1: Provide a Populator Implementation: The first step is to provide a new
implementation that implements the relevant populator interface for the evidence
type and converts the custom field from the legacy table to dynamic evidence. The
code snippet below demonstrates the custom implementation for the
PDCPhoneNumberEvidencePopulator, it converts the phoneProvider struct attribute to
the dynamic evidence equivalent attribute. This dynamic evidence is then stored
along with the other dynamic evidence attributes through the default converter
implementation.
public class SamplePopulatorImpl

implements
PDCPhoneNumberEvidencePopulator {

public void populate(
ConcernRoleKey concernRoleKey,

CaseIDKey caseIDKey,
ConcernRolePhoneNumberDtls

concernRolePhoneNumberDtls,
PhoneNumberDtls phoneNumberDtls,
DynamicEvidenceDataDetails dynamicEvidenceDataDetails)
throws AppException, InformationalException {

DynamicEvidenceDataAttributeDetails phoneProvider =
dynamicEvidenceDataDetails.getAttribute("phoneProvider");

DynamicEvidenceTypeConverter.setAttribute(phoneProvider,
phoneNumberDtls.phoneProvider);

}
}

Add a Binding to the New Populator Implementation:

Guice bindings are used to register the implementation.

20 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

public class SampleModule extends AbstractModule {

public void configure() {

// Register the populator implementation
Multibinder<PDCPhoneNumberEvidencePopulator> samplePopulator =
Multibinder.newSetBinder(binder(), PDCPhoneNumberEvidencePopulator.class);

samplePopulator.addBinding().to(SamplePopulatorImpl.class);
}

}

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

Why Implement a Converter?
In cases where new dynamic evidence types are introduced, it may be necessary to
implement a new converter. Converters are generally only used in a development
environment or for upgrade tooling and should not be used as part of everyday
processing.

Implementing a Converter
Converter implementations can be developed using the PDCConverter interface. The
PDCConverter interface can be found in the curam.pdc.impl package. This interface
has one method storeEvidence.

It accepts two parameters:
v concernRoleKey - the unique identifier of the concern role
v caseIDKey - the unique identifier of the Participant Data Case.

The next section demonstrates how to implement a converter.

Example: Implementing a Person/Prospect Person Evidence
Converter
The following example outlines how to implement a converter. In this scenario,
Sample Foreign Residency is configured as a new dynamic evidence type. For
more information on how to configure a new evidence type, see the Cúram
Dynamic Evidence Configuration Guide. The new Sample Foreign Residency
evidence type has the following attributes:
v participant - the case participant role id of the person/prospect person that the

evidence is being entered for
v country - the country of residency
v fromDate - the date the residency started
v toDate - the date the residency ended
v reason - the reason for residency in this country

It is assumed that this dynamic evidence type is activated and is configured for
use with person/prospect person. Sample Foreign Residency information was
previously stored as static evidence on the SampleForeignResidency database table.
It is now necessary to store this information as dynamic evidence. A new converter
is required which takes this information from the legacy table and converts and
stores it as dynamic evidence.

The steps involved in implementing a converter are:

Developing with Person and Prospect Person Evidence 21

v Provide a converter implementation that converts the legacy data to dynamic
evidence

v Add a binding to the new converter implementation

Step 1: Provide a Converter Implementation: The code snippet demonstrates the
implementation for the PDCConverter. It retrieves all Sample Foreign Residency
information for a person/prospect person from the legacy SampleForeignResidency
table, converts this information to a dynamic evidence data structure, and stores
the resulting information.
public class SampleForeignResidencyConverterImpl

implements PDCConverter {

@Inject
private EvidenceTypeDefDAO etDefDAO;

@Inject
private EvidenceTypeVersionDefDAO etVerDefDAO;

public void storeEvidence(ConcernRoleKey concernRoleKey, CaseIDKey caseIDKey)
throws AppException, InformationalException {

PDCCaseIDCaseParticipantRoleID pdcCaseIDCaseParticipantRoleID =
new PDCCaseIDCaseParticipantRoleID();

ParticipantDataCase participantDataCaseObj =
ParticipantDataCaseFactory.newInstance();

pdcCaseIDCaseParticipantRoleID.caseID =
participantDataCaseObj.getParticipantDataCase(concernRoleKey).caseID;

CaseIDTypeCodeKey caseIDTypeCodeKey = new CaseIDTypeCodeKey();
caseIDTypeCodeKey.caseID = pdcCaseIDCaseParticipantRoleID.caseID;
caseIDTypeCodeKey.typeCode = CASEPARTICIPANTROLETYPE.PRIMARY;

pdcCaseIDCaseParticipantRoleID.caseParticipantRoleID =
CaseParticipantRoleFactory.newInstance().readByCaseIDAndTypeCode

(caseIDTypeCodeKey).dtls.caseParticipantRoleID;

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyReadMultiKey sampleForeignResidencyReadMultiKey =
new SampleForeignResidencyReadMultiKey();

sampleForeignResidencyReadMultiKey.concernRoleID =
concernRoleKey.concernRoleID;

SampleForeignResidencyReadMultiDtlsList sampleForeignResidencyList =
sampleForeignResidencyObj.

searchByConcernRole(sampleForeignResidencyReadMultiKey);

for (SampleForeignResidencyReadMultiDtls
sampleForeignResidencyReadMultiDtls :
sampleForeignResidencyList.dtls) {

final EvidenceTypeKey eType = new EvidenceTypeKey();
eType.evidenceType = "SampleForeignResidency";

EvidenceTypeDef evidenceType =
etDefDAO.readActiveEvidenceTypeDefByTypeCode(eType.evidenceType);

EvidenceTypeVersionDef evTypeVersion =
etVerDefDAO.getActiveEvidenceTypeVersionAtDate(evidenceType,

Date.getCurrentDate());

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
DynamicEvidenceDataDetailsFactory.newInstance(evTypeVersion);

22 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

DynamicEvidenceDataAttributeDetails participant =
dynamicEvidenceDataDetails.getAttribute("participant");

DynamicEvidenceTypeConverter.setAttribute(participant,
pdcCaseIDCaseParticipantRoleID.caseParticipantRoleID);

DynamicEvidenceDataAttributeDetails country =
dynamicEvidenceDataDetails.getAttribute("country");

DynamicEvidenceTypeConverter.setAttribute(country,
sampleForeignResidencyReadMultiDtls.countryCode);

DynamicEvidenceDataAttributeDetails fromDate =
dynamicEvidenceDataDetails.getAttribute("fromDate");

DynamicEvidenceTypeConverter.setAttribute(fromDate,
sampleForeignResidencyReadMultiDtls.startDate);

DynamicEvidenceDataAttributeDetails endDate =
dynamicEvidenceDataDetails.getAttribute("toDate");

DynamicEvidenceTypeConverter.setAttribute(endDate,
sampleForeignResidencyReadMultiDtls.endDate);

DynamicEvidenceDataAttributeDetails reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason");

DynamicEvidenceTypeConverter.setAttribute(reasonCode,
sampleForeignResidencyReadMultiDtls.reasonCode);

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface)

EvidenceControllerFactory.newInstance();

EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =
new EvidenceDescriptorInsertDtls();

evidenceDescriptorInsertDtls.participantID =
concernRoleKey.concernRoleID;

evidenceDescriptorInsertDtls.evidenceType =
eType.evidenceType;

evidenceDescriptorInsertDtls.receivedDate =
curam.util.type.Date.getCurrentDate();

evidenceDescriptorInsertDtls.caseID =
pdcCaseIDCaseParticipantRoleID.caseID;

EIEvidenceInsertDtls eiEvidenceInsertDtls =
new EIEvidenceInsertDtls();

eiEvidenceInsertDtls.descriptor.
assign(evidenceDescriptorInsertDtls);

eiEvidenceInsertDtls.descriptor.participantID =
concernRoleKey.concernRoleID;

eiEvidenceInsertDtls.descriptor.changeReason =
EVIDENCECHANGEREASON.REPORTEDBYCLIENT;

eiEvidenceInsertDtls.evidenceObject =
dynamicEvidenceDataDetails;

evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);
}

}
}

Step 2: Add a Binding to the New Converter Implementation: Guice bindings
are used to register the implementation.

Developing with Person and Prospect Person Evidence 23

public class SampleModule extends AbstractModule {

public void configure() {

// Register the converter implementation
Multibinder<PDCConverter> sampleForeignResidencyConverter =
Multibinder.newSetBinder(binder(), PDCConverter.class);

sampleForeignResidencyConverter.addBinding().
to(SampleForeignResidencyConverterImpl.class);

}
}

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

Evidence Sharing Automation

What is Evidence Sharing Automation?
Evidence sharing automation is the ability of an evidence record to be shared
between cases and be automatically activated, without being blocked by
validations or requiring manual intervention by a system user.

The result of automated sharing is one of....
1. The shared evidence is ignored because the same information is already

recorded on the target case.
2. The evidence is deemed new and therefore a new evidence record is created on

the target case.
3. An existing evidence record on the target case is identified as a match and is

updated to reflect the new information received in the shared evidence.

This automation reflects the process that a caseworker would go through in
considering new evidence.

Why use Evidence Sharing Automation?
In normal circumstances when evidence is configured to be shared between cases
the sharing can be configured to auto-activate. This means that the evidence is
activated on the target case if possible. If it is not possible, for example a validation
rule blocks activation, then the evidence is moved to an in-edit state allowing the
case worker to manually process the evidence.

On a Person case there is no 'in-edit state' for evidence, instead evidence is created
in an active state. To enable the automatic activation on sharing of evidence the
validations that would normally block activation must be overcome. This is
achieved by implementing an automation strategy for the evidence type.

For more on the automation of evidence sharing for the Person case, refer to the
Cúram Participant Guide.

Implementing an Automation Strategy
The objective of the automation strategy is to decide on 1 of 3 outcomes for the
shared evidence...

The shared evidence is ignored because the same information is already recorded
on the target case.

24 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

1. The evidence is deemed new and therefore a new evidence record is created on
the target case.

2. An existing evidence record on the target case is identified as a match and is
updated to reflect the new information received in the shared evidence.

To identify which option to take for a given evidence type the sharing process calls
on the evidence type specific strategy to make the correct decision.

The PDCEvidence interface is provided as the contract through which an evidence
type defines its automation strategy. Each evidence type that requires an
automation strategy, that is, any evidence type that is configured for use on the
Person case, implements this interface describing how that evidence type is
handled when shared to or from the Person case.

Before implementing an automation strategy for an evidence type you must first
decide on what the strategy is. This is typically the task of a business analyst who
decides what rules should be applied to decide whether the shared evidence is
ignored, inserted, or results in an existing evidence record being modified. Once
the strategy has been defined it can be implemented by the PDCEvidence interface.

Refer to the javadoc of the curam.pdc.impl.PDCEvidence interface for further
details on how to use the interface to define the automation strategy for the
evidence type.

NOTE: When evidence that is configured on a Person case is shared the business
validations that are normally executed to prevent conflicting data from being
captured are switched off. The automation strategy that you employ here is the
replacement for those validations. If no custom strategy is provided for an
evidence type the default implementations of the strategy is employed. The default
strategy may be inappropriate for the evidence type, and this can lead to
conflicting evidence, such as duplicate records being added to the case.

NOTE: The sharing strategy is also employed for non identical sharing, that is,
where an evidence record of one type is shared to an evidence of a different type.
The automation strategy must cater for this type of sharing if it is expected that
this sharing configuration exists. For example, when comparing fields between
records of different types you may need to differentiate between an attribute that
doesn't exist on one of the evidence types versus an attribute that does not match.
In this scenario your business rules may choose to treat the source attribute with
no corresponding target attribute as matching even though a comparison cannot be
made.

For example,

Evidence A
attributes

value Evidence B
attributes

value match?

attr1 "a" attr1 "a" Y

attr2 "x" attr2 "y" N

attr3 "abc" Y

Configuring an Automation Strategy
Follow these steps to configure a new automation strategy.
1. Retrieve the identifier for the evidence type that the automation strategy is

applied. This can be done using the below SQL

Developing with Person and Prospect Person Evidence 25

SELECT code FROM CodeTableItem WHERE TableName=’EvidenceType’ and Description=’<Evidence Name>’

For example, SELECT code FROM CodeTableItem WHERE
TableName='EvidenceType' and Description='Gender Details' returns "PDC0000262".

2. Bind automation strategy to the evidence type code by adding to an existing or
creating a new Guice Module
public class EvidenceSharingAutomationModule extends AbstractModule {

@Override
public void configure() {
final MapBinder< String, PDCEvidence> pdcEvidenceMapBinder =
MapBinder.newMapBinder(binder(), String.class, PDCEvidence.class);

String genderDetailsCode = "PDC0000262";
// bind evidence type to evidence automation strategy
pdcEvidenceMapBinder.addBinding(genderDetailsCode).to(PDCGenderEvidenceImpl.class);
}

}

To override an existing implementation use a linked binding to bind the
original implementation to the custom implementation.
@Override

public void configure() {

bind(PDCGenderEvidenceImpl.class).to(MyCustomGenderEvidenceImpl.class);

}

Example Automation Strategy

The following example is taken from the Gender Evidence strategy that is applied
to the product evidence type Gender Details. For details of the automation strategy
see the "Sharing Automation Business Rules" section of the Cúram Participant
Guide
package curam.pdc.impl;

import java.util.Set;

import com.google.inject.Singleton;

import curam.codetable.EVIDENCENATURE;
import curam.codetable.impl.EVIDENCENATUREEntry;
import curam.core.sl.infrastructure.impl.EIEvidenceReadDtls;
import curam.dynamicevidence.impl.DynamicEvidenceDataAttributeDetails;
import curam.dynamicevidence.impl.DynamicEvidenceDataDetails;
import curam.evidence.impl.EvidenceAttributeDataDetails;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.type.Date;

/**
* Gender evidence sharing automation strategy
*/
@Singleton
class PDCGenderEvidenceImpl extends AbstractPDCEvidenceImpl {

// ___
/**
* Defines if this evidence is multi-timeline per type. Gender evidence does not support having more
* than one gender at the same time, so returns false.
*/
@Override
public boolean isMultipleTimeLinePerType(DynamicEvidenceDataDetails sharedEvidenceDetails) throws AppException,

26 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

InformationalException {
return false;

}

/**
* Compare the shared evidence to evidence on the target case for an exact match.
*
* Returns true if there is an exact match. If there is an exact match the
* evidence will not be shared.
*
*/
@Override
public boolean matchAllEvidenceDetails(final DynamicEvidenceDataDetails sharedEvidenceDetails, final Date sharedEffectiveDate,
final DynamicEvidenceDataDetails originalEvidenceDetails, final Date originalEffectiveDate)
throws AppException, InformationalException {

// Default implementation will compare all fields to determine exact match.
// No need to implement this method unless you want to change the definition of an exact match.
// This implementation is just here for illustrative purposes.
return super.matchAllEvidenceDetails(sharedEvidenceDetails, sharedEffectiveDate, originalEvidenceDetails, originalEffectiveDate);
}

// ___
/**
* Compare the shared evidence to evidence on the target case for a ’partial’ match.
*
* Returns true if there is a partial match. If there is a partial match, the evidence
* sharing process will continue, but may fail to share the evidence based on other conditions.
*/
@Override
public boolean matchEvidenceDetails(

final DynamicEvidenceDataDetails sharedEvidenceDetails, final Date sharedEffectiveDate,
final DynamicEvidenceDataDetails originalEvidenceDetails, final Date originalEffectiveDate)
throws AppException, InformationalException {

EvidenceAttributeDataDetails sourceEvidenceAttributeDetails = new EvidenceAttributeDataDetails(
sharedEvidenceDetails, EVIDENCENATUREEntry.get(EVIDENCENATURE.DYNAMIC));

EvidenceAttributeDataDetails targetEvidenceAttributeDetails = new EvidenceAttributeDataDetails(
originalEvidenceDetails, EVIDENCENATUREEntry.get(EVIDENCENATURE.DYNAMIC));

boolean hasSameValueForGender = !sourceEvidenceAttributeDetails.getEvidenceAttributeMap().containsKey(
"gender")
|| !targetEvidenceAttributeDetails.getEvidenceAttributeMap().containsKey(

"gender")
|| sharedEvidenceDetails.getAttribute("gender").getValue().equals(

originalEvidenceDetails.getAttribute("gender").getValue());

boolean isPartialMatch = hasSameValueForGender;

return isPartialMatch;
}

// ___
/**
* Assign the shared details to the target evidence.
*
* If sharing results in an update to existing evidence on the target case, then the
* values that are to be updated are assigned here. For gender evidence the value of the
* gender field is updated to match that of the shared evidence.
*/
@Override
public void assignEvidenceDetails(final DynamicEvidenceDataDetails sharedEvidenceDetails,

final DynamicEvidenceDataDetails originalEvidenceDetails)
throws AppException, InformationalException {

// Update the gender value
String genderShare = sharedEvidenceDetails.getAttribute("gender").getValue();

Developing with Person and Prospect Person Evidence 27

if (!genderShare.isEmpty()) {

DynamicEvidenceDataAttributeDetails gender = originalEvidenceDetails.getAttribute(
"gender");

gender.setValue(genderShare);

}
}

// ___
/**
* Resolve which evidence on the target case will be updated on sharing.
*
* Given a list of evidence records that are a potential candidate for update,
* select only one record to be updated. This method is only invoked for
* evidence that is not multi-timeline per sub type
* (See isMultipleTimeLinePerType(DynamicEvidenceDataDetails)). If invoked it
* will only result in an update if the shared evidence is considered to be an
* update. An update is decided by comparing the received dates. If the shared
* evidence has a later received date, the shared evidence is accepted. If the
* shared evidence has an earlier received date it is ignored. If the shared
* evidence has the same received date, the creation dates will be compared and
* if the shared evidence was created later it will be accepted.
*
* For gender evidence, there can only be 1 records at a time. So just
* pick that record if it exists.
*/
@Override
public EIEvidenceReadDtls getNonIdenticalEvidenceModifyDetails(

final DynamicEvidenceDataDetails shareEvidenceDetails,
final Set<EIEvidenceReadDtls> evidenceDetailsList)
throws AppException, InformationalException {

return evidenceDetailsList.isEmpty()
? null
: evidenceDetailsList.iterator().next();

}

}

Selection of Primary Information
Legacy participant manager entities have the notion of primary indicators, where
users are able to specify which bank account/phone number and so forth
represents the primary data when the evidence is created. This is not the case with
dynamic evidence types. The user does not specify the primary record; instead
there is an algorithm in the background that calculates which should be the
primary record.

These algorithms are based on a defined business strategy and can be modified,
details of which are outlined in the following section.

Why Change the Selection of Primary Information?
As the identification of the primary record is not user-driven, it can be necessary to
modify this selection process, if the default business strategy is not preferable.

Changing the Selection of Primary Information
The strategies that determine which data should be selected as primary
information can be modified by using the default primary handler interfaces.

28 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

An interface is defined for each dynamic evidence type supplied that has a
primary identifier on its legacy table, found in the curam.pdc.impl package and are
listed here.

Primary handler implementations are started with an event based mechanism.
When dynamic evidence is activated after an insert, modify or remove operation,
an event is thrown. For new evidence types an event listener needs to be
developed to listen for this event and start the appropriate algorithm that
determines the primary data, this is discussed in more detail later in this section.
The next section demonstrates how to implement a primary handler.

Primary Handler Interfaces:
v PDCPrimaryAddressHandler
v PDCPrimaryAlternateIDHandler
v PDCPrimaryAlternateNameHandler
v PDCPrimaryBankAccountHandler
v PDCPrimaryEmailAddressHandler
v PDCPrimaryPhoneNumberHandler

Changing the Selection of Primary Information Example
This example outlines how to implement a primary handler. In this scenario, the
defined business strategy for selecting a primary phone number is to select the
phone number with the latest start date.

The steps involved in implementing a primary handler are:
v Provide a primary handler implementation that identifies the primary record
v Add a binding to the new primary handler implementation

Step 1: Provide a Primary Handler Implementation: The first step is to provide a
new implementation that implements the relevant primary handler interface for the
evidence type and identifies the primary record. The code snippet demonstrates an
implementation for PDCPrimaryPhoneNumberHandler, it takes the phone number
with the latest start date and sets it as the primary record.
public class SamplePrimaryPhoneNumberHandlerImpl

implements PDCPrimaryPhoneNumberHandler {

protected SamplePrimaryPhoneNumberHandlerImpl() {
}

public void setPrimaryPhoneNumber
(EvidenceDescriptorDtls evidenceDescriptorDtls)

throws AppException, InformationalException {

ConcernRoleKey concernRoleKey = new ConcernRoleKey();
concernRoleKey.concernRoleID =

evidenceDescriptorDtls.participantID;

ConcernRolePhoneNumberDtlsList concernRolePhoneNumberDtlsList =
ConcernRolePhoneNumberFactory.newInstance().

searchByConcernRole(concernRoleKey);

ConcernRole concernRoleObj = ConcernRoleFactory.newInstance();
ConcernRoleDtls concernRoleDtls = concernRoleObj.read(concernRoleKey);
Date currentPrimaryPhoneNumberStartDate = Date.kZeroDate;

List<SampleSortedPhoneNumber> list =
new ArrayList<SampleSortedPhoneNumber>();

Developing with Person and Prospect Person Evidence 29

for (ConcernRolePhoneNumberDtls
concernRolePhoneNumberDtls:concernRolePhoneNumberDtlsList.dtls) {

PhoneNumberKey phoneNumberKey = new PhoneNumberKey();
phoneNumberKey.phoneNumberID = concernRolePhoneNumberDtls.phoneNumberID;

if (concernRolePhoneNumberDtls.phoneNumberID ==
concernRoleDtls.primaryPhoneNumberID) {

currentPrimaryPhoneNumberStartDate = concernRolePhoneNumberDtls.startDate;
}

SampleSortedPhoneNumber sampleSortedPhoneNumber =
new SampleSortedPhoneNumber(concernRolePhoneNumberDtls);

list.add(sampleSortedPhoneNumber);
}

Collections.sort(list);

SampleSortedPhoneNumber newPrimaryPhoneNumber = list.get(0);

if (newPrimaryPhoneNumber.getStartDate().
after(currentPrimaryPhoneNumberStartDate)) {

concernRoleDtls.primaryPhoneNumberID =
newPrimaryPhoneNumber.getPhoneNumberID();

concernRoleObj.pdcModify(concernRoleKey, concernRoleDtls);
}

}
class SampleSortedPhoneNumber implements

Comparable<SampleSortedPhoneNumber> {
private long phoneNumberID;
private Date startDate;

SampleSortedPhoneNumber(ConcernRolePhoneNumberDtls dtls) {
this.phoneNumberID = dtls.phoneNumberID;
this.startDate = dtls.startDate;

}

public long getPhoneNumberID() {
return phoneNumberID;

}

public Date getStartDate() {
return startDate;

}

public int compareTo(SampleSortedPhoneNumber o) {
return o.getStartDate().compareTo(this.getStartDate());

}
}

}

Step 2: Add a Binding to the New Primary Handler Implementation: Guice
bindings are used to register the implementation.
public class SampleModule extends AbstractModule {

public void configure() {

// Register the primary handler implementation
bind(PDCPrimaryPhoneNumberHandler.class).to(

SamplePrimaryPhoneNumberHandlerImpl.class);
}

}

30 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

Reciprocal Evidence
What is Reciprocal Evidence? - Reciprocal evidence is a type of evidence which
consists of two pieces of evidence that must be processed together. The relationship
dynamic evidence type is an example of reciprocal evidence.

When Person A is recorded as a spouse of Person B, the corresponding relationship
evidence, Person B is a spouse of Person A is recorded. When evidence is inserted,
modified or removed for Person A, the system inserts, modifies or removes the
corresponding relationship evidence for Person B.

Why Provide a Reciprocal Evidence Implementation?
If you develop a new reciprocal dynamic evidence type, then you must also
provide an implementation of the ReciprocalEvidenceConversion interface.

Reciprocal Evidence Implementations
When evidence is inserted, modified or removed a hook point is invoked, that by
default triggers the reciprocal evidence handler functionality. This new evidence
hook point is called the GlobalEvidenceHook and can be found in the
curam.core.sl.infrastructure.impl package. The GlobalEvidenceHook Interface allows
custom processing to occur after evidence operations complete.

GlobalEvidenceHook Interface:

The GlobalEvidenceHook interface contains the following methods:

postInsertEvidence is invoked after evidence is inserted and accepts two
parameters:
v caseKey - the identifier of the case that the evidence belongs to
v evKey - the identifier and type of the evidence

postModifyEvidence is invoked after evidence is modified and accepts two
parameters:
v caseKey - the identifier of the case that the evidence belongs to
v evKey - the identifier and type of the evidence

postRemoveEvidence is invoked after evidence is removed and accepts two
parameters:
v caseKey - the identifier of the case that the evidence belongs to
v evKey - the identifier and type of the evidence

postDiscardPendingUpdate is invoked after a pending update of evidence is
discarded and accepts two parameters:
v caseKey - the identifier of the case that the evidence belongs to
v evKey - the identifier and type of the evidence

postDiscardPendingRemove is invoked after a pending remove of evidence is
discarded and accepts two parameters:
v caseKey - the identifier of the case that the evidence belongs to
v evKey - the identifier and type of the evidence

Developing with Person and Prospect Person Evidence 31

Reciprocal Evidence Handler:

The default implementation for the GlobalEvidenceHook invokes the reciprocal
evidence handler functionality. The reciprocal evidence handler is responsible for
all common reciprocal evidence processing. It locates reciprocal evidence and if
found performs the same changes on it that were performed on the original
evidence. If the reciprocal evidence is not found, and the original evidence was
inserted, then it inserts the corresponding reciprocal evidence. As the reciprocal
evidence handler is core to the reciprocal evidence processing it cannot be
customized directly, but can be customized by way of the GlobalEvidenceHook, if
necessary.

Reciprocal Evidence Conversion Interface:

The ReciprocalEvidenceConversion interface is responsible for reciprocal and
original evidence comparison, participant retrieval and for creating new and
modified reciprocal evidence from original evidence. To make custom evidence
reciprocal, a ReciprocalEvidenceConversion interface implementation must be
provided. While the handler is not aware of the internal evidence structure, the
conversion interface implementation is, as a result this is where the main
customization point lies. The ReciprocalEvidenceConversion interface can be found
in the curam.core.sl.infrastructure.impl package and contains the following
methods:
v Object getReciprocal(final Object original, final long targetCaseID) - Creates

reciprocal evidence details from the original evidence details
v Object getUpdatedReciprocal(final Object original, final Object

unmodifiedReciprocal) - Creates modified reciprocal evidence details from the
original evidence details and from un-modified reciprocal evidence details

v long getPrimaryParticipant(final Object originalEvidence) - Retrieves the primary
participant (concern role ID) from the original evidence. Note that the primary
participant on the original evidence is the related participant on the reciprocal
evidence

v long getRelatedParticipant(final Object originalEvidence) - Retrieves related
participant (concern role ID) from the original evidence. Note that the related
participant on the original evidence is the primary participant on the reciprocal
evidence

v boolean matchEvidenceDetails(final Object evidenceDetails1, final Object
evidenceDetails2) - Checks evidence details for a match. Implementation of this
method determines if two evidence details passed in are considered as a match.

The following section demonstrates how to implement reciprocal evidence.

Reciprocal Evidence Implementation Example
The following example demonstrates a reciprocal evidence implementation. In this
scenario, Working Relationship is configured as a new dynamic evidence type.

For more information on how to configure a new evidence type, see the Cúram
Dynamic Evidence Configuration Guide. The new Working Relationship evidence
type is identified as reciprocal and has the following attributes,
v participant - the case participant role id of the person/prospect person that the

evidence is being entered for
v relatedParticipant - the case participant role id of the related person/prospect

person
v workingRelationship - the working relationship between the two participants

32 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

It is assumed that this dynamic evidence type is activated and is configured for
use with person/prospect person. In order for this reciprocal evidence to be
handled correctly by the infrastructure, an implementation of the
ReciprocalEvidenceConversion interface must be provided.

The steps that are involved:
v Provide a reciprocal evidence conversion implementation
v Add a binding to the new reciprocal evidence conversion implementation

Step 1: Provide a Reciprocal Evidence Conversion Implementation:
public class SampleWorkingRelationshipReciprocalConversion

implements ReciprocalEvidenceConversion {

@Inject
private EvidenceTypeDefDAO etDefDAO;

@Inject
private EvidenceTypeVersionDefDAO etVerDefDAO;

public SampleWorkingRelationshipReciprocalConversion() {

}

public Object getReciprocal(
final Object original, final long targetCaseID)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) original;

String workingRelationshipOriginal =
originalDetails.getAttribute

("workingRelationship").getValue();

String workingRelationshipRec = "";

if (workingRelationshipOriginal.equals("ISMANAGEROF")) {
workingRelationshipRec = "ISMANAGEDBY";

}

EvidenceTypeKey evdType = new EvidenceTypeKey();
evdType.evidenceType = "WORKINGRELATIONSHIP";

EvidenceTypeDef evdTypeDef =
etDefDAO.readActiveEvidenceTypeDefByTypeCode

(evdType.evidenceType);

EvidenceTypeVersionDef evTypeVersion =
etVerDefDAO.getActiveEvidenceTypeVersionAtDate

(evdTypeDef, Date.getCurrentDate());

DynamicEvidenceDataDetails reciprocalDetails =
DynamicEvidenceDataDetailsFactory.newInstance

(evTypeVersion);

DynamicEvidenceDataAttributeDetails workingRelationshipAttr =
reciprocalDetails.getAttribute("workingRelationship");

DynamicEvidenceTypeConverter.setAttribute
(workingRelationshipAttr, workingRelationshipRec);

DynamicEvidenceDataAttributeDetails participantAttr =
reciprocalDetails.getAttribute("participant");

Developing with Person and Prospect Person Evidence 33

DynamicEvidenceTypeConverter.setAttribute(participantAttr,
originalDetails.getAttribute

("relatedParticipant").getValue());

DynamicEvidenceDataAttributeDetails relatedParticipantAttr =
reciprocalDetails.getAttribute("relatedParticipant");

DynamicEvidenceTypeConverter.setAttribute
(relatedParticipantAttr,

originalDetails.getAttribute("participant").getValue());

return reciprocalDetails;
}

public Object getUpdatedReciprocal(
final Object original, final Object unmodifiedReciprocal)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) original;

DynamicEvidenceDataDetails reciprocalDetails =
(DynamicEvidenceDataDetails) unmodifiedReciprocal;

long caseParticipantRoleIDRec = Long.parseLong(
reciprocalDetails.getAttribute("participant").getValue());

long relCaseParticipantRoleIDRec = Long.parseLong(
reciprocalDetails.getAttribute

("relatedParticipant").getValue());
String workingRelationshipRec =

reciprocalDetails.getAttribute("workingRelationship").getValue();

for (final DynamicEvidenceDataAttributeDetails
listDetails: originalDetails.getAttributes()) {

reciprocalDetails.getAttribute(listDetails.getName()).setValue(
listDetails.getValue());

}

DynamicEvidenceDataAttributeDetails workingRelationshipAttr =
reciprocalDetails.getAttribute("workingRelationship");

DynamicEvidenceTypeConverter.setAttribute
(workingRelationshipAttr, workingRelationshipRec);

DynamicEvidenceDataAttributeDetails participantAttr =
reciprocalDetails.getAttribute("participant");

DynamicEvidenceTypeConverter.setAttribute(participantAttr,
caseParticipantRoleIDRec);

DynamicEvidenceDataAttributeDetails relatedParticipantAttr =
reciprocalDetails.getAttribute("relatedParticipant");

DynamicEvidenceTypeConverter.setAttribute(relatedParticipantAttr,
relCaseParticipantRoleIDRec);

return reciprocalDetails;
}

public boolean matchEvidenceDetails(
final Object evidenceDetails1,

final Object evidenceDetails2)
throws AppException, InformationalException {

DynamicEvidenceDataDetails dynamicEvidenceDataDetails1 =
(DynamicEvidenceDataDetails) evidenceDetails1;

DynamicEvidenceDataDetails dynamicEvidenceDataDetails2 =
(DynamicEvidenceDataDetails) evidenceDetails2;

34 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

curam.core.sl.intf.CaseParticipantRole caseParticipantRoleObj =
curam.core.sl.fact.CaseParticipantRoleFactory.newInstance();

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails1.getAttribute("participant"));

Long concernRoleID1 =
caseParticipantRoleObj.readCaseIDandParticipantID

(caseParticipantRoleKey).participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails1.getAttribute("relatedParticipant"));

Long relConcernRoleID1 =
caseParticipantRoleObj.readCaseIDandParticipantID

(caseParticipantRoleKey).participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails2.getAttribute("participant"));

Long concernRoleID2 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey).participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

dynamicEvidenceDataDetails2.getAttribute("relatedParticipant"));

Long relConcernRoleID2 = caseParticipantRoleObj
.readCaseIDandParticipantID(caseParticipantRoleKey).participantRoleID;

return dynamicEvidenceDataDetails1.getAttribute
("workingRelationship").getValue().equals(

dynamicEvidenceDataDetails2.getAttribute
("workingRelationship").getValue())

&& (concernRoleID1.longValue() ==
concernRoleID2.longValue())

&& (relConcernRoleID1.longValue() ==
relConcernRoleID2.longValue());
}

public boolean matchOriginalAndReciprocal(
final Object originalEvidence, final Object reciprocalEvidence)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) originalEvidence;

DynamicEvidenceDataDetails reciprocalDetails =
(DynamicEvidenceDataDetails) reciprocalEvidence;

curam.core.sl.intf.CaseParticipantRole caseParticipantRoleObj =
curam.core.sl.fact.CaseParticipantRoleFactory.newInstance();

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

originalDetails.getAttribute("participant"));

Long concernRoleID1 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey).participantRoleID;

Developing with Person and Prospect Person Evidence 35

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

originalDetails.getAttribute("relatedParticipant"));

Long relConcernRoleID1 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey).participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

reciprocalDetails.getAttribute("participant"));

Long concernRoleID2 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey).participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(

reciprocalDetails.getAttribute("relatedParticipant"));

Long relConcernRoleID2 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey).participantRoleID;

String workingRelationshipOriginal =
originalDetails.getAttribute("workingRelationship").getValue();

String workingRelationshipRec = "";
if (workingRelationshipOriginal.equals("ISMANAGEROF")) {

workingRelationshipRec = "ISMANAGEDBY";
}

return reciprocalDetails.getAttribute("workingRelationship")
.getValue().equals(

workingRelationshipRec)
&& (concernRoleID1.longValue() ==

relConcernRoleID2.longValue())
&& (relConcernRoleID1.longValue() ==

concernRoleID2.longValue());
}

public long getPrimaryParticipant(final Object originalEvidence)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) originalEvidence;

long caseParticipantRoleID = Long.parseLong(
originalDetails.getAttribute("participant").getValue());

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
caseParticipantRoleID;

return CaseParticipantRoleFactory.newInstance()
.read(caseParticipantRoleKey).participantRoleID;

}

public long getRelatedParticipant
(final Object originalEvidence)

throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) originalEvidence;

long caseParticipantRoleID = Long.parseLong(
originalDetails.getAttribute("relatedParticipant").getValue());

36 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
caseParticipantRoleID;

return CaseParticipantRoleFactory.newInstance().
read(caseParticipantRoleKey).participantRoleID;

}
}

Step 2: Add a Binding to the New Reciprocal Evidence Conversion
Implementation: Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule {

public void configure() {

MapBinder<CASEEVIDENCEEntry,
ReciprocalEvidenceConversion> recEvidenceConversionMapBinder =

MapBinder.newMapBinder(binder(),
CASEEVIDENCEEntry.class, ReciprocalEvidenceConversion.class);

reciprocalEvidenceConversionMapBinder.addBinding(
CASEEVIDENCEEntry.get("WORKINGRELATIONSHIP")).to(

SampleWorkingRelationshipReciprocalConversion.class);
}

}

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

Reciprocal Evidence Limitations
The reciprocal evidence handling infrastructure has the following limitations:
v The evidence must be temporal evidence. It can be static, dynamic, or generated

evidence.
v The evidence must have a participant and related participant, alternatively, the

ReciprocalEvidenceConversion implementation code must be able to determine
the participant and related participant by using the evidence details.

v When reciprocal evidence and its related original evidence are both on the same
case then their changes must be always applied together, otherwise original and
reciprocal evidence data are out of sync.

v Reciprocal evidence can be processed automatically only if both related
participants are registered as MEMBER or PRIMARY participants on the same
case, or evidence is recorded as person/prospect person evidence.

v The reciprocal handler is supported for evidence types that are modeled to allow
corrections only.

Participant Data Case Owner

Why Change the Participant Data Case Owner?
It may be necessary to change the participant data case owner if tighter control is
required around the ownership of participants.

Changing the Participant Data Case Owner
When a person/prospect person is registered on the system, a case is created in the
background to help manage this data, this is also known as a 'Participant Data
Case'.

Developing with Person and Prospect Person Evidence 37

By default, this case has a case owner, the logged in user. It is possible to change
this to a different case owner by way of the PDCCaseOwnerAssignmentStrategy
Interface. The PDCCaseOwnerAssignmentStrategy Interface can be found in the
curam.pdc.impl package and has one method createOwner. It accepts two
parameters:
v key - the identifier of the Participant Data Case
v ownerDtls - the details of the Participant Data Case owner

Changing the Participant Data Case Owner Example
The example here outlines how to change the Participant Data Case Owner, in this
scenario the owner is set to the system user.

The steps that are involved:
v Provide a case owner assignment strategy implementation that sets the case

owner
v Add a binding to the case owner assignment strategy implementation

Step 1: Provide a Case Owner Assignment Strategy Implementation: The code
snippet demonstrates a sample implementation for
PDCCaseOwnerAssignmentStrategy, it sets the owner to be the system user.
@Singleton
public class SampleCaseOwnerAssignmentStrategyImpl

implements PDCCaseOwnerAssignmentStrategy {

public void createOwner(CaseHeaderKey key,
OrgObjectLinkDtls ownerDtls)

throws AppException, InformationalException {

ownerDtls.orgObjectType = ORGOBJECTTYPE.USER;
ownerDtls.userName = UserAccessFactory.newInstance().

getSystemUserDetails().userName;

OrgObjectLinkFactory.newInstance().insert(ownerDtls);

OrgObjectLinkKey orgObjectLinkKey = new OrgObjectLinkKey();
orgObjectLinkKey.orgObjectLinkID = ownerDtls.orgObjectLinkID;

CaseUserRoleDtls caseUserRoleDtls =
new CaseUserRoleDtls();

caseUserRoleDtls.caseID = key.caseID;
caseUserRoleDtls.orgObjectLinkID =

orgObjectLinkKey.orgObjectLinkID;
caseUserRoleDtls.typeCode = CASEUSERROLETYPE.OWNER;
caseUserRoleDtls.recordStatus = RECORDSTATUS.NORMAL;

curam.core.sl.entity.fact.CaseUserRoleFactory.newInstance()
.insert(caseUserRoleDtls);

CaseHeader caseHeaderObj = CaseHeaderFactory.newInstance();
CaseHeaderDtls caseHeaderDtls = caseHeaderObj.read(key);
caseHeaderDtls.ownerOrgObjectLinkID =

orgObjectLinkKey.orgObjectLinkID;
caseHeaderObj.modify(key, caseHeaderDtls);

}
}

Step 2: Add a Binding to the Case Owner Assignment Strategy Implementation:
Guice bindings are used to register the implementation.
public class SampleModule extends AbstractModule {

public void configure() {

38 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

// Register the implementation
bind(PDCCaseOwnerAssignmentStrategy.class)
.to(SampleCaseOwnerAssignmentStrategyImpl.class);
}

}

Note: New Guice modules must be registered by adding a row to the
ModuleClassName database table. See the Persistence Cookbook for more
information.

Developing with Person and Prospect Person Evidence 39

40 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

Notices

This information was developed for products and services offered in the United
States.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM® product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

© Copyright IBM Corp. 2012, 2016 41

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings

42 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “ Copyright and
trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

Notices 43

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

44 IBM Cúram Social Program Management: Cúram Person and Prospect Person Evidence Developers Guide

IBM®

Printed in USA

	Contents
	Figures
	Tables
	Developing with Person and Prospect Person Evidence
	Overview
	Pre-requisites
	Sections in this Guide

	Person/Prospect Person Evidence Overview
	Person/Prospect Person Data as Evidence
	How Person or Prospect Person Evidence is Managed
	Person/Prospect Person Evidence Types
	Evidence Validations
	Evidence Sharing

	Designing Person/Prospect Person Evidence Solutions
	Data: Dynamic Evidence Types
	Structure
	Constraints
	Validations
	Verifications

	Flow: Evidence Broker
	Cúram Express Rules: Case Eligibility/Entitlement Calculations
	Read participant data from the dynamic evidence stored by the participant manager
	Read participant data which has been brokered onto cases
	Continue to read from the legacy tables

	Dynamic Evidence Type Data Mappings
	Address
	Bank Account
	Birth and Death
	Contact Preferences
	Email Address
	Gender
	Identification
	Name
	Phone Number
	Relationship
	Snapshot Tables

	Customizing Person/Prospect Person Evidence
	Replicators
	Replicator Extension
	Example: Implementing a Person/Prospect Person Evidence Replicator Extender
	Step 1: Provide a Replicator Extension Implementation
	Step 2: Add a Binding to the New Replicator Extension Implementation

	Why Implement a Replicator?
	Implementing a Replicator
	Example: Implementing a Person/Prospect Person Evidence Replicator
	Step 1: Provide a Replicator Interface
	Step 2: Provide a Replicator Implementation
	Step 3: Implement an Event Listener
	Step 4: Add a Binding to the New Event Listener Implementation

	Converters
	Why Extend a Converter?
	Converter Extension
	Example: Implementing a Person/Prospect Person Evidence Populator
	Step 1: Provide a Populator Implementation
	Add a Binding to the New Populator Implementation

	Why Implement a Converter?
	Implementing a Converter
	Example: Implementing a Person/Prospect Person Evidence Converter
	Step 1: Provide a Converter Implementation
	Step 2: Add a Binding to the New Converter Implementation

	Evidence Sharing Automation
	What is Evidence Sharing Automation?
	Why use Evidence Sharing Automation?
	Implementing an Automation Strategy
	Configuring an Automation Strategy
	Example Automation Strategy

	Selection of Primary Information
	Why Change the Selection of Primary Information?
	Changing the Selection of Primary Information
	Changing the Selection of Primary Information Example
	Step 1: Provide a Primary Handler Implementation
	Step 2: Add a Binding to the New Primary Handler Implementation

	Reciprocal Evidence
	Why Provide a Reciprocal Evidence Implementation?
	Reciprocal Evidence Implementations
	Reciprocal Evidence Implementation Example
	Step 1: Provide a Reciprocal Evidence Conversion Implementation
	Step 2: Add a Binding to the New Reciprocal Evidence Conversion Implementation

	Reciprocal Evidence Limitations

	Participant Data Case Owner
	Why Change the Participant Data Case Owner?
	Changing the Participant Data Case Owner
	Changing the Participant Data Case Owner Example
	Step 1: Provide a Case Owner Assignment Strategy Implementation
	Step 2: Add a Binding to the Case Owner Assignment Strategy Implementation

	Notices
	Privacy Policy considerations
	Trademarks

