
IBM Cúram Social Program Management
8.0.2

Cúram Security Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
109

Edition

This edition applies to IBM® Cúram Social Program Management 8.0.0, 8.0.1, and 8.0.2.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

Figures... vi

Tables... vii

Chapter 1. Securing Social Program Management... 1
Authentication Overview..1

Authentication.. 1
Authentication Architecture... 2
Default Authentication... 2
Alternate Login IDs...3
The Login Page..5
Customization of the Login Page..6
Cúram JAAS Login Module... 6
Password Management.. 7
Default Configuration for WebLogic Server..7
Default Configuration for WebSphere.. 7
Customizing the login module..9
Verification Process for Authentication... 10

Authorization Overview... 13
Users, Roles and Groups.. 13
Security Identifiers (SIDs)..13
Function Identifiers (FIDs)...14
Field Level Security Identifiers.. 14
User Defined SIDs.. 14
Runtime Authorization... 15
Client Authorization Checks...15
Server Authorization Checks..15

Cryptography in Cúram.. 15
Ciphering...15
Digesting... 16
Cryptography Properties.. 16
Cúram Cipher Settings... 16
Cúram Digest Settings..17
Cipher-Encrypted Passwords...18

Security Data Caching..19
Cúram Security Cache.. 19
Cache Refresh...19
Cache Refresh Failure.. 19
WebSphere Caching Behavior..19

Security for Alternative Clients..20
Mandatory Cúram Users...20
Web Services.. 20
Batch Processing.. 20
JMS Messaging... 21
Deferred Processing... 21

External User Applications.. 21
External User Applications...21
User Scope..22
Deployment of an External Application... 22

Configuring Single Sign On (SSO).. 23

 iii

Configuring SAML SSO..23
Configuring SSO..84

Other Security Considerations...85
SSL settings for the application... 85
Using Social Program Management in a secure environment...86
Client HTML error pages...86
Enabling HTTP verb permissions... 86

Customizing Authentication.. 88
Customizing the Login Page... 88
Applying Styling to the Login Page...88
Enabling Usernames With Extended Characters for WebLogic Server...88
Changing the Case-Sensitivity of the Username... 89
Adding Custom Verifications to the Authentication Process.. 89
Configuring the Custom Authenticator.. 89
Configuring Identity Only Authentication.. 89
Adding the Cache Refresh Failure Callback Interface...89
Turning off SSL settings for the application...90
Modifying the web.xml File for the Client Application...90
Modifying the Application Server Configuration..90
Analyzing the AuthenticationLog Database Table...90

Customizing Authorization...91
Creating Authorization Data Mapping..91
Creating a New Security Role...92
Creating a New Security Group.. 92
Linking the Security Group to the Security Role..92
Creating the Security Identifier (SID).. 92
Linking the Security Group to the SID..92
Linking the Security Role to the User...92
Loading Security Information onto the Database... 93
Creating Function Identifiers (FIDs).. 93
Switching Security off for a Process Method... 93
Security Considerations During Development...93
Controlling the Logging of Authorization Failures for the Client... 93
Authorizing New SID Types..94
Analyzing the AuthorisationLog Database Table... 94

Customizing Cryptography...94
Cipher Customization... 94
Key Management..95
How to Create a New Keystore.. 96
Digest Customization... 96
How to Specify a Digest Salt.. 97
How to Utilize the Superseded Digest Settings for a Period of Migration...97
Modifying Your Cryptography Configuration for a Production System... 98

Customizing External User Applications... 99
Creating an External User Application...99
Creating an External User Client Login Page... 99
Creating an External User Client Automatic Login Page... 99
Extending the Public Access User Class..100
Authenticating an External User..101
Determine External User Details... 102
Authorizing an External User... 102
Determining the User Type.. 103
Preventing the Deletion of a Security Role: Role Usage Count...103
Retrieving a Registered Username.. 104
Reading User Preferences..104
Modifying User Preferences...104
Configuring External Access Security..105
Determining if a User is Internal or External using the UserScope Interface.................................. 105

iv

User Type Determination... 105
Customizing Sanitization Settings...106
Cross-Site Request Forgery (CSRF) and IBM Cúram Social Program Management.............................. 107

Cross-Site Request Forgery (CSRF) protection for Cúram web pages..107

Notices..109
Privacy Policy considerations..110
Programming Interface Information...110
Trademarks.. 110

 v

Figures

1. Authentication architecture.. 2

2. Default authentication...3

3. Default authentication flow for WebSphere... 8

4. Authentication Flow for WebSphere with User Registry Enabled..9

5. Identity Only Authentication...12

6. IdP-initiated flow...25

7. SP-initiated flow.. 26

8. IdP-initiated flow for Universal Access.. 27

9. IdP-initiated flow...30

10. SP-initiated flow..31

11. SSO configuration components.. 33

12. IdP-initiated flow for Social Program Management in WebSphere Application Server..........................39

13. IdP-initiated flow for Universal Access in WebSphere Application Server... 40

14. SP-initiated flow for Social Program Management in WebSphere Application Server........................... 41

15. SP-initiated flow for Universal Access in WebSphere Application Server...42

16. Universal Access SSO configuration components... 47

17. IdP-initiated flow for SPM in WebLogic Server.. 56

18. IdP-initiated flow for Universal Access in WebLogic Server..57

19. SP-initiated flow for Social Program Management in WebLogic Server.. 58

20. SP-initiated flow for Universal Access in WebLogic Server... 59

21. Universal Access SSO configuration components... 65

22. SAML SSO with multifactor authentication.. 76

23. Installed and configured ISVA docker containers..77

vi

Tables

1. ExtendedUsersInfo Table Structure... 4

2. ACS trust association interceptor custom properties.. 43

3. ACS trust association interceptor custom properties.. 49

4. Resources attached to each POP..80

5. Properties used to configure the email OTP authentication mechanism.. 82

6. Contents of the Authentication Log.. 91

7. Contents of the Authorization Log.. 94

8. Relationship of keytool Command Arguments to Cúram Crypto Properties... 95

 vii

viii

Chapter 1. Securing Social Program Management
Ensure that you secure your IBM Cúram Social Program Management applications. Authentication and
authorization are two key components of application security. The Social Program Management web client
is configured to support form-based authentication. You can configure different authentication modes
with the JAAS login module. Functional elements in Social Program Management are secured by security
identifiers. This data is linked to a user and can be configured.

Authentication Overview
In Cúram, authentication is the process of determining if a user is who they say they are. Authentication is
needed where a user must be verified in order to access a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing them to enter username and
password credentials. These credentials are compared against the credentials stored on the system for
this username, if they match the user is considered an authenticated user for the system. For security
reasons the password for authenticating a user is stored on the system in a digested form.

The Cúram web client is configured to support form-based authentication, which means that before a
user can access any of the web client content, they will be redirected to a login form to authenticate.

The authentication process involves the verification of the username and password, and this is performed
by default by a JAAS (Java™ Authentication and Authorization Service) login module. HTTPS/SSL is turned
on by default in the web client ensuring the form-based login authentication mode is secure.

Authentication
Different authentication modes can be configured (depending on authentication requirements) by the
Cúram Java Authentication and Authorization Service (JAAS) login module.

The following are the authentication modes supported:

• Default Authentication
• Identity Only Authentication
• External Access Security Authentication

Each of these modes is described in detail in the sections that follow.

© Copyright IBM Corp. 2012, 2022 1

Authentication Architecture
Use the information in this flow chart to understand the architecture for the authentication process of a
user.

Figure 1. Authentication architecture

The flow chart shown here outlines the architecture for the authentication process of a user. The default
authentication is completed for a user. This behavior can be customized for both internal and external
users, depending on the authentication requirements. The sections in Authentication Overview chapter
that follow describe in detail each of the functional areas that make up the authentication architecture,
indicating where customizations are possible.

Default Authentication
Default authentication for Cúram involves the user who logs in through the login screen, where the user is
prompted for a username and password as credentials. These credentials then are passed to the Cúram
Java Authentication and Authorization Service (JAAS) login module configured in the application server.

The default authentication is run and the username and password entered are checked against
the username and password stored on the Cúram Users database table. The Cúram username is
immutable, but you have the option of configuring your system to use a Cúram login ID instead, which
is changeable. The login ID is a logical extension of the Cúram user and the same verifications that
are checked for the username also are checked for the login ID. For more information about alternate
login IDs, see “Alternate Login IDs” on page 3.

Authentication runs a number of verifications against the login credentials. For more information on the
login verifications, see “Default Authentication” on page 10.

Provided all verifications are successful, the user is considered to be authenticated by the application.

After the user is authenticated, the user then is added to the Cúram Security Cache. The Cúram Security
Cache stores the username and all related authorization data for that user to optimize the authorization
data retrieval for a user. For more information on the Cúram Security Cache, see “Security Data Caching”
on page 19. Figure 2.3 highlights the path taken for default authentication.

2 IBM Cúram Social Program Management: Cúram Security Guide

Figure 2. Default authentication

Alternate Login IDs
By default, IBM Cúram Social Program Management uses the username and digested password that
is stored in the Cúram Users table for authentication. The username cannot be changed after it
is created and the lack of flexibility might not meet requirements for some installations. You have
the option to configure an alternate login ID that can be updated. However, if the default security
implementation that is configured during installation meets your requirements, it is not necessary to
configure an alternate login ID.

The login ID functions as a logical extension of the Cúram Users table. When the alternate login ID
is used the username still exists and is used internally, but the user logs in with the login ID.

Things to note when using the alternate login ID:

• Users can log in with their alternate login IDs if available or user names if not. When the property
alternate login is disabled, users are only allowed to log in with their user names.

• The Cúram ExtendedUsersInfo table, where the login ID is stored, must be populated before the
application turns on the alternate login ID feature, which is explained in more detail in the following
explanation.

• When using login IDs, authentication results are stored in the AuthenticationLog table and the
AltLogin column indicates whether the UserName column represents a username (false) or login
ID (true).

• Login IDs are only applicable to internal Cúram users; that is, users stored on the Cúram Users table.
However, if you are using identity-only with alternate Login IDs then wherever those IDs are stored (for
example, WebSphere registry, Lightweight Directory Access Protocol (LDAP), and so on) must match the
login IDs stored in the Cúram ExtendedUsersInfo table.

• When assigning login IDs, you need to take care with IDs that are used internally or have dependencies
(for example, with property values) outside of the Cúram Users table. These IDs are the user names
that would cause issues if theirlogin ID differed from the username without a corresponding change
as indicated:

Chapter 1. Securing Social Program Management 3

– SYSTEM - In WebSphere Application Server, WebLogic Server, or WebSphere Liberty this
user name is associated with Java Message Service (JMS) processing and is made part of the your
application server configuration at deployment time. For more information on changing this ID, see
“Mandatory Cúram Users” on page 20 and the appropriate application server in Cúram Deployment
Guide.

– DBTOJMS - this value is the default DBtoJMS username used by batch processing and is referenced
by property curam.security.credentials.dbtojms.username. For more information, see
“Mandatory Cúram Users” on page 20, “JMS Messaging” on page 21, and“Deferred Processing” on
page 21 the Cúram Batch Processing Guide.

– WEBSVCS - this value is the default web services username and is referenced by property
curam.security.credentials.ws.username. For more information, see “Mandatory Cúram
Users” on page 20, “Web Services” on page 20, and the Cúram Web Services Guide.

– Unauthenticated - is the principal WebSphere uses for unauthenticated users and this login ID
should not be changed.

To enable the use of the alternate login ID, after you have populated the ExtendedUsersInfo table,
set the curam.security.altlogin.enabled property to true. For more information about Social
Program Management properties, see the Cúram Server Developer's Guide). This value is a static property
and Cúram must be restarted for it to take effect.

When the curam.security.altlogin.enabled property is set to true, authentications are not
processed directly through the user name column in the Cúram Users table. Instead, authentications
are all processed through the ExtendedUsersInfo login ID, which references the Cúram Users
table.

The Login ID field is displayed in the administrative pages only when the corresponding
curam.security.altlogin.enabled property is set to true.

To populate the ExtendedUsersInfo table (see table that follows for ExtendedUsersInfo you have a
number of options; for instance:

• With a simple SQL statement, you can populate the table by using the user name in the Users table; so,
there is no immediate user impact: INSERT INTO EXTENDEDUSERSINFO (USERNAME, LOGINID,
UPPERLOGINID, VERSIONNO) (SELECT USERNAME, USERNAME, UPPER(USERNAME), 1 FROM
USERS); You can then roll out your modifications to the login IDs in a controlled manner.

• You can implement an SQL application that implements your user name and login ID mapping (for
example, LDAP common names).

Note: You must maintain the user name foreign key relationship between the Users and
ExtendedUsersInfo tables.

Table 1. ExtendedUsersInfo Table Structure

Name Type Size Description

USERNAME VARCHAR 256 Username is an
immutable string. This
field has a foreign
key relationship with
username field in Users
table.

4 IBM Cúram Social Program Management: Cúram Security Guide

Table 1. ExtendedUsersInfo Table Structure (continued)

Name Type Size Description

LOGINID VARCHAR 1280 Login ID is associated
to the user name and
can be updated. The
login ID functions as
a logical extension of
the Cúram Users table.
Users can log in to
Cúram application by
using Login ID.

UPPERLOGINID VARCHAR 1280 Login ID in uppercase.
Uppercase login ID is
used for supporting
case-insensitivity.

Version No VARCHAR 4 Version Number.

Configuring internal and external users
If you have both internal and external users, extra calls might occur to the
getRegisteredUserName() method in the ExternalAccessSecurity class. The security cache
calls the getRegisteredUserName() method if the login ID is not found in the security cache.
Therefore, all internal and external login IDs and user names must be unique, unless the
curam.util.security.UserScope interface is implemented. Otherwise, an external user that
matches a login ID might be found in the security cache and therefore not found as an external user.
If a login ID can't be found either in the cache, or through the External Access Security implementation
if it is provided, then an INFRASTRUCTURE.INFO_LOGIN_ID_DOES_NOT_MAP_TO_USERNAME exception
occurs.

Configuring a custom alternate login implementation
A customer can set the curam.citizenworkspace.alternate.login.implementation property
to point to a custom alternate login implementation, as shown in the following example:

curam.citizenworkspace.alternate.login.implementation=curam.citizenworkspace.security.impl.Sampl
eCitizenWorkspaceAlternateLogin

A customer can use the alternate login implementation to specify custom code that returns the
user name when an alternate login ID is submitted. The alternate login implementation must extend
the CitizenWorkspaceAlternateLogin abstract class and provide an implementation for the
getRegisteredUsername(final String loginId) method.

The Login Page
The default preconfigured login page is represented by the logon.jsp file. This logon.jsp represents
the login page for the user to complete form-based login authentication. By default, the logon.jsp file
contains the username and password fields.

Administrators create and change a user’s password that is entered in the Password field by using
functionality that is available when they create and update a user account. Administrators create and
confirm a user’s initial password when they create the user's account. Administrators can change and
confirm a user's new password by updating the user's account. For more information about password
management, see the Related information.

Note: The default logic that validates and updates a user’s password is for testing and
demonstration purposes only and is not recommended for production usage. You must customize the
default logic to meet agency-specific password requirements.

Chapter 1. Securing Social Program Management 5

You can customize the logon.jsp file to pass an additional parameter by adding the user_type
field. This field determines the type of user who is logging in, that is, internal or external user. The
username, password, and user_type (if present) are all passed to the Cúram Java Authentication and
Authorization Service (JAAS) login module as part of the authentication process.

By default, the preconfigured logon.jsp file does not have the user_type property set. If this property
is not set, the user is assumed to be internal. When this property is set, it indicates that an external user is
logging in. This property can be set to any value other than INTERNAL.

Related information
Password Management
Maintaining User Accounts

Customization of the Login Page
The logon.jsp file can be customized; that is, the logon.jsp file can be replaced by a custom
logon.jsp file, for a number of reasons.

The reasons the file can be replaced include the following: reasons.

An external user client application is being developed
If an external user client application is being developed, a new logon.jsp file needs to be created,
as the user type needs to be set to indicate that an external user is logging in. For more information,
see “Creating an External User Client Login Page” on page 99.

Automatic login is needed
Some external user client applications require no user authentication and hence a username and
password need not be requested, that is, if an external public access application. It is not possible
to disable authentication, so the best way to achieve this requirement is to write an automatic login
script. This procedure is done by customizing the logon.jsp file for the external public access
application. For more information, see “Creating an External User Client Automatic Login Page” on
page 99.

Different styling is required
The section on Login Pages in the Cúram Web Client Reference Manual for more information on styling
for the logon.jsp file.

A requirement exists for user names to contain extended characters (valid only for Oracle WebLogic
Server)

Web Logic Server provides a proprietary attribute, j_character_encoding, which must be added
to the logon.jsp file. For more information, see “Enabling Usernames With Extended Characters for
WebLogic Server” on page 88.

Cúram JAAS Login Module
Authentication is performed by a Java Authentication and Authorization Service (JAAS) login module. It
is configured in the application server and is started automatically by the application server as part of
the authentication process for any access to the Cúram application. The advantage to this approach is
that the default authentication mechanism can be used with, or replaced by, a custom approach, without
affecting the Cúram application.

As mentioned earlier, the Cúram JAAS login module can be configured to operate in three modes. For
more information on the configuration of the login modules and any application server-specific behavior,
see the section on Application Server Configuration within the Cúram Server Deployment Guide for the
application server that is being used.

Project specific requirements might mean that more than one login module is needed, for example, a
user might be required to enter more than the username and password for verification purposes. It is
possible to configure multiple login modules in the application server. Each login module is run in the
order as determined by the settings in the application server.

For more information on these settings, see the WebSphere or WebLogic Server documentation.

6 IBM Cúram Social Program Management: Cúram Security Guide

When the user is authenticated successfully by all login modules that require successful authentication of
the user (this login is configurable in the application server), the user is considered authenticated by the
application.

Password Management
The passwords for all Cúram internal and external users are stored in their digest format on the Cúram
Users and ExternalUsers database tables. When the Cúram Java Authentication and Authorization
Service (JAAS) login module receives the password, it is digested before it is sent to the login bean for
comparison.

Digesting is a one-way process to ensure the security of the password. The password stored for the
user on the database uses the same digest algorithm, subject to your encryption settings, ensuring the
encrypted passwords can be compared successfully to each other, but remain secure.

Users who are managed externally, for example, through Lightweight Directory Access Protocol (LDAP)
with Cúram identity-only configured, are not subject to the process described previously. When a user
is being authenticated against a third-party party system (for example, LDAP or a Single sign-on (SSO)
Server), where a need exists for the Cúram application to pass the user-entered credentials to the
third-party system, the custom implementation of curam.util.security.PublicAccessUser can be
used. This process allows access to the credentials with a plain-text password.

Default Configuration for WebLogic Server
The Cúram Java Authentication and Authorization Service (JAAS) login module is configured as an
authentication provider in WebLogic Server. The Cúram authentication provider is the only provider
configured by the configuration scripts provided for WebLogic Server. Since it is the only configured
authentication provider, the Cúram authentication provider is responsible for authenticating and verifying
the user.

As mentioned previously, it is possible there might be more than one authentication provider configured
in WebLogic Server. In this case, the Cúram authentication provider might not be responsible for
authenticating and verifying the user. For more information, see “Configuring SSO by using Oracle
WebLogic Server WL_Token” on page 85.

Default Configuration for WebSphere
The Cúram Java Authentication and Authorization Service (JAAS) login module is configured as a system
login module in WebSphere. The default, scripted security configuration within WebSphere involves the
default file-based user registry and the Cúram system login module.

Multiple system login configurations exist for WebSphere. The Cúram system login module is configured
for the DEFAULT, WEB_INBOUND, and RMI_INBOUND configurations. The same login module is used for
all three configurations. WebSphere automatically starts the login modules configured as system login
modules under certain circumstances:

• DEFAULT

The login modules that are specified for the DEFAULT configuration are started for authentication of
web services and JMS invocations. They also are started during the startup phase of WebSphere

• WEB_INBOUND

The login modules that are specified for the WEB_INBOUND configuration are used for authentication of
web requests

• RMI_INBOUND

The login modules that are specified for the RMI_INBOUND configuration are used for authentication of
Java clients.

The Cúram JAAS login module exists as a login module within a chain of login modules that are set up in
WebSphere. It is expected that at least one of these login modules be responsible for adding credentials
for the user. By default, the Cúram login module adds credentials for an authenticated user. As a result of

Chapter 1. Securing Social Program Management 7

this process, the configured WebSphere user registry that is handled by a subsequent login module does
not add credentials.

Therefore, it is not necessary to define Cúram users within the WebSphere user registry. This
behavior is configurable by using the curam.security.user.registry.enabled property set in the
AppServer.properties file. For more information on setting this property, see Cúram Deployment
Guide for WebSphere Application Server or Cúram Deployment Guide for WebSphere Application Server on
z/OS.

This figure illustrates the default authentication flow for WebSphere.

Figure 3. Default authentication flow for WebSphere

8 IBM Cúram Social Program Management: Cúram Security Guide

This figure illustrates the authentication flow for WebSphere where its user registry is also queried, that is,
where the curam.security.user.registry.enabled property is set to true.

Figure 4. Authentication Flow for WebSphere with User Registry Enabled

As part of the security configuration, certain users exist that are excluded from authentication
and for these users the configured user registry is queried. This list of users is configured
automatically to be the WebSphere security user, as specified by the security.username property
in AppServer.properties and the database user, as specified by the curam.db.username property
in Bootstrap.properties . These two users are classified administrative users and not application
users. It is possible to extend this list of excluded users manually. For more information, see the
Cúram Deployment Guide for WebSphere Application Server and Cúram Deployment Guide for WebSphere
Application Server on z/OS.

Warning: The security.username and curam.db.username users are automatically added to the
WebSphere file-based user repository by the provided configuration scripts. If the configured WebSphere
user registry is not the default, these users must exist in the alternate WebSphere user registry.

Customizing the login module
It is possible that the Cúram Java Authentication and Authorization Service (JAAS) login module might not
support the authentication requirements for a particular custom solution. We strongly recommend that
when users develop a custom login module, that the Cúram JAAS login module needs to be left in place
and used with identity only authentication enabled. However, if deemed necessary, the Cúram JAAS login
module can be removed and replaced by a custom solution. If this is the case, Support must be consulted.

Note: While it is possible to remove the Cúram JAAS login module completely, it needs to be noted that
users must still exist in the Cúram Users database table for authorization reasons.

The Cúram JAAS login module adds new users to the Cúram Security Cache automatically, and when
this Cúram JAAS login module is replaced by a custom JAAS login module, this function no longer is
present. If a custom JAAS login module is replacing the Cúram JAAS login module completely, it is the
responsibility of the custom JAAS login module to ensure that an update of the Security Cache is triggered
when a new user is added to the database.

Chapter 1. Securing Social Program Management 9

Verification Process for Authentication
The type of verifications that are performed depends on the authentication mode that is being used.

Authentication is the process of determining if a user is who they say they are. Authentication is needed
where a user must be verified in order to access a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing them to enter username and
password credentials. These credentials are compared against the credentials stored on the system for
this username, if they match the user is considered an authenticated user for the system. For security
reasons the password for authenticating a user is stored on the system in a digested form.

The Cúram web client is configured to support form-based authentication, which means that before a
user can access any of the web client content, they will be redirected to a login form to authenticate.

The authentication process involves the verification of the username and password, and this is performed
by default by a JAAS (Java™ Authentication and Authorization Service) login module. HTTPS/SSL is turned
on by default in the web client ensuring the form-based login authentication mode is secure.

The following list shows authentication modes and configurations with details on the verifications
completed for each authentication mode.

Default Authentication
Default authentication is part of the initial configuration and this mode of authentication involves verifying
the username and password specified during login against the Cúram Users database table. All login
information in this case is maintained by the Cúram application.

Default Verification Process
Several verifications are required by the Cúram login module during default authentication. These
verifications include queries that include the user name, password, and account information.

The verifications included during the default authentication are:

• username and password.
• Account and password expiry
• User name synchronization with security cache
• Break-in detection, for example, upper limit on password entry attempts, incorrect user names,

password change failures
• Day and time access restrictions - day of the week and time range within the day

The authentication and authorization of user names is case sensitive by default. However, it is possible
to disable case-sensitive authentication. If duplicate case insensitive user names exist (for example,
caseworker, CaseWorker), authentication fails due to an ambiguous user name. For more information, see
“Changing the Case-Sensitivity of the Username” on page 89.

Authentication Attempts
Authentication failures are not reported directly to a client as this reporting would provide extra
information to an intruder who is attempting to break into the system. For example, reporting an incorrect
password would indicate that the user name is valid.

All authentication attempts (both success and failure) instead are logged in a database table called the
AuthenticationLog.For more information, see “Analyzing the AuthorisationLog Database Table” on
page 94.

10 IBM Cúram Social Program Management: Cúram Security Guide

Customization of Default Authentication
The default implementation can be customized to use a mutable login ID instead of the Cúram
username and the ability to add extra verifications is available by implementing the custom
authenticator.

For more information, see “Custom Verifications” on page 12.

Identity Only Authentication
Identity only verification means that the authentication mechanism only ensures that the user name
for the user who is logging in exists on the Cúram Users database table. Full authentication must be
completed by an alternative mechanism to be configured in the application server.

Authentication can be configured to perform identity-only verification, in place of the default verifications
listed in “Default Verification Process” on page 10.

An example of an alternative mechanism is a Lightweight Directory Access Protocol (LDAP) directory
server, which is supported as an authentication mechanism by WebSphere Application Server, WebLogic
Server, and WebSphere Liberty. Another alternative is to use a Single Sign-On (SSO) Solution for
authentication, or to implement a custom login module. For custom application server solutions, the
IBM or Oracle documentation needs to be consulted.

With identity-only authentication (as for default authentication), entries are added to the
AuthenticationLog database table at the end of the authentication process.

For a successful login the following status is used:

• AUTHONLY

For a failure scenario, the following status is used:

• BADUSER

This scenario is the only possible failure scenario where a user does not exist.

The loginFailures and lastLogin fields of the AuthenticationLog are not set. This condition is
true even if customized verifications are implemented.

When the password expiry information for a user is set (on the Cúram Users database table), the
password expiry warning is displayed if it is about to expire. With identity-only authentication, this
warning is misleading. It is recommended that any fields that relate to the authentication verifications,
such as password expiry or account enabled, are not used if identity-only authentication is enabled.

When identity-only authentication is enabled, security is not used for authentication but is still used for
authorization purposes. As a result of this requirement, all users who require access to the application
needs to still exist in the Cúram Users database table, and in the alternative authentication mechanism,
for example, Lightweight Directory Access Protocol (LDAP).

Note: Two users must exist in both locations, that is, the SYSTEM user and the DBTOJMS user. For more
information, see “Security for Alternative Clients” on page 20.

For more information on how to configure identity only for an application server, see “Configuring Identity
Only Authentication” on page 89.

Chapter 1. Securing Social Program Management 11

Figure 5. Identity Only Authentication

Customization of Identity Only Authentication
The identity-only implementation cannot be customized, but extra verifications can be added by
implementing the custom authenticator.

For more information, see “Custom Verifications” on page 12.

External Access Security Authentication
The architecture allows a developer to implement their own custom authentication solution for external
users by providing a hook into the existing authentication and authorization infrastructure.

To hook the custom solution into the application, the
curam.util.security.PublicAccessUser class must be extended, which requires implementing
the curam.util.security.ExternalAccessSecurity interface. This class is used during the
authentication and authorization process to determine required information that is related to the External
User.

For more information, see “Customizing External User Applications” on page 99.

Custom Verifications
Support is provided for adding custom verifications to the authentication process. For example, a user
might be required to answer a security question that must then be verified. The custom code, if
implemented, is started after the relevant Cúram verifications or identity assertion, and only if they were
successful.

After the custom verifications are started, the authentication process will update the relevant fields on the
Users database table.

For more information, see “Adding Custom Verifications to the Authentication Process” on page 89.

12 IBM Cúram Social Program Management: Cúram Security Guide

Authorization Overview
In Cúram, authorization is the process of granting or refusing a user access to functional elements of an
application.

The functional element can be anything to which a unique identifier can be attached, such as:

• a server process call,
• an element of the application that requires security checking, for example, a series of registered welfare

products.

Access to the functional element is controlled by a Security Identifier (SID) that forms part of the Cúram
authorization data. This data is linked to a user and can be configured through the Cúram Administration
screens or through the Data Manager. For more information, see the Cúram Server Developer's Guide.

The security data that is created for authorization is central to the processing performed during every
client-server call, and it is important that access is optimized for performance reasons. The Cúram
Security Cache is responsible for caching authorization data for a user. For more information, see “Cúram
Security Cache” on page 19.

The following topics describe the relationship for these authorization concepts and how authorization
works within Cúram.

Users, Roles and Groups
The security information associated with an application must first be organized into security profiles
before it can be utilized in a runtime environment. A security profile consists of a security role, one or
more security groups and the associations between security identifiers (SIDs) and securable elements of
an application.

Every authorized user is assigned a security role during security configuration and these roles are
associated with a number of security groups. Each security group is associated with a number of security
identifiers. The security identifier represents the securable elements of Cúram, for example., a method or
a field. The role, groups and identifier information is stored on the database in a number of tables and is
configured using the application Data Manager or the Cúram Administration screens.

This data structure makes it possible to authorize every user against any secured element of an
application. This is a powerful and flexible method of providing authorization to Cúram users.

There is a minimum set of SIDs required for a user to operate the Cúram Platform application. These
SIDs are associated to the out-of-the-box BASESECURITYGROUP group. The EJBServer/components/
core/data/initial/handcraftedscripts/Supergroup.sql file should be consulted to identify
the list of these SIDs. This file is responsible for linking the SIDs to the BASESECURITYGROUP out-of-the-
box.

A simple way to ensure that all users have the privileges from this set of SIDs is to create a single security
group for them and then associate that security group with every security role in the system.

Security Identifiers (SIDs)
Every secured element in Cúram is given a security identifier (SID) that is unique across the entire
application.

The authorization process is built into the infrastructure and once the securable elements have been
identified, the rest is handled by code generators, scripts and the Cúram Administration screens. The
analysis of what elements must be securable is a manual process that must be done by the developer or
security administrator. This section outlines the infrastructure available to set up authorization.

The first type of authorization to consider is that of the process method(facade) also known as function-
level security . In the Cúram model, a developer may choose if security is switched on or off at the process
method level. The option applies only to Business Process Objects (BPOs) since they encapsulate the
calls exposed to the client. Entity object methods are not included in the authorization process.

Chapter 1. Securing Social Program Management 13

There are a number of types of SIDs and these include:

• Function Identifiers (FIDs)
• Field Level Security Identifiers
• User defined SID types.

Function Identifiers (FIDs)
Function identifiers (FIDs) are a specialized type of security identifier (SID) where the type is set to
FUNCTION. When a method is made publicly accessible (by setting the stereotype as facade in the
model), a FID is generated for that method and security is automatically turned on.

It is possible to turn off security for a process method at design time. For more information, see
“Switching Security off for a Process Method” on page 93.

Adding an FID
To add an FID, do the following steps:

1. Log on as the sysadmin user and click System Configurations.
2. In the Shortcuts panel, click Security > Identifiers.
3. In the actions menu, click New Function Identifier and enter the details for the FID.
4. In the actions menu, click Publish.
5. In the Shortcuts panel, click Security > Groups.
6. Click a group to add the FID to, and then click Add Identifiers.
7. From the list of alphabetically ordered identifiers that is displayed, select the identifier that your

created and click Save.
8. Click Publish.

Field Level Security Identifiers
The Field Level SID allows authorization to be applied to specific fields on a publicly accessible method.
At runtime, if a user does not have access rights to view the field to be displayed, the contents of the
field are displayed as a number of asterisks (***). For more information on Field Level SIDs , the Cúram
Modeling Reference Guide should be consulted.

User Defined SIDs
In the previous sections, we have described

FIDs;
An automatically generated SID of type function.

Field Level SID;
Security applied to specific fields on a method.

There is also the concept of a user defined SID. The authorization process is sufficiently flexible to
accommodate any securable element of an Cúram application. The developer can effectively customize
the authorization process by defining new types of SIDs. The new types represent a conceptual element
requiring security. The following server interface method enables authorization to be invoked directly on
these new user defined SID types.

curam.util.security.Authorisation.isSIDAuthorised()

Out-of-the-box, the LOCATION and PRODUCT SIDs are SIDs of this type. Using the above method there is
effectively no limit to the SID types that can be defined. “Authorizing New SID Types” on page 94 should
be consulted for further details.

14 IBM Cúram Social Program Management: Cúram Security Guide

Runtime Authorization
The Cúram infrastructure performs authorization checks from both the web client and server side.

Client Authorization Checks
Before a user can access a method or field, the web client performs authorization checks before
the page is initially loaded. If the user does not have access, the client authorization check fails,
and the server is not invoked. This check is configurable in the curam-config.xml by setting the
SECURITY_CHECK_ON_PAGE_LOAD property. Section 3.12.13 General Configuration in the Cúram Web
Client Reference Manual should be consulted for further details on this.

By default any such web client authorization failures are not recorded. This behavior is configurable.
“Controlling the Logging of Authorization Failures for the Client” on page 93 should be consulted for
further details.

Server Authorization Checks
To cater for other access to Cúram, and where the web client authorization check is disabled, there is a
second level authorization check made by the server. This server side check will always log authorization
failures, and the client property does not affect this logging.

The log of all authorization failures is stored on the database to allow these failures to be audited
at a later stage. The AuthorisationLog table contains the User Name and Security Identifier for
the failed authorization, as well as a timestamp indicating when the failure occurred. “Analyzing
the AuthorisationLog Database Table” on page 94 should be consulted for further details on the
AuthorisationLog table.

Cryptography in Cúram
In Cúram, cryptography refers broadly to ciphers and digests, two types of functionality that are related to
keeping your Cúram systems safe and secure.

You can use ciphers and digests as follows in Cúram:

• ciphers - for two-way encryption of passwords that are used at various processing points
• digests - for one-way hashing (or digesting) of passwords; for example, used at login

You can select the values for configuring cryptographic behavior with the CryptoConfig.properties
property file to provide you with the most control and security possible for your Cúram installation. This
flexibility provides the capability to adjust to changing security standards. For more information about
configuring and customizing cryptography, see “Customizing Cryptography” on page 94.

If you are migrating for the first time to a level of Cúram that has this level of cryptographic support, which
was introduced in version 6.0.5.0, it is recommended that you upgrade system (new cipher) and user
(new digest) passwords from the default values to improve your security.

Supported cryptographic configurations are:

1. AES: 128, 192, 256 (FIPS 140-2 and SP800-131a compliant);
2. Two-key Triple DES - DESede: 112 (FIPS 140-2 compliant);
3. Three-key Triple DES - DESede: 168 (FIPS 140-2 and SP800-131a compliant);

In the environment where Cúram runs, the application server, database, and other software, such as web
server or LDAP software, has its own cryptographic support and you can refer to the relevant vendor's
documentation.

Ciphering
Ciphering refers to the process of encrypting passwords, which are listed in “Cipher-Encrypted
Passwords” on page 18. That is, this is a two-way process representing decrypt-able values. There

Chapter 1. Securing Social Program Management 15

are about a dozen of these encrypted passwords in various property files in Cúram and encrypting them
helps keep them secure and they are are decrypted at the necessary points for usage; e.g. connecting to
your database system.

Digesting
Digesting refers to the one-way process of handling passwords that do not require decrypting, but is used
for storing passwords for later comparison; e.g. Cúram user logins. That is, this is a one-way process
representing non-decryptable values.

Cryptography Properties
The Cúram CryptoConfig.properties file contains settings for cipher and digest cryptography. This
file, and all the files that it refers to, such as keystore and salt, must be considered critical items to
the security of your system. These items must be provided with adequate access controls, such as file
permissions, and must be modified and segmented when used for production systems. That is, if the
details of these files were to become widely known, while not necessarily a security risk themselves,
it might remove a level of protection that might necessitate a disruptive crypto change, see “Cipher
Customization” on page 94 and “Digest Customization” on page 96).

Related topics:

• “Cúram Cipher Settings” on page 16
• “Cúram Digest Settings” on page 17

Cúram Cipher Settings
Various passwords within Cúram property files and configurations are stored in an encrypted format
out-of-the-box (OOTB).

The Cúram crypto configuration will work for you out-of-the box, but it is recommended you modify
these settings with respect to your local security requirements. For instance, the OOTB settings may be
adequate in development, but for production environments it is strongly recommended that you modify
them (e.g. by changing the cipher secret key).

The cipher settings are stored in the CryptoConfig.properties file. The properties and their values
are as follows:

• curam.security.crypto.cipher.algorithm

– Valid values: In JCE documentation, for example: http://docs.oracle.com/javase/6/docs/technotes/
guides/security/StandardNames.html#Cipher. The supported ciphers are AES and the various forms
of Triple DES.

– Default: AES (FIPS 140-2 and SP800-131a compliant)

• curam.security.crypto.superseded.cipher.algorithm

– Valid values: See curam.security.crypto.cipher.algorithm
– Default: None
– Purpose: Provides for flexibility to support an upgrade/migration period for

Cúram user passwords with custom code (e.g. a batch program) via the
curam.util.security.EncryptionUtil.decryptSupersededPassword() API. The use of
an upgrade/migration period is explained in more detail in “How to Utilize the Superseded Digest
Settings for a Period of Migration” on page 97.

• curam.security.crypto.cipher.keystore.location

– Valid values: Path to keystore file containing secret key. This can be an absolute path specification or
relative to the classpath (e.g. CuramSample.keystore).

16 IBM Cúram Social Program Management: Cúram Security Guide

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher

– Default: None

• curam.security.crypto.cipher.keystore.storepass

– Valid values: As per the JDK keytool command.
– Default: password
– Purpose: Specify the password used to access the keystore.

• curam.security.crypto.cipher.provider.class

– Valid values: Fully-qualified name of a JCE cryptography provider class.
– Default: blank
– Purpose: Optional way to enable the use of an alternate standards-compliant provider.

This ciphering functionality applies to the properties as described in “Cipher-Encrypted Passwords” on
page 18.

These Cúram cryptographic settings are enabled by default OOTB and represents changes that existing
Cúram installations must address as documented in the Cúram Upgrade Guide.

Cúram Digest Settings
Cúram users, internal and external, when not invoked with identity-only, are authenticated using form-
based login and the password entered in the form is digested and compared to the digest value stored in
the database for the user.

Note: This processing does not apply to users authenticated in third party systems like LDAP.

The Cúram crypto configuration will work for you out-of-the box, but it is recommended you modify
these settings with respect to your local security requirements. For instance, the OOTB settings may be
adequate in development, but for production environments it is strongly recommended that you modify
them (e.g. digest salt encrypted value).

The digest settings are stored in the CryptoConfig.properties file. The properties and their values
are as follows:

• curam.security.crypto.digest.algorithm

– Valid values: In JCE documentation, for instance: http://docs.oracle.com/javase/6/docs/technotes/
guides/security/StandardNames.html#MessageDigest. The supported digests are the SHA variants
(1, 256, etc.) and MD5.

– Default: SHA-256 (FIPS 140-2 and SP800-131a compliant)
– Purpose: Specification of the digest algorithm.

• curam.security.crypto.digest.salt.location

– Valid values: A path identifying the file containing the encrypted secret digest salt.
– Default: None
– Purpose: An optional file to specify the salt (encrypted) for digesting.

• curam.security.crypto.digest.iterations

– Valid values: 0 or a positive integer.
– Default: 0
– Purpose: Typically, higher values give better security, but at the cost of processing (e.g. at login time).

Chapter 1. Securing Social Program Management 17

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest

There are a set of corresponding "superseded" properties to allow for flexibility when migrating from one
set of digest settings or standards to another. The following have a similar function to their counterparts
above, but are used by the Cúram encryption functionality to support both old and new settings for a time
of migration:

• curam.security.crypto.superseded.digest.algorithm
• curam.security.crypto.superseded.digest.salt.location
• curam.security.crypto.superseded.digest.iterations

The usage and behavior of the superseded properties are controlled by the
curam.security.convertsupersededpassworddigests.enabled property as managed by the
Properties Administration user interface. See “How to Utilize the Superseded Digest Settings for a Period
of Migration” on page 97 for more information on using the superseded properties.

Cipher-Encrypted Passwords
The following passwords are cipher-encrypted in Cúram:

• Bootstrap.properties:

– curam.db.password - database password
– curam.searchserver.sync.password - see Cúram Generic Search Server for more information

• AppServer.properties: (typically this property file is used for configuring test servers and is not
appropriate for production systems)

– security.password - application server administration console password
– curam.security.credentials.async.password - replacing the runas.password property

• Application.prx - individual property descriptions are as documented with the properties in the
Curam Property Administration user interface:

– curam.security.credentials.dbtojms.password - (in conjunction with
curam.security.credentials.dbtojms.username), which replaces the
curam.omega3.DBtoJMSCredentialsIntf interface APIs previously used to provide custom credentials
for DB-TO-JMS

– curam.security.credentials.ws.password (in conjunction with
curam.security.credentials.ws.username), which replaces the build-time default web
services default credential settings.

– curam.meeting.request.reply.password - (an SMTP password)
– curam.ldap.password
– curam.citizenworkspace.password.protection.key

• BIBootstrap.properties - BIRT users only; see the Cúram Business Intelligence BIRT Developer
Guide:

– curamsource.db.password
– central.db.password
– centraldm.db.password

• Web Services - See the Cúram Web Services Guide:

– ws_inbound.xml - <ws_service_password>
– services.xml - <parameter name="jndiPassword">

• CTM - Cúram Transport Manager:

– The Password column of the TargetSystemService table contains an encrypted password

18 IBM Cúram Social Program Management: Cúram Security Guide

Security Data Caching
An overview of the Cúram Security Cache, which stores all authorization data for a user. Details on the
WebSphere cache and how this affects the authentication of a user at login are also included.

Cúram Security Cache
Security information from the database tables supporting the profiles mentioned in “Users, Roles and
Groups” on page 13 is cached by the infrastructure. This is done to optimize the search and retrieval of
data during the authorization process.

To optimize performance, the cache is loaded on demand as security authorization requests come
into the application and is a shared resource. For application code, the cache is a protected resource
and cannot be accessed directly. It is accessible, for queries only, through the authorization interface
(curam.util.security.Authorisation) which allows a developer to implement a customized
authorization procedure. “Authorizing New SID Types” on page 94 should be referenced for further
details on this.

When the curam.security.casesensitive property is set to false the security cache will store all usernames
in upper case and all queries to the cache will automatically change the specified username into the
upper case equivalent. It is also worth noting that the existence of duplicate case insensitive usernames
will cause a fatal error during the initialization of the security cache. “Changing the Case-Sensitivity of the
Username” on page 89 should be consulted for further details on this.

Cache Refresh
As security data is so important to the operation of Cúram , the cache must be refreshed whenever any
changes have been made to security related database tables. The refreshing of the Cúram Security Cache
is an asynchronous process.

Cache Refresh Failure
The refreshing of the Cúram Security Cache is triggered by either an application reboot, or by the system
administrator (sysadmin) via the Cúram Administration screens, therefore, the administrator receives no
feedback if the cache reload fails. Having to check the system logs or manually verify the application
following a refresh to verify its success can be cumbersome. It is therefore recommended that the
optional callback interface for providing feedback in the event of a cache reload failure be implemented.
“Adding the Cache Refresh Failure Callback Interface” on page 89 should be consulted for further
details.

WebSphere Caching Behavior
WebSphere caches user information and credentials in its own security cache. The Cúram login module
will not be invoked while a user entry is valid in this cache. The default invalidation time for this security
cache is ten minutes, where the user has been inactive for ten minutes.

For example, the first time a user logs into the application from the web client they will be requested
for their username and password. The Cúram login module will be invoked, and will authenticate the
information specified. If the same user opens a second new web browser and attempts to access the
application, they will again be requested for their username and password. When WebSphere receives
this information it will query the security cache to determine if the username and password are already in
the cache. If they are, and the password matches, WebSphere will not query the login modules.

The impact of this behavior is that any modifications to a user's account restrictions or password will not
take effect until the user has been invalidated from the WebSphere security cache.

For more information see the appropriate WebSphere Application Server Information Center.

Chapter 1. Securing Social Program Management 19

Security for Alternative Clients
Certain processes cannot be associated with a specific logged-in user. These include alternative clients,
for example, non-web processes such as batch processing, web services, and deferred processing. As any
process that interacts with a Cúram application must be authenticated, a valid user must exist for each of
these processes. These topics provide details on the users that must exist on the Cúram Users table and
details on the processes that depend on these users.

Mandatory Cúram Users
A number of users must always exist in the Cúram Users database table. These users are necessary
for application processes such as deferred processing and workflow. If these users do not exist, then
authentication will fail and subsequently these processes will fail.

The usernames and passwords for each of the processed below are the default out-of-the-box credentials
and it is recommended that these credentials be changed for security reasons.

These users include:

• SYSTEM

The SYSTEM user is the user under which JMS messages are executed. This user must exist and the
username is case sensitive. “JMS Messaging” on page 21 should be referenced for further details.

• DBTOJMS

The DBTOJMS user is the default user under which the Database to JMS (DBToJMS) trigger for batch
processing is executed. This user must exist and the username is case sensitive. “Batch Processing” on
page 20 should be referenced for further details.

• WEBSVCS

The WEBSVCS user is the default user under web services are executed. This user must exist and the
username is case sensitive. “Web Services” on page 20 should be referenced for further details.

Web Services
For Apache Axis2 (the recommended implementation for web services) there are default credentials
for authentication. A user has the ability to change these credentials at a global level or per service if
required. To ensure that web services are not vulnerable to a security breach this default user is not
authorized to access web services by default. For authorization, a web service must be associated with
a security group and in turn a security role that is linked to the user (e.g. WEBSVCS) in order to access
it. Ensuring the user is authorized is a manual process. Please see the Customizing Receiver Runtime
Functionality section in the Cúram Web Services Guide for further details on web services and also the
chapter on Authorization in this book.

There are a number of other topics related to the security of web services - for example, encrypting data -
using Rampart. The Cúram Web Services Guide should be consulted for further details on these.

Batch Processing
Since the Batch Launcher does not require the application server to be running, it does not perform
any application level authentication or authorization. It must only authenticate against the database. The
same credentials as used by the application server (located in %SERVER_DIR%/project/properties/
Bootstrap.properties) are used by the Batch Launcher to connect to the database and run batch
programs.

The Batch Launcher or batch programs can optionally trigger the application server to begin a DB-to-JMS
transfer. This involves logging in and invoking a method on the server, which in turn requires a valid
username and password. By default the DB-to-JMS transfer operation uses default credentials; therefore,
the DBTOJMS account must exist on the Cúram Users table and must be enabled and assigned the role
'SYSTEMROLE' to allow authorization. The locale DB-to-JMS transfer is the default locale for this user as
specified in field 'defaultLocale' on the Users table.

20 IBM Cúram Social Program Management: Cúram Security Guide

The Security Considerations section in the Cúram Batch Processing Guide guide should be consulted for
further details on changing the user for the DB-to-JMS transfer.

The property batch.username can be used to specify the user name for the operations run by the Batch
Launcher. This is set using the -D parameter. For example: build runbatch -Dbatch.username=admin

JMS Messaging
JMS messages are used for communication purposes by deferred processes and Workflow. Since JMS
messages are triggered by the application server and need to interact with the Cúram application, valid
Cúram credentials must exist. The SYSTEM user account must exist on the Cúram Users table and must
be enabled and assigned the role 'SYSTEMROLE' to ensure authorization. The locale for JMS messages is
the default locale for this user as specified in field 'defaultLocale' on the Users table.

It is possible to change the SYSTEM username during or after the deployment of the application. For more
information the Cúram Server Deployment Guide for the relevant application server should be consulted.

Deferred Processing
A deferred process in Cúram is a business method that is invoked asynchronously. As deferred processes
interact with the application, valid Cúram credentials must exist. The SYSTEM user account must exist on
the Cúram Users table and must be enabled and assigned the role 'SYSTEMROLE' to ensure authorization.
The locale for deferred processes is the default locale for this user as specified in field 'defaultLocale' on
the Users table. In the case of offline unit-testing of deferred processes, the username is blank and the
effective locale is the default locale for the Cúram server.

External User Applications
Typically, there are users outside the organization with limited access who needs to securely access parts
of the Cúram application. These users are considered external users and authentication for these users is
completely customizable through the use of the External Access Security hook point provided. As external
users are processed differently to internal users, a specific web application is required for external users.

The default Cúram application is enabled for internal users. Internal users are users that exist on the
Cúram Users database table. A typical internal user would be a case worker who creates and manages
claims for participants and has full access to the application. The infrastructure provides functionality for
authenticating and authorizing these internal users.

External User Applications
When developing an application for an external user, the following must be implemented:

• An external user client application, i.e., a separate EAR file containing the web client application.
• A custom logon.jsp , where the external application must pass in a parameter user_type indicating an

external user is logging in.
• A custom class that extends curam.util.security.PublicAccessUser, which requires

implementing the curam.util.security.ExternalAccessSecurity interface, must be provided.
This abstract class contains methods responsible for the authentication and authorization of an external
user.

As well as there being internal and external user types. There can also be different types of external
users. For example, there may be an external user of type 'PUBLIC' who could have limited access to
an external application. There could be another external user of type 'PROVIDER' who is a registered
external user. The ability to have different types of external users provides more flexibility within an
external application, allowing finer grained control over authentication of the external user based on the
external user type.

Chapter 1. Securing Social Program Management 21

User Scope
There are two different types, or scopes, of users within the Cúram application: internal and external. The
type of a user is determined in one of the following ways:

• By the Cúram Security Cache;

If the user exists in the Cúram Security Cache, the type is assumed to be in internal. If the user does
not exist in the cache, the type is assumed to be external. In this case, (which is the default behavior) all
usernames, internal and external, must be unique.

• By the UserScope custom interface;

If the UserScope custom interface is implemented. This custom interface, takes precedence over the
check for a user in the Cúram Security Cache to determine the user type. Consult “Determining if a User
is Internal or External using the UserScope Interface” on page 105 for further details.

When the type of a user is external the implementation of the
curam.util.security.ExternalAccessSecurity.getSecurityRole() method will be used to
determine the user role instead of the internal security roles. “Authorizing an External User” on page 102
should be consulted for further details on this method.

To support alternative methods for determining if a user is internal or external the custom interface,
UserScope , is available. Consult “Determining if a User is Internal or External using the UserScope
Interface” on page 105 for more details.

Deployment of an External Application
When deploying an application to an application server, the security configuration for the application
server is applicable to all Cúram applications deployed to that application server instance. Therefore,
care must be taken when considering the deployment architecture for more than one application. This is
important when deciding if an internal and external application will be deployed to the same application
server instance.

An example of some considerations to think about are:

• Is identity only being used for internal users?
• Is an alternative authentication mechanism used , e.g., LDAP;
• Will both internal and external users be authenticated by LDAP?

The answers to the considerations above will affect the setting of the application
server properties (i.e. properties specified in the AppServer.properties file), that
affect the behavior of the Cúram JAAS login module. These considerations will also
drive the implementation of the curam.util.security.PublicAccessUser class and
curam.util.security.ExternalAccessSecurity interface for external users.

The application server properties in the Cúram JAAS login module allow for finer grained control over the
authentication of user types. External users and internal users can be authenticated differently, as can
different types of external users, in a situation where the internal and external applications are deployed
to the same application server. These properties include the following:

• curam.security.user.registry.disabled.types ;

Set this property to a comma separated list of user types for which the application server user registry
will not be queried, i.e. the implementation within the PublicAccessUser.authenticate() method
is responsible for authenticating the external user of this type. For example, LDAP could be configured
to be the user registry.

• curam.security.user.registry.enabled.types.

Set this property to a comma separated list of user types for which the user registry will be queried, i.e.,
the implementation within the PublicAccessUser.authenticate() method does not have to fully
authenticate the user. The user registry will be responsible for authenticating this type of external user.

22 IBM Cúram Social Program Management: Cúram Security Guide

For example, LDAP could be configured as the user registry, and in this case, LDAP could be responsible
for the authentication of these external user types.

These properties are dependent on the implementation of the
curam.util.security.PublicAccessUser class and ExternalAccessSecurity interface.

Consider the following example project requirements:

• An internal user must authenticate with LDAP.
• An external user of type 'EXT_PUBLIC' must authenticate with Cúram and not LDAP;
• An external user of type, 'EXTERNAL' must authenticate with LDAP only and not Cúram.
• Both the internal and external applications are deployed to the same application server instance.

The following settings could cater for the example above:

• curam.security.check.identity.only set to true ;
• curam.security.user.registry.disabled.types=EXT_PUBLIC.

As well as the properties being set, the PublicAccessUser extension (and
curam.util.security.ExternalAccessSecurity implementation) must have the logic to cater for
the different types of external users and how they will be authenticated.

Configuring Single Sign On (SSO)
SSO is an authentication process that allows users to access many applications with one set of
credentials. Once users log into one application, they do not have to log in repeatedly to access other
applications that are part of one application domain.

SSO systems usually maintain the user accounts on a lightweight directory application protocol (LDAP)
server. If user accounts are stored in one location, it is easier for system administrators to safeguard the
accounts. Also, it is easier for users to reset one account password for multiple applications.

Note: The implementation of an SSO solution is the responsibility of the customer. It is recommended
that an IBM or third-party tool is used. For example, IBM Tivoli tools or CA SiteMinder.

IBM Cúram Social Program Management provides two mechanisms to implement SSO:

Configuring SAML SSO
Configure SAML-based SSO to support IBM Cúram Social Program Management, IBM Cúram Universal
Access, and IBM Cloud Kubernetes Service.

Configuring SAML SSO on Kubernetes
Implement federated SSO that uses SAML 2.0 browser profile, using either an IdP-initiated HTTP POST
binding or an SP-initiated HTTP POST binding, through the IBM Cúram Social Program Management
application.

The following information describes the scenario where IBM Cúram Social Program Management is
deployed on WebSphere Application Server Liberty.

Note: The sample configuration in this section uses IBM Security Access Manager (ISAM) to show you
how to configure SSO. You can use any SAML-compliant configuration tool in your SSO configuration.

Social Program Management SSO on Kubernetes initiation and flow
For single sign-on, the SAML response, by HTTP POSTs, is interpreted and controlled by logic in IBM
Cúram Social Program Management.

In all SAML web SSO profile flows, the binding defines the mechanism that is used to send information
through assertions between the identity provider (IdP) and the service provider (SP). WebSphere Liberty
supports HTTP POST binding for sending web SSO profiles. The browser sends an HTTP POST request,
whose POST body contains a SAML response document. The SAML response document is an XML
document that contains data about the user and the assertion, some of which is optional.

Chapter 1. Securing Social Program Management 23

Browser-based single sign-on (SSO) through SAML v2.0 works well with many web applications where the
SAML flow is controlled by HTTP redirects between the identity provider (IdP) and the service provider
(SP). The user is guided seamlessly from login screens to SP landing pages by HTTP redirects and hidden
forms that use the browser to POST received information to either the IdP or the SP.

In a single-page application, all the screens are contained within the application and dynamic content
is expected to be passed only in JSON messages through XMLHttpRequests. Therefore, the rendering of
HTML content for login pages and the automatic posting of hidden forms in HTML content is more difficult.
If the SP processes the content in the same way, it would to leave the application and hand back control
to either the user agent or the browser, in which case the application state would be lost.

IdP-initiated use case
The IdP can send an assertion request to the service provider ACS through one of the following methods:

• The IdP sends a URL link in a response to a successful authentication request. The user must click the
URL link to post the SAML response to the service provider ACS.

• The IdP sends an auto-submit form to the browser that automatically posts the SAML response to the
service provider ACS.

• The user authenticates into IdP and accesses the application that is configured as a partner to the IdP.

The ACS then validates the assertion, creates a JAAS subject, and redirects the user to the SP resource.

SP-initiated use case
When an unauthenticated user first accesses an application through an SP, the SP directs the user's
browser to the IdP to authenticate. To be SAML specification compliant, the flow requires the generation
of a SAML AuthnRequest from the SP to the IdP. The IdP receives the AuthnRequest, validates that
the request comes from a registered SP, and then authenticates the user. When the user is authenticated,
the IdP directs the browser to the Assertion Consumer Service (ACS) application that is specified in the
AuthnRequest that was received from the SP.

Assertions and the SAML Response document
To prove the authenticity of the information, the assertion in the SAML response is almost always digitally
signed. To protect the confidentiality of parts of the assertion, the payload can be digitally encrypted. A
typical SAML response contains information that can be sent only through a login by a POST parameter.
After login, an alternative mechanism is typically used to maintain the logged-in security context. Most
systems use some cookie-based, server-specific mechanism, such as a specific security cookie, or the
server’s cookie tied to the user’s HTTP session.

IdP-initiated flow
When Social Program Management is configured in WebSphere Liberty with an-IdP initiated web SSO
flow, any attempt to connect to a protected resource without first authenticating through IdP results
in the application server falling back to an SP-initiated SSO flow. In an SP-initiated SSO flow, any
authentication requests that are initiated through SP result in a 403 HTTP response, and the application
redirects the user to the IdP login page for the user to authenticate. After the user is authenticated
successfully, the control is redirected to the Social Program Management application page.

The following figure illustrates the IdP initiated flow that is supported by Social Program Management in a
default installation.

24 IBM Cúram Social Program Management: Cúram Security Guide

Figure 6. IdP-initiated flow

1. In an IdP-initiated flow, the user completes the IDP login form and authenticates.
2. After successful authentication in IdP, the user tries to access the Social Program Management

application that is deployed in the application server.
3. The Trust Association Interceptor (TAI) and Assertion Consumer Service (ACS) (SAML TAI/ACS) that is

deployed on the application server intercepts the request and redirects it to the IdP endpoint with a
generated SAML request.

4. Because the user is already logged into the IdP, the IdP responds with a SAML response and redirects
the user to the Social Program Management application.

5. The application server ACS validates the signature that is contained in the SAML Response. If the
validation is successful, the ACS sends an HTTP redirect request that points to the configured Social
Program Management target landing page, along with an LTPA2 cookie that is used in any subsequent
communication.

6. The Social Program Management application landing page is displayed in the browser.

SP-initiated flow
When Social Program Management is configured with an SP-initiated web SSO flow, any attempt to
connect to a protected resource without first authenticating results in a 401 HTTP response from the
application server Assertion Consumer Service’s Trust Association Interceptor, and the generation of the
SAML AuthnRequest message to be sent to the IdP.

Chapter 1. Securing Social Program Management 25

Figure 7. SP-initiated flow

1. When a user tries to access a Social Program Management application resource without
authenticating, the TAI intercepts the request and redirects the user to the IdP endpoint with the
generated SAML request.

2. The IdP endpoint displays the login form that the user completes to authenticate, then directs the
SAML request to the IdP SAML endpoint.

3. After successful validation of the user credentials at the IdP, the IdP populates the SAML response and
returns it in an HTML form that contains hidden input fields.

4. The HTML form is autosubmitted to the Social Program Management application with the SAML
response and RelayState parameter.

5. The application server ACS validates the signature that is contained in the SAML response. If
the validation is successful, the ACS sends an HTTP redirect that points to the configured Social
Program Management target landing page, along with an LTPA2 cookie that is used in any subsequent
communication.

6. The Social Program Management application landing page is displayed in the browser.

IdP-initiated flow for Universal Access
The following figure illustrates the IdP initiated flow that is supported by Universal Access in a default
installation.

26 IBM Cúram Social Program Management: Cúram Security Guide

Figure 8. IdP-initiated flow for Universal Access

1. In an IdP-initiated flow, the user completes the IDP login form and authenticates.
2. After successful authentication in IdP, the user tries to access the Social Program Management

application that is deployed in the application server.
3. The Trust Association Interceptor (TAI) and Assertion Consumer Service (ACS) (SAML TAI/ACS) that is

deployed on the application server intercepts the request and redirects it to the IdP endpoint with a
generated SAML request.

4. Because the user is already logged into the IdP, the IdP responds with a SAML response and redirects
the user to the Social Program Management application.

5. The application server ACS validates the signature that is contained in the SAML Response. If the
validation is successful, the ACS sends an HTTP redirect request that points to the configured Social
Program Management target landing page, along with an LTPA2 cookie that is used in any subsequent
communication.

6. The Social Program Management application landing page is displayed in the browser.

Configure SAML SSO for IBM Cúram Social Program Management on WebSphere Liberty
Code samples and steps are provided as a guide for enabling SAML SSO in WebSphere Liberty.

About this task
The following code samples and steps are intended for general guidance only. They are not intended to be
a substitute for detailed analysis or the exercise of professional judgment.

Chapter 1. Securing Social Program Management 27

For more information about configuring SAML SSO for IBM Cúram Social Program Management on
WebSphere Liberty, see the related link.

Procedure
1. Enable the SAML feature in the WebSphere Liberty server.xml file, as shown in the following

example:

<featureManager>
 <feature>samlWeb-2.0</feature>
 <feature>appSecurity-2.0</feature>
</featureManager>

2. Download the SAML metadata XML and ask your SSO administrator to use it to configure the SSO
provider as IBM ISAM, as shown in the following example:

https://application-domain.com/ibm/saml20/defaultSP/samlmetadata

3. Configure and enable SAML SSO in the WebSphere Liberty server.xml file, as shown in the following
example:

<server description="Curam Server">
(...)
<samlWebSso20 id="defaultSP"
 idpMetadata="/path/to/file/federation_metadata.xml"
 wantAssertionsSigned="false"
 authnRequestsSigned="false"
 authFilterRef="curamAuthFilter"
 spHostAndPort="https://application-domain.com"
 disableLtpaCookie="false"
 allowCustomCacheKey="false"
 enabled="true">
</samlWebSso20>
<authFilter id="curamAuthFilter">
 <requestUrl id="curamRequestUrl1" urlPattern="/Curam/j_security_check"
matchType="notContain"/>
 <requestUrl id="curamRequestUrl2" urlPattern="/Curam/logon.jsp" matchType="notContain"/>
 <requestUrl id="curamRequestUrl3" urlPattern="/Curam/logonerror.jsp"
matchType="notContain"/>
</authFilter>
(...)
</server>

Note: The federation_metadata.xml file is generated by the identity provider, which is IBM ISAM.
4. In the server.xml file, change the spHostAndPort="https://spm-application-url.com"

property to the appropriate domain URL.
5. Verify the authentication attributes that are extracted from the subject in the Curam JAAS Login
Module, as shown in the following example:

Set<object> privateCredentials = loginSubject.getPrivateCredentials();
if (privateCredentials != null && privateCredentials.size() > 0) {
 for (Object credObject : privateCredentials) {
 if (credObject instanceof java.util.Hashtable) {
 java.util.Hashtable credPrivate = (java.util.Hashtable) credObject;
 username = (String)credPrivate.get("com.ibm.wsspi.security.cred.securityName");
 if (username != null && username.trim().length() > 0)
 {
 authenticationResult = true;
 }
 }
 }
}

Universal Access SSO on Kubernetes initiation and flow
For single sign-on, the SAML response, by HTTP POSTs, is interpreted and controlled by logic in IBM
Cúram Universal Access.

In all SAML web SSO profile flows, the binding defines the mechanism that is used to send information
through assertions between the identity provider (IdP) and the service provider (SP). WebSphere Liberty

28 IBM Cúram Social Program Management: Cúram Security Guide

supports HTTP POST binding for sending web SSO profiles. The browser sends an HTTP POST request,
whose POST body contains a SAML response document. The SAML response document is an XML
document that contains data about the user and the assertion, some of which is optional.

Browser-based single sign-on (SSO) through SAML v2.0 works well with many web applications where the
SAML flow is controlled by HTTP redirects between the identity provider (IdP) and the service provider
(SP). The user is guided seamlessly from login screens to SP landing pages by HTTP redirects and hidden
forms that use the browser to POST received information to either the IdP or the SP.

In a single-page application, all the screens are contained within the application and dynamic content
is expected to be passed only in JSON messages through XMLHttpRequests. Therefore, the rendering of
HTML content for login pages and the automatic posting of hidden forms in HTML content is more difficult.
If the SP processes the content in the same way, it would to leave the application and hand back control
to either the user agent or the browser, in which case the application state would be lost.

IdP-initiated use case
The IdP can send an assertion request to the service provider ACS through one of the following methods:

• The IdP sends a URL link in a response to a successful authentication request. The user must click the
URL link to post the SAML response to the service provider ACS.

• The IdP sends an auto-submit form to the browser that automatically posts the SAML response to the
service provider ACS.

• The user authenticates into IdP and accesses the application that is configured as a partner to the IdP.

The ACS then validates the assertion, creates a JAAS subject, and redirects the user to the SP resource.

SP-initiated use case
When an unauthenticated user first accesses an application through an SP, the SP directs the user's
browser to the IdP to authenticate. To be SAML specification compliant, the flow requires the generation
of a SAML AuthnRequest from the SP to the IdP. The IdP receives the AuthnRequest, validates that
the request comes from a registered SP, and then authenticates the user. When the user is authenticated,
the IdP directs the browser to the Assertion Consumer Service (ACS) application that is specified in the
AuthnRequest that was received from the SP.

Assertions and the SAML Response document
To prove the authenticity of the information, the assertion in the SAML response is almost always digitally
signed. To protect the confidentiality of parts of the assertion, the payload can be digitally encrypted. A
typical SAML response contains information that can be sent only through a login by a POST parameter.
After login, an alternative mechanism is typically used to maintain the logged-in security context. Most
systems use some cookie-based, server-specific mechanism, such as a specific security cookie, or the
server’s cookie tied to the user’s HTTP session.

IdP-initiated flow
When Social Program Management is configured in WebSphere Liberty with an-IdP initiated web SSO
flow, any attempt to connect to a protected resource without first authenticating through IdP results
in the application server falling back to an SP-initiated SSO flow. In an SP-initiated SSO flow, any
authentication requests that are initiated through SP result in a 403 HTTP response, and the application
redirects the user to the IdP login page for the user to authenticate. After the user is authenticated
successfully, the control is redirected to the Social Program Management application page.

The following figure illustrates the IdP initiated flow that is supported by Social Program Management in a
default installation.

Chapter 1. Securing Social Program Management 29

Figure 9. IdP-initiated flow

1. In an IdP-initiated flow, the user completes the IDP login form and authenticates.
2. After successful authentication in IdP, the user tries to access the Social Program Management

application that is deployed in the application server.
3. The Trust Association Interceptor (TAI) and Assertion Consumer Service (ACS) (SAML TAI/ACS) that is

deployed on the application server intercepts the request and redirects it to the IdP endpoint with a
generated SAML request.

4. Because the user already logged into the IdP before the user accessed the Social Program
Management application, the IdP responds with a SAML response and redirects the user to the Social
Program Management application.

5. The application server ACS validates the signature that is contained in the SAML Response. WebSphere
Liberty also ensures that the originator is a Trusted Authentication Realm. If the validation is
successful, the ACS sends an HTTP redirect request that points to the configured Social Program
Management target landing page, along with an LTPA2 cookie that is used in any subsequent
communication.

6. The Social Program Management application landing page is displayed in the browser.

SP-initiated flow
When Social Program Management is configured with an SP-initiated web SSO flow, any attempt to
connect to a protected resource without first authenticating results in a 401 HTTP response from the

30 IBM Cúram Social Program Management: Cúram Security Guide

application server Assertion Consumer Service’s Trust Association Interceptor, and the generation of the
SAML AuthnRequest message to be sent to the IdP.

Figure 10. SP-initiated flow

1. When a user tries to access a Social Program Management application resource without
authenticating, the TAI intercepts the request and redirects the user to the IdP endpoint with the
generated SAML request.

2. The IdP endpoint displays the login form that the user completes to authenticate, then directs the
SAML request to the IdP SAML endpoint.

3. After successful validation of the user credentials at the IdP, the IdP populates the SAML response and
returns it in an HTML form that contains hidden input fields.

4. The HTML form is autosubmitted to the Social Program Management application with the SAML
response and RelayState parameter.

5. The Social Program Management application extracts the RelayState parameter and SAML response
values, and inserts them in a new POST request to the application server ACS.

6. The application server ACS validates the signature that is contained in the SAML response. WebSphere
Liberty also ensures that the originator is a Trusted Authentication Realm. If the validation is
successful, the ACS sends an HTTP redirect that points to the configured Social Program Management
target landing page, along with an LTPA2 cookie that is used in any subsequent communication.

7. The Social Program Management application landing page is displayed in the browser.

Chapter 1. Securing Social Program Management 31

Configuring the Universal Access Responsive Web Application for SSO
To enable the Universal Access Responsive Web Application to work with SAML single sign-on (SSO),
configure the appropriate properties in the .env environment variable file in the root of the React
application and rebuild the application.

About this task
• The <IdP_URL> consists of three parts: the HTTPS protocol, the IdP hostname or IP address, and the

listener port number. For example, https://192.168.0.1:12443.
• The <ACS_URL> consists of three parts: the HTTPS protocol, the Assertion Consumer Service (ACS)

hostname or IP address, and the listener port number. For example, https://192.168.0.2:443.

Procedure
1. Set the authentication method to SSO, see Customizing the authentication method.
2. Set the related environment variables for your SSO environment, see React environment variable

reference. These properties are applicable to both identity provider (IdP)-initiated and service-
provider (SP)-initiated SAML 2.0 web SSO unless otherwise stated.

SAML SSO on Kubernetes configuration example using ISAM
The example uses ISAM as an RPL-based SSO and outlines an SSO configuration for both IBM Cúram
Social Program Management and IBM Cúram Universal Access that implements federated single sign-on
by using the SAML 2.0 Browser POST profile. The example applies to both IdP-initiated and SP-initiated
flows. Some additional steps are required to configure SP-initiated flows.

Note: This example configuration uses ISAM, you are free to use any SAML-based authorization and
network security policy management solution.

SSO configuration components
Figure 1 shows the components that are included in a Social Program Management SSO configuration.

32 IBM Cúram Social Program Management: Cúram Security Guide

Figure 11. SSO configuration components

Web browser
A user sends requests from their web browser for applications in the SSO environment.

Web server
Social Program Management static content is deployed on a web server.

SAML-based SSO (ISAM) server
The IBM Security Access Manager server includes the identity provider (IdP).

LDAP server (user directory)
Among other items, the LDAP server contains the user name and password of all the valid users in the
SSO environment.

WebSphere Application Server Liberty
Among other applications, WebSphere Liberty contains the deployed Social Program Management,
Citizen WorkSpace, and REST enterprise applications.

Build-in WebSphere Liberty SAML configuration
Contains the features to run the SAML Trust Assertion Interceptor (TAI) and Consumer Service (ACS).

Chapter 1. Securing Social Program Management 33

Social Program Management Database
Data storage for the Social Program Management, Citizen WorkSpace, and REST enterprise
applications.

Configuring SSO with IBM Security Access Manager
Use the ISAM management console to configure single sign-on (SSO) in IBM Cúram Social Program
Management.

Before you begin
1. Start IBM Security Access Manager.
2. In the management console, log on as an administrator.
3. Accept the services agreement.
4. If required, change the administrative password.

About this task
In the IBM Security Access Manager management console, complete the following steps, with reference
to IBM Security Access Manager 9 Federation Cookbook.

Procedure
1. Configure the IBM Security Access Manager database:

a) In the top menu, click Home Appliance Dashboard > Database Configuration.
b) Enter the database configuration details, such as Database Type, Address, Port, and so on, and

click Save.
c) When the Deploy Pending Changes window opens, click Deploy.

2. To install all the required product licenses, complete the steps in section 4.3 Product Activation from
IBM Security Access Manager 9 Federation Cookbook

3. Configure the LDAP SSL database by completing section 25.1.1 Load Federation Runtime SSL
certificate into pdsrv trust store from the IBM Security Access Manager 9 Federation Cookbook .

4. Configure the runtime component by completing 4.6 Configure ISAM Runtime Component on the
Appliance from the IBM Security Access Manager 9 Federation Cookbook.

Configuring IBM Security Access Manager as an IdP
To configure IBM Security Access Manager as an identity provider (IdP), complete the outlined steps from
the IBM Security Access Manager 9.0 Federation Cookbook that is available from IBM Developer Works.

Before you begin
Download the IBM Security Access Manager 9.0 Federation Cookbook from IBM Developer Works, as
shown in the related link. Also, download the mapping files that are provided with the cookbook.

About this task
To set up the example environment, see Access Manager Federation Cookbook and complete the
specified sections in the IBM Security Access Manager Federation Cookbook 9.0.6.0 PDF that is attached
to the page.

Procedure
1. Complete Section 5, Create Reverse Proxy instance.
2. Complete Section 6, Create SAML 2.0 Identity Provider federation.

34 IBM Cúram Social Program Management: Cúram Security Guide

http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf
http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf
http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf
http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf
https://community.ibm.com/community/user/security/viewdocument/access-manager-federation-cookbook-1?CommunityKey=e7c36119-46d7-42f2-97a9-b44f0cc89c6d&tab=librarydocuments

In Section 6.1, if you are using the ISAM docker deployment, it is possible to reuse the existing
keystore that is included in the container instead of creating a new keystore. It is important to reflect
this change in subsequent sections where the myidpkeys certificate database is referenced.

3. Complete Section 8.1, ISAM Configuration for the IdP.
In Section 8.1, use the hostname of the IdP federation.

4. Optional: After you complete Section 8.1.1, if you require ACLs to be defined to allow and restrict
access to the IdP junction, then follow the instructions in Section 25.1.3, Configure ACL policy for IdP.

5. Complete Section 9.1, Configuring Partner for the IdP.
The export from WebSphere Application Server Liberty does not contain all the relevant data.
Therefore, in Section 9.1, after you complete configuring partner for the IdP, you must click Edit
configuration and complete the remaining advanced configuration.

Adding and enabling users in LDAP
Add the users from LDAP and enable them in SAML-based SSO.

Procedure
1. To create LDAP and IBM Security Access Manager runtime users, create an ldif file that can be used

to populate OpenLDAP, as shown in the following sample:

cat usersCreate_ISAM.ldif
dn: dc=watson-health,secAuthority=Default
objectclass: top
objectclass: domain
dc: watson-health

dn: c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: country
c: ie

dn: o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organization
o: curam

dn: ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamint

dn: cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: caseworker
sn: caseworkersurname
uid: caseworker
mail: caseworker@curam.com
userpassword: Passw0rd

dn: ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamext

dn: cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: jamessmith
sn: Smith
uid: jamessmith
mail: jamessmith@curamexternal.com
userpassword: Passw0rd

2. Add users to the OpenLDAP database:

Chapter 1. Securing Social Program Management 35

a) On the host server that is running the docker containers, enter the following command:

docker cp usersCreate_ISAM.ldif idpisam9040_isam-ldap_1:/tmp

b) To log on to the OpenLDAP container, enter the following command:

docker exec –ti idpisam9040_isam-ldap_1 bash

c) To add the users to OpenLDAP, enter the following command:

ldapadd -H ldaps://127.0.0.1:636 -D cn=root,secAuthority=default -f /tmp/
Curam_usersCreate_ISAM.ldif

3. Import the users into IBM Security Access Manager:
a) To log on to the IBM Security Access Manager command-line interface, enter the following

commands:

docker exec -ti idpisam9040_isam-webseal_1 isam_cli
isam_cli> isam admin
pdadmin> login -a sec_master -p <password>

b) To import the users into IBM Security Access Manager, enter the following commands:

pdadmin sec_master> user import caseworker
cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify caseworker account-valid yes
pdadmin sec_master> user import jamessmith
cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify jamessmith account-valid yes

4. To test the identity provider (IdP) flow, enter the following URL in a browser:

https://IdP_URL/isam/sps/saml20idp/saml20/
 logininitial?RequestBinding=HTTPPost&PartnerId=ACS_URL/samlsps/acs
 &NameIdFormat=Email&Target=WLP_hostname:WLP_port/Rest/v1

Replace the following values in the URL with the appropriate values for your configuration:

• IdP_URL is the IBM Security Access Manager login initial URL
• ACS_URL is the SAML Assertion Consumer Service URL
• WLP_hostname is the WebSphere Liberty application server host name
• WLP_port is the WebSphere Liberty application server port, where in IBM Cúram Social Program

Management the default value is 9044

When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
Social Program Management, an XHR timeout occurs before the initialization finishes. Therefore, this
test step is required to ensure that the initialization of the IdP endpoints is completed.

5. In a browser, go to the home page and log in.

Testing IdP-initiated SAML SSO infrastructure
When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by IBM
Cúram Social Program Management, an XHR timeout occurs before the initialization finishes. This test
step is required to ensure that the initialization of the IdP endpoints is completed.

Procedure
To test the identity provider (IdP) flow, enter the following URL in a browser:

https://<isam_url>/isam/sps/saml20idp/saml20/logininitial?
RequestBinding=HTTPPost&PartnerId=https://<was_url>/samlsps/acs&NameIdFormat=Email&Target=<
was_url>/Rest/api/definitions

36 IBM Cúram Social Program Management: Cúram Security Guide

Where:

• <isam_url> - The URL for IBM Security Access Manager. It consists of the IBM Security Access
Manager hostname, and port number, for example, https:// 192.168.0.1:12443.

• <junction_name> - The junction name that is used during the federation configuration in reverse
proxy. The default value is isam.

• <idp_endpoint> - The endpoint that is configured for the IDP federation. The default value is sps.
• <federation_name> - The name that was used when you created the federation.
• WebSphere Application Server Liberty hostname
• WebSphere Liberty hostname
• WebSphere Liberty port. The default value is 9044 for IBM Cúram Social Program Management.

SP-initiated only: Testing SP-initiated SAML SSO infrastructure
Test the SP-initiated SAML SSO infrastructure.

About this task
Open your browser, with network devtools, and load a protected IBM Cúram Social Program Management
application URL like this example: <SPM_Kubernetes_URL>/curam. <SPM_Kubernetes_URL> is the
URL of the Social Program Management that is deployed in the Kubernetes environment, for example
https://spm.dev.watson-health.ibm.com/curam. You are redirected to the ISAM SSO log-in
page. Log in with the credentials of a user who is authorized to access Social Program Management.
You are redirected to the Social Program Management application after a successful authentication.

Procedure
1. Open your browser with network devtools, and load a protected IBM Cúram Social Program

Management application URL, as shown in the following example:

https://application-domain.com

You are redirected to the ISAM SSO log-on page.
2. Log on with the credentials of a user who is authorized to access the Social Program Management

application.
After a successful authentication, you are redirected to the Social Program Management application.

Configuring SAML SSO on WebSphere Application Server
Configure SAML SSO for Social Program Management on WebSphere Application Server. If you are using
IBM Cúram Universal Access, you must do some additional Universal Access configuration.

SAML SSO initiation and flow on WebSphere Application Server
In all SAML web SSO profile flows, the binding defines the mechanism that is used to send information
through assertions between the identity provider (IdP) and the service provider (SP). For Universal
Access, the SAML response by HTTP POSTs is interpreted and controlled by logic in the IBM Universal
Access Responsive Web Application.

WebSphere Application Server supports HTTP POST binding for sending web SSO profiles. The browser
sends an HTTP POST request, whose POST body contains a SAML response document. The SAML
response document is an XML document that contains certain data about the user and the assertion,
some of which is optional.

Browser-based single sign-on (SSO) through SAML v2.0 works well with many web applications where the
SAML flow is controlled by HTTP redirects between the identity provider (IdP) and the service provider
(SP). The user is guided seamlessly from login screens to SP landing pages by HTTP redirects and hidden
forms that use the browser to POST received information to either the IdP or the SP.

In a single-page application such as the IBM Universal Access Responsive Web Application, all screens
are contained in the application and dynamic content is expected to be passed only in JSON messages

Chapter 1. Securing Social Program Management 37

through XMLHttpRequests. Therefore, the rendering of HTML content for login pages and the automatic
posting of hidden forms in HTML content is more difficult. If the SP processes the content in the same
way, it would be necessary to leave the application and hand back control to either the user agent or the
browser, in which case the application state would be lost.

IdP-initiated use case
The IdP can send an assertion request to the service provider ACS in one of two ways:

• The IdP sends a URL link in a response to a successful authentication request. The user must click the
URL link to post the SAML response to the service provider ACS.

• The IdP sends an auto-submit form to the browser that automatically posts the SAML response to the
service provider ACS.

The ACS then validates the assertion, creates a JAAS subject, and redirects the user to the SP resource.

SP-initiated use case
When an unauthenticated user first accesses an application through an SP, the SP directs the user's
browser to the IdP to authenticate. To be SAML specification compliant, the flow requires the generation
of a SAML AuthnRequest from the SP to the IdP. The IdP receives the AuthnRequest, validates that
the request comes from a registered SP, and then authenticates the user. After the user is authenticated,
the IdP directs the browser to the Assertion Consumer Service (ACS) application that is specified in the
AuthnRequest that was received from the SP.

Assertions and the SAML Response document
To prove the authenticity of the information, the assertion in the SAML response is almost always digitally
signed. To protect the confidentiality of parts of the assertion, the payload can be digitally encrypted. A
typical SAML response contains information that can be sent only through a login by a POST parameter.
After login, an alternative mechanism is typically used to maintain the logged-in security context. Most
systems use some cookie-based, server-specific mechanism, such as a specific security cookie, or the
server’s cookie tied to the user’s HTTP session.

SAML SSO initiation and flow diagrams
Review the flow diagram that matches your environment.

• “IdP-initiated flow for Social Program Management in WebSphere Application Server” on page 38
• “IdP-initiated flow for Universal Access in WebSphere Application Server” on page 39
• “SP-initiated flow for Social Program Management in WebSphere Application Server” on page 41
• “SP-initiated flow for Universal Access in WebSphere Application Server” on page 41

IdP-initiated flow for Social Program Management in WebSphere Application Server
The following figure illustrates the IdP-initiated flow that is supported by Social Program Management in a
default installation.

38 IBM Cúram Social Program Management: Cúram Security Guide

Figure 12. IdP-initiated flow for Social Program Management in WebSphere Application Server

1. In an IdP-initiated flow, the user completes the IDP login form and authenticates.
2. After successful authentication in IdP, the user tries to access the Social Program Management

application that is deployed in the application server.
3. The Trust Association Interceptor (TAI) and Assertion Consumer Service (ACS) that is deployed on the

application server intercepts the request and redirects it to the IdP endpoint.
4. Because the user already logged into the IdP, the IdP responds with a SAML response and redirects

the user to the Social Program Management application.
5. The application server ACS validates the signature that is contained in the SAML Response.

WebSphere Application Server also ensures that the originator is a Trusted Authentication Realm.
If the validation is successful, the ACS sends an HTTP redirect that points to the configured Social
Program Management target landing page, along with an LTPA2 cookie to be used in any subsequent
communication.

6. The Social Program Management application landing page is displayed in the browser.

IdP-initiated flow for Universal Access in WebSphere Application Server
When Universal Access is configured with an IdP initiated web SSO flow, any attempt to connect to a
protected resource without first authenticating through IdP results in a 403 HTTP response from IBM
Cúram Social Program Management web API. Any authentication requests that are initiated through SP
result in a 403 HTTP response, and the application redirects the user to the login page in Universal
Access.

Chapter 1. Securing Social Program Management 39

The following figure illustrates the IdP-initiated flow that is supported by Universal Access in a default
installation.

Figure 13. IdP-initiated flow for Universal Access in WebSphere Application Server

1. A user browses to the HTTP server that contains Universal Access.
2. The user can browse as normal by interacting with IBM Cúram Social Program Management as either a

public or a generated user (which is not shown in the diagram). The user then opens the login page to
access protected content, which triggers an initial request to the IdP endpoint.

3. In most IdP configurations, an HTML login form responds to the request. Universal Access ignores the
response.

4. To authenticate, the user completes the login form and clicks Submit. The form submission triggers an
HTTP POST request that contains login credentials to the IdP.

5. After successful validation of the user credentials at the IdP, the IdP populates the SAML Response
and returns it in an HTML form that contains hidden input fields. Several redirects might occur before
the 200 OK HTTP response that contains the SAML information is received. Universal Access does not
respond to the redirects.

6. Universal Access extracts the RelayState and SAMLResponse values, and inserts them in a new
POST request to the application server Assertion Consumer Service (ACS).

7. The application server ACS validates the signature that is contained in the SAML Response. WebSphere
Application Server also ensures that the originator is a Trusted Authentication Realm. If the validation
is successful, the ACS sends an HTTP redirect that points to the configured IBM Cúram Social Program
Management target landing page, along with an LTPA2 Cookie that will be used in any subsequent
communication.

8. Universal Access begins its standard user setup by requesting account and profile information from the
relevant web API endpoints.

40 IBM Cúram Social Program Management: Cúram Security Guide

SP-initiated flow for Social Program Management in WebSphere Application Server
The following figure illustrates the SP-initiated flow that is supported by Social Program Management in a
default installation.

Figure 14. SP-initiated flow for Social Program Management in WebSphere Application Server

1. When a user tries to access an Social Program Management application resource without
authenticating, the TAI intercepts the request and redirects the user to the IdP endpoint with the
generated SAML request.

2. The IdP endpoint displays the login form that the user completes to authenticate, then directs the
SAML request to the IdP SAML endpoint.

3. After successful validation of the user credentials at the IdP, the IdP populates the SAML response and
returns it in an HTML form that contains hidden input fields.

4. The HTML form is autosubmitted to the Social Program Management application with the SAML
response and RelayState parameter.

5. The application server ACS validates the signature that is contained in the SAML response. WebSphere
Application Server also ensures that the originator is a Trusted Authentication Realm. If the validation
is successful, the ACS sends an HTTP redirect that points to the configured Social Program
Management target landing page, along with an LTPA2 cookie that is used in any subsequent
communication.

SP-initiated flow for Universal Access in WebSphere Application Server
When Universal Access is configured with an SP-initiated web SSO flow, any attempt to connect to a
protected resource without first authenticating results in a 401 HTTP response from the application

Chapter 1. Securing Social Program Management 41

server Assertion Consumer Service’s Trust Association Interceptor, and the generation of the SAML
AuthnRequest message to be sent to the IdP.

Figure 15. SP-initiated flow for Universal Access in WebSphere Application Server

1. A user browses to the HTTP server that contains Universal Access.
2. The user can browse as normal by interacting with IBM Cúram Social Program Management as either

a public or a generated user (which is not shown in the diagram). The user then accesses protected
content in the application, which is intercepted by the Assertion Consumer Service Trust Association
Interceptor (TAI).

3. The TAI triggers an 401 HTTP response with the SAML request message to be sent to the IdP.
4. Universal Access then directs the SAML Request to the IdP SAML endpoint.
5. In most IdP configurations, an HTML login form responds to the request. Universal Access extracts a

hidden authentication token in the login form if present, ignoring the rest of the response.
6. To authenticate, the user completes the login form and clicks Submit. The form submission triggers

an HTTP POST request that contains login credentials to the IdP, along with the token extracted in the
previous step if present.

7. After successful validation of the user credentials at the IdP, the IdP populates the SAML Response
and returns it in an HTML form that contains hidden input fields. Several redirects might occur before
the 200 OK HTTP response that contains the SAML information is received. Universal Access does not
respond to the redirects.

8. Universal Access extracts the RelayState and SAMLResponse values, and inserts them in a new
POST request to the application server Assertion Consumer Service (ACS).

9. The application server ACS validates the signature that is contained in the SAML Response.
WebSphere Application Server also ensures that the originator is a Trusted Authentication Realm.

42 IBM Cúram Social Program Management: Cúram Security Guide

If the validation is successful, the ACS sends an HTTP redirect that points to the configured IBM
Cúram Social Program Management target landing page, along with an LTPA2 Cookie that will be used
in any subsequent communication.

10. The browser automatically sends a new request to the target URL, but Universal Access does not
respond to the request. Universal Access begins its standard user setup by requesting account and
profile information from the relevant web API endpoints.

Configuring WebSphere Application Server as a SAML service provider
To configure SSO for Social Program Management, you must configure IBM WebSphere Application Server
as a SAML service provider.

About this task
For more information, see the related link to the WebSphere Application Server documentation.

Procedure
1. Deploy the WebSphereSamlSP.ear file.

Note: So that SAML Assertion Consumer Service (ACS) works with cross-origin resource sharing
(CORS) security requirements during redirections, you must map its modules to the same virtual host
used for the REST target application (that is, client_host).

The WebSphereSamlSP.ear file is available as an installable package. Choose one of the following
methods:

• Log on to the WebSphere Application Server administrative console, and install the
app_server_root/installableApps/WebSphereSamlSP.ear file to your application server
or cluster.

• Install the SAML ACS application by using a Python script. In the app_server_root/bin
directory, enter the following command to run the installSamlACS.py script:

wsadmin -f installSamlACS.py install nodeName serverName

Where nodeName is the node name of the target application server, and serverName is the server
name of the target application server. When you complete this step, you must map the modules to
the REST application, for more information see: Mapping virtual hosts for web modules.

2. Configure the ACS trust association interceptor:
a) In the WebSphere Application Server administrative console, click Global security > Trust

association > Interceptors > New.
b) For Interceptor class name, enter
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

c) Under custom properties, enter the values that are shown in the following table:
In a standard WebSphere Application Server configuration, you would also define a value for the
login.error.page custom property. However, the preferred method is to log on to the IdP first.
Therefore, if you do not define a value for login.error.page, WebSphere Application Server
returns a 403 error if a user logs on without first logging on to the identity provider (IdP).

Table 2. ACS trust association interceptor custom properties

Custom property name Value

sso_1.sp.acsUrl https://WAS_host_name:ssl port//samlsps/acs

sso_1.idp_1.EntityID https://isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20

Chapter 1. Securing Social Program Management 43

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_mapvhosts.html

Table 2. ACS trust association interceptor custom properties (continued)

Custom property name Value

sso_1.idp_1.SingleSignOnUrl https:// isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20/login

sso_1.sp.targetUrl https://WAS_host_name:WAS_port/Rest

sso_1.idp_1.certAlias isam-conf

sso_1.sp.filter request-url^=/Rest;request-url!=/Rest/
j_security_check

sso_1.sp.enforceTaiCookie false

3. Add the IdP federation partner data. The following substeps describe how to add the IdP data by using
the WebSphere Application Server administrative console.
a) To add the IdP host name or IP address as a trusted realm, click Global security > Trusted

authentication realms - inbound > Add External Realm.
b) Enter either the IBM Security Access Manager host name or IP address.
c) To load the IdP certificate from IBM Security Access Manager, click Security > SSL certificate and

key management > Key stores and certificates > NodeDefaultTrustStore > Signer certificates >
Retrieve from port

d) Enter the IBM Security Access Manager IP address and listener port, for example, 12443, alias
= isam-conf.

Note: When the browser first attempts to connect to the IBM Cúram Social Program Management
web API, an LTPA2 cookie is sent as part of the request. If the WebSphere Application Server
com.ibm.ws.security.web.logoutOnHTTPSessionExpire property is set to true, which is
the default configuration in IBM Cúram Social Program Management, then authentication fails
because an HTTP session does not exist on the application server. By setting the property to
false, the check for a valid HTTP session is not completed and when the LTPA2 token is valid,
authentication succeeds.

To configure the property in the WebSphere Application Serveradministrative console,
click Security > Global security > Custom properties, and set the value of
com.ibm.ws.security.web.logoutOnHTTPSessionExpire to false.

4. Implement cross-origin resource sharing (CORS) from the HTTP server to the WebSphere Application
Server SAML ACS.
a) To add a CORS header, configure a servlet filter for the WebSphereSamlSP.ear file that is

deployed by a Trust Association Interceptor (TAI). The servlet filter adds a CORS HTTP header
to HTTP responses. You can archive the implemented servlet filter as a jar file, and then store it in
the WebSphereSamlSP.ear\WebSphereSamlSPWeb.war\WEB-INF\lib directory that is in the
installedApps directory of your project in WebSphere Application Server.
See the following example of how to implement a servlet filter:

public class SampleFilter implements Filter {

 @Override
 public void doFilter(ServletRequest arg0, ServletResponse servletResponse,
 FilterChain arg2) throws IOException, ServletException {

HttpServletResponse response = (HttpServletResponse) servletResponse;
HttpServletRequest request = (HttpServletRequest) arg0;

response.setHeader("Access-Control-Allow-Origin",
 "http://dubxpcvm156.mul.ie.ibm.com:9880"); <hostname or IP address of IBM UA
server>
response.setHeader("Access-Control-Allow-Credentials", "true");
response.setHeader("Access-Control-Allow-Headers", "x-requested-with, Content-Type,
origin, authorization, accept, client-security-token");

44 IBM Cúram Social Program Management: Cúram Security Guide

response.setHeader("Access-Control-Expose-Headers", "content-length");
 arg2.doFilter(request, response);
 }
}

b) Configure the web.xml file for the deployed TAI EAR file to use the servlet filter for all the requests.
Add the filter element that is shown in the following sample to the web.xml file, with the actual
fully qualified name of the filter.
You can add the filter element as a sibling to any existing element
n the web.xml file, such as <servlet>. The web.xml file is in the
WebSphereSamlSP.ear\WebSphereSamlSPWeb.war\WEB-INF\lib directory, which is in the
installedApps directory of your project in WebSphere Application Server.

<filter>
 <filter-name> SampleFilter </filter-name>
 <filter-class> SampleFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name> SampleFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Configuring IBM Cúram Universal Access for SSO
To configure SSO for Universal Access, you must configure the Universal Access Responsive Web
Application to use SSO authentication, and configure cross-origin resource sharing (CORS) for Universal
Access.

Before you begin
Ensure that IBM Cúram Social Program Management is configured for SSO. For IBM WebSphere
Application Server, see “Configuring WebSphere Application Server as a SAML service provider” on page
43.

Configuring the Universal Access Responsive Web Application for SSO
To enable the Universal Access Responsive Web Application to work with SAML single sign-on (SSO),
configure the appropriate properties in the .env environment variable file in the root of the React
application and rebuild the application.

About this task
• The <IdP_URL> consists of three parts: the HTTPS protocol, the IdP hostname or IP address, and the

listener port number. For example, https://192.168.0.1:12443.
• The <ACS_URL> consists of three parts: the HTTPS protocol, the Assertion Consumer Service (ACS)

hostname or IP address, and the listener port number. For example, https://192.168.0.2:443.

Procedure
1. Set the authentication method to SSO, see Customizing the authentication method.
2. Set the related environment variables for your SSO environment, see React environment variable

reference. These properties are applicable to both identity provider (IdP)-initiated and service-
provider (SP)-initiated SAML 2.0 web SSO unless otherwise stated.

Configuring CORS for IBM Cúram Universal Access
You must configure cross-origin resource sharing (CORS) for IBM Cúram Universal Access. For security
reasons, browsers restrict cross-origin HTTP requests, including XMLHttpRequest HTTP requests, that are
initiated in Universal Access. When the Universal Access application and the Universal Access web API
are deployed on different hosts, extra configuration is needed.

Chapter 1. Securing Social Program Management 45

About this task
Universal Access can request HTTP resources only from the same domain that the application was loaded
from, which is the domain that contains the static JavaScript. To enable Universal Access to support
cross-origin resource sharing (CORS), enable the use of CORS headers.

Procedure
1. Log on to the IBM Cúram Social Program Management application as a system administrator, and click

System Configurations.
2. In the Shortcuts menu, click Application Data > Property Administration.
3. Configure the curam.rest.allowedOrigins property with the values of either the hostnames or

the IP addresses of the IdP server and the web server on which Universal Access is deployed.

SAML SSO configuration example with IBM Security Access Manager
The example outlines a single sign-on (SSO) configuration for IBM Cúram Social Program Management
and IBM Cúram Universal Access that uses IBM Security Access Manager to implement federated single
sign-on by using the SAML 2.0 Browser POST profile. The example applies to both IdP-initiated and
SP-initiated flows. Some additional steps are needed to configure SP-initiated flows.

Universal Access SSO configuration components
The following figure shows the components that are included in a Universal Access SSO configuration.

46 IBM Cúram Social Program Management: Cúram Security Guide

Figure 16. Universal Access SSO configuration components

Web browser
A user sends requests from their web browser for applications in the SSO environment.

Web server
The Universal Access ReactJS static content is deployed on a web server, such as IBM HTTP Server, or
Apache HTTP Server.

IBM Security Access Manager (ISAM) server
The IBM Security Access Manager server includes the identity provider (IdP).

LDAP server (user directory)
Among other items, the LDAP server contains the username and password of all the valid users in the
SSO environment.

IBM WebSphere Application Server
Among other applications, WebSphere Application Server contains the deployed IBM Cúram Social
Program Management, Citizen Workspace, and REST enterprise applications.

Chapter 1. Securing Social Program Management 47

WebSphere Application Server SAML EAR
A WebSphere Application Server package that contains the packages to run the SAML Assertion
Consumer Service (ACS).

Social Program Management database
Data storage for the IBM Cúram Social Program Management, Citizen Workspace, and REST enterprise
applications.

Configuring single sign-on through IBM Security Access Manager
Use the IBM Security Access Manager management console to configure single sign-on (SSO) in IBM
Cúram Universal Access.

Before you begin
1. Start IBM Security Access Manager.
2. In the management console, log on as an administrator.
3. Accept the services agreement.
4. If required, change the administrative password.

About this task
In the IBM Security Access Manager management console, complete the following steps, with reference
to the IBM Security Access Manager 9 Federation Cookbook.

Procedure
1. Configure the IBM Security Access Manager database:

a) In the top menu, click Home Appliance Dashboard > Database Configuration.
b) Enter the database configuration details, such as Database Type, Address, Port, and so on, and

click Save.
c) When the Deploy Pending Changes window opens, click Deploy.

2. To install all the required product licenses, complete the steps in section 4.3 Product Activation from
the IBM Security Access Manager 9 Federation Cookbook.

3. Configure the LDAP SSL database by completing section 25.1.1 Load Federation Runtime SSL
certificate into pdsrv trust store from IBM Security Access Manager Federation Cookbook .

4. Configure the runtime component by completing 4.6 Configure ISAM Runtime Component on the
Appliance from IBM Security Access Manager Federation Cookbook .

Configuring IBM Security Access Manager as an IdP
To configure IBM Security Access Manager as an identity provider (IdP), see the IBM Security Access
Manager 9.0 Federation Cookbook that is available from IBM Developer Works.

Before you begin
Download the IBM Security Access Manager 9.0 Federation Cookbook from IBM Developer Works, as
shown in the related link. Also download the mapping files that are provided with the cookbook.

About this task
To set up the example environment, complete the specified sections in the IBM Security Access Manager
9.0 Federation Cookbook.

Procedure
1. Complete Section 5, Create Reverse Proxy instance.
2. Complete Section 6, Create SAML 2.0 Identity Provider federation.

48 IBM Cúram Social Program Management: Cúram Security Guide

http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf
http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf

In Section 6.1, if you are using the ISAM docker deployment, it is possible to re-use the existing
keystore that is included in the container instead of creating a new keystore. It is important to reflect
this change in subsequent sections where the myidpkeys certificate database is referenced.

3. Complete Section 8.1, ISAM Configuration for the IdP.
In Section 8.1, use the host name of the IdP federation.

4. Optional: After completing Section 8.1.1, if you require ACLs to be defined to allow and restrict access
to the IdP junction, then follow the instructions in Section 25.1.3, Configure ACL policy for IdP.

5. Complete Section 9.1, Configuring Partner for the IdP.
The export from Websphere does not contain all the relevant data. Therefore, in Section 9.1, after
you complete configuring partner for the IdP, you must click Edit configuration and complete the
remaining advanced configuration.

Configuring WebSphere Application Server as a SAML service provider
The procedure outlines the high-level steps that are required to configure IBM WebSphere Application
Server as a SAML service provider.

About this task
For more information, see the related link to the WebSphere Application Server documentation.

Procedure
1. Deploy the WebSphereSamlSP.ear file.

Note: So that SAML Assertion Consumer Service (ACS) works with cross-origin resource sharing
(CORS) security requirements during redirections, you must map its modules to the same virtual host
used for the REST target application (that is, client_host).

The WebSphereSamlSP.ear file is available as an installable package. Choose one of the following
methods:

• Log on to the WebSphere Application Server administrative console, and install the
app_server_root/installableApps/WebSphereSamlSP.ear file to your application server
or cluster.

• Install the SAML ACS application by using a Python script. In the app_server_root/bin
directory, enter the following command to run the installSamlACS.py script:

wsadmin -f installSamlACS.py install nodeName serverName

Where nodeName is the node name of the target application server, and serverName is the server
name of the target application server. When you complete this step, you must map the modules to
the REST application, for more information see: Mapping virtual hosts for web modules.

2. Configure the ACS trust association interceptor:
a) In the WebSphere Application Server administrative console, click Global security > Trust

association > Interceptors > New.
b) For Interceptor class name, enter
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

c) Under custom properties, enter the values that are shown in the following table:
In a standard WebSphere Application Server configuration, you would also define a value for the
login.error.page custom property. However, the preferred method is to log on to the IdP first.
Therefore, if you do not define a value for login.error.page, WebSphere Application Server
returns a 403 error if a user logs on without first logging on to the identity provider (IdP).

Table 3. ACS trust association interceptor custom properties

Custom property name Value

sso_1.sp.acsUrl https://WAS_host_name:ssl port//samlsps/acs

Chapter 1. Securing Social Program Management 49

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/trun_app_mapvhosts.html

Table 3. ACS trust association interceptor custom properties (continued)

Custom property name Value

sso_1.idp_1.EntityID https://isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20

sso_1.idp_1.SingleSignOnUrl https:// isam_hostname:isam_port//URL of
ISAM/ISAM Junction/IdP endpoint/federation
name/saml20/login

sso_1.sp.targetUrl https://WAS_host_name:WAS_port/Rest

sso_1.idp_1.certAlias isam-conf

sso_1.sp.filter request-url^=/Rest;request-url!=/Rest/
j_security_check

sso_1.sp.enforceTaiCookie false

3. Add the IdP federation partner data. The following substeps describe how to add the IdP data by using
the WebSphere Application Server administrative console.
a) To add the IdP host name or IP address as a trusted realm, click Global security > Trusted

authentication realms - inbound > Add External Realm.
b) Enter either the IBM Security Access Manager host name or IP address.
c) To load the IdP certificate from IBM Security Access Manager, click Security > SSL certificate and

key management > Key stores and certificates > NodeDefaultTrustStore > Signer certificates >
Retrieve from port

d) Enter the IBM Security Access Manager IP address and listener port, for example, 12443, alias
= isam-conf.

Note: When the browser first attempts to connect to the IBM Cúram Social Program Management
web API, an LTPA2 cookie is sent as part of the request. If the WebSphere Application Server
com.ibm.ws.security.web.logoutOnHTTPSessionExpire property is set to true, which is
the default configuration in IBM Cúram Social Program Management, then authentication fails
because an HTTP session does not exist on the application server. By setting the property to
false, the check for a valid HTTP session is not completed and when the LTPA2 token is valid,
authentication succeeds.

To configure the property in the WebSphere Application Serveradministrative console,
click Security > Global security > Custom properties, and set the value of
com.ibm.ws.security.web.logoutOnHTTPSessionExpire to false.

4. Implement cross-origin resource sharing (CORS) from the HTTP server to the WebSphere Application
Server SAML ACS.
a) To add a CORS header, configure a servlet filter for the WebSphereSamlSP.ear file that is

deployed by a Trust Association Interceptor (TAI). The servlet filter adds a CORS HTTP header
to HTTP responses. You can archive the implemented servlet filter as a jar file, and then store it in
the WebSphereSamlSP.ear\WebSphereSamlSPWeb.war\WEB-INF\lib directory that is in the
installedApps directory of your project in WebSphere Application Server.
See the following example of how to implement a servlet filter:

public class SampleFilter implements Filter {

 @Override
 public void doFilter(ServletRequest arg0, ServletResponse servletResponse,
 FilterChain arg2) throws IOException, ServletException {

HttpServletResponse response = (HttpServletResponse) servletResponse;
HttpServletRequest request = (HttpServletRequest) arg0;

response.setHeader("Access-Control-Allow-Origin",

50 IBM Cúram Social Program Management: Cúram Security Guide

 "http://dubxpcvm156.mul.ie.ibm.com:9880"); <hostname or IP address of IBM UA
server>
response.setHeader("Access-Control-Allow-Credentials", "true");
response.setHeader("Access-Control-Allow-Headers", "x-requested-with, Content-Type,
origin, authorization, accept, client-security-token");
response.setHeader("Access-Control-Expose-Headers", "content-length");
 arg2.doFilter(request, response);
 }
}

b) Configure the web.xml file for the deployed TAI EAR file to use the servlet filter for all the requests.
Add the filter element that is shown in the following sample to the web.xml file, with the actual
fully qualified name of the filter.
You can add the filter element as a sibling to any existing element
n the web.xml file, such as <servlet>. The web.xml file is in the
WebSphereSamlSP.ear\WebSphereSamlSPWeb.war\WEB-INF\lib directory, which is in the
installedApps directory of your project in WebSphere Application Server.

<filter>
 <filter-name> SampleFilter </filter-name>
 <filter-class> SampleFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name> SampleFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Add and enable the users in LDAP
Complete the following steps to add the users from LDAP and enable them in ISAM.

Procedure
1. To create LDAP and IBM Security Access Manager runtime users, create an ldif file that can be used

to populate OpenLdap, as shown in the following sample:

cat UA_usersCreate_ISAM.ldif
dn: dc=watson-health,secAuthority=Default
objectclass: top
objectclass: domain
dc: watson-health

dn: c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: country
c: ie

dn: o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organization
o: curam

dn: ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamint

dn: cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: caseworker
sn: caseworkersurname
uid: caseworker
mail: caseworker@curam.com
userpassword: Passw0rd

dn: ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamext

dn: cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default

Chapter 1. Securing Social Program Management 51

objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: jamessmith
sn: Smith
uid: jamessmith
mail: jamessmith@curamexternal.com
userpassword: Passw0rd

2. Add users to the OpenLDAP database:
a) On the host server that is running the docker containers, enter the following command:

docker cp UA_usersCreate_ISAM.ldif idpisam9040_isam-ldap_1:/tmp

b) To log on to the OpenLDAP container, enter the following command:

docker exec –ti idpisam9040_isam-ldap_1 bash

c) To add the users to OpenLDAP, enter the following command:

ldapadd -H ldaps://127.0.0.1:636 -D cn=root,secAuthority=default -f /tmp/
Curam_usersCreate_ISAM.ldif

3. Import the users into IBM Security Access Manager:
a) To log on to the IBM Security Access Manager command line interface, enter the following

commands:

docker exec -ti idpisam9040_isam-webseal_1 isam_cli
isam_cli> isam admin
pdadmin> login -a sec_master -p <password>

b) To import the users into IBM Security Access Manager, enter the following commands:

pdadmin sec_master> user import caseworker
cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify caseworker account-valid yes
pdadmin sec_master> user import jamessmith
cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify jamessmith account-valid yes

4. To test the identity provider (IdP) flow, enter the following URL in a browser:

https://ISAM login initial URL?RequestBinding=HTTPPost
&PartnerId=webspherehostname:9443/samlsps/acs&NameIdFormat=Email
&Target=WAS hostname:WAS port/Rest/v1

Replace the following values in the URL with the appropriate values for your configuration:

• IBM Security Access Manager login initial URL
• WebSphere host name
• WebSphere Application Server host name
• WebSphere Application Server port; inIBM Cúram Social Program Management the default value is

9044

When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
IBM Cúram Universal Access, an XHR timeout occurs before the initialization finishes. Therefore, this
test step is required to ensure that the initialization of the IdP endpoints is completed.

5. In a browser, go to the home page and log in.

Test IdP-initiated SAML SSO infrastructure
When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by

52 IBM Cúram Social Program Management: Cúram Security Guide

Universal Access, an XHR timeout occurs before the initialization finishes. This test step is required to
ensure that the initialization of the IdP endpoints is completed.

Procedure
To test the identity provider (IdP) flow, enter the following URL in a browser:

https://<isam_url>/isam/sps/saml20idp/saml20/logininitial?
RequestBinding=HTTPPost&PartnerId=https://<was_url>/samlsps/acs&NameIdFormat=Email&Target=<
was_url>/Rest/api/definitions

where:

• <isam_url> - The URL for IBM Security Access Manager. It consists of the IBM Security Access
Manager host name, and port number, for example, https:// 192.168.0.1:12443.

• <junction_name> - The junction name that is used during the federation configuration in reverse
proxy. The default value is isam.

• <idp_endpoint> - The endpoint that is configured for the IDP federation. The default value is sps.
• <federation_name> - The name that was used when creating the federation.
• WebSphere host name
• WebSphere Application Server host name
• WebSphere Application Server port. The default value is 9044 for IBM Cúram Social Program

Management.

SP-Initiated only: Implementing the SAML AuthnRequest functionality in WebSphere Application Server
WebSphere Application Server does not support SP-initated SAML web SSO by
default. In addition to the previous steps, you must also implement the provided
com.ibm.wsspi.security.web.saml.AuthnRequestProvider interface to handle the
AuthnRequest functionality that is needed in the service provider.

About this task
For more information, see Enabling SAML SP-Initiated web single sign-on (SSO) in the WebSphere
Application Server documentation.

Procedure
1. Implement the AuthnRequestProvider interface as in the following example. Note that

in the getAuthnRequest method, the ssoUrl variable is set to the value of the
ACSTrusAssociationInterceptor interceptor property sso_1.idp_1.SingleSignOnUrl,
while acsUrl is set to the value of the sso_1.sp.acsUrl property.

package curam.sso;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Base64;
import java.util.Date;
import java.util.HashMap;
import java.util.TimeZone;
import javax.servlet.http.HttpServletRequest;
import com.ibm.websphere.security.NotImplementedException;
import com.ibm.wsspi.security.web.saml.AuthnRequestProvider;
public class SPInitTAI implements AuthnRequestProvider {
 @Override
 public String getIdentityProviderOrErrorURL(HttpServletRequest arg0, String arg1, String
arg2,
 ArrayList<String> arg3) throws NotImplementedException {

 return null;
 }
 @Override
 public HashMap<String, String> getAuthnRequest(HttpServletRequest arg0, String arg1,
String arg2,
 ArrayList<String> paramArrayList) throws NotImplementedException {

Chapter 1. Securing Social Program Management 53

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/tsec_enable_saml_sp_sso.html

 //create map with following keys
 HashMap <String, String> map = new HashMap <String, String>();

 String ssoUrl = "https://<isam_hostname>:<isam_port>/<URL of ISAM>/<ISAM Junction>/
<IdP endpoint>/<federation name>/saml20/login";
 String acsUrl = "https://<WAS_host_name>:<ssl port>/samlsps/acs";
 String issuer = acsUrl;
 String destination = ssoUrl;

 map.put(AuthnRequestProvider.SSO_URL, ssoUrl);
 map.put(AuthnRequestProvider.RELAY_STATE, acsUrl);
 String requestID = "Test" + Double.toString(Math.random());
 map.put(AuthnRequestProvider.REQUEST_ID, requestID);

 String authnMessageNew = "<samlp:AuthnRequest
xmlns:samlp=\"urn:oasis:names:tc:SAML:2.0:protocol\" "
 + "ID=\""+requestID+"\" "
 + "Version=\"2.0\" "
 + "IssueInstant=\""+getDateTime()+"\" ForceAuthn=\"false\"
IsPassive=\"false\" "
 + "ProtocolBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST\" "
 + "AssertionConsumerServiceURL=\""+acsUrl+"\" "
 + "Destination=\""+destination+"\"> "
 + "<saml:Issuer xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\">"+issuer
 + "</saml:Issuer> <samlp:NameIDPolicy
Format=\"urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress\" AllowCreate=\"true\" />"
 +"<samlp:RequestedAuthnContext Comparison=\"exact\">
<saml:AuthnContextClassRef xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\">"
 + "urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</
saml:AuthnContextClassRef></samlp:RequestedAuthnContext> </samlp:AuthnRequest>";

 String encodedAuth = Base64.getEncoder().encodeToString(authnMessageNew.getBytes());

 map.put(AuthnRequestProvider.AUTHN_REQUEST, encodedAuth);

 return map;
 }

 private String getDateTime() {
 // e.g 2018-11-11T23:52:45Z
 String pattern = "yyyy-MM-dd'T'HH:mm:ss'Z'";
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat(pattern);
 simpleDateFormat.setTimeZone(TimeZone.getTimeZone("Zulu"));
 String date = simpleDateFormat.format(new Date());
 return date;
 }
}

2. Pack your AuthnRequestProvider implementation in a JAR, and place it in WAS_HOME/lib/ext.
3. Ensure that your AuthnRequestProvider implementation class is added to the
ACSTrusAssociationInterceptor custom property sso_1.sp.login.error.page so that it
can handle errors.
a) In the WebSphere Application Server admin console, go to Security > Global

Security > Web and Sip Security > Trust association > Interceptors >
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

b) Set the sso_1.sp.login.error.page custom property to the value curam.sso.SPInitTAI.
c) Click OK and save the configuration.

4. You might need to restart the application server for the changes to take effect.

SP-Initiated only: Test SP-initiated SAML SSO infrastructure
Complete the following steps to test the SP-initiated SAML SSO infrastructure.

Procedure
1. Open your browser, with network devtools, and load a protected REST URL like this example:

<was_url>/Rest/api/definitions

54 IBM Cúram Social Program Management: Cúram Security Guide

where <was_url> is the WebSphere URL, for example https:// 192.168.0.1.
2. You are redirected to the ISAM log-in page. Log in with the credentials that were used to set the

reverse proxy instance as outlined in “Configuring IBM Security Access Manager as an IdP” on page
48.

3. You should be redirected to the definitions page that you opened in step 1.

Configuring SAML SSO on Oracle WebLogic Server
Configure SAML SSO for IBM Cúram Social Program Management on WebLogic Server. If you are using
IBM Cúram Universal Access, you must do some additional Universal Access configuration.

SAML SSO initiation and flow on Oracle WebLogic Server
In all SAML web SSO profile flows, the binding defines the mechanism that is used to send information
through assertions between the identity provider (IdP) and the service provider (SP). For Universal
Access, the SAML response by HTTP POSTs is interpreted and controlled by logic in the IBM Universal
Access Responsive Web Application.

The SAML 2.0 web single sign-on (SSO) profile that is supported by WebLogic Server implements the
Authentication Request Protocol along with the HTTP Redirect and HTTP POST bindings for sending web
SSO profiles. The browser sends an HTTP POST request, whose POST body contains a SAML response
document. The SAML response document is an XML document that contains data about the user and the
assertion, some of which is optional.

Browser-based SSO through SAML v2.0 works well with many web applications where the SAML flow is
controlled by HTTP redirects between the identity provider (IdP) and the service provider (SP). The user is
guided from login screens to SP landing pages by HTTP redirects and hidden forms that use the browser
to POST received information to either the IdP or the SP.

In a single-page application such as the Universal Access Responsive Web Application, all screens are
contained in the application and dynamic content is expected to be passed only in JSON messages
through XMLHttpRequests. Therefore, the rendering of HTML content for login pages and the automatic
posting of hidden forms in HTML content is more difficult. If the SP processes the content in the same
way, it must leave the application and hand back control to either the user agent or the browser, in which
case the application state is lost.

The SSO profile has two execution flows, Service Provider initiated (SP-initiated) or Identity Provider
initiated (IdP-initiated) SSO.

IdP-initiated use case
The IdP can send an assertion request to the service provider ACS in one of the following ways:

• The IdP sends a URL link in a response to a successful authentication request. The user must click the
URL link to post the SAML response to the service provider ACS.

• The IdP sends an auto-submit form to the browser that automatically posts the SAML response to the
service provider ACS.

The ACS then validates the assertion, creates a JAAS subject, and redirects the user to the SP resource.

SP-initiated use case
When an unauthenticated user first accesses an application through an SP, the SP directs the user's
browser to the IdP to authenticate. To be SAML specification compliant, the flow requires the generation
of a SAML AuthnRequest from the SP to the IdP. The IdP receives the AuthnRequest, validates that
the request comes from a registered SP, and then authenticates the user. After the user is authenticated,
the IdP directs the browser to the Assertion Consumer Service (ACS) application that is specified in the
AuthnRequest that was received from the SP.

Chapter 1. Securing Social Program Management 55

Assertions and the SAML Response document
To prove the authenticity of the information, the assertion in the SAML response is almost always digitally
signed. To protect the confidentiality of parts of the assertion, the payload can be digitally encrypted. A
typical SAML response contains information that can be sent only through a login by a POST parameter.
After login, an alternative mechanism is typically used to maintain the logged-in security context. Most
systems use some cookie-based, server-specific mechanism, such as a specific security cookie, or the
server’s cookie tied to the user’s HTTP session.

SAML SSO initiation and flow diagrams
Review the flow diagram that matches your environment.

• “IdP-initiated flow for SPM in WebLogic Server” on page 56
• “IdP-initiated flow for Universal Access in WebLogic Server” on page 57
• “SP-initiated flow for SPM in WebLogic Server” on page 58
• “SP-initiated flow for Universal Access in WebLogic Server” on page 59

IdP-initiated flow for SPM in WebLogic Server
The following figure illustrates the IdP-initiated flow that is supported by SPM in a default installation.

Figure 17. IdP-initiated flow for SPM in WebLogic Server

1. The user makes a request to IdP and is presented with a login web application that is hosted by
an Identity Provider that authenticates the user. The Identity Provider challenges the user to enter
credentials.

2. The user provides a username and password to the Identity Provider, which completes the
authentication process. Typically, a user issues a request on a resource that is hosted by a Service
Provider.

3. The SSO service that is hosted by the Identity Provider sends an unsolicited authentication response
to the Service Provider's Assertion Consumer Service (ACS). The ACS validates the assertion, extracts
the identity information, and maps that identity to a subject in the local security realm. The ACS sends
an HTTP redirect message to the browser, passing a cookie that contains a session ID and enabling the
browser to access the requested resource.

4. The WebLogic Security Service performs an authorization check to determine whether the browser can
access the requested resource. If the authorization check succeeds, access to the resource is granted.

56 IBM Cúram Social Program Management: Cúram Security Guide

IdP-initiated flow for Universal Access in WebLogic Server
When Universal Access is configured with an IdP initiated web SSO flow, any attempt to connect to a
protected resource without first authenticating through IdP results in a 302 HTTP response from IBM
Cúram Social Program Management web API. Any authentication requests that are initiated through SP
result in a 302 HTTP response to the IdP login page.

The following figure illustrates the IdP-initiated flow that is supported by Universal Access in a default
installation.

Figure 18. IdP-initiated flow for Universal Access in WebLogic Server

1. A user browses to the HTTP Server that contains Universal Access. The user can browse as normal by
interacting with IBM Cúram Social Program Management as either a public or a generated user (which
is not shown in the diagram).

2. The user then opens the login page to access protected content, which triggers an initial request to
the IdP endpoint. In most IdP configurations, an HTML login form responds to the request. Universal
Access ignores the response, and generates its own login form.

3. To authenticate, the user completes the login form and selects Submit. The form submission triggers
an HTTP POST request that contains login credentials to the IdP. After successful validation of the
user credentials at the IdP, the IdP populates the SAML Response and returns it in an HTML form that
contains hidden input fields.

4. Universal Access extracts the SAMLResponse values, and inserts them in a new POST request to
the application server Assertion Consumer Service (ACS). The application server ACS validates the
signature that is contained in the SAML Response. If the validation is successful, the ACS sends an
HTTP redirect that points to the configured IBM Cúram Social Program Management target landing
page. The validation also passes a cookie that contains a session ID that is used in any subsequent
communication.

5. The browser automatically sends a new request to the target URL, but Universal Access does not
respond to the request. Instead, Universal Access begins its standard user setup by requesting
account and profile information from the relevant web API endpoints.

Chapter 1. Securing Social Program Management 57

SP-initiated flow for SPM in WebLogic Server
The following figure illustrates the SP-initiated flow that is supported by SPM in a default installation.

Figure 19. SP-initiated flow for Social Program Management in WebLogic Server

1. From a web browser, a user attempts to access SPM, a protected resource that runs in a WebLogic
Server container that is hosted by a service provider. The container starts the WebLogic Server Security
Service (WSS) to determine whether the user is authenticated.

2. Because the user is not authenticated, the service provider generates an SAML authentication request
that contains information about the unauthenticated user.

3. The service provider sends the SAML request to the Identity Provider, by using the endpoint of the
Identity Provider's SSO Service. The user is presented with a login web application that is hosted by
an Identity Provider that can authenticate that user. The Identity Provider challenges the user for their
credentials.

4. The user provides a username and password to the Identity Provider, which completes the
authentication operation. The SSO Service that is hosted by the Identity Provider generates a SAML
response for the user and sends this authentication response, which contains the assertion, to the
user's browser.

5. The SAML response is sent to the service provider's Assertion Consumer Service (ACS) by using an
auto-submit HTTP POST message. If the validation is successful, the ACS sends an HTTP redirect that
points to the configured SPM target landing page, along with an authorization cookie that contains a
session ID that enables the browser to access the requested resource.

6. The user accesses the requested resource.

58 IBM Cúram Social Program Management: Cúram Security Guide

SP-initiated flow for Universal Access in WebLogic Server
When Universal Access is configured with an SP-initiated web SSO flow, any attempt to connect to a
protected resource without first authenticating results in a 302 HTTP response from the application
server Assertion Consumer Service’s Web Services Security. The generation of the SAML AuthnRequest
message is also sent to the IdP.

Figure 20. SP-initiated flow for Universal Access in WebLogic Server

1. A user browses to the HTTP Server that contains Universal Access. The user can browse as normal by
interacting with IBM Cúram Social Program Management as either a public or a generated user (which
is not shown in the diagram).

2. The user attempts to access a protected resource that starts the WebLogic Security Service (WSS) to
determine whether the user is authenticated.

3. Because the user is not authenticated, the service provider generates an SAML authentication request
that contains information about the unauthenticated user.

4. Universal Access directs the SAML request to the IdP SAML endpoint. The IdP responds to this request
with an HTML login form, which Universal Access intercepts and extracts a hidden authentication
token from login form if present, ignoring the rest of the response.

5. Universal Access constructs its own login form. The user completes this login form and selects
Submit. The form submission triggers an HTTP POST request that contains login credentials to the
IdP, along with the token extracted in the previous step if present. If authentication is successful, the
Identity Provider generates a SAML response that contains the SAML assertion and returns it in an
HTML form that contains hidden input fields.

Chapter 1. Securing Social Program Management 59

6. Universal Access extracts the Relay State and SAML Response values and inserts them in a new
HTTP POST message to the application server Assertion Consumer Service (ACS). If the validation is
successful, the ACS sends an HTTP redirect that points to the configured SPM target landing page,
along with a WebLogic Server authorization cookie. The cookie contains a session ID that enables the
browser to access the requested resource.

7. The browser automatically sends a new request to the target URL, but Universal Access does not
respond to the request. Instead, Universal Access begins its standard user setup by requesting
account and profile information from the relevant web API endpoints.

Configuring Oracle WebLogic Server as a SAML service provider
To configure SSO for IBM Cúram Social Program Management, you must configure WebLogic Server as a
SAML service provider.

WebLogic Security Providers are modules that provide security services to protect WebLogic Server
resources. WebLogic Server. There are different types of WebLogic Security Providers, but here the
focus is on the Identity Assertion provider because it supports SSO. WebLogic Server supplies several
different types of Identity Assertion providers to support different token formats but the focus is on SAML
SSO and the SAML 2.0 Identity Asserter.

In WebLogic Server, the SAML Identity Assertion Provider acts as a consumer of SAML security assertions,
which enables WebLogic Server to act as a SAML destination site (Security Provider) and supports by
using SAML for single sign-on.

For more information, see Oracle’s WebLogic Application Server 14.1 documentation Oracle WebLogic
Server.

Configuring a SAML 2.0 Identity Assertion provider
Create and configure an instance of the SAML 2.0 Identity Assertion provider in the security realm.

Procedure
1. Log in to the WebLogic Server administrator console and browse to myrealm > Providers >

Authentication.
2. Create an Authentication Provider. Set the type to SAML2IdentityAsserter and provide an appropriate

name, for example SAML2_IdentityAsserter

Note: If you are using clustering there are more factors to consider, see Oracle’s official documentation
for administering security for WebLogic Server: 24: Configuring SAML 2.0 Services.

Configuring SAML 2.0 general services
Configure the SAML 2.0 general services in the WebLogic Server instance in the domain that runs SAML
2.0 services.

Procedure
1. From the administrator's console home page, browse to >Servers (Environment panel) > Admin

Server > Federation Services > SAML 2.0 General.
2. For a basic configuration, make the following changes:

a) Replicated Cache Enabled: [false] . For clustering see Oracle documentation.
b) Published site URL. For example, [https://<Weblogic_hostname>/<PORT>/saml2]. This

URL specifies the base URL that is used to construct endpoint URLs for the various SAML 2.0
services.

c) Entity ID. For example, [SPM_SAML_SP_Destination] The entity ID is a human-readable string
that uniquely distinguishes your site from the other partner sites in your federation.

d) Whether recipient check is enabled: [true]. If enabled, the recipient of the authentication request
or response must match the URL in the HTTP request.

e) Configuration settings for the SAML artifact cache [default values]

60 IBM Cúram Social Program Management: Cúram Security Guide

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/secmg/saml20.html#GUID-6064D37D-5934-4A10-A8BD-527CA778A642
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/secmg/saml20.html#GUID-6064D37D-5934-4A10-A8BD-527CA778A642
https://docs.oracle.com/middleware/12213/wls/SECMG/saml20.htm#SECMG279

3. Optional settings:
a) Information about the local site.
b) TLS/SSL client authentication is required - If enabled, SAML artifacts are encrypted when

transmitted to partners.
c) TLS keystore alias and passphrase - used to store and retrieve the server's private key.
d) Basic client authentication enabled - Specifies whether Basic Authentication is required.
e) Only Accept Signed Artifact Requests - Specifies whether requests for SAML artifacts that are

received from your partners must be signed.
f) Keystore alias and passphrase for the key to be used when signing documents sent to your

federated partners.

Configuring SAML 2.0 service provider
Configure the SAML 2.0 Service Provider services in the Oracle WebLogic Server instance in the domain
that runs SAML 2.0 services.

Procedure
1. From the administrators console Home page, browse to Servers (Environment panel) > Admin

Server > Federation Services > SAML 2.0 Service Provider.
2. For a basic configuration, make the following changes:

a) Enabled: [true] Allows the WebLogic Server instance to serve as a Service Provider site.
b) Enable binding types: Oracle recommends enabling all the available binding types for the

endpoints of the Service Provider services.
3. Optional settings:

a) Specify how documents must be signed
b) Specify how authentication requests are managed
c) Default URL For example, https://<Weblogic_hostname>:<PORT>/Curam or /Rest.

Unsolicited SSO responsesare redirected re to this default URL.
4. Publish the metadata file that describes your site, and manually distribute it to your Identity Provider

partners.

Note: The local site information that your federated partners need, for example the local site contact
information, entity ID, published site URL, or whether TLS/SSL client authentication is required is
published to a metadata file by selecting Publish Meta Data in the SAML 2.0 General console page.

a) From the administrators console home page, browse to Servers (Environment panel) > Admin
Server > Federation Services > SAML 2.0 General.

b) Export the SP metadata into an XML file. Select Publish Meta Data and save to a local directory. For
example, SP_metadata.xml.

c) Distribute the metadata file to your federated partner (IdP) in a secure manner.
5. Cate and configure your Identity Provider partners.

a. The configuration of Identity Provider partners is available from the WebLogic Server administration
console, by using the Security Realms > RealmName > Providers > Authentication >
SAML2IdentityAsserterName > Management page.

b. Obtain Your Identity Provider Partner's metadata File by using a trusted and secure mechanism.
Your partner's metadata file describes that partner site and binding support, includes the partner's
certificates and keys. Copy the partner's metadata file into a location that can be accessed by each
node in your domain that is configured for SAML 2.0.

c. Create partner and enable interactions for web single sign-on, take the following steps:

a) Specify the partner's name and metadata file:

Chapter 1. Securing Social Program Management 61

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter".

ii) Select New > New Web Single Sign-On Identity Provider Partner
iii) Provide a name, for example: SAML_SSO_IDP01
iv) Select idp_metadata.xml > Save

b) Configure interactions between the partner and the WebLogic Server instance:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter" > “Name of new partner” > general.

ii) Enable flag: [true]
iii) Description: SAML_SSO_IdP_01
iv) Whether to consume attribute information contained in assertions received from this

partner [true]
v) Whether authentication requests sent to this Identity Provider partner must be signed. This

attribute is read-only and is derived from the partner's metadata file.
vi) Optional settings:

vii) Identity Provider Name Mapper Class name
viii) Whether the identities contained in assertions received from this partner are mapped to

virtual users in the security realm
ix) Whether SAML artifact requests received from this Identity Provider partner must be signed

a) Configure redirect URIs as follows:

i) Browse to the General tab of the partner configuration page.
ii) Provide a set of URIs from which unauthenticated users are redirected to the Identity Provider

partner. A URI might include a wildcard pattern, but the wildcard pattern must include a
file type to match specific files in a directory [/Curam/*] [/Rest/*]. Refer to the Oracle
documentation for more details.

b) Use the General tab of the Service Provider partner configuration page to configure Binding and
Transport optional settings.

Publishing the metadata
Publish the metadata file that describes your site, and manually distribute it to your Identity Provider
partners.

About this task
Note: The local site information that your federated partners need, for example the local site information,
entity ID, published site URL, whether TLS/SSL client authentication is required is published to a
metadata file by selecting Publish Meta Data in the SAML 2.0 General console page.

Procedure
1. From the administrators console home page, browse to Servers (Environment panel) > Admin Server

> Federation Services > SAML 2.0 General.
2. Export the SP metadata into an XML file. Select Publish Meta Data and save to a local directory. For

example, SP_metadata.xml.
3. Distribute the metadata file to your federated partner (IdP) in a secure manner.

62 IBM Cúram Social Program Management: Cúram Security Guide

Creating your Identity Provider partners
Create and configure your Identity Provider partners.

Procedure
1. The configuration of Identity Provider partners is available from the WebLogic Server administration

console, by using the Security Realms > RealmName > Providers > Authentication >
SAML2IdentityAsserterName > Management page.

2. Get your Identity Provider Partner's metadata file by using a trusted and secure mechanism. Your
partner's metadata file describes that partner site and binding support, includes the partner's
certificates and keys. Copy the partner's metadata file into a location that can be accessed by each
node in your domain that is configured for SAML 2.0.

3. Create your partner and enable interactions for web single sign-on, take the following steps:
a) Specify the partner's name and metadata file:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter".

ii) Select New > New Web Single Sign-On Identity Provider Partner
iii) Provide a name, for example: SAML_SSO_IDP01
iv) Select idp_metadata.xml > Save

b) Configure interactions between the partner and the WebLogic Server instance:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter" > “Name of new partner” > general.

ii) Enable flag: [true]
iii) Description: SAML_SSO_IdP_01
iv) Whether to consume attribute information contained in assertions received from this

partner [true]
v) Whether authentication requests sent to this Identity Provider partner must be signed. This

attribute is read-only and is derived from the partner's metadata file.
c) Optional settings:

i) Identity Provider Name Mapper Class name
ii) Whether the identities contained in assertions received from this partner are mapped to

virtual users in the security realm
iii) Whether SAML artifact requests received from this Identity Provider partner must be signed

d) Configure redirect URIs as follows:

i) Browse to the General tab of the partner configuration page.
ii) Provide a set of URIs from which unauthenticated users are redirected to the Identity Provider

partner. A URI might include a wildcard pattern, but the wildcard pattern must include a
file type to match specific files in a directory [/Curam/*] [/Rest/*]. Refer to the Oracle
documentation for more details.

e) Use the General tab of the Service Provider partner configuration page to configure Binding and
Transport optional settings

Configuring IBM Cúram Universal Access for SSO
To configure SSO for Universal Access, you must configure the Universal Access Responsive Web
Application to use SSO authentication, and configure cross-origin resource sharing (CORS) for Universal
Access.

Before you begin
Ensure that SPM is configured for SSO. For IBM WebSphere Application Server, see “Configuring Oracle
WebLogic Server as a SAML service provider” on page 60.

Chapter 1. Securing Social Program Management 63

Configuring the Universal Access Responsive Web Application for SSO
To enable the Universal Access Responsive Web Application to work with SAML single sign-on (SSO),
configure the appropriate properties in the .env environment variable file in the root of the React
application and rebuild the application.

About this task
• The <IdP_URL> consists of three parts: the HTTPS protocol, the IdP hostname or IP address, and the

listener port number. For example, https://192.168.0.1:12443.
• The <ACS_URL> consists of three parts: the HTTPS protocol, the Assertion Consumer Service (ACS)

hostname or IP address, and the listener port number. For example, https://192.168.0.2:443.

Procedure
1. Set the authentication method to SSO, see Customizing the authentication method.
2. Set the related environment variables for your SSO environment, see React environment variable

reference. These properties are applicable to both identity provider (IdP)-initiated and service-
provider (SP)-initiated SAML 2.0 web SSO unless otherwise stated.

Configuring CORS for IBM Cúram Universal Access
You must configure cross-origin resource sharing (CORS) for IBM Cúram Universal Access. For security
reasons, browsers restrict cross-origin HTTP requests, including XMLHttpRequest HTTP requests, that are
initiated in Universal Access. When the Universal Access application and the Universal Access web API
are deployed on different hosts, extra configuration is needed.

About this task
Universal Access can request HTTP resources only from the same domain that the application was loaded
from, which is the domain that contains the static JavaScript. To enable Universal Access to support
cross-origin resource sharing (CORS), enable the use of CORS headers.

Procedure
1. Log on to the IBM Cúram Social Program Management application as a system administrator, and click

System Configurations.
2. In the Shortcuts menu, click Application Data > Property Administration.
3. Configure the curam.rest.allowedOrigins property with the values of either the hostnames or

the IP addresses of the IdP server and the web server on which Universal Access is deployed.

SAML SSO configuration example with IBM Security Access Manager
The example outlines a single sign-on (SSO) configuration for IBM Cúram Social Program Management
and IBM Cúram Universal Access that uses IBM Security Access Manager to implement federated single
sign-on by using the SAML 2.0 Browser POST profile. The example applies to both IdP-initiated and
SP-initiated flows. Some additional steps are needed to configure SP-initiated flows.

Universal Access SSO configuration components
The following figure shows the components that are included in a Universal Access SSO configuration.

64 IBM Cúram Social Program Management: Cúram Security Guide

Figure 21. Universal Access SSO configuration components

Web browser
A user sends requests from their web browser for applications in the SSO environment.

Web server
The Universal Access ReactJS static content is deployed on a web server, such as IBM HTTP Server, or
Apache HTTP Server.

IBM Security Access Manager (ISAM) server
The IBM Security Access Manager server includes the identity provider (IdP).

LDAP server (user directory)
Among other items, the LDAP server contains the username and password of all the valid users in the
SSO environment.

Oracle WebLogic Server
Among other applications, WebLogic Server contains the deployed IBM Cúram Social Program
Management, Citizen Workspace, and REST enterprise applications.

Chapter 1. Securing Social Program Management 65

SPM database
Data storage for the IBM Cúram Social Program Management, Citizen Workspace, and REST enterprise
applications.

Configuring single sign-on through IBM Security Access Manager
Use the IBM Security Access Manager management console to configure single sign-on (SSO) in IBM
Cúram Universal Access.

Before you begin
1. Start IBM Security Access Manager.
2. In the management console, log on as an administrator.
3. Accept the services agreement.
4. If required, change the administrative password.

About this task
In the IBM Security Access Manager management console, complete the following steps, about the IBM
Security Access Manager 9 Federation Cookbook.

Procedure
1. Configure the IBM Security Access Manager database:

a) In the menu, click Home Appliance Dashboard > Database Configuration.
b) Enter the database configuration details, such as Database Type, Address, Port, and click Save.
c) When the Deploy Pending Changes window opens, click Deploy.

2. To install all the required product licenses, complete the steps in section 4.3 Product Activation from
the IBM Security Access Manager 9 Federation Cookbook.

3. Configure the LDAP SSL database by completing section 25.1.1 Load Federation Runtime SSL
certificate into pdsrv trust store from IBM Security Access Manager Federation Cookbook.

4. Configure the runtime component by completing 4.6 Configure ISAM Runtime Component on the
Appliance from IBM Security Access Manager Federation Cookbook.

Configuring IBM Security Access Manager as an IdP
To configure IBM Security Access Manager as an identity provider (IdP), see the IBM Security Access
Manager 9.0 Federation Cookbook that is available from IBM Developer Works.

Before you begin
Download the IBM Security Access Manager 9.0 Federation Cookbook from IBM Developer Works, as
shown in the related link. Also, download the mapping files that are provided with the cookbook.

About this task
To set up the example environment, complete the specified sections in the IBM Security Access Manager
9.0 Federation Cookbook.

Procedure
1. Complete Section 5, Create Reverse Proxy instance.
2. Complete Section 6, Create SAML 2.0 Identity Provider federation.

In Section 6.1, if you are using the ISAM docker deployment, it is possible to reuse the existing
keystore that is included in the container instead of creating a new keystore. It is important to reflect
this change in subsequent sections where the myidpkeys certificate database is referenced.

3. Complete Section 8.1, ISAM Configuration for the IdP.

66 IBM Cúram Social Program Management: Cúram Security Guide

http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf
http://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/bf636498-bc5a-442b-a6e5-3c799035ba5b/page/82b4335f-8526-4db2-904c-e5976ab9766e/attachment/30fefce8-b84f-4eaf-8b19-da90ed5c4c33/media/ISAM9%20FederationCookbook%2020170601.pdf

In Section 8.1, use the hostname of the IdP federation.
4. Optional: When you complete Section 8.1.1, if you require ACLs to be defined to allow and restrict

access to the IdP junction, then follow the instructions in Section 25.1.3, Configure ACL policy for IdP.
5. Complete Section 9.1, Configuring Partner for the IdP.

The export from Oracle WebLogic Server does not contain all the relevant data. Therefore, in Section
9.1, after you complete configuring partner for the IdP, you must click Edit configuration and
complete the remaining advanced configuration.

Configuring Oracle WebLogic Server as a SAML service provider
To configure SSO for IBM Cúram Social Program Management, you must configure WebLogic Server as a
SAML service provider.

WebLogic Security Providers are modules that provide security services to protect WebLogic Server
resources. WebLogic Server. There are different types of WebLogic Security Providers, but here the
focus is on the Identity Assertion provider because it supports SSO. WebLogic Server supplies several
different types of Identity Assertion providers to support different token formats but the focus is on SAML
SSO and the SAML 2.0 Identity Asserter.

In WebLogic Server, the SAML Identity Assertion Provider acts as a consumer of SAML security assertions,
which enables WebLogic Server to act as a SAML destination site (Security Provider) and supports by
using SAML for single sign-on.

For more information, see Oracle’s WebLogic Application Server 14.1 documentation Oracle WebLogic
Server.

Configuring a SAML 2.0 Identity Assertion provider
Create and configure an instance of the SAML 2.0 Identity Assertion provider in the security realm.

Procedure
1. Log in to the WebLogic Server administrator console and browse to myrealm > Providers >

Authentication.
2. Create an Authentication Provider. Set the type to SAML2IdentityAsserter and provide an appropriate

name, for example SAML2_IdentityAsserter

Note: If you are using clustering there are more factors to consider, see Oracle’s official documentation
for administering security for WebLogic Server: 24: Configuring SAML 2.0 Services.

Configuring SAML 2.0 general services
Configure the SAML 2.0 general services in the WebLogic Server instance in the domain that runs SAML
2.0 services.

Procedure
1. From the administrator's console home page, browse to >Servers (Environment panel) > Admin

Server > Federation Services > SAML 2.0 General.
2. For a basic configuration, make the following changes:

a) Replicated Cache Enabled: [false] . For clustering see Oracle documentation.
b) Published site URL. For example, [https://<Weblogic_hostname>/<PORT>/saml2]. This

URL specifies the base URL that is used to construct endpoint URLs for the various SAML 2.0
services.

c) Entity ID. For example, [SPM_SAML_SP_Destination] The entity ID is a human-readable string
that uniquely distinguishes your site from the other partner sites in your federation.

d) Whether recipient check is enabled: [true]. If enabled, the recipient of the authentication request
or response must match the URL in the HTTP request.

e) Configuration settings for the SAML artifact cache [default values]
3. Optional settings:

Chapter 1. Securing Social Program Management 67

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/secmg/saml20.html#GUID-6064D37D-5934-4A10-A8BD-527CA778A642
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/secmg/saml20.html#GUID-6064D37D-5934-4A10-A8BD-527CA778A642
https://docs.oracle.com/middleware/12213/wls/SECMG/saml20.htm#SECMG279

a) Information about the local site.
b) TLS/SSL client authentication is required - If enabled, SAML artifacts are encrypted when

transmitted to partners.
c) TLS keystore alias and passphrase - used to store and retrieve the server's private key.
d) Basic client authentication enabled - Specifies whether Basic Authentication is required.
e) Only Accept Signed Artifact Requests - Specifies whether requests for SAML artifacts that are

received from your partners must be signed.
f) Keystore alias and passphrase for the key to be used when signing documents sent to your

federated partners.

Configuring SAML 2.0 service provider
Configure the SAML 2.0 Service Provider services in the Oracle WebLogic Server instance in the domain
that runs SAML 2.0 services.

Procedure
1. From the administrators console Home page, browse to Servers (Environment panel) > Admin

Server > Federation Services > SAML 2.0 Service Provider.
2. For a basic configuration, make the following changes:

a) Enabled: [true] Allows the WebLogic Server instance to serve as a Service Provider site.
b) Enable binding types: Oracle recommends enabling all the available binding types for the

endpoints of the Service Provider services.
3. Optional settings:

a) Specify how documents must be signed
b) Specify how authentication requests are managed
c) Default URL For example, https://<Weblogic_hostname>:<PORT>/Curam or /Rest.

Unsolicited SSO responsesare redirected re to this default URL.
4. Publish the metadata file that describes your site, and manually distribute it to your Identity Provider

partners.

Note: The local site information that your federated partners need, for example the local site contact
information, entity ID, published site URL, or whether TLS/SSL client authentication is required is
published to a metadata file by selecting Publish Meta Data in the SAML 2.0 General console page.

a) From the administrators console home page, browse to Servers (Environment panel) > Admin
Server > Federation Services > SAML 2.0 General.

b) Export the SP metadata into an XML file. Select Publish Meta Data and save to a local directory. For
example, SP_metadata.xml.

c) Distribute the metadata file to your federated partner (IdP) in a secure manner.
5. Cate and configure your Identity Provider partners.

a. The configuration of Identity Provider partners is available from the WebLogic Server administration
console, by using the Security Realms > RealmName > Providers > Authentication >
SAML2IdentityAsserterName > Management page.

b. Obtain Your Identity Provider Partner's metadata File by using a trusted and secure mechanism.
Your partner's metadata file describes that partner site and binding support, includes the partner's
certificates and keys. Copy the partner's metadata file into a location that can be accessed by each
node in your domain that is configured for SAML 2.0.

c. Create partner and enable interactions for web single sign-on, take the following steps:

a) Specify the partner's name and metadata file:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter".

68 IBM Cúram Social Program Management: Cúram Security Guide

ii) Select New > New Web Single Sign-On Identity Provider Partner
iii) Provide a name, for example: SAML_SSO_IDP01
iv) Select idp_metadata.xml > Save

b) Configure interactions between the partner and the WebLogic Server instance:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter" > “Name of new partner” > general.

ii) Enable flag: [true]
iii) Description: SAML_SSO_IdP_01
iv) Whether to consume attribute information contained in assertions received from this

partner [true]
v) Whether authentication requests sent to this Identity Provider partner must be signed. This

attribute is read-only and is derived from the partner's metadata file.
vi) Optional settings:

vii) Identity Provider Name Mapper Class name
viii) Whether the identities contained in assertions received from this partner are mapped to

virtual users in the security realm
ix) Whether SAML artifact requests received from this Identity Provider partner must be signed

a) Configure redirect URIs as follows:

i) Browse to the General tab of the partner configuration page.
ii) Provide a set of URIs from which unauthenticated users are redirected to the Identity Provider

partner. A URI might include a wildcard pattern, but the wildcard pattern must include a
file type to match specific files in a directory [/Curam/*] [/Rest/*]. Refer to the Oracle
documentation for more details.

b) Use the General tab of the Service Provider partner configuration page to configure Binding and
Transport optional settings.

Publishing the metadata
Publish the metadata file that describes your site, and manually distribute it to your Identity Provider
partners.

About this task
Note: The local site information that your federated partners need, for example the local site information,
entity ID, published site URL, whether TLS/SSL client authentication is required is published to a
metadata file by selecting Publish Meta Data in the SAML 2.0 General console page.

Procedure
1. From the administrators console home page, browse to Servers (Environment panel) > Admin Server

> Federation Services > SAML 2.0 General.
2. Export the SP metadata into an XML file. Select Publish Meta Data and save to a local directory. For

example, SP_metadata.xml.
3. Distribute the metadata file to your federated partner (IdP) in a secure manner.

Creating your Identity Provider partners
Create and configure your Identity Provider partners.

Procedure
1. The configuration of Identity Provider partners is available from the WebLogic Server administration

console, by using the Security Realms > RealmName > Providers > Authentication >
SAML2IdentityAsserterName > Management page.

Chapter 1. Securing Social Program Management 69

2. Get your Identity Provider Partner's metadata file by using a trusted and secure mechanism. Your
partner's metadata file describes that partner site and binding support, includes the partner's
certificates and keys. Copy the partner's metadata file into a location that can be accessed by each
node in your domain that is configured for SAML 2.0.

3. Create your partner and enable interactions for web single sign-on, take the following steps:
a) Specify the partner's name and metadata file:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter".

ii) Select New > New Web Single Sign-On Identity Provider Partner
iii) Provide a name, for example: SAML_SSO_IDP01
iv) Select idp_metadata.xml > Save

b) Configure interactions between the partner and the WebLogic Server instance:

i) Browse to Security Realms > myrealm > Providers > Authentication > "Name of the SAML
identity asserter" > “Name of new partner” > general.

ii) Enable flag: [true]
iii) Description: SAML_SSO_IdP_01
iv) Whether to consume attribute information contained in assertions received from this

partner [true]
v) Whether authentication requests sent to this Identity Provider partner must be signed. This

attribute is read-only and is derived from the partner's metadata file.
c) Optional settings:

i) Identity Provider Name Mapper Class name
ii) Whether the identities contained in assertions received from this partner are mapped to

virtual users in the security realm
iii) Whether SAML artifact requests received from this Identity Provider partner must be signed

d) Configure redirect URIs as follows:

i) Browse to the General tab of the partner configuration page.
ii) Provide a set of URIs from which unauthenticated users are redirected to the Identity Provider

partner. A URI might include a wildcard pattern, but the wildcard pattern must include a
file type to match specific files in a directory [/Curam/*] [/Rest/*]. Refer to the Oracle
documentation for more details.

e) Use the General tab of the Service Provider partner configuration page to configure Binding and
Transport optional settings

Adding and enabling the users in LDAP
Add the users from LDAP and enable them in ISAM.

Procedure
1. To create LDAP and IBM Security Access Manager runtime users, create an ldif file that can be used

to populate OpenLdap, as shown in the following sample:

cat UA_usersCreate_ISAM.ldif
dn: dc=watson-health,secAuthority=Default
objectclass: top
objectclass: domain
dc: watson-health

dn: c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: country
c: ie

dn: o=curam,c=ie,dc=watson-health,secAuthority=Default

70 IBM Cúram Social Program Management: Cúram Security Guide

objectclass: top
objectclass: organization
o: curam

dn: ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamint

dn: cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: caseworker
sn: caseworkersurname
uid: caseworker
mail: caseworker@curam.com
userpassword: Passw0rd

dn: ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: top
objectclass: organizationalUnit
ou: curamext

dn: cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
objectclass: person
objectclass: inetOrgPerson
objectclass: top
objectclass: organizationalPerson
objectclass: ePerson
cn: jamessmith
sn: Smith
uid: jamessmith
mail: jamessmith@curamexternal.com
userpassword: Passw0rd

2. Add users to the OpenLDAP database:
a) On the host server that is running the docker containers, enter the following command:

docker cp UA_usersCreate_ISAM.ldif idpisam9040_isam-ldap_1:/tmp

b) To log on to the OpenLDAP container, enter the following command:

docker exec –ti idpisam9040_isam-ldap_1 bash

c) To add the users to OpenLDAP, enter the following command:

ldapadd -H ldaps://127.0.0.1:636 -D cn=root,secAuthority=default -f /tmp/
Curam_usersCreate_ISAM.ldif

3. Import the users into IBM Security Access Manager:
a) To log on to the IBM Security Access Manager command line interface, enter the following

commands:

docker exec -ti idpisam9040_isam-webseal_1 isam_cli
isam_cli> isam admin
pdadmin> login -a sec_master -p <password>

b) To import the users into IBM Security Access Manager, enter the following commands:

pdadmin sec_master> user import caseworker
cn=caseworker,ou=curamint,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify caseworker account-valid yes
pdadmin sec_master> user import jamessmith
cn=jamessmith,ou=curamext,o=curam,c=ie,dc=watson-health,secAuthority=Default
pdadmin sec_master> user modify jamessmith account-valid yes

4. To test the identity provider (IdP) flow, enter the following URL in a browser:

Chapter 1. Securing Social Program Management 71

https://ISAM login initial URL?RequestBinding=HTTPPost
&PartnerId=webspherehostname:9443/samlsps/acs&NameIdFormat=Email
&Target=WAS hostname:WAS port/Rest/v1

Replace the following values in the URL with the appropriate values for your configuration:

• IBM Security Access Manager login initial URL
• WebSphere host name
• WebSphere Application Server host name
• WebSphere Application Server port; inIBM Cúram Social Program Management the default value is

9044.

When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
IBM Cúram Universal Access, an XHR timeout occurs before the initialization finishes. Therefore, this
test step is required to ensure that the initialization of the IdP endpoints is completed.

5. In a browser, go to the home page and log in.

Testing IdP-initiated SAML SSO infrastructure
When the IBM Security Access Manager docker container starts, the IdP endpoints are initialized only
when the first connection request is received. However, if the first connection request is triggered by
Universal Access, an XHR timeout occurs before the initialization finishes. This test step is required to
ensure that the initialization of the IdP endpoints is completed.

Procedure
To test the identity provider (IdP) flow, enter the following URL in a browser:

https://<isam_url>/isam/sps/saml20idp/saml20/logininitial?RequestBinding=HTTPPost
&PartnerId=<SP Partner Name>&NameIdFormat=Email&Target=< wls_url>/Rest/api/definitions

where:

• <isam_url> - The URL for IBM Security Access Manager. It consists of the IBM Security Access
Manager host name, and port number, for example, https:// 192.168.0.1:12443.

• <junction_name> - The junction name that is used during the federation configuration in reverse
proxy. The default value is isam.

• <idp_endpoint> - The endpoint that is configured for the IDP federation. The default value is sps.
• <federation_name> - The name that was used when creating the federation.
• <SP Partner Name> - The name configured to reference the Service Provider ACS.
• <WLS_URL> - The Oracle WebLogic Server host name and Port. Default port is 7002.

SP-Initiated only: Testing SP-initiated SAML SSO infrastructure
Test the SP-initiated SAML SSO infrastructure.

Procedure
1. Open your browser by using network devtools, and load a protected REST URL like this example:

<wls_url>/Rest/api/definitions

where <was_url> is the Oracle WebLogic Server URL, for example https:// 192.168.0.1.
2. You are redirected to the ISAM log-in page. Log in with the credentials that were used to set the

reverse proxy instance as outlined in “Configuring IBM Security Access Manager as an IdP” on page
66.

3. You are redirected to the definitions page that you opened in step 1.

72 IBM Cúram Social Program Management: Cúram Security Guide

Customizing the login module
Create a custom security provider that includes creating a custom Cúram Java Authentication and
Authorization Service (JAAS) login module.

The following advice is limited to creating a custom security provider which includes creating a custom
(JAAS) login module. It is not intended to advise about integration with any specific SSO or other third
party authentication mechanisms. WebLogic Server security includes many unique terms and concepts
that you need to understand. You will encounter this in this documentation.

Familiarize yourself with the JAAS documentation and WebLogic Server prerequisites in the following
resources:

• WebLogic Security Service Architecture
• Introduction to Developing Security Providers for WebLogic Server
• Java Authentication and Authorization Service (JAAS) Developer's Guide

JAAS login module support for authentication in a customized solution
The Cúram Java Authentication and Authorization Service (JAAS) login module might not support the
authentication requirements for a particular custom solution. When you develop a custom login module,
the Cúram JAAS login module must be left in place and used with identity only authentication enabled.
However, if deemed necessary, the Cúram JAAS login module can be removed and replaced by a custom
solution. If so, consult IBM support.

Note: The CuramLoginModule version is only shipped as a sample for basic authentication that supports
username and password. Because IBM Cúram Social Program Management supports JAAS (Java
Authentication and Authorization Service) and the CuramLoginModule is based on JAAS specification,
you can implement your own custom login module and plug it in.

Warning: While it is possible to remove the Cúram JAAS login module completely, it needs to be noted
that users must still exist in the Cúram Users database table for authorization reasons.

The Cúram JAAS login module adds new users to the Cúram Security Cache automatically, and when
this Cúram JAAS login module is replaced by a custom JAAS login module, this function no longer is
present. If a custom JAAS login module is replacing the Cúram JAAS login module completely, it is the
responsibility of the custom JAAS login module to ensure that an update of the Security Cache is triggered
when a new user is added to the database.

Replacing the Cúram JAAS login module with a custom login module
Replace the Cúram JAAS login module with a custom login module for Oracle WebLogic Server

De-registering the existing Cúram security provider
Delete the existing Cúram security provider by using the Oracle WebLogic Server administration console.

Procedure
1. Log in to the WebLogic Server administrator console and navigate to <domain name> > Security

Realms.
2. Select myrealm in the Realms list.
3. Select the Providers tab.
4. Select the Authentication tab.
5. Select myrealmCuramAuthenticator
6. Select Delete > OK

What to do next
Make a note of the Security Provider's Admin username and password credentials, you might want to
reuse these credentials when you register a new security provider.

Chapter 1. Securing Social Program Management 73

https://docs.oracle.com/middleware/12211/wls/SCOVR/archtect.htm#SCOVR218
https://docs.oracle.com/middleware/12211/wls/DEVSP/intro.htm#DEVSP115
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Creating and registering a custom security provider
Create and register a custom security provider to replace the Cúram security provider that you de-
registered.

The runtime classes which implement the authentication provider SSPIs and the MBean type, which you
define, from what is called the security provider

Creating the authentication provider and login module runtime classes
The authenticationProvider exposes the services of a security provider to the Oracle WebLogic Server
Security Framework. Exposing that authenticationProvider allows the security provider to be initialized,
started, and stopped by using theWebLogic Server Administration Console to supply the custom security
provider with configuration information.

Creating the authentication provider
Use authentication methods to implement the authentication provider SSPI.

Authentication methods
Initialize(ProviderMBean providerMBean, SecurityServices securityServices)

Takes as an argument a ProviderMBean. The MBean instance is created from the MBean type you
generate, and contains configuration data that allows the custom security provider to be managed in
the WebLogic Server environment. If this configuration data is available, use the initialize method to
extract it.

getDescription()
Returns a brief textual description of the custom security provider.

shutdown()
Shuts down the custom security provider.

getLoginModuleConfiguration()
Gets information about the authentication provider's associated LoginModule, which is returned as an
AppConfigurationEntry.

getAssertionModuleConfiguration()
Gets information about an identity assertion provider's associated LoginModule, which is returned as
an AppConfigurationEntry.

getPrincipalValidator()
Gets a reference to the principal validation provider's runtime class. That is, the PrincipalValidator
SSPI implementation.

getIdentityAsserter()
Gets a reference to the new identity assertion provider's runtime class.

Creating the JAAS LoginModule
Use the Cúram login module as a template to implement the JAAS provider SSPI you can.

The javax.security.auth.spi.LoginModule interface
The javax.security.auth.spi.LoginModule interface is as follows. In preparation, review JAAS LoginModule
interface and the following methods:
public void initialize (Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options)

Initializes the LoginModule. It takes as arguments a subject in which to store the resulting principals, a
CallbackHandler that the authentication provider uses to call back to the container for authentication
information, a map of any shared state information, and a map of configuration options, that is, any
additional information you want to pass to the Login Module.

public boolean login() throws LoginException
Attempts to authenticate and create principals for the user by calling back to the container for
authentication information.

74 IBM Cúram Social Program Management: Cúram Security Guide

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

public boolean commit() throws LoginException
Attempts to add the principals that are created in the login method to the subject.

public boolean abort() throws LoginException
The abort method is called for each configured LoginModule, as part of the configured authentication
providers. If any commits for the LoginModules fail, that is, if the relevant REQUIRED, REQUISITE,
SUFFICIENT, and OPTIONAL LoginModules do not succeed. The abort method removes that
LoginModule's principals from the subject, effectively rolling back the actions performed.

public boolean logout() throws LoginException
Attempts to log the user out of the system. This method also resets the subject so that its associated
principals are no longer stored.

Generating an MBean type using Oracle WebLogic Server MBeanMaker
Generate an MBean type by using Oracle WebLogic Server MBean Maker.

Links to WebLogic Server content
Use the following links and the associated sample file to generate an MBean type:

• Create an MBean Definition File (MDF). See also the sample MDF file in the sampled MDF file.
• Use the WebLogic MBeanMaker to Generate the MBean Type

Note: Custom providers and classpaths.

Classes that loaded from WL_HOME\server\lib\mbeantypes are not visible to other JAR and EAR
files deployed on WebLogic Server. There are a number of library dependencies. You must set the class
path before using the WebLogic Server MBeanMaker to create the new MBean and JAR File (MJF) and
when running your new security provider.

• Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
• Install the MBean Type Into the WebLogic Server Environment

Configuring the custom authentication provider using the administration console
Once you have installed the MBean type on the server, restart the AdminServer and start the
Administration Console

Procedure
1. Log in to the WebLogic Server administrator console and navigate to <domain name> > Security

Realms.
2. Select myrealm in the Realms list.
3. Select the Providers tab.
4. Select the Authentication tab.
5. Select New and enter the following fields:

• Name: "myrealmCuramAuthenticator"
• Type: "CustomAuthenticator"

6. Select OK
7. Select myrealmCuramAuthenticator in the Authentication Providers list.
8. Ensure that Control Flag is set to REQUIRED and select Save.

What to do next
Select the Provider Specific tab. This tab contains settings to configure Cúram security in WebLogic
Server. Use this tab to modify the security configuration.

Chapter 1. Securing Social Program Management 75

https://docs.oracle.com/middleware/12211/wls/DEVSP/generate_mbeantype.htm#GUID-24CA2B95-93DD-4D11-90C4-1B756EA9A4A2
https://docs.oracle.com/middleware/12211/wls/DEVSP/generate_mbeantype.htm#GUID-C6A7147C-38CC-4E09-BAC3-48B21D32503C
https://docs.oracle.com/middleware/12211/wls/DEVSP/generate_mbeantype.htm#GUID-921ADAB1-F982-4310-B6DE-166F4B631184
https://docs.oracle.com/middleware/12211/wls/DEVSP/generate_mbeantype.htm#GUID-33C03B96-4F12-4EF5-BAED-2C8624639346

Extending the SAML SSO configuration to enable multifactor
authentication
Extend the SAML SSO authentication infrastructure for IBM Cúram Social Program Management to enable
and verify multifactor authentication (MFA).

The previous topics provided examples of how to configure and test a reference SAML SSO authentication
infrastructure for use by IBM Cúram Social Program Management. The reference infrastructure is initially
configured with a regular authentication that uses only a single factor username and password for
authentication.

Increased Brute-force attacks, credential stuffing, and phishing cyberattacks mean that the traditional
single factor authentication is no longer sufficiently secure. For an extra level of security, it is
recommended that customers use multifactor authentication. With MFA, users must provide two or
more authentication factors to log in which protects their accounts from being accessed by unauthorized
individuals through stolen credentials.

SAML SSO authentication
The following figure illustrates the SAML SSO authentication infrastructure and the different ways that an
identity provider (IdP) can provide a multifactor authentication experience.

Figure 22. SAML SSO with multifactor authentication

The following example outlines the process to extend the reference SAML SSO authentication
infrastructure to enable and verify multifactor user authentication. The example shows how to configure
the IdP for two-factor user authentication.

• The first factor is the WebSEAL username and password authentication.
• The second factor is an email one-time password verification mechanism.

SAML SSO example configuration with MFA using IBM Secure Verify Access
This example outlines how to extend a SAML SSO configuration for IBM Cúram Social Program
Management to enable MFA using IBM Secure Verify Access, formerly known as IBM Security Access
Manager. Steps are provided to configure ISVA as the IdP for the multifactor authentication.

The example caters for the scenario where the first step of user authentication is the standard WebSEAL
username and password authentication. As a second step, you want to add an Advanced Access Control

76 IBM Cúram Social Program Management: Cúram Security Guide

(AAC) authentication policy, and seamlessly prompt the user to complete the AAC authentication policy
after they log in with their username and password.

Note: You can make the username password AAC module the first part of a multi-mechanism
authentication policy instead of the regular WebSEAL username and password login. However, you might
prefer to continue to use WebSEAL forms for authentication if they are already implemented, and use an
AAC policy only for the second authentication factor.

Prerequisites
The following prerequisites apply to this example configuration.

• Install the IBM Secure Verify Access 10.0.1.0 docker containers and configure it as the SAML IdP. For
more information, see the 10.0.1 documentation.

• Install the latest version of IBM Cúram Social Program Management, configured in a WebSphere
Application Server Network Deployment (stand-alone) and running in Red Hat Enterprise Linux (RHEL).

• Configure WebSphere Application Server as the SAML service provider (SP).
• Configure and test an SP-initiated SAML SSO authentication flow.
• Configure and test an IdP-initiated SAML SSO authentication flow.

ISVA test environment
The following figure illustrates the ISVA docker containers that were installed and configured for this
example. You can use the snapshot to relate the configuration information of the ISVA appliances to the
test environment that was used to verify it.

Figure 23. Installed and configured ISVA docker containers

Activating the Advanced Access Control module
Advanced Access Control (AAC) is available as an add-on module in IBM Secure Verify Access (ISVA).
The AAC module provides advanced authentication and authorization capabilities. You must activate the
module for use.

Before you begin
To activate and use the module, you must have a license. Download your activation key from your account
on Passport Advantage or IBM Security Systems License Key Center.

Procedure
1. Log in to the ISVA Local Management Interface with your administrator credentials.
2. Click System > Licensing and Activation.
3. Import the ISVA AAC license text file.

a. In Activated Modules, click Import.
b. Select the file named IBM Secure Verify Access v10.0.1 Advanced Access Control Module

Multiplatform Multilingual eAssembly (CJ8NYML) from your client file system. You see the file name
under 'The license file upload process is pending' section.

c. Click Save Configuration. You see the imported ACC module in the Activated Modules section.
d. When the Pending Changes notification is displayed, click Review Pending Changes.
e. When Deploy Pending Changes window opens, click Deploy.

Chapter 1. Securing Social Program Management 77

https://www.ibm.com/docs/en/sva/10.0.1?topic=configuring
https://www-112.ibm.com/software/howtobuy/softwareandservices
https://www.ibm.com/links?url=https%3A%2F%2Fibmss.flexnetoperations.com

Publishing the configuration snapshot and reloading the appliances
Publish the configuration snapshot, and then reload the appliances or alternatively restart the docker
containers.

Procedure
1. In the Local Management Interface (LMI), click Container Management > Publish configuration. The

Container Management menu option is on the upper right of the banner menu.
2. In the Publish Configuration window, click Submit to create a snapshot of the configuration.
3. After you create the snapshot, reload the ISVA appliances to apply the configuration to them.

a) Open a root session in your <isam-host> and change to your Docker working directory.
b) List the running containers by entering the following command:

docker ps -a

c) Note their names. For example:

docker_isam-acc_1_672704447a94
docker_isam-config_c513a50101fe
docker_isam-webseal_1_3877f9c23a9a

d) For each appliance that you want to reload (config, aac, and webseal), enter the following
commands:

docker exec -ti <name_of_the_container> isam_cli
reload check
reload all
exit

Configuring the reverse proxy integration with the Advanced Access Control module
Configure the WebSEAL reverse proxy integration for use with the Advanced Access Control (AAC) runtime
server. Use the configuration wizard to configure the reverse proxy as a point of contact server for the AAC
runtime.

Procedure
1. Follow the steps in https://www.ibm.com/docs/en/sva/10.0.1?topic=services-configuring-advanced-

access-control-authentication-reverse-proxy.

• For step 2, ensure that you select the default reverse proxy instance name.
• In the AAC Runtime tab in the wizard, use the following default values.

– Host name - isam-aac.
– Port - 443.
– Username - eauser. Enter the default administrator password.
– Junction - /mga.

2. Click Next.
3. In the Reuse Options tab, ensure that the Reuse certificates and Reuse ACL's checkboxes are

selected, and click Finish.
4. Deploy the changes. See step (d) in Activating the Advanced Access Control module.
5. Publish the configuration snapshot and reload the appliances.
6. Verify your connectivity with the AAC runtime server. You can test your connectivity by accessing

a SOAP endpoint that is supported by the AAC runtime server. Access the endpoint through the
WebSEAL reverse proxy /mga junction.
a) In a browser, enter the following URL:

https://<ISVA Hostname>:12443/mga/rtss/authz/services/AuthzService

78 IBM Cúram Social Program Management: Cúram Security Guide

https://www.ibm.com/docs/en/sva/10.0.1?topic=services-configuring-advanced-access-control-authentication-reverse-proxy
https://www.ibm.com/docs/en/sva/10.0.1?topic=services-configuring-advanced-access-control-authentication-reverse-proxy

The URL is a SOAP endpoint that you can use to test the connection from the reverse proxy to the
AAC runtime server. The reverse proxy login page opens.

b) Log in with your ISVA administrator credentials. By default, the username is sec_master.

The AAC uses the ACLs that are configured on the /mga junction to access to the runtime security
services endpoint. If you authenticate as a regular user, a forbidden access error is displayed.

c) When the sign-in window opens, enter eauser for the username and the default password and
click OK. The reverse proxy uses the easuser to contact the SOAP endpoints that are supported by
the runtime WebSphere Liberty server.

d) Verify that the default authorization web service page is displayed.
/services/AuthzService
Hello! This is a CXF Web Service!

Configuring the multifactor authentication scenario
Learn how to change the initial single factor username and password login process to a multifactor one.
The first step is the standard WebSEAL username and password authentication. The second step is an
Advanced Access Control (AAC) email one-time password (OTP) authentication policy.

About this task
This example outlines how to configure the AAC module to use an email OTP authentication policy.
However, you can configure ISVA to use a different policy for multifactor authentication. The AAC module
has many different predefined authentication policies that you can use, such as email or SMS OTP,
time-based OTP, hash-based OTP, mobile push notification, and FIDO universal second factor.

The following are used in this example:

• A combination of protected object policies (POPs).
• WebSEAL's step-up authentication capabilities.
• Manipulation of the AUTHENTICATION_LEVEL attribute.
• The AAC email OTP authentication policy.

The approach shows you how to trigger and handle authentication flows in ISVA. For more information
about advanced techniques, such as how to apply conditional multifactor authentication flows, see the
ISVA Mobile Multi-Factor Authentication Deployment Cookbook.

Creating and configuring the POP policies for step-up login
In the Local Management Interface, create and configure the POP policies for step-up login.

About this task
All protected resources behind the WebSEAL reverse proxy are protected with a POP that requires
AUTHENTICATION_LEVEL=2, except for a subset that is needed for the user to reach that level. The
subset includes the resources that are used during initial login, and the authentication policy that
determines the second-factor authentication.

The procedure shows you how to create a POP called level2pop. When created, attach the level2pop
to the WebSEAL root, then override the POP at other levels in the WebSEAL object space tree.

You can override the level2pop with either of the following POPS:

• A level1pop for users who authenticate with a username and password.
• A level0pop for resources that require unauthenticated access, for example, images that are

displayed on a login page.

Procedure
1. Click Web > Policy Administration and then authenticate with your administrator credentials.

Chapter 1. Securing Social Program Management 79

https://www.securitylearningacademy.com/enrol/index.php?id=5274

2. Expand the POP section and click Create POP.
3. For the POP Name, enter level0pop.
4. Optional: Enter a description.
5. Click Create. A confirmation message is displayed.
6. Create a level1pop and a level2pop by repeating steps 2 - 5. For the POP Name, ensure that you

enter level1pop or level2pop where applicable.
7. Click List POPs to see your new POPs in the list of all POPs.
8. Click level0pop > IP Auth.
9. When the IP Auth tab opens, click Create. Select the Any Other Network check box, enter 0 for the

Authentication Level and click Create.
10. Repeat steps 8 - 9 for level1pop and level2pop. For the Authentication Level, enter 1 for level1pop.

Enter 2 for level2pop.
11. Attach resources to your POPs.

a) Click List POPs.
b) Click level0pop > Attach.
c) When the Attach tab opens, click Attach.
d) When the Attach POP window opens, for the Protected Object Path, enter the path to the

resource you want to protect, and click Attach. You see the attached resource in the POP list.
e) Repeat steps a - d for all resources that you want to attach to POPs 0, 1, and 2.

See the table for the resources that were attached to each POP in this example.

Table 4. Resources attached to each POP

POP Name Attached resources

level0pop The attachments for resources to retrieve
unauthenticated:

pop attach /WebSEAL/isam-conf-
default/favicon.ico

pop attach /WebSEAL/isam-conf-
default/icons

pop attach /WebSEAL/isam-conf-
default/pics

pop attach /WebSEAL/isam-conf-
default/mga/sps/static

level1pop The attachment for resources to retrieve
authenticated with username and password.

pop attach /WebSEAL/isam-conf-
default/mga/sps/authsvc

level2pop The attachment for all resources that are behind
the WebSEAL reverse proxy.

pop attach /WebSEAL/isam-conf-
default

80 IBM Cúram Social Program Management: Cúram Security Guide

Updating the WebSEAL configuration file with all login methods
Update the WebSEAL configuration file so that WebSEAL renders and processes the normal form-based
login before it completes the step-up login by using the AAC two-factor authentication policy.

About this task
Most second factor AAC policies require a user to initially authenticate so that it can look up the second
factor that is needed for the user to authenticate. For example, the user's email, phone number, or TOTP
secret.

Procedure
1. Click Web > Reverse Proxy.
2. Select the default checkbox, then Manage > Configuration > Edit Configuration File. The WebSEAL

configuration file opens in the editor.
3. Add the following entries to the configuration file:

[step-up]
show-all-auth-prompts = yes

Configuring WebSEAL to redirect to AAC for step-up authentication
Configure WebSEAL to use the AAC authentication policy for step-up authentication by updating the
WebSEAL configuration file again.

Procedure
1. Open the WebSEAL configuration file. See steps 1 - 2 in the previous procedure.
2. In the configuration file, validate and update the following settings where needed.

[authentication-levels]
level = unauthenticated
level = password
level = ext-auth-interface
[acnt-mgt]

enable-local-response-redirect = yes

[local-response-redirect]
local-response-redirect-uri = [stepup]
/mga/sps/authsvc?PolicyId=urn:ibm:security:authentication:asf:macotp

Configuring the email OTP delivery mechanism
In the Local Management Interface LMI), configure the email OTP delivery mechanism by entering values
for the email OTP authentication mechanism properties.

Procedure
1. Log in with your administrator credentials.
2. Click AAC and under Policy, click Authentication.
3. Click Mechanisms > email One-time Password. Then, click the edit icon to open the Modify

Authentication Mechanism window.
4. Click Properties, select a property that you want to configure, then click the edit icon.
5. When the Modify Property window opens, enter a value for the property, then click OK.

Chapter 1. Securing Social Program Management 81

Example
See the table for the properties that were used to configure the email OTP authentication mechanism in
this example.

Table 5. Properties used to configure the email OTP authentication mechanism

Property Name Description

Sender Email The email address of the sender.

Required: True

For example, admin@IBM.com.

SMTP Hostname The hostname of the SMTP server.

Required: True

For example, smtp.gmail.com.

SMTP Port The port connection to the SMTP server.

Required: True

For example, 465

SMTP username

SMTP Password

The username and password that is used in the
SMTP authentication.

Required: True

Use SSL Use SSL connection to the SMTP server.

Required: True

For example, true.

Enable STARTTLS STARTTLS to negotiate TLS to the SMTP server.

Required: True

For example, false.

TLS Protocol Use TLS connecting to the SMTP server.

Required: True

For example, TLS.

Modifying the OTPGetMethods mapping rule
In the Local Management Interface, use the OTPGetMethods mapping rule to specify the method that
delivers the one-time password to the user.

About this task
ISVA provides sample mapping rules for methods that control the password delivery conditions for
mechanisms, such as email and SMS. To complete the configuration, follow the steps to customize the
email OTP method.

Procedure
1. Log in with your administrator credentials.
2. Click AAC and under Policy, click Authentication.
3. Click Advanced on the Authentication page to see the mapping rules.

82 IBM Cúram Social Program Management: Cúram Security Guide

4. Click OTPGetMethods > Edit.
5. Update the email OTP method with the following changes and click Save.

if (useEmail) {IBM
WebSphere Application Server
 var emailAddress = stsuuAttrs.getAttributeValueByName("emailAddress");
 methods.push({
 id : "email",
 otpType : "mac_otp",
 deliveryType : "mail_delivery",
 deliveryAttribute : emailAddress,
 userInfoType : "",
 label : "Email to " + maskEmail(emailAddress)
 });
}

Note: Depending on whether you want to show the user's email on the OTP form, the maskEmail
function is optional.

Testing the multifactor authentication scenario
Test your SP-initiated SAML SSO MFA scenario with regular WebSEAL username and password login,
followed by second factor email OTP.

Procedure
1. In a browser, clear cookies and then enter the URL to your IBM Cúram Social Program Management

application. The ISVA IdP login page opens.
2. Complete the regular WebSEAL forms-based login by entering a username and password and clicking

Login. Clicking Login initiates the step-up login flow to the ACC MAC-OTP authentication policy that
you configured.

3. In the One-time Password Delivery page that opens, select the email option and click Submit. ISVA
generates the OTP and sends you an email with the OTP code.

4. When the MAC One-Time Password Login page options, copy the OTP code from your email
into the One-Time Password field and click Submit. The AAC authentication completes and the
AuthSvcCredential mapping rule sets the credential attribute AUTHENTICATION_LEVEL to 2 to satisfy
the level2pop. The SAML SSO process completes and the IBM Cúram Social Program Management
resource loads. The application home page opens.

Updating the AuthSvcCredential mapping rule
To ensure that the AUTHENTICATON_LEVEL attribute is set to 2 when your authentication policy runs,
you can update the AuthSvcCredential mapping rule. Otherwise, an endless redirect loop might occur
during login. Note, this task is required only if you are using a custom OTP mechanism and not the default
OTP mechanisms that are provided in IBM Secure Verify Access.

About this task
The AuthSvcCredential mapping rule runs after each AAC authentication policy completes. By default,
IBM Secure Verify Access includes this functionality in its default OTP mechanisms that include email in
this example. See the advanced configuration property poc.otp.authLevel that is located in the Local
Management Interface.

1. Click AAC > Global Settings > Advanced Configuration.
2. Under Click Advanced, select poc.otp.authLevel to view the values.

The following procedure works for any other authentication policy that you use to achieve step-up.

Procedure
1. Log in to Local Management Interface with your administrator credentials.
2. On the authentication page, click Advanced to show the mapping rules.
3. Click AuthSvcCredential > Edit.

Chapter 1. Securing Social Program Management 83

4. Change the myPolicyURIs variable shown in the following example for your authentication policy as
needed.

importClass(Packages.com.tivoli.am.fim.trustserver.sts.uuser.Attribute);

// if you have more than one policy that could be used to satisfy 2FA, add to this array
var myPolicyURIs = ["urn:ibm:security:authentication:asf:macotp"];
var currentPolicy = ''+context.get(Scope.SESSION, "urn:ibm:security:asf:policy", "policyID");
if (myPolicyURIs.indexOf(currentPolicy) >= 0) {
 stsuu.getAttributeContainer().setAttribute(new Attribute("AUTHENTICATION_LEVEL",
"urn:ibm:names:ITFIM:5.1:accessmanager", "2"));
}

Configuring SSO
Token-based SSO is implemented on IBM WebSphere Application Server or Oracle WebLogic Server
server. SSO on WebSphere Application Server can be implemented by using the WebSphere lightweight
third-party authentication mechanism (LTPA) and additional custom login modules. SSO on WebLogic
Server can be implemented by using the WebLogic Server authentication provider or a custom
authentication provider.

Note: Token-based SSO is tested on IBM Cúram Social Program Management only.

Configuring SSO by using IBM WebSphere Application Server LTPA
When SSO is required with WebSphere Application Server, it can be achieved by using the WebSphere
Application Server lightweight third-party authentication mechanism (LTPA) and additional custom login
modules. The LTPA protocol results in a token being created for an authenticated user. In WebSphere
Application Server, a token is generated once credentials are added for an authenticated user. This token
is then used to retrieve identity information for an authenticated user in an SSO environment.

Security is implemented as a Cúram login module within a chain of login modules set up in the application
server. It is expected that at least one of these login modules be responsible for adding credentials for
the user. By default, the Cúram login module adds credentials for an authenticated user. As a result
of this, the configured application server user registry handled by a subsequent login module does not
add credentials. The recommended approach to implementing an SSO solution is to add a custom login
module somewhere along the chain of login modules.

The ability to disable the addition of credentials for an unauthenticated user is provided, thus enabling an
SSO solution to be implemented.

The Cúram JAAS login module for WebSphere Application Server checks if an LTPA token exists within the
application server by using the WSCredTokenCallbackImpl callback for. If this token exists and is valid,
then no authentication is performed by the Cúram login module.

Credentials may be added to the user registry. Credentials include authentication information on the
user logging in, including the unique identifier for the user.WebSphere Application Server checks that
credentials exist for a user after all configured system login modules have executed, if the credentials
exist, then the user registry is not queried. Credentials are not added by the Cúram JAAS login module if
the following settings are in place:

• curam.security.check.identity.only property is set to true.
• curam.security.user.registry.enabled property is set to true.

As mentioned in “Deployment of an External Application” on page 22, there are properties relating to the
type of external user that control if credentials are added to WebSphere for a specific external user type.
These include:

• curam.security.user.registry.enabled.types property.
• curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user types.

84 IBM Cúram Social Program Management: Cúram Security Guide

In the case where the Cúram JAAS login module does not add credentials, the user registry will be
queried to attempt to add credentials for the user.

Configuring SSO by using Oracle WebLogic Server WL_Token
Configure SSO by using the WebLogic Server WL_Token.

When SSO is required with WebLogic Server, it can be achieved by using the WebLogic Server
authentication provider or a custom authentication provider. Consult the WebLogic Server documentation
for further information on authentication providers.

WebLogic Server expects credentials/principals and the group the user belongs to, to be added by the
configured authentication provider. For an SSO solution the Cúram JAAS login module does not add
credentials to the JAAS subject to allow for an alternative authentication provider to be responsible for
adding credentials.

Credentials are not added if the following settings are in place:

• curam.security.check.identity.only is set to true.
• curam.security.user.registry.enabled is set to true.

As mentioned in “Deployment of an External Application” on page 22 , there are properties relating to the
type of external user that control if credentials are added to WebLogic Server for a specific external user
type. These include:

• curam.security.user.registry.enabled.types property.
• curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user types.

The responsibility for adding credentials is left to another authentication provider, that is, the main
authentication provider for authenticating the user. In an SSO scenario, only one of the authentication
providers needs to add credentials to the JAAS subject during the commit() method of the login module
for a user

Other Security Considerations
Another important security concern is protecting content as it is entered, displayed, and transferred
across the network for the Cúram application. The default configuration uses SSL provided by the
application server to secure content as it is transferred.

In addition to this protection, industry-leading products are used during the development lifecycle to
regularly monitor for security vulnerabilities in the application. Examples of such potential vulnerabilities
include cross-site scripting, and SQL injection. Such threats are resolved within the infrastructure when
discovered.

For the best security, customers must do similar security monitoring of their application.

SSL settings for the application
SSL is on by default for access to the web application. This ensures a secure SSL connection between the
client and server and also ensures data is encrypted. SSL is turned on for the client through settings in the
web.xml file for the web client application.

SSL is turned on at the application server level by settings in IBM WebSphere Application Server,
WebSphere Application Server Liberty, or Oracle WebLogic Server. These settings for the

application servers are done through the Cúram configuration scripts.

Important: The configuration scripts ensure SSL is turned on by default, however, this is a default
configuration that must be updated and new certificates must be established for the SSL protocol.

Leave SSL on for access to the Cúram application, however depending on specific project configurations,
there may be a need to turn SSL off for the application.

Chapter 1. Securing Social Program Management 85

It is possible, but not recommended to turn off SSL. “Turning off SSL settings for the application” on page
90 should be consulted for further details.

Using Social Program Management in a secure environment
IBM Cúram Social Program Management can be used in a secure server environment (for example, FIPS
140-2), and it depends on the requirements and capabilities of that environment (for example WebSphere
Application Server or WebSphere Liberty, or WebLogic Server FIPS configurations). However,
there are a few specific areas where Social Program Management operation or configuration is required:

• When you use the DB-to-JMS feature, which is enabled by using the
curam.batchlauncher.dbtojms.notification.ssl property, described in the Cúram Batch
Processing Guide

• When you use the Word Integration Control, used for the FILE_EDIT widget , documented in the
Cúram Web Client Reference Manual, which has two aspects to consider:

– When needing to use it with a browser in a TLS v1.2 environment, which is discussed in the "User
Machine Configuration" topic of the Cúram Web Client Reference Manual.

– The SP800-131a-compliant version of the supporting jar file can be used if your browser JVM
supports SHA2, regardless of whether the server environment supports SP800-131a. To digitally
sign the Word Integration jar for SP800-131a compliance you must build your environment by using
the enable-sha-2-signed-jars property (e.g. -Denable-sha-2-signed-jars=true) when
starting the Social Program Management build targets.

Client HTML error pages
Errors that occur on the client cause HTML error pages to be displayed. For debugging purposes, in the
development environment, you can output a Java exception stack trace of the errors that have occurred in
the HTML error pages. However, the HTML error pages that contain the Java exception stack trace are not
included in the IBM Cúram Social Program Management application malicious code and filtering checks.
Therefore, because the HTML error pages could potentially make the application more susceptible to
injection attacks such as cross-site scripting and link injection, the Java exception stack trace should
not be output in a production environment. You can use the errorpage.stacktrace.output client
property to determine whether the Java exception stack trace is written to the HTML error pages.

The errorpage.stacktrace.output property is set to false by default. In a development
environment,for debugging purposes, you can set the property value to true. For more information about
the errorpage.stacktrace.output property, see Application Configuration Properties.

Related reference
Application configuration properties

Enabling HTTP verb permissions
Verb tampering is an attack that exploits vulnerabilities in HTTP verbs authentication and access control
mechanisms. To mitigate verb tampering in your web server, configure the web server's HTTP verb
permissions to limit access to only selected HTTP verbs.

About this task
Hypertext transfer protocol provides a list of methods that you can use to perform actions on a web
server. Verb tampering vulnerabilities can occur when security constraints that specify HTTP verbs allow
more access than intended.

In Java Platform, Enterprise Edition version 7 or later, you can limit access to only permitted HTTP
verbs by configuring the web application deployment descriptor. However, the required web application
deployment descriptor configuration is not supported by the Java Platform, Enterprise Edition version
that the IBM Cúram Social Program Management application currently supports. As an alternative
solution, you can configure the web server in your Social Program Management application deployment

86 IBM Cúram Social Program Management: Cúram Security Guide

environment to permit only required HTTP verbs. Use the following procedure to configure both IBM HTTP
Server and Oracle HTTP Server.

Procedure
• Use the following steps to enable HTTP verb permissions by using IBM HTTP Server as a gateway or

filter:
a) Check that the application is working correctly and all pages load and work as expected:

– In a web browser, navigate to your applications URLs and inspect the network panel.
b) Log on to the web server and locate the IBM HTTP Server home directory, for example, /opt/IBM/
HTTPServer.

c) In the $IHS_HOME/conf.d/ directory, edit the custom_ihs_perf.conf file and insert
configuration example 1 from the example that follows this procedure.

d) In the $IHS_HOME/conf.d/ directory, edit the custom_ssl.conf file and insert configuration
example 2 from the example that follows this procedure.

e) To restart the IBM HTTP Server, enter the following commands:

/opt/IBM/HTTPServer/bin/apachectl stop
/opt/IBM/HTTPServer/bin/apachectl start

f) Recheck that the application is working correctly, and that all pages load and work as previously.
g) Check that nonpermitted verbs are blocked from accessing the application.

• Use the following steps to enable HTTP verb permissions by using Oracle HTTP Server as a gateway or
filter:
a) Check that the application is working correctly and all pages load and work as expected:

– In a web browser, navigate to your applications URLs and inspect the network panel.
b) Log on to the web server and locate the Oracle HTTP Server home directory, for example, /home/
oracle/Oracle/Middleware/HTTP_Oracle_Home.

c) In the $OHS_HOME/user_projects/domains/ohs_{domain}/config/fmwconfig/
components/OHS/ohs1/ directory, edit the moduleconf/custom_ohs_perf.conf file and
insert configuration example 1 from the example that follows this procedure.

d) In the $OHS_HOME/user_projects/domains/ohs_{domain}/config/fmwconfig/
components/OHS/ohs1/ directory, edit the ssl.conf file and insert configuration example 2
from the example that follows this procedure.

e) To log on as the Oracle user, enter the following command:

su - oracle

f) To restart the Oracle HTTP Server, enter the following commands:

$OHS_HOME/user_projects/domains/ohs_{machine_domain}/bin/stopComponent.sh ohs1
$OHS_HOME/user_projects/domains/ohs_{machine_domain}/bin/startComponent.sh ohs1

g) Recheck that the application is working correctly, and that all pages load and work as previously.
h) Check that nonpermitted verbs are blocked from accessing the application.

Example
Configuration example 1

Configuration example 1 works as shown in the following description:

1. Loads the Apache mod_rewrite module that is available in IBM HTTP Server and Oracle HTTP
Server, if it is not loaded.

2. Enables the Rewrite Engine, signifying a code block to enable rewrite.

Chapter 1. Securing Social Program Management 87

3. Applies an If condition on the Request method if it does not match (!) the Regex expression that
is denoted by the string between the start (^) and end ($) delimiters, in this case the GET, POST,
PUT, DELETE, or OPTIONS verbs.

4. If the condition is true, in that it does not match the condition HTTP verbs on the matching Regex
url (.* = all URLs), send a 403 Forbidden response ([F]) while also using the pass-through
flag ([PT]) to overwrite any IBM WebSphere Application Server plug-in.

```
<IfModule !mod_rewrite.c>
    LoadModule rewrite_module {path_to_modules}/mod_rewrite.so
</IfModule>
<IfModule mod_rewrite.c>
    RewriteEngine On
    RewriteCond %{REQUEST_METHOD} !^(GET|POST|PUT|DELETE|OPTIONS)$
    RewriteRule .* - [PT,F]
</IfModule>
```

Configuration example 2
Configuration example 2 ensures that the mod_rewrite rules also act in https protocol and not just in
http protocol.

```
    RewriteEngine On
    RewriteOptions Inherit
```

Insert the previous example in the block that contains the following code:

```
<VirtualHost *:443>
  ...
</VirtualHost>
```

Customizing Authentication
You can use the following customization points and development artifacts to customize Cúram
authentication.

Customizing the Login Page
The default out-of-box login screen is represented by the logon.jsp file located in the lib/
curam/web/jsp directory of the Client Development Environment for Java (CDEJ). The logon.jsp
file can be customized by creating a copy of the out-of-the-box file and placing this in a webclient/
components/<custom>/WebContent folder, where <custom> represents the name of the custom web
client component.

The section on Login Pages in the Cúram Web Client Reference Manual has guidelines on what needs to
remain in place in the logon.jsp file and should be referenced for further details.

Applying Styling to the Login Page
Styling changes can be applied to the logon.jsp in the usual way, i.e., by adding the relevant CSS to
any .css file in the custom component. The Cúram Web Client Reference Manual should be consulted for
details on styling.

Enabling Usernames With Extended Characters for WebLogic Server
If the WebLogic Server application server is not being used, this section can be ignored.

If you have Cúram user names or passwords with extended characters (e.g. "üßer") WebLogic Server
provides a proprietary attribute, j_character_encoding , which must be added to the logon.jsp form-

88 IBM Cúram Social Program Management: Cúram Security Guide

based login page. The WebLogic Server documentation should be consulted for more information. The
attribute must be added to the table element in the logon.jsp file, as shown.

<input type="hidden" name="j_character_encoding" value="UTF-8"/>

Changing the Case-Sensitivity of the Username
The curam.security.casesensitive property controls the case sensitivity of usernames. By default, this is
set to true in the Application.prx file. When set to false in the Application.prx file, this will
result in the authentication and authorization mechanisms ignoring the case of the username.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide should be consulted for
further details on the Application.prx file.

Adding Custom Verifications to the Authentication Process
To add custom verifications, the curam.util.security.CustomAuthenticator interface
must be implemented. This interface contains one method - authenticateUser() .
The authenticateUser() method is invoked for both default authentication and identity
only authentication. The results of this method are expected to be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case of successful authentication, the
result must be curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures anything, including null, can be returned. It is recommended though that
another code from the curam.util.codetable.SECURITYSTATUS codetable be used. This codetable
can be extended to include custom codes as detailed in the chapter on Code Tables in the Cúram Server
Developer's Guide.

After the custom verifications are invoked, the authentication process will update the relevant fields
on the Users database table. For example, if the result of the customized verifications is not
SECURITYSTATUS.LOGIN the number of login failures is increased by 1, and if the break-in threshold
is reached, the account will be disabled. Alternatively, if the result is SECURITYSTATUS.LOGIN , the login
failures are reset to 0 and the last successful login field is updated.

Note: When identity-only authentication is enabled the fields of the Users database table are not
updated, irrespective of the result of the custom verification.

Configuring the Custom Authenticator
To configure the application to use this custom extension, the property
curam.custom.authentication.implementation in the Application.prx must be set to the fully qualified
name of the class implementing the CustomAuthenticator interface.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide should be consulted for
further details on the Application.prx file.

Configuring Identity Only Authentication
To configure identity-only authentication, set the curam.security.check.identity.only property
to true in the AppServer.properties file before you run the configure target. You can also set this
property after the application is deployed through the application server console. For more information
about configuring the application server, see the deployment guides for your application server in
Deploying the application.

Adding the Cache Refresh Failure Callback Interface
The new callback class must implement the interface:
curam.util.security.SecurityCacheFailureCallback in a class that has a public default
constructor. The implementation of the callback is registered by setting the application property

Chapter 1. Securing Social Program Management 89

curam.security.cache.failure.callback to the name of the implementation class. If the property is not set,
no attempt is made to invoke a callback handler.

Turning off SSL settings for the application
SSL is on by default for access to IBM Cúram Social Program Management. Enabling SSL ensures a
secure SSL connection between the client and server and also ensures data is encrypted. SSL can be
turned on and off for the client through settings in the web.xml file for the web client application,
and at the application server level by settings in WebSphere Application Server, WebLogic Server, or

WebSphere Application Server Liberty. These settings for the application servers are configured
via the configuration scripts. Leave SSL on for access to the application, however depending on specific
project configurations, you might need to turn SSL off for the application.

Modifying the web.xml File for the Client Application
This can be modified by changing the <transport-guarantee> from CONFIDENTIAL to NONE in the
web.xml file. Note, this does not disable access to the web client over HTTPS, but enables additional
access via HTTP. For further details on modifying the web.xml file, the section on Customizing the Web
Application Descriptor in the Cúram Web Client Reference Manual should be referenced. An example of
setting this property is shown.

<user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>

Modifying the Application Server Configuration
Modifying the configuration for WebSphere can be done in one of two ways. The first approach below
being the recommended approach.

• Use the existing non-secure port, setup by default for Web Services (recommended approach). This
caters for both SSL and non-SSL connections.

1. Navigate to Environment -> Virtual Hosts -> client_host->Host aliases
2. Click New and enter * for host name and 9082 for port number, then click OK
3. On the next page click Save to store your new value to the server configuration. Please note that the

port 9082 corresponds to the CuramWebServicesChain configured in the default client application
and this port is now the port that can be used to access the application using HTTP

• Reuse the current SSL port of 9044 :

The current port can be set up as a non-secure port. The steps to do this are described in the Cúram
Deployment Guide for WebSphere Application Server - Section A.2.11 Server Configuration - Set up port
access. Follow Steps 7 to 11 inclusive. The only difference for Step 11, is that the Transport Chain
Template should be set to 'WebContainer' (and not WebContainer Secure).

• Complete the below steps after following any of the above step, to turn of SSL in Global Security
Settings :

1. Navigate to Security -> GlobalSecurity ->
2. Select Web and SIP Security -> Single Sign-On (SSO)
3. UnTick requires SSL , then click OK, save the server configuration.

Analyzing the AuthenticationLog Database Table
All authentication attempts (both successes and failures) are logged in the AuthenticationLog database
table. The following are the rows of interest on this table:

90 IBM Cúram Social Program Management: Cúram Security Guide

Table 6. Contents of the Authentication Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the login attempt.

altLogin Boolean indication of whether the username represents an
alternate Login ID. When this column equals '1' (true) the
value in the userName column is an alternate login ID as
per “Alternate Login IDs” on page 3; otherwise, the userName
column represents the userName from the Users or ExternalUser
table.

loginFailures The number of login failures for this user since their last
successful login.

lastLogin The date and time of the last successful login.

loginStatus The status of the login attempt. This may be one of:

• LOGIN: Successful login.
• ACCDISABLE: The account has been explicitly disabled.
• ACCEXPIRED: The password expiry date has been reached.
• PWDEXPIRED: The number of days which the user was given to

change their password has been exceeded.
• BADUSER: The user does not exist.
• AUTHONLY: This is used in the case of identity

only authentication and indicates that only authorization
verifications will be performed.

• BADPWD: The specified password was incorrect.
• BREAKIN: A specified number of incorrect passwords has been

reached. The account is disabled.
• RESTRICTED: The user is not allowed access the system at this

time.
• LOGEXPR: The number of login attempts which the user was

given to change their password has been exceeded.
• AMBIGUOUS: The specified username is ambiguous as it is a

case insensitive duplicate of another username.

The LogAdmin API can be used to query the AuthenticationLog database table. The Java documentation
for this class should be referenced for further details.

Customizing Authorization
Use this information to set up authorization for Cúram users.

Creating Authorization Data Mapping
The authorization data for a user can be set up through the use of the Data Manager (DMX files) or through
the Cúram Administration screens. The Cúram System Configuration Guide should be consulted for details
on identifying how to group security from a business perspective.

Chapter 1. Securing Social Program Management 91

To create a new security role for a user, the security identifiers (SIDs) that the user must have access
to, need to be identified. These SIDs should then be organized into groups of SIDs. The role, groups and
SIDs, once identified, need to be set up on the security tables that these represent.

Security data is considered essential for the set up of a Cúram application. As such, the examples below
describe adding security data to the data/initial directory within the component.

Creating a New Security Role
To create a new security role, a new entry must be added to the SecurityRole database table, setting the
rolename attribute.

To do this, create/add to the SecurityRole.dmx file in the %SERVER_DIR%/components/<custom>/
data/initial , where <custom> is any new directory created under components that conforms to the
same directory structure as components/core.

Creating a New Security Group
To create a new security group, a new entry must be added to the SecurityGroup database table setting
the groupname attribute.

To do this, create/add to the SecurityGroup.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Linking the Security Group to the Security Role
The security role must be linked to the security group. To do this, create a new entry in the
SecurityRoleGroup table, setting the rolename and groupname attributes.

To do this, create/add to the SecurityRoleGroup.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Creating the Security Identifier (SID)
The create a new SID, an entry must be added to the SecurityIdentifier table, setting the sidname and
sidtype attributes.

To do this, create/add to the SecurityIdentifier.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Linking the Security Group to the SID
To link the security group with the SID, an entry must be added to the SecurityGroupSID table, setting the
groupname and sidname attributes.

To do this, create/add to the SecurityGroupSID.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Linking the Security Role to the User
To associate authorization data to a user, the security role must be linked to the user.

To do this, update the entry for the specified user in the Users.dmx file located in the %SERVER_DIR%/
components/<custom>/data/initial , where <custom> is any new directory created under
components that conforms to the same directory structure as components/core , setting the rolename
attribute to be the rolename as specified on the SecurityRole table.

92 IBM Cúram Social Program Management: Cúram Security Guide

Loading Security Information onto the Database
Once all of the information has been entered in the various DMX files, the Data Manager should be used
to load the DMX data onto the database. The Data Manager chapter in the Cúram Server Developer's Guide
should be consulted for further details.

Creating Function Identifiers (FIDs)
When a method is made publicly accessible; by setting the stereotype to be <<facade>>, security is
automatically switched on. This means a SID is automatically generated for that method and the security
enabled flag for the method is set to true . The SID and its fidenabled flag are stored in the database-
independent <ProjectName>_Fids.xml file located in the /build/svr/gen/ddl subdirectory. This
file is used to insert the FID information onto the database via the Data Manager.

A FID follows the naming convention of <classname>.<methodname> , and the maximum length of a
FID is 100 characters. For example, for a BPO called ProductEligibility , with two methods called
insertProduct and testProduct , two FIDs are created: ProductEligibility.insertProduct
and ProductEligibility.testProduct.

If security for a process method is switched off at design time in the model, a SID/FID is still generated
but the security enabled flag is set to false . Setting the security enabled flag to false means that no
authorization check is performed for this method.

Switching Security off for a Process Method
Setting the Generate_Security option on the process method to false in the model switches off
security for a process method.

If security for a process method is switched off at design time in the model, a FID is still generated
but the security enabled flag is set to false . Setting the security enabled flag to false means that no
authorization check is performed for this method.

Security Considerations During Development
It is important to consider the effect of these design options when implementing security during the
development of a Cúram application. They are the first and last line of defense against unauthorized
access to application process functionality. Generally speaking, security will be switched on for almost all
process methods. Security may be switched off for a process method that does not need security, e.g., a
login method that gets invoked when a user tries to login to an application. As a user has not yet been
authenticated or authorized, they need access to this method in order to login, therefore switching off
security for this method may be necessary.

During the initial design phase of an application the overhead of keeping the security environment "in
sync" with an evolving application can be tedious. It is possible to disable the authorization check by
setting the curam.security.disable.authorisation property in the Application.prx file.

warning: Warning

The curam.security.disable.authorisation property should only be turned on at design phase. This should
never be set to true in a production environment.

Finally, it should be noted that once the code and scripts have been generated from a working model, the
information associated with a FID cannot be changed. To change this information requires modifying the
model, re-generating and re-building the database.

Controlling the Logging of Authorization Failures for the Client
By default, web client authorization failures are not recorded.

The curam.enable.logging.client.authcheck property controls whether the authorization failures
encountered by the web client are logged or not. This property is false by default, meaning these
failures will not be logged. When set to true a log of these authorization failures is stored on

Chapter 1. Securing Social Program Management 93

the database table AuthorisationLog . The Cúram Server Developers Guide , Application.prx - Dynamic
properties section should be consulted for more information on this property.

Authorizing New SID Types
A server interface method is provided to enable authorization to be performed directly. This method may
be added to a class that manipulates data on the conceptual element being secured by the new SID type.

curam.util.security.Authorisation.isSIDAuthorised()

A usage example of the isSIDAuthorised() method is below:

// The SID associated with the conceptual element
 // to be secured.
 String someSID = "someSID";

 // Get the logged in username
 String loggedUser =
 curam.util.transaction.TransactionInfo.getProgramUser();

 // Check if the user has access rights
 if (curam.util.security.Authorisation.isSIDAuthorised(
 someSID, loggedUser)) {
 // Do something sensitive that this user has rights to do
 ...
 } else {
 // Throw an exception indicating the user doesn't have
 // access to perform this action
 AppException exception
 = new AppException(MESSAGE.ERR_USER_NO_ACCESS);
 throw exception;
 }

Analyzing the AuthorisationLog Database Table
All authorization failures are logged in a database table called the AuthorisationLog. The following are the
rows of interest on this table:

Table 7. Contents of the Authorization Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the authorization attempt.

identifierName The security identifier (SID) or functional identifier (FID)
associated with the failure.

The LogAdmin API can be used to query the AuthorisationLog database table. The Java documentation
for this class should be referenced for further details.

Customizing Cryptography
Use this information to configure and customize cryptography for Cúram.

Cipher Customization
Modification of the default cipher settings is a relatively straightforward process, but needs to be
adequately planned and tested. You will require an application restart for the changes to be implemented
and depending on the size and topology of your organization and deployments you need to choose a
time when in-progress changes won't be an impact. Also, consider any data (e.g., properties containing
encrypted passwords) managed by the Cúram Transport Manager (CTM) that will either need to be

94 IBM Cúram Social Program Management: Cúram Security Guide

updated or managed to prevent systems from being out of sync with one another (see the Cúram
Transport Manager Guide for more information).

Modification of the default cipher settings involves the following steps:

1. Choosing new settings for the CryptoConfig.properties and underlying artifacts - see “Cúram
Cipher Settings” on page 16

2. Depending on the settings, you may need to perform additional steps (e.g. when modifying the
keystore as per “How to Create a New Keystore” on page 96).

3. Modify the CryptoConfig.properties file; note the default location is <SERVER_DIR>/project/
properties.

4. Remove any existing CryptoConfig.jar files (these contain CryptoConfig.properties) that are
found in the <JAVA_HOME>/jre/lib/ext directory ($JAVA_HOME/lib/ext on IBM z/OS®). If any
Cúram clients or servers are running these will need to be terminated in order to be able to deploy an
updated CryptoConfig.jar file with the updated settings.

5. Re-encrypt the passwords in all existing property files as identified in “Cipher-Encrypted Passwords”
on page 18. The Apache Ant configtest, configure, and installapp targets will place an updated
CryptoConfig.jar file in the Java lib/ext directory.

6. Test and verify your changes.

Testing of your changes should include verifying any functionality that would be impacted; for example:

• Ensure the Ant configtest target still works.
• Ensure batch programs still work.
• If you utilize the Ant configure target ensure it still works.

Related topics:

• “Cúram Digest Settings” on page 17
• “Cipher-Encrypted Passwords” on page 18

Key Management
The management of the secret key for Cúram encrypted passwords is done via the JDK-provided
keytool command, or equivalent. You will need to make local decisions about placement and isolation of
the secret key for Cúram that are compatible with your local organization and standards.

Keep in mind that some settings passed to the keytool command need to be reflected in the
CryptoConfig.properties settings, which needs to be coordinated for successful deployment as
discussed in “Cipher Customization” on page 94. The following table shows the relationship between
keytool command arguments and the Cúram crypto properties.

Table 8. Relationship of keytool Command Arguments to Cúram Crypto Properties

Keytool argument CryptoConfig.properties property

-keyalg curam.security.crypto.cipher.algorithm

-alias curam.security.crypto.cipher.keystore.seckey.alias

-keystore curam.security.crypto.cipher.keystore.location

-storepass curam.security.crypto.cipher.keystore.storepass

Note: The secret key password defaults to the storepass password and should not be changed.

See the JDK documentation for more information on using the keytool command.

Related topics:

Chapter 1. Securing Social Program Management 95

• “Cúram Cipher Settings” on page 16
• “Cryptography Properties” on page 16
• “How to Create a New Keystore” on page 96

How to Create a New Keystore
Creating a new keystore to replace the Cúram default requires running the keytool command provided
with the JDK (or equivalent), modifying the CryptoConfig.properties settings to correspond (necessary,
only if the keystore name and/or location is changed from the default, but changing the name can
make your customizations more obvious), and ensure the Curam Ant targets can find the new keystore
(necessary, only if the default location is changed).

For example:
keytool -genseckey -v -alias MySecretKey -keyalg AES -keysize 128
-keystore MyOrganization.keystore -storepass secretpw -storetype jceks

The section “Key Management” on page 95 identifies the keytool command arguments that relate to the
CryptoConfig.properties settings.

The default location of the keystore file is the <SERVER_DIR>/project/properties directory with a
sub-directory structure that reflects the JDK in use: "ibm" for the IBM JDK and "sun" for the Oracle JDK.
So, when creating a keystore file the Curam build scripts expect to find it in the case of the IBM JDK in:
<SERVER_DIR>/project/properties/ibm. If you desire to use a location different from the default
you can do one of two things:

1. Use an absolute location for the keystore file as described in “Cryptography Properties” on page 16.
In this case the Curam default keystore files in CryptoConfig.jar will be ignored in favor of the
absolute setting CryptoConfig.properties.

2. Use the Ant crypto.prop.file.location property when you run any of the targets, described in
“Cipher Customization” on page 94, that create and copy the CryptoConfig.jar to point to your
alternate location. The location specified will have to reflect the structure of your JDK - "ibm" or "sun".
For instance:

• Place the new keystore file in a location like this on Windows for the IBM JDK:
C:\Curam\keystore\ibm\MyOrganization.keystore

• Point to that location when running the build targets: ant configure
-Dcrypto.prop.file.location=C:\Curam\keystore

Note: In the example above the change of keystore file name to MyOrganization.keystore will
require a corresponding change to CryptoConfig.properties as per “Cryptography Properties” on
page 16.

Note: The only supported keystore type for Cúram cryptography is jceks.

Following the keystore creation you need to follow the steps in “Cipher Customization” on page 94.

Related topics:

• “Key Management” on page 95
• “Cipher Customization” on page 94

Digest Customization
Modification of the default digest settings is a relatively straightforward process, but needs to be
adequately planned and tested. You will require an application restart for the changes to be implemented
and depending on the size and topology of your organization and deployments you need to choose a time
when in-progress changes won't be an impact. Also, consider any data (e.g., User passwords) managed by
the Cúram Transport Manager (CTM) that will either need to be updated or managed to prevent systems
from being out of sync with one another (see the Cúram Transport Manager Guide for more information).

The process is covered in detail in “How to Utilize the Superseded Digest Settings for a Period of
Migration” on page 97.

96 IBM Cúram Social Program Management: Cúram Security Guide

Related topics:

• “Cúram Digest Settings” on page 17
• “How to Specify a Digest Salt” on page 97

How to Specify a Digest Salt
While Cúram doesn't specify one out-of-the-box, specifying a salt for digested passwords provides an
additional level of protection against brute-force attacks.

To specify a salt for your digested passwords:

1. Choose a sufficiently long and random string.
2. Encrypt this string using the Ant encrypt target (as documented in the Cúram Server Developer's

Guide).
3. Place the encrypted string in a file.
4. Specify the location of the file containing the encrypted salt string using the
curam.security.crypto.digest.salt.location property in CryptoConfig.properties
and ensure that any deployed CryptoConfig.jar files reflect the updated settings.

For manageability you should make these changes in conjunction with the steps in “How to Utilize the
Superseded Digest Settings for a Period of Migration” on page 97.

How to Utilize the Superseded Digest Settings for a Period of Migration
Utilizing the superseded digest settings means you are migrating your existing digested passwords to a
new crypto configuration (e.g. new salt) and would like Cúram user passwords automatically migrated for
a period of time. This applies to Cúram internal and external users, but does not apply to users managed
by third-party security systems such as LDAP.

The process to do this is:

1. Choose a time when your Cúram system can be down and with the Cúram system not running.
2. Copy the existing digest property names and values in CryptoConfig.properties and rename the

properties to the new superseded property names.
3. Modify the existing digest property names in CryptoConfig.properties.
4. Set the curam.security.convertsupersededpassworddigests.enabled property to 'true'.
5. Set the curam.security.crypto.upgrade.start property to help you track when you introduced

the updated configuration. This value can be used below to help manage unmigrated user passwords.
6. Restart the application server, but note the following.

Note: The Cúram default web services user (WEBSVCS), or any user not processed via the
CuramLoginModule, is not available for automatic password migration. You must reset these users
before restarting the application server. To do this:

1. Obtain the new digest password value via the Ant digest target (e.g. ant digest
-Dpassword=password).

2. Update the password value in the database, which is easily done via SQL (e.g. UPDATE USERS SET
PASSWORD='<new digest value>' WHERE USERNAME='WEBSVCS';).

3. You can now start the application server

After a period of time (e.g. weeks or months) when you consider the migration period to be over set the
curam.security.convertsupersededpassworddigests.enabled property to 'false' and unset
the curam.security.crypto.upgrade.start property.

Users who did not login during the migration period will now see their logins fail due to password
mismatches. You have two approaches for addressing the passwords not updated during the migration
period:

Chapter 1. Securing Social Program Management 97

1. Require these users to contact your internal support to have their password reset via the admin user
interface.

2. Manually identify the users in the Cúram USERS table who were not updated during the
migration period and either manually set new default password either via SQL (see the digest
target described in the Cúram Server Developer's Guide to obtain new digest password values)
or via the admin user screens. For example, using the following query: SELECT username
FROM users WHERE lastwritten between timestamp('2013-06-01 15:00:00') AND
timestamp('2013-09-01 00:00:00')

You should not leave curam.security.convertsupersededpassworddigests.enabled set to true
indefinitely because:

1. It's meaningless to have gone to the trouble of upgrading from configuration 'A' to configuration 'B' and
leave the original 'A' configuration active;

2. It leaves potentially weaker crypto settings active in the system; and
3. In order to use this functionality for a future upgrade, say from configuration 'B' to 'C', you would have

to have upgraded all the 'A' passwords to at least 'B'.

Note: Any files, e.g. DMX, with stored digests need to be considered with respect to your migration
strategy so they reflect the correct values.

Note: Any use of the Cúram Transport Manager (CTM) during a migration needs to be considered in terms
of ensuring compatible settings and expectations between the source and target systems.

Related topics:

• “Cúram Cipher Settings” on page 16
• “Cúram Digest Settings” on page 17

Modifying Your Cryptography Configuration for a Production System
While the default cryptography settings are adequate for typical development or test environments, you
should modify them for production environments to protect and provide isolation between these relatively
low-risk environments and high-risk production environments.

Some typical changes to the default cryptography configuration, in preparation for production, might
include:

• Providing a new secret key.

– Such a key can be generated using the JDK keytool utility; see “How to Create a New Keystore” on
page 96

- This secret key should be stored in a separate keystore.
- The properties for these secret key changes would be as described in “Key Management” on page

95.
• Providing new digest settings

– New digest settings can include a new salt, iteration count, and/or algorithm.

- The properties for these digest changes are as described in “Cúram Digest Settings” on page 17
and “How to Specify a Digest Salt” on page 97 and the process described in “How to Utilize the
Superseded Digest Settings for a Period of Migration” on page 97.

Remember to keep your configuration files isolated from personnel who do not absolutely have to access;
specifically, keeping development, test, and production configuration information isolated.

98 IBM Cúram Social Program Management: Cúram Security Guide

Customizing External User Applications
Use this information to customize external user applications. As external users are processed differently
to internal users, a separate Cúram web application is required specifically for external users.

Creating an External User Application
A new web client application must be developed for external users. The Cúram Web Client Reference
Manual should be consulted for details on creating a new web client application.

Creating an External User Client Login Page
A new logon.jsp must be created for an external user application. The Cúram Platform ships with a
default login page, logon.jsp , located in the lib/curam/web/jsp directory of the CDEJ (Client
Development Environment for Java). This file should be copied to a webclient/components/<custom
component>/WebContent folder in the web client application and modified as follows:

The table element should be extended to include a hidden input field user_type:

<input type="hidden" name="user_type"
 value="EXTERNAL"/>

Where EXTERNAL indicates the type of external user. This can be set to any value, excluding INTERNAL.

Creating an External User Client Automatic Login Page
Some external user client applications require no user authentication and hence a username and
password should not be requested. It is not possible to disable authentication in Cúram , so the best
way to achieve this requirement is to write an automatic login script.

The automatic login script takes a hard coded username and password and provides that as the
authentication information when requested. This means that all users for such an application will
always execute under the same username. Use of such a script should be limited to true open access
applications.

When implementing applications that have a need for an automatic login, the implications for session
management must be considered. Session management in Cúram maintains a user's session information
to ensure when the user logs back in, the relevant session information, i.e., their tabs and navigation
opens to where they left off for them. In the case of a user that has been automatically logged in, this
information must not be maintained, therefore session management may need to be turned off in this
scenario. The Cúram Web Client Reference Manual should be referenced for further details on how to turn
this off.

The following are examples of automatic login and logout JSP scripts.

Note: Security implementations and configurations differ across application server vendors so these
examples may not work in all cases or for all application server versions.

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:prefix="URI"
 version="2.0">
 <jsp:directive.page buffer="32kb"
 contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" />
 <jsp:text>
 <![CDATA[
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>
 </jsp:text>

 <!-- Automatic redirect to login security check of user
 details specified below -->

 <html>
 <head>

Chapter 1. Securing Social Program Management 99

 <script type="text/javascript">
 function autoSubmit() {
 document.getElementById("loginform").submit();
 }
 </script>
 <meta content="text/html; charset=UTF-8"
 http-equiv="Content-Type" />
 </head>
 <body class="logonBody"
 style="visibility: hidden;"
 onload="autoSubmit()">
 <form id="loginform"
 name="loginform"
 action="j_security_check"
 method="post">
 <input type="hidden"
 name="j_username"
 value="generalpublic" />
 <input type="hidden"
 name="j_password"
 value="password" />
 <input type="hidden"
 name="user_type"
 value="EXTERNAL" />
 </form>
 </body>
 </html>
</jsp:root>

Automatic Logout JSP

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:prefix="URI"
 version="2.0">
 <jsp:directive.page buffer="32kb"
 contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" />
 <jsp:text>
 <![CDATA[
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>
 </jsp:text>
 <html>
 <head>
 <script type="text/javascript">
 function autoSubmit() {
 document.getElementById("logout").submit();
 }
 </script>
 <meta content="text/html; charset=UTF-8"
 http-equiv="Content-Type" />
 </head>
 <body class="logoutBody"
 style="visibility: hidden;"
 onload="autoSubmit()">
 <form id="logout"
 name="logout"
 action="servlet/ApplicationController"
 method="post">
 <input type="submit"
 name="j_logout"
 value="Log Out" />
 <input type="hidden"
 name="logoutExitPage"
 value="redirect.jsp" />
 </form>
 </body>
 </html>
</jsp:root>

Extending the Public Access User Class
To "hook" the custom solution into the application the curam.util.security.PublicAccessUser
abstract class must be extended, which requires implementing the
curam.util.security.ExternalAccessSecurity interface. That concrete class will be used during

100 IBM Cúram Social Program Management: Cúram Security Guide

the authentication and authorization process to determine required information relating to the external
user. This class and its methods are described in detail below.

Authenticating an External User
The authenticate() method is responsible for authenticating an external user. It is invoked during
the authentication process if the user is identifier as an external user. In the case of external users this
method is invoked in place of the configured authentication.

Note: If an alternative authentication mechanism, e.g. LDAP, is configured, the external users must be
able to authenticate against this mechanism.

/**
 * The implementation of this method should validate the identifier and
 * password and return the result of the validation. If the information is
 * valid, the codetable code SecurityStatus.LOGIN should be returned.
 *
 * @param identifier The identifier of the external user.
 * @param password The password as array of characters.
 * @param userType The type of external user.
 *
 * @return The status of the authentication in the form of a codetable code.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */

 public abstract String authenticate(String identifier,
 char[] password, String userType)
 throws AppException, InformationalException;

The input parameters to the method include an identifier, the digested password as an array of
characters, and the type of the external user to be authenticated.

The userType parameter is intended to allow for support of multiple types of external users that require
different authentication mechanisms. The use of this parameter depends on the custom implementation.

The expected result of this method will be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case of successful authentication the
result must be:

curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures this codetable contains a number of entries, including BADUSER , BADPWD and
PWDEXPIRED . This codetable can be extended to include custom codes as detailed in the Cúram Server
Developer's Guide.

The authentication result returned by this method is automatically logged in the AuthenticationLog
database table. For more information on this table see the Cúram Server Developers Guide.

The abstract class PublicAccessUser also defines the following abstract methods that any concrete
subclass must implement:

• Method upgradeSafePasswordValidation() is required to allow for password comparison and is
defined as follows:

public final boolean upgradeSafePasswordValidation(
final String userName,
final String storedPasswordHash,
final String plaintextPassword)

• Method setPassword() is to allow the implementor to persist the password (e.g. a
new password) in the case of crypto upgrades. So this method gets called when the
upgradeSafePasswordValidation() method is called. Here is the method definition:

public abstract void setPassword(String username, String hashedPassword)
throws AppException, InformationalException;

Chapter 1. Securing Social Program Management 101

See the associated Javadoc of the PublicAccessUser class for more details regarding the above
methods.

Determine External User Details
Details for an external user are retrieved by calling the getLoginDetails() method of the
curam.util.security.ExternalAccessSecurity interface. These details are returned directly
after authentication to direct the external user to the correct application homepage.

/**
 * The implementation of this method should retrieve the
 * details of the user required to redirect them to the correct
 * application page. This information includes the name of the
 * application home page for the user, the default locale for
 * the user and a list of warnings/messages for the user.
 *
 * @param identifier The identifier of the external user.
 *
 * @return The user details, including the application
 * home page.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
UserLoginDetails getLoginDetails(String identifier)
 throws AppException, InformationalException;

An instance of the curam.util.security.UserLoginDetails class must be created and returned
from this method. The following information should be returned using this class:

• UserLoginDetails . setApplicationCode(String code)

The code corresponding to the application homepage for the external user.

This must be a valid entry in the APPLICATION_CODE codetable.
• UserLoginDetails . setDefaultLocale(String defaultLocale)

The default locale for the external user.

This is the locale the application will be displayed in by default for the external user.
• UserLoginDetails . setFirstName(String firstName)

The first name of the external user.

This will make the user's first name available for display in the user-message for an application banner.
• UserLoginDetails . setSurname(String surname)

The surname of the external user.

This will make the user's surname available for display in the user-message for an application banner.
• UserLoginDetails . addInformationals(InformationalManager informationalManager)

Any informationals that must be displayed to the external user.

The curam.util.exception.InformationalManager class can be used to create a number of
informational or warning messages that will be displayed when the external user logs in. For example, a
warning to let the external user know that their password is due to expire.

Authorizing an External User
The getSecurityRole() method is used during authorization to determine the security role associated
with the external user. The security roles used for external users are configured in the same way as the
security roles for internal users.

/**
 * The implementation of this method should return the security
 * role associated with the external user for authorization
 * purposes. If the user does not exist null should be

102 IBM Cúram Social Program Management: Cúram Security Guide

 * returned.
 *
 * @param identifier The identifier of the external user.
 *
 * @return The security role for authorization.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
String getSecurityRole(String identifier)
 throws AppException, InformationalException;

The SDEJ will invoke an implementation of this method during the authorization process if the user does
not exist in the security cache. Only internal users can exist in the security cache. This means that the
identifiers used to identify external users must be unique and not conflict with usernames setup for
internal users, unless the custom UserScope interface as described in “User Scope” on page 22 , is
implemented. Otherwise, if any usernames conflict the access rights assigned to the internal user will also
be used for the external user.

If a role cannot be determined for the external user, null must be returned so that the SDEJ can report the
authorization error correctly.

Determining the User Type
The getUserType() method is used to determine if a user is an external user.

/**
 * Return the type of the user. This is to allow support for
 * different types of external user. If there is only one
 * type of external user, simply return "EXTERNAL".
 *
 * @param identifier The identifier of the external user.
 *
 * @return The type of the external user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 String getUserType(final String identifier)
 throws AppException, InformationalException;

The getProgramUserType() in curam.util.transaction.TransactionInfo will invoke this
method to return the type of user if the user is not recognized as an internal user. For internal users
"INTERNAL" is always returned.

For external users, there may be multiple types of external users, so this method should return the
specific type of external user.

Preventing the Deletion of a Security Role: Role Usage Count
The getRoleUsageCount() method is used to prevent the deletion of a security role that is currently
referenced by an external user.

/**
 * Return the number of users using a particular role. This
 * method is used to ensure that a role cannot be deleted when
 * it is in use by an external user.
 *
 * @param role The security role name.
 *
 * @return The number of users currently using the
 * specified role.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 int getRoleUsageCount(String role)
 throws AppException, InformationalException;

Chapter 1. Securing Social Program Management 103

Security roles that are referenced by any user, internal or external, cannot be removed. This method
should return a number of 1 or more if any external users reference the specified role.

Retrieving a Registered Username
The getRegisteredUserName() method is used retrieve the correct case username, which may be
independent of the username typed during login.

/**
 * Gets the correct casing for this user independent of mixed
 * case which may have been typed in by the logged in user.
 *
 * @param identifier The identifier of the external user,
 * whose casing may not match that of the persisted identifier
 * for the user.
 *
 * @return The actual case for this user, before its case has
 * been modified by external factors.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 public String getRegisteredUserName(final String identifier)
 throws AppException, InformationalException;

The default implementation for this method should return the username that has been provided. It is only
if the curam.security.casesensitive has been set to false that this method may need to change the case of
the username returned.

Note: Where the curam.security.casesensitive property has been set to false and is required for external
users, it is the responsibility of all methods in this interface to handle any case specific requirements.

Reading User Preferences
The getUserPreferenceSetID() method is used to retrieve the user preference set ID associated
with an external user. If no user preferences exist for an external user, then the default preferences will be
used for the external user. The User Preferences chapter in the Cúram Server Developer's Guide should be
referenced for further details on user preferences.

/**
 * This method is used to retrieve a set of user preferences
 * associated with an external user. The userPrefSetID is a
 * foreign key to the UserPreferenceInfo table.
 * The UserPreferenceInfo table contains information on
 * the user preferences.
 *
 * @param identifier The identifier of the external user.
 *
 * @return The userPrefSetID for the external user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 String getUserPreferenceSetID(final String identifier)
 throws AppException, InformationalException;

The default implementation for this method should return the user preference set ID for the user
preferences associated with an external user.

Modifying User Preferences
The modifyUserPreferenceSetID() method is used to update the external user details with a new
set of user preferences. Please see User Preferences for further details on user preferences.

/**
 * This method updates the external user details with new user
 * preferences.
 *
 * @param userPreferenceSetID The ID for the user preferences.

104 IBM Cúram Social Program Management: Cúram Security Guide

 * @param username The identifier of the external user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 void modifyUserPreferenceSetID(
 final String userPreferenceSetID, final String username)
 throws AppException, InformationalException;

The default implementation for this method should update the user preference set id associated with an
external user.

Configuring External Access Security
The curam.custom.externalaccess.implementation property must be set in the
Application.prx to indicate the fully qualified name of the class which implements the above
interface.

Note: The curam.custom.externalaccess.implementation property is not dynamic, and if changed the
application must be restarted before the change will take effect.

Determining if a User is Internal or External using the UserScope Interface
To support alternative methods for determining if a user is internal or external the custom interface
UserScope is available. For example, even though usernames must be unique across the set of internal
and external users, this custom interface can be implemented to allow duplicate usernames across
internal and external applications in a limited way.

To provide a custom implementation for determining the type of user, the
curam.util.security.UserScope interface must be implemented. This interface has one method
isUserExternal() that determines the type of user. This method should return true if the user is
considered external or false indicating the user is internal.

For example, an installation might have application1 deployed with userA, a Cúram internal
user, and application2 deployed with userA being external (e.g. defined to LDAP). The ability for
application1 to use internal userA and application2 to use external userA would be controlled by
different properties. That is, Bootstrap.properties in properties.jar in the application1 EAR
would have a different custom property setting from application2 EAR and the implementation of
curam.util.security.UserScope.isUserExternal() would interrogate this setting to decide if
the user is internal or external.

To specify a custom implementation of the UserScope interface the
curam.custom.userscope.implementation property must be set in Application.prx. This
should be set to the fully qualified name of the class that implements the UserScope interface.

Note: The curam.custom.userscope.implementation property is not dynamic, and if changed the
application must be restarted before the change will take effect.

The isUserExternal() method of the UserScope interface is detailed in “User Type Determination”
on page 105.

User Type Determination
The isUserExternal() method is invoked anywhere in the application where the type of user is to be
determined. This includes when the user logs into the application and when they attempt authorization to
access secured elements of Cúram .

/**
 * The implementation of this method should determine the type of
 * User that is logged into the application. There are 2 types of
 * users: INTERNAL and EXTERNAL. If the user is an EXTERNAL user,
 * then this method should return true. If false is returned,
 * then the user is considered INTERNAL.
 *
 * @param username - The username.
 * @return A boolean value of true indicating an EXTERNAL user,

Chapter 1. Securing Social Program Management 105

 * false indicates an INTERNAL user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
boolean isUserExternal(String username)
 throws AppException, InformationalException;

Customizing Sanitization Settings
IBM Cúram Social Program Management contains a sanitization library. The library sanitizes data and
property values throughout the application to remove HTML markup that is potentially malicious.

About this task
The allowlist, which is installed by default, supports a set of HTML elements and attributes that are
deemed safe and, therefore, do not require filtering out. To customize the allowlist, add HTML elements
and attributes that are deemed safe, and remove HTML elements and attributes that are deemed
potentially malicious.

Note: The Rich Text Editor uses its own unique allowlist. For more information about how to configure the
sanitizing of text that is entered through the Rich Text Editor, see the Enabling configuration of a security
allowlist for the Rich Text Editor related link.

The following example outlines the format that entries in the allowlist file must match:

tag=attribute1,attribute1

For example, an allowlist that contains the following entries is declaring that the a, div, and h1 HTML
elements are safe:

a=href
div=
h1=

The allowlist also declares the href attribute is safe when it is used on an a HTML element. All other
HTML elements and attributes are filtered out.

The allowlist of HTML elements and attributes is defined in the default-secure-sanitize-
allowlist.properties application resource file. To customize the allowlist, choose one of the options
in the following procedure.

Procedure
Choose one of the following options:
• Customize the allowlist and persist the changes permanently to the database:

1. Copy the default-secure-sanitize-allowlist.properties file in EJBServer/
components/CEFWidgets/data/initial/blob to an equivalent location in a custom
EJBServer component.

2. Modify the copied file, as required.
3. Update the custom DMX file for the AppResource table and add a row that points to the newly

modified default-secure-sanitize-allowlist.properties file.
4. Build the server and the database.

• Customize the allowlist through the administration user interface:

1. Log on as an administrative user.
2. In the Shortcuts panel, click Intelligent Evidence Gathering > Application Resources.
3. Search for and download the default-secure-sanitize-allowlist.properties
application resource file.

106 IBM Cúram Social Program Management: Cúram Security Guide

4. Modify the downloaded file, as required.
5. Edit the default-secure-sanitize-allowlist.properties application resource file.
6. Select the modified file as its Content.
7. To apply the changes, click Publish.

Related tasks
Enabling configuration of a security allowlist for the Rich Text Editor

Cross-Site Request Forgery (CSRF) and IBM Cúram Social Program
Management

IBM Cúram Social Program Management web pages and RESTful web services use a combination of
mechanisms to protect against Cross-Site Request Forgery (CSRF) attacks.

For more information about CSRF, see the Open Web Application Security Project's Cross-Site Request
Forgery Prevention Cheat Sheet related link. For more information about CSRF in Social Program
Management, see the Cross-Site Request Forgery (CSRF) protection for IBM Cúram Social Program
Management web pages and Cross-Site Request Forgery (CSRF) protection for RESTful web services related
links.

Related concepts
Cross-Site Request Forgery (CSRF) protection for RESTful web services
Related information
Cross-Site Request Forgery Prevention Cheat Sheet

Cross-Site Request Forgery (CSRF) protection for Cúram web pages
IBM Cúram Social Program Managementuser interface (UI) infrastructure uses a combination of
mechanisms, including an HTTP referrer header check, to protect Social Program Management against
Cross-Site Request Forgery (CSRF) attacks. The referrer header check validates all incoming requests.
Only requests from trusted domains are permitted. If no referrer header is supplied, which can happen
because the user types directly into the browser URL, for example, then the request is also rejected.

About this task
You configure the curam.referer.domains property in the Application.prx file for your custom
component or by using the Social Program Management system administration application.

The mandatory curam.referer.domains property configures a list of allowed domains that you can set
in the referrer header of a request. The property protects against CSRF attacks. By default, the property is
set localhost. However, in a deployed environment the property must be set and normally this includes
the host domain. Set the property as a comma-separated list of domains that are accepted in the referrer
header. For example, the value abc.com, def.com permits all requests with subdomains of abc.com
and def.com that are set in the referrer header to successfully connect to Social Program Management.
The property is not required at development time.

The following steps outline how you can configure CSRF protection in the Social Program Management
system administration application.

Procedure
1. Log in to Social Program Management as a system administrator.
2. Select System Configurations > Shortcuts > Application Data.
3. Type curam.referer.domains in the Name field and click Search.
4. Select ... > Edit Value.
5. Set the string value to a comma-separated list of allowed domains and click Save to save your

changes.

Chapter 1. Securing Social Program Management 107

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

6. Click Publish for your changes to take effect.

What to do next
Complete the required postinstallation configuration tasks to ensure that the Social Program Management
software is configured and is working correctly with the prerequisite software. For more information, see
the Social Program Management postinstallation configuration related link.
Related concepts
Cross-Site Request Forgery (CSRF) protection for RESTful web services
Related tasks
Social Program Management postinstallation configuration

108 IBM Cúram Social Program Management: Cúram Security Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2022 109

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Programming Interface Information
This publication documents intended programming interfaces that allow the customer to write programs
to obtain the services of IBM Cúram Social Program Management.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be

110 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 111

http://www.ibm.com/legal/copytrade.shtml

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Figures
	Tables
	Chapter 1. Securing Social Program Management
	Authentication Overview
	Authentication
	Authentication Architecture
	Default Authentication
	Alternate Login IDs
	The Login Page
	Customization of the Login Page
	Cúram JAAS Login Module
	Password Management
	Default Configuration for WebLogic Server
	Default Configuration for WebSphere
	Customizing the login module
	Verification Process for Authentication
	Default Authentication
	Default Verification Process
	Authentication Attempts
	Customization of Default Authentication
	Identity Only Authentication
	Customization of Identity Only Authentication
	External Access Security Authentication
	Custom Verifications

	Authorization Overview
	Users, Roles and Groups
	Security Identifiers (SIDs)
	Function Identifiers (FIDs)
	Field Level Security Identifiers
	User Defined SIDs
	Runtime Authorization
	Client Authorization Checks
	Server Authorization Checks

	Cryptography in Cúram
	Ciphering
	Digesting
	Cryptography Properties
	Cúram Cipher Settings
	Cúram Digest Settings
	Cipher-Encrypted Passwords

	Security Data Caching
	Cúram Security Cache
	Cache Refresh
	Cache Refresh Failure
	WebSphere Caching Behavior

	Security for Alternative Clients
	Mandatory Cúram Users
	Web Services
	Batch Processing
	JMS Messaging
	Deferred Processing

	External User Applications
	External User Applications
	User Scope
	Deployment of an External Application

	Configuring Single Sign On (SSO)
	Configuring SAML SSO
	Configuring SAML SSO on Kubernetes
	Social Program Management SSO on Kubernetes initiation and flow
	Configure SAML SSO for IBM Cúram Social Program Management on WebSphere Liberty

	Universal Access SSO on Kubernetes initiation and flow
	Configuring the Universal Access Responsive Web Application for SSO
	SAML SSO on Kubernetes configuration example using ISAM
	Configuring SSO with IBM Security Access Manager
	Configuring IBM Security Access Manager as an IdP
	Adding and enabling users in LDAP
	Testing IdP-initiated SAML SSO infrastructure
	SP-initiated only: Testing SP-initiated SAML SSO infrastructure

	Configuring SAML SSO on WebSphere Application Server
	SAML SSO initiation and flow on WebSphere Application Server
	Configuring WebSphere Application Server as a SAML service provider
	Configuring IBM Cúram Universal Access for SSO
	Configuring the Universal Access Responsive Web Application for SSO
	Configuring CORS for IBM Cúram Universal Access

	SAML SSO configuration example with IBM Security Access Manager
	Configuring single sign-on through IBM Security Access Manager
	Configuring IBM Security Access Manager as an IdP
	Configuring WebSphere Application Server as a SAML service provider
	Add and enable the users in LDAP
	Test IdP-initiated SAML SSO infrastructure
	SP-Initiated only: Implementing the SAML AuthnRequest functionality in WebSphere Application Server
	SP-Initiated only: Test SP-initiated SAML SSO infrastructure

	Configuring SAML SSO on Oracle WebLogic Server
	SAML SSO initiation and flow on Oracle WebLogic Server
	Configuring Oracle WebLogic Server as a SAML service provider
	Configuring a SAML 2.0 Identity Assertion provider
	Configuring SAML 2.0 general services
	Configuring SAML 2.0 service provider
	Publishing the metadata
	Creating your Identity Provider partners

	Configuring IBM Cúram Universal Access for SSO
	Configuring the Universal Access Responsive Web Application for SSO
	Configuring CORS for IBM Cúram Universal Access

	SAML SSO configuration example with IBM Security Access Manager
	Configuring single sign-on through IBM Security Access Manager
	Configuring IBM Security Access Manager as an IdP
	Configuring Oracle WebLogic Server as a SAML service provider
	Configuring a SAML 2.0 Identity Assertion provider
	Configuring SAML 2.0 general services
	Configuring SAML 2.0 service provider
	Publishing the metadata
	Creating your Identity Provider partners

	Adding and enabling the users in LDAP
	Testing IdP-initiated SAML SSO infrastructure
	SP-Initiated only: Testing SP-initiated SAML SSO infrastructure

	Customizing the login module
	JAAS login module support for authentication in a customized solution
	Replacing the Cúram JAAS login module with a custom login module
	De-registering the existing Cúram security provider
	Creating and registering a custom security provider
	Creating the authentication provider and login module runtime classes
	Creating the authentication provider
	Creating the JAAS LoginModule

	Generating an MBean type using Oracle WebLogic Server MBeanMaker
	Configuring the custom authentication provider using the administration console

	Extending the SAML SSO configuration to enable multifactor authentication
	SAML SSO example configuration with MFA using IBM Secure Verify Access
	Activating the Advanced Access Control module
	Publishing the configuration snapshot and reloading the appliances
	Configuring the reverse proxy integration with the Advanced Access Control module
	Configuring the multifactor authentication scenario
	Creating and configuring the POP policies for step-up login
	Updating the WebSEAL configuration file with all login methods
	Configuring WebSEAL to redirect to AAC for step-up authentication
	Configuring the email OTP delivery mechanism
	Modifying the OTPGetMethods mapping rule
	Testing the multifactor authentication scenario
	Updating the AuthSvcCredential mapping rule

	Configuring SSO
	Configuring SSO by using IBM WebSphere Application Server LTPA
	Configuring SSO by using Oracle WebLogic Server WL_Token

	Other Security Considerations
	SSL settings for the application
	Using Social Program Management in a secure environment
	Client HTML error pages
	Enabling HTTP verb permissions

	Customizing Authentication
	Customizing the Login Page
	Applying Styling to the Login Page
	Enabling Usernames With Extended Characters for WebLogic Server
	Changing the Case-Sensitivity of the Username
	Adding Custom Verifications to the Authentication Process
	Configuring the Custom Authenticator
	Configuring Identity Only Authentication
	Adding the Cache Refresh Failure Callback Interface
	Turning off SSL settings for the application
	Modifying the web.xml File for the Client Application
	Modifying the Application Server Configuration
	Analyzing the AuthenticationLog Database Table

	Customizing Authorization
	Creating Authorization Data Mapping
	Creating a New Security Role
	Creating a New Security Group
	Linking the Security Group to the Security Role
	Creating the Security Identifier (SID)
	Linking the Security Group to the SID
	Linking the Security Role to the User
	Loading Security Information onto the Database
	Creating Function Identifiers (FIDs)
	Switching Security off for a Process Method
	Security Considerations During Development
	Controlling the Logging of Authorization Failures for the Client
	Authorizing New SID Types
	Analyzing the AuthorisationLog Database Table

	Customizing Cryptography
	Cipher Customization
	Key Management
	How to Create a New Keystore
	Digest Customization
	How to Specify a Digest Salt
	How to Utilize the Superseded Digest Settings for a Period of Migration
	Modifying Your Cryptography Configuration for a Production System

	Customizing External User Applications
	Creating an External User Application
	Creating an External User Client Login Page
	Creating an External User Client Automatic Login Page
	Extending the Public Access User Class
	Authenticating an External User
	Determine External User Details
	Authorizing an External User
	Determining the User Type
	Preventing the Deletion of a Security Role: Role Usage Count
	Retrieving a Registered Username
	Reading User Preferences
	Modifying User Preferences
	Configuring External Access Security
	Determining if a User is Internal or External using the UserScope Interface
	User Type Determination

	Customizing Sanitization Settings
	Cross-Site Request Forgery (CSRF) and IBM Cúram Social Program Management
	Cross-Site Request Forgery (CSRF) protection for Cúram web pages

	Notices
	Privacy Policy considerations
	Programming Interface Information
	Trademarks

