
IBM Cúram Social Program Management
Version 7.0.0

Cúram Custom Widget Development
Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 83

Edition

This edition applies to IBM Cúram Social Program Management v7.0.0 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Developing Custom Widgets 1
Overview 1

Prerequisites 1
What's New? 1
Customizing Widgets 2
Outline of this Guide 3
Conventions of this Guide 3
Limitations and Restrictions 4

Approaches to Customization. 4
Prerequisites 4
Identifying the Right Approach 4
Using Only UIM 5
Reconfiguring Standard Widgets. 6
Developing Simple Custom Widgets 6
Developing Complex Custom Widgets 7
Mixing Simple Custom Widgets with UIM . . . 8
Responsibilities of the Widget Developer 8

How Widgets Work 9
Prerequisites 10
Anatomy of a Widget 10
How Widgets Work In Depth 12

An EMail Address Widget 13
Prerequisites 13
Defining the HTML 14
Defining the Renderer Class 14
Accessing the Data 15
Generating the HTML Content 16
Configuring the Widget 17

The Sample Context Panel Widgets 17
Prerequisites 18
The Sample Widgets 18

A Photograph Widget 19
Prerequisites 19
Defining the HTML 19
Defining Data in XML Form 21
Defining the Renderer Class 21
Accessing Data in XML Form 21
Generating the HTML Content 22

Linking to a UIM Page 23
Linking to a Static Image 23
Linking to the FileDownload Servlet 24

Configuring the Widget 24
Configuring the FileDownload Servlet. 25

A Details Widget Demonstrating Widget Reuse . . 26
Prerequisites 26
Defining the HTML 26
Defining Data in XML Form 27
Defining the Renderer Class 27
Accessing Data in XML Form 28
Generating the HTML Content 28
Configuring the Widget 30

Tying Widgets Together in a Cascade 31
Prerequisites 31
Defining Data in XML Form 31
Defining the HTML 32
Defining the Renderer Classes 32
Generating the HTML Content 33

Person Context Panel Widget 33
Horizontal Layout Widget 35

Configuring the Widgets 36
Person Context Panel Widget 36
Horizontal Layout Widget 36

A Text Field Widget with No Auto-completion . . 37
Prerequisites 37
Defining the HTML 37
Defining the Renderer Class 38
Handling Form Items 38
Accessing the Data 39
Generating the HTML Content 40
Configuring the Widget 42
Limitations on Support for Custom Edit
Renderers 42

Internationalization and Localization 42
Prerequisites 43
CDEJ Support for Internationalization 43
Widget Internationalization 44

Accessibility Concerns 45
Prerequisites 45
Overview 46
Labels for Form Input Controls 46
Font Sizes 47

Overview of the Renderer Component Model . . . 48
Elements of the Model. 48
Building Components 49

Design and Implementation Guidelines 50
Guidelines for Writing Renderers 51

Do Keep Things Simple 51
Do Divide and Conquer 51
Do Check for Nulls 51
Do Take Shortcuts 52
Do Go with the Flow 52
Do Not Introduce Concurrency Issues . . . 55
Do Not Convert Data in a Renderer 57
Do Not Do Too Much 58

Supporting Field-level Security 59
Adding New CSS Rules for Custom Widgets . . 60

Testing, Troubleshooting and Debugging 61
Testing 61
Troubleshooting 62
Debugging 63

Configuring Renderers 63
Overview 63
Configuring Domain Renderers. 65
Configuring Component Renderers 66

Accessing Data with Paths 67
Overview Diagram 67
Creating New Paths 68

© Copyright IBM Corp. 2012, 2016 iii

General Properties Resources 69
Resource Store Properties Resources 70
Literal Values. 71

Extending Paths for XML Data Access 72
Simple XPath Expressions 72
Evaluating the Paths 75
Automatic Data Conversion 76

Source Code for the Sample Widgets 77
Source Code for the E-Mail Address Widget . . 77
Source Code for the Photograph Widget 77

Source Code for the Details Widget 78
Source Code for the Person Context Panel Widget 80
Source Code for the Horizontal Layout Widget 80
Source Code for the Text Field Widget with No
Auto-completion. 81

Notices 83
Privacy Policy considerations 84
Trademarks 85

iv IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Figures

1. HTML Output of the Email Address Widget 14
2. Custom CSS for the Email Address Widget 14
3. Declaration of the EMailAddressViewRenderer

Class 15
4. Getting the Email Address Value 16
5. Marking Up the E-Mail Address Value . . . 16
6. Configuring the E-Mail Address Widget 17
7. HTML Output of the Photo Widget 20
8. Custom CSS for the Photo Widget 20
9. An XML Document Describing a Photograph 21

10. The Renderer Class for the Photograph Widget 21
11. Getting the Person Name and ID Values 22
12. Marking Up the Photograph Data 23
13. Linking to a UIM Page. 23
14. Linking to a Static Image 24
15. Linking to the FileDownload Servlet 24
16. Configuring the E-Mail Address Widget 24
17. Example FileDownload Configuration for a

Photograph 25
18. Example of the HTML to Show an In-line

Image 25
19. HTML Output of the Details Widget 26
20. Custom CSS for the Details Widget 27
21. An XML Document Describing a Person 27
22. The Renderer Class for the Details Widget 28
23. Getting the Person name and Reference

Number. 28
24. Starting the Email Address Widget from the

Details Widget 29
25. Configuring the Person Details Widget 30
26. An XML Document Describing a Person 32
27. HTML Output of the Person Context Panel

Widget 32
28. The Renderer Class for the “Person Context

Panel Widget” 33

29. The Renderer Class for the “Horizontal Layout
Widget”. 33

30. Building the component model and starting
the “Horizontal Layout Widget” 34

31. Generating an HTML table and delegating to
other widgets 35

32. Configuring the Person Context Panel Widget 36
33. Configuring the Horizontal Layout Widget 37
34. HTML Output of the Date Picker Widget 38
35. Declaration of the NoAutoCompleteEditRenderer

Class 38
36. Adding a Form Item to Get a Target ID 39
37. Getting the Initial Value for a Form Item 40
38. Marking Up the Input Control 40
39. Supporting Other UIM Features. 41
40. Configuring the SSN Edit Renderer 42
41. Referencing Localized Image Files 44
42. An XML Document Describing Contact Details 53
43. An XML Document Describing an Address 53
44. A Revised XML Document Describing Contact

Details 54
45. A Plug-in Class with a Concurrency Defect 55
46. A Plug-in Class without a Concurrency Defect 57
47. Implementing Field-level Security 60
48. An Example of a DomainsConfig.xml File 65
49. An Example of a StylesConfig.xml File 66
50. The Anatomy of a Path 67
51. Accessing General Properties. 69
52. Accessing Multiple General Properties . . . 70
53. Accessing Resource Store Properties 71
54. Accessing Multiple Resource Store Properties 71
55. Encoding Literal Values 72
56. A Sample XML Document 73

© Copyright IBM Corp. 2012, 2016 v

vi IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Tables

© Copyright IBM Corp. 2012, 2016 vii

viii IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Developing Custom Widgets

Use this information to develop custom widgets for UIM pages. A comprehensive
set of widgets are provided, which are configured against the application's domain
definitions by default. These configurations can be changed as required.

Overview
The objective of the guide is to explain when it is appropriate to use a custom
widget to present the content of a UIM page and to show how to develop such a
widget and integrate it into the application.

The text within the images that are used throughout the guide are intentionally
blurred because you are only concerned with the high-level details of these
widgets. Each number in an image maps to a specific detail in a widget. A list is
given below each image to explain its details by referring those numbers.

The objective of the section is to explain briefly what widgets are, what can be
achieved through the customization of widgets and how the rest of the guide is
structured to aid the developer in the task of developing custom widgets.

This is a guide for client application developers who want to customize the
presentation of Cúram application pages in ways that are not possible through
UIM or through the reconfiguration of the set of widgets that are provided in the
Cúram Client Development Environment (CDEJ).

Prerequisites
The developer is proficient in Cúram client-side application development in Java™

and UIM. In addition, knowledge of HTML, JavaScript, CSS, and other web
application technologies is required to varying degrees depending on the nature of
the widget that is being developed.

What's New?
UIM provides support for easy development of a consistent application user
interface and can meet most presentation requirements. However, sometimes there
is a requirement for richer functionality or a more sophisticated look than can be
achieved with UIM alone.

From Cúram 6.0 onwards, support is introduced for the customization of widgets.
Widgets are the elements of the user interface that is used to present the values of
the fields that are defined in UIM, such as simple text values, editable text fields,
date selectors, bar charts, and calendars. The new custom widget development
features make it possible for developers to create their own widgets that
supplement or replace those provided by the CDEJ. Here are just a few examples
of the kinds of customizations that can now be performed:
v The configuration can be changed so that the basic text field widget is used for

the input of all date values, instead of the date selector that is configured by
default;

v The presentation of all email address values can be customized so that, instead
of being shown as simple text, they are shown as HTML mailto: links beside an
email icon;

© Copyright IBM Corp. 2012, 2016 1

v A photograph of a person who is stored in the application database can be
displayed as the value of a field;

v The details of a person can be presented by using a richer and more compact
layout than possible with a UIM CLUSTER;

v Widgets can be reused within other widgets, so that the email address widget
can be reused within the widget that displays the details of a person and that
details widget can, in turn, be combined with the widget that displays a
photograph of a person to create a single widget that presents a more engaging
summary of a person in a tab context panel.

Customizing Widgets
Customizing widgets is a process that involves customizing the HTML that is
produced to represent the value of a field. A client application developer defines a
Cúram application page by using UIM, but the page is displayed in a user's web
browser by using HTML.

Behind the scenes, the CDEJ translates the CLUSTER and LIST elements of the UIM
page into HTML elements and then presents or renders the labels and values of the
FIELD elements within the structure that is provided by those HTML elements.
Typically, the CDEJ renders a cluster or list by using an HTML table and then
places the labels and values of the fields into the cells of that table. The CDEJ
renders the label of a field the same way for all fields, but renders the HTML for
the value of a field in different ways depending on the type, the domain definition,
of that field's value.

The processing of field values in a domain-specific manner has been available since
Cúram 4.0. This support for custom data conversion and sorting is described in
detail in the Cúram Web Client Reference Manual. Using the same configuration
mechanism, the CDEJ now extends this domain-specific customization to the
widgets used to produce the HTML for the values of fields. The CDEJ includes a
default configuration that associates the provided Cúram widgets with all of the
domain definitions of the application. The CDEJ now also supports these key
features:
v The customization of the default configuration by the application developer,

providing the freedom to change what widget is used to render the value of
each type of field;

v The development of new widgets by the application developer and their
integration into the application through the customization of the default
configuration. These custom widgets allow full control over the rendering of
values for individual UIM FIELD elements.

Custom widgets are integrated into the application in a manner that preserves all
of the time-saving and simplifying features of UIM development. However,
developing custom widgets can be a complex process. Widget developers take on
the responsibility for considerations such as styling, internationalization,
cross-browser support, and other concerns from which they are insulated when
using UIM alone. There is a balance to be achieved between ease of development
and maintenance on the one hand and user interface richness and flexibility on the
other.

Cúram widgets and custom widgets differ only in where they are developed and
configured, not how. Therefore, custom widgets are a powerful tool for application
developers who need to meet challenging presentation requirements by

2 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

complementing or replacing the provided Cúram widgets. The development and
configuration of such custom widgets is the subject of the guide.

Outline of this Guide
The next section, “Approaches to Customization” on page 4 guides the developer
on the choice of approach to achieving the required customization of the
user-interface while the development effort is minimized.

“How Widgets Work” on page 9, presents more detailed information about the
components of a widget and their configuration.

“An EMail Address Widget” on page 13 introduces the fundamental principles of
the widget development process and the subsequent widget configuration. The
section shows how to create a simple widget that presents an email address more
appealingly in the context of a typical UIM page.

“The Sample Context Panel Widgets” on page 17 presents some samples of context
panels that are used within the tabbed user interface. These sample context panels
are constructed by using several complex widgets that are supplied with data in
XML form. The development and configuration of each of these widgets is covered
in the following sections. Each section introduces new concepts in widget
development that build upon what is gone before until the complete context panels
are created and configured.

All of the widgets that are described to that point are used to present read-only
values. “A Text Field Widget with No Auto-completion” on page 37 introduces a
widget for editing values on a form page. Widgets that are used to edit values
have some unique requirements that are not applicable to widgets that present
read-only values. To edit a value, a widget must ensure that, when the user
submits a form page that contain the widget, the entered field value reaches its
destination on the server interface and that any validation errors are handled
correctly.

Often, the deployed Cúram application must comply with local regulatory
requirements for the localization of text and the accessibility of the user-interface.
While the details differ between jurisdictions, the general principles are common to
all. “Internationalization and Localization” on page 42 and “Accessibility
Concerns” on page 45 outline the main principles.

This is not a comprehensive reference manual for widget development. References
to external sources of information, such as the published Javadoc of the CDEJ, are
used to draw the attention of the developer to additional information when
necessary. The developer should also study the primary companion guide, the
Cúram Web Client Reference Manual, before embarking on custom widget
development. Several sections at the end of this guide supplement these other
sources where they lack specific information that is related to widget development.
Throughout the guide, the developer's attention is drawn to the relevant section.

Conventions of this Guide
For clarity, the source code that is presented throughout the guide is abridged.
Import statements are omitted and package names are not shown.

“Source Code for the Sample Widgets” on page 77 provides the full, unabridged
source code listings that show the import statements that identify the package
names of the referenced classes and interfaces.

Developing Custom Widgets 3

Similarly, the configuration files in the examples show only the domain
configuration entry that relates to the configuration of the widget presented. The
real configuration file within an application component typically contains all of the
configuration entries for all of the domain definitions to which customizations are
applied.

Limitations and Restrictions
The focus of the guide is on the development of custom widgets for inclusion into
context panels within the tabbed user interface. Other uses of widgets are covered
only briefly or not at all.

warning: No Implied Support

Only the custom widget functionality that is described in this document is
supported. No other functionality, whether inferred by the reader through
extrapolation or analysis of the Javadoc or other sources, is supported. Neither is
support that is offered for use of custom widgets in contexts other than those
contexts presented in this document.

Throughout the guide, other limitations or restrictions are highlighted in the
relevant contexts.

Approaches to Customization
Use this section to understand when UIM is used to define all of the content of a
page, when a custom widget is required to achieve a presentation requirement and
what the scope of the custom widget is.

Prerequisites
A basic knowledge of the capabilities of UIM and the structure of web pages that
are rendered from UIM sources.

Identifying the Right Approach
UIM pages can define the content of an application page in terms of fields, action
controls, clusters, lists, and other elements. UIM provides enough control to
present the page content in ways that meet most presentation requirements.
Alternatively, instead of using multiple fields in clusters and lists in a UIM page, a
single field can be used in the UIM to anchor a custom widget that produces most
of the HTML content of the page.

Between these two bounding approaches doing it all with UIM or doing it all with
a widget, there are several intermediate approaches. Where a requirement for
customized presentation is identified, the developer needs to assess the necessary
extent of that customization and how best to meet the requirement to minimize the
complexity and effort required.

While the development of custom widgets provides greater control over the
presentation of the content than UIM, this control comes at the cost of greater
complexity. Trying to do everything from one widget by producing large amounts
of HTML content can lead to significant long-term maintenance requirements. This
is so if the appearance of the content needs to be kept consistent with content that
is produced from standard elements of a UIM page or with content from Cúram
widgets. For example, if a custom widget attempts to produce HTML output that
looks the same as that produced for a standard UIM CLUSTER, that can introduce a

4 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

long-term requirement to repeatedly reverse engineer the potentially changing
structure of that HTML. The HTML structure and CSS produced by the CDEJ is
subject to change and it cannot be guaranteed that customizations that depend on
this HTML structure or CSS styling continues to work when the Cúram application
is upgraded. Therefore, while a custom widget might present all of the page
content, it is best to limit what the custom widget produces and to produce as
much of the content as possible using UIM.

Attempt to meet the presentation requirement by selecting the first approach that
is listed here capable of meeting the requirements. These approaches are listed in
order of increasing complexity and are described more fully in the following
sections.
v Use only UIM, though perhaps use it more creatively than is typical.
v Reconfigure the standard widgets to change the presentation of the field values.
v Develop and use one or more simple custom widgets and use them in

combination with UIM.
v Develop and use one or more complex custom widgets instead of many UIM

elements.
v Apply some combination of the approaches here.

Using Only UIM
Before the developer decides to develop a custom widget, the developer first
assesses if the required presentation can be achieved by using the layout and
styling capabilities that are supported by UIM. If the presentation requirement can
be achieved by using only UIM, there is no need to develop a custom widget and
time and effort can be saved.

UIM allows CLUSTER and LIST elements to be nested within other CLUSTER
elements. The number of columns in a cluster can be controlled, as can the display
of the titles of clusters and lists and of the labels of their contained FIELD elements.
This flexibility can be used to achieve complex page layouts. See the Cúram Web
Client Reference Manual for more details on these UIM elements.

Many UIM elements also support a STYLE attribute that can be used to associate a
custom CSS class with the HTML content that is generated in respect of those
elements. The custom CSS class can define styles that control many aspects of the
presentation. Fonts, background images, spacing, borders, colors, and other aspects
of the presentation can be customized easily. See the Cúram Web Client Reference
Manual for more details on the use of the STYLE attribute and on the inclusion of
custom CSS resources.

The developer can identify a UIM-only solution to the presentation requirement,
but might need to apply this solution to many pages. Doing this one page at a
time might not be desirable, particularly if later changes would also require that all
of the pages be updated again. Using a UIM VIEW in a VIM file and including this
view into many UIM files might meet this requirement.

If the requirement is to change the presentation of a field value in a significant
way, rather than to change the page layout or to make minor styling changes to
the content (or both), then this approach of using only UIM might not be sufficient.
If the customization needs to be repeated across many pages in a way that cannot
be accommodated by included views (VIM files), or in a way that imposes
significant maintenance overheads, then this approach might also be insufficient. In

Developing Custom Widgets 5

those cases, a more advanced approach might be necessary, such as the
reconfiguration of the standard widgets or the development of a new widget.

Reconfiguring Standard Widgets
Cúram provides a comprehensive set of widgets that are configured against the
application's domain definitions by default. The application developer has the
option to change (override) this configuration to meet the presentation
requirements. Such reconfiguration can change the standard widget that is used for
a particular type of data to be a different standard widget. Where custom widgets
are added to the application already, these custom widgets are also candidates for
reuse through reconfiguration.

For example, the date selector widget is used for fields in the SVR_DATE domain
(and its descendant domains). If the requirement is to change the date selector to a
simple text field, possibly formulated as, “Remove the pop-up calendar icon,” then
a new date selector that acts like a text field is not required. This requirement can
be met simply by associating the same widget that is used for the SVR_STRING
domain (and many numeric domains) with the SVR_DATE domain. This
configuration change, made in a configuration file in the application component,
causes all SVR_DATE values on all pages to be presented for editing with a simple
text field.

The elements of a widget that are configured in this way are explained in the next
section and the configuration process is covered in detail in “Configuring
Renderers” on page 63. Also described in that section are the names and locations
of the configuration files, including the default configuration file that shows what
is configured as standard in the CDEJ.

If a reconfiguration of the widgets by changing the domain associations, perhaps in
combination with the creative use of UIM, cannot meet the presentation
requirement, it might be necessary to develop a new custom widget and configure
it for use.

Developing Simple Custom Widgets
A widget controls how the value of a field is presented by adding the HTML
mark-up to the value that is appropriate for that presentation. Reconfiguring the
widgets that are associated with different domain definitions and restyling the
HTML of existing widgets with custom CSS are not always sufficient to meet a
presentation requirement. If the developer decides that the presentation
requirement can be satisfied only by modifying the structure of the HTML
produced for the value of a field in a manner that no existing widget can achieve,
then the developer must write a new widget and configure it for use by the
application.

“An EMail Address Widget” on page 13 explains how to develop a simple widget
for viewing the value of a field; “A Text Field Widget with No Auto-completion”
on page 37 explains how to develop a simple widget for editing the value of a
field. Both sections describe briefly how to configure these widgets and more
information about the configuration of custom widget can be found in
“Configuring Renderers” on page 63.

In the simple case, a widget replaces the HTML content that is produced for the
value of a UIM FIELD within the context of a normal UIM CLUSTER or LIST. The
value of the field is still a single string, number, or date, only styled more
elaborately. The general layout of the page is not affected. Where the presentation

6 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

requirement has a wider scope and requires that the layout of significant parts of
the page be changed, or that the value of a field contain many embedded values,
such as in an XML document, a more complex widget are required.

Developing Complex Custom Widgets
There is no clear dividing line between simple widgets and complex widgets. The
more control over the presentation that the developer exerts through a custom
widget, the more complex the implementation of that widget becomes.

Some indicators of increased complexity are:
v The value of the field can be more than a simple string or numeric value. For

example, the value can be an XML document that contains several separate
values, such as the data for a bar chart.

v Multiple values can be presented to the user differently from the usual grid
layout of a cluster or list. For example, a photograph of a person can be
presented with the person's name below the image and with no field label to the
side.

v A widget can present information by delegating significant parts of the
presentation to the renderer plug-ins of other widgets. For example, in
presenting a non-grid layout for the details of a person, the value of the single
UIM field can be an XML document that contains all of those details. A single
widget is started by the CDEJ for that XML document value. That widget can
then produce the non-grid layout in HTML and, in each position within this
layout, delegate the rendering of the values within the XML document to other
widgets. This is similar to the way the CDEJ delegates to widgets when the
contents of the cells in the grid layout that is presented by a UIM cluster are
rendered.

While a UIM FIELD is always required to anchor a custom widget, a UIM page can
contain little more than a single FIELD element and leave most of the rendering of
the HTML page content to the associated custom widget. (The page title and other
surrounding content are still rendered independently of the field.) The ability to
place a UIM FIELD element directly within a PAGE element without any CLUSTER or
LIST element, is a new feature of the CDEJ. While it allows a widget more control
over the layout of the data, this approach is used only if the presentation
requirement is such that it cannot be achieved by using only UIM, or by using a
combination of UIM and one or more simple widgets.

Even if a presentation requirement can be met by using only UIM, the developer
can prefer to use a custom widget to allow the customization to be applied
automatically to many application pages, through the domain definition
association, rather than repeat the UIM-only solution on every page that needs it.
Where the use of VIM VIEW elements cannot achieve this, a complex custom widget
can be necessary.

This guide presents the development of several complex widgets in later sections.
The developer does not assume that because much of the guide is concerned with
the development of complex widgets that complex widgets are the preferred
approach. On the contrary, much of this guide covers complex widgets because
their very complexity requires more explanation. The developer always opts for the
simplest possible approach first and only resort to complex widget development
when there are no simple alternatives.

Developing Custom Widgets 7

Mixing Simple Custom Widgets with UIM
The complexity of a widget increases as it assumes more control over the layout of
more data. If a presentation requirement cannot be met by using only UIM, the
developer can need to create a custom widget. However, the complexity can be
reduced by developing only the widgets that are necessary and using UIM as
much as possible to achieve the goal. The developer assesses if a combination of
UIM with several simple widgets might achieve the wanted result, or if a full,
single custom widget is the only solution.

The developer can use UIM clusters, lists, and fields in various combinations to
produce HTML output that is close to what is required. The developer can then
associate simple custom widgets with individual fields, replacing the default
HTML content for those fields with custom content. Further, the developer can
replace the presentation of a cluster on the page with a presentation produce by a
single custom widget, which still using UIM clusters elsewhere on the same page.
The combination of default content for the main layout of the page with changes to
the content for individual fields or individual clusters, is easier to achieve than
using a single custom widget to produce all of the page content.

Constructing pages from several, simpler custom widgets reduces the complexity
of the individual widgets. It also results in a number of simpler widgets that are
much easier to reuse in other contexts. The developer can identify that some
widgets might be developed in a way that makes them a component of the
solutions to the differing requirements of several pages. In this case, the alternative
approach of a single custom widget that can satisfy only the requirements of a
single page, is likely to be more complex to develop and result in further
development of other complex widgets for other pages with little reuse.

Responsibilities of the Widget Developer
This section presents the approaches to the customization of widgets in increasing
order of complexity. The widget developer, in eliminating a simpler approach and
moving on to consider a more complex approach, takes on more responsibility for
the proper operation of the resulting user interface. UIM insulates client
application developers from most of these responsibilities, but this insulation is, to
a significant extent, provided by the widgets that underlie the UIM fields.

Therefore, the widget developer is responsible for ensuring that the custom widget
continues to insulate the UIM developer from concerns such as the following:
v The Cúram user interfaces evolve with each new release. Widgets that attempt

to emulate the output that is produced by standard elements of the Cúram user
interface, such as clusters and lists, need to evolve in step with Cúram to ensure
that the consistency of presentation of the user interface is preserved. This is a
long-term maintenance task that is considered as part of the cost of development
of any such custom widget.

v Rendering HTML to the application page is a low-level process. It offers
considerable power and flexibility to customize the application. However, it also,
by its nature, opens up the possibility of introducing unwanted side-effects that
interfere with the presentation of other parts of the application page, or
introducing security defects, such as vectors for cross-site scripting (XSS) attacks.
The widget developer assumes the responsibility for ensuring that such defects
are not introduced.

v Complex widgets with ambitious presentation requirements can be an expensive
undertaking. Much of the development effort goes not into developing the
widget source code, but into fine-tuning the styling of the HTML for that widget

8 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

within the browser. Where there is a requirement for cross-browser support,
either different versions of the same web browser, or different web browsers
entirely, the time that is required to achieve a consistent look across all web
browsers is not underestimated.

v The CDEJ provides considerable assistance to the widget developer to aid with
the internationalization of a widget. However, this assistance is only of value if
the widget developer takes advantage of it to ensure that the widget can be
properly localized after development.

v The widget developer cannot have a free hand to implement all presentation
requirements as specified. Most jurisdictions implement regulations and
guidelines that require that web applications be available and accessible to as
many people as possible and, in particular, be inclusive of those with disabilities.
The technical requirements can differ between jurisdictions and it is the
responsibility of the widget developer to understand and comply with any such
requirements.

v The perceived quality of the application can be diminished if a widget does not
operate correctly or if it introduces inconsistencies or unwanted side-effects. As
the complexity of a widget increases, so too does the effort that is required to
test it in all of its aspects and to ensure that it enhances, not degrades, the
application and the experience of the users. The widget developer does not
underestimate the effort that is required to test a complex widget properly and
the need to test it repeatedly as the application is further customized or
upgraded.

This guide explains these concerns in more detail in the later sections and advises
on how they can be addressed. By choosing the simplest approach to achieve a
presentation requirement after evaluating if the presentation requirement can be
modified to permit a simpler approach, the widget developer can minimize the
effort that is required to meet all of these added responsibilities.

How Widgets Work
A developer defines a Cúram application page by using UIM, but the page is
displayed in a user's web browser by using HTML, as described in the previous
section,. The label of a field is presented the same way for all fields, but the HTML
that presents the value of each field differs depending on two factors: the mode of
operation of the field and the type, the domain definition, of its value.

There are two modes of operation: the view mode and the edit mode. In the view
mode, the user cannot modify the value of the field. The user can see the value
that is presented as just text, or presented more elaborately as a bar chart or a rate
table, depending on the type of the value. In the edit mode, the user can enter a
new value or modify the existing value of a field. The user can see the value that
is presented in a simple text input field, or a date selector or a check-box, again
depending on the type of the value.

For each mode of operation and type of data, a specialized component is started
by the CDEJ to render the HTML for a field's value. This HTML is included into
the full HTML page and the page is returned for presentation to the user by the
web browser. Often, other resources, such as icons and JavaScript, are required to
complete that presentation. These specialized rendering components together with
their associated resources are called widgets. Thus, there is a date selector widget, a
text field widget, a bar chart widget, and many other widgets. The CDEJ provides
a comprehensive set of widgets for all modes of operation and types of data. These

Developing Custom Widgets 9

are detailed in the “Domain Specific Controls” section of the Cúram Web Client
Reference Manual and further in this guide in “Configuring Renderers” on page 63.

When a complete UIM page is rendered at runtime, the CDEJ automatically
identifies the mode and type of each UIM FIELD and selects the appropriate widget
to render the value. The mode of operation is determined by the presence or
absence of a TARGET connection on that field. When that connection is present, the
field is in the edit mode; when it is absent, the view mode. The type of a field is
determined by the domain definition of the server interface property to which that
field is connected. What widget is “appropriate” for any combination of mode and
type is defined by configuration. A configuration file associates widgets with
named domain definitions. For each domain definition, the widget to be used for
each mode is specified. The CDEJ uses a widget so configured whenever it needs
to render the value of a field with a matching mode and domain definition.

The configuration that is used by the CDEJ to associate widgets with domain
definitions is the same configuration that is used to associate custom converter and
comparator plug-ins with domain definition. The development and configuration
of these plug-ins are described in the “Custom Data Conversion and Sorting” section
of the Cúram Web Client Reference Manual. Custom widget development involves
the development and configuration of new types of plug-ins that are configured in
the same way. The widget developer can define a configuration within the
application that overrides the default configuration of the CDEJ to customize the
associations between widgets and domain definitions. The widget developer can
also change how the values of fields are presented. To change the field value
presentation, the widget developer must first understand the relationship between
widgets and domain-specific plug-ins.

Prerequisites
A basic knowledge of the capabilities of UIM and the basic principles of web
application development in HTML.

Anatomy of a Widget
To a user, a widget is just what is shown in the web browser. To a widget
developer, a widget comprises all the resources that are involved in the generation
and presentation of what a user sees. From this development perspective, a widget
can be composed of many artifacts that, together, realize a presentation
requirement for a specific type of data in one mode of operation.

The common artifacts of a widget are as follows:

Renderer Plug-in
The main component of a widget is its renderer plug-in, the Java class that
generates the HTML mark-up around the field value. The renderer plug-in
class is the only artifact that is required for every widget. The CDEJ
provides abstract base classes that all custom renderer plug-in classes must
extend. There is a different base class for each mode of operation. Each
renderer plug-in class has a render method that must be implemented to
generate the HTML content by using the W3C DOM Core API.

Custom renderer plug-in classes are placed into the javasource folder of
the chosen client application component. The classes can be added to a
Java package subfolder, but the Java package name must not conflict with
the name of the Cúram application packages. Throughout this guide, the
package folder sample is used, but the use of that name is not required or
recommended.

10 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The presentation requirement of a widget can sometimes be realized with
nothing more than a single renderer plug-in class. In this case, the terms
widget and renderer might be synonymous to a developer. However, most
widgets require more resources, and sometimes more renderer plug-in
classes, so the term widget has a wider scope than renderer.

Domain Configuration
A configuration file associates domain definitions with the renderer
plug-ins of widgets. One file that is named DomainsConfig.xml is permitted
in each application component. The same configuration file is used for
other types of plug-ins, such as those used to customize sorting and data
validation that is described in the Cúram Web Client Reference Manual. The
change to the domain configuration required to associate a custom widget's
renderer plug-in class with a domain must be added to this file and the file
must be created if it does not exist. The configuration process is covered as
required in the other sections of this guide and in more detail in
“Configuring Renderers” on page 63.

JavaScript
JavaScript can be incorporated in two ways by a widget. Both are
controlled by the renderer plug-in class. The renderer plug-in can embed
JavaScript code directly into the HTML by using script tags, or it can
request that the CDEJ add a link to the page to include a separate
JavaScript resource. It is common for a renderer plug-in to do both: include
a link to a JavaScript resource and then add scripts that start the functions
that are defined in that resource. External JavaScript resources can be
placed into the application component. They are copied into the correct
location during the build.

Images
Images can be included by embedding an HTML img tag with the
appropriate value for its src attribute. For images such as icons, the image
files can be placed into the application component. For images, such as
photographs stored on the database, a special source URL is required.
Examples of both approaches are presented in the later sections of this
guide.

CSS CSS can be used to separate the styling of the HTML produced by a
renderer plug-in from the operation of that plug-in. Like JavaScript and
image resources, CSS resources are not directly associated with a widget.
They are added to the application component. Unlike JavaScript and image
resources, CSS resources are not requested explicitly by a renderer plug-in.
The style rules that are defined within a CSS resource, and all other CSS
resources in the application components, are automatically combined into a
single new CSS resource during the build process. The specific CSS
resource is not referenced anywhere in the HTML, but the rules are
applied nonetheless. See the Cúram Web Client Reference Manual for more
details on the incorporation of custom CSS resources.

Localized Text Properties
Any text that is produced by a renderer plug-in other than the actual field
value is required to be internationalized, that is, to support localization
into different languages. Standard Java properties resources, as defined by
the Java ResourceBundle API are supported for this purpose. The
techniques for locating these resources and referencing their content are
covered in “Internationalization and Localization” on page 42.

Developing Custom Widgets 11

Widgets can use or depend on other artifacts, such as Java libraries, supporting
Java classes, XSLT stylesheets, XML schemas, and many others. The use of such
artifacts depends on the nature of the widget and what it must achieve. This guide
does not describe the use of such artifacts or their integration into an application.
A widget developer is not supported in the resolution of any issues that are related
to the use of artifacts, or types of artifact, not explicitly covered in the later sections
of this guide.

How Widgets Work In Depth
As explained in previous sections, widgets are selected and started automatically
by the system depending on the type of data and mode of operation of a field. In
UIM, each FIELD is associated with data by using SOURCE and/or TARGET
connections. The system identifies the type of the data based on the domain
definition of the server interface property named on those connections. The
domain definition for the TARGET connection is preferred over that of the SOURCE
connection. The mode is determined by the presence or absence of the TARGET
connection; if a TARGET connection is present, the edit mode is used; if only a
SOURCE connection is present the view mode is used.

A configuration file associates the widgets' renderer plug-in classes with domain
definitions, so that, for any type of data and mode of operation, the same renderer
plug-in class is started on every page to present that data with the appropriate
HTML mark-up. A widget's renderer plug-in class can identify itself as either a
view-renderer for the view mode or an edit-renderer for the edit mode, but not both.
So, a separate renderer plug-in class is required for each mode. The configuration
allows one edit-renderer plug-in class and one view-renderer plug-in class to be
associated with each domain definition. If the developer changes the configuration
file so that a custom widget's renderer plug-in class is associated with a domain
definition, then every time a field in that mode with a connection to data in that
domain is presented on any page, the custom renderer plug-in class is used. Thus,
the developer can produce any wanted custom HTML mark-up to present the data
of any UIM FIELD and see the mark-up applied consistently across the application.

The same widget is often used for many different types of data in a mode. For
example, the application presents most of view-only data by using a single widget
that inserts the text representation of that data into the HTML without any HTML
element mark-up. Only where the presentation is more specialized are specialized
widgets that are applied.

The CDEJ starts widgets in the course of transforming a UIM page to HTML. For
widgets associated with UIM FIELD elements, this always happens at runtime.
During the rendering of the page, the CDEJ constructs a Field object from the
information that is defined in the UIM. Using this information, it consults the
domain configuration to select the appropriate widget's renderer plug-in and then
passes the Field object to the renderer plug-in along with an empty DOM
DocumentFragment object. Using the information that is provided by the Field
object, the renderer plug-in uses the DOM Core API to create the DOM nodes that
represent the required HTML and field value and adds these nodes to the
DocumentFragment object. When the renderer plug-in returns, the CDEJ takes the
now populated DocumentFragment object, serialize it to an HTML text stream, and
add this to the stream that is being returned to the web browser. By this method,
any HTML content can be produced by the renderer plug-in class.

The developer can implement a widget such that multiple renderer classes are
used together to achieve a presentation requirement. The CDEJ first starts a single

12 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

renderer plug-in class based on its association with a domain definition. That
renderer class can then delegate the rendering of elements of its output to other
renderer classes. The first renderer can create empty DOM DocumentFragment
objects of its own and pass them on to the other renderers. These renderers
populate the fragments with HTML nodes and the first renderer can add the
contents of those fragments to its own before control is returned to the CDEJ.
Combining renderer classes together into such a rendering cascade simplifies the
individual renderer classes and maximizes the potential to reuse these classes in
other combinations to realize new custom widgets. Examples of this process are
presented in later sections of the guide.

The configuration file, which is identified in the previous section, that associates
renderer plug-in classes with domain definitions is subject to the same type of
component-order-based merging as most other configuration files in the Cúram
client application. In simple terms, the CDEJ default domain configuration is
loaded first. Then, the domain configurations defined (if at all) in each of the
application's components are loaded in order from the lowest priority component
to the highest priority component. Each configuration can replace elements of the
configuration that is loaded before, so the last configuration is the one that has the
most control. The actual configuration process is a little more complex than this
simplified explanation and is explained in full in “Configuring Renderers” on page
63. Crucially, the configuration that is defined in the application is given more
weight than that defined in the CDEJ, so it is possible for the developer to
customize anything. However, there are limits on what customizations are
supported within the Cúram application and that are described at the relevant
points in this guide.

When a custom widget controls most of the page content, often much of the
output of the widget relates to laying out other page content in the correct manner.
The view-renderer and edit-renderer plug-in types that are associated with domain
definitions are used to renderer fields that are bound to data. However, page
layout is often unrelated to any data. Another type of plug-in, the
component-renderer, can be used to perform these layout operations. These plug-ins
are associated with styles, not domain definitions, and can be started by the
domain-specific renderers when necessary. Styles and component-renderer plug-ins
are covered in “Tying Widgets Together in a Cascade” on page 31.

An EMail Address Widget
The presentation requirements of many pages can be satisfied with simple UIM
pages that contain fields that are laid out using clusters and lists. However, the
presentation of the data within a cluster or list might benefit by presenting it in a
more aesthetically pleasing way. The section shows how the email address can be
enhanced instead of presenting it as plain text. A link is added to allow the user to
click the address and open their email software and also an icon is added.

The objective of this section is to learn how to write a simple widget to present
some data more appealingly in the context of a simple UIM page.

Prerequisites
A knowledge of UIM and Java development.

Developing Custom Widgets 13

Defining the HTML
By default, string values are presented in the Cúram application, such as email
addresses, without any HTML mark-up. The string value is added to the HTML
page in the appropriate location.

The email address widget must produce HTML in the following form for an email
address such as info@example.com:

The HTML here is formatted for clarity, but it is generated without any indentation
or line breaks, as this punctuation is not necessary for the browser to present the
email address properly and increase only the size of the page.

A span element that specifies a custom CSS class name contains a hyperlink that is
defined by the a (anchor) element. The anchor element's href attribute prefixes the
email address with mailto:, as most browsers react to that value by opening the
system's default email application and creating a new message with that address in
the To: field. The anchor element contains an img element for the email icon and
the email address text that is displayed for the user to click.

The CSS vertical-align style applies only to the img element. It ensures that the
email address text that is shown to the user lines up with the centerline of the text,
rather than the baseline. This looks more appealing. The same styling goal might
be achieved if the class attribute were placed on the img element instead of the
span element. However, placing the email-container class name on the span
element allows further customization of the other elements by using different CSS
selectors without the need to change the HTML structure that is generated by the
widget, which would involve changing and rebuilding the Java source code.

The Cúram Web Client Reference Manual provides more details on adding custom
CSS resources to the application.

Defining the Renderer Class
The Cúram Renderer API defines the DomainRenderer interface that is used when
the renderer plug-in classes are written, such as for the email address widget. A
plug-in class has a render method that is provided with details of the field to be
rendered and the method must retrieve the data that is bound to that field and
add the HTML mark-up to that data.

The developer must not implement the DomainRenderer interface directly. Instead,
the OOTB application provides abstract base classes that the developer must use as
the base of any custom renderer plug-in class. The email address widget produces
a read-only value, so it is presented by using a view-renderer plug-in based on the

info@example.com

Figure 1. HTML Output of the Email Address Widget

.email-container img {
vertical-align: middle;

}

Figure 2. Custom CSS for the Email Address Widget

14 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

AbstractViewRenderer class. The developer places the
EMailAddressViewRenderer.java source file in the sample package subfolder of the
javasource folder of the client application component.

A renderer plug-in class uses the W3C DOM Level 3 Core API to create the HTML
content. This API is a standard component of the Java Runtime Environment for
Java 5 and above. It is in the Javadoc documentation that is supplied for the
corresponding JDK. For further information about this API, refer to that
documentation.

The first argument to the render method is a Field object that represents the
details of the UIM FIELD element to be rendered and the data that is bound to it by
its connections.

The second argument is a DOM DocumentFragment node. The goal of the render
method is to append DOM nodes that represent the data and its HTML mark-up
to this fragment. The system automatically serializes these nodes to HTML in
string form and include this in the HTML stream for the page that is returned to
the web browser.

The third argument is a RendererContext object. This object provides access to the
context in which a renderer is started. It includes facilities to delegate rendering to
other renderers, to resolve the data that is identified by the paths that are
associated with a Field object, to include JavaScript resources in the page that can
be shared with other renderers, and other facilities that are elaborated upon in the
API documentation.

Use of the RendererContract argument to the render method is not supported
except in the limited manner that is described later in the guide.

See the Cúram Javadoc for full details on each of these arguments and their
interface types.

Accessing the Data
The Field object has a Binding property that defines the source path and target
path that identify the data that is bound to the field. These paths combine the
server interface name and the property name into a single value.

The context provides a DataAccessor object that can be started to resolve paths to
their values. For a view-renderer, only the source path is provided. The target path
is only provided for edit-renderers (presented in “A Text Field Widget with No
Auto-completion” on page 37). Paths can represent values other than server
interface properties. The developer is not concerned about where the data comes
from, only that it can be retrieved when required. More information about the

public class EMailAddressViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
// Create the HTML here....

}
}

Figure 3. Declaration of the EMailAddressViewRenderer Class

Developing Custom Widgets 15

available paths and their forms is provided in “Accessing Data with Paths” on
page 67. The code to retrieve the email address string value is shown here.

The source path is retrieved from the field's binding and passed to the get method
of the data accessor that is retrieved from the context. The source path never is
null for a view-renderer plug-in. The get method returns the value of the (in this
case) server interface property. The value is formatted to a string representation
appropriate for the active user. This formatting is performed by using the format
method of the DomainConverter plug-in that is associated with the domain of the
server interface property. The formatting of an email address value is trivial (the
value is returned as is). However, other values, such as dates and date-times must
be formatted by using the active user's locale, time zone, and date format.
Regardless of the type of the underlying data, this is all handled automatically by
the converter plug-ins. The returned string is suitable for inclusion in the HTML
response without any further formatting. See the Cúram Web Client Reference
Manual for more information on converter plug-ins and their format methods.

Generating the HTML Content
With the email address retrieved, it must now be marked up with the required
HTML. The DOM API, while a little verbose, makes this process easy and reduces
the chances of producing invalid output. The use of the DOM API means that
opening and closing tags for the elements are created as needed and the attribute
values and body content is escaped automatically.

All content that is created by using the DOM API must be created in the context of
the owning DOM Document. Each node has a property that identifies this Document
object, so it can be retrieved from the document fragment. Elements and other
nodes can be created by using the factory methods of the Document object. The
nodes can be appended to each other, and ultimately to the provided document
fragment, to create the correct HTML structure. This is shown here (see “Source
Code for the E-Mail Address Widget” on page 77 for the complete source code of
this renderer).

The first line gets the owner document that is used throughout the rest of the
method to create new nodes. The span element is then created and added to the
document fragment. The other elements and nodes are created and added in turn.

String emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Figure 4. Getting the Email Address Value

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
fragment.appendChild(span);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);
span.appendChild(anchor);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));

Figure 5. Marking Up the E-Mail Address Value

16 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

When the render method returns, the system takes the newly populated document
fragment and incorporates its contents into the HTML page in the appropriate
location.

The URI of Cúram application pages includes the locale code as the first part of
the resource path, for example, en/Person_homePage.do. This path is relative to the
application's context root, which corresponds to the WebContent folder in the
development environment. When icons or other resources are referenced, the ../
path prefix is needed for relative URIs so move from the locale-specific folder in
the page's URI, back to the context root folder. More details about the inclusion of
custom image resources can be found in the Cúram Web Client Reference Manual.

Configuring the Widget
To configure the email address widget, the data must be in a domain that is
specific to email addresses. Here, the SAMPLE_EMAIL_ADDR domain is assumed.
The DomainsConfig.xml file is added to the client application component, or the
existing file is modified if it exists, to associate the view-renderer plug-in class with
that domain.

Applying the configuration here, the view-renderer of the custom widget is now
started anywhere a UIM FIELD element has a source connection to a server
interface property in the SAMPLE_EMAIL_ADDR domain. If the UIM FIELD has a
target connection, the edit-renderer will be used instead. As no edit renderer is
defined in this configuration, the edit-renderer of the parent or other ancestor
domain, is inherited and used . Typically, this is the associated TextEditRenderer
by default with the SVR_STRING domain.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 63.

The Sample Context Panel Widgets
The previous section presented the main steps that are required to develop a
simple custom widget and the artifacts that are required for its operation. Simple
custom widgets, such as the email address widget, are often sufficient to meet
presentation requirements. They can also be used in the context of more complex
widgets. In the section, two such complex widgets is introduced. The following
sections develop these sample widgets in full to demonstrate all of the main
concepts in advanced custom widget development.

The two sample widgets are used to present information in context panels. To
avoid overloading the developer with information, the main parts of these context
panel widgets are developed first in isolation. Each part is a widget in its own
right and is configured for use on its own before the next part is introduced. When

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_EMAIL_ADDR">
<dc:plug-in name="view-renderer"

class="sample.EMailAddressViewRenderer"/>
</dc:domain>

</dc:domains>

Figure 6. Configuring the E-Mail Address Widget

Developing Custom Widgets 17

the parts are essentially complete, they are combined by using new renderer
classes that delegate the rendering of these parts to form the full sample widgets.
Later sections then show how issues such as text localization, locale-specific data
formatting, and accessibility compliance can be addressed.

Prerequisites
An understanding of the basic process of developing custom widgets, as presented
in the previous sections.

The Sample Widgets
The first sample widget is a context panel that provides details about a person. The
widget has two parts. The first part presents a photograph of the person above
their name and an icon provides a hyperlink from the photograph to the home
page of that person. The second part displays details about that person by using
text with elaborate styling and icons.

The development of this context panel shows how these two parts can be created
and used independently and how they can also be combined into a single widget.
In the cases of both of these parts, the content and layout requirements cannot be
met by using ordinary UIM pages.

The widget displays the following details:
v Photograph
v Icon links to person's home page
v Name
v ID
v Address
v Gender
v Date of birth
v Telephone number
v Email

The photograph widget introduces XML-based data sources and the use of the
FileDownload servlet to deliver images to the web browser. At first, the details
widget, demonstrates a more complex example of a widget that is backed by XML
data. Later, the details widget is used to show how the email address widget
developed in “An EMail Address Widget” on page 13 can be reused through
delegation to present the email address value. Also how the text can be localized
and how locale-specific formatting can be applied to the date of birth value.

The second sample widget is a person list widget, which is another context panel
widget. The widget displays a list of people by using their photographs and, when
each photograph is clicked, some details about that person are shown in a pop-up
box. The photograph widget and details widget that is developed for the first
sample are reused to create this new context panel widget. However, this time the
person's name is presented in a different way in the details panel and the ID
number is omitted. This kind of reuse is more complex than the reuse of a simple
email address renderer.

There are two fundamentally different ways to access data: as single values and as
lists of values. The person list widget must handle a list of values that stored in an
XML document. Widgets that are developed to handle a single value can, with a

18 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

little care, be reused in the context of widgets that present lists of values. The reuse
of the photograph and details widgets in a list context demonstrates further
complex rendering techniques.

A Photograph Widget
The photograph widget displays a photograph of a person in the current context
with their name and a link to an associated details page.

“An EMail Address Widget” on page 13 described how to access a single source
value (the email address) and generate HTML markup to provide a more
aesthetically pleasing representation of an email address. The same principals
apply here, except that multiple source values are required for the photo widget.
The person's name is displayed as text and their unique identifier is required to
retrieve their photograph as well as being needed as a parameter to link to the
associated details page. The section shows how multiple source values can be
combined and accessed by the widget.

The section also shows how to access a photograph. Photographs are typically
stored in the database along with other details of the person. Photographs, like any
other images, can be delivered to the web browser by using an HTML img element
and setting its src attribute to the URI of the resource that can supply the image
data. For images such as icons, the URI points to a static image file within the web
client application. For photographs, the URI points to the Cúram FileDownload
servlet and includes the necessary parameters to instruct that servlet to retrieve the
image data from the database and return it to the web browser.

The objectives of the section are:
v to show how to develop a widget that displays the photograph of a person in a

context panel
v to show how to access XML data.

Prerequisites
Familiarity with Java development and with the construction of web page content
by using CSS and HTML.

Defining the HTML
As shown by the screen capture, the photograph widget displays a link, a
photograph, and the person's name one under the other. It is recommended that all
widgets have a single root node with a specific CSS class.

This makes the “boundaries” of the widget obvious. It is also the basis of making
associated CSS rules as specific as possible to this widget. The “root” class is then
used when CSS rules for all content within the widget are defined. In this case, the
root div element is given the photo-container class name. There are three child
div elements that contain the link, the photo, and the person name. Each of these
is also given a CSS class so that their contents can be individually styled. The img
elements show how both a static and a dynamic image resource can be accessed.
The dynamic image resource uses the Cúram FileDownload servlet. The use of this
feature and the value of the img element's src attribute is described in the section.

Developing Custom Widgets 19

The HTML here is formatted for clarity, but it is generated without any indentation
or line breaks, as these are not necessary for the browser to present the email
address properly and increase only the size of the page.

Based on the screen capture, the visual requirements of the widget can be
summarized as:
v The widget has a border.
v The link is right-aligned in the widget.
v The photograph and person name are center-aligned in the widget.

The class names that are applied in the HTML allow these requirements to be
implemented in CSS as follows:

The class name of the root div element is used when all CSS rules are defined to
ensure that they are specific to this widget. The photo-container class applies a
border and fixed width to the widget. The fixed width means an image with a max
size of 88 pixels can be accommodated, allowing for the border. If the image width
is less than this maximum value, ensure it is an even number. Since, the image is
centrally aligned this ensures that there is even spacing on each side of the image.
The remaining CSS classes use of the text-align CSS style to align the contents
within each child div element. This is possible because the contents of each div
element are “inline” elements i.e. an anchor element, an image element, and plain
text. Finally, there is an extra style on the description element to set its font.

<div class="photo-container">
<div class="details-link">

</div>
<div class="photo">

<img src="../servlet/FileDownload?
pageID=Sample_photo&id=101">

</div>
<div class="description">

James Smith
</div>

</div>

Figure 7. HTML Output of the Photo Widget

.photo-container {
border: 1px solid #DADADA;
width: 90px;
height: 130px;

}

.photo-container .details-link {
text-align: right;

}

.photo-container .photo {
text-align: center;

}

.photo-container .description {
text-align: center;
font-weight: bold;

}

Figure 8. Custom CSS for the Photo Widget

20 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Defining Data in XML Form
The previous sections described how simple data can be accessed by a renderer
and marked up with HTML for presentation. For complex widgets, simple values
like that are not sufficient. It is often preferable for the value to be an XML
document that contains all of the data that is required for the widget in a
structured form.

In the case of this photograph widget, the concern role ID of the person and the
name of the person are required to present the photograph correctly. As the widget
is associated with a UIM FIELD element that can specify only one SOURCE
connection to the required data, both the ID and the name must be passed back in
a single-server interface property. The Cúram application provides support classes
that make it simple to access data expressed as an XML document, so an XML
document that contains the values is the preferred form when data is combined
into a single-server interface property.

Here is a sample of an XML document that represents all of the information that is
required to present the photograph of a person. The id element defines the concern
role ID value that is passed to the FileDownload servlet by using the id parameter
that is shown in the example in the previous section. The name element defines the
name of the person to be shown below the photograph. To make best use of the
support classes that are provided with the Cúram application, the values are given
in the body of the elements, rather than as attributes of a single element. The XML
document is constructed in a server facade and returned in a single (string-based)
property.

Defining the Renderer Class
The skeleton renderer class for the photograph widget is shown here. The class
extends the same base class as the email address widget, as it also is a view
renderer. The class is created in the component/sample/javasource/sample folder.

Accessing Data in XML Form
For the photograph widget, the source value is no longer a simple string, instead it
is an XML document. The approach that is used for the email address widget
needs to be extended to allow values that are embedded in the XML document to
be retrieved individually. Support is provided for accessing data in an XML by

<photo>
<id>101</id>
<name>James Smith</name>

</photo>

Figure 9. An XML Document Describing a Photograph

public class PhotoViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 10. The Renderer Class for the Photograph Widget

Developing Custom Widgets 21

extending the source path. The code to retrieve the person's name and unique
identifier from the XML document is shown here.

“An EMail Address Widget” on page 13 described how to access a single source
value by using a Field object, its Binding property, and a source path.

The source path is retrieved from the field's binding in the same way as the email
address widget in the previous section. However, the source path is not passed
directly to the get method of the data accessor that is retrieved from the context.
Doing this would return the entire XML document as a string. Instead, the source
path is first extended by using the extendPath method. The path extensions are
photo/id and photo/name. They correspond directly to the tree structure of the
XML document. For example, the photo/id path means that the data accessor
retrieves the body content of the id element, which is a child of the photo element.
In the sample XML above, this is the value “101”. Those familiar with XPATH
might recognize the format of these paths. However, while the extended paths
used here are similar, they are not XPATH. Creating simple XML documents where
each value is represented in the body content of an element means that the path
formats shown in the section are all that is required to use in a widget. However,
the “Extending Paths for XML Data Access” on page 72 section describes XML data
access through path extension in full detail.

Generating the HTML Content
With the data for the photograph widget that is retrieved, it must now be marked
up with the required HTML.

String personID = context.getDataAccessor()
.get(component.getBinding()

.getSourcePath().extendPath("photo/id"));
String personName = context.getDataAccessor()

.get(component.getBinding()
.getSourcePath().extendPath("photo/name"));

Figure 11. Getting the Person Name and ID Values

22 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The same techniques that are used to construct the email address widget by using
the DOM API in the previous section, also apply here. The URI used to link to the
details page, a static image and the FileDownload servlet are described here.

Linking to a UIM Page
The URI of Cúram application pages includes the locale code as the first part of
the resource path, for example, en/Person_homePage.do. This path is relative to the
application's context root, which corresponds to the WebContent folder in the
development environment.

Therefore, all UIM pages are considered to be in a locale “folder”. When one UIM
page is linked to another, it is always in the same locale (or “folder”). Therefore,
the locale is not specified in the URI when a link is generated. For example, in the
sample code that is shown here, the href to link to the Person_home UIM page was
generated without the locale-specific folder specified:

Linking to a Static Image
Linking to a static image was described when the email address widget is created
in the previous section, but is worth repeating here. Static images are stored in the
folder Images, which is located directly under the application's context root.

Document doc = fragment.getOwnerDocument();

Element rootDiv = doc.createElement("div");
rootDiv.setAttribute("class", "photo-container");
fragment.appendChild(rootDiv);

Element linkDiv = doc.createElement("div");
linkDiv.setAttribute("class", "details-link");
rootDiv.appendChild(linkDiv);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "Person_homePage.do?"

+ "id=" + personID);
linkDiv.appendChild(anchor);

Element anchorImg = doc.createElement("img");
anchorImg.setAttribute("src", "../Images/arrow_icon.png");
anchor.appendChild(anchorImg);

Element photoDiv = doc.createElement("div");
photoDiv.setAttribute("class", "photo");
rootDiv.appendChild(photoDiv);

Element photo = doc.createElement("img");
photo.setAttribute("src",

"../servlet/FileDownload?"
+ "pageID=Sample_photo"
+ "&id=" + personID);

photoDiv.appendChild(photo);

Element descDiv = doc.createElement("div");
descDiv.setAttribute("class", "description");
descDiv.appendChild(doc.createTextNode(personName));
rootDiv.appendChild(descDiv);

Figure 12. Marking Up the Photograph Data

anchor.setAttribute("href", "Person_homePage.do?"
+ "id=" + personID);

Figure 13. Linking to a UIM Page

Developing Custom Widgets 23

Because a UIM page is in a locale-specific folder, when icons or other resources are
referenced the ../ path prefix is needed for relative URIs.

This path prefix is to move from the locale-specific folder in the page's URI, back
to the context root folder as shown in this excerpt from the sample code:

Linking to the FileDownload Servlet
The FileDownload servlet is used to download an image resource from the Cúram
database. The path to the file download servlet is servlet/FileDownload, which is
relative to the application's context root.

The ../ path prefix is also needed to move from the locale-specific folder as shown
in this excerpt from the sample code:

The FileDownload servlet must be configured to use the parameters that are shown
in the URI here to download the correct photograph. This is described in detail in
later in the section.

Configuring the Widget
To configure the photograph widget, the data must be in a domain that is specific
to photographs. Here, the SAMPLE_PHOTO_XML domain is assumed. The
DomainsConfig.xml file is added to the client application component, or the existing
file is modified if it exists, to associate the view-renderer plug-in class with that
domain.

To access data in XML form and use the path extension feature that is described
earlier a “marshal” plug-in must also be configured exactly as shown here. Failure
to do so means that individual values cannot be retrieved from the XML document
as shown earlier.

Applying the configuration here, the view-renderer of the custom widget is now
started anywhere a UIM FIELD element has a source connection to a server

anchorImg.setAttribute("src", "../Images/arrow-icon.png");

Figure 14. Linking to a Static Image

photo.setAttribute("src",
"../servlet/FileDownload?"
+ "pageID=Sample_photo"
+ "&id=" + personID);

Figure 15. Linking to the FileDownload Servlet

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_PHOTO_XML">
<dc:plug-in

name="view-renderer"
class="sample.PhotoViewRenderer"
/>

<dc:plug-in
name="marshal"
class="curam.util.client.domain.marshal.SimpleXPathMarshal"
/>

</dc:domain>

</dc:domains>

Figure 16. Configuring the E-Mail Address Widget

24 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

interface property in the SAMPLE_PHOTO_XML domain. If the UIM FIELD has a
target connection, the edit-renderer is used instead. As no edit renderer is defined
in this configuration, the edit-renderer of the parent or other ancestor domain, is
inherited and used. Typically, this is the associatedTextEditRenderer by default
with the SVR_STRING domain. However, this type of widget is displaying a
subset of the information the Cúram application captures about a person. An
editable version of this widget would not be expected. Instead, the information
would be edited through the standard Cúram screens that are associated with a
person, for example if the person's name required updating.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 63.

Configuring the FileDownload Servlet

The Cúram Web Client Reference Manual provides full information on the
configuration of the FileDownload servlet for the use of the FILE_DOWNLOAD WIDGET
in a UIM page. For this photograph widget, the same configuration is used, but
instead of letting the UIM WIDGET element generate the HTML anchor tag that
downloads the photograph when clicked, the photograph widget creates an HTML
image tag by using the same URI that displays the image within the page. The
example here is representative of the FileDownload configuration that is required in
curam-config.xml:

Each file download configuration is uniquely represented by the PAGE_ID of the
FILE_DOWNLOAD element. The PAGE_ID is used when a file download is initiated
directly from a UIM page by using the FILE_DOWNLOAD WIDGET. However, as the file
download link is being generated by a custom widget, the only requirement is that
the PAGE_ID value is unique, it does not have to correspond to an existing UIM
page. The widget uses this value when the URI is generated to the FileDownload
servlet. The remaining configuration elements and attributes define the server
facade to start and its inputs and outputs. Consult the Cúram Web Client Reference
Manual for information on the configuration of the FileDownload servlet

The HTML for the image element should look like the example here. The src
attribute path is made up of a number of parts. The fixed path to Cúram's file
download servlet is: ../servlet/FileDownload. The pageID request parameter is
mandatory and must correspond to the PAGE_ID of the FILE_DOWNLOAD configuration
element. The id request parameter corresponds to the INPUT configuration element.
With this URI, the FileDownload servlet reads the configuration, sets the input

<APP_CONFIG>

<FILE_DOWNLOAD_CONFIG>
<FILE_DOWNLOAD PAGE_ID="Sample_photo"

CLASS="sample.interfaces.SamplePkg.Sample_readImage_TH">
<INPUT PAGE_PARAM="id" PROPERTY="key$concernRoleID"/>
<FILE_NAME PROPERTY="key$concernRoleID"/>
<FILE_DATA PROPERTY="result$concernRoleImageBlob"/>

</FILE_DOWNLOAD>
</FILE_DOWNLOAD_CONFIG>

</APP_CONFIG>

Figure 17. Example FileDownload Configuration for a Photograph

Figure 18. Example of the HTML to Show an In-line Image

Developing Custom Widgets 25

fields of the server facade, starts the facade, and retrieves its output fields, which
contain the file name and binary file data.

A Details Widget Demonstrating Widget Reuse
The presentation requirements of many pages can be satisfied with simple UIM
pages that contain fields that are laid out using clusters and lists.

However, the presentation of this details widget requires more processing such as
displaying the person's name and reference number in a different font, refer to
“The Sample Widgets” on page 18. Also, the email address is presented in the
same form as shown in “An EMail Address Widget” on page 13. This widget is
reused within the details widget.

The objectives for the section are:
v show how to develop a widget that presents the details of a Person by using

formatting not possible on a plain UIM page.
v show how to reuse the email address widget described earlier.

Prerequisites
The previous sections in the guide.

Defining the HTML
In the details widget, there are a number of lines of plain text that display the
person's address, date of birth and other details. The person's name, reference
number, and contact details have specific presentation requirements and which
means they need to be distinguished in the HTML so that specific CSS rules can be
applied to them.

The following HTML structure for the details widget achieves the application of
CSS rules:

The HTML here is formatted for clarity, but it is generated without any indentation
or line breaks, as these are not necessary for the browser to present the email
address properly and increase only the size of the page.

It is good practice to give a widget a single root node with a specific CSS class. It
is the basis of making CSS rules as specific as possible to this widget. The “root”
class is used when CSS rules for all content within the widget are defined. The

<div class="person-details-container">
<div class="header-info">James Smith - 24684</div>
<div>1074, Park Terrace, Fairfield,
Midway, Utah, 12345</div>
<div>Male</div>
<div>Born 9/26/1964, Age 46</div>
<div class="contact-info">

1 555 3477455

info@example.com

</div>
</div>

Figure 19. HTML Output of the Details Widget

26 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

root div element is given the person-details-container class name. Each line of
text in the details panel is represented by a div element. Additionally, two div
elements have CSS class names so that specific CSS rules can be applied to them.
The HTML representing the email address is identical to that described in “An
EMail Address Widget” on page 13.

The header-info and contact-info classes allow the specific presentation
requirements (for example, changing the font) to be implemented. The CSS rules
are made as specific as possible by using the person-details-container class name
in every rule.

Defining Data in XML Form
The photograph widget required an XML document to provide all of the data that
is required by the renderer class. The details widget also requires an XML
document for the same reasons. The general structure of the documents is the
same: a root element that contains one child element for each value, where each
value is the body content of the child element.

The XML here is formatted for clarity, the indentation or line breaks are not
required.

Defining the Renderer Class
The skeleton renderer class for the details widget is shown here. The class extends
the same base class as the email address widget and the photograph widget, as it
also is a view renderer. The class is created in the component/sample/javasource/
sample folder.

.person-details-container .header-info {
color: #FB7803;
font-size: 140%;

}
.person-details-container .contact-info img {

vertical-align: middle;
}

Figure 20. Custom CSS for the Details Widget

<details>
<name>James Smith</name>
<reference>24684</reference>
<address>1074, Park Terrace, Fairfield,
Midway, Utah, 12345</address>
<gender>Male</gender>
<dob>9/26/1964</dob>
<age>46</age>
<phone>1 555 3477455</phone>
<e-mail>james@ie.ibm.com</e-mail>

</details>

Figure 21. An XML Document Describing a Person

Developing Custom Widgets 27

Accessing Data in XML Form
Data from the XML document are accessed in the same way as the photograph
widget described in the previous section. The source path is extended to extract an
individual value. For example, /details/name retrieves the person's name.

All values in the XML document can be accessed by using the same technique
except for the email address value. The email address widget that is described in
“An EMail Address Widget” on page 13 is reused to output the email address. As
shown in that section, the email address widget uses a Field object, its Binding
property, and a source path to access the email address value. The next section will
explain how to start that renderer.

Generating the HTML Content
The same technique, described in previous sections, of using the DOM API to
generate HTML content can be used to output the HTML show earlier in the
section. The only new concept comes at the point when the HTML for the email
address is to be output. The email address widget is reused within the details
widget to output the HTML required for an email address.

The render method of a widget is usually started by directly by the Cúram
infrastructure. The parameters that are provided to the render method are set
based on what was specified in UIM. For example, the source path of the Field
object's Binding is set based on CONNECT and SOURCE elements used within a FIELD
element. To start one widget from another it becomes the developer's responsibility
to ensure that the appropriate widget is started and the correct parameters are
supplied to it. The code that is required to do this is as follows:

public class PersonDetailsViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 22. The Renderer Class for the Details Widget

String name = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/name"));
String reference = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/reference"));

Figure 23. Getting the Person name and Reference Number

28 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The steps to start the email address widget are:
1. Create a Field component.

A FieldBuilder is required to create a Field. The ComponentBuilderFactory can
be used to create a FieldBuilder as shown here. See “Overview of the
Renderer Component Model” on page 48 for full details.

2. Set the domain of the Field.
The underlying domain definition of a Field is used to select the appropriate
widget. “An EMail Address Widget” on page 13 showed how the email address
widget was associated with the SAMPLE_EMAIL domain definition. This
domain definition is set on the Field as shown here.

3. Set the source path of the Field.
“An EMail Address Widget” on page 13 section showed how the email address
widget used its source path to access the value of the email address. This is
normally set based on the CONNECT in UIM. In this case, the source path for the
widget must be specified “manually”. The details widget must tell the email
address widget where to get its data from. As shown earlier the email address
is embedded in the XML document that is supplied to the details widget. The
path extension technique to access XML data, that is described in previous
sections, can be used to specify the source path for the email address widget.
The setSourcePath method of the FieldBuilder is used to set the source path
as shown in the following excerpt from the example here. The source path is
the same as used to access other values from the XML document. The
difference is that instead of retrieving the value directly in the details widget, it
is set as the source path of the email address widget.
fb.setSourcePath(

field.getBinding().getSourcePath()
.extendPath("/details/e-mail"));

This demonstrates the benefits of the path system to access data. In “An EMail
Address Widget” on page 13, the email address was retrieved directly from a
server interface property. In the section the email address is retrieved from an
XML document. However, the email address widget is identical in both cases. It
retrieves its data by using a source path and is abstracted from what source
path resolves to “behind the scenes”.

4. Create a DocumentFragment for the widget content
As shown in previous sections, the DOM API is used to create HTML elements
and add them to a DocumentFragment, supplied as the fragment parameter to
the render method. The DocumentFragment is usually supplied by the Cúram
infrastructure. In this case, the fragment must be created by using the
createDocumentFragment as shown here.

5. Start the email address widget

FieldBuilder fb =
ComponentBuilderFactory.createFieldBuilder();

fb.setDomain(
context.getDomain("SAMPLE_EMAIL"));

fb.setSourcePath(
field.getBinding().getSourcePath()

.extendPath("/details/e-mail"));
DocumentFragment emailFragment = doc.createDocumentFragment();
context.render(fb.getComponent(), emailFragment,

contract.createSubcontract());
div.appendChild(emailFragment);

Figure 24. Starting the Email Address Widget from the Details Widget

Developing Custom Widgets 29

The email address widget is started by calling context.render. The first
parameter to the method is a Field. The FieldBuilder was used to set the
domain and source path and the Field is retrieved by calling the getComponent
method. The second parameter is the DocumentFragment created earlier. The
widget adds its HTML content to this fragment. The final parameter is reserved
and is always be set to contract.createSubcontract().

6. Append HTML generated from email address widget
After the email address widget is started, the DocumentFragment will contain its
HTML content. This fragment can be added to the appropriate place in the
details widget. In the HTML described earlier the HTML is added as a child of
the div element with the contact-info CSS class.

The first three steps here build up a “component model”, in this case a single
Field. The remaining steps then render the model as HTML. The “Overview of the
Renderer Component Model” on page 48 section provides more details on the
classes and APIs, which can be used to build a “component model”.

Configuring the Widget
To configure the details widget, the data must be in a domain that is specific to
person details. Here, the SAMPLE_DTLS_XML domain is assumed. The
DomainsConfig.xml file is added to the client application component, or the existing
file is modified if it exists, to associate the view-renderer plug-in class with that
domain.

To access data in XML form and use the path extension feature that is described
earlier a “marshal” plug-in must also be configured exactly as shown here. Failure
to do so means that individual values cannot be retrieved from the XML document
as shown earlier.

Applying the configuration here, the view-renderer of the custom widget is now
started anywhere a UIM FIELD element has a source connection to a server
interface property in the SAMPLE_EMAIL_ADDR domain. If the UIM FIELD has a
target connection, the edit-renderer is used instead. As no edit renderer is defined
in this configuration, the edit-renderer of the parent or other ancestor domain, is
inherited and . Typically, this is the associatedTextEditRenderer by default with the
SVR_STRING domain. However, this type of widget is displaying a subset of the
information the application captures about a person. An editable version of this
widget would not be expected. Instead, the information would be edited through
the standard Cúram screens that are associated with a person, for example if the
person's name required updating.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_DTLS_XML">
<dc:plug-in

name="view-renderer"
class="sample.PersonDetailsViewRenderer"
/>

<dc:plug-in
name="marshal"
class="curam.util.client.domain.marshal.SimpleXPathMarshal"
/>

</dc:domain>

</dc:domains>

Figure 25. Configuring the Person Details Widget

30 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 63.

Tying Widgets Together in a Cascade
This section expands on the reuse of widgets to produce the “Person Context Panel
Widget”. The “Person Context Panel Widget” widget is a combination of the
photograph widget and details widget that is positioned side by side. The previous
section introduced widget reuse by showing how the details widget might delegate
to the e-mail address widget to generate part of its HTML content.

Using the exact same technique, the “Person Context Panel Widget” might
combine the output of the photograph and details widgets and display them side
by side to produce the content that is shown above. However, there is an
opportunity to provide a further layer of abstraction by introducing a generic
widget for displaying content side by side in a horizontal layout. The generic
requirement might be phrased as: “To combine the output of multiple widgets in a
horizontal layout”.

The previous section introduced the concepts of building a "component model"
and delegating to another widget to render it as HTML. The details widget was
responsible for building the component model, which consisted of a single Field.
The model was then passed to the e-mail address widget to generate HTML. In the
same way, the “Person Context Panel Widget” is responsible for building the
component model. In this case, the component model is represented as a collection
of Field 's; one for the photograph, the other for the person's details. The “Person
Context Panel Widget” passes the component model to a new widget, the
“Horizontal Layout Widget”. This widget in turn delegates to photograph and
details widgets that are introduced in previous sections and combine their output.
The advantage of this abstraction is the “Horizontal Layout Widget” might also be
used to fulfill separate requirements such as combine the display of multiple
details widgets or multiple photograph widgets in a horizontal layout. For
example, consider the requirement to display the photographs of a family side by
side.

In summary, by the end of the section the “Person Context Panel Widget”
delegates to the “Horizontal Layout Widget”, which in turn delegates to the
widgets introduced in earlier sections. This delegation is known as a “cascade”.

Prerequisites
The previous sections in this guide.

Defining Data in XML Form
The XML document for the “Person Context Panel Widget” widget is a
combination of the XML documents that are used by the photograph and details
widgets that are described in previous sections, but combined in a new root
element. The root element allows each of those renderers to be reused.

Developing Custom Widgets 31

Defining the HTML
The HTML of the “Person Context Panel Widget” is the output of the photograph
and details widgets that are combined by placing them in the cells of an HTML
table to lay them out horizontally.

The CSS class sample-container is unused in this example, but it is still a good
practice to always provide a CSS class on the root element of a widget to allow for
customization of the contents within it. For example, the root element of the
photograph widget has a CSS class of photo-container. If necessary, the
photograph widget might be customized specifically when it is contained within
the table that is shown here as follows:
.sample-container .photo-container {
/* customization of photograph widget styles */
}

Defining the Renderer Classes
Two classes are required; one for the “Person Context Panel Widget”, the other for
the “Horizontal Layout Widget”. The skeleton renderer class for the “Person
Context Panel Widget” is shown here. The class extends the same base class as the
previous widgets, as it also is a view renderer. The class is created in the
component/sample/javasource/sample folder.

<person>
<photo>

<name>James Smith</name>
<id>24684</id>

</photo>

<details>
<name>James Smith</name>
<reference>24684</reference>
<address>1074, Park Terrace, Fairfield,
Midway, Utah, 12345</address>
<gender>Male</gender>
<dob>9/26/1964</dob>
<age>46</age>
<phone>1 555 3477455</phone>
<e-mail>james@ie.ibm.com</e-mail>

</details>
</person>

Figure 26. An XML Document Describing a Person

<table class="sample-container">
<tbody>

<tr>
<td>

<!-- HTML of photograph widget goes here -->
</td>
<td>

<!-- HTML of details widget goes here -->
</td>

</tr>
</tbody>

</table>

Figure 27. HTML Output of the Person Context Panel Widget

32 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The skeleton renderer class for the generic “Horizontal Layout Widget” is shown
here. The widgets described up to now in the guide are “view renderer's” based on
the AbstractViewRenderer class. The component model that is provided to each
widget was a single Field (the first parameter of its render method). As described
in the introduction to this section, “Horizontal Layout Widget” requires a collection
of Field 's. This requires the use of a new base class and in turn, a different
signature for the render method. Instead of a Field, a Component is provided to the
render method. With the use of a new base class, this renderer class is known as a
“component renderer” instead of a “view renderer”. The class is created in the
component/sample/javasource/sample folder.

Generating the HTML Content

Person Context Panel Widget
The role of the “Person Context Panel Widget” is to build the component model
and delegate to the “Horizontal Layout Widget” to render the HTML from the
model. The component model is a collection of Field 's.

As described in the previous section, the render method of the “Horizontal Layout
Widget” expects a Component as it's first parameter. The Cúram application that is
ready for immediate use provides a subclass of Component called Container, which
is specifically for creating collections of Component 's or Field 's.

public class PersonContextPanelViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 28. The Renderer Class for the “Person Context Panel Widget”

public class HorizontalLayoutRenderer
extends AbstractComponentRenderer {

public void render(
Component component, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException {

// Add the HTML to the "fragment" object here....
}

}

Figure 29. The Renderer Class for the “Horizontal Layout Widget”

Developing Custom Widgets 33

The steps to build the model and start the “Horizontal Layout Widget” are:
1. Create a Container component.

A ContainerBuilder is required to create a Container. The
ComponentBuilderFactory can be used to create a ContainerBuilder as shown
here. See “Overview of the Renderer Component Model” on page 48 for full
details.

2. Set the “style” of the Container.
The “Horizontal Layout Widget” is a component renderer, which is associated
with a “style”. The “Horizontal Layout Widget” is associated with the
horizontal-layout style. This must be set by using the setStyle method as
shown here. The style corresponds to a particular renderer implementation
class. Configuration of this “style” is described later in the section and more
detail on the component model and configuring renderers can be found in the
appendices (note it is not a CSS style that is being referred).

3. Create a Field representing the photograph and add it to the container.
As shown in the previous section, a Field is created using a FieldBuilder.
Setting the domain definition to SAMPLE_PHOTO_XML ensures that the
photograph widget is started. The next step is to set its source path. The
photograph XML is now embedded in an XML document with a root element
called person which is supplied to the “Person Context Panel Widget”. “A
Photograph Widget” on page 19 showed how data for the photo widget was
accessed in the XML document by using paths such as photo/name. The full
path to get the same data is now /person/photo/name. The photograph widget
cannot be changed. Instead, the source path is extended as shown here to
account for the root person element. When the photograph widget runs, the
paths are combined to ensure the full path corresponding to the combined
document is used. The Field is created by using the getComponent method and
added to the Container

4. Create a Field representing the person details and add it to the container.
In the same way as the previous point, a Field is created. Its domain definition
is set to SAMPLE_DTLS_XML to associate it with the details widget. The source

ContainerBuilder cb
= ComponentBuilderFactory.createContainerBuilder();

cb.setStyle(context.getStyle("horizontal-layout"));

FieldBuilder fb
= ComponentBuilderFactory.createFieldBuilder();

fb.copy(component);
fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());

fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());
DocumentFragment content

= fragment.getOwnerDocument().createDocumentFragment();
context.render(cb.getComponent(), content,

contract.createSubcontract());
fragment.appendChild(content);

Figure 30. Building the component model and starting the “Horizontal Layout Widget”

34 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

path is extended in the same to account for the root person element. The Field
is created by using the getComponent method and added to the Container.

5. Create a DocumentFragment for the widget content
As shown in previous sections, the DOM API is used to create HTML elements
and add them to a DocumentFragment, supplied as the fragment parameter to
the render method. The DocumentFragment is supplied by the Cúram
infrastructure. In this case, the fragment is created by using the
createDocumentFragment as shown here.

6. Start the horizontal layout widget
The e-mail address widget is started by calling context.render. The first
parameter to the method is a Field. The FieldBuilder was used to set the
domain and source path and the Field is retrieved by calling the getComponent
method. The second parameter is the DocumentFragment created earlier. The
widget adds its HTML content to this fragment. The final parameter is reserved
and is always set to contract.createSubcontract().

7. Append HTML generated from horizontal layout widget
After the e-mail address widget is started, the DocumentFragment will contain its
HTML content. This fragment can be added to the appropriate place in the
details widget. In the HTML described earlier the HTML is added as a child of
the div element with the contact-info CSS class.

The next section shows how the “Horizontal Layout Widget” renders the
component model has HTML.

Horizontal Layout Widget
The component model that is supplied to the “Horizontal Layout Widget” is a
collection of components. The role of this widget is to iterate over that collection,
delegating to the widget associated with each component and combining the
output into the HTML shown in a previous section.

As in all previous examples, the DOM API is used to generate HTML elements. As
shown in the previous section, the component model is represented by a
Container, the render method signature requires a Component. As former is a

Document doc = fragment.getOwnerDocument();
Element table = doc.createElement("table");
table.setAttribute("class", "sample-container");
fragment.appendChild(table);

Element tableBody = doc.createElement("tbody");
table.appendChild(tableBody);

Element tableRow = doc.createElement("tr");
tableBody.appendChild(tableRow);

Container container = (Container) component;
for (Component child : container.getComponents()) {

Element tableCell = doc.createElement("td");
tableRow.appendChild(tableCell);
DocumentFragment cellContent

= doc.createDocumentFragment();
context.render(child, cellContent,

contract.createSubcontract());
tableCell.appendChild(cellContent);

}

Figure 31. Generating an HTML table and delegating to other widgets

Developing Custom Widgets 35

subclass of the latter, a cast is required to a Container. A for loop is used to iterate
over each item in the collection by using the getComponents method. Each iteration
of the for loop will:
1. Create a table cell and add it to the table row.
2. Create a DocumentFragment used when delegating to another widget.
3. Start another widget by calling context.render passing the current component

in the collection and the fragment (the third parameter is unused and must
always be set as shown here).

4. Appends the output from the widget to the table cell.

The requirement of this widget was described in the introduction as: “To combine
the output of multiple widgets in a horizontal layout”. This widget achieves the
horizontal layout requirement by generating an HTML table. However, it is
abstracted from the underlying details of the components it is outputting. It is
iterating over a collection of components and delegating to their associated
widgets. In this particular example, the components represent a photograph and
person details panel. However, without any modification, the widget might display
multiple photographs side by side if the component model supplied to it was
constructed accordingly.

Configuring the Widgets

Person Context Panel Widget
The configuration of this widget is identical to all previous examples. It must be
associated with a domain definition, SAMPLE_PERSON_XML is used. To allow
access to values that are embedded in XML documents, a “marshal” plug-in must
also be configured exactly as shown here.

Horizontal Layout Widget
As described in a previous section, this widget is a component renderer, which is
not associated with a domain definition, instead it is associated with a “style”. A
separate configuration file is used for component renderers.

The StylesConfig.xml file is added to the client application component, or the
existing file is modified if it exists, to associate the component-renderer plug-in
class with the horizontal-layout style as shown here.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_PERSON_XML">
<dc:plug-in

name="view-renderer"
class="sample.PersonContextPanelViewRenderer"
/>

<dc:plug-in
name="marshal"
class="curam.util.client.domain.marshal.SimpleXPathMarshal"
/>

</dc:domain>

</dc:domains>

Figure 32. Configuring the Person Context Panel Widget

36 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The horizontal-layout style is what the “Person Context Panel Widget” used
when delegating to the “Horizontal Layout widget” , for example,
ContainerBuilder cb

= ComponentBuilderFactory.createContainerBuilder();
cb.setStyle(context.getStyle("horizontal-layout"));

When the Container component is rendered, the sample.HorizontalLayoutRenderer
class is used. If a new renderer class is developed to achieve the horizontal layout
by using a different HTML technique, the horizontal-layout style can be
reconfigured to associate it with another renderer class. While that class takes the
same input (a Container component), other widgets, which use this style do not
require any update.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 63.

A Text Field Widget with No Auto-completion
The section describes edit renderers that are used to mark up read/write values
with HTML. It expands on the details in the previous sections by introducing more
advanced concepts that are related to the creation of input controls on HTML
forms.

The sample widget that is presented in the section is a text field widget useful for
entering sensitive information such as social security numbers (SSN). By default,
the TextEditRenderer plug-in class is configured as the edit-renderer for most text
and numeric values in the application that is ready for immediate use. The plug-in
displays an HTML text input control. For the input of an SSN, it can be desirable
to prevent the web browser from storing the SSN in its cache of entered form data
and later providing SSN values by using its form field auto-completion feature.
Microsoft Internet Explorer supports a non-standard HTML attribute to disable
auto-completion of the value of an HTML input control. This autocomplete
attribute is likely to have no effect in other web browsers, but can be useful in
environments where Internet Explorer is used. The sample shows how to render
the HTML text input control, integrate it into a form page, and add the new
attribute to disable auto-completion in Internet Explorer.

Prerequisites
A knowledge of the behavior of Cúram form pages and a reading of the first three
sections of this guide.

Defining the HTML
The HTML for the sample text field widget requires only one element, but many
attributes. The values of many of the attributes are not defined here and are shown
with a question mark.

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:styles

<sc:style name="horizontal-layout">
<sc:plug-in name="component-renderer"

class="sample.HorizontalLayoutRenderer"/>
</sc:style>

</sc:styles>

Figure 33. Configuring the Horizontal Layout Widget

Developing Custom Widgets 37

The values is provided by the renderer, as explained later.

Defining the Renderer Class
The NoAutoCompleteEditRenderer class is defined in much the same way as the
EMailAddressViewRenderer class, except that the base class is AbstractEditRenderer
instead of AbstractViewRenderer. The render method is the same, as it is defined
by the DomainRenderer interface that is shared by both abstract base classes.

Handling Form Items
A HTML form page contains HTML input controls, such as text fields and
check-boxes. Input controls are required where a UIM FIELD element contains a
TARGET connection, as the user must have somewhere to enter the value before it is
submitted to the targeted server interface property.

An edit-renderer must create the appropriate HTML to present an input control.

To select an edit-renderer, the system identifies the domain definition that is
associated with the server interface property of the target connection. Each domain
definition is associated edit-renderer and view-renderer plug-in classes. As a target
connection is present, the system automatically uses the edit-renderer instead of
the view-renderer when the field is rendered.

When a form page is presented to a user, the user sets the values of the input
controls in the browser. The user then submits the form to send these values to the
server's client-tier in a new request. The edit-renderer plug-in type differs from the
view-renderer in that the edit-renderer must declare to the system what input
control it adds to a form page, so that the system can process the corresponding
values when it receives the form submission request. A view-renderer does not add
input controls, so it has no such requirement.

The RendererContext provides a method for recording form items as they are
added to the form page. The addFormItem method returns the identifier that should
be used as the value of the id and name attributes of the HTML element. Before
this method is called, the title (or label) of the field must be determined.

<input type="text" autocomplete="no"
id="?" name="?"
value="?" title"?"
tabindex="?" style="?"/>

Figure 34. HTML Output of the Date Picker Widget

public class NoAutoCompleteEditRenderer
extends AbstractEditRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
// Create the HTML here....

}
}

Figure 35. Declaration of the NoAutoCompleteEditRenderer Class

38 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

The abstract base class provides a getTitle method that can determine the title of
the given field. This renderer passes the field and this title value to the
addFormItem method. The third parameter, null, specifies an optional extended path
value. Extended path values for form items are not supported in custom widgets.
The addFormItem method returns a target ID string value that must be used to
identify the input control that is created to correspond to this newly registered
form item.

The addFormItem method uses the Field object and the title string to record the
target path of the entered value of that control, the domain definition of the
targeted server interface property, and the label of that field. As the form page is
rendered, the system records the form items added by all of the edit renderers and
embeds all of this extra information into the HTML form on the page.

When the user submits the form, the values of all of the input controls are
submitted as ID/value pairs. The ID is the id or name attribute value of the
respective HTML input control element (which attribute is used depends on the
browser, so both attributes are added and set to the same value by the
edit-renderer plug-in). The information about the form items that are recorded and
embedded in the form by the system is also submitted now. The system combines
the input control's ID and value with the embedded form item data that records
IDs and target paths. The system can thus determine automatically, which
submitted values are assigned to which server interface properties identified by the
target paths. The label is used in if a validation error occurs, so that the error
message can report the label of the field in error.

Accessing the Data
As described in an earlier section, the Field object has a Binding property that
defines the source path and target path that identify the data that is bound to the
field. For a view-renderer, only the source path is set; it can be resolved to get the
value to be displayed.

For an edit-renderer, the target path is always set, as it determines where the value
goes when the form is submitted. However, the source path might or might not be
set. If the source path is set, then the resolved value is used as the initial value of
the input control. If the source path is not set, then the input control has no
explicit initial value.

When no explicit initial value is defined, an initial value might still be displayed.
The UIM FIELD element supports a USE_DEFAULT attribute. If this attribute is set to
false, then no default initial value is displayed in the absence of a source
connection. However, if the attribute is set to true, then the default value is
determined from a default value domain plug-in. The domain of the targeted
server interface property is identified and the associated default value plug-in is
started to get the default value to be displayed in the input control. If not set, the
value of the USE_DEFAULT attribute is assumed to be true.

Default value plug-ins are configured for all Cúram domains that are ready for
immediate use, but they can be customized. Typically, the default value of a string
domain is an empty string. The default value of a numeric domain is zero and the
default value of a date or date-time domain is the current date and time. See the

String title = getTitle(field, context.getDataAccessor());
String targetID = context.addFormItem(field, title, null);

Figure 36. Adding a Form Item to Get a Target ID

Developing Custom Widgets 39

Cúram Web Client Reference Manual for more information about default value
domain plug-ins and the user of the USE_DEFAULT attribute.

Catering for explicit or default initial values is still not sufficient to determine the
correct initial value. When a validation error occurs, the system renders the form
again and displays error messages that are detailing what fields are in error. The
values that are displayed in the HTML input controls in this case are the values
that are entered by the user before the form is submitted. Regardless of what initial
values were originally shown, the user might have changed any or all of these
values. Depending on circumstances, then, the initial value of the HTML input
control might be set from the source path, set from a default value plug-in or set
by the user. To simplify the handling of these conditions, the RendererContext
provides a facility to get the appropriate initial value for a form item.

First, the renderer retrieves the parameters of the field argument. The parameters
are a map that associates named parameters with values, all strings. These
represent, usually, the attributes set on the UIM FIELD element. Where attributes
are not set in the UIM and default values for those attributes need to be handled,
the renderer must respect this requirement. Above, if the value of the USE_DEFAULT
field parameter is anything other than "false", including if it is not defined, then
the useDefault variable is set to true, which is the correct default value for this UIM
attribute and field parameter.

The appropriate initial value for the input control can now be retrieved by calling
getFormItemInitialValue on the context object. The third argument, null, is an
optional extended path value that is not supported in custom renderers.

Generating the HTML Content
As before, the DOM Core API is used to create the HTML content and the content
to be rendered is appended to the DocumentFragment passed to the render method.

The first statement creates the HTML input element. The input element is then
added to the document fragment. The required attributes are then set on the

boolean useDefault = !"false".equalsIgnoreCase(
field.getParameters().get(FieldParameters.USE_DEFAULT));

String value = context.getFormItemInitialValue(
field, useDefault, null);

Figure 37. Getting the Initial Value for a Form Item

Element input = fragment.getOwnerDocument()
.createElement("input");

fragment.appendChild(input);

input.setAttribute("type", "text");
input.setAttribute("autocomplete", "no");
input.setAttribute("id", targetID);
input.setAttribute("name", targetID);

if (title != null && title.length() > 0) {
input.setAttribute("title", title);

}

if (value != null && value.length() > 0) {
input.setAttribute("value", value);

}

Figure 38. Marking Up the Input Control

40 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

element. Both the id and the name attributes are defined and assigned the same
target ID value; this ensures compatibility with most web browsers. The title and
value attributes are only set if they are not null and not empty strings.

There are several other features of fields in UIM that the renderer must support.
The code that is required to implement the basic features is shown here.

When a form page is first shown, the input focus is normally given to the first
input control on that page. However, if the INITIAL_FOCUS attribute is set to true
on a UIM FIELD element other than the first one, the input focus is given to that
field instead. If not specified, the INITIAL_FOCUS attribute is assumed to be set to
false.

Support for this feature can be achieved by setting the tabindex attribute of the
HTML input element to 1 if the field object's INITIAL_FOCUS parameter is set to
"true" (as it reflects the value that is defined for the corresponding attribute in
UIM). The parameter value can be null, but calling the equals method on the
literal string value is still safe in that case and yields the wanted result.

The width of an input control is set by combining the WIDTH parameter value
with the WIDTH_UNITS parameter value. Both values are optional and can be
null. If the WIDTH parameter is null, is empty, or is explicitly set to zero, then the
width is not set on the input control. If the WIDTH_UNITS parameter is null or
not recognized, then "PERCENT" is assumed. The width is set by using the style
attribute of the input element.

UIM FIELD elements support child SCRIPT elements that define JavaScript handlers
to be associated with the rendered HTML content. The SCRIPT elements are
transposed into further parameter values on the Field object that is passed to the
renderer. For example, this UIM SCRIPT element is represented as a parameter
named ONCLICK_ACTION with a value set to the value of the ACTION attribute in
the UIM:

There can be many different scripts for different events. A helper method that is
provided by the abstract base class can set all of the appropriate event attributes

if ("true".equals(field.getParameters()
.get(FieldParameters.INITIAL_FOCUS))) {

input.setAttribute("tabindex", "1");
}

String width
= field.getParameters().get(FieldParameters.WIDTH);

if (width != null && width.length() > 0
&& !"0".equals(width)) {

String units;
if ("CHARS".equals(field.getParameters()

.get(FieldParameters.WIDTH_UNITS))) {
units = "em";

} else {
units = "%";

}
input.setAttribute("style", "width:" + width + units + ";");

}

setScriptAttributes(input, field);

Figure 39. Supporting Other UIM Features

<SCRIPT EVENT="ONCLICK" ACTION="doSomething();"/>

Developing Custom Widgets 41

on an HTML element for these scripts. Simply call setScriptAttributes passing
the HTML element to which to add any required event attributes and the Field
object on which the parameters record the necessary information.

Configuring the Widget
To configure the SSN text field widget in isolation from other text field widgets,
the data must be in a domain that is specific to SSNs.

Here, the SAMPLE_SSN domain is assumed. The DomainsConfig.xml file is added
to the client application component, or the existing file is modified if it exists, to
associate the edit-renderer plug-in class with that domain.

Applying the configuration shown here, the edit-renderer of the custom widget is
now started anywhere a UIM FIELD element has a target connection to a server
interface property in the SAMPLE_ SSN domain. If the UIM FIELD has no target
connection, the view-renderer is used instead. As no view-renderer is defined in
this configuration, the view-renderer of the parent or other ancestor domain, is
inherited and used. Typically, this is the TextViewRenderer that is associated by
default with the SVR_STRING domain.

More information about configuring renderers and other plug-ins is provided in
“Configuring Renderers” on page 63.

Limitations on Support for Custom Edit Renderers
Only the development of custom edit-renderer plug-ins with these limitations is
supported:
v The renderer must not be used within the context of a rendering cascade; it can

be used only where started in direct correspondence to a UIM FIELD element.
v The renderer must not be used in the context of a UIM LIST element.
v The renderer must add no more than one form item to a form page.
v The renderer must not process code-table items.
v The renderer must not use any features of the Renderer API other than those

demonstrated in the section.

Internationalization and Localization
The guide provides a basic understanding of the internationalization and
localization processes and how they apply to widget development.

Internationalization is the process of enabling a software application to function
equally well in any of its supported locales; to enable it to be localized.
Localization is the process of modifying elements of an application to support the

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

<dc:domain name="SAMPLE_SSN">
<dc:plug-in name="edit-renderer"

class="sample.NoAutoCompleteEditRenderer"/>
</dc:domain>

</dc:domains>

Figure 40. Configuring the SSN Edit Renderer

42 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

requirements of a particular locale. For any application required to support more
than one locale, the widget developer must internationalize the widget to ensure
that it can be localized with ease.

Note: Internationalization and localization are long words. They are commonly
abbreviated as i18n and L10n for each term. The number in each abbreviation is
the number of letters that are removed between the first and last letters of the
original word. A capital “L” is used in L10n to avoid confusion with the “i” in
i18n, which can be capitalized at the start of a sentence. Internationalization is also
sometimes referred to as “international-enabling” or “national language support”
(NLS).

Localization is a process that usually takes place after development. The natural
language text elements of the application are typically submitted to an agency that
specializes in language translation. The agency returns the text elements that are
translated into a new language and this text is then incorporated back into the
application. This process is only possible if the application makes it easy to
package up the text elements and replace them with text in another language; if
the application is properly internationalized.

There are many other aspects to localization. Some of these are handle
automatically by the CDEJ and some remain the concern of the widget developer.

Prerequisites
A knowledge of the concept of a locale and an understanding of the impact of a
locale on the operation of a software application.

CDEJ Support for Internationalization
The CDEJ is internationalized in many ways. Not only are text elements that are
separated out to standard Java properties files, but other elements are also
localized automatically:
v All CDEJ plug-in classes of all types expose the locale and time zone of the

active user through the getLocale and getTimeZone methods. The active user is
the user who initiated the request for the HTML page currently being rendered
on the web container's request service thread. The widget developer can access
this information and use it as required.

v Locale-aware sort orders are supported by special locale-aware versions of the
comparator plug-ins that are provided with the CDEJ. These use Java's Collator
API, but can be overridden to support custom sorting rules if required.

v Locales can define both the language and the country and the CDEJ uses this
information to support spelling variations of the same language in different
countries.

v The converter plug-ins for numeric values automatically apply the rules of the
active user's locale when formatting or parsing numbers, ensuring that decimal
points and grouping separators are presented or handled. Similarly, for date
values non-numeric months names are translated.

In general, there is no need to specify the locale when the CDEJ rendering API is
accessed, as the locale is automatically determined and applied when necessary.
Some types of plug-ins, particularly the converter plug-ins that are described in the
Cúram Web Client Reference Manual, need to handle the locale carefully, but this is
generally not the case for renderer plug-ins. When renderer plug-ins resolve paths

Developing Custom Widgets 43

to their values, the values are provided through the converter plug-ins, or other
locale-aware sources, and the localization happens automatically before the value is
returned.

Widget Internationalization
Not all localization is handled automatically by the internationalization features of
the CDEJ. Widgets can have specific localization requirements that are not covered
by the CDEJ and the widget developer must internationalize the widget to
accommodate these.

The main internationalization issues of concern to the widget developer are:
v accessing and rendering localized text values;
v referencing localized versions of images or icons;
v providing locale information and localized text elements to JavaScript code used

by a widget in the web browser;
v laying out content on the HTML page in a way that can accommodate the

increased length of text when localized into other languages.

“Accessing Data with Paths” on page 67 provides details on how to construct
paths that identify localized text properties resources on the classpath or in the
Application Resource Store and to resolve these paths to the localized text values.
Examples of this process are also provided in that appendix. Once retrieved, the
localized text can be incorporated into the HTML mark-up that is produced by a
renderer plug-in class.

Localized images are often required where the images contain text or other
symbols that are specific to one language or culture. The developer should avoid
including text in images where possible. It is harder and more expensive to localize
the application and also affects the accessibility of the application. “Accessibility
Concerns” on page 45 describes how applications are often required to be
accessible to as many people as possible. People with visual impairments can find
that text in images is difficult to read or entirely unreadable. Nevertheless,
internationalizing such elements is a simple process. The HTML produced by the
widget's renderer plug-in class includes a img element with a src attribute that
references an image resource on the application server. These image resources can
be added to the WebContent folder of an application component. A simple scheme
to support internationalization then places image files in sub-folders that are
named for the locales. For example, create an images folder within the WebContent
folder. Create folders that are named en (English) and es (Spanish) within that
images folder. Now place the localized image files for English and Spanish into
their respective locale folders. Within the renderer, the localized image can be
referenced as shown in the example here. The context of the example is the render
method of a renderer plug-in class.

The getLocale method returns the locale of the active user, so the image source
URI might be generated as, for example, ../images/en/icon.png for a user in the
English locale and ../images/es/icon.png for the Spanish locale. Alternatively, the
locale folder might be omitted and the locale might appear in the image file name.

Element img = fragment.getOwnerDocument().createElement("img");
img.setAttribute("src",

"../images/" + getLocale().toString + "/icon.png");

Figure 41. Referencing Localized Image Files

44 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

A problem with this scheme is that a user with a locale en_US does not see any
image, as there is no en_US folder within the images folder. For text properties, a
locale fall-back scheme is used, but that does not apply in the example here. There
are a number of ways to accommodate extra locales:
v create one folder for each supported locale and place the localized images in

those folders, even if the image is the same for several locales, such as if en,
en_US and en_GB were supported simultaneously and there were no spelling
variations across those locales for the words used in the images;

v for each image, define a property in a localized text properties resource that
contain the path to image appropriate for the locale of that properties resource.
Instead of constructing the path in the renderer, resolve the text property that
contains the path and use that. This scheme is similar to the use of the
Images.properties file in UIM development that is described in the Cúram Web
Client Reference Manual and allows the normal locale fallback mechanism to
operate. (An overview of this fallback mechanism is provided in “Accessing
Data with Paths” on page 67.)

There is a separate type of text-based image generation and localization feature in
the CDEJ that is described in the Cúram Web Client Reference Manual. It is not
directly related to widget development.

Widgets that depend on JavaScript libraries and scripts can require that the
JavaScript be internationalized. The two main requirements are to supply the
JavaScript code with the correct locale to ensure that localization features of the
JavaScript library are used correctly, or to supply localized text elements to the
JavaScript routines. Both requirements may apply. The specific requirements vary
between widgets and are beyond the scope of the guide. However, the basic
approach for the widget developer is to generate JavaScript content that contains
the required information from locale information and localized text values
available to the renderer plug-in class. For example, the renderer plug-in can
generate a script that contains a class to a JavaScript function that passes the value
of the active user's locale. The locale value is embedded in the function call in a
same way it was embedded in the image URI in “Widget Internationalization” on
page 44, by calling getLocale and converting it to a string. Localized text elements
that are retrieved by the renderer plug-in class can also be embedded into a script,
perhaps into a JavaScript array or object, depending on requirements.

The layout of a page can also be affected by localization requirements. The text of
a label in one language can become much longer when translated into another
language. An average of 30% more space should be added for any English text to
accommodate the replacement of that text with text in other languages. However,
depending on the language and the phrase, the text might require twice the
amount of space or even more.

Accessibility Concerns
The section introduces the developer to accessibility concerns in the context of
custom widget development and to provide some guidance on how to address
those concerns.

Prerequisites
A basic knowledge of HTML.

Developing Custom Widgets 45

Overview
The accessibility of the application determines how usable the application is by
people of all abilities and disabilities. Typically, accessibility concerns focus on the
needs of people with disabilities, such as visual or motor impairments, and the
compliance with the regulatory requirements to accommodate their needs.

Their needs might include:
v higher contrast visual presentation to make the content easier to read;
v color schemes that are suitable for people with deficiencies in their color vision;
v the ability to zoom in to the content on the page or increase font sizes

independently of the application's styling;
v access key support to allow the application to be used with a keyboard only and

not require a mouse;
v additional information that is associated with images and form input controls to

allow a screen reader (voice browser) to identify them to the user.

The regulatory requirements differ between jurisdictions. There is no universal
solution for all of the accessibility requirements. However, many local regulations
and guidelines draw from those developed by the W3C Web Accessibility Initiative
(WAI) and its Web Content Accessibility Guidelines (WCAG). The WAI is a good
starting point for widget developers who want to learn more about accessibility
and its application to the web. The widget developer can identify what the
accessibility regulations and guidelines are for the jurisdiction in which the
application is employed and aim to comply with those. It is beyond the scope of
the guide to cover all of the possible regulations.

Labels for Form Input Controls
The correct labeling of input controls on forms is typically the most important
accessibility concern of the widget developer. A visually impaired user can use a
screen reader to access the application. A screen reader is a software application
that converts the text of a web page (or other application) into speech, allowing the
user to hear what is present and respond. When a form is used, the screen reader
informs the user of the input control that currently has the input focus.

For example, the user can use the Tab key to move the focus to the text field with
the label Date of Birth and the screen reader announces “Date of Birth, edit”;
adding the word “edit” to notify the user that the control is editable. This is only
possible if the screen reader can associate the label of the field with the input
control for that field.

All of the accessibility standards require that input controls on forms be identified
by labels that can be used by a screen reader. The implementation guidelines for
these standards often demonstrate the use of the HTML label element that allows
the label text to be marked up with an element that defines the ID of the input
control for which that text is the label. Some validation tools then enforce this
particular implementation guideline to the exclusion of all others. The CDEJ does
not use the HTML label element to associate label text with form input controls, it
uses an alternative method. The HTML of a Cúram application page can fail an
automated accessibility validation check for this reason, but this failure is
erroneous and does not affect the accessible of the form input controls to a screen
reader application.

The technique that is used by the CDEJ is the same technique that widget
developers use. The visible label of the input control is rendered separately and

46 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

automatically by the CDEJ and the title attribute of the input element is set to
the value of the label that are read by the screen reader for that control. There are
several reasons why this approach is used by the CDEJ instead of the often
suggested label element:
v The label element displays its label as the visible label on the page for the form

control. It is not possible to associate a single label element with more than one
input control, as it can have only one ID value in its for attribute. For example,
a UIM CONTAINER element is used and it contains two FIELD elements. One label,
that of the container, appears beside two input controls, one for each field. A
search form can have a Surname label that appears beside a text field and a
check-box. The user inputs the surname into the text field and checks the
checkbox if the search finds names that sound like that surname. Using a label
element, it is not possible to label these controls without displaying two labels
on the page and that is not wanted. However, it is easily achieved by using the
title attribute on the input elements for the text field and the checkbox. The
values of the title attributes are set from the labels of the UIM FIELD elements,
not the CONTAINER element, so the labels can be specific to each input control
while the visual presentation is still uncluttered.

v Most browsers use the title attribute of an input control as the text displayed
in a tooltip that is shown then the use hovers over the control with the mouse
pointer. This allows sighted users to identify controls even if the specific label
for the control is not shown on the page. For example, the label of the Sounds
Like check-box in the example here. Therefore, using the title attribute makes
the application more accessible to sighted users, too.

v For mandatory input fields, an icon is displayed beside the label of the field to
alert the user to the fact that a value must be entered. This icon is not apparent
to a screen reader application, as it is applied by using a CSS style rule and is
not part of the content of the HTML document. For accessibility, the word
“mandatory” can be appended to the label value used in the title attribute of
the input control while it is omitted from the visible label that already has the
visible mandatory icon. It is not possible for the visible label to differ from the
input control label in this way if the label element is used.

v When a page is rendered, the CDEJ renders the field label before the widget's
renderer plug-in is started for the field value (assuming labels of shown to the
left of the values). As the CDEJ does dictate what input control is produced by
an edit-renderer plug-in, it cannot know in advance what the ID of the control is
and cannot set an ID in the for attribute of a label element. Therefore, it is not
possible to use the label element while allowing widgets for the field values to
be customized. This is not a problem, as the label element is not desirable for
all of the other reasons that are described here.

These are the main reasons why the CDEJ uses and recommends the title
attribute in preference to the label element. The application pages are equally, if
not more, accessible to screen reader applications and users as a result. Any
spurious errors from accessibility validation tools that relate to the non-use of the
label element can be safely ignored after the presence of the title attribute is
confirmed.

Font Sizes
It is recommended that the use of, relative font sizes when a widget's HTML
output is styled. Relative font sizes, which are specified as a percentage of the web
browser's base font size, allow the user to change the base font size in their
browser to effectively magnify all of the text on the page.

Developing Custom Widgets 47

Some modern web browser can scale up the text even if fixed font sizes are
specified, but some browsers do not change fixed font sizes properly when the
page is scaled, or scale only the text along with all other non-text content, which
cannot be the user's preference.

Overview of the Renderer Component Model

Elements of the Model
More complete details of the renderer component model are provided in the CDEJ
Javadoc. The information that is presented here is an overview of the main
elements in the model and how they relate to each other.

There are three main categories of elements in the renderer component model:
v Elements that define components of the page. These are the elements of the

model that are passed to renderer plug-in classes for rendering.
v Elements that provide additional information about a component.
v Elements that are used to create components.

The elements of the model are defined by using Java interfaces. All of the
interfaces are defined in the curam.util.client.model package.

The main interfaces that define the component of the page are as follows:

Component
The Component interface defines the common properties of all elements that
can be rendered to HTML by renderer plug-ins. A component can be
associated with a style and rendered with a component-renderer plug-in.

Field The Field interface extends the Component interface and adds the binding
and domain properties. The binding records the connections that are
defined in UIM for the field. The domain records the domain of the server
interface property of the target connection, or that of the source connection
if there is no target connection. A Field, being a Component, can be
associated with a style, but it is more usual to associate a field with a
domain. If both a domain and a style are defined, the domain is used
when selecting the appropriate renderer plug-in. A field can also be
rendered with a component-renderer plug-in, but a view-renderer or
edit-renderer is used if the domain property is set.

Container
The Container interfaces extends the Component interface and allows the
component to contain other components. The children of a container are
recorded in a list; the order in which the children are added is the iteration
order of that list. A container can be associated with a style and rendered
with a component-renderer plug-in.

The main interfaces that provide additional information about a component are as
follows:

Binding
A Binding is used exclusively with a Field object to record its source and
target path that is defined by the corresponding connection in UIM. A
binding defines other paths, mostly related to the use of the UIM INITIAL
connection element, but their use, or the use of the INITIAL element, in
combination with custom widgets is not supported in the Cúram
application.

48 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

ComponentParameters
A component's parameter values, derived from the corresponding UIM
attributes, are stored in a ComponentParameters object that is retrieved by
calling Component.getParameters. The interface extends
java.util.Map<String, String>, but the returned map can not be
modified. When building new components at runtime, add more
parameters as necessary.

Link A Link represents a hyperlink to another destination. A link defines a
target and an arbitrary collection of parameters. The target and the
parameter values are defined using paths, not literal values. However,
paths can be constructed to represent literal values if required. See
“Accessing Data with Paths” on page 67 for more details.

The main interfaces that are used to create new components are as follows:

ComponentBuilder
A ComponentBuilder is used to build basic components. This interface also
defines the properties common to the other builder interfaces.

FieldBuilder
A FieldBuilder extends a ComponentBuilder to allow the source path,
target path, and domain to be set. Other paths can be set, but their use is
not supported in the Cúram application.

ContainerBuilder
A ContainerBuilder extends a ComponentBuilder to allow components,
fields or other containers, to be added to a new container.

Building Components
Components of the model are constructed by using the builder pattern, which is a
software design pattern. Different types of components require the use of different
builders. The interfaces for these builders were listed in the previous section.
However, a concrete implementation of a builder is required to do any real work.

Builder objects can be created by using the ComponentBuilderFactory class that is
defined in the curam.util.client.model package. The factory class provides a
number of factory methods to create builders. Only the use of the following factory
methods are supported in the Cúram application:

createComponentBuilder
Creates and returns an object implementing the ComponentBuilder
interface. Use this to build generic components that do not require a
binding and that do not contain other components.

createFieldBuilder
Creates and returns an object implementing the FieldBuilder interface.
Use this to build fields that are bound to data sources.

createContainerBuilder
Creates and returns an object implementing the ContainerBuilder
interface. Use this to build components that may contain other components
of any kind.

The component builders present a simple, flat API for creating components. They
eliminate the need to understand the internal structure of components. In
particular, the properties of the objects that hold additional information about a

Developing Custom Widgets 49

component, such as bindings, parameters, and links can be defined directly
through the builder interface; there is no need to create instances of these objects or
understand how they are stored.

To use a builder, instantiate it using the appropriate factory method and then call
the appropriate setter methods to set the properties of the component that is being
built. When complete, call getComponent to get the instance of the newly built
component object. When getComponent is called and returns the new component,
the builder object resets all of the properties and can be reused to build another
component. Until getComponent is called, many of the simple properties can be set
again to overwrite their existing values. However, this can not work for properties
that represent items in collections, such as the parameters of the component.

Once built, components are immutable, much like java.lang.String objects, or the
Path objects described in “Accessing Data with Paths” on page 67. The only way to
change a property of a component is to build a new component with the modified
value for that property. Component builders can be used to create entirely new
components, but are commonly used to create new components that are modified
copies of other components to overcome this immutability. The starting point in
this process is the component that will act as the prototype for the new component.
Create the builder object and then pass the prototype component to the builder's
copy method. This sets all of the properties of the component to be built from the
properties of the prototype component. Use the setter method of the builder to
overwrite (including with a null value) the properties of the new component that
differ from the prototype component. Finally, call the getComponent method on the
builder to get the new component that is the modified copy of the original,
prototype component. A typical use of this copy-and-modify process is when
making multiple copies of a Field object, changing the domain and extending the
paths, before delegating the copy of the field for rendering by another renderer
plug-in class.

When copying a prototype Container object by using the builder's copy method, all
of the child components of the container are copied by reference. A reference is
sufficient, as the child components are immutable. Because references are used, any
child that is itself a container becomes a child of the new container complete with
its own child components. When it is necessary to change the children of a
Container that must be copied by using a builder, the copyShallow method is
called on the ContainerBuilder instead of the copy method. The copyShallow
method does not copy any references to the child components. Copy these
references one-by-one by iterating over the child components of the prototype
container and then calling the add method on the ContainerBuilder. The child
components can be copied and modified, or even selectively omitted, during this
process if required.

Design and Implementation Guidelines
Custom widgets provide the developer with considerable power and flexibility
when meeting challenging presentation requirements. However, widget
development can be complex and it raises many design issues that are not a
concern of a client application developer who is used to using only UIM to define
the content of pages. The next section presents some guidelines for writing
renderer plug-in classes to assist the developer in avoiding some of the common
pitfalls.

Some renderer plug-ins also need to support the requirements of field-level
security. This is explained and demonstrated in the final section.

50 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Guidelines for Writing Renderers

Do Keep Things Simple
Endeavor to keep the complexity of any new widget as low as possible by
selecting the simplest viable approach. It is always possible to change to a more
complex approach later if necessary, but it is much harder to simplify a widget
after first committing to a complex approach.

“Approaches to Customization” on page 4 described the approaches to widget
development in order of increasing complexity.

Pay particular attention to widgets that are used widely. Simplicity and efficiency
are important in this case. A complex widget that is used on many pages by many
concurrent users can be difficult to develop without much prior experience.

Do Divide and Conquer
A complex widget that is implemented as a single, large render method is difficult
to maintain and offers no opportunity to reuse its component parts, as it has none.
Where a widget renders more than a single value, consider dividing it up into a
group of cooperating renderer plug-ins. This results in smaller, more manageable
components. These components can be reconfigured or reused in other contexts to
meet future requirements.

Development of a complete renderer can progress toward the final goal in stages.
For example, take the widget that is described in “A Details Widget Demonstrating
Widget Reuse” on page 26. This requirement might not be met by using multiple
fields in a UIM CLUSTER element because the layout would not fit into the strict
grid that is provided by a cluster. However, an alternative approach to its
development is this sequence:
1. Create a UIM page that contains a CLUSTER element and place separate fields

for the details within the cluster.
2. Create widgets to render each of the fields a manner closer to that required in

the final details widget.
3. Assess if the solution is “close enough” to be acceptable and release the change

if it is.
4. If the cluster layout is still too limiting, develop a widget to lay out the fields

in the required manner. This requires a change to the data to make it a single
value, an XML document. Reuse all of the smaller widgets in a rendering
cascade.

All of the widgets that are developed in the second step are reused in the context
of the last step. This allows greater flexibility in planning the work, as the
functionality can be released early and refined later, if it is still necessary. The
individual widgets that are developed in the second step can also be reused when
other details panel widgets, or widgets for unrelated purposes are developed.

Do Check for Nulls
Renderer plug-ins can be supplied with null values, so check for null values to
avoid errors. The main values that can be null are the paths of the field's binding,
the field's parameters and the values resolved by using paths.

The CDEJ never supplies null arguments to the render method, but if one renderer
starts another, this cannot be guaranteed. In a view-renderer, the field's source path
is never null, but the target path is always null; these do not need to be checked if

Developing Custom Widgets 51

this is assumed. In an edit-renderer, the field's target path is never null, but the
source path might or might not be null and is always checked.

The field's parameters might or might not be null. Typically, the parameters reflect
the attributes that are used in the UIM. However, if an attribute was set to the
same value as its default value, or was not set at all, then the parameter value is
likely to be null. Always check parameter values for null and, if they are null,
ensure that the renderer treats this value the same as the default value for the
corresponding UIM attribute. The default values for the attributes are described in
the Cúram Web Client Reference Manual.

On resolving paths by using the DataAccessor, the values might be null in some
cases. If a path to a server interface property does not resolve to null, the
DataAccessor throws an exception instead. Paths to values within an XML
document that are resolved by using a SimpleXPathMarshal can result in a null
value. See “Extending Paths for XML Data Access” on page 72 for details on the
conditions that can result in null values.

Do Take Shortcuts
Renderer plug-in classes must extend the prescribed abstract base classes that are
identified earlier in the guide. However, the extension does not have to be direct.
There is no prohibition against creating new base classes custom renderers or
extending other custom renderer plug-in classes as long as the prescribed abstract
base class is an ancestor class of any custom renderer class. This option can be
used to share code between custom renderers more effectively and to develop
renderers that are variations on other renderers without implementing all the code
from scratch.

However, note , that the extension of the CDEJ renderer plug-ins for custom
widget development, is not supported in the Cúram application.

Widget development, particularly in the area of creating and manipulating DOM
nodes for the HTML content can be repetitive. Consider writing a simple utility
class to wrap up common operations, such as checking whether a string value is
null or empty before setting an attribute on an element, or creating and appending
text nodes.

Do Go with the Flow
Combining several renderer classes into a rendering cascade is a powerful
technique for enabling maximum reuse of widgets in other contexts.

However, this technique requires that the renderers conform to the expectations of
the renderer API and the CDEJ that manages it rather than try to do things another
way. Renderer classes should respect the imperative to render the data that is
referenced by the paths in the Field object's binding without trying to examine
what the paths represent of react differently to different kinds of paths. Any
renderer class that implements special handling of paths or other information is
likely to be unusable in all but the context for which it was first developed.

The key to going with the flow in a rendering cascade is to develop view-renderer
and edit-renderer classes in a manner that makes them suitable for direct use in
combination with a UIM FIELD element. This should be the case even for renderer
classes that are never intended to be used directly in this way and only intended
to be used in the context of a complex widget's rendering cascade. Making this the
design goal ensures that the renderer class is context independent and maximizes
the possibilities for its reuse.

52 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

When using XML document, it can be necessary to change the structure of the data
to suit the rendering cascade. For example, a contact details widget is required to
display the contact details of a person. The widget is expected, when complete, to
provide reusable widgets that display the postal address and e-mail address of the
person in the required form. The developer first conceives that the XML consumed
by the new contact details widget has the form shown here.

The initially invoked renderer plug-in for the new widget, the contact renderer,
uses the copy-and-modify technique on the Field object that is described in
“Overview of the Renderer Component Model” on page 48 and demonstrated in
“Tying Widgets Together in a Cascade” on page 31 and then delegate the rendering
of these copied objects to the other renderers. To the address widget, the contact
widget delegates a Field object whose source path is extended with /contact and
the address widget further extends this path with /street and /city to resolve
and present the address values.

This arrangement works, but the reusability of the address widget is compromised
by the order in which the paths is extended. This is a consequence of the structure
of the XML document. Were the address renderer to be used in a stand-alone
address widget, its XML data might look like this:

The street and city elements are contained within an address element, as the XML
document would not be valid without a single root element. This requires that the
address renderer extend the source path (in this case just the path that identifies
the server interface property itself) with /address/street and /address/city.
These path extensions are not the same as those used with the address renderer
was started by the contact renderer, so something is wrong.

This problem could be solved by having the contact renderer set a field parameter
on the copy of the field that is passed to the address renderer instructing the
renderer to extend the paths in different ways. This field parameter would not be
set if the address renderer were invoked directly in correspondence with a UIM
FIELD element, so the context could then be determined. However, this complicates
both renderers in several ways. The contact renderer must accommodate the
requirements of the address renderer to extend paths in one of two ways, the
address renderer must check a field parameter value, and then operate differently
depending on the result. The XML is different for the address in each case, so any
code that generates this XML would need to accommodate the requirements of the
two renderers. Testing also becomes more difficult, as there are more paths through
the code and more edge cases to consider. Therefore, this is not the right solution
to the problem.

<contact>
<name>James Smith</name>
<street>Main Street</street>
<city>Springfield</city>
<phone>555-555-0101</phone>
<e-mail>james@example.com</e-mail>

</contact>

Figure 42. An XML Document Describing Contact Details

<address>
<street>Main Street</street>
<city>Springfield</city>

</address>

Figure 43. An XML Document Describing an Address

Developing Custom Widgets 53

The alternative is much simpler: revise the structure of the XML document to the
form shown below.

The address details are now embedded in the contact details XML document in the
same form as they would appear in a stand-alone address XML document. As
before, the contact renderer extends the path with /contact before delegating to
the address renderer and then the address renderer extends that path further with
/address/street and /address/city, just as it would do in the stand-alone use
case. There is no need for any conditional processing and the need to deliver an
address renderer that works in the context of a rendering cascade or when directly
associated with a UIM FIELD element did not result in any added complication.

The situation for the e-mail address value is slightly different. In the stand-alone
use case, the e-mail address renderer does not expect an XML document, just a
string value containing the e-mail address. To accommodate this, the contact details
renderer should extend the path for the e-mail address by using /contact/e-mail
before the rendering of the value is delegated. Both renderers can now operate
without any additional complication, as the e-mail address renderer blindly
resolves its source path to the e-mail address value and be unaffected by the fact
that the path can either directly refer to a server interface property value or be
extended to refer to a value within an XML document. In either case, the result of
calling DataAccessor.get on the source path is the string value of the e-mail
address.

To design a rendering cascade that is effective in reusing renderers in a new
context, proceed as follows:
v Design the individual renderers first as if they arre to be started directly in

association with a UIM FIELD element and define the format of the data that
they consume and the paths that they can extend to access that data.

v Move on to the design of the delegating renderer that delegates to the above
simple renderers. Determine how it creates new components and extend their
paths to accommodate the needs of the simple renderers.

v Leave any decisions about the form of the aggregate XML document until the
end, as it follows from the design of the renderers in the cascade, not the other
way around.

Taking this bottom-up approach to the design ensures that each of the ultimate
elements in the rendering cascade are clearly defined and readily reusable. Taking
a top-down approach can seem to work well at first, but it is almost inevitable that
some problem occurs at the final level that results in the need to start the whole
design again, as the design flaw cascades back in the opposite direction to the
intended rendering cascade.

<contact>
<address>

<street>Main Street</street>
<city>Springfield</city>

</address>
<phone>555-555-0101</phone>
<e-mail>james@example.com</e-mail>

</contact>

Figure 44. A Revised XML Document Describing Contact Details

54 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Do Not Introduce Concurrency Issues
The application can service requests from many users at the same time. Even when
a single user is active, the application can still receive concurrent requests for
several pages that are presented to that user in the tabbed user interface.

At runtime, only one instance of each renderer plug-in class is created for each
domain or style. The application can use the same plug-in instance to service
concurrent requests from one or more users. This places some restrictions on the
implementation of a renderer plug-in class to avoid concurrency problems. The
restrictions also apply to all other kinds of domain and style plug-ins, as they
share the same lifecycle as renderer plug-ins.

Maintaining state information within a plug-in instance causes concurrency
problems. A developer can introduce a dependency on state information when
factoring a large render method into smaller, more manageable, private methods.
If, instead of passing all information between methods by using method
arguments, the developer passes information through fields of the plug-in class,
concurrency defects arise. “Do Not Introduce Concurrency Issues” shows such a
defect.

The DefectiveEMailAddressViewRenderer class is similar to the
EMailAddressViewRenderer class developed in “An EMail Address Widget” on page
13. The defective class has a createAnchor method to organize the code for
improved readability. However, rather than pass the e-mail address value as a
method argument, the e-mail address is defined as a field of the class that is set by
the render method and read by the createAnchor method. At runtime, there may
be concurrent requests for pages that contain e-mail addresses, so the render

public class DefectiveEMailAddressViewRenderer
extends AbstractViewRenderer {

private String emailAddress;
public void render(

Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
span.appendChild(createAnchor(doc));
fragment.appendChild(span);

}

private Element createAnchor(Document doc) {
Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));
return anchor;

}
}

Figure 45. A Plug-in Class with a Concurrency Defect

Developing Custom Widgets 55

method of a single instance of the renderer plug-in for e-mail addresses can be
started from more than one thread. This can lead to a defect where the shared field
value becomes corrupted.

For example, thread T1 services a request from user U1 and thread T2 services a
request from user U2. T1 calls the render methodon the same plug-in instancejust
before T2 does. T1 sets the emailAddress field value to e-mail address E1and then
T2 immediately sets the field to E2. Now, when T1 starts createAnchor, e-mail
address E2 is rendered and shown to user U1. This can not be a serious problem
for e-mail addresses, but the same defect might lead to unwanted leaking of more
sensitive information. In the case of edit-renderer plug-in initializing form field
values when modifying entities, the problem might also result in incorrect values
being written to the database.

It is also important to note that concurrency problems do not necessarily arise
because there are two or more users active; they arise because there are two or
more requests active. With the tabbed user interface, it is likely that a single user
can trigger concurrent requests for pages. Do not dismiss potential concurrency
problems on the mistaken assumption that data that is local to a user, such as data
stored in Java EE session attributes, is immune from such problems.

The remedy for this problem is simple: do not use fields of a class to pass
information between methods; use the methods' arguments instead. “Do Not
Introduce Concurrency Issues” on page 55 shows the alternative implementation
that has no concurrency defect because the e-mail address value is passed as an
argument to the createAnchor method.

56 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

In general, avoid fields of a plug-in class unless they are constants declared static
and final. Carefully consider the potential for concurrency defects before
considering the introduction of any non-constant fields and must never introduce
fields to shorten the argument lists of private methods.

The fields of a plug-in class are the most obvious place to store state information
during rendering. However, a developer might store state information in other
places, such as in attributes of the Java EE session or application, in ad hoc data
caches and in helper classes. In introducing any such state storage, consider
concurrency issues with the same care given to fields of a plug-in class.

Do Not Convert Data in a Renderer
Renderer plug-ins are responsible for marking up field values with HTML for
presentation. Converter plug-ins are responsible for converting the server interface
property values from their Java object representations to strings formatted for the
active user. Endeavor to maintain this separation of concerns and avoid converting
data within a renderer plug-in.

The format method of converter plug-ins, described in the Cúram Web Client
Reference Manual, is called by the CDEJ when servicing the get method calls on the
DataAccessor within the renderer. The format method is responsible for converting
the Java object representation of a server interface property value to a string. The
method applies the active user's locale, time zone, date format, and other
preferences. Implementing this processing in a renderer is redundant, complicated,
and prone to error. It can also introduce inconsistencies with the presentation of
the same type of data in other places in the application. Where the data is not

public class DefectiveEMailAddressViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

String emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
span.appendChild(createAnchor(doc, emailAddress));
fragment.appendChild(span);

}

private Element createAnchor(
Document doc, String emailAddress) {

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));
return anchor;

}
}

Figure 46. A Plug-in Class without a Concurrency Defect

Developing Custom Widgets 57

available in a suitable format, consider developing a new converter plug-in to
produce the required string representation before the renderer plug-in is
developed.

Where the data to be converted is retrieved from an XML document, configure and
use the SimpleXPathADCMarshal class as the domain marshal. When the XML has a
suitable form, this domain marshal automatically starts the correct converter class
for the data, parse it from its generic string representation to a Java object
representation and then format it to a string representation appropriate for the
active user. This domain marshal is introduced in “A Photograph Widget” on page
19 and described in detail in “Extending Paths for XML Data Access” on page 72.

Do Not Do Too Much
The client-tier of the application produces a HTML response for each page request.
This CDEJ sends this HTML response to the web browser before the full HTML
content of the page is complete. The CDEJ starts a renderer for each field, serializes
the DocumentFragment populated by the renderer to a HTML string, and then writes
this HTML string to the response before the next renderer is started.

This way, little of the response is held in memory at any one time and resource
usage is minimized. This is important for pages that can contain much content or
when the application is under heavy load.

A renderer plug-in class is free to produce any HTML content for a field, but bear
in mind that the contents of the DocumentFragment is held in memory until the
render method returns. Only now is the fragment serialized and its allocated
memory freed. The memory use of widgets that produce a large volume of HTML
content can or cannot pose a problem. If such a widget is used on many pages and
by many concurrent users, assess the potential impact of its high memory use. For
widgets that are used rarely or by only a limited number of users, memory use can
not be a significant problem.

Using a lot of memory when producing the HTML is not the only resource use
issue that can be caused by a renderer plug-in. Renderer plug-ins can also consume
a lot of processing resources. Technologies such as Extensible Stylesheet Language
Transformations (XSLT) can be employed by renderers to manage the generation of
the HTML content. Such processing can require significant processing resources (in
addition to memory). Determine if such processing is necessary and plan from the
beginning to reduce the impact this can have on the application as a whole.

XSLT processing, for example, is both memory and processor intensive. However,
this can be mitigated to some degree by taking care to avoid unnecessary
processing. XSLT stylesheets can be loaded from resource on the classpath, but this
only needs to be performed once. An instance of a javax.xml.transform.Templates
object can maintain a copy of the stylesheet in memory and can be used multiple
times in a thread-safe manner to eliminate the overhead of loading the XSLT
stylesheet each time it is required.

Not only can single, large processing operations pose a problem, so can an
excessive number of smaller operations. A renderer is started every time the value
of a field is rendered on a page, both in clusters and in lists. Minor inefficiencies in
renderers that are used to present field values in clusters can go unnoticed, but the
same inefficiencies can pose a serious problem in the context of long lists of data.
The same view renderer plug-in is used to present read-only fields values in a
cluster or in a list where the type of the data is the same. If one or two values are

58 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

presented in a cluster, the resource use can be acceptable. However, if hundreds of
values are presented in a long list, the resource use increases dramatically.

Renderers that depend on receiving their data in the form of XML documents are a
particular common concern. While XML is suitable and convenient in many cases,
it is inadvisable to use it for values that can be presented in lists. For each field in
a list column, the CDEJ creates an XML parser, parse the XML document, store the
result, allow the renderer to query the result, and then, at the end of the request,
free all of the used resources. This may appear to perform adequately in a
development environment with a single user, but is unlikely to perform well with
concurrent users on a heavily loaded application server. Pagination in its current
implementation does not change this. All of the data in a paginated list is still
rendered up front. It is just presented as if it were being rendered piecemeal.

To avoid serious resource use issues, a developer can decide to present values that
are used in clusters in one way and values that are used in lists, another. This is
only possible if the values have different domain definitions, as it is not possible to
configure renderer plug-ins based on the context (cluster or list) in which they are
used. Using two different domain definitions for the same data can require
considerable changes to the application UML model.

Supporting Field-level Security
The Cúram client application enforces security at two levels: the page and the
field. Page-level security depends on securing the server interfaces that represent
the functions of the server application. Any UIM page that declares a server
interface is not displayed if the authenticated user is not authorized to access all of
the server interfaces started from that page. Field-level security is enforced when a
property of a server interface is accessed.

It is permitted for a user to access a page even though the page contains some
fields that are connected to server interface properties that the user is not
authorized to view. In this case, the values of those secured fields should not be
shown to the user. For example, a user can be able to view the details of a person,
but can not be authorized to view the salary of a person. The salary field can be
presented on the person entity home page for all users, but if a user is not
authorized to view the salary, the value of that field can be presented as a
sequence of asterisks, **** instead of a monetary amount.

In the case of page-level security, the page is never rendered, so the renderers
plug-ins is never started. Therefore, page-level security is not a concern for the
widget developer. In the case of field-level security, the renderer is invoked, so it is
the responsibility of the widget developer to ensure that the renderer plug-in
handles a field-level security violation. In the example that is given above, it is the
renderer plug-in that produces the **** value instead of the monetary amount.

The field-level security violation is triggered when the renderer uses the
DataAccessor to resolve a path to a server interface property that the active user is
not authorized to access. The started method on the DataAccessor throws a
DataAccessSecurityException instead of returning a value. If the renderer plug-in
does not detect this exception and handle it, the rendering of the page fails and an
error message is displayed. Where the required behavior is to display, say, ****
instead of the secure value, the renderer must detect the exception and produce
that value instead. The example here demonstrates this; the context is the render
method and the DataAccessSecurityException class can be imported from the

Developing Custom Widgets 59

curam.util.common.path package.

After the try... catch block, the value variable holds either the real value of the
server interface property that is indicated by the field's source path, or ****,
depending on whether the current user is authorized to access that server interface
property. In either case, the value can be appended to the renderer's
DocumentFragment to include it in the HTML response. The system is fail-safe. If the
developer neglects to detect the security exception, then the page is not rendered.
If the developer detects the security exception, the secure value is never made
available to the renderer class, so it is not possible for the developer to write code
that would display the value accidentally.

The application security design should not expect to enforce field-level security on
form pages. For example, a user can attempt to modify a person entity, but the
user is not authorized to access the salary field. The user can see the salary text
field on the person modification form that is initialized with the **** value. If the
user submits the form, this literal value overwrites the real salary value on the
database. More likely, the user sees a validation error stating that **** is not a
number. In that case, the user could enter any valid number and save it as the new
salary value. Therefore, in an edit-renderer plug-in, the developer should not
detect the DataAccessSecurityException and allow the rendering of the page to
fail. No secure information is revealed in this case and the page can be secured at
the page-level instead, preventing the user from viewing the page at all. If the user
must be allowed to modify some of the details of the person, then the option to
modify the secured salary field can be presented on a different from the one that
provides the option to modify the unsecured fields. Field-level security, then, is a
concern for view-renderer plug-ins, not edit-renderer plug-ins.

Adding New CSS Rules for Custom Widgets
When custom widgets are developed, the developer is in complete control of the
HTML that is generated for their custom widget and what CSS classes it
references. The developer might ensure the CSS is as specific as possible to their
widget.

The developer must also be aware of how their widget can inherit styling from the
Cúram application's default CSS without adding any custom CSS for the widget.
The developer has two choices:
v Inherit - Without writing any custom CSS for the widget, default styling (for

example, color) is applied due to the cascading and inheritance rules of CSS.
Choosing this option means the widget is subject to changes from any future
release of the Cúram application.

v Specific - If the widget has specific styling requirements then ensure that they
are explicitly defined in custom CSS for the widget. This helps to insulate the
widget from changes to the default styling within the application. The
recommended approach is to use the features that are provided by the Custom
Widget Development Framework to generate a unique identifier for your widget

String value;

try {
value = context.getDataAccessor.get(

field.getBinding().getSourcePath());
} catch (DataAccessSecurityException e) {

value = "****";
}

Figure 47. Implementing Field-level Security

60 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

and apply that to id attribute of the root element. All CSS rules for the custom
widget can then be based off this identifier. Consult the Cúram Widget
Development Guide for more details.

Every visual aspect (color, font size, borders, margin padding and so forth.) for a
custom widget can be analyzed and the developer can decide on whether it can be
inherited or specific. Also, it is impossible to guarantee there will never be impact
on custom CSS, even if it is as specific as possible. As a guideline, it would be
expected that with minor service pack releases of the Cúram application, the
underlying HTML and CSS do not change drastically. However, a major release of
the Cúram application can bring a new user interface and with it major changes to
HTML structure and CSS. Even if a custom widget has specific CSS, it can need to
be updated to adhere to the Cúram application's new look and feel.

Testing, Troubleshooting and Debugging
Writing a widget's renderer plug-in class (or classes) is only half the battle. For
many widgets, particularly those that depend a lot on JavaScript and custom CSS
styling, the battle has only started. The following sections provide some guidance
on what to do next.

Testing
There are several aspects to the testing of widgets that pose different challenges to
the developer or tester.

The developer must:
v Test that the HTML produced by the renderer has the correct structure for all

potential inputs.
v Test that the widget is presented correctly within the browser when the CSS

styling is applied.
v Test that any associated JavaScript operates correctly on the widget in the

browser.
v Test the CSS and JavaScript across all supported browsers.

The best way to get started is to create a UIM page to host the widget. Sometimes,
several test pages are required for the different use cases of the widget, though
sometimes these can be combined in to a single UIM page. On building and
running the application, open the page to check that the widget is presented
correctly.

There are several testing tools available that can automate the process of checking
the structure of the HTML produced by the widget. Tools such as Canoo WebTest
can be run from Apache Ant build scripts and can be integrated into the build and
test process. Alternatively, the structure can be checked manually by viewing the
source of the HTML page.

Manual testing is required when checking that the HTML is presented correctly
after the CSS styles are applied. This also has to be repeated in all browsers and
versions of browsers that are supported, as each browser has its own way of
interpreting and implementing the CSS standards.

Similarly, javaScript can behave differently in different browsers. Testing tools exist
for testing both the JavaScript code directly and testing the behavior of the
JavaScript with the browser environment. The performance of JavaScript code can

Developing Custom Widgets 61

also vary dramatically between different browsers. It is important to establish early
on if any of the supported browsers can exhibit performance problems and to
change the approach early in the development cycle if necessary.

Cross-browser support is often the most difficult aspect of renderer development to
get right. When problems arise, search Internet forums and web sites for others
who may have the same problem. Sometimes there is an easy solution to the
problem that would take a long time to figure out alone. However, sometimes
there is no such magic bullet and compromises in the quality of the rendering on
some browsers must be accepted.

Troubleshooting
There are a number of common problems that arise during renderer development.
The first place to start is with the error messages that are reported.

When an error occurs in a renderer, the rendering of the page fails and an error
page is displayed. During development, it is useful to enable the option to display
the stack trace of the exceptions in a HTML comment within the error page. This
option is normally turned off in production, but can be enabled by setting the
errorpage.stacktrace.output property to true in the
ApplicationConfiguration.properties file (described in the Cúram Web Client
Reference Manual). Then, when an error occurs, view the source of the HTML page
to see the embedded stack trace.

The exceptions reported in the stack trace are often deeply nested. The top of the
stack trace usually shows a series of nested exception messages before the first
trace is displayed. This first series of error messages is often sufficient to diagnose
the problem. Each error message is reported with an error number. Look up the
error number in the Cúram Web Client Error Message Guide to find out what the
error means and what the possible causes can be. Do not ignore these errors or
dismiss them or fail to follow the resolution steps in the documentation. These
errors are rarely ever misleading.

The domain and style configurations are a common source of issues. Naming
clashes or incorrect assumptions about the component order can cause problems. If
a renderer does not seem to be started at all, check that it is correctly configured,
that the configuration has the highest priority in the component order and that the
application is built after these changes are made. Make sure, also, that the names
of custom styles do not clash with existing style names.

A renderer plug-in class populates a DOM document fragment with the nodes that
represent the HTML mark-up. Now, the CDEJ serializes the document fragment to
XML text. This is compatible with the W3C XHTML 1.0 recommendation.
However, some browsers are not fully compatible with XHTML and do not
properly parse empty element tags, requiring instead separate opening and closing
element tags with no body content. When an element node in the document
fragment is serialized to XML text, an empty element tag is used when the element
has no body content. To avoid parsing problems in the browser, it can be necessary
to add some content to the body of the element to cause the serializer to generate
separate opening and closing element tags. The simplest way to do this without
affecting the presentation of that content is to add a comment node to the body of
the element. The elements that cause the most problems are empty div elements
and empty script elements. The browser can parse the page incorrectly, treating
the empty element tag as an opening tag and nesting the following content
incorrectly within that element. An indication that this is happening is when the

62 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

view of the source for the HTML page in the browser does not match the view of
the browser's DOM document (the parsed version of that source). The DOM
document can be viewed with the web development tools available for most
browsers. Adding a comment node to the empty element resolves this issue.

Debugging
During the development of a Cúram client application, Apache Tomcat can be used
within the Eclipse IDE to start and test the application. Renderer plug-in classes
that are run in the context of the client application server and debugger
breakpoints that are placed into the renderer plug-in class can be used to inspect
the operation of the plug-in at runtime.

When a breakpoint is not reached as expected, the problem can be with the
debugging configuration of the IDE or with the configuration of the renderer. Add
tracing code to the renderer to determine which problem exists. If the trace
messages are displayed in the log, then the configuration is correct and the
problem is with the configuration of the debugger. The configuration of the
debugger is beyond the scope of the guide.

Trace messages that can be written to the client application log easily from a
renderer plug-in class. Simply print the messages to standard output or standard
error by using, for example, System.out.println. When Tomcat from within the
Eclipse IDE is run, the messages appear in the console view of Tomcat process.
Once the trace messages are used to successfully diagnose and resolve a problem,
they can be removed or commented out.

Much of the debugging effort of a complex widget lies not in the Java code of the
renderer plug-in class, but in the JavaScript code or the CSS stylesheets. Issues in
these areas can only be debugged within the browser. One effective approach to
investigate such problems is to use the Mozilla Firefox1web browser with the
Firebug2add-on. Firebug provides a host of tools for analyzing styling and layout,
debugging JavaScript code, inspecting the DOM document, monitoring network
activity and more. Firebug also allows changes to be made to the HTML page and
the CSS style rules in real time, reducing the time that it takes to test experimental
changes. However, beware that Firefox can not render the content in the same
manner as other browsers, such as Microsoft Internet Explorer. If Internet Explorer
is the browser for which support is required, check regularly that changes that
correct the presentation and operation of the widget in Firefox also work in
Internet Explorer.

Configuring Renderers
The customization of the configuration that associates edit-renderer and
view-renderer plug-ins with named domain definitions, is supported in the Cúram
application.

Overview
Component renderers are associated with styles, not domains, so these are
configured separately. Styles support only a single plug-in, a component-renderer,
so their configuration, which is similar to the domain configuration, is simpler.
Styles are not defined in the UML model like domain definitions; they are defined

1. See the Mozilla web site for details.

2. See the Firebug web site for details.

Developing Custom Widgets 63

http://www.mozilla.com/
http://getfirebug.com/

by naming them in the configuration file. The creation of custom configuration file
for styles and the syntax for defining custom style configurations are described in
this section.

This feature is merely an extension of the existing customization features,
presented in the Cúram Web Client Reference Manual, where it describes how
plug-ins can be developed for custom data conversion and sorting. That manual
also describes the configuration process in detail. The two kinds of renderer
plug-in are just to more kinds to add to the existing kinds of domain plug-in. They
are configured in the same way and in the same configuration file. Examples are
provided in this section, but the Cúram Web Client Reference Manual is consulted for
more details.

The configuration process is one of customization, rather than full replacement.
The CDEJ provides the default configuration. The developer adds custom
configuration files to one or more application components. These custom
configurations can override the CDEJ default configuration. As there can be many
custom configurations in the application, one per component, these must be merged
before they are used to customize the default configuration. Where specific
domains or styles in the default configuration are not customized fully or at all,
the default configuration is inherited for those domains and styles. The details of
this merging and inheritance behavior for domains are described in the Cúram Web
Client Reference Manual. This section provides additional information about the
style configurations.

warning: Purpose -based Configuration

The developer can see domain and style configurations in the default CDEJ
configurations that configure domains or styles by using a purpose attribute
instead of a class attribute. Configuration that uses purposes is more complex
then configuration that uses named classes and custom configuration that uses
purposes is not supported within the Cúram application; only class-based
configuration can be used.

warning: Limitations on Kinds of Plug-ins

The CDEJ domain configuration specifies a kind of plug-in called a select-renderer.
The development of custom select-renderer plug-ins is not supported in the Cúram
application currently. No further mention of them is made in this guide.

The configuration of marshal plug-ins for domains is also unsupported outside of
the specific cases of the two marshal plug-ins for accessing XML data that is
described in the samples of the guide and in more specific detail in “Extending
Paths for XML Data Access” on page 72.

Any references to select-renderer or marshal plug-ins in the Javadoc for CDEJ, or
information that is provided in the Javadoc about their development or
configuration, does not constitute an authorization or offer of support for their use.

Several of the CDEJ renderers are defined in classes whose names include the
word “Legacy”. These are deprecated, transitional renderer classes, and the
referencing of these legacy renderer classes in custom configurations is not
supported in the Cúram application. Note, also, that a rendering cascade will fail if it
delegates the rendering of a field whose domain is associated with a legacy
renderer. Developers must avoid rendering cascades that can result in the
invocation of a legacy renderer.

64 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Configuring Domain Renderers
The view-renderer and edit-renderer plug-ins are configured in the same file and
in the same way as other domain plug-ins. The only difference is that the specific
plug-in names view-renderer or edit-renderer are used in the plug-in elements of
the configuration.

The Cúram Web Client Reference Manual provides detailed information about the
customization of the domain configuration in the DomainsConfig.xml file of an
application component. That information is not repeated here. An example is
shown here.

What are the basic principles? Configuration inheritance for domain renderers, no
inheritance for component renderers (styles). What is the default configuration?
Only configure what you need to change; do not copy complete configurations,
otherwise expected inheritance can be compromised in the future.

It is possible to override all of the plug-ins that are associated with a domain
(subject to some support limitations described in the previous section). However, it
is important that the developer specify only the plug-ins that need to be
customized and not repeat the configuration of existing plug-ins without changing
them. When the developer partially customizes a domain, any unspecified plug-ins
are resolved by using the CDEJ default configuration or inherited from an ancestor
domain of the configured domain. This behavior is preferred .

Defining unnecessary custom configurations for plug-ins can have unwanted
effects that can be hard to diagnose. For example, the developer might copy the
CDEJ default configuration of a domain from the CDEJ default configuration file
together with the configurations of all of that domain's plug-ins and use this as a
template of sorts in the custom configuration file. The developer might now
change only one plug-in element to customize the view-renderer class that is used
for the domain and leave all of the other plug-in elements copied from the CDEJ
intact and unchanged. All of these unchanged plug-in configurations are
unnecessary, as the developer is not customizing them. If the CDEJ is now
upgraded, any changes to the CDEJ default configuration of that domain is not
reflected in the application, as the developer has, in the custom configuration,
effectively customized all of the plug-ins for that domain. While using the older
version of the CDEJ, this went unnoticed, as the customization was the same as the
default. However, on upgrading the CDEJ, the old CDEJ configuration that the
developer copied to the custom configuration file continues to be given priority
and any new CDEJ default configuration of any plug-in is not reflected in the
application. Therefore, it is very important that the developer customize only the
plug-ins that must change and omit all references to other plug-ins.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domain name="SAMPLE_DOMAIN">

<dc:plug-in name="view-renderer"
class="sample.SampleViewRenderer"/>

<dc:plug-in name="edit-renderer"
class="sample.SampleEditRenderer"/>

</dc:domain>

</dc:domains>

Figure 48. An Example of a DomainsConfig.xml File

Developing Custom Widgets 65

Configuring Component Renderers
Configuring styles with component-renderer plug-ins is similar to configuring
domains with view-renderer and edit-renderer plug-ins.

To configure styles, create a StylesConfig.xml file in the application component.
An example styles configuration is shown here.

While the namespace and element names are different, the styles configuration file
is similar in form to DomainsConfig.xml, but there is only one plug-in per style
configuration.

There can be any number of style elements within the styles root element. Styles
are defined by naming them in the configuration file; there is no need to model
them or declare them anywhere else. Unlike a domain definition, the name of a
style does not have to be a valid Java identifier; any non-empty string value that is
not entirely composed of whitespace characters is acceptable.

On the plug-in element, the name is always component-renderer and the class is
the fully qualified name of the Java class for the widget's component-renderer
plug-in.

Where more than one StylesConfig.xml file exists in the application (there can be
one in each component) and where the same style is defined more than once, the
configuration for that named style from the highest priority component is used. As
styles do not form a hierarchy like domains, there is no inheritance behavior in the
configuration.

Using the name of a style that is defined in the CDEJ default style configuration
overrides the configuration. However, the overriding of the CDEJ default styles is
not supported in the Cúram application. Take care not to use the name of an
existing CDEJ style, as the results can be unpredictable. To avoid accidental
overrides, particularly if using generic style names like label, or panel, use a
custom naming convention. For example, prefix style names with a string that
represents an ad hoc, private namespace: sample::label and sample::panel. The
prefix sample:: is not used by the CDEJ, so it can act like a namespace. The double
colon has no special meaning in a style name and any separator character(s) can be
used. If this approach is used, it is best to choose a separator that is different from
any separator that is used for words in the style name to avoid accidental name
clashes.

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:styles

<sc:style name="sample-style">
<sc:plug-in name="component-renderer"

class="sample.SampleComponentRenderer"/>
</sc:style>

</sc:styles>

Figure 49. An Example of a StylesConfig.xml File

66 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Accessing Data with Paths
Paths are references to sources of data. They are similar in concept to file system
paths that are used to access files or XPath expressions that are used to access data
in a structured document. All access to data of any kind from a renderer is
performed through paths. Paths can be used to access the values of server interface
properties, text in localized properties files, localized properties resources in the
database, and other values.

Overview Diagram
The terminology that is used to describe the parts of a path is shown in the figure
below.

1. Prefix Path
2. Selector
3. Predicate
4. Step
5. Extended Path

The path shown here can be read as follows:
v The prefix path identifies the type of the data source. Here, /data/si indicates

that it is a reference to the data of a server interface property.
v The following two path steps identify the name of the server interface (as

declared in the UIM) and the full name of the property. Here, the
dtls$list$address property of the DISPLAY server interface is referenced.

v A path step can have a selector or a selector followed by one or more predicates.
The predicate is used to qualify the data that is identified by the path up to that
point. Here, the predicate [1] is used to select the first address from the list of
addresses in the property. Where predicates are used as numeric indexes, the
index of the first value is one, as in XPath.

v An individual value of a server interface list property is selected by the first four
steps of the path. The fifth step, ADD1, is the beginning of an extended path that
is resolved, not by the DataAccessor, but by the domain marshal plug-in
associated with the domain of the identified server interface property. Here, ADD1
may, if the marshal is the SimpleXPathMarshal described in “Extending Paths for

Figure 50. The Anatomy of a Path

Developing Custom Widgets 67

XML Data Access” on page 72, select the value of an ADD1 element in an XML
document that is the value of the server interface property.

For more information about the general structure of paths and their manipulation
in code, refer to the Javadoc for the Path and Step interfaces in the
curam.util.common.path package.

The Field object that is passed to a render method contains a Binding object that
specifies a source path or a target path, or both. Renderer plug-ins do not need to
be concerned about the form of these paths, or what type of data sources they
reference; renderer plug-ins need to resolve these paths to their values and do so
without inspecting the paths or depending on them being in any particular form. It
is this unquestioning processing of any path that allows renderer plug-ins to be
reused easily in many different contexts and in rendering cascades.

Renderer plug-ins resolve paths that the DataAccessor object available from the
RendererContext object that is passed to the render method. There are a number of
DataAccessor methods that can be called. They all take a single path argument:

get(Path)
Gets the formatted text value of the data. For domain-specific data, this is
the value that is returned by the format method of the converter plug-in for
that domains.

getRaw(Path)
Gets the raw value of the data. For domain-specific data, this is the value
that is passed to the format method of the converter plug-in. The type of the
value is also the same as the type returned by the parse method of the
converter plug-in.

getList(Path)
Gets the list of formatted text values of the data.

getRawList(Path)
Gets the list of raw values of the data.

count(Path)
Gets a count of the number of values that is returned by getList or
getRawList.

Where the data is not domain-specific, such as the contents of a properties file, the
getRaw method usually returns the same string value as the get method. Some data
sources can only support a subset of these methods. The get method is always
supported, but the getList, getRawList and count methods cannot be supported
for all data sources. There are other methods on the DataAccessor, but their use is
not supported in the Cúram application.

Creating New Paths
Usually, a renderer plug-in just resolves the values of the paths that are given to it
in the Binding of its Field object. However, in some cases, the renderer requires
data other than that referenced by the paths.

For example, a renderer can require a localized text value to use as a label within
the HTML that it produces. In this case, the renderer must create a new path that
references the required data and then resolve it to the required value.

New paths are created by extending one of the supported prefix paths. These
prefix paths are defined by the ClientPaths class in the

68 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

curam.util.client.path.util package. Each prefix refers to a different type of
data source. Only a limited set of data sources for use in custom renderers are
supported in the application. The supported prefix paths for those data sources are
defined by these constants on the ClientPaths class:

GENERAL_RESOURCES_PATH
A reference to a localized text property within a Java properties file
available on the classpath.

APP_PROP_RESOURCE_PATH
A reference to a localized text property within a Java properties file stored
in the Application Resource Store in the database.

LITERAL_VALUE_PATH
A path that encodes a literal value that can be resolved without reference
to any external data source.

The prefix path is extended with further path steps to identify the required data.
The forms of the paths that are required for each of the supported data sources are
described in the following sections. The use of constants in ClientPaths, or their
corresponding prefix path values, other than those that are listed here, are not
supported in the Cúram application.

General Properties Resources
The general properties path refers to a localized text property stored in a Java
properties file on the classpath. The prefix path is extended with two further steps:
the first step is the resource identifier for the properties file; the second step is the
property key. Java properties files can be added to any package within the
javasource folder of an application component, the same location used for the
renderer plug-in classes.

The resource identifier to use to locate the properties should correspond to the
location of the properties resource on the classpath. For example, if the properties
file X.properties is placed in a Java package sample.resources, after the
application is built, it is stored in a JAR file on the classpath as the file
/sample/resources/X.properties. Then the resource name becomes
sample.resources.X. See the Javadoc documentation for the standard
java.util.ResourceBundle API for more information on the naming convention
and mechanism used to locate the properties for properties files in more than one
locale.

The example here shows how a renderer plug-in can retrieve the value of the age
property from the PersonDetails.properties file in the sample Java package. The
code is defined in the context of the render method. The localized text value is
stored in the ageLabel variable ready to be added to the appropriate point of the
HTML document.

Only the get method is supported when general properties resources are accessed.
If no such property can be found, the get method throws a DataAccessException.

Path objects are immutable; they are similar to java.lang.String objects in that
respect, or to the component objects described in “Overview of the Renderer

Path agePath = ClientPaths.GENERAL_RESOURCES_PATH
.extendPath("sample.PersonDetails", "age");

String ageLabel = context.getDataAccessor().get(agePath);

Figure 51. Accessing General Properties

Developing Custom Widgets 69

Component Model” on page 48. Operations such as extendPath, do not modify the
path, they return a new path (see the Javadoc for details). Therefore, if several
properties are required from the same resource, a path can be created that includes
the resource identifier step and then that path can be extended again and again to
retrieve individual property values. This is shown in the example here, where the
value of the dtlsPath variable is never changed by calls to extendPath after it is
initialized.

Where properties files are supplied for several locales, the properties file name
differs, but the path that is used to reference the property does not include the
locale. For example, if the properties files PersonDetails_en_US.properties and
PersonDetails_es.properties are defined in the sample package folder, the code
here does not change; the resource identifier remains sample.PersonDetails. The
DataAccessor automatically determines the locale of the active user and select the
correct properties resource. The usual locale fall-back sequence, described by the
java.util.ResourceBundle API, is followed.

Resource Store Properties Resources
Files of any kind are allowed to be uploaded and stored in the database of the
application, for later retrieval. This service is called the Application Resource Store.
When a file is uploaded, it no longer exists as a file, but as the value of a field in a
database record. This database record is referred to as a resource. By constructing
and resolving the appropriate path, a renderer plug-in can access property values
from Java properties resources that are uploaded to this store.

The path form is a little different from the paths that are used for general
properties files resources on the classpath, as it accommodates other path forms
that are not supported in the custom renderers within the Cúram application. Also,
as these are no longer properties files, there are differences in the way the
resources are identified. Properties resources are loaded to a local cache when they
are requested. The cache stores the properties in a form that optimizes locale
fall-back operations and reduces memory usage through de-duplication, so the
individuality of the original resources is lost. However, this results in an efficient
system that is a good alternative to classpath-based properties resources,
particularly where resources can need to be modified at runtime.

The path is created by extending the prefix path that is defined by
ClientPaths.APP_PROP_RESOURCE_PATH. The extension adds a single step. The
selector of the step is the name of the resource and a single predicate contains the
name of the property key. The resource is identified by using the name that is
assigned to the resource when it was uploaded to the resource store. For example,
if an administrator uploads the file PersonDetails.properties to the resource store
and names the resource PersonDetails.properties, then that is the identifier that
must be used. The .properties name suffix (which is not a file extension, as a
resource is not a file) is not added or removed by the system and must be used as

Path dtlsPath = ClientPaths.GENERAL_RESOURCES_PATH
.extendPath("sample.PersonDetails");

DataAccessor da = context.getDataAccessor();

String ageLabel = da.get(dtlsPath.extendPath("age"));
String dobLabel = da.get(dtlsPath.extendPath("date.of.birth"));
String nameLabel = da.get(dtlsPath.extendPath("name"));
String addressLabel = da.get(dtlsPath.extendPath("address"));

Figure 52. Accessing Multiple General Properties

70 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

the identifier of the resource. The name could be set to just PersonDetails, without
any suffix, but adding the suffix can help to make the type of the resource more
readily identifiable from its name when the resource store is administered. Either
way, the resource identified in the path should match the resource name in the
resource store exactly. An example of the construction of a path to request the age
property from the resource store resource that is named PersonDetails.properties
is shown here.

As with general properties resources, only the get method is supported when
general properties resources are accessed. If no such property can be found, the get
method throws a DataAccessException.

Where multiple properties resource values are required, the path to the resource
can first be created with an empty predicate and then the value of the predicate
can be set again and again by using the applyIndex method of the Path interface.
This method returns a new path each time, it does not modify the existing path.
The index value is used to set the value of the first empty predicate that is
encountered in the path. This is shown here.

The locale fall-back operation depends on all the resources in the sequence having
the same name. When resolving properties using the local fall-back mechanism, the
CDEJ does not modify the name of the requested resource, it changes only the
value for the separate locale field in the resource store record. This differs from the
way the java.util.ResourceBundle API creates new file names when searching for
locale fall-back resources. When a resource is uploaded to the store, both the name
and the locale are specified separately through the administration interface. If the
files PersonDetails_en_US.properties and PersonDetails_es.properties are
uploaded, the administrator can assign the same name PersonDetails.properties
(or just PersonDetails, if preferred) to both resources, but set the separate locale
field value to en_US and es, as appropriate. If no locale is specified, then the
resource is treated as the ultimate locale fall-back resource, just as the
ResourceBundle API would treat a properties file with no locale code that is
appended to its name.

Literal Values
Occasionally, the developer can need to represent a literal value by using a path, as
the widget API usually only supports paths to represent data. For this purpose, the
developer can encode a literal value within a path, so that when the DataAccessor
resolves the path, the literal value is returned.

Path agePath = ClientPaths.APP_PROP_RESOURCE_PATH
.extendPath("PersonDetails.properties[age]");

String ageLabel = context.getDataAccessor().get(agePath);

Figure 53. Accessing Resource Store Properties

Path dtlsPath = ClientPaths.APP_PROP_RESOURCE_PATH
.extendPath("PersonDetails.properties[]");

DataAccessor da = context.getDataAccessor();

String ageLabel = da.get(dtlsPath.applyIndex("age"));
String dobLabel = da.get(dtlsPath.applyIndex("date.of.birth"));
String nameLabel = da.get(dtlsPath.applyIndex("name"));
String addressLabel = da.get(dtlsPath.applyIndex("address"));

Figure 54. Accessing Multiple Resource Store Properties

Developing Custom Widgets 71

An example is shown here.

The literal value can contain characters that might be confused with the path
syntax, so the value must be escaped when the path is constructed. The PathUtils
class in the curam.util.common.path package provides an escape method for this
purpose. In the example, the method escapes the forward slash characters in the
literal value and prevents them from being interpreted as separating path steps by
the extendPath method. When the path is resolved by using DataAccessor.get, the
escaping is reversed automatically, so there is no requirement on the consumer of
the path to treat it differently to any other.

Extending Paths for XML Data Access
A special domain marshal plug-in was used in many of the examples in the guide
to access data from XML document by using paths that resemble XPath
expressions. The section describes the supported path forms in more detail and
provides additional information about the automatic data conversion capabilities.

The section refers to the structure of path values. See the Javadoc for the Path and
Step interfaces in the curam.util.common.path package for an explanation of the
terminology that is used here.

When the path from the Binding of a Field object is resolved, and where that path
identifies a server interface property, the value that is returned is the value of the
server interface property. If the path is extended with extra path steps, then the
domain marshal plug-in class that is associated with the domain definition of that
server interface property is started to evaluate the extra path steps regarding the
value of the server interface property. The examples in the guide show how this
can be used to extract data from XML documents that are returned in server
interface properties. Two domain marshal plug-in classes are provided with the
Cúram application that are ready to use for this purpose.

The SimpleXPathMarshal class supports the resolution of XPath-like expressions
against data that is returned in a server interface property value. All values are
returned as strings, just as they appear in the XML document. The
SimpleXPathADCMarshal class adds the ability to apply automatic data conversion
and formatting to the resolved string values. This class can be used without
automatic data conversion, but it is a little more efficient to use the former class if
data conversion is not required. Both classes are defined in the
curam.util.client.domain.marshal package.

Simple XPath Expressions
The “simple” XPath expressions that are supported by these marshal plug-ins are
not true XPath expressions, though they aim to be as similar as possible to a small
and simple subset of the location paths that are defined by the W3C XPath 1.0
recommendation.

The paths operate on a DOM document that is created by parsing the XML string
that is returned as the value of a server interface property. Each step in the path
selects one or more nodes in the document and subsequent steps are evaluated

Path literalPath = ClientPaths.LITERAL_VALUE_PATH
.extendPath(PathUtils.escape("a //literal// value"));

Figure 55. Encoding Literal Values

72 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

within the context of each of those selected nodes. The context starts with the
document node, so the first step identifies the root element of the document.

The selector of a step (that part of the step before the predicate) defines the name
of the element or attribute to be selected. The prefix @ is used to indicate an
attribute name; an element name requires no prefix. An element name can be
followed by a single, optional predicate with an integer index value (starting from
one) or an attribute selection expression.

For example, if the XML document has the form shown in “Simple XPath
Expressions” on page 72, then the path /values selects the values root element;
/values/value[3] selects the third value element within the values root element;
/values/value[@domain='SVR_DATE'] selects the value element with the domain
attribute value SVR_DATE within the values root element; /values/value[2]/@domain
selects the domain attribute of the second value element within the values root
element; /values/value selects all three value elements within the values root
element; /values/value/@domain selects the three domain attributes from the three
value elements within the values root element; and the paths /values/value[3]/
address and /values/value/address both select the two address elements of the
third value element within the values root element. When more than one node is
selected, the selected nodes are returned in the order in which they appear in the
document.

An attribute value expression can be used to select elements that have an attribute
with a particular value. An example was given here. The expression is limited to a
single attribute name, prefixed with @ followed by an equals sign and a quoted
string value. The attribute name must be on the left side of the equals sign only.
The string can be quoted with single quotation marks or double quotation marks.
If single quotation marks are used, then the string can contain double quotation
marks and vice versa. The string cannot contain any /, [or] characters; it is
intended to be used only for matching ID values or other simple identifiers.

The selector * selects any element and the selector @* selects any attribute. For
example, the path /values/value[3]/* selects the two address elements and the
city element of the third value element within the values root element; the path
/values/@* selects the id and locale attributes of the values root element; the path
/values/*/@* selects all of the attributes of all of the child elements of the values
root element; the path /values/value[3]/*[3] selects the third child element of
any name of the third value element within the values root element, the city
element in the case of the document here.

There are a number of restrictions on the steps that can be used and on their
positions in a path. Where an element or attribute name appears below, a * can
replace it. The allowed forms are as follows (the examples refer to the sample
document here):

<values id="a1" locale="en">
<value domain="SVR_INT32">1234</value>
<value domain="SVR_DATE">20080131</value>
<value domain="ADDRESS_DATA">

<address>Apt. 86</address>
<address>1000 Main St.</address>
<city>Hometown</city>

</value>
</values>

Figure 56. A Sample XML Document

Developing Custom Widgets 73

element-name
An element name identifying the elements to be selected within the context
that is provided by the previous path step. For example, /values selects
the values root node, while /values/value selects all three value elements
within the values root element.

element-name [index]
An element name and an integer index value that identifies one of several
elements with that name in the context that is provided by the previous
path step. For example, /values[1] selects the first values element, which,
as it is the root element and the only values element, selects the same
element as the simpler path /values; /values/value[2] selects the second
value element that is a child of the values root element.

element-name [@ attribute-name = quoted-string]
An element name and an attribute selection expression that identifies
elements with that name and with that value for the named attribute in the
context that is provided by the previous path step. See the example here
for more details.

@ attribute-name
An attribute name that identifies an attribute of the element or elements
that are selected by the previous steps in the path. An attribute selection
step is only allowed as the last step in a path unless it is followed by a
single function step (described here).

For convenience, the following step form can also be used in leading steps or the
terminal step:

element-name []
An element name followed by an empty predicate. This is treated in the
same way as a simple element name. This is not a true XPath expression,
but it is convenient for situations when a path has an empty predicate to
which an index is later applied. A common scenario if all that is required is
a count of the nodes.

A valid path can select zero or more nodes. The values that are returned for these
nodes depend on which method of the DataAccessor was called from the renderer
class. The details are provided in the next section.

The Path interface does not support the representation of full XPath expression.
Notably, XPath function calls that accept location paths as arguments cannot be
represented, so a non-standard notation is used to provide some basic functionality.
Instead of an expression of the form function-name (location-path) , the form
location-path / function-name () is used instead. For example, to the get the
qualified name of the third child element of the third value element in the sample
document above, the path would be /values/value[3]/*[3]/name(); this is treated
as if it were the expression name(/values/value[3]/*[3]).

A function can only appear as the last step in a path. The supported functions are
as follows:

name()
Gets the qualified name of the first node that is selected by the path. This
is the element or attribute name that includes any namespace prefix.

local-name()
Gets the name of the first node that is selected by the path. This is the
element or attribute name not including any namespace prefix.

74 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Evaluating the Paths
Paths are evaluated by using the DataAccessor object available from the
RendererContext that is passed to all render methods. When a path is extended
into a server interface property value, the method that is called on the
DataAccessor determine the method that is called on the marshal plug-in.

For the SimpleXPathMarshal plug-in class data is converted generally as follows:
v The value of an attribute node is the string value of the attribute.
v The value of an element node is the concatenation of the values of all of the

child text nodes of that element.
v If the are no selected nodes or a path evaluates to null, the result depends on

which DataAccessor method was called. See here for details.
v The value of the result of a function call, is the string value of that result.

This behavior is consistent with use of the standard XPath string() function on
the selected nodes or value, except, if an element node, where only direct child text
nodes of an element are concatenated, not all descendant text nodes as would be
normal for XPath.

The DataAccessor methods refine the general behavior that is described here. For
the SimpleXPathMarshal plug-in class, there is little difference between the
formatted and raw variants, except for their handling of null values.

get Gets the string value of the first node (in document order) selected by the
simple XPath expression that is given by the path, or, if a function call, the
string value of the result of that call. If no nodes are selected, the result is
an empty string. To distinguish between an attribute or element that is
present but has an empty string value and an attribute or element that is
not present at all, use the getRaw method and test if the result is an empty
string or a null value.

getRaw Gets the first raw value of the first node (in document order) selected by
the path, or, if a function call, the resulting value of that call. If no nodes
are selected, the result is null.

getList
Gets the list that contains the string values of the nodes (in document
order) selected by the path. For non-function-call paths, the values in the
list represent the result of calling the get method on each selected node. If
the path represents a function call, then the list contains the single result of
calling the function ones on all of the selected nodes, not a list of the
results of the function call on each node. The functions operate only on the
first node when presented with a list of several nodes.

For example, /values/value[3]/* selects all of the child elements of the
third value element within the values root element. The resulting list
contains the three string objects, one each for the body text of each
element. However, evaluating the path /values/value[3]/*/name() returns
a list that contains a single string that is the name of the first selected
element (addr), not one string for the name of each selected element.

getRawList
Gets the list that contains the values of the nodes (in document order)
selected by the path. The conversion behavior of this method is the same
as the getRaw method and the list handling is the same as the getList
method.

Developing Custom Widgets 75

count Counts the number of nodes that are selected by the path. If the path
represents a function call, then the count is the number of results from the
function call (usually one).

Automatic Data Conversion
The SimpleXPathMarshal class is useful when simple string values from XML
documents are extracted.

However, much of the time, the values are merely the string representation of
other data types, such as dates, numbers, and code-table items. The
SimpleXPathADCMarshal extends the capabilities of the SimpleXPathMarshal by
enabling automatic data conversion (ADC) using the domain converter plug-ins.
The same XPath location paths that are supported by the SimpleXPathMarshal are
supported by this ADC class.

This SimpleXPathADCMarshal plug-in performs automatic data conversion (ADC) on
the values in the XML content. This requires that the XML content represents
values in a particular form: the value must be the body content of an element and
the element must have a domain attribute identifying the name of the domain
definition to apply to the value. The values must use the generic string form of the
data, to be compatible with the parseGeneric method of the domain converter
plug-in associated with the identified domain. In general, the generic string value
is the same as the result of calling Java's toString method on the corresponding
Java object, except for date and data-time values, where the ISO 8601 basic format is
used. ADC cannot be applied to the values of attributes or the results of XPath
function calls, only to the body text of elements; however, attributes can still be
used for values if ADC is not required.

Generic String Values: The generic string value of a server interface property is
used to represent numbers, dates, date-times, and other values unambiguously in
string form when it is not possible to represent them using a more suitable Java
object representation. The generic string value in some of the domain definition
options in the application UML model and when data in XML documents is
transported. The format avoids problems that can arise if values were formatted
according to the rules or conventions of different locales, as these would add
unnecessary complication and need to be communicated.

For numbers, the generic string representation must omit grouping separator
characters (such as thousands separators), use only a period character (Unicode
“FULL STOP” U+002E) as a decimal separator and, if the number is negative, place
the minus sign character (Unicode “HYPHEN-MINUS” U+002D) on the left. The
CDEJ is lenient when parsing numeric values that use a comma as a thousands
separator, but these are best avoided. Using the toString method of class used for
the Java object representation of numeric domain definitions produce the wanted
result. The classes that are used for the Java object representations for all of the
base domain definitions are listed in the Cúram Web Client Reference Manual.

Date and date-time values must be formatted by using ISO 8601 basic format. ISO
8601 basic format represents date and date-time values as fixed-length character
strings. The format for date values is YYYYMMDD, two-digit years are not allowed.
The format for date-time values is YYYYMMDD T hhmmss, the T is a literal character
that denotes the start of the time value and the time uses the 24-hour clock. The
parseGeneric method assumes the date-time values are in the UTC time zone. The
active user's time zone is applied when formatting the value for display.

76 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Without ADC, the formatted values and raw values that are returned by the getter
methods are both the literal string values that are retrieved from the XML
document (with only a difference in the handling of null values). With ADC, the
formatted values are the values that are formatted according to the locale of the
active user and the raw values are the Java object representations of those values
appropriate for the indicated domain.

For example, regarding the document in “Simple XPath Expressions” on page 72, if
the path /values/value[1] is passed to the get method, then the result will be the
string string 1,234 if the user's locale is, say, en, where a comma is used as a
thousands separator. Similarly, if the path is /values/value[2], then the result will
be 31-Jan-2008 if the user's locale is en and if that particular date format is set. For
raw values, the effect is similar, but the corresponding Java object is returned
instead of a formatted string. For example, it will be a java.lang.Integer for the
SVR_INT32 domain, or a curam.util.type.Date for the SVR_DATE domain. Date
and date-time values are in the UTC time zone. They are converted to the user's
time zone when formatted.

Source Code for the Sample Widgets

Source Code for the E-Mail Address Widget

Source Code for the Photograph Widget

public class EMailAddressViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

String emailAddress = context.getDataAccessor()
.get(field.getBinding().getSourcePath());

Document doc = fragment.getOwnerDocument();

Element span = doc.createElement("span");
span.setAttribute("class", "email-container");
fragment.appendChild(span);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "mailto:" + emailAddress);
span.appendChild(anchor);

Element img = doc.createElement("img");
img.setAttribute("src", "../Images/email_icon.png");
anchor.appendChild(img);

anchor.appendChild(doc.createTextNode(emailAddress));
}

}

Developing Custom Widgets 77

Source Code for the Details Widget

public class PhotoViewRenderer extends AbstractViewRenderer {

public void render(final Field component,
final DocumentFragment fragment,
final RendererContext context,
final RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
String personID

= context.getDataAccessor().get(component.getBinding()
.getSourcePath().extendPath("photo/id"));

String personName = context.getDataAccessor()
.get(component.getBinding()

.getSourcePath().extendPath("photo/name"));

Document doc = fragment.getOwnerDocument();

Element rootDiv = doc.createElement("div");
rootDiv.setAttribute("class", "photo-container");
fragment.appendChild(rootDiv);

Element linkDiv = doc.createElement("div");
linkDiv.setAttribute("class", "details-link");
rootDiv.appendChild(linkDiv);

Element anchor = doc.createElement("a");
anchor.setAttribute("href", "Person_homePage.do?"

+ "id=" + personID);
linkDiv.appendChild(anchor);

Element anchorImg = doc.createElement("img");
anchorImg.setAttribute("src", "../Images/arrow_icon.png");
anchor.appendChild(anchorImg);

Element photoDiv = doc.createElement("div");
photoDiv.setAttribute("class", "photo");
rootDiv.appendChild(photoDiv);

Element photo = doc.createElement("img");
photo.setAttribute("src",

"../servlet/FileDownload?"
+ "pageID=Sample_photo"
+ "&id=" + personID);

photoDiv.appendChild(photo);

Element descDiv = doc.createElement("div");
descDiv.setAttribute("class", "description");
descDiv.appendChild(doc.createTextNode(personName));
rootDiv.appendChild(descDiv);

}
}

78 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

public class PersonDetailsViewRenderer
extends AbstractViewRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException, PlugInException {

String name = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/name"));
String reference = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/reference"));

String address = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/address"));
String gender = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/gender"));

String dateOfBirth = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/dob"));
String age = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/age"));

String phone = context.getDataAccessor().get(
field.getBinding().getSourcePath()

.extendPath("/details/phone"));
String email = context.getDataAccessor().get(

field.getBinding().getSourcePath()
.extendPath("/details/e-mail"));

Document doc = fragment.getOwnerDocument();

Element detailsPanelDiv = doc.createElement("div");
detailsPanelDiv.setAttribute("class",

"person-details-container");
fragment.appendChild(detailsPanelDiv);

Element div;
Element image;

div = doc.createElement("div");
div.setAttribute("class", "header-info");
div.appendChild(doc.createTextNode(name));
div.appendChild(doc.createTextNode(" - "));
div.appendChild(doc.createTextNode(reference));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.appendChild(doc.createTextNode(address));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.appendChild(doc.createTextNode(gender));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.appendChild(doc.createTextNode("Born "));
div.appendChild(doc.createTextNode(dateOfBirth));
div.appendChild(doc.createTextNode(", Age "));
div.appendChild(doc.createTextNode(age));
detailsPanelDiv.appendChild(div);

div = doc.createElement("div");
div.setAttribute("class", "contact-info");
detailsPanelDiv.appendChild(div);
image = doc.createElement("img");
image.setAttribute("src", "../Images/phone_icon.png");
div.appendChild(image);
div.appendChild(doc.createTextNode(phone));

FieldBuilder fb =
ComponentBuilderFactory.createFieldBuilder();

fb.setDomain(
context.getDomain("SAMPLE_EMAIL"));

fb.setSourcePath(
field.getBinding().getSourcePath()

.extendPath("/details/e-mail"));
DocumentFragment emailFragment = doc.createDocumentFragment();
context.render(fb.getComponent(), emailFragment,

contract.createSubcontract());
div.appendChild(emailFragment);

}
}

Developing Custom Widgets 79

Source Code for the Person Context Panel Widget

Source Code for the Horizontal Layout Widget

public class PersonContextPanelViewRenderer
extends AbstractViewRenderer {

public void render(final Field component,
final DocumentFragment fragment,
final RendererContext context,
final RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
ContainerBuilder cb

= ComponentBuilderFactory.createContainerBuilder();
cb.setStyle(context.getStyle("horizontal-layout"));

FieldBuilder fb
= ComponentBuilderFactory.createFieldBuilder();

fb.copy(component);
fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());

fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());
DocumentFragment content

= fragment.getOwnerDocument().createDocumentFragment();
context.render(cb.getComponent(), content,

contract.createSubcontract());
fragment.appendChild(content);

}
}

80 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Source Code for the Text Field Widget with No
Auto-completion

public class PersonContextPanelViewRenderer
extends AbstractViewRenderer {

public void render(final Field component,
final DocumentFragment fragment,
final RendererContext context,
final RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {
ContainerBuilder cb

= ComponentBuilderFactory.createContainerBuilder();
cb.setStyle(context.getStyle("horizontal-layout"));

FieldBuilder fb
= ComponentBuilderFactory.createFieldBuilder();

fb.copy(component);
fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());

fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
fb.setSourcePath(

component.getBinding().getSourcePath()
.extendPath("person"));

cb.add(fb.getComponent());
DocumentFragment content

= fragment.getOwnerDocument().createDocumentFragment();
context.render(cb.getComponent(), content,

contract.createSubcontract());
fragment.appendChild(content);

}
}

Developing Custom Widgets 81

public class NoAutoCompleteEditRenderer
extends AbstractEditRenderer {

public void render(
Field field, DocumentFragment fragment,
RendererContext context, RendererContract contract)
throws ClientException, DataAccessException,

PlugInException {

String title = getTitle(field, context.getDataAccessor());
String targetID = context.addFormItem(field, title, null);

boolean useDefault = !"false".equalsIgnoreCase(
field.getParameters().get(FieldParameters.USE_DEFAULT));

String value = context.getFormItemInitialValue(
field, useDefault, null);

Element input = fragment.getOwnerDocument()
.createElement("input");

fragment.appendChild(input);

input.setAttribute("type", "text");
input.setAttribute("autocomplete", "no");
input.setAttribute("id", targetID);
input.setAttribute("name", targetID);

if (title != null && title.length() > 0) {
input.setAttribute("title", title);

}

if (value != null && value.length() > 0) {
input.setAttribute("value", value);

}

if ("true".equals(field.getParameters()
.get(FieldParameters.INITIAL_FOCUS))) {

input.setAttribute("tabindex", "1");
}

String width
= field.getParameters().get(FieldParameters.WIDTH);

if (width != null && width.length() > 0
&& !"0".equals(width)) {

String units;
if ("CHARS".equals(field.getParameters()

.get(FieldParameters.WIDTH_UNITS))) {
units = "em";

} else {
units = "%";

}
input.setAttribute("style", "width:" + width + units + ";");

}

setScriptAttributes(input, field);
}

}

82 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Notices

This information was developed for products and services offered in the United
States.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM® product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

© Copyright IBM Corp. 2012, 2016 83

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings

84 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies or other similar technologies that collect each user’s name, user
name, password, and/or other personally identifiable information for purposes of
session management, authentication, enhanced user usability, single sign-on
configuration and/or other usage tracking and/or functional purposes. These
cookies or other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “ Copyright and
trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other names may be trademarks of their respective owners. Other company,
product, and service names may be trademarks or service marks of others.

Notices 85

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

86 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

IBM®

Printed in USA

	Contents
	Figures
	Tables
	Developing Custom Widgets
	Overview
	Prerequisites
	What's New?
	Customizing Widgets
	Outline of this Guide
	Conventions of this Guide
	Limitations and Restrictions

	Approaches to Customization
	Prerequisites
	Identifying the Right Approach
	Using Only UIM
	Reconfiguring Standard Widgets
	Developing Simple Custom Widgets
	Developing Complex Custom Widgets
	Mixing Simple Custom Widgets with UIM
	Responsibilities of the Widget Developer

	How Widgets Work
	Prerequisites
	Anatomy of a Widget
	How Widgets Work In Depth

	An EMail Address Widget
	Prerequisites
	Defining the HTML
	Defining the Renderer Class
	Accessing the Data
	Generating the HTML Content
	Configuring the Widget

	The Sample Context Panel Widgets
	Prerequisites
	The Sample Widgets

	A Photograph Widget
	Prerequisites
	Defining the HTML
	Defining Data in XML Form
	Defining the Renderer Class
	Accessing Data in XML Form
	Generating the HTML Content
	Linking to a UIM Page
	Linking to a Static Image
	Linking to the FileDownload Servlet

	Configuring the Widget
	Configuring the FileDownload Servlet

	A Details Widget Demonstrating Widget Reuse
	Prerequisites
	Defining the HTML
	Defining Data in XML Form
	Defining the Renderer Class
	Accessing Data in XML Form
	Generating the HTML Content
	Configuring the Widget

	Tying Widgets Together in a Cascade
	Prerequisites
	Defining Data in XML Form
	Defining the HTML
	Defining the Renderer Classes
	Generating the HTML Content
	Person Context Panel Widget
	Horizontal Layout Widget

	Configuring the Widgets
	Person Context Panel Widget
	Horizontal Layout Widget

	A Text Field Widget with No Auto-completion
	Prerequisites
	Defining the HTML
	Defining the Renderer Class
	Handling Form Items
	Accessing the Data
	Generating the HTML Content
	Configuring the Widget
	Limitations on Support for Custom Edit Renderers

	Internationalization and Localization
	Prerequisites
	CDEJ Support for Internationalization
	Widget Internationalization

	Accessibility Concerns
	Prerequisites
	Overview
	Labels for Form Input Controls
	Font Sizes

	Overview of the Renderer Component Model
	Elements of the Model
	Building Components

	Design and Implementation Guidelines
	Guidelines for Writing Renderers
	Do Keep Things Simple
	Do Divide and Conquer
	Do Check for Nulls
	Do Take Shortcuts
	Do Go with the Flow
	Do Not Introduce Concurrency Issues
	Do Not Convert Data in a Renderer
	Do Not Do Too Much

	Supporting Field-level Security
	Adding New CSS Rules for Custom Widgets

	Testing, Troubleshooting and Debugging
	Testing
	Troubleshooting
	Debugging

	Configuring Renderers
	Overview
	Configuring Domain Renderers
	Configuring Component Renderers

	Accessing Data with Paths
	Overview Diagram
	Creating New Paths
	General Properties Resources
	Resource Store Properties Resources
	Literal Values

	Extending Paths for XML Data Access
	Simple XPath Expressions
	Evaluating the Paths
	Automatic Data Conversion

	Source Code for the Sample Widgets
	Source Code for the E-Mail Address Widget
	Source Code for the Photograph Widget
	Source Code for the Details Widget
	Source Code for the Person Context Panel Widget
	Source Code for the Horizontal Layout Widget
	Source Code for the Text Field Widget with No Auto-completion

	Notices
	Privacy Policy considerations
	Trademarks

