
IBM Cúram Social Program Management
8.0.2

Cúram Web Client Reference Manual

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
303

Edition

This edition applies to IBM® Cúram Social Program Management 8.0.0, 8.0.1, and 8.0.2.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

Figures... vi

Tables... x

Chapter 1. Cúram web client reference...1
Cúram web client overview..1

User interface metadata (UIM).. 1
Application user interface overview...3
Social Program Management applications.. 10
Page context... 11
Page appearance..11
The application controller JSP and web client URL.. 11

Web client development environment.. 12
Outline of the client development process..12
The Cúram application and CDEJ installation folders... 12
CDEJ project folder structure...13
Client application component folders..15
Client application component order.. 15
Client application component artifacts... 16
Client application locales... 17
Building an application...17
Deployment.. 22
Customization...28

Localization.. 41
Numbers... 41
File encoding.. 41
Locales..42
Language toggle... 43
UIM externalized strings.. 43
JavaScript externalized strings.. 44
Image.properties..45
Infrastructure widget properties files..45
CDEJResources.properties.. 48
ApplicationConfiguration.properties... 48
Application-wide menu.. 48
Tabbed configuration artifacts... 48
Runtime messages... 48

Application configuration...49
Configuration files.. 50
Web client properties... 51
Applications..51
Customizing IBM Cúram Smart Navigator... 62
Sections.. 79
Section shortcut panel... 81
Tabs...84
Tab actions menu... 91
Tab navigation.. 97
Opening tabs and sections...102

Working with the Cúram user interface.. 105
Prerequisites for configuring the user interface..106

 iii

Creating a simple application.. 106
Adding a shortcut panel... 110
Adding tab content...114
Configuring modal dialogs... 117
Adding tab navigation.. 123
Working with lists... 124

Session management.. 127
Session Overview... 127
Tab Restoration.. 128
Session Configuration.. 128
Session Timeout Warning.. 129
Tab Session Limitations... 135
Browser Specific Session Management.. 135

Browser management... 135
Configuring browser Back, Refresh, and Close button behavior...135
Optimal browser support... 137

Domain-specific controls...139
Dates...139
Date-Times... 140
Frequency Pattern Selector... 141
Selection lists... 141
User Preferences Editor... 144
Rules Trees...144
Meeting View.. 150
Charts... 152
Heatmap Widget...157
Workflow.. 158
Evidence view...162
Calendar... 165
Payment Statement view... 168
Batch Function View.. 168
Addresses...169
Schedule view.. 170
Radio button group...171
Pop-up pages... 172
Agenda Player.. 178
LOCALIZED_MESSAGE Domain... 184

Custom data conversion and sorting...184
Data conversion and sorting operations..184
Data conversion lifecycle... 186
The domain hierarchy and domain plug-ins..186
Domain plug-ins... 188
Domain plug-in configuration.. 190
Provided domain plug-ins.. 192
Error Reporting...202
Java object representations.. 205
Customization guidelines for data conversion and sorting...206
Type checking and null checking... 215
Plug-in instance management...215
Naming conventions...216
Generic parse operations...216
Code tables...216

Online help development.. 216
The online help system.. 216
Online help elements... 217
Adding or updating help content... 218

Maintaining Dynamic UIM pages...219
Working in a development environment..219

iv

Working in a running system..220
UI test automation...222
UIM reference.. 225

UIM document types..225
UIM pages.. 225
UIM views... 225
UIM page field level validations...226
Externalized strings..226
UIM pages and views reference...226
UIM widgets reference...282
Dynamic UIM.. 296
Unsupported features in dynamic UIM... 296
Dynamic UIM system initialization.. 302

Notices..303
Privacy Policy considerations..304
Trademarks.. 304

 v

Figures

1. User interface with navigation and commonly used components selected.. 3

2. User interface with further levels of navigation and list component... 6

3. Single modal dialog... 7

4. Modal dialog in wizard...8

5. Web Client Folder Structure..13

6. Default Preview Values for Domain Definitions..21

7. Error_Page Section Example...36

8. Error_Page Section Example with one default page.. 36

9. Multiple Select Section Example.. 36

10. Disable Collapsible Clusters Example.. 36

11. Append Colon Section Example... 36

12. Admin Section Example.. 36

13. Static Content Base URL Example..37

14. Relative URL example... 37

15. Target example..37

16. Response Headers.. 38

17. Field Error Indicators Example...38

18. Security Check on Page Load Example...38

19. Enable Select All Check-box Example..39

20. Transfer Lists Mode Example..39

21. Hide Conditional Links.. 39

22. Disable Auto Complete... 39

23. Scrollbar Configuration... 39

vi

24. Sample Pagination Configuration... 40

25. CT_APPLICATIONCODE.ctx.. 62

26. FILE_DOWNLOAD Configuration from curam-config.xml..96

27. SimpleApp app..107

28. SimpleAppHomeSection.sec.. 107

29. SimpleHome.tab... 108

30. SimpleHome.uim.. 108

31. Users.dmx... 109

32. CT_APPLICATION_CODE.ctx.. 109

33. SimpleApp.app..111

34. SimpleAppWorkspaceSection.sec..111

35. SimpleShortcutPanel.ssp... 111

36. SimpleSearch.tab..112

37. Person Search Page.. 112

38. SimpleSearch.uim...113

39. SimplePerson tab..114

40. SimplePersonContext.uim.. 115

41. SimplePerson uim...116

42. SimplePerson uim...118

43. CreateEmployments.uim.. 119

44. CreateEmploymentWizard.properties..120

45. CreateEmploymentWizard_pageOne.uim..121

46. CreateEmploymentWizard_pageTwo.uim..122

47. SimplePerson Tab... 123

48. SimplePersonNav.nav...124

 vii

49. SimpleSearch.uim...125

50. SimpleSearch.uim...126

51. Customizing the date format.. 140

52. Customizing the Date-Time format.. 140

53. Selection List on an Insert Page... 143

54. Selection List on a Modify Page.. 143

55. Sample RulesDecisionConfig.xml File..146

56. Example of Decision ID Sourced from a Bean... 147

57. Example of Rules Tree Items with Summary Flag... 147

58. Sample RulesEditorConfig.xml File.. 149

59. Example of Decision ID Sourced from a Bean... 150

60. Workflow... 159

61. Condition example:...184

62. Custom Exception Class... 204

63. Custom Message Catalog... 204

64. Throwing a Custom Exception.. 205

65. Throwing Multiple Exceptions.. 205

66. Configuration for Custom Formatting...207

67. Sorting Zero Dates.. 212

68. Configuration for Custom Sorting... 212

69. Custom Error Reporting.. 213

70. Custom Pattern Match Failure Message...213

71. Custom Default Date-Time Value... 214

72. Example of a FOOTER_ROW in a List... 249

73. Example JSP SCRIPTLET Redirecting to a Page.. 255

viii

74. Example JSP_SCRIPTLET Redirecting and Accessing a TextHelper... 256

75. Example of a Dynamic LABEL...257

76. Example of Dynamic MENU Data..269

77. Example of a DYNAMIC Menu Configuration File...270

78. Example of an INTEGRATED_CASE Menu Configuration File.. 270

79. An example of wizard-type menu UIM...271

80. Example of the required properties in the resource store property file..272

81. Sample template details...286

 ix

Tables

1. Environment Variables.. 18

2. Pagination configuration options.. 40

3. Placeholders used in Frequency Pattern Selector... 46

4. Properties of the Frequency Pattern Selector.. 47

5. Configuration Files.. 50

6. Attributes of the application Element...52

7. Supported Child Elements of the application Element.. 54

8. Supported child elements of the application-menu element..54

9. Attributes of the application-search element.. 55

10. Supported child elements of the application-search element.. 55

11. Supported child elements of the search-pages element...55

12. Attributes of the search-page element.. 56

13. Attributes of the further-options element..56

14. Attributes of the section-ref element...57

15. Attributes of the timeout-warning element... 57

16. Attributes of the section Element...80

17. Supported Child Elements of the section Element.. 80

18. Attributes of the tab element... 81

19. Attributes of the shortcut-panel-ref element.. 81

20. Attributes of the section-shortcut-panel Element...82

21. Supported Child Elements of the section-shortcut-panel Element.. 82

22. Attributes of the node element...83

23. Attributes of the tab-config Element..85

x

24. Supported Child Elements of the tab-config Element... 85

25. Attributes of the page-param Element...86

26. Attributes of the menu element... 86

27. Attributes of the context element.. 86

28. Attributes of the navigation element..87

29. Attributes of the smart-panel element...87

30. Supported child elements of the tab-refresh element.. 89

31. Attributes of the onload/onsubmit Elements...89

32. Attributes of the menu-bar element...91

33. Supported child elements of the menu-bar element...91

34. Attributes of the menu-item element...92

35. Attributes of the submenu element... 93

36. Supported child elements of the submenu element... 94

37. Attributes of the menu-separator element.. 94

38. Supported child elements of the loader-registry element.. 94

39. Attributes of the loader Element.. 95

40. Attributes of the navigation element..97

41. Supported child elements of the navigation element..98

42. Supported child elements of the nodes element...98

43. Attributes of the navigation-group element...98

44. Supported child elements of the navigation-group element...99

45. Attributes of the navigation-page element.. 99

46. Supported child elements of the loader-registry element.. 100

47. Attributes of the loader element.. 100

48. Tab Opening Rules.. 104

 xi

49. Files required to create an application and corresponding build targets... 110

50. Files required to add a shortcut panel and corresponding build targets.. 114

51. Files required to add tab content and corresponding build targets.. 117

52. Files required to add modal dialogs and corresponding build targets..123

53. Files required to add tab navigation and corresponding build targets..124

54. Files required to add an expandable list and a list actions menu, and corresponding build targets... 127

55. Attributes of the CONFIG element... 153

56. Attributes for CONFIG element.. 158

57. Attributes of a Node..160

58. Attributes of an Edge.. 160

59. Attributes of Workflow CONFIG element...161

60. EVENT attributes in schema... 165

61. SINGLE_DAY_EVENT attributes in schema..166

62. Calendar View Type Values...167

63. Parameters Passed to Event Description Pages.. 167

64. Address format configurations... 169

65. Attributes of the POPUP_PAGE element.. 173

66. Child elements of the POPUP_PAGE element.. 173

67. Attributes of the PLAYER element..180

68. Attributes of the page element...182

69. Behavior of the Abstract Plug-in Classes... 192

70. Provided Converter Plug-ins...193

71. Behavior of the Format Operations.. 194

72. Behavior of the Parse Operations...196

73. Behavior of the Pre-Validate Operations..198

xii

74. Provided Comparator Plug-ins... 199

75. Collation strength summary... 201

76. Default value plug-ins...201

77. Classes Used for Java Object Representations... 205

78. Attributes of the ACTION_CONTROL Element... 228

79. Child Elements of the ACTION_CONTROL Element...231

80. Attributes of the ACTION_SET Element...232

81. Child Elements of the ACTION_SET Element...233

82. Attributes of the CLUSTER element... 233

83. Child Elements of the CLUSTER Element... 237

84. Attributes of the CONDITION element...241

85. Child Elements of the CONDITION Element.. 241

86. Child Elements of the CONNECT Element..241

87. Attributes of the CONTAINER Element.. 242

88. Child Elements of the CONTAINER Element..242

89. Attributes of the DETAILS_ROW Element.. 243

90. Child Elements of the INFORMATIONAL Element... 244

91. Attributes of the DESCRIPTION Element...244

92. Child Elements of the DESCRIPTION Element.. 244

93. Attributes of the FIELD element...245

94. Child Elements of the FIELD Element.. 248

95. Child Elements of the FOOTER_ROW Element.. 250

96. Attributes of the IMAGE Element... 250

97. Attributes of the INCLUDE Element... 250

98. Attributes of the INITIAL Element... 251

 xiii

99. Child Elements of the INFORMATIONAL Element... 252

100. Attributes of the INLINE_PAGE Element... 252

101. Child Elements of the INLINE_PAGE Element...253

102. Attributes of the IS_FALSE Element.. 253

103. Attributes of the IS_TRUE Element.. 254

104. Child Elements of the LABEL Element... 257

105. Attributes of the LINK Element.. 258

106. Child Elements of the LINK Element..261

107. Attributes of the LIST Element...263

108. Child Elements of the LIST Element.. 265

109. Child elements of the LIST_CONNECT element...268

110. Attributes of the MENU Element.. 269

111. Child Elements of the MENU Element..269

112. Properties in the wizard defining resource.. 272

113. Attributes of the PAGE Element... 273

114. Child Elements of the PAGE Element...275

115. Attributes of the PAGE_PARAMETER Element.. 276

116. Attributes of the PAGE_TITLE Element..276

117. Child Elements of the PAGE_TITLE Element... 277

118. Attributes of the SCRIPT Element..277

119. Attributes of the SERVER_INTERFACE Element..278

120. Attributes of the SOURCE Element.. 280

121. Child Elements of the TAB_NAME Element... 280

122. Attributes of the TARGET Element... 281

123. Attributes of the TITLE Element...281

xiv

124. Child Elements of the TITLE Element.. 281

125. Child Elements of the VIEW Element...282

126. Attributes of the WIDGET Element.. 283

127. Child Elements of the WIDGET Element..284

128. Attributes of the WIDGET_PARAMETER Element..284

129. Child Element of the WIDGET_PARAMETER Element... 284

130. Parameters to the EVIDENCE_COMPARE Widget..285

131. Parameters to the FILE_EDIT widget.. 286

132. FILE_EDIT widget configuration settings summary.. 287

133. Parameters to the FILE_UPLOAD Widget...289

134. Parameters to the FILE_DOWNLOAD Widget.. 291

135. Parameters to the MULTISELECT Widget...293

136. Parameters to the SINGLESELECT Widget.. 294

137. Parameters to the RULES_SIMULATION_EDITOR Widget.. 295

138. Unsupported ACTION_CONTROL Features... 296

139. Unsupported ACTION_SET Features... 297

140. Unsupported CLUSTER Features..298

141. Unsupported CONTAINER Features...298

142. Unsupported FIELD Features...298

143. Unsupported INLINE_PAGE Features..299

144. Unsupported LINK Features...299

145. Unsupported LIST Features... 300

146. Unsupported MENU Features...300

147. Unsupported PAGE Features..301

148. Unsupported PAGE_TITLE Features.. 301

 xv

149. Unsupported SERVER_INTERFACE Features.. 302

150. Unsupported WIDGET Features...302

xvi

Chapter 1. Cúram web client reference
Use this information to learn how to develop a standard Cúram web client. The standard Cúram web client
has an HTML user interface that is generated by a middle-tier web application. It conforms to the Java™

EE architecture and is driven by JavaServer pages and servlet technology. This HTML user interface uses
standard browser and Web 2.0 technologies, including JavaScript and cascading style sheets.

Related concepts
Working with the Cúram user interface
Use this information to develop user interface elements with the Cúram Client Development Environment
for Java. User interface elements that can be created with the Cúram Client Development Environment for
Java include shortcut panels, tabs, modal dialogs, tab navigation, and lists.

Cúram web client overview
Learn about the concepts and terminology that are related to the Cúram Client Development Environment
(CDEJ).

A basic understanding of Java EE development environments, XML and Web technologies such as
Hypertext Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS) and JavaScript
is helpful, but not required.

• Cúram web application development is simplified by describing pages and applications in terms of their
content and flow rather than the graphical look-and-feel and layout of the content.

• User interface metadata (UIM) consists of definitions in XML format that describe the contents, and, to a
certain extent, the layout, of one of the main elements in the Cúram user interface, a UIM page.

• An application is a collection of user interface elements, predominantly based on UIM pages, combined
to create specific content for a particular user or role.

• Graphical layout options available to a developer are restricted to enforce a consistent user interface
across the whole application.

User interface metadata (UIM)
User interface metadata (UIM) is an XML language that describes the contents and layout of one of the
main elements in the Cúram user interface, a UIM page.

UIM limits the variety of interface layout options that are available to developers, and defaults user
interface characteristics based on the known formats of server interfaces. Consequently, the UIM is kept
simple and the user interface layout has an enforced consistency across the whole application.

The developer creates the UIM page definitions in files with a .uim extension, with each file
corresponding to a single page.

Individual pages are made up from different elements such as page titles, labels, buttons, and links as
well as the most important element, the data content. UIM focuses on defining elements rather than how
they are graphically laid out. The CDEJ provides the tools to generate client screens from UIM definitions.

Page content metadata
Users can display and enter server data in the main content area of an application. Page content metadata
is used to create the content area. The basic unit of data is a field. Each field is either an output or input
parameter of a server interface.

Some XML elements correspond to the user interface elements such as PAGE, FIELD, CLUSTER, LIST,
ACTION_CONTROL, ACTION_SET. The CONNECT element is an important construct that allows fields to
be associated with parameters to server interfaces. In addition to mapping fields, connections can also

© Copyright IBM Corp. 2012, 2022 1

map page parameters and static text. The latter is not stored directly in the UIM, but is externalized in a
property file to help with language localization of user interfaces.

Other XML elements, such as PAGE_PARAMETER and SERVER_INTERFACE, do not have visual
representations in a UIM page but are important to the function of the page. A server interface is a
method that is implemented by using the Server Development Environment (SDEJ). Each UIM page can
be associated with one or more server interface methods. Each method is associated with either the
initialization phase or the process phase. When the UIM page is first opened, the initialization phase
methods run. Typically an initialization phase method uses page parameters as input parameters, and the
resulting server data is mapped to output fields on the screen.

The process phase is initiated when an action control of type Submit is selected by the user. Data from
input fields on the screen is mapped to input parameters of process phase server methods and the
methods are called. After execution of process phase methods, the flow of control is determined by the
Submit action. By default, submit returns to the same page, or you can specify a link to a new target page.

The following example shows an extract of UIM used to create the content area. The extract displays how
the major elements that make up a screen of content area, such as clusters and lists, are represented in
UIM.

<PAGE PAGE_ID="Person_search">

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT"
 PROPERTY="PageTitle.StaticText1"/>
 </CONNECT>
 </PAGE_TITLE>

 <SERVER_INTERFACE NAME="ACTION"
 CLASS="Person_fo"
 OPERATION="search"
 PHASE="ACTION" />

 <CLUSTER NUM_COLS="2"
 TITLE="Cluster.Title.SearchCriteria">

 <FIELD LABEL="Field.Label.ReferenceNumber">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="referenceNumber"/>
 </CONNECT>
 </FIELD>

 <FIELD CONTROL="SKIP"/>

 </CLUSTER>

 <CLUSTER NUM_COLS="2"
 TITLE="Cluster.Title.AdditionalSearchCriteria">

 <FIELD LABEL="Field.Label.FirstName">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="forename"/>
 </CONNECT>
 </FIELD>

 ... more <FIELD> elements...

 <ACTION_SET ALIGNMENT="CENTER" TOP="false">

 <ACTION_CONTROL LABEL="ActionControl.Label.Search"
 IMAGE="SearchButton"
 TYPE="SUBMIT">
 <LINK PAGE_ID="THIS"/>
 </ACTION_CONTROL>

 <ACTION_CONTROL LABEL="ActionControl.Label.Reset"
 IMAGE="ResetButton">
 <LINK PAGE_ID="Person_search"/>
 </ACTION_CONTROL>

 </ACTION_SET>
 </CLUSTER>

 <LIST TITLE="List.Title.SearchResults">

2 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <FIELD LABEL="Field.Title.Name" WIDTH="44">
 <CONNECT>
 <SOURCE NAME="ACTION"
 PROPERTY="personName"/>
 </CONNECT>
 </FIELD>
 ... more <FIELD> elements...
 </LIST>

</PAGE>

Related reference
UIM reference
User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Cúram
Social Program Management web application client pages. UIM files must be well-formed XML.

Application user interface overview
The application user interface contains elements that are implemented through user interface metadata
or Carbon components.

In 8.0.0, some UIM components were updated with “Carbon components and add-ons” on page 9.

Smart Panel

Advice

Quick Notes

Save Clear

Insert subject here

Home Cases and Outcomes Inbox Calendar Reports

Welcome CASE WORKEREnter Reference NumberSocial Program ManagementIBM

Person Search Income Support – 273 Mark BrennanSue Brennan

Sue Brennan

Sue Brennan

424, State St Orem, Midway, Utah, 84058
Female
Born 12/1/1995, Age 24

123456789

765 92727 sbrennan@myemail.com

Eligibility Evidence Care and Protection Issues and Proceedings Referrals Client Contact Administration ApplicationsFinancial TransactionsHome

Home

Sensitivity

Preferred Public Office

Special Interest None

Registration Date 9/4/2020

1

Utah Dept of Workforce Services, Heber
City, Utah, 84032

Receive Deduction Payment Details

Currency

Payment Frequency

Method Of Payment Electronic bank transfer

Next Payment Date 20th November 2020

Dollar

Monthly

Comments

Pending Applications Current Cases

Reference Type Start Date

551 Ongoing Case 10/2/2020

273 Income Support 9/7/2020

276 Cash Assistance 9/7/2020

277

278 Medical Assistance 9/7/2020

552 Payment Correction 9/7/2020

Food Assistance 9/7/2020

Reference Type Start Date

177 Cash Assistance 9/7/2020

185 Food Assistance 9/7/2020

192 9/7/2020Medically Needy Children

Add Picture…Home

Shortcuts

Cases

Registration

Intake

Person…

Employer…

All participants…

HCR application…

IS Application…

Case…

Investigation…

Incident…

Educational Institute…

External Party….

External Party Office…

Utility…

Searches

Application sections

Application name Application search

Application tab

Tab context panel

Content area tab navigation bar

Section shortcut panel

Application banner

Page title

Open/close context panel

Tabs actions menuTab title bar

Application menu

Smart panel

Action controls

Help button

Print button

Refresh button

Page action control

Open/close Cluster

Section shortcut categories

Shortcut category items

Cluster

Cluster title

Cluster

Label Field

Welcome message

Figure 1. User interface with navigation and commonly used components selected

The following user interface elements are shown in Figure 1.

Application banner

An application is defined to present a specific view of the data for a user or user role. The application
banner runs along the top of the application and shows the overall context of the application.

Chapter 1. Cúram web client reference 3

Application name

A name is defined for an application on the application banner.

Application search

The application search element provides a search function on the application banner.

Welcome message

A welcome message is displayed on the application banner.

Application menu

An application menu on the application banner allows up to three configurable options for a specific
view.

• A link to log out of the application
• A link to open the user preferences
• A link to change the language of the view

By default, the log out and preferences links are shown. An extra link to information about the
application is always shown and cannot be hidden.

Application sections

An application contains one or more sections that allow quick access to some of the more common
user tasks and activities. Application sections are displayed as tabs under the application banner. An
application section is a collection of tabs and an optional section shortcut panel to provide navigation
in the section.

Application tab

Content in a section is displayed in a tab and each section can open multiple tabs, where each tab
represents a business object or logical grouping of information. A tab consists of a logical grouping of
UIM pages.

Tab title bar

A title can be defined for the application tab.

Tab actions menu

The actions menu on the tab provides actions that are associated with the business object that is
represented by the tab.

Tab context panel

A tab contains a context panel at the top of the tab, which contains contextual information that is
associated with the data that is displayed in the tab.

Context panel open and close chevron

By default, the content panel is opened. You can choose to have this context information always
available when you work with the data on the tab, or close it to present more content on the page.

Section shortcut panel

Each section can have a section shortcut panel displayed vertically at the side of the section, which is
collapsed by default but can be expanded to show section shortcut categories, which contain shortcut
category items.

Content area tab navigation bar

A tab consists of one or more pages of information, containing standard UIM components or Carbon
components. The pages can be navigated by using a navigation bar located under the context panel,
which contains navigation tabs that link to single pages or sets of pages. Where a navigation tab links
to a set of pages, a page group navigation bar is displayed in the page.

4 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Page title

A title can be defined for the page.

Page action control

Extra action controls can be associated with the page and display along the top of the page. Page
actions controls display as text for one or two actions. For three or more actions, a page action menu
overflow icon is displayed.

Refresh button

A default action control that refreshes user interface content is automatically displayed along the top
of the page.

Print button

A default action control that prints user interface content is automatically displayed along the top of
the page.

Help button

A default action control that displays help content in a new window is automatically displayed along
the top of the page.

Cluster

A cluster is a rectangular area in a page that displays fields in a tabular format. A cluster can have one
or more columns of fields, and fields can be displayed with or without an associated label. Fields can
be read-only, or they can be editable. If editable, the fields appear as a control, such as a text area,
drop-down menu, or checkbox.

Cluster title

A cluster title contains text that identifies the cluster in a page.

Label

A field label is a read-only or 'output' label that identifies the data a field.

Field

Fields are visually organized into clusters and lists on a page. There can be zero or more of each on a
page. Clusters and lists can have a title that describes the type of data displayed.

Action controls

Action controls buttons are used to submit form data, to link to related pages, or to open a modal
dialog. Action controls can be organized into action sets that are associated with clusters, lists, or the
page. Individual action controls can also be associated with a single field in a cluster or a column in
a list. When an action control links to another page it can also send parameters to the target page.
These parameters are typically used as keys to retrieve server data that populates the target page. By
default, action controls display on the widget with which they are associated.

Smart panel

An optional smart panel displays extra contextual information to the side of the tab, such as quick
notes that relate to a case or advice that was given to a client.

Cluster open or close chevron
You can open or close the cluster as needed.

Chapter 1. Cúram web client reference 5

Home Cases and Outcomes Inbox Calendar Reports

Welcome CASE WORKEREnter Reference NumberSocial Program ManagementIBM

Person Search Income Support – 273 Mark BrennanSue Brennan

Sue Brennan

Sue Brennan

424, State St Orem, Midway, Utah, 84058
Female
Born 12/1/1995, Age 24

123456789

765 92727 sbrennan@myemail.com

Eligibility Evidence Care and Protection Issues and Proceedings Referrals Client Contact Administration ApplicationsApplications ComplianceCompliance Participant DetailsFinancial TransactionsHome

Current Previous

Special Cautions

Shortcuts

Cases

Registration

Intake

Person…

Employer…

All participants…

HCR application…

IS Application…

Case…

Investigation…

Incident…

Educational Institute…

External Party….

External Party Office…

Utility…

Searches

Sm
art Panel

Category Type Start Date

Escape ThreatBehavioral Alert 9/13/2020

Violent Offender HistorySafety Alert 9/14/2020

Incidents

Issue Cases

Investigations

Appeals

Special Cautions

Delete…

Edit…

Lists

List action menu

Page action menu

Page content area

Page group navigation bar

In-page navigation tabs

Figure 2. User interface with further levels of navigation and list component

The following user interface elements are shown in Figure 2.

In-page navigation tabs

A page can contain several tabs of information.

Page action menu

Extra action controls can be associated with the page and display along the top of the page. Extra
page action controls display as text for one or two actions. For three or more actions a page action
menu is displayed.

Page content area

The page content area displays the currently selected UIM page.

Page group navigation bar

Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with the
first one selected by default.

Lists

A list is used to display rows of repeating or indexed fields. As in clusters, fields can include
associated labels that are displayed as column headings in the list.

List Action menu

A list action menu is displayed at the end of the row for each list item and contains all the actions that
are associated with the list item.

6 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

New User Task

Assignment Details

Subject

*required field

*

Assign To

Add To My Tasks

Deadline

M/d/yyyy HH:mm

Medium

Priority

Comments

SaveCancel

Time inputDate input

Search pop-up control

Primary action buttonSecondary action button

Text area

Figure 3. Single modal dialog

The following user interface elements are shown in Figure 3.

Date input

The Date Time component is a combination of Date input and Time input, which is used in various
parts of the application, for example to schedule a task, to create contact logs, for meeting details,
and for meeting minutes.

Date input enables you to type or select a date from the calendar.

Time input

Time input enables you to enter a time or choose from a list of suggested times.

Search pop-up control

The search pop-up control opens a context-sensitive search modal dialog.

Text area

A text area enables you to input content and data. The component can be used for long form entries.

Primary action button

A primary modal button is an action control that is used to submit form data, to link to related pages,
or to open a modal dialog. By default, the primary action buttons are displayed last.

Secondary action button

Secondary action buttons can be used only with a primary action button as part of a pair. The
secondary modal button’s function is to perform the negative action of the set, such as Cancel or
Back.

Chapter 1. Cúram web client reference 7

Register Person

 Address Line 1

City

 Address Line 2

Birth Last Name

Search Criteria

Additional Search Criteria

Search Results

Reference Number

First Name

Last Name

*required field

GenderDate of Birth

Show Nicknames

Show Sounds Like Names

Step 1: Registered Person Check — Perform this search to check if the client is already recorded.

RegistrationRegistered Person Check 21

M/d/yyyy

Search Reset

Person Address Date of Birth

NextCancel

8 Progress indicatorWizard progress indicator

Modal title

Date input Dropdown

CheckboxText input

Page description

Close

Help

Primary action buttonSecondary action button

Action controls

Figure 4. Modal dialog in wizard

The following user interface elements are shown in Figure 4.

Modal title

The modal title contains text that identifies the current modal dialog in a wizard.

Help

An action control that displays help content in a new window by selecting the (?) icon.

Close

An action control that closes the window by selecting the (X) icon.

Wizard progress indicator

Indicates the sequence of pages in the wizard and highlights the current page in the sequence.

Page description

A description can be defined for a whole UIM page.

Text input

Text input enables you to interact with and input content and data. This component can be used for
long and short form entries.

8 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Checkbox

Checkboxes are used when there are multiple items to select in a list. You can select none, one, or any
number of items.

Date input

Date input enables you to type a date or select a date from the calendar.

Dropdown

Dropdowns present a menu list of options from which you can select an option.

Carbon components and add-ons
The IBM Cúram Social Program Management user interface (UI) uses Carbon components. For more
information about Carbon, see the Carbon Design System related link.

The following UIM components were updated with the Carbon equivalent components:

• Checkbox
• Date and time
• Date input
• Dropdown
• Modal dialog and modal buttons
• Multi-selection checkbox
• Text input
• Text area
• Time input

The following Carbon add-ons were created by using the Carbon Design System:

• Cluster
• Search pop-up control

Note: While not a Carbon component, the code table hierarchy was updated to match the Carbon
combination box style without changing the behavior from previous versions. To open the dropdown,
you must click the chevron directly.

The Social Program Management application uses Carbon styles and assets for font, color, and icons. IBM
Plex is the primary font throughout the application.

Related concepts
Social Program Management applications
When a user logs in to IBM Cúram Social Program Management, they are presented with a view that is
specific to their role, which is an application. An application is a collection of user interface elements,
mostly based on UIM pages, combined to create specific content for a particular user or role.
Related reference
Application configuration
An application is a collection of user interface elements, based on UIM pages or Carbon components,
that are combined to create content for a specific user or role. You create web client applications by
configuring application configuration files.
Related information
IBM Carbon Design System v10

Chapter 1. Cúram web client reference 9

https://v10.carbondesignsystem.com

Social Program Management applications
When a user logs in to IBM Cúram Social Program Management, they are presented with a view that is
specific to their role, which is an application. An application is a collection of user interface elements,
mostly based on UIM pages, combined to create specific content for a particular user or role.

In addition to defining the layout of the screen, an application controls the flow between the pages in the
application. Links to other pages are available from a section shortcut panel, the tab navigation bar, and
page group navigation bar, and from links on the page displayed in the content area.

Activating any of these links results in accessing a new page in the content area, or opening a new page
in a modal dialog. For new pages in the content area, the application definition is used to determine what
tab the page belongs to and what section the relevant tab belongs to. The page is then opened in the
context of the relevant section and tab.

Applications are defined in an XML format by using a number of different files. For example, an application
is defined by using an XML file with the extension .app. Each section that is referenced in the application
is defined by using an XML file with the extension .sec. Any tabs that are referenced by the section are
defined by using an XML file with the extension .tab.

In the following example, an application configuration .app file creates an application that contains two
sections, and an application banner with a quick search facility.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application
 id="SimpleApp"
 title="SimpleApp.title"
 subtitle="SimpleApp.subtitle"
 user-message="SimpleApp.UserMessage">

 <ac:application-menu>
 <ac:preferences title="preferences.title"/>
 <ac:help title="help.title"/>
 <ac:logout title="logout.title"/>
 </ac:application-menu>

 <ac:application-search>
 <ac:search-pages>
 <ac:search-page type="SAS01"
 description="Search.Person.LastName.Description"
 page-id="Person_searchResolver"
 initial-text="Search.Person.LastName.InitialText"
 default="true"/>
 <ac:search-page type="SAS02"
 description="Search.Person.Gender.Description"
 page-id="Person_listByGender"
 initial-text="Search.Person.Gender.InitialText" />
 </ac:search-pages>
 <ac:further-options-link
 description="Search.Further.Options.Link.Description"
 page-id="Person_search" />
 </ac:application-search>

 <ac:section-ref id="SimpleHomeSection"/>
 <ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Separating the configuration into multiple files allows the reuse of different elements across multiple
applications. For example, a common inbox section can be defined and referenced by multiple
applications.

Related concepts
Application user interface overview
The application user interface contains elements that are implemented through user interface metadata
or Carbon components.
Related reference
Application configuration

10 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

An application is a collection of user interface elements, based on UIM pages or Carbon components,
that are combined to create content for a specific user or role. You create web client applications by
configuring application configuration files.

Page context
UIM pages are displayed in different contexts within an application. The context the UIM page is
displayed in can result in different behavior for some of the elements.

The main contexts that UIM pages are displayed in are outlined in the following list:

• Content Area

The content area is where the main content for an application is displayed. When a UIM page is
displayed in the content area, it automatically contains a refresh, help, and print button in its title bar.

Note: The IBM Cúram Social Program Management application does not support the web browser File >
Print functionality. A print button is provided for printing the contents of the Content Area only.

• Context Panel

A context panel displays a specific type of UIM page that displays common information for the tab.
• List Dropdown Panel

A list dropdown panel displays a UIM page when a list row is expanded in a list. Expanded rows are a
supported feature of lists. For more information, see “LIST element” on page 263.

• Modal Dialog

A modal dialog displays a UIM page in a dialog window, displayed above the main content. While the
dialog is open, the parent content cannot be accessed. For more information, see “Modal dialogs” on
page 262.

• Smart Panel

A smart panel is an optional panel that can be added to the right of the content area in a tab and
displays a UIM page. For more information, see “Tab smart-panel element” on page 87.

Page appearance
The application and page metadata provide limited scope to specify the position and layout of user
interface elements.

Note the position and layout of the following features:

• The application banner, sections, and tabs are in fixed positions.
• Clusters and lists flow from top to bottom on a page.
• Fields are automatically positioned within the previous user interface elements.

Some control is allowed through attributes of the various elements, but sensible defaults are provided for
all these attributes to minimize the situations where they must be used. Action controls are aligned to
the center of a cluster. The action controls were aligned by configuring the ALIGNMENT attribute of the
ACTION_SET element in “Page content metadata” on page 1.

The application controller JSP and web client URL
A single JavaServer Pages (JSP) file, AppController.do, renders the Cúram client on the browser and
the URL always ends with AppController.do. The URL does not change as the user navigates between
separate pages within the Cúram application so the browser back button is not supported.

Direct browsing
You can access a page directly by typing its full URL into the browser's navigation bar, for
example, http://host:port/Curam/en_US/SomePage.do. On receipt of the request, the browser is

Chapter 1. Cúram web client reference 11

automatically redirected to AppController.do, which loads the requested page. The process by which
the page is loaded depends on whether the page is associated with a tab.

If you access a page directly, the session and its associated tabs is first restored, then a request is sent
for the specified page. The page is then loaded in its associated section and tab. However, if this page is
not associated with a tab, it is loaded in the currently selected tab. In the case of a new session, this is the
Home tab.

Tabs changed in this way can be returned to their default state by closing and reopening the tab where
possible. For the Home tab, logging out and back into the application will restore the Home tab to the
user's default home page. See “Tab Restoration” on page 128 for more information about tab restoration
and session management.

Web client development environment
Use this information to understand the structure of the web client application project, including related
files in the server application, and how to develop, build and deploy the web client application.

The CDEJ transforms files that are specified in user interface metadata (UIM) format into the JavaServer
Pages (JSP) to be deployed on your web application server. These UIM files are supported by various
properties files, configuration files, and others. Collectively, these files are called the application's
artifacts.

You can divide the Cúram web client application project into different functional components for ease of
development. With this system, you can introduce application changes and updates by dropping in a new
component, which automatically overrides the artifacts of another component where appropriate.

If you need more complex pages, you can extend UIM by using the https://github.com/IBM/spm-
ui-components to develop JavaScript screens with the IBM Carbon Design System, and drop them into
your customer folder.

Outline of the client development process
A summary of the typical steps in the process, which include running specific build scripts that are
provided.

1. Install the Cúram Application and the Cúram CDEJ by installing the Cúram Application Development
Environment (ADE). For more information, see Installing a development environment.

2. The installer creates both a server application and client application project on your file system
that contain all the source files. The client application files include the UIM files for the pages, the
application configuration files, the images, and any other resources that the application requires.

3. Create new source files or customize existing files.
4. Build the application and deploy it to an application server. During development, you can deploy the

application to an application server embedded in your integrated development environment.
5. When deployed, you can test your application with a web browser. For example,

http://localhost:9080/'server_name'/AppController.do

The Cúram application and CDEJ installation folders
The Cúram Application and the Cúram CDEJ are installed ready for further development and
customization in your project. The Cúram Application is divided into two main parts: the server application
that defines the business entities and business logic of the application, and the web client application that
defines how this information is presented to the user.

The actual folder locations vary depending on where they are installed and whether or not you are
developing the Cúram Application, additional applications or samples.

<app-dir>
The top-level application folder containing both the server application and the client application.

12 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

https://github.com/IBM/spm-ui-components
https://github.com/IBM/spm-ui-components

<client-dir>
The folder containing the web client application. Typically this is a folder called webclient within the
<app-dir> folder.

<server-dir>
The folder containing the server application. Typically this is a folder called EJBServer within the
<app-dir> folder.

<cdej-dir>
The folder containing the Cúram CDEJ, the tools and infrastructure required to build and run web
client applications. Typically this is a folder called CuramCDEJ.

<sdej-dir>
The folder containing the Cúram SDEJ, the tools and infrastructure required to build and run server
applications. Typically this is a folder called CuramSDEJ.

For example, if you install into C:/Curam, then you have the following folders.

• <app-dir> is C:/Curam
• <client-dir> is C:/Curam/webclient
• <server-dir> is C:/Curam/EJBServer
• <cdej-dir> is C:/Curam/CuramCDEJ

CDEJ project folder structure
A Cúram web client application project is organized into a folder structure that is recognized by the Cúram
CDEJ when the application is built. The base folder of this structure is the <client-dir> folder.
<client-dir>
 + build
 + bean-doc
 + buildlogs
 + components
 + core
 + <custom>
 + Images
 + javasource
 + WebContent
 + JavaSource
 + project
 + WebContent
 + <locale>
 + Previews
 + WEB-INF

Figure 5. Web Client Folder Structure

build
Temporary generated artifacts. The only contents of interest are the generated reference
documentation for the façade server interfaces.

build/bean-doc
Generated reference documentation for the façade server interfaces in HTML format. These are
regenerated each time the application model changes. See “Server interface reference” on page 21
for more details.

buildlogs
Log files generated from each build. See “Build Logs” on page 20 for more details.

components
The top-level folder for the application components. Each sub-folder of this folder contains a separate
application component. For more information, see “Client application component folders” on page
15.

components/core
The pre-defined core Cúram application component artifacts that provide the core functionality. These
artifacts should not be modified directly. To change them, you should create new artifacts in another
component to override the core artifacts.

Chapter 1. Cúram web client reference 13

components/<custom>
One or more extra application components containing artifacts that add additional application
functionality or customize existing functionality.

components/<custom>/Images
Arbitrary custom resources that you want to deploy with your application. Files and folders within this
folder will be copied to the top-level WebContent folder during the build process.

components/<custom>/javasource
Javasource code and properties files used to add extra functionality to an application or to
define externalized strings used across many application pages. There are a number of different
customizations that can be applied to files within this directory. These include updates to control one
or more of the data conversion or sorting operations. See “Custom data conversion and sorting” on
page 184 for more information about these customizations. This javasource directory is optional,
however if this directory is added, the webclient/.classpath file must be updated to reference
this new source directory. This ensures that the changes in this directory are recompiled when a
client build is run within the specified development environment. The following is an entry in the
webclient/.classpath file, (where <custom> represents the name of a custom directory):
<classpathentry kind="src" path="components/<custom>/javasource"/>

components/<custom>/WebContent
Arbitrary custom resources that you want to deploy with your application. Files and folders within this
folder will be copied to the top-level WebContent folder during the build process.

JavaSource
Contains the Initial_ApplicationConfiguration.properties file, that is described in
“Application configuration properties” on page 23.

project
Configuration files used when customizing the application deployment descriptors. See “Customizing
the web application descriptor” on page 26 for more details.

WebContent
The generated web application files. This contains the generated JSP files and other application
artifacts that can be used to start and test an application in the development environment. When an
application is to be deployed outside of the development environment, many of the files in this folder
are packaged in the application EAR file. See “Deployment” on page 22 for more details.

WebContent/<locale>
The generated JSP files for each locale supported by the application are placed in folders named after
the locales. For example, for American English pages there will be a folder named en_US. These JSP
files are generated as necessary when the application is built, so they will be replaced automatically
if deleted or out of date with respect to the corresponding UIM file. The JSP files are placed in
sub-folders of the locale folder using the first two letters of the page ID as the sub-folder name. This
reduces the likelihood that an option provided by some application server software to pre-compile the
JSP files will fail when trying to pre-compile too many JSP files at the same time.

WebContent/Previews
Generated HTML files providing a rough preview of what each corresponding JSP will look like when
the application is running. These previews can be viewed directly in a web browser without running
the application. See “Page previews” on page 21 for more information.

WebContent/WEB-INF
The standard folder which must exist in every Java EE web application. No files in this folder will
be served by the web container, the files are only used internally by the web client application. It
contains a classes folder that contains all the compiled Java class files and properties files required
by the application. In a Cúram web application project, this includes the classes and properties
files from the component specific javasource folders and the properties file from the <client-
dir>/JavaSource directory. It also contains a lib folder that contains all required library classes
packaged in JAR files. The CDEJ supplies all the JAR files required for this folder and they are copied
during the build process. You should not modify any files in this folder.

14 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

In addition to the web client folders, there are a number of folders in the <server-dir> project that are
relevant to web client application development. The <server-dir> project maintains a similar structure
to the web client, specifically in relation to the component folder.

components/<component-name>/clientapps
Application configuration artifacts. These are the XML configuration files for defining applications,
sections, tabs, etc. For more information see “Application configuration” on page 49.

components/<component-name>/tab
Application configuration artifacts pre-defined in the Cúram application. XML configuration files
shipped with the core and other out-of-the-box components will exist in this folder. These should not
be modified. To change these you should create new artifacts in the clientapps folder in another
component, which will then override these artifacts.

Client application component folders
Cúram web client applications are organized into collections of artifacts called components. Each
component has its own folder below the <client-dir>/components folder.

The core component is always present. This contains all of the artifacts needed for the core functionality
of the Cúram reference application. The name of the component folder is used as the name of the
component.

A component does not necessarily define a discrete part of an application; rather it defines an additional
customization layer of an application. By adding new components, it is possible to selectively replace
pages in the core application, add new pages, change the appearance of the application and alter various
settings. It should never be necessary to edit files within the core application, thereby ensuring that when
the core application is upgraded, the core changes do not overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you to organize your artifacts as
you see fit. Artifacts in a component must have unique file names and the folder structure does not affect
this. For example, you cannot place two UIM files with the same name within the same component, even
though they would be in different folders. Likewise, a UIM file in one component is considered equivalent
to a UIM file in another component, even if the folders within the components containing these UIM files
have different names. Technically, a component represents a single namespace for artifacts and the folder
structures within the components are mostly ignored.

The only exception to the requirement to use unique file names for artifacts is within the optional
WebContent folder within a component. Within this folder, you can place arbitrary files in an arbitrary
folder structure that you want to deploy with your application. The files will be copied to the main
<client-dir>/WebContent folder during the build process and the folder structure will be preserved,
so files in different folders may share the same name.

Client application component order
You can have any number of application components, but they are processed in a strict component order.
This order determines the priority that will be given to artifacts that share the same name but appear
in different components. This is fundamental to the manner in which Cúram web client applications are
customized.

The component order is defined by the CLIENT_COMPONENT_ORDER environment variable. This is a
comma-separated list of component names. Use only commas; do not use spaces. You must place the
component with the highest-priority first in the list and continue in descending order of priority. The core
component always has the lowest priority and is implicitly assumed to be at the end of the list; you do not
need to add it explicitly.

For example, setting the component order to "MyComponentOne,MyComponentTwo" will give the highest
priority to artifacts in the MyComponentOne folder within <client-dir>/components, a lower priority
to artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the core folder. Any
component folder not listed in the component order will not be included in the build and a warning will be
displayed to indicate that these components have been ignored. If you do not set the component order at
all, the default component order will include all components in alphabetical order.

Chapter 1. Cúram web client reference 15

Note: The SERVER_COMPONENT_ORDER order, used for the <server-dir> project, will always
include all component folders existing in the components folder. If they are omitted from the
SERVER_COMPONENT_ORDER environment variable, they will automatically be added to the end of the
component order in alphabetical order. For more information consult the Cúram Server Developers Guide.

Localized Components
Localized components contains translated artifacts for the base components and are of the
format "<component name>_<locale>". It is not necessary for these to be added to the
CLIENT_COMPONENT_ORDER environment variable as the tooling that processes this environment
variable will prepend any available components that match entries in the LOCALE_LIST environment
variable. Localized components are matched both on complete locale entry and on the two-character,
lower-case language code. Localized components are prepended before the base component in the
complete component order.

Client application component artifacts
Components contain a number of artifacts that are used to build an application. All the artifacts in a single
component have the same priority in the component order. The artifacts in one component may be used
to customize the artifacts in a lower-priority component, or they may be entirely new artifacts that extend
the application.

The main type of artifacts are as follows:

UIM Pages
UIM pages are the principal artifacts of a web client application. Each UIM page describes a web page
that users will see when accessing the web client application with their web browsers. The files for
these artifacts use the .uim extension.

UIM Views
UIM views define portions of a page that may be re-used by many UIM pages. The files for these
artifacts use the .vim extension.

Properties Files
Properties files store the natural language text for a page separately from the pages, views and page
groups. When applications are localized into different languages, there will be a separate properties
file for each language (or locale, see “Client application locales” on page 17). This allows a single
UIM page, view or page group to be defined for all of the supported languages.

Note: UIM properties files do not support any form of visual layout or formatting capabilities such as
using carriage returns or inserting HTML elements.

Application Configuration Files
Application configuration files define the layout of the user interface and how UIM pages
are grouped into sections and tabs. The files for these artifacts are defined using the
extensions .app, .sec, .tab, .nav, .mnu, and .ssp. Note, these files are located in the <server-
dir> project. See “Application configuration” on page 49 for details.

Image Files
Images file referenced from your UIM pages or views can be added to your component's Images
sub-folder. See “Images” on page 29 for details.

Configuration Files
Configuration files are used to alter the behavior or appearance of the application or of elements
of the application. There are a variety of different configuration files that can be used for different
purposes.

Custom Resources
Custom resources are arbitrary files that you want to deploy with your application. For example, you
may want to customize the appearance of a page to reference you own image file for a logo; this image
file is a custom resource.

16 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Client application locales
A locale describes a user's language and country and determines what the user sees in the pages that
they access in their web browser. While the data largely remains the same, except for the formatting of
numbers and dates, the labels for the data display in the relevant language.

Locales are specified by a simple identifier that contains a two-character, lowercase language code
optionally followed by an underscore character and a two-character, uppercase country code. For
example, "en" indicates the English language, and "en_US" indicates the regional variation of the English
language appropriate for the United States of America. The regional variation can help to identify
differences in the dialect or usage of the language, American English in this example, but it can also
affect the way dates and numbers are formatted.

The language and country codes are standardized and support for any specific locale is determined by the
Java Runtime Environment (JRE) that you are using for your application and whether you localized your
application for that locale. For more information about the support locales, see the documentation that
is provided by the vendor of your JRE. For more information about the procedure for localizing the web
client application, “Localization” on page 41.

Before you build a Cúram application that is localized for a number of locales, you must specify what
locales you want to include. Set the LOCALE_LIST environment variable to a comma-separated list of
the locale codes. Use only commas, do not use spaces. For example, "en_US,es" specifies the American
English locale and the Spanish locale (with no regional variation). The first locale in the list is treated as
the default locale.

In addition to determining what to build, the LOCALE_LIST determines which languages an
internal user can select at run time. Internal users can change their application view language by
selecting Language from their application menu. When an administrator configures a user's default locale,
all locales that are enabled on the Locale code table are available for selection. However, some of these
locales might not be installed. Therefore, we recommend that you keep the locales that are enabled in the
Locale code table in sync with the values in the LOCALE_LIST.

Note: Although administrators can change the default locale for all users, we recommend that they do not
change it for users that use the following functionality. This functionality is available only in the English
language.

• IBM Cúram Income Support application module
• IBM Cúram Child Welfare Structured Decision Making (SDM) add-on module

We also recommend that the default locale is not changed for administrator users because the
administration applications contain features that do not currently support localization.

Certain operations, such as the generation of page previews (see “Page previews” on page 21), are only
performed for the default locale.

Improving Build Performance: The Cúram CDEJ does most of the translation work for the application's
locales during the build process. From a single UIM file, it produces one JSP file for each locale in the
locale list. If your application supports many locales, you might find it convenient when you develop the
application to omit some locale codes from the locale list, as this improves the build performance. You
can replace the locales when you want to view or test all of the localized pages.

Related concepts
Language toggle
You can configure whether internal users can change their default locale to update the language in which
field labels, tabs, and shortcut menu items are displayed.

Building an application
Use the following information to help you to build a standard Cúram web client application.

Chapter 1. Cúram web client reference 17

Build targets
You build client applications by using Apache Ant build scripts. These build scripts define ordered
sequences of processing steps called targets.

To invoke a target, open a command prompt, change to the <client-dir> folder, and pass the name
of the target to the command you use to start Apache Ant. Typically this command is called build or
appbuild. The name depends on the script provided for your application, but it is referred to as build
in this information. For example, to build the web client application, the command is buildclient. You
can run more than one target at a time by passing the target names separated by space characters. For
example, build clean client will first clean all the generated output that may be present before
building the full web client application again.

The following build targets are available for Cúram client projects.

client
Builds the client application. For more information, see “Full and incremental builds” on page 19.

clean
Deletes all of output generated by the other build targets. For more information, see “Full and
incremental builds” on page 19.

beandoc
Generates reference documentation for the façade server interfaces. For more information, see
“Server interface reference” on page 21.

client-with-previews
Builds the client application and also generates previews of the pages in HTML format in the
<client-dir>/WebContent/Previews folder. For more information, see “Page previews” on page
21.

uimgen
Generates skeleton UIM pages from the façade server interface definitions. For more information, see
“UIM Generator Tool” on page 22.

A number of environment variables affect the build process for a web client application. Some have been
introduced already and others are explained elsewhere, but all are shown below. When you install the
Cúram Application, the build command will set most of these for you, as they mostly refer to files and
folders that will be in fixed locations relative to where you installed the application. However, for a new
application, or if you are modifying the build command, you may need to confirm that these are set
correctly.

Table 1. Environment Variables

Name Required Description

CURAMCDEJ Yes The location of the installed Cúram CDEJ
infrastructure, denoted by <cdej-dir>.
See “The Cúram application and CDEJ
installation folders” on page 12 for details.

CLIENT_DIR Yes The location of your web client application,
denoted by <client-dir>. See “The
Cúram application and CDEJ installation
folders” on page 12 for details.

CLIENT_PROJECT_NAME Yes Defines the name of the application being
built. This name is used as a base name for
many generated artifacts, for example, for
Java package names. The name is defined
in the UML model. For the installed Cúram
Application, the value should be "Curam".

18 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 1. Environment Variables (continued)

Name Required Description

LOCALE_LIST Yes Defines the locales to be supported by
the application. For more information, see
“Client application locales” on page 17 for
details.

CLIENT_COMPONENT_ORDER No Defines the prioritized order of the
application's components. For more
information, see “Client application
component order” on page 15. This is not
required, but it is highly recommended
that you set it explicitly. By default,
all components will be processed in
alphabetical order.

ENCODING No Defines the character encoding that will
be used to interpret files that do not
explicitly define an encoding. By default,
the system's default character encoding
will be used. For more information, see
“File encoding” on page 41.

MULTIPLE_VALIDATION_ERRORS No Controls the number of errors that are
reported during the build process before
the build terminates. For more information,
see “Error reporting” on page 20.

Related server build targets
The server application is also built using Apache Ant build scripts and some server targets are needed for
the client application. The application configuration files are located in the <server-dir> project so the
targets for processing these are part of the server project.

The following targets are used to process the client application configuration files:
inserttabconfiguration

Combines and imports the client application configuration files onto the database. For more
information, see “Configuration files” on page 50 for more details.

database
The last step of the database target is to call the inserttabconfiguration target. For more
information about the database target, see the Cúram Server Developers Guide.

Full and incremental builds
The client build target generates a complete web client application. If no previous build output is
present, running this target will build the entire application as a full build. On subsequent runs of this
target, the build scripts compare your source files to the previously generated output files to detect what
you have changed. The build then updates the minimum number of output files possible in an incremental
build.

An incremental build is done automatically when the output of a previous build is present and is much
faster than a full build. To run a full build again, you must first run theclean target to remove all of the
outputs from the previous build.

warning: Building after upgrading

Chapter 1. Cúram web client reference 19

If you upgrade your Cúram application or Cúram CDEJ, you must perform a full build by first running
theclean target. Failure to do this can result in unpredictable behavior during the build process or when
the application is running.

Platform Specific Setting: When running theclient build target from a text-only interface, such as when
you use a terminal emulator to access a UNIX computer, you must add -Djava.awt.headless=true to
theANT_OPTS environment setting.

Dependency checking
For most changes you need only the incremental build, as changes are detected automatically and only
the dependent output files are updated. However, some changes are not detected and you might need to
run a full build for your changes to take effect.

In particular, if you change a setting in the curam-config.xml configuration file that affects the build
process (typically by affecting the appearance of the pages in a way that is applied at build-time), then
you need to run a full build manually, as the changes will not be detected automatically.

Dependency checking identifies changes to server interfaces that are used by UIM pages. Server
interfaces are defined in the application's UML model and more information can be found in “Server
interface reference” on page 21. Only changes to interface properties, not their underlying domain types,
are recognized in an incremental build. For example, changing a code-table name will not be detected by
dependency checking and a clean build will be required.

Build Logs
Each time you run the client target to build the application, all of the messages produced by the build
scripts are written to a file in the <client-dir>/buildlogs folder. The files created are named for the
date and time on which the build was started. If errors occur during a build, you may find it easier to
review them by reading the log file instead of scrolling through messages at the command prompt.

Error reporting
One of the main steps performed by the client target is the generation of the JSP files from the UIM files.
This process will check the validity of your UIM files as they are processed. The validity of the UIM files is
determined in a number of steps.

1. They must contain well-formed XML and must not attempt to include VIM files that do not exist.
2. They must conform to the XML schema for UIM and to some additional context-sensitive rules that

cannot be defined in the XML schema.
3. They must refer only to externalized strings that exist in their associated properties files.
4. They must meet a number of other requirements related to the connections made to the properties of

server interfaces. For example, the property names must be unambiguous, or an address field must be
the only field in a cluster.

Normally, the processing will stop when the first error occurs and the indicated problem must be fixed
before the build can be ran again. However, for the errors detected in the second step, the schema and
schema-related validation errors, there is an option to continue processing as far as possible after an
error occurs to allow you to locate and fix more than one error at a time. Errors reported during the other
steps will always stop the build immediately.

To allow multiple validation errors to be reported during a build, set the MULTIPLE_VALIDATION_ERRORS
environment variable to true. If not set, the default value is false and the build will terminate after the
first validation error occurs.

The number of errors reported is limited by the number of UIM files being validated at one time. The
validation is typically done on files in groups of one hundred, so this option will cause all of the validations
errors in the current group to be reported before the build is terminated. No further groups will be
processed after a group containing files with validation errors has been encountered.

20 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Server interface reference
When you develop UIM pages, you need to know details about the façade server interfaces and their
properties so that you can select the information that you want to display on each page. This information
is all defined in the application's UML model. However, for your convenience, you can generate simple
reference documentation in HTML format to make the information more easily accessible.

Thebeandoc target generates this reference documentation for all of the available façade server
interfaces ("classes"), creating the HTML files in the <client-dir>/build/bean-doc folder. To see
the documentation, open the index.html file created in that folder in a web browser. This document
provides links to alphabetical lists of all classes, all operations on those classes, all domain definitions
used by properties of those operations, and all code-tables referenced by any of those domain definitions.
Each of these lists provides further links for cross-references or providing more details. Viewing a class
will display a list of its operations and selecting an operation will show a list of its properties.

In UIM, you do not have to use the full property name; you can use only part of the ending of the name if it
is unambiguous. In the reference documentation for each operation, both the full property name and the
shortest, unique ending of the property name are given. This helps you to choose a name that is short and
readable, but that won't cause any build errors later.

Beside many of the class, operation, and property names, you see a Copy button. However, for most
browsers, the Copy button does not work. You must select the text and use the normal copying
commands.

Page previews
You can produce page previews by running the client-with-previews build target. This generates
static HTML pages for the default locale in the <client-dir>/WebContent/Previews folder. Open the
pages in a browser to see approximately how the page will look when the application is running. You don't
need to start a server to view the pages.

The pages display a default value for each field but do not support any user-interaction (buttons, links,
pop-ups, etc. do not function). The preview page represents only the main content area of the page (the
part specified in UIM) and not the sidebar or page header or footer.

The default values for the fields are defined by associating a default value with the domain definition
of the field. These default values are used only for the preview pages and are defined in the domain-
defaults.xml file in <client-dir>/components/core. Overriding this file in other components is
not currently supported so it must be modified in place.

The file uses a simple XML format, a sample of which is shown below. The root element is
DOMAIN_DEFAULTS. This element contains one DOMAIN element for each domain definition for which
a default value is to be defined. The DOMAIN element requires a NAME attribute specifying the domain
name, and a DEFAULT attribute specifying the default value for that domain.
<DOMAIN_DEFAULTS>
 <DOMAIN NAME="MY_DOMAIN" DEFAULT="My value"/>
 <DOMAIN NAME="YOUR_DOMAIN" DEFAULT="Your value"/>
</DOMAIN_DEFAULTS>

Figure 6. Default Preview Values for Domain Definitions

When generating preview pages, if there is no default value defined for a domain, a warning message
will be displayed. These warnings will not prevent the preview page from being generated and a fall-back
value will be used in the generated page (for example, "[field-value]"). Note that fields that have a
complex domain value are not parsed or processed in the normal manner. Most of these are replaced by
an image of the typical output and no default value is required. Complex fields like this are described in
“Domain-specific controls” on page 139.

Chapter 1. Cúram web client reference 21

UIM Generator Tool
The UIM Generator tool provides a user interface for automatically generating a UIM page for a particular
server interface.

To start the UIM Generator tool:

1. Open a command prompt and change to the <client-dir> folder.
2. Run build uimgen.
3. The first time you run the UIM Generator you are asked to locate a ServerAccessBeans.xml file.

This file is generated by theclient target in the <client-dir>/build folder.

After the UIM Generator has started, the screen contains the following elements:

• A File menu containing options to view your current configuration settings and to exit the application.
• A tree on the left hand side which lists all the server interfaces in the application.
• Two options, Display Phase and Action Phase, which determine when the selected server interface is

called in the generated page.
• A Make Page button which generates the UIM for the current settings.

To generate a page, complete the following steps:

1. Select the interface you wish to test from the tree. For example, Register-Person.read.
2. Select the phase in which the interface should be called, for example, Action. Action phase pages call

the interface when the page is submitted. Data can be entered for each input field and a button is
generated to submit the page.

3. Click the Make Page button and you will be asked to specify a location for the generated UIM. You can
change the default name if you wish. The location should be in the appropriate component folder of
your application.

A UIM file and a properties file are generated. The labels for each field are given defaults based on the
name of the server interface property associated with the field.

External client applications
Because the webclient directory contains a mix of components that are targeted for different EAR
packaging, it can be difficult to use a single development environment and component order to develop
and test them. The external-client build target enables development testing to be done on these
external client applications.

The external-client build target enables the creation of an environment and the build of the
components specified for an EAR entry in the deployment_packaging.xml.

The target requires a -Dapp parameter that identifies the name of an EAR entry within the
deployment_packaging.xml.

build external-client -Dapp=SamplePublicAccess

The build target copies the components specified for this EAR entry to a webclient\build\apps\<app
name> directory. In the directory, it builds the project and creates the relevant Eclipse project
configuration files to allow the project directory to be imported into Eclipse for development testing.

Deployment
A detailed description of the deployment procedure is provided in the Cúram Deployment Guide
appropriate for your application server and operating system. However, there are a number of
configuration settings available in your web client application project prior to deployment.

22 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Application configuration properties
The ApplicationConfiguration.properties file defines the most important application
configuration settings. You might want to change some of the settings that are relevant to the client
application.

The ApplicationConfiguration.properties file must be in the curam/omega3 subfolder of
the <client-dir>/JavaSource folder. When you create a new application, this folder contains a
sample file named Initial_ApplicationConfiguration.properties. You need to copy this file
and rename it to ApplicationConfiguration.properties and change the settings to match your
requirements. For the installed Cúram application, this process is done for you already, but you might still
want to change other settings.

The properties that can be set in this file are as follows:

Date and time properties
dateformat

dateformat=M d yyyy

The format that is used by the Cúram date selector widget for entry and display of date fields.

The value of can be set to one of the following formats:

• Day-month-year order - d M yyyy (the default), dd MM yyyy.
• Month-day-year order - M d yyyy, MM dd yyyy.
• Year-month-day order - yyyy M d, yyyy MM dd.

In these formats, d represents the day number, dd represents the two-digit day number (padded
with a leading zero if necessary), M represents the month number, MM represents the two-digit
month number (padded with a leading zero if necessary), and yyyy represents the four-digit year.
An uppercase letter M is used for the month, as the lowercase letter m is used in Java applications to
represent the minute value when formatting times. Using MMM or MMMM to represent the month name
is not supported. The formats are specified by using a space character as a separator. The actual
separator character that you want to use is specified separately.

dateseparator
dateseparator=/

The date separator character that is applied to the specified date format. The value can be set to one
of the following characters: forward slash (/) (the default), period (.), comma (,), or dash (-).

timeformat
timeformat=HH mm

The value of timeformat can be set to one of h m s a, h m a, H m, hh mm a, HH mm, hhmm a, or
HHmm. Where not specified, HH mm is used as the default.

timeseparator
timeseparator=:

The value of timeseparator can be set by using either a colon (:) or period (.). Where not specified,
the colon (:) is used as the default.

Address properties
addressFormatType

addressFormatType=US

Default address format for addresses in the application.

addressDefaultCountryCode
addressDefaultCountryCode=US

Chapter 1. Cúram web client reference 23

Default, application-wide country code for addresses. This code must match an entry on the server
application's Country code table.

Upload properties
uploadMaximumSize

uploadMaximumSize=-1

Maximum file upload size in bytes. Files that exceed this size are rejected. This limit needs to be set to
match the allocated storage in the database for fields that contain uploaded files. This limit cannot be
tailored to suit different database fields. The value -1 indicates no maximum limit.

uploadThresholdSize
uploadThresholdSize=1024

The maximum size in bytes of an uploaded file before a temporary file is created on the server to
reduce the memory processor usage of storing the data as it is being processed. By default, the
uploaded files are written to temporary disk storage if they exceed 1024 bytes.

uploadRepositoryPath
uploadRepositoryPath=c:/temp

Temporary files that are created during file upload are written to this location if they exceed the
upload threshold size. By default, files are written to the Java system temporary folder (as defined by
the Java system property property java.io.tmpdir).

Synchronizer token properties
use.synchronizer.token

use.synchronizer.token=true

Whether to use a synchronizer token to prevent accidental resubmission of forms due to use of the
browser's Back button. The value can be set to true (default) or false.

synchronizer.token.timeout
synchronizer.token.timeout=1800

A synchronizer token expires if its associated form is never submitted. Values are specified in
seconds. The default value for this property is 1,800 seconds.

Tab session properties
tabSessionUpdateCountThreshold

tabSessionUpdateCountThreshold=10

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. After the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of 1 causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts.

The default is every 10 updates.

For more information, see “Session management” on page 127.

tabSessionUpdatePeriodThreshold
tabSessionUpdatePeriodThreshold=120

Specifies the number of seconds that must elapse since the last time session data was persisted from
the web tier to the database before a new update triggers another write. A value of zero (or a negative
or invalid value) disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information, see “Session management” on page 127.

24 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Progress spinner properties
curam.progress.widget.enabled

curam.progress.widget.enabled=true

Enables the Progress Spinner widget. The default value is true.

When the value of this property is set to true, and the loading of content in any panel or modal dialog
takes longer than 2 seconds, a progress spinner will appear to indicate that the system is busy.

curam.progress.widget.threshold
curam.progress.widget.threshold=2000

Specifies the time offset in milliseconds for the progress spinner to be displayed. The default value is
2000 milliseconds (or 2 seconds).

This property specifies how long the progress spinner should wait before being displayed. If the page
content loads within this period, the progress spinner will not be shown.

Other properties
serverConnectionType

serverConnectionType=single

Do not change this value.

errorpage.stacktrace.output
errorpage.stacktrace.output=false

The value of this property is true or false, where false is the default value.

Use stacktrace output in the development environment for debugging purposes. When the value of
this property is true, the Java exception errors are output into the HTML error pages.

You must set the property value to false in a production environment. The HTML error pages
that contain the Java exception stack trace are not included in the IBM Cúram Social Program
Management application malicious code and filtering checks. Therefore, if you set the property to
true in a production environment, the HTML error pages could potentially make the application more
susceptible to injection attacks such as cross-site scripting and link injection.

dbtojms.credentials.getter
dbtojms.credentials.getter=curam.sample.CredentialsGetter

Specifies the name of the class that is used to obtain credentials to be used for triggering a DBtoJMS
transfer. If not specified, a default set of credentials is used for this operation. For more information
about DBtoJMS and how to use this property, see the Security Considerations section of the Cúram
Batch Processing Guide.

modal.dialogs.minimum.height
modal.dialogs.minimum.height=200

Specifies the minimum required height for a modal dialog in pixels. The parameter is used when the
calculated height of the modal dialog is less than the minimum required height or the specified height
is less than the minimum required height. The default value of 100 pixels applies if this parameter is
not set.

resourceCacheMaximumSize
resourceCacheMaximumSize=16000000

Specifies the size of the application resource store cache. By default, the cache is limited to 16 MB
(approx.) in size. When that limit is reached, the least recently used resources are ejected from the
cache to make room for newly requested resources that are not already in the cache. The size of the
cache is specified in bytes.

Note: A single resource is not cached if it exceeds the size limit for the cache.

Chapter 1. Cúram web client reference 25

dynamicUIMInitModelOnStart
dynamicUIMInitModelOnStart=false

Indicates whether the Dynamic Cúram User Interface Metadata (UIM) system needs to initialize the
required information on the application model during startup or when it is first required for a Dynamic
UIM page. The default value is true and it needs to be set to false to cause the model to be
initialized when it is first required by a Dynamic UIM page.

For more information, see “Dynamic UIM system initialization” on page 302.

disable.context.panel.print
disable.context.panel.print=false

The context panel print is enabled by default along with the main printable content area, which you
can configure. You can disable the context panel print by configuring the following property:

disable.context.panel.print=true

The default value is false.

If you disable the context panel print, you must perform a client build for the property to take effect.

sanitize.link.parameter
sanitize.link.parameter=true

Enables protection from link injection attacks. The default value is false.

When the value of this property is set to true, any parameters in the request URL within the Cúram
application that are built with this value are validated for security vulnerabilities. If tracing is enabled,
any parameters in which possible security vulnerabilities are detected are logged and, to maintain
security, the request is terminated at a specially created error page.

Related reference
Optimal browser support
A number of browsers and a range of browser versions are supported for use with IBM Cúram Social
Program Management. The default settings for web browser versions align with the versions supported
by IBM for external applications. Users can be notified when they are not using the optimal version of a
supported web browser. You can configure the range of supported versions for a browser, the message
that users see, and the frequency at which the message is displayed.

Tracing server function calls
The CDEJResources.properties file contains a setting to enable tracing of server function calls on the
web-tier.

Add the following property to enable this tracing:

TraceOn=true

When enabled, the inputs to and outputs from all server function calls are written to Standard Out.

Note: Due to classloader issues with Apache Log4j 2, the web-tier does not currently provide a
configurable logging system in the same way as the server-tier.

Customizing the web application descriptor
The web application descriptor that is defined in a file named web.xml is a standard Java EE web
application file. A Cúram web application contains various settings that you might want to change, for
example, server connection settings and the session timeout.

The default settings are in the following files, based on the environment you are running the application
from:

Development Environment
<cdej-dir>/lib/curam/web/WEB-INF/web.xml

26 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

IBM WebSphere® Application Server
<cdej-dir>/ear/WAS/war/WEB-INF/web.xml

WebLogic Application Server
<cdej-dir>/ear/WLS/war/WEB-INF/web.xml

WebSphere Application Server Liberty
<cdej-dir>/ear/WLP/war/WEB-INF/web.xml

Customizing the web.xml file is done differently depending on whether you are changing the version of
the file to be included in the Cúram EAR file or the version to be used at development time. For example,
in Apache Tomcat.

Customizing the web.xml for development time can be done by creating a custom version of the
web.xml file in the WebContent/WEB-INF directory of a particular component, for example custom.
Where multiple versions of web.xml exist in different components, the version in the highest precedence
component, based on CLIENT_COMPONENT_ORDER, will be used.

The web.xml used within a Cúram EAR file can be customized using the deployment_packaging.xml
file located in the Curam Server project/config directory. It is possible to specify a custom web.xml
using the custom-web-xml property. For more information on customizing web.xml at runtime, see the
Cúram Deployment Guide for the relevant application server.

When customizing web.xml, the existing security, filter and servlet settings should not be modified.

The server and port settings in ApplicationConfiguration.properties are now obsolete and no
longer need to be specified. They are now automatically configured as context-param elements in
web.xml when the Cúram EAR file is created. The server and port values are set according to the values
specified in the AppServer.properties files (see the Cúram Server Deployment Guides for more
information), with the exception of the web.xml used at development time. The development web.xml,
located in <cdej-dir>/lib/curam/web/WEB-INF/web.xml, has the server and port set to localhost
and 900 respectively.

To change or add a locale, locate the init-param elements of the ActionServlet and duplicate them,
changing the value of the param-name element as appropriate so it is in the form config/<locale-
code>. See the following example.

<init-param>
 <param-name>config/en</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>

By default the web.xml for both WebSphere and WebLogic application servers is configured to enforce
HTTPS, a secure SSL connection between the web client and the server. This can be modified by changing
thetransport-guarantee from CONFIDENTIAL to NONE.

Note: Note, this does not disable access to the Cúram web client over HTTPS, but enables additional
access over HTTP. For more information, see ../Security/ctr_CuramSecurityHandbook.dita.

Customizing the 404 or Page Not Found error response
The 404 or Not Found error message is an HTTP standard response code indicating that the client was
able to communicate with the server, but the server could not find what was requested. The default
web.xml files for WebSphere, and WebLogic specify a default error page for the Cúram application when
an HTTP 404 error is thrown by the application server. You can customize the error message on the
default page.

The following is the error message displayed on that default page:

• The page you have requested is not available. One possible cause for this is that you are not licensed for
the necessary Cúram module - if that is the case, you can use the User Interface administration screens
to remove these links.

This message may be customized by adding a HTTP404Error.properties file into the <client-
dir>/components/<component_name>/ folder of the application and overriding the error.message
property specified in that file.

Chapter 1. Cúram web client reference 27

Customization
You customize a Cúram web client application without modifying the original components or their
artifacts. This approach makes it easier to upgrade a base application while preserving your custom
changes to that application. Use this information to understand how the customization process works,
and how you can modify or extend a base application.

Customizations are applied according to the component order. Make your changes in a separate
component from the application's original components. The Cúram Application is installed with a number
of components, including the core component and a number of other add-on components. Create a new
component folder containing a new sub-folder called components. Always add your new component
name to the beginning of the component order to give it the highest priority when artifacts are being
selected at build-time order. You can add more that one custom component, but you must decide what
their relative position in the component order should be. For more information about component order,
see “Client application component order” on page 15.

To begin with, your custom component will be an empty folder. You make your customizations by adding
artifacts, such as UIM pages, configuration, and files to this component folder. You can create arbitrary
sub-folders to help you organize these artifacts. You can customize an application by adding new artifacts,
overriding existing artifacts, or merging new content with existing artifacts.

Adding new artifacts
You can add new artifacts to extend a base application. To add a new artifact, you simply create the new
file in your component folder. The file name of the artifact should not be the same as the file name of an
artifact in another component. If it is, the artifact will override another artifact or be merged with one.

All types of artifacts can be added to an application in this manner, note artifacts added to the
WebContent sub-folder will always override other delivered artifacts, as described in Section “Custom
resources” on page 40.

Overriding or merging artifacts
Some types of artifacts can be overridden (effectively replaced) by adding an artifact with the same file
name as an artifact in another component to your custom component. When building the application, the
artifact in the highest priority component will be selected and the others ignored. Other types of artifacts
are merged with the same named artifacts in the lower priority components.

The content of all of the artifacts is combined and, where the content is related, the content from the
highest priority component is selected. The customized artifacts only need to share the same file name,
they do not have to share the same relative folder location, though you may find it advantageous to
organize them in a similar manner.

For example, for UIM files that share the same name, the file in the highest priority component will be
selected and the others ignored; but for properties files that share the same name, all of the properties
are merged together and, where the files contain properties with the same key name, the value of the
property from the file in the highest priority component will be used. When building an application, the
artifacts in the components are not modified. The selection and merging of artifacts is performed in
temporary locations, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in the sections below.

Externalized strings
All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

The syntax of a properties file is simple. Each line contains a name=value pair, where the name is an
arbitrary name for the string that must not contain the "=" character, and the value is the localized string
value. Blank lines and lines that begin with a "#" character are ignored. The syntax is defined by the

28 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

java.util.Properties class in your Java Runtime Environment. For more information, see the class
API documentation.

The property value is reproduced in the final application page exactly as you type it in the properties file.
The value can contain any character from any language. It is safely processed as you intended in the
application, regardless of whether that character is reserved in XML, HTML, or elsewhere.

If you need to enter a character that you cannot generate from the keyboard in a property value, use the
Unicode value of that character in a Unicode escape sequence, which is a backslash and a "u" character
followed by the four-digit hexadecimal character code. For example, to enter a non-breaking space, the
corresponding Unicode escaped sequence is "\u00a0", see this sample properties file.

Main Titles
MyPage.Title=My First Page
Cluster.User.Title=User Details

Field labels
Field.FirstName.Label=First Name
Field.Surname.Label=Surname

Other
Separator=\u00a0

As you can see, "." characters are a useful way to add some structure to your properties, but they are not
required.

When you customize an application, you can customize properties independently of pages and views by
adding the appropriately named properties file to your custom component and defining the externalized
string properties. You don't need to add the corresponding page or view file to your component and you
don't need to redefine any properties that you don't want to change.

Related tasks
Adding or updating help content
To add new help content, you add a help property to the UIM file for the page and add the help content
to the associated properties file. To update existing help, complete the following steps. Adjust the steps if
you are updating domain-specific controls.
Related reference
JavaScript externalized strings
All string values in JavaScript files are externalized to JavaScript property files (.js.properties files).
UIM externalized strings
All string values in UIM files are externalized to .properties files.

Images
All references to icons or other graphics within a UIM document are externalized in a manner similar to
normal strings.

The Image.properties file (you can include one in each component, if you wish) uses the same format
as the string properties files to associate image references with image file names. The image files should
be stored in the component's Images sub-folder and can be organized into a folder structure below this
folder if desired. Most web browsers will support images in the portable network graphics (PNG) format,
the graphics interchange format (GIF), and the joint photographic experts group (JPEG) format.

The Image.properties file simply associates a key with a path to the corresponding image file
specified relative to the component folder. A sample of this file is shown below. To use these images,
the key is used as the value of the IMAGE attribute on the ACTION_CONTROL element in the UIM page.

Button.Ok=Images/ok.gif
Button.Cancel=Images/cancel.gif
MyPage.Title.Icon=Images/bluedot.gif

The entries in the Image.properties file in the core component can be overridden individually or in
total by creating an Image.properties file in your custom component and overriding the properties as

Chapter 1. Cúram web client reference 29

required. You can override the image files themselves by creating files in your custom component with the
same names as the files in the core component.

If you need to localize your images for different languages, you can add several Image.properties files
using a different locale code as the file name suffix. See “Locales” on page 42 for details on locale code
suffixes. Each properties file should define the same keys, but the image files can be different for each
locale. If only some of the images need to be localized, the common images can be defined in the default
Image.properties file (the one without the locale code suffix) and only properties for the localized
images in the other properties files.

Image mapping
Images can also be used within the Cúram application to represent different values of displayed fields
instead of presenting the value as text. For example, a typical boolean value of true or false could be
represented by two images of, say, a green check mark and a red X.

The mapping between values and images is stored in the ImageMapConfig.xml file. There is no need to
specify this in any way in UIM. If you use a property with a domain listed in the ImageMapConfig.xml
file, it will automatically be displayed as an image. See this sample ImageMapConfig.xml file.

map>
 <domain name="MY_BOOLEAN">
 <locale name="en">
 <mapping value="true"
 image="Images/ValuesToImages/true.gif"
 alt="True"/>
 <mapping value="false"
 image="Images/ValuesToImages/false.gif"
 alt="False"/>
 </locale>
 <locale name="fr">
 <mapping value="true"
 image="Images/ValuesToImages/true.gif"
 alt="Vrai"/>
 <mapping value="false"
 image="Images/ValuesToImages/false.gif"
 alt="Pas Vrai"/>
 </locale>
 </domain>
</map>

In the example, a field with domain type MY_BOOLEAN has been assigned an image mapping. Note that
you should specify an image mapping for each available locale even if the images used are identical. This
is because the alternative text ("alt text") attached to the image will be different for different locales. This
text is important for accessibility reasons (users who have visual difficulties might use an audio browser,
for example, which will read out the "alt text").

ImageMapConfig.xml files in different components are merged with all unique image mappings
preserved. If the same value in the same locale is mapped in two ImageMapConfig.xml files in two
different components, the mapping from the higher priority component prevails.

CuramLinks.properties
The UIM LINK element allows links to other client pages to be specified indirectly. The PAGE_ID_REF
attribute is a key into the CuramLinks.properties file that returns the actual ID of the linked page.

Many links can point to the same page reference. The advantage of using a page reference is that all the
links can be updated by changing a single entry in this file.

Each component can have its own CuramLinks.properties file. During generation, these individual
files will be merged. If a key is present in more than one CuramLinks.properties file, the component
priority order decides which value is retained.

30 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Runtime configuration XML files
Some XML files in <cdej-dir>/lib are used by the running client application. To change any of these
files, copy the original file into the custom component subdirectory and modify the copied file.

The client generators use the XML file from the highest priority as specified by the
CLIENT_COMPONENT_ORDER environment variable. The following files are used by the running client
application:

• CalendarConfig.xml
• DynamicMenuConfig.xml
• ICDynamicMenuConfig.xml
• MeetingViewConfig.xml
• RatesTableConfig.xml
• RulesDecisionConfig.xml
• RulesEditorConfig.xml

For more information about customizing these configuration files, see “Domain-specific controls” on page
139.

Login Pages
The default logon.jsp login page is in the lib/curam/web/jsp directory of the Cúram Client
Development Environment. You can override this default page by placing a copy with your changes
in a webclient/components/<custom component>/WebContent folder. However, there are some
guidelines that you must follow.

Include the following JavaScript in the head section of the page to prevent the login page from being
loaded in a dialog window.

<jsp:include page="no-dialog.jsp"/>
<script type="text/javascript"
 src="${pageScope.path1}/CDEJ/jscript/curam/util/Logon.js">
 //script content</script>
<script type="text/javascript">
 curam.util.Logon.ensureFullPageLogon();
 function window_onload() {
 document.loginform.j_username.focus();
 return true;
}
</script>

If you want to use the j_security_check login mechanism, the form submitted from the page
must have an action attribute of j_security_check, a user name input with the name attribute
j_username and a password input with the name attribute j_password.

The Cúram Server Developers Guide contains details of some common customizations to the logon.jsp
file to support an external user client application and automatic login.

The styling of logon.jsp can be customized in the usual way. Simply add relevant CSS to any .css file in
the custom component.

JavaScript files
The UIM SCRIPT element allows events on the page to trigger JavaScript functions. Provide a relative
path to the JavaScript file from your component folder.

For example, you can refer to the MyComponent/scripts/myScript.js in the SCRIPT tag as follows:

<SCRIPT SCRIPT_FILE="scripts/myScript.js" ...>

The paths that you specify are fully preserved during application generation.

JavaScript allows HTML and CSS to be queried and manipulated. The underlying HTML and CSS source
code used to style the Cúram application is not documented. No guarantees are made about its stability

Chapter 1. Cúram web client reference 31

across Cúram releases. Therefore, custom JavaScript may have to be updated in line with changes to
HTML structure.

JavaScript APIs for use in the custom JavaScript code are provided within the Cúram application and
documented in CuramCDEJ\doc\Javascript\index.html. Use of any other Cúram JavaScript APIs,
discovered through web developer tools for example, is not supported. The same is true of the JavaScript
APIs and functions of third party frameworks used within the Cúram application. While there is nothing
prevent a developer using these, using them means the code will be impacted by changes to the Cúram
application in future releases.

Using the techniques described above to add new JavaScript files to the custom component, new third
party APIs could be added to Cúram pages. This is at the customer's discretion, as no guarantees can be
made on third-party APIs that have not been used and verified within the Cúram application.

Cascading stylesheets
Cascading style sheets (*.css) define the appearance (colors, fonts, etc.) of the client pages when
viewed in a web browser. Default CSS files are provided for the Cúram client application in the
WebContent/WEB-INF/css folder. Never update the default CSS files. If you override particular styles
or add new styles, you must create new CSS files in one of your application components.

Note: The underlying HTML and CSS source code used to style the Cúram user interface is not
documented and no guarantee is made about its stability across Cúram releases. Therefore, any
customization based on that HTML and CSS might be lost as new releases are taken on. The
customizations may have to be re-applied by analyzing the HTML and CSS again.

You can view the source code by using browser developer tools.

Any CSS file located in the component/<some-component> folder or subfolder is automatically
concatenated into the custom.css file. The custom.css file is included on all pages in the Cúram
client application.

An example of customization is to view the CSS that is used to apply a font-size to a field's label. The
same CSS selector can then be added to your custom CSS file and a different font-size specified. For
example, assuming the HTML and CSS was analyzed and the CSS selector .field .label applies the
label font-size, the following CSS can override the default. The CSS takes precedence over the Cúram style
because custom CSS is included on the page after Cúram's default CSS.

.field .label {
font-size: 1rem;
line-height: 1.5;
}

Another customization technique is to create a new rule that is an extension of a Cúram rule. To continue
the preceding example, a developer analyzes the HTML and sees that an element with the class .image
is generated as a child of the .label element in the Cúram application. It is possible to create a new
rule that is specific to the .image in this context. The following code outlines how to complete the
customization:

.field .label {
font-size: 1rem;
line-height: 1.5;
}
.field .label .image {
width: 1.5rem;
height: 1.5rem;
}

Note: In the preceding example, if any of these class names change in the HTML then the customization
of the .image element no longer applies as .image depends on being a child of .label, which is a child
of .field.

Note: Some UIM elements support the STYLE tag, which allows specific styling to be added to any
instance of that element. This styling will always override the styling in CSS files. For more information,
see “UIM reference” on page 225.

32 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

If it is known where the customized image is needed, this maintenance concern can be mitigated by
specifying a custom class such as .image--large by using the STYLE attribute and writing the styles
with a simpler selector.

.image--large {
width: 1.5rem;
height: 1.5rem;
}

This style is more reusable, resulting in less CSS while it avoids dependencies on other
classes. .image--large uses the BEM naming convention to indicate that it is a modifier of the .image
style.

Application-specific CSS
CSS can be specific to the application being viewed. The id of the application (.app file) currently being
viewed is added as a class on the BODY element of each HTML page, allowing you to add application-
specific styling to that page.

For example, a System Administrator views the SYSADMAPP application. The following CSS is an example
of CSS specific to that application:

.SYSADMAPP .field .label {
 color:red;
 }

Browser-specific CSS
CSS can be specific to the browser used to view the web page. Developers should strive to use the same
CSS on all browsers.

Application configuration files
Add the application configuration files for defining application, section and tabs to the <server-
dir>\components\<component-name>\clientapps directory, where <component-name> is a
custom component. Subfolders are supported within the clientapps folder. Any artifacts added to
this directory will override files of the same name in the <server-dir>\components\<component-
name>\tab directory.

Do not modify files in the tab directory, which contains files that are included with existing components in
the default Cúram application.

Note: The default Cúram application uses fragments of configuration artifacts that are merged into single
files at build time, this is not supported for custom application configuration artifacts. That is, you must
not have a tab folder in EJBServer\components\custom.

When customizing the application configuration files that are included with the Cúram application, the
XML configuration file and properties file should always be customized as a unit. For example, a change
to the SimpleApp.properties file associated with the SimpleApp.app file, requires you to add
both SimpleApp.app and SimpleApp.properties to the clientapps folder. These files should be
based on the merged version of the files. You can use the inserttabconfiguration target to get a
development copy of the merged file. See the Cúram Server Developer Guide for more information.

There are a few general rules and best practices when working with the application configuration files:

• The id attribute on the root element of each configuration file must match the name of the file. For
example, SimpleApp.app must have an id of SimpleApp.

• The id attributes must not contain the period (.) or underscore (_) characters.
• You must add localizable text to a .properties file that matches the name of the configuration file.

For example, SimpleApp.app needs a corresponding SimpleApp.properties.
• You can reuse properties files across configuration files. For example, Person.nav and Person.tab

can share the same Person.properties file.

Chapter 1. Cúram web client reference 33

• Ensure that you add the proper namespace information when developing the XML files to allow for
validation. For example:

<ac:application
...
</ac:application>

General configuration
The curam-config.xml file contains a number of general-purpose configuration options that affect
the appearance or behavior of the web client application. Use this information to understand the main
elements of this configuration file.

Customizing configuration settings
The core component contains a copy of the curam-config.xml file, but you are free to augment and
override the settings by including your own curam-config.xml file in your custom component. All of
the individual curam-config.xml files are merged into one at generation time. The effect of the merge
depends on each particular setting.

The following entries are global settings for the application and must only appear once in the final output.
If you define one of these entries in a custom component, it overrides the entry of the core component.

• HELP
• ERROR_PAGE
• APPEND_COLON
• ADMIN
• POPUP_PAGES/CLEAR_TEXT_IMAGE
• MULTIPLE_POPUP_DOMAINS/CLEAR_TEXT_IMAGE
• STATIC_CONTENT_SERVER

The following entries are merged.

• MULTIPLE_POPUP_DOMAINS
• POPUP_PAGES
• MULTIPLE_SELECT
• FILE_DOWNLOAD_CONFIG
• PAGINATION
• ADDRESS_CONFIG

Note, however, that particular address formats can be overridden. For example, if the core component had
the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
 <ADDRESS_ELEMENT NAME="ADD1"
 LABEL="Core.Label.Address.1"
 MANDATORY="true"/>
 <ADDRESS_ELEMENT NAME="ADD2"
 LABEL="Core.Label.Address.2" />
 <ADDRESS_ELEMENT NAME="CITY"
 LABEL="Core.Label.City" />
 <ADDRESS_ELEMENT NAME="STATE"
 LABEL="Core.Label.State"
 CODETABLE="AddressState"
 MANDATORY="true"/>
 <ADDRESS_ELEMENT NAME="ZIP"
 LABEL="Core.Label.Zip" />
</ADDRESS_FORMAT>

and if your custom component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
 <ADDRESS_ELEMENT NAME="ADD1"

34 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 LABEL="Custom.Label.Address.1"
 MANDATORY="true"/>
 <ADDRESS_ELEMENT NAME="ADD2"
 LABEL="Custom.Label.Address.2" />
 <ADDRESS_ELEMENT NAME="CITY"
 LABEL="Custom.Label.City" />
 <ADDRESS_ELEMENT NAME="STATE"
 LABEL="Custom.Label.State"
 CODETABLE="AddressState"
 MANDATORY="true"/>
 <ADDRESS_ELEMENT NAME="ZIP"
 LABEL="Custom.Label.Zip" />
</ADDRESS_FORMAT>

then it is the custom definition) that appears in the final merged curam-config.xml file. This is because
both address formats have the same name ("US").

Dividing the configuration file
The curam-config.xml file can be divided into manageable chunks. You can save one part of the
configuration in a file with a different name.

Taking the previous address format configuration as an example, you can create a file with the following
contents:

<APP_CONFIG>
 <ADDRESS_CONFIG>
 <LOCALE_MAPPING LOCALE="en_US"
 ADDRESS_FORMAT_NAME="US">
 <ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
 <ADDRESS_ELEMENT NAME="ADD1"
 LABEL="Custom.Label.Address.1"
 MANDATORY="true"/>
 <ADDRESS_ELEMENT NAME="ADD2"
 LABEL="Custom.Label.Address.2" />
 <ADDRESS_ELEMENT NAME="CITY"
 LABEL="Custom.Label.City" />
 <ADDRESS_ELEMENT NAME="STATE"
 LABEL="Custom.Label.State"
 CODETABLE="AddressState"
 MANDATORY="true"/>
 <ADDRESS_ELEMENT NAME="ZIP"
 LABEL="Custom.Label.Zip" />
 </ADDRESS_FORMAT>
 </ADDRESS_CONFIG>
</APP_CONFIG>

Save this with a file name that ends with -config.xml anywhere in your component, for example
address-config.xml. The file must have the same APP_CONFIG root element as the full curam-
config.xml file. If you follow these conventions, all of your configuration files will be merged into a
single address-config.xml file at build time.

Configuration File Names: Two naming patterns are used for most configuration files. Some use
the pattern XConfig.xml and others X-config.xml, where "X" is some prefix. For example,
ImageMapConfig.xml and address-config.xml. The former pattern indicates a standalone
configuration file that is not related to other configuration files. The latter pattern indicates that the file is
really just part of the curam-config.xml file.

POPUP_PAGES
See “Pop-up pages” on page 172.

MULTIPLE_POPUP_DOMAINS
See “Pop-up pages” on page 172.

ERROR_PAGE
If an error occurs at run-time, the user will be redirected to a page defined here. Depending on the error
cause, two types of error page could be provided for reporting system or application failure (or a default
page for reporting both kind of errors could be configured instead).

Chapter 1. Cúram web client reference 35

<ERROR_PAGE TYPE="SYSTEM" PAGE_ID="CuramSystemError"/>
 <ERROR_PAGE TYPE="APPLICATION" PAGE_ID="CuramError"/>

Figure 7. Error_Page Section Example

<ERROR_PAGE PAGE_ID="CuramError"/>

Figure 8. Error_Page Section Example with one default page

Please note: when overriding the ERROR_PAGE setting it is not possible for a custom configuration
to define an ERROR_PAGE element without a TYPE attribute if a low priority component defines an
ERROR_PAGE element with a TYPE attribute. In that case, the custom component needs to use a TYPE
attribute and must override both supported types of error page to get the desired effect

MULTIPLE_SELECT
Domains which should display as multiple select list boxes in forms are specified here. The MULTIPLE
attribute, if true, allows multiple selection in the list.
<MULTIPLE_SELECT>
 <DOMAIN NAME="PRIMARY_ID" MULTIPLE="true"/>
 <DOMAIN NAME="OTHER_ID" MULTIPLE="true"/>
</MULTIPLE_SELECT>

Figure 9. Multiple Select Section Example

FILE_DOWNLOAD_CONFIG
For more information about file downloads, see “ACTION_CONTROL element” on page 227.

ENABLE_COLLAPSIBLE_CLUSTERS
Set to false to disable collapsible clusters. By default this value is set to true.
<ENABLE_COLLAPSIBLE_CLUSTERS>false</ENABLE_COLLAPSIBLE_CLUSTERS>

Figure 10. Disable Collapsible Clusters Example

APPEND_COLON
Set to true to automatically append colons to FIELD and CONTAINER labels within CLUSTER elements.
<APPEND_COLON>true</APPEND_COLON>

Figure 11. Append Colon Section Example

ADDRESS_CONFIG
See “Domain-specific controls” on page 139.

ADMIN
The ADMIN element can contain any number of CODETABLE_UPDATE, TAB_CONFIG_UPDATE and
RESOURCE_UPDATE elements. The PAGE_ID attribute of these elements specifies the page that will clear
the relevant caches whenever its submit action is called.
<ADMIN>
 <CODETABLE_UPDATE PAGE_ID="CodeTableAdmin" />
</ADMIN>
 <TAB_CONFIG_UPDATE PAGE_ID="ApplicationConfigAdmin"/>
 <RESOURCE_UPDATE PAGE_ID="publishResourceChanges"/>

Figure 12. Admin Section Example

Please note: The caches are only cleared for the current instance of the web application. Other instances
will have to be restarted to receive the code table updates. This feature applies at development time only.

STATIC_CONTENT_SERVER
Configure static content for IBM Cúram Social Program Management

The procedures in this topic are mandatory for deploying SPM on Kubernetes.

36 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

An application server is optimized to serve dynamic content, while an HTTP server is optimized to
serve static content. To enable static content in SPM, set the STATIC_CONTENT_SERVER element in the
curam-config.XML file and perform a full SPM build.
<STATIC_CONTENT_SERVER>
 <URL>http://www.myserver.com/staticresources/</URL>
</STATIC_CONTENT_SERVER>

Figure 13. Static Content Base URL Example

The forward slash at the end of the URL in the example is optional. You can also use a relative URL.
<STATIC_CONTENT_SERVER>
 <URL>/CuramStatic/</URL>
</STATIC_CONTENT_SERVER>

Figure 14. Relative URL example

A full build is required to pick up this setting.

Where this option is used, the static content can be packaged by using the zip-static-content target
available in the webclient project. This target creates a .zip file, StaticContent.zip, in the
webclient\build directory. The StaticContent.zip file contains all relevant static content to be
relocated when the STATIC_CONTENT_SERVER setting is enabled. The -Dstatic.content.zip setting can be
used to overwrite the default .zip file location. All content in the .zip file is stored under a root folder called
WebContent.
build zip-static-content -Dstatic.content.zip=<myzipfile.zip>

Figure 15. Target example

The following content is included in the .zip file:

• WebContent/**/*.htc
• WebContent/**/*.html
• WebContent/**/*.htm
• WebContent/**/*.bmp
• WebContent/**/*.cur
• WebContent/**/*.gif
• WebContent/**/*.ico
• WebContent/**/*.jpeg
• WebContent/**/*.jpg
• WebContent/**/*.mov
• WebContent/**/*.png
• WebContent/**/*.psd
• WebContent/**/*.svg
• WebContent/**/*.swc
• WebContent/**/*.swf
• WebContent/**/*.eot
• WebContent/**/*.ttf
• WebContent/**/*.woff
• WebContent/**/*.woff2
• WebContent/**/*.as
• WebContent/**/*.js
• WebContent/**/*.vbs
• WebContent/**/*.css
• WebContent/**/*.less

Chapter 1. Cúram web client reference 37

• WebContent/**/*.json

The relocation of static content to a separate server allows for specific cache control response headers
to be set for this content. Setting a cache control response header provides an instruction to the browser
to cache this content for a period of time; the aim of which is to reduce network traffic and improve
performance. The Expires and Cache-control headers encourage the browser to cache static content.
Expires: Thu, 15 Apr 2010 20:00:00 GMT
Cache-control: max-age=86400

Figure 16. Response Headers

Note: The Expires value must match the specific formatting in figure 4 to be recognized. The max-age
attribute value is in seconds.

When the headers are set the browser caches the content until the max-age value is reached or the
Expires date is reached. When cached, no request will be made to the server.

FIELD_ERROR_INDICATOR
This option indicates if field level error indicators are to be displayed when an error occurs. The error
message is the alt text of the image and is available as a tool-tip when the mouse is hovered over
the image. The feature only applies to text input and date-time fields. Also, this feature only applies to
web-tier generated messages (data-type validation, mandatory fields etc.), it does not apply to messages
generated from server side code since there is no way to associate a server exception with a client side
field.
<FIELD_ERROR_INDICATOR>true</FIELD_ERROR_INDICATOR>

Figure 17. Field Error Indicators Example

Please note if the FIELD_ERROR_INDICATOR element is not specified, it defaults to FALSE.

SECURITY_CHECK_ON_PAGE_LOAD
All server functions used on a Cúram screen are checked for authorization rights when the page is initially
loaded. If a user fails authorization for any of the server functions, an authorization error message will be
displayed and the user will be prevented from viewing the page. For example, if a user has authorization
rights to access the DISPLAY phase server function, but not the ACTION phase, they will not be able to
view the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml, which is true by default, indicates
that authorization checks should be performed before the page is loaded to ensure the user has access
rights to all server functions referenced by SERVER_INTERFACE elements on the UIM page.

Setting the SECURITY_CHECK_ON_PAGE_LOAD attribute to false will disable this initial authorization
check and defer authorization to the point at which the server function is invoked. As a result, on an edit
page for example, a user would require authorization rights for the DISPLAY phase server function at a
minimum. If they did not have authorization rights for the ACTION phase server function, the page will
display, but the user will receive an authorization error message when the page is submitted.

To set SECURITY_CHECK_ON_PAGE_LOAD, and disable authorization on page load, add the following to
the curam-config.xml file:
<SECURITY_CHECK_ON_PAGE_LOAD>false</SECURITY_CHECK_ON_PAGE_LOAD>

Figure 18. Security Check on Page Load Example

Please note if the SECURITY_CHECK_ON_PAGE_LOAD element is not specified, it defaults to TRUE.

There is no security risk associated with this change, but the change has implications for auditing.
When the authorization check is performed on page load, by default authorization failures are
not added to the AuthorisationLog database table. This behavior can be modified by setting
curam.enable.logging.client.authcheck to true using the Property Administration screens.

When the authorization check is deferred to the invocation of the server function, i.e.
SECURITY_CHECK_ON_PAGE_LOAD is false, authorization failures are always logged. It is not possible

38 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

to control or disable this behavior. As a result, the risk is that the AuthorisationLog database table will be
filled with noise in the form of authorization failures that are valid failures based on usage.

ENABLE_SELECT_ALL_CHECKBOX
The multi-select check-box WIDGET described “The MULTISELECT widget” on page 291 displays a
column of check-boxes used to select items in a LIST. The following configuration setting causes a
check-box to be displayed in the column header that can be used to select or de-select all of the
check-boxes at once.
<ENABLE_SELECT_ALL_CHECKBOX>true</ENABLE_SELECT_ALL_CHECKBOX>

Figure 19. Enable Select All Check-box Example

Please note if the ENABLE_SELECT_ALL_CHECKBOX element is not specified, it defaults to FALSE.

TRANSFER_LISTS_MODE
When set to true all multiple selection controls in an application are displayed as Transfer List widgets.
<TRANSFER_LISTS_MODE>true</TRANSFER_LISTS_MODE>

Figure 20. Transfer Lists Mode Example

Please note if the TRANSFER_LISTS_MODE element is not specified, it defaults to FALSE.

HIDE_CONDITIONAL_LINKS
When set to true all conditional links that evaluate to false are not displayed. When set to false all
conditional links that evaluate to false are displayed as disabled links.
<HIDE_CONDITIONAL_LINKS>true</HIDE_CONDITIONAL_LINKS>

Figure 21. Hide Conditional Links

Please note if the HIDE_CONDITIONAL_LINKS element is not specified, it defaults to TRUE.

DISABLE_AUTO_COMPLETE
When set to true auto complete on all input fields is disabled. When set to false auto complete on all
input fields is enabled.
<DISABLE_AUTO_COMPLETE>true</DISABLE_AUTO_COMPLETE>

Figure 22. Disable Auto Complete

Please note if the DISABLE_AUTO_COMPLETE element is not specified, it defaults to FALSE.

SCROLLBAR_CONFIG
The SCROLLBAR_CONFIG element allows a vertical scrollbar to appear on a LIST or CLUSTER element
after a maximum height is reached. It can contain two or less ENABLE_SCROLLBARS elements. The
ENABLE_SCROLLBARS element has the following attributes:

• TYPE : Specifies the element in which vertical scrollbars are to be enabled. Can only be set to LIST or
CLUSTER.

• MAX_HEIGHT : Specifies the maximum height a CLUSTER or LIST can reach before a vertical scrollbar is
displayed.

<SCROLLBAR_CONFIG>
 <ENABLE_SCROLLBARS TYPE="LIST" MAX_HEIGHT="150" />
 <ENABLE_SCROLLBARS TYPE="CLUSTER" MAX_HEIGHT="100" />
</SCROLLBAR_CONFIG>

Figure 23. Scrollbar Configuration

Please note if the SCROLLBAR_CONFIG element is not specified no LIST or CLUSTER element will display
a vertical scrollbar.

Chapter 1. Cúram web client reference 39

PAGINATION
This element configures the LIST pagination options for the whole application. Individual lists can
override the global settings.
<PAGINATION ENABLED="true">
 <DEFAULT_PAGE_SIZE>15</DEFAULT_PAGE_SIZE>
 <PAGINATION_THRESHOLD>15</PAGINATION_THRESHOLD>
 </PAGINATION>

Figure 24. Sample Pagination Configuration

Table 2. Pagination configuration options

Option Name Required Default Description

ENABLED No true Enables the ability to page through lists
displayed in Cúram pages. Any LIST longer
than the configured minimum size will display
only the first "page" of data and the pagination
controls will be displayed below the list.

DEFAULT_PAGE_SIZE No 15 Specifies the page size the list will get by
default. The page size can be then changed at
runtime by the user.

PAGINATION_THRESHO
LD

No Based on
the
DEFAULT_P
AGE_SIZE
value.

Specifies the minimum list size at which
pagination will be enabled. For shorter lists
there will be no pagination, even if otherwise
pagination is switched on.

Custom resources
You can include custom files in the web application.

Complete the following steps to include files:

1. At the root of a component, created a folder called WebContent, for example <client-dir>/
components/MyComponent/WebContent.

2. Place files in this folder using any folder structure you wish.
3. When you run the client build target these files will be copied directly to the <client-dir>/
WebContent which represents the root of the web application. The folder structure will be maintained
during the copy.

Warning: Before you use this functionality, care should be taken to understand the effects. It is
advised to firstly view the generated WebContent folder (located webclient/WebContent) and
to be aware of what files exist in it. Placing a similar file in the WebContent folder of a component
overwrites the currently existing file in the generated WebContent folder.

Files included in the application in this way take precedence over the merging and overriding
process as described in previous sections for other resources. For example, if you include a CSS
file in this way, the contents of the file will not be included in the CSS overriding process described
in “Cascading stylesheets” on page 32.

The copying of custom resources occurs after other source artifacts are built and merged, so it is
possible to replace existing resources. Care should be taken in this case. For example, it would be
possible to have a component with a file in WebContent/WEB-INF/struts-config.xml that
would completely replace the Struts configuration file generated by the client build and therefore
break the application.

40 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

It is also important to note that the files placed in a WebContent folder within a component
are completely ignored during the build process and are not processed. They are merely copied
across. For example, if you have JavaScript properties file in the WebContent folder of your
component it will not be processed.

Finally, when multiple components have a WebContent folder they are copied based on
component priority, but the copy is time-stamp based. The copy command always uses verbose
output for these files so the developer can see exactly what files are being copied.

Localization
Use this information to learn about the various files that need to be updated when translating the
application into a new language.

To simplify the translation process, the language-specific parts of the application are separated out from
the application code.

Numbers
Numbers are language-specific and so a Cúram application treats numbers in a locale-specific manner
depending on the preferred language of the user.

For example, a decimal number can be represented as 7,99 or 7.99 depending on whether the user's
locale is French or English.

File encoding
By default, Cúram supports the development of applications that are localized into many languages. The
Cúram CDEJ generators support files encoded in the various character encodings appropriate for those
languages. Definition of the encoding for a file depends on the type of file. You must set the encoding for
the different types of supported files, that is, XML files, Java properties files, or other non-XML files.

XML files
Declare the encoding for XML format files explicitly within the first line of the XML file. The following
example shows the format of the XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

The previous example tells the XML parser that the file uses UTF-8 encoding. If you omit the XML
declaration, the parser assumes UTF-8 encoding by default. UTF-8 encoding is based on the Unicode
standard, and covers most modern languages and many other languages.

Ensure that the XML declaration matches the actual file encoding. The declaration identifies the encoding
but it does not determine the encoding. If you change the declaration, the file encoding does not change
automatically. If you use a specialized XML editor application, then it typically recognizes the declaration
and changes the file encoding for you. However, plain-text editors do not change the file encoding, so you
must ensure that you select the correct encoding in your editor before you save the file.

It is highly recommended that you use UTF-8 encoding for XML files.

Java properties files
Java properties files are used in the application, for example, to define the text strings that appear on
client screens. No equivalent of the explicit XML declaration exists for Java properties files. The client
generator assumes an encoding for the client properties files based on the default system encoding of the
computer that the build is running on. On a Microsoft Windows computer in Western Europe, for example,
the system encoding is probably Cp1252, the Windows variant of ISO-8859-1. This encoding handles the
accented characters of Western European languages but does not cover, for example, Cyrillic or Chinese
characters.

Chapter 1. Cúram web client reference 41

If you are building on a computer that does not share its system encoding with the files that are being
processed, you must set the ENCODING environment variable. For example, to build a Chinese language
web client application on an English language Microsoft Windows computer, you might choose to save
your properties files in the UTF-8 encoding. Set the ENCODING environment variable to UTF-8. During the
build, you can see that the generator overrides its normal default setting:
System encoding is Cp1252.
Using encoding UTF-8 to read properties files.

The Java Runtime Environment always assumes that properties files use the ISO-8859-1 encoding, which
does not suit if you want to use the UTF-8 encoding for localization to, for example, Chinese. To overcome
this limitation, the Cúram CDEJ automatically translates properties files from your preferred encoding into
the encoding required by Java. Your preferred encoding might be either the system default encoding, or
the encoding specified by the ENCODING environment variable. This is translation is done automatically
during the build process and your original properties files are not affected.

Troubleshooting: Where a properties file has been saved in UTF-8 encoding, and this does not match the
system encoding, build failures can occur. The build failure will report a PageGenerationException,
where the build could not find a property even though the property exists in the relevant file. This happens
where the properties file has been saved by a UTF-8 editor which adds the Byte Order Mark (BOM) at the
beginning of the file. The property reported in the error is the first property in the file. To resolve the issue,
save the file should be saved in the correct encoding, ensuring the BOM character was removed.

Note: The properties files shipped by default with Cúram use ISO-8859-1 encoding, and where necessary
use Unicode characters.

Non-XML files
The non-XML files in the Cúram Reference Application are encoded in the ASCII encoding. ASCII has the
useful property of being a subset of most other common file encodings. This means you do not generally
need to convert the English language files that ship with the default Cúram application in a new encoding
to build them in a different language environment.

Locales
The Java locale identifier is used in the Social Program Management application to identify locales. Most
locale-specific information in the application are contained in properties files. For example, "en" (English
language) or "en_US" (English language for the United States) are valid locales.

A Java locale identifier has three parts. The language code is required, but the other parts are optional.
The individual parts are separated by an underscore character.

Language
A lower-case, two-letter, ISO-639 code.

Country
An upper-case, two-letter, ISO-3166 code.

Variant
A vendor-specific or browser-specific code.

Non-JavaScript property files
To localize Non-JavaScript property files in the application, you must create properties files for each
locale. The files for the default locale are named SomeFile.properties. Identify the other locales by
appending an "_" (underscore) character and the locale identifier to the end of the file name.

For example, SomeFile_es.properties would be the name of the Spanish language version of
SomeFile.properties.

If the application does not find a property in SomeFile_es.properties, it then searches the default
locale SomeFile.properties file.

42 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

After you add localized .properties files, update the LOCALE_LIST environment variable. This variable
defines the list of locales for the client build. For example, set LOCALE_LIST to "en,es" for a default
English language application and a Spanish language application. For more information about this setting,
see “Client application locales” on page 17.

The merging of localized properties files from different components is the same as for default locale
properties files. For more information about the merging of properties files, see “UIM externalized
strings” on page 43.

JavaScript property files
To localize JavaScript files in the application, you must create JavaScript property files for each locale.
The files for the default locale are named *.js.properties. Identify the other locales by appending an
"_" (underscore) character and the locale identifier to the .js extension.

For example, SomeJSFile.js_es.properties is the Spanish language version of
SomeJSFile.js.properties file. This file is automatically processed by a client build. If a property
is not found by the application in SomeJSFile.js_es.properties file, then the property from
SomeJSFile.js.properties is used.

Language toggle
You can configure whether internal users can change their default locale to update the language in which
field labels, tabs, and shortcut menu items are displayed.

The Social Program Management application language is displayed to internal users in their default locale.
On request, administrators can change any internal user’s default locale to any language that is included
in your installation of the application. When an administrator changes a user's default locale, all enabled
locales from the Locale code table are displayed for selection. Therefore, ensure that you enable locale
codes only for installed languages.

By setting an application property, administrators can enable a Language menu item to globally display
in the application menu for all application views. When the property is enabled, internal users can
change the language of their application view. To make the Language menu item available in the
application menu so that internal users can change their own default locale, set the application property
curam.environment.app.menu.locale.toggle.enabled. Setting the application property enables
the Language menu item globally for all application views.

Note: Although the Language menu item is available for all application views, we recommend that internal
users do not change the language of application views that include the following functionality. This
functionality is available only in the English language.

• IBM Cúram Income Support application module
• IBM Cúram Child Welfare Structured Decision Making (SDM) add-on module

We also recommend that administrator users do not change the language of administration applications
because these application views contain features that do not currently support localization.

UIM externalized strings
All string values in UIM files are externalized to .properties files.

For an overview of externalized strings, see “Externalized strings” on page 28.

If MyPage.uim is the UIM file, then MyPage.properties is the corresponding properties file. For more
information about adding localized properties files, see “Locales” on page 42.

The strings are stored in a properties file in the same folder as the page or view file, with the same
name and a .properties extension. For example, for a MyPage.uim file, the strings are stored in the
MyPage.properties file in the same folder. Similarly, for the MyView.vim file, the strings are stored in
the MyView.propertiesfile.

Chapter 1. Cúram web client reference 43

While UIM documents in the highest priority component override those documents in all other
components, properties files in different components are merged in two separate steps. The component
order is applied for each properties file, and then the page-view order applied to the resulting properties.

• Individual properties override those with the same property name in lower priority components.
• When a UIM page includes a UIM view (a .vim file), the properties for both the page and the view are

merged. Where properties share a name, the page properties override the view properties, even if the
view property is defined in a higher priority component.

Related reference
Externalized strings
All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

JavaScript externalized strings
All string values in JavaScript files are externalized to JavaScript property files (.js.properties files).

For an overview of externalized strings, see “Externalized strings” on page 28.

By convention, the name of the resource file for your JavaScript must be derived from name of the .js
file. For example, if your JavaScript file is called SomeJSFile.js then related localizable resources are
in the SomeJSFile.js.properties file. A *.js.properties file can be anywhere in the component
directory, but by convention it is the same directory as the related *.js file.

The exception is that a *.js file within a WebContent directory cannot have its associated
*.js.properties file within the same directory. The associated *.js.properties file must be in
a directory outside the WebContent directory.

For more information about adding localized JavaScript properties files, see “Locales” on page 42.

JavaScript properties files with the same name across all components are merged during processing. Any
property with the same name is overwritten by the highest component in the component order.

Placeholders in property values are supported. The placeholders must be in the format %ns or '%ns',
where n represents an integer from 1...n, and n must be within a defined range. The range is defined by
the number of placeholders in a property value.

For example, three placeholders in a property value must be numbered in the range 1 - 3, giving %1s, %2s,
%3s. Anything outside this range is not supported.

Related reference
Externalized strings
All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

Accessing properties in JavaScript
Complete these 3 steps to access a JavaScript property.

About this task
In the examples, curam.application is the default package into which all localizable resources are
placed by the Curam infrastructure. SomeJSFile is derived from the name of the related JavaScript
properties file.

Procedure
1. Load the resources using dojo.requireLocalization().

44 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

dojo.requireLocalization("curam.application", "SomeJSFile");

2. Create an instance of the curam.util.ResourceBundle object to be able to access the localized
resources.

dojo.require("curam.util.ResourceBundle");
var bundle = new curam.util.ResourceBundle("SomeJSFile");

3. Use the getProperty() method to access a property on the instantiated ResourceBundle.
This example shows how to get a property and how to get a substituted property with two
substitutions.

var localizedMessage = bundle.getProperty("myPropertyKey");
var localizedMessageWithSubstitutions
 = bundle.getProperty("my.sub.key", ["a", "b"]);

Image.properties
The Image.properties file is localized in the same way as other properties files. Place the localized
properties file in the same directory as the Image.properties file.

For more information about images, see “Images” on page 29.

For more information about localizing properties files, see “Locales” on page 42.

If the application does not find a property in a localized properties file, it checks the default locale
properties file. This is generally true for all properties files but it is particularly useful in the case of
Image.properties, where only images that contain text need to be localized. Properties for images
without text can be defined once in the default locale properties file and they are picked up in all locales.

Infrastructure widget properties files
Review the list of properties files that are associated with Infrastructure widgets. For example, the
AgendaPlayer.properties file is associated with the AgendaConfig.xml file, which defines the
Agenda Player widget.

• AgendaPlayer.properties
• BarChart.properties
• Calendar.properties
• ComparedEvidence.properties
• DateTimeSelector.properties
• DecisionMatrixAddMessage.properties
• DisplayEvidence.properties
• EvidenceComparison.properties
• EvidenceReview.properties
• EvidenceTabContainer.properties
• FrequencyPatternSelector.properties
• GanttChart.properties
• IEGPlayer.properties
• Logon.properties
• MeetingView.properties
• PaymentStatement.properties
• RatesTable.properties
• Rules.properties
• TypicalPictureEditor.properties

Chapter 1. Cúram web client reference 45

• Workflow.properties
• FileEdit.properties

Note: The names of the properties files that are associated with infrastructure widgets are reserved
names and must not be used for the name of any other client properties file. No warning is printed to the
console in this scenario, so you must take care when you name new properties files.

To customize a widget properties file, create a new version under the webclient/components/custom
component folder. The default content for the file can be found in the corresponding sample widget
properties file in the <cdej-dir>/doc/defaultproperties/ folder. For each entry in the default
version of the file you want to change, add a corresponding entry to your custom file. For more information
about localizing these properties files, see “Locales” on page 42.

Frequency Pattern Selector localization
The Frequency Pattern Selector infrastructure widget is used to construct frequency patterns such as the
first day of every 1 month(s).

This sentence is made up of fixed text from its associated FrequencyPatternSelector.properties
file and values that are selected from an input field and two drop-downs in the widget. You can see an
example frequency pattern in “Frequency Pattern Selector” on page 141.

Because of grammar differences between languages, the construction of this example frequency pattern
sentence can be dramatically changed in other languages. For example, the values that are selected by
a user can be reordered. Therefore, placeholders represent user-selected values so that you can localize
every frequency pattern as "whole" into all properties in the properties file.

The example frequency pattern contains this property entry from
FrequencyPatternSelector.properties.

Text.monthly.freq.type.two= The %ordinal% %dayOfWeekExtended%
 of every %monthInterval% month(s)

The %ordinal%, %dayOfWeekExtended%, and %monthInterval% strings in this property entry are the
placeholders that map to the values to be selected from two drop-downs and one input field in the
widget.

To use these placeholders properly, you must follow two rules:

The placeholders control the layout of the widget

Any change of the location of a placeholder in a localized text for a certain frequency pattern causes
the change of the layout of this frequency pattern to be displayed on the Frequency Pattern Selector
widget.

The placeholders that can be used for every frequency pattern are fixed

You cannot add change, add, or remove placeholders for a frequency pattern.

The following table lists a description of all the placeholders that are used in the properties file of this
widget.

Table 3. Placeholders used in Frequency Pattern Selector

Placeholder Name Description

%dayInterval% A day interval. It maps to an input field where you can enter a
number for a day interval for a frequency pattern.

%weekInterval% A week interval. It maps to an input field where you can enter
a number for a week interval for a frequency pattern.

46 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 3. Placeholders used in Frequency Pattern Selector (continued)

Placeholder Name Description

%dayOfWeek% A set of days in a week. It maps to a collection of check boxes
where you can multi select the days in a week for a frequency
pattern.

%dayOfWeekExtended% An extension of the values that are represented by
%dayOfWeek%, which also includes the weekday, weekend
day and day value. It maps to a drop-down where you can
select one of those day values for a frequency pattern.

%monthInterval% A month interval. It maps to an input field where you can
enter a number for a month interval for a frequency pattern.

%ordinal% An ordinal, such as first or second. It maps to a drop-down
where you can select an ordinal for a frequency pattern.

%dayIntervalOne%,
%dayIntervalTwo%

Two day intervals in a frequency pattern. They are to be used
together and map to two input fields where you can enter
numbers for two day intervals for a frequency pattern.

%ordinalOne%, %ordinalTwo% Two ordinals in a frequency pattern. They are to be used
together and map to two drop-downs where you can select
two ordinals for a frequency pattern.

%monthOfYear% A month in a calendar year. It maps to a drop-down where
you can select a month for a frequency pattern.

The placeholders for each frequency pattern are fixed, so you must ensure that you use them properly
when you localize properties in the widget properties file. Aside from the placeholders, customizing the
widget properties file is the same as the other infrastructure widgets. The following table lists all the
properties and the placeholders they contain for every frequency pattern sentence that is displayed on
the Frequency Pattern Selector.

Table 4. Properties of the Frequency Pattern Selector

Property Name Placeholders

Text.daily.freq.type.one %dayInterval%

Text.daily.freq.type.two None.

Text.weekly.freq.type %weekInterval%, %dayOfWeek%

Text.monthly.freq.type.one %dayInterval%, %monthInterval%

Text.monthly.freq.type.two %ordinal%, %dayOfWeekExtended%,
%monthInterval%

Text.bimonthly.freq.type.one %dayIntervalOne%, %dayIntervalTwo%

Text.bimonthly.freq.type.two %ordinalOne%, %ordinalTwo%, %dayOfWeek%

Text.yearly.freq.type.one %monthOfYear%, %dayInterval%

Chapter 1. Cúram web client reference 47

Table 4. Properties of the Frequency Pattern Selector (continued)

Property Name Placeholders

Text.yearly.freq.type.two %ordinal%, %dayOfWeekExtended%,
%monthOfYear%

CDEJResources.properties
This properties file can be localized. For more information, see Locales. Images defined in this file can
also be customized per locale.

Related reference
Optimal browser support
A number of browsers and a range of browser versions are supported for use with IBM Cúram Social
Program Management. The default settings for web browser versions align with the versions supported
by IBM for external applications. Users can be notified when they are not using the optimal version of a
supported web browser. You can configure the range of supported versions for a browser, the message
that users see, and the frequency at which the message is displayed.
Locales
The Java locale identifier is used in the Social Program Management application to identify locales. Most
locale-specific information in the application are contained in properties files. For example, "en" (English
language) or "en_US" (English language for the United States) are valid locales.

ApplicationConfiguration.properties
This properties file does not, in itself, need to be localized but there are a couple of settings within this
file which are related to the localization of date and address formatting. See “Application configuration
properties” on page 23 for details.

Application-wide menu
To localize the application-wide menu menu, set the LABEL attribute of the LINK element to a
key into the CDEJResources.properties file. Then include the key in the localized version of
CDEJResources.properties.

The contents of the application-wide menu are defined in curam-config.xml. For non-translated
applications, you can put the text that will appear on screen directly into this file, in the LABEL
attribute of the LINK element. However, that approach, is not suitable if the application should
be viewable in multiple languages. The application checks if the LABEL attribute is a key into the
CDEJResources.properties file. If it finds the key, it will use the corresponding value in the menu.

To localize the menu, include the same key in the localized version of . For information about how to
localize properties files such as CDEJResources.properties, see “Locales” on page 42.

Tabbed configuration artifacts
Each tabbed configuration artifact has a corresponding properties file for any text that is localizable. To
localize this text for a specific language, you must add the locale-specific properties file in the same
directory as its associated tabbed configuration artifact in your <custom> component.

These properties file can be localized as per “Locales” on page 42.

Runtime messages
The CDEJ runtime messages can be localized or customized by creating a
RuntimeMessages.properties file within the <client-dir>/components/<component_name>
folder. The default content for this file can be found in the <cdej-dir>/doc/

48 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

defaultproperties/ folder. Messages in this file override the corresponding messages from the
RuntimeMessages.properties that is included with the CDEJ.

Use the standard file naming convention for Java properties files to add locale-specific messages. For
example, to create a Spanish version, create RuntimeMessages_es.properties file.

You don't need to copy all of the messages into the custom message catalog when customizing only some
of them. Only the messages that are customized need to be defined in the custom message catalog. The
other messages are loaded from the default message catalog.

When resolving error messages, the custom message catalog is checked first and all the locale fall-backs
are applied. If a message is not found, then the default message catalog from the CDEJ is checked.
Therefore, a message in a custom message catalog will take precedence over one in a default catalog
even if the locale of the default catalog is more specific.

When customizing a message, the message argument placeholders cannot be changed. The message
argument placeholders have the form %ns where n is the argument number. The message arguments
can be moved around and their order changed, but no new arguments may be added and none may be
removed.

Application configuration
An application is a collection of user interface elements, based on UIM pages or Carbon components,
that are combined to create content for a specific user or role. You create web client applications by
configuring application configuration files.

An application typically consists of an application banner and one or more application sections. Each
section contains an optional section shortcut panel and one or more tabs. A tab represents a business
object or logical grouping of information. You can configure an application by using the relevant XML
configuration files.

Behavior of dropdowns
The behavior of dropdowns depends on whether you use code table hierarchies or Carbon combination
boxes. For more information about Carbon, see the Carbon Design System related link.

The following table outlines the different behaviors between dropdowns that use code table hierarchies
and those that use Carbon combination boxes.

Code table hierarchy dropdowns Carbon combination boxes

To open a dropdown, the user must click the
chevron directly.

To open the menu, the user can click anywhere or
use the keyboard to Tab-focus on the field.

Filtering the list of options filters by strings that
‘start with’ the entered text.

Instead of filtering, the combination box highlights
the best match that is based on options that
‘contain’ the entered text.

There is no Clear button. There is a Clear button.

The selected item in the menu is not indicated
by a checkmark and there is no background color
change.

The selected item in the menu is indicated by a
checkmark and a background color change.

When the user types into a dropdown to filter
the items and moves focus without an explicit
selection, the matching or highlighted item is
selected automatically. Where there is no matching
item, the text remains in the field as entered by the
user. There is no selection form the menu, that is,
an invalid value is possible.

Users must explicitly select by using the Enter key
or by clicking with the mouse. If users don't select
a value, the entered text is cleared when focus is
moved away from the field.

Chapter 1. Cúram web client reference 49

Code table hierarchy dropdowns Carbon combination boxes

As the user enters text to filter options, the
matching string of characters in the list of options
are highlighted.

As the user enters text to filter options, the
matching string of characters in the list of options
are not highlighted.

On focus, the dropdown does not highlight options
in the menu.

On focus, the dropdown highlights options in the
menu.

Related concepts
Social Program Management applications
When a user logs in to IBM Cúram Social Program Management, they are presented with a view that is
specific to their role, which is an application. An application is a collection of user interface elements,
mostly based on UIM pages, combined to create specific content for a particular user or role.
Application user interface overview
The application user interface contains elements that are implemented through user interface metadata
or Carbon components.
Related reference
UIM reference
User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Cúram
Social Program Management web application client pages. UIM files must be well-formed XML.
Related information
IBM Carbon Design System v10

Configuration files
Configure applications, sections, tabs and related elements in XML-based configuration files.

The configuration files are in the <server-dir>\components\<component-name>\clientapps
directory. See “Application configuration files” on page 33 for more information about the clientapps
directory, and best practices for working with application configuration files.

Each configuration file has a specific extension and an associated schema file detailing the supported
attributes. The following table provides a summary of the file extensions and related schema files.

Table 5. Configuration Files

File
Extensi
on

Schema File Description

.app application-view.xsd Configuration file to define an application, including
the application banner, referenced sections and
application search.

.sec section.xsd Configuration file to define the referenced tabs and
section shortcut panel in a section.

.ssp section-shortcut-panel.xsd Configuration file to define the contents of a
section shortcut panel.

.tab tab.xsd Configuration file to define a tab, including the
context panel and referenced navigation and
actions menu.

.nav navigation.xsd Configuration file to define the content of a tab
navigation bar.

.mnu menubar.xsd Configuration file to define the content of a tab
actions menu.

50 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

https://v10.carbondesignsystem.com

The schema files are all located in the <sdej-dir>\lib directory and can be used during development
for validation in any XML editor.

The configuration files for applications, sections and tabs are processed as part of the database target
and stored on the database for use at runtime. A standalone target, inserttabconfiguration, is also
available for processing the configuration files only. This command is useful during development because
it is more efficient than the full database target. For more information on these targets, see the Cúram
Server Developers Guide.

The inserttabconfiguration validates all the configuration files, ensuring that they conform to the
XML schema, in addition to ensuring that all mandatory elements and attributes are specified. All files are
processed before the build fails, listing all validation errors.

Web client properties
Configure the title that is displayed in the browser tab in the CDEJResources.properties file. The
CDEJResources.properties file contains values for properties that are used throughout the web
client.

The core file is located in %CURAM_DIR%
\CuramCDEJ\doc\defaultproperties\curam\omega3\i18n. %CURAM_DIR% is the Cúram
installation directory, which by default is C:\IBM\Curam\Development.

This properties file can be localized as per Locales. Images defined in this file can also be customized per
locale.

Customizing the CDEJResources.properties file
To customize the CDEJResources.properties file, use the procedure that is outlined in the following task.

Procedure
1. Create a custom copy in the custom component, for example, webclient\components\custom.
2. Include only the properties that are being overridden.

Configuring the browser title
To customize the browser title, configure the properties that are outlined in the following task.

Procedure
• Add the properties from the following list to the custom CDEJResources.Properties file:

browser.tab.title
Defines the application name that is used in the browser tab title.

browser.tab.title.separator
Defines the text that is used to separate the page title and application name strings.

browser.tab.title.application.name.first
Controls whether the browser tab title displays the application name before the current page title.

Applications
An application is a view that is defined for a specific user or role. The application definition file details the
application banner and a reference to the sections that are part of the application.

An application banner provides the user with the context of the application they are currently accessing.
The banner contains the following elements:

• The name of the application.
• The role of the user that this application is intended for.

Chapter 1. Cúram web client reference 51

• A welcome message for the user.
• An application menu, which includes links to the User Preferences dialog, application help, the about

box, and to logout of the application.
• A configurable application logo, which defaults to the IBM logo, placed at the far right of the application

banner. It can be customized or removed.
• A quick search facility for the application.

The application search is an optional addition to the application banner that provides a quick search
facility. The application search supports:

• A text entry field where the user can enter their search criteria.
• An optional search type combobox, which lists the types of object that you can search for.
• A search button to trigger the actual search.
• An optional link to more search options.

Application definition
An application is defined by creating an XML file with the extension .app in the clientapps directory.

The root XML element in the .app file is the application element and the attributes allowed on this
element are defined in the following table. The application banner is configured by using these attributes.

Table 6. Attributes of the application Element

Attribute Description

id Mandatory.

The unique identifier for the application, which must match the name of
the file. This id matches to an APPLICATION_CODE entry and is used to
determine the application to display for a particular user.

See “Associate an application with a user” on page 61 for more
information.

title Optional.

The text for the title that will be displayed as part of the application
banner. The attribute must reference an entry in the associated
properties file.

sub-title Optional.

The text for the subtitle that will be displayed as part of the application
banner. The attribute must reference an entry in the associated
properties file.

user-message Optional.

The text for the welcome message that will be displayed as part of
the application banner. The attribute must reference an entry in the
associated properties file.

The text can contain a placeholder, %user-full-name, which will be
replaced with the users full name. The full name is determined based
on the FirstName and Surname fields on the Users database table.

hide-tab-container Optional.

When set to true, this indicates that there is only one section in the
application and the section tab should not be displayed. The default is
false.

52 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 6. Attributes of the application Element (continued)

Attribute Description

header-type Optional.

This indicates that an additional header is to be used and what type of
content will be provided. The values supported are static and dynamic.

See “Application optional header” on page 60 for more information.

header-source Optional.

A reference to the source that will be used as an additional header. The
value of this depends on the value of header-type. For static content,
the attribute should reference a filename of a file in the resource store.
For dynamic content, the attribute should reference a custom widget.

See “Application optional header” on page 60 for more information.

logo Optional.

A reference to the path of an image, e.g. CDEJ/themes/v6/images/large-
application-logo.png or an image name, e.g. large-application-logo.png,
where the named image is stored in the application resource store.
This is used to configure a custom application logo displayed at the far
right of the application banner. The custom application logo will only be
displayed when the attribute logo-required is set to true, otherwise
this setting is ignored.

Note: Only images with the same height as the default IBM logo
(26 pixels in the internal application and 61 pixels in the external
application) are supported.

logo-alt-text Optional.

The alternative text for the custom application logo specified by the
attribute logo. It is only used when the custom application logo is
displayed on the application banner. Otherwise, the setting for this
attribute is ignored.

logo-required Optional.

When set to true, in conjunction with the logo attribute, the referenced
custom application logo is displayed. When set to false, the application
logo is not displayed on the application banner.

Context Optional.

The unique textual value that allows for specifying the content shaping
rules for the particular application. The value matches an entry in the
ApplicationContext table and is used by the context-aware page objects
and widgets to determine the relevant content. For more information,
see Application Context.

The application element supports the child elements detailed in “Application definition” on page 52.

Chapter 1. Cúram web client reference 53

Table 7. Supported Child Elements of the application Element

Element Description

section-ref 1..n.

The application must contain a minimum of one section-ref
element. Each section-ref element references a section to be
included in the application. See “Application section-ref element” on
page 57 for more information.

application-menu Optional.

Allows for the optional addition of links to the application banner. The
links supported include the user preferences editor and application
logout. See “Application application-menu element” on page 54 for
more information.

application-search Optional.

Allows for the optional addition of a quick search facility on the
application banner. See “Application application-search element ” on
page 54 for more information.

timeout-warning Optional.

Allows for the optional addition of a session timeout modal dialog.
See “Application timeout-warning element” on page 57 for more
information.

Application application-menu element
The application menu forms part of the application banner, and allows for the optional addition of up to
two links; a link to log out of the application and a link to open the user preferences dialog.

Each link is defined as a child element of application-menu element and the supported elements are
detailed in the following table.

Table 8. Supported child elements of the application-menu element

Element Description

preferences Optional.

Defines a link to the user preferences dialog. This dialog allows a user to
configure customizations for the application view.

The title of the preferences link is defined using the supported title
attribute. The value of the title attribute should be a reference to an
entry in the associated properties file.

logout Optional.

Defines a link to allow a user to end their session and logout of the
application.

The title of the logout link is defined using the supported title
attribute. The value of the title attribute should be a reference to an
entry in the associated properties file.

Application application-search element
To define the application search, use the application-search element.

In its simplest form, the application-search element requires two attributes, which are used when only
one type of search is available and no combination box is to be displayed:

54 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 9. Attributes of the application-search element

Attribute Description

default-search-page Optional.

A reference to the UIM page that is displayed when users click Search.

When this attribute is used, it is assumed that there is only one type of
search and no search type combination box is displayed.

initial-text Optional.

The text to be displayed in the field as a prompt. This text describes
what type of information can be provided for the search, for example,
Enter a participant reference number.

The attribute must reference an entry in the associated properties file.

Note: smart-navigator is an optional element that enables IBM Cúram Smart Navigator (quick-
search="true") when added to the element application-search of the *.app files. For more information,
see Enabling or disabling IBM® Cúram Smart Navigator by changing the .app files. You cannot use the
attributes default-search-page and initial-text with smart-navigator.

If you want default-search-page enabled with smart-navigator, then you must add smart-navigator by
using the search-pages child element within the application-search element.

The application-search element supports two child elements that are used for more complex style
searches, as shown in the following table.

Table 10. Supported child elements of the application-search element

Element Description

search-pages Optional.

Defines multiple types of search, see “search-pages” on page 55.

further-options-link Optional.

Defines a link to a more advanced search page, see “further-options-
link” on page 56.

search-pages
The search-pages element is used when multiple search types are needed, for example, Person, Case, or
types of search. Other search types are Person Surname and Person Reference Number. Each search
type is listed in a combination box and a different prompt is displayed in the field depending on the
selected entry in the combination box.

The search-pages element supports the child elements that are detailed in table 3.

Table 11. Supported child elements of the search-pages element

Element Description

search-page 1..n.

Defines a single search type. The attributes of the search-page element
are defined in Table 12 on page 56.

Note: Where the search-pages element is used to define multiple types of search, the initial-text and
default-search-page must not be specified.

Chapter 1. Cúram web client reference 55

Table 12. Attributes of the search-page element

Attribute Description

type Mandatory.

The unique identifier for the type of search, it is passed as a parameter
(searchType) to the UIM page that is started when the application search
is completed.

description Mandatory.

The text to be displayed for the search option in the combination box.
The attribute must reference an entry in the associated properties file.

page-id Mandatory.

A reference to a UIM page that is displayed when a user clicks Search.

initial-text Mandatory.

The text to be displayed as a prompt in the field when that business
object is selected in the combination box. The attribute must reference
an entry in the associated properties file.

default Optional.

A Boolean indicating whether this entry is the default entry to be
selected in the combination box. Only one entry can specify the default
as true.

Note: Blank values are not allowed in the search type combination box. If the user requires a generic
search (for example, across all business objects), they must provide configuration data for this search. For
example, a business object of "All" linked to a page that searches across all of the business objects that
are defined.

Search pages are linked by using a reference to the UIM page to be opened when a user clicks Search is
clicked. The UIM pages that are defined for a search can expect a number of parameters to be passed to
them and used as part of the search:

• searchText

The search text that a user enters in the field.
• searchType

The selected search type. searchType is applicable only where multiple search types are defined.

For more information about creating UIM pages, see “UIM reference” on page 225.

further-options-link
In addition to multiple search types, the application search also supports a link to a more advanced
search page. This search is specified by using the further-options-link element, which requires the
attributes that are listed in table 5.

Table 13. Attributes of the further-options element

Attribute Description

description Mandatory.

The text of the link. The attribute must reference an entry in the
associated properties file.

56 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 13. Attributes of the further-options element (continued)

Attribute Description

page-id Mandatory.

A reference to a UIM page that is displayed when the link is clicked. This
UIM page requires no page parameters.

Related reference
Cúram REST configuration properties
Enabling or disabling IBM Cúram Smart Navigator by changing the .app files
You can enable or disable Smart Navigator for all user roles by changing the *.app files at build time.

Application section-ref element
An application must reference a minimum of one section, and up to a maximum of five sections, by using
the section-ref element.

See “Sections” on page 79 for more information.

Table 14. Attributes of the section-ref element

Attribute Description

id Mandatory.

The id of a section configuration file (.sec).

Application timeout-warning element
Define the session timeout warning by using the timeout-warning element.

In its simplest form, the timeout-warning element does not require any mandatory attributes. If
attributes are omitted default values will be used.

A browser session is timed from when data was most recently sent to or received from the server. In some
cases, a user might enter much data into the application without realizing that the current session has
timed out. When the user does initiate a server call, for example to submit the entered data, the browser
prompts the user to reauthenticate to the application. Therefore, the user loses all the data that the user
had entered into the application. To prevent users from losing data when their session times out, you can
configure a session timeout warning.

Table 15. Attributes of the timeout-warning element

Attribute Description

title Optional.

Configures the title on the session timeout warning dialog.

A reference to a property within the associated properties file. This value
is used to display the title on the timeout warning dialog.

user-message Optional.

Configures the main user message on the session timeout warning
dialog.

A reference to a property within the associated properties file. This value
is used to display the main user message within the timeout warning
dialog.

Chapter 1. Cúram web client reference 57

Table 15. Attributes of the timeout-warning element (continued)

Attribute Description

quit-button Optional.

Configures the text on the quit button of the session timeout warning
dialog.

A reference to a property within the associated properties file. This value
is used to display the text on the quit button within the timeout warning
dialog.

continue-button Optional.

Configures the text on the continue button of the session timeout
warning dialog.

A reference to a property within the associated properties file. This value
is used to display the text on the continue button within the timeout
warning dialog.

width Optional.

Configures the width of the session timeout warning dialog.

A reference to the width of the timeout warning dialog, in pixels.

height Optional.

Configures the height of the session timeout warning dialog.

A reference to the height of the timeout warning dialog, in pixels.

timeout Optional.

Configures the period of time in seconds that the user has to take action
within the timeout warning dialog.

A reference to the period of time in seconds that the user has to take
action within the dialog before the session expires. The countdown timer
displayed within the modal will start at this value and countdown to 0:0
until the session times out.

Application context
The application context parameter is specified and configured at the user application level and used by
infrastructure, context-aware tags, and renderers to shape the final output (content) according to the
application specifics. Application Context ensures batch reusability of UIM pages where most of the page
flow and business logic can be shared by separate applications with only content variations across them.

Configuring application context and code tables
The only part of the infrastructure that is context-aware at the moment is the code table infrastructure.
The following text describes how to configure the application context and code table infrastructure to
achieve the code table content appropriate for the current application context.

Application context is added as an attribute in the required application view, *.app file. An example of
root element is as follows:

<ac:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ac="http://www.curamsoftware.com/curam/util/client/application-
config"
 id=“SampleApp"
 logo=“SampleApp.logo"
 logo-alt-text=“SampleApp.logoAltText"
 curam-logo=“SampleApp.curamLogo"

58 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 title=“SampleApp.title"
 subtitle=“SampleApp.subtitle"
 user-message=“SampleApp.UserMessage"
 context=“AppCTX1”>

The parameter has the following characteristics:

• Optional.
• Is code table code from the ApplicationContext code table.
• Must be made known to the infrastructure as described in the sample XML.

To set up the new application context value into the system, it must be declared in the ApplicationContext
code table by adding or editing the appropriate ApplicationContext.ctx file. The table fragment with
the new context value can be declared in the component under design, as this code table is merged by
using the same rules as other code tables the Cúram application.

The sample XML for the ApplicationContext code table addition.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.util.codetable">
 <codetable java_identifier="ApplicationContext" name="ApplicationContext">
 <code default="true" java_identifier=“Sample1” status="ENABLED" value=“AppCTX1”>
 <locale language="en" sort_order="0">
 <description>Sample Application Context 1</description>
 <annotation></annotation>
 </locale>
 </code>
 <code default="true" java_identifier=“Sample2” status="ENABLED" value=“AppCTX2”>
 <locale language="en" sort_order="0">
 <description>Sample Application Context 2</description>
 <annotation></annotation>
 </locale>
 </code>
 </codetable>
</codetables>

The description part is used for display and explanatory purposes. The code must match both the setting
in the related application view (the ‘context’ attribute in the sample .app) and the code tables views that
support this application context.

Code table Views that use the Application Context
The context parameter is supported by the code table infrastructure and displays the different set of
codes relevant in the active context.

A view is created for a code table that contains the code table codes and values specific for a particular
application context. The example context-aware code table describes two such views with different sets
of code table codes, one for an application context of "AppCTX1" and the other with an application context
of "AppCTX2".

If an application has a specified context (for example, "AppCTX1") and the example context-aware code
table is accessed, the infrastructure ensures that only the code table codes for that particular context
(for example, "cval1", "cval2" and "cval5") are returned when that code table is accessed within that
application. If no context is specified for that application, all of the codes for that code table are returned.

Sample XML of the context-aware code table.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package=“sample.package”>
 <codetable java_identifier=“SAMPLE” name=“SampleCodes”>
 <code default="true" java_identifier="" status="ENABLED" value=“cval1”>
 <locale language="en" sort_order="0">
 <description>Description 1</description>
 <annotation/>
 </locale>
 …
 </code>
 …

Chapter 1. Cúram web client reference 59

 <code default="false" java_identifier="" status="ENABLED" value=“cval7”>
 <locale language="en" sort_order="0">
 <description>Description 7</description>
 <annotation/>
 </locale>
 </code>

 <views>
 <view context=“AppCTX1” default_code=“cval5”>
 <code value=“cval1”/>
 <code value=“cval2”/>
 <code value="cval5"/>
 </view>
 <view context=“AppCTX2” default_code=“cval3”>
 <code value=“cval2”/>
 <code value=“cval3”/>
 </view>
 </views>

 </codetable>
</codetables>

A code table might specify as many views for different contexts provided the contexts are properly
introduced in the ApplicationContext code table. For more details on code table views and the meta data
elements and attributes, see Code Table Files.

Related reference
Code table files

Application optional header
You can specify a custom header in addition to, or instead of, the application banner. Define the optional
header by using the header-type and header-source attributes on the application element.
Define the optional header as either a static HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optional attributes of the
applications element, as listed in “Application definition” on page 52, should be omitted.

The header-type attribute is restricted to the values static or dynamic. Setting a static value indicates
that a HTML fragment is to be placed within the header. In this instance, the header-source attribute
should reference a file that is stored in the resource store. This file must be stored with a content type of
text/xml.

If the header-type attribute is set to dynamic, the header-source attribute should reference the
custom widget to be used to display the content. This reference will be the same as that specified with
the relevant styles-config.xml. For more information on creating and referencing custom widgets
please consult the Cúram Custom Widget Development Guide.

Whether a custom widget or HTML fragment is used it must always start with a <div> element.

Application example
This example shows an application that is stored in a file called SimpleApp.app.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application
 id="SimpleApp"
 logo="SimpleApp.logo"
 title="SimpleApp.title"
 subtitle="SimpleApp.subtitle"
 user-message="SimpleApp.UserMessage">

 <ac:application-menu>
 <ac:preferences title="preferences.title"/>
 <ac:help title="help.title"/>
 <ac:logout title="logout.title"/>
 </ac:application-menu>

 <ac:application-search>
 <ac:search-pages>
 <ac:search-page type="SAS01"
 description="Search.Person.LastName.Description"

60 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 page-id="Person_searchResolver"
 initial-text="Search.Person.LastName.InitialText"
 default="true"/>
 <ac:search-page type="SAS02"
 description="Search.Person.Gender.Description"
 page-id="Person_listByGender"
 initial-text="Search.Person.Gender.InitialText" />
 </ac:search-pages>
 <ac:further-options-link
 description="Search.Further.Options.Link.Description"
 page-id="Person_search" />
 </ac:application-search>

 <ac:section-ref id="SimpleHomeSection"/>
 <ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Note: In the above example a namespace, ac has been declared and all elements are prefixed with the
namespace. This is recommended practice. Consult “Application configuration files” on page 33 for more
information.

The SimpleApp.app must have a corresponding SimpleApp.properties file, which details the
localizable content. For example:

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=Cúram
SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout
Search.Person.LastName.Description=Surname
Search.Person.LastName.InitialText=Enter surname to search for
Search.Person.Gender.Description=Gender
Search.Person.Gender.InitialText=Enter gender to search for
Search.Further.Options.Link.Description=Advanced Search

In the above example, the Cúram logo image is referencing the default logo image shipped with the
Cúram Client Development Environment (CDEJ). A custom logo can be added to the Images folder in the
component and referenced directly as Images/my-custom-logo.png.

Note: In the properties file for the SimpleApp.app example, the ú in Cúram is added using the Unicode
escape sequence. An alternative approach is to add the ú directly and ensure the file is saved in the UTF-8
format. Both approaches are supported for the application configuration files.

Associate an application with a user
Map a user to the application and the home page that will be displayed when the user initially logs on. The
home page is the initial page, which is displayed in its associated tab.

To map a user to an application and to a home page, configure the following mapping:

• APPLICATIONCODE field on the Users database table

maps to

• an entry in the APPLICATION_CODE codetable

maps to

• the id attribute of an application

When a user logs in, the value of the APPLICATIONCODE field in the Users database table is used to
determine both the application and home page to display.

The value field of the code table entry must match the name of the application (.app) file to use and the
description field of the code table entry indicates the name of the UIM page to be displayed as the
home page. The following example shows a subset of a code table definition:

Chapter 1. Cúram web client reference 61

<codetable java_identifier="APPLICATION_CODE"
 name="APPLICATION_CODE">
 <code default="false" java_identifier="SIMPLE_HOME"
 status="ENABLED" value="SimpleApp">
 <locale language="en" sort_order="0">
 <description>SimpleHome</description>
 <annotation></annotation>
 </locale>
 </code>
</codetable>

Figure 25. CT_APPLICATIONCODE.ctx

Note: For more information on code tables see the Cúram Server Developers Guide.

In this example, a code table entry SimpleApp has been defined, with a description of SimpleHome.
The code SimpleApp, matches the id of the SimpleApp.app example. The description, SimpleHome,
indicates the UIM page to be displayed as the home page. This page must be associated with the relevant
application. For more details on how to associate pages with an application, see “Opening tabs and
sections” on page 102.

Customizing IBM Cúram Smart Navigator
Customize your own search targets and keywords for Smart Navigator. When creating a new search target
you must bind the keywords to the search target implementations using Guice injection.

A keyword is a group of one or more words that users use to search the application. Examples of
keywords are integrated, integrated case, or person search. Search targets are predefined application
pages or tabs, for example Integrated Case.

Enabling or disabling IBM Cúram Smart Navigator
You can enable or disable Smart Navigator for each Cúram application role. Each role defines an
application in a .app file, for example the caseworker role is defined in DefaultApp.app. You can
enable or disable enable Smart Navigator for a given role by editing the corresponding application. You
can edit the application by editing the .app file when you are building the application.

Enabling or disabling IBM Cúram Smart Navigator by changing the .app files
You can enable or disable Smart Navigator for all user roles by changing the *.app files at build time.

Enabling Smart Navigator
Before you build the application, edit the *.app files directly. For example, edit DefaultApp.app and
replace:

<ac:application-search default-search-page="Organization_resolveApplicationSearch"
initial-text="Application.Search.InitialText"/>

with:

<ac:application-search> <ac:smart-navigator initial-
text="Application.Search.IntSearch.InitialText"
description="Application.Search.IntSearch.Description" default="true" /> </ac:application-
search>

You can use any value for the initial-text and description parameters. In the example the parameters are
referenced to properties contained in DefaultApp.properties.

Disabling Smart Navigator
To disable, Smart Navigator, reverse the changes you made to the *.app files and rebuild the application.

Related reference
Application application-search element

62 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

To define the application search, use the application-search element.

Guide to creating a new search target
Create a search target so that users can navigate to application pages or tabs by using Smart Navigator. A
search target is a predefined application page or tab.

1. Create a search target definition in the parent code table SearchTarget. “Creating search keywords by
using code tables” on page 64 shows how to create the search target definition "Case".

2. Link a keyword to a search target definition. “Binding keywords to search target implementations” on
page 67 shows an example search target code table entry for the "Case" target.

3. Create a search target Java implementation. “Creating search targets” on page 66 shows how to
implement a search target that links to the Evidence Page of a person.

4. Bind the keyword to the search targets. “Binding keywords to search target implementations” on page
67 shows how to bind keywords to search target implementations by using Guice injection.

Creating search keywords
Create keywords that represent your search target. Your search target is triggered only when the user
types one of the keywords that are linked to your search target. By using one or more keywords, users can
search the application. Examples of keywords are integrated, integrated case, or person search. You can
either create search keywords by using the Cúram administration system or by using code tables. Using
the administration system is the simpler method.

Linking keywords to search targets
You can combine search targets with the person search by adding keywords. Whenever the keyword
is identified, Smart Navigator also searches for its related search target. Search targets can return any
object type or any page in the application. The destination page can be a modal dialog or a tab. The
standard product comes with a set of initial search targets. You can add more search targets to customize
your search.

Keywords are defined as a hierarchy of two code tables:

• Parent Code Table: SearchTarget – the Search Target Definition. SearchTarget links the keywords to a
search target implementation. Every Search Target must have only one item in this code table.

• Child Code Table: SearchTargetKeyword – keywords that users type in the search to trigger a specific
search target. Each search target can have multiple keywords.

Creating search keywords by using the administration system
As an alternative to creating search keywords in SearchTargetKeyword, you can also add keywords in the
administration system. You can add multiple keywords to the same search target.

About this task
Add keywords by using the IBM® Cúram Social Program Management administration system.

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
3. Enter Smart Navigator in the Name field and click Search.
4. Select New Item from the list action menu ... of the Smart Navigator Search Target Keyword search

result.
5. Type in the item name and Technical ID. Item name is the keyword that a user enters in the search, for

example investigation case. Technical ID can be set to any unique string.
6. Click Publish > Yes.

Chapter 1. Cúram web client reference 63

Note: The next step links your keyword code tables to the Smart Navigator Search Target code table.
If you are creating a new Search target follow steps 7 to 11. Otherwise if you want to add new
keywords to an existing search target, go to step 12.

7. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
8. Enter Smart Navigator Search Target in the Name field and click Search.
9. Select New Item from the list action menu ... of the Smart Navigator Search Target search result.

10. Type in the item name and Technical ID. item name is the Search Target Definition Name that should
be referenced in the Search Target Java Implementation. Technical ID can be set to any unique string.

11. Click Publish > Yes.

Note: The next step defines the hierarchy of the Smart Navigator Search Target and Smart Navigator
Search Target Keyword.

12. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the
SearchKeywords hierarchy link.

13. Under Codetables, expand Search Target Keyword.
14. Find the newly added keyword in the list and select Change parent code from its list action menu,

this action opens a dialog with all of the parent codes available in a drop-down list. These codes are
the items in the parent SearchTarget code table.

Note: Ensure that the locale of both the parent and the keyword code table items match the default
server locale. Otherwise, IBM Cúram Smart Navigator does not recognize the keywords

15. Select the category that you want to link the new keyword to and click Save. For example, selecting
Investigation case links the new keyword to the investigation case search target by using the
Investigation Case entry in SearchTarget code table.

16. Click Publish > Yes.

Results
Smart Navigator recognizes the new keyword.

Creating search keywords by using code tables
If the keywords defined in the SearchTargetKeyword code table are not sufficient for your search
implementation, you can add keywords to a new or existing search target category code table.

Code tables
Use the following code tables to work with search target keywords:

• SearchTarget: the parent code table that defines the search target category.
• SearchTargetKeyword: defines the keywords. SearchTargetKeyword is the child of SearchTarget.

Code tables are defined as a hierarchy. As a limitation of code tables hierarchies, your file should be
named CT_SearchTarget.ctx so that it can be merged with the existing Search Targets provided in the
standard product.

If you are implementing a new search target that uses its own set of keywords, you must add a
corresponding entry to SearchTarget. SearchTarget defines search targets categories and links search
target implementations to specific keywords. Each entry in SearchTarget has corresponding keyword
entries in SearchTargetKeyword code table.

Example code tables
The following code shows an entry in SearchTarget and another in SearchTargetKeyword, and creates a
hierarchy linking both items:

<codetables package="curam.codetable" hierarchy_name="SearchKeywords">
 <description>Search Targets and Keywords</description>

64 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <!-—ADD THE SEARCH TARGET DEFINITION -->
 <codetable java_identifier=”SEARCHTARGET” name=”SearchTarget”>

 <code
 default="false"
 java_identifier="CASE"
 status="ENABLED"
 value="T_CASE">

 <locale language="en" sort_order="1">
 <description>Case</description>
 <annotation/>
 </locale>
 </code>
 </codetable>

 <!—- ADD THE SEARCH TARGET KEYWORDS -->
 <codetable
 java_identifier="SEARCHTARGETKEYWORD"
 name="SearchTargetKeyword"
 parent_codetable="SearchTarget">

 <displaynames>
 <locale language="en">Search Target Keyword</locale>
 </displaynames>

 <code
 default="false"
 java_identifier="CASE"
 status="ENABLED"
 value="AK_CASE"
 parent_code= "T_CASE">
 <locale
 language="en"
 sort_order="1">
 <description>Case</description>
 <annotation/>
 </locale>
 </code>
 </codetable>

</codetables>

The following fields bind keywords to search target implementations:

• java_identifier="CASE" - the name that the generated Java accessor variable has in the source code.
This sample entry corresponds to SEARCHTARGET.CASE variable in Java.

• value="T_CASE" - the value that links the search target category to the keywords in the
SearchTargetKeyword child code table.

The field "parent_code" must match the field "value" in the SearchTarget code table to link a keyword
entry to a search target category and then, in turn, to a search target implementation.

"java_identifier field" is not used in the application by default, but it must be unique within the code table.
"java_identifier field" has no link to entries in SearchTarget.

The "description" field contains the actual text keyword that a user enters during the search, "description"
must be locale-specific.

In the example, keyword "Case" is linked to the "CASE" search target category by matching "parent_code"
value "T_CASE" in SearchTargetKeyword to the "value" field value in SearchTarget.

You can link multiple keywords in SearchTargetKeyword to a single search target category in SearchTarget
by having the same "parent_code" values. For example, you can link keywords "outcome", "plan", and
"outcome plan" to the same search target that searches for outcome plans.

After you create both code table entries, run the build server database command to generate the
new variables in Java. You can then bind search target category and its corresponding keywords to a Java
search target implementation.

Chapter 1. Cúram web client reference 65

Result
The new keyword is now recognized by IBM Cúram Smart Navigator.

Creating search targets
Create search targets so that users can navigate to application pages or tabs by using IBM Cúram Smart
Navigator. A search target is a predefined application page or tab, for example Integrated Case.

Create the search target java implementation
After you create the new search target keywords, you must create the search target java implementation.

All search targets must implement the curam.smartnavigator.target.TargetObjectSearch interface by using
the following methods:

• List<TargetObjectDtls> searchTargetObject(final SearchPersonDtls person, String queryText) performs the
main search operation and returns search results in a list of TargetObjectDtls objects.

• TargetType getSearchTargetType() returns the search target type, which can have two states:
REQUIRES_PERSON or NO_REQUIREMENT.

– REQUIRES_PERSON : the search target is called if a person is found in the search only. Otherwise the
search target is not run. REQUIRES_PERSON searches for objects related to a person such as cases,
evidence, and eligibility.

– NO_REQUIREMENT: the search is always executed regardless of whether a person is found.
• String getSIDName(); returns a Security Identifier (SID) that checks whether the user has access to

the search results. String getSIDName(); is set to the display facade method signature that is used on
the page that the search results link to. For example, this method in a search target that searches
integrated cases returns "IntegratedCase.readCaseDetails1", which is the facade display-phase method
that is used on the home page of an integrated case.

• String getIcon(); returns a URL to an icon that the search results display. getIcon(); is optional, if no icon
is configured, a default icon is displayed.

Example search target
Search targets must return a list of Target Objects. Each item returned is displayed in Smart Navigator. For
search targets that link to a single page, for example the Evidence Page Search Target, a single item is
returned from the implementation.

For search targets that perform searches, for example the Case Search Target, multiple items can be
returned from the implementation. Every item is displayed in Smart Navigator.

The following example shows how to implement a simple Search Target that links the user to the
Evidence Page of a person.

 public List<TargetObjectDtls>
 searchTargetObject(final SearchPersonDtls person, final String queryText)
 throws AppException, InformationalException {

 final List<TargetObjectDtls> targetObjects =
 new ArrayList<TargetObjectDtls>();

 final TargetObjectDtls targetObject = new TargetObjectDtls();
 targetObject.url =
 "PDCEvidence_listEvidencePage.do?concernRoleID=" + person.concernRoleId;
 targetObject.objectDescription = "Evidence Page";
 targetObject.openOnModalDialog = false ;

 targetObjects.add(targetObject);

 return targetObjects;
 }

 @Override
 public TargetType getSearchTargetType() {

66 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 return TargetType.REQUIRES_PERSON;
 }

 @Override
 public String getSIDName() {
 return "PDCPerson.listEvidenceForParticipant";
 }

 @Override
 public String getIcon() {
 return null ;
 }

Binding keywords to the search target java implementation
After you create the keywords and the search target implementation, you then bind the keyword to the
search target. For more information, see Binding keywords to search target implementations.

Result
The search target is now recognized by IBM Cúram Smart Navigator.

Related concepts
Creating search keywords
Create keywords that represent your search target. Your search target is triggered only when the user
types one of the keywords that are linked to your search target. By using one or more keywords, users can
search the application. Examples of keywords are integrated, integrated case, or person search. You can
either create search keywords by using the Cúram administration system or by using code tables. Using
the administration system is the simpler method.
Related reference
Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection. For more information on Guice,
see https://github.com/google/guice.

Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection. For more information on Guice,
see https://github.com/google/guice.

SmartNavigatorModule
To bind a target search type category from SearchTarget code table to a Java search target
implementation you must implement a new module class. This class extends AbstractModule class.

Example ApplicationSearchModule:

public class SmartNavigatorModule extends AbstractModule {

 @Override
 protected void configure() {

 final MapBinder<String, TargetObjectSearch> mapBinder =
 MapBinder
 .newMapBinder(binder(), String.class, TargetObjectSearch.class);

 mapBinder.addBinding(APPSEARCHTARGET.CASE).to(PersonCaseSearch.class);

 }

}

This class creates a Guice binding between the SearchTarget code table entry and the search target Java
implementation.

Chapter 1. Cúram web client reference 67

https://github.com/google/guice
https://github.com/google/guice

An example is as follows:

• A MapBinder object of the type <String, TargetObjectSearch> is created in the configure() method.
• The mapBinder.addBinding(SEARCHTARGET.CASE).to(PersonCaseSearch.class) method is called, where:

– SEARCHTARGET.CASE argument is the java_identifier value from CT_SearchTarget.ctx code table
entry, SEARCHTARGET is the code table identifier.

– PersonCaseSearch.class is the search target java implementation.

A Guice binding is added between SEARCHTARGET.CASE search target category and the
PersonCaseSearch.class java search target implementation.

Example SearchTarget code table entry
The SearchTarget code table entry that is being bound in the example ApplicationSearchModule:

<code
 default="false"
 java_identifier="CASE"
 status="ENABLED"
 value="T_CASE" >
 <locale
 language="en"
 sort_order="1">
 <description>Case</description>
 <annotation/>
 </locale>
 </code>

Add new module classes to MODULECLASSNAME.dmx
You must add new module classes to a MODULECLASSNAME.dmx file in the corresponding project data
directory so that the Cúram application can use its bindings.

An example entry in MODULECLASSNAME.dmx:

<row>
 <attribute name="moduleClassName">
 <value>curam.SmartNavigator.target.SmartNavigatorModule</value>
 </attribute>
</row>

The <value> field reflects both the package and the class name.

Note: When you complete this process, you must rebuild your database. For more information, see
Running build commands for the server and client applications.

Result
Now every time a keyword linked to T_CASE in the SearchTargetKeyword code table is entered in the
search, the logic calls the PersonCaseSearch.class search target implementation.

Related tasks
Running build commands for the server and client applications
Related reference
Creating search targets

68 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Create search targets so that users can navigate to application pages or tabs by using IBM Cúram Smart
Navigator. A search target is a predefined application page or tab, for example Integrated Case.

Deleting or disabling keywords
You can delete or disable search keywords that you no longer need. Disabled keywords are removed
dynamically from the KEYWORD list, deleted keywords are removed from the KEYWORD list after you
rebuild the database. You can also disable a search target by removing all of its associated keywords.

Deleting keywords
Delete keyword entries in the Search Target code table by removing their corresponding XML entries from
CT_SearchTarget.ctx.

Use any text editor to search for and remove keyword entries.

Note: When you complete this process, you must rebuild your database. For more information, see
Running build commands for the server and client applications.

Disabling keywords
Note: This procedure disables keywords. However, if you rebuild the database, the keywords' state
reverts to default setting and Smart Navigator does not ignore the keywords' state. To permanently delete
a keyword, you must delete it from CT_SearchTarget.ctx.

To disable keywords, take the following steps:

1. Log in to the IBM Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
3. Enter Search Target Keyword in the Name field and click Search.
4. Expand the Search Target Keyword item to display all of the keywords.
5. Locate the keyword that you want to delete, expand its action menu, and select Hide. The Shown field

changes to No on this item.
6. Click Publish > Yes.

Smart Navigator now ignores the keyword.

Disabling a search target
Disable a search target by removing all of its associated keywords.

If you delete or disable all of the keywords that are linked to a search target, the search target is longer
used. To avoid error situations, edit the CT_SearchTarget.ctx file, and remove all of the entries that
have parent_code as a value of the search target that is no longer needed.

You can also disable keyword entries as described in the Disabling keywords section. To view the
associated parent_code, use either CT_SearchTarget.ctx file or the SearchKeywords code table
hierarchy as a reference.

Related tasks
Running build commands for the server and client applications

Chapter 1. Cúram web client reference 69

Modifying keywords
You can modify keyword entries in the Smart Navigator Search Target code table either by editing
the code table using the administration system, or by editing the corresponding XML entries in
CT_SearchTarget.ctx file. Using the administration system is the simpler method.

Modifying keywords by using the administration system
You can modify keyword entries in the Smart Navigator Search Target code table by editing the Smart
Navigator Search Target Keyword code table using the administration system. Any modifications to
keywords are dynamically updated in the keyword prompt box.

About this task
This procedure modifies keywords. However, if you rebuild the database, the keywords' state reverts to
their default setting. To permanently modify a keyword, you must edit CT_SearchTarget.ctx.

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Code Tables
3. Enter Smart Navigator Search Target Keyword in the Name field and click Search.
4. Expand the Smart Navigator Search Target Keyword item to display all of the keywords that are

defined.
5. Locate the keyword that you want to modify, expand its action menu, and select Edit. Item name is the

keyword text that is expected to be used in the application search.
6. Click Publish > Yes.

Results
The keyword is modified with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made to the keyword are reflected in the KEYWORD list.

Modifying keywords in CT_SearchTarget.ctx
You can modify keyword entries in the Smart Navigator Search Target code table by editing their
corresponding XML entries in CT_SearchTarget.ctx.

You can edit CT_SearchTarget.ctx with a text editor to modify the keyword entries. The field
description is the actual keyword text that the user is expected to input in the application search. You
can change this field to any text string. When you finish your edits, you must rebuild your database.

Keyword example:

<code
 default="false"
 java_identifier="CASE"
 status="ENABLED"
 value="AK_CASE"
 parent_code="T_CASE">
 <locale
 language="en"
 sort_order="1">
 <description>Case</description>
 <annotation/>
 </locale>
</code>

Result
The keyword is modified with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made to the keyword are reflected in the KEYWORD list.

70 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Translating search targets and keywords
If your implementation of IBM Cúram Social Program Management supports more than one language,
you can translate search target descriptions and keywords to support users who use that language. The
correct language is used at runtime based on the user's locale. If IBM Cúram Social Program Management
supports a single language, but that language is not English, you can edit the keywords in that language.
For more information, see Modifying keywords.
Related reference
Modifying keywords
You can modify keyword entries in the Smart Navigator Search Target code table either by editing
the code table using the administration system, or by editing the corresponding XML entries in
CT_SearchTarget.ctx file. Using the administration system is the simpler method.

Translating search target descriptions

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
3. Enter Smart Navigator Search Target in the Name field and click Search.
4. Expand Smart Navigator Search Target to display all of the targets that are defined.
5. Locate the search target item that you want to translate, select ... to expand its action menu, and

select Translate.......
6. Select Add Translation...
7. Select the language and provide the translated text.
8. Click Save > Close.
9. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the

SearchKeywords hierarchy link.
10. Under Codetables, expand Smart Navigator Search Target.
11. Find the correct code table in the list and select ... > Edit child codes...... from the list action menu.
12. Click Save.
13. Click Publish... > Yes.

Results
The target is translated with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made to the target are reflected in the KEYWORD list.

Translating search target keywords

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
3. Enter Smart Navigator Search Target Keyword in the Name field and click Search.
4. Expand Smart Navigator Search Target Keyword to display all of the keywords that are defined.
5. Locate the keyword that you want to translate, expand its action menu, and select Translate.......
6. Select Add Translation...
7. Select the language and enter the translated text.
8. Click Save > Close.
9. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the

SearchKeywords hierarchy link.
10. Under Codetables, expand Smart Navigator Search Target Keyword.

Chapter 1. Cúram web client reference 71

11. Find the correct code table in the list and select Change parent code...... from the list action menu.
12. Click Save.
13. Click Publish... > Yes.

Results
The keyword is translated with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made are reflected in the KEYWORD list.

Overriding the person search
Overriding the person search.

Extending the curam.smartnavigator.target.impl.PersonSearchImpl class
To override the person search, you must first create a class that extends the
curam.smartnavigator.target.impl.PersonSearchImpl class. The new class contains the following methods
that can be overridden:

• public List<SearchPersonDtls> searchPersonByTermsAndDateOfBirth(final String[] termsToSearch, final
String[] allTerms, final Date date); method searches for a person by a list of terms and a date of birth.
The default implementation of this method uses termsToSearch field as a list of names that are further
broken into firstname and surname. The allTerms field enables the extension of this method so that
flags or other information that might be required for the search are available to the implementer. For
example, you might want to extend this class and use gender in the search. By default, date of birth
parameter is optional and is ignored if set to null.

• public List<SearchPersonDtls> searchPersonByIDAndDateOfBirth(final String alternateID, final Date
date); method searches for people by their ID and a date of birth. By default, date of birth parameter is
optional and is ignored if set to null.

• public String getSIDName(); method returns the SID name string in the same way as in a normal
TargetObjectSearch implementation.

Extending rather than implementing the class enables default methods to be used when you want to
override all of the methods that are not required. For example, you can have a custom method to search
people by ID, and still be able to use the default searchPersonByNameAndDateOfBirth method. Use the
new person search implementation only for methods that you want to customize.

Adding a new Guice binding
After you create the person search implementation, you must add a Guice binding. For more information,
see Binding keywords to search target implementations. However, instead of using the standard binding
to a code table entry, you must bind the new search implementation to a specific key string value
- custPerson (or SmartNavigatorConstants.kPersonSearchKeyCustom). The following example shows
binding a custom person search for a Case search:

public class CustomNavigatorModule extends AbstractModule {

 @Override
 protected void configure() {

 final MapBinder<String, SmartNavigatorPersonSearch> mapBinder = MapBinder
 .newMapBinder(binder(), String.class, SmartNavigatorPersonSearch.class);

 mapBinder.addBinding("custPerson").to(CustomPersonSearch.class);

 }

72 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Adding a new module class to MODULCLASSNAME.dmx
You must add any new module class to a MODULCLASSNAME.dmx file in the corresponding project
"data" directory so that Social Program Management applications can use its bindings.

This is an example entry in MODULECLASSNAME.dmx:

<row>
 <attribute name="moduleClassName">
 <value>com.ibm.curam.extension.CustomNavigatorModule</value>
 </attribute>
</row>

The <value> field reflects both the package and the class name. When you finish adding a module class,
you must rebuild the database. For more information, see Running build commands for the server and
client applications.

Related tasks
Running build commands for the server and client applications
Related reference
Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection. For more information on Guice,
see https://github.com/google/guice.

Customizing case search results
When caseworkers search by a reference number or by using the case keyword, you can apply
customizations that determine the results that are returned and how they are displayed.

Overriding default filtering of case search results
When a caseworker searches by a reference number or by using the case keyword, the search results are
filtered and results that the user is not authorized to view are removed. To modify this behavior, you can
either override or extend the default filter.

When searching by reference number or by using the case keyword, the results are passed through the
bound implementation of curam.smartnavigator.core.util.SearchResultFilter. The default implementation
curam.smartnavigator.core.util.SearchResultFilterImpl removes any results that are of type Participant
Data Case, CT2001, or that the user is not authorized to view.

The authorization check maps a security identifier (SID) name to the case type code of the result and
checks the logged in user against that SID. If the user does not pass the authorization check or if there is
no mapping for the case type code, the result is removed from the list before the results are returned.

The default implementation provides the following case type code to SID name mapping:

• CT5 (Integrated Case): IntegratedCase.readCaseDetails1
• CT2 (Product Delivery): ProductDelivery.readHomePageDetails1
• CT2000 (Investigation): InvestigationDelivery.readHomePageDetails1
• CT4 (Liability): ProductDelivery.readHomePageDetails1
• CT1 (Service Plan): ServicePlanDelivery.readHomePageDetails1
• CT10201 (Application Case): ApplicationCase.viewApplicationHomeDetails

Chapter 1. Cúram web client reference 73

https://github.com/google/guice

Overriding the default case search results implementation
You can override the default case search results implementation by providing a custom implementation
of curam.smartnavigator.core.util.SearchResultFilter. This approach is advised when the default filtering
approach based on mapping case type codes to SIDs is not sufficient.

Implementing the curam.smartnavigator.core.util.SearchResultFilter class
To override the default SearchResultsFilter implementation, you must first create a class that implements
the interface curam.smartnavigator.core.util.SearchResultFilter. The new class contains the following
method that you must implement:

• boolean excludeResult(CaseHeaderDetails caseHeaderDetailsResult) throws AppException,
InformationalException; method is used to filter case search results that should not be returned to
the user. Return true if the case should be excluded from the results that are returned, otherwise false.

Adding a new Guice binding
Guice bindings are used to register the custom implementation.

public class CustomNavigatorModule extends AbstractModule {

 @Override
 protected void configure() {

 bind(SearchResultFilterImpl.class)
 .to(CustomSearchResultFilterImpl.class);

 }
}

Extending the default search results implementation
You can extend the default implementation curam.smartnavigator.core.util.SearchResultFilterImpl to
modify the SID name that is returned for a case type code. To do this, you must override the getSidName
method to return results for case type codes.

Extending curam.smartnavigator.core.util.SearchResultFilterImpl
To extend the default SearchResultFilter implementation,SearchResultFilterImpl, you must first create a
class that extends curam.smartnavigator.core.util.SearchResultFilterImpl. You must override the following
method:

• protected String getSIDName(final CaseHeaderDetails caseHeaderDetailsResult); method returns the
SID Name that is mapped to the case type code or null if not mapped. This result is filtered (removed)
from the results if the SID name returned is null (not mapped) or the logged in user is not authorized for
the SID name returned.

Adding a new Guice binding
Guice bindings are used to register the custom implementation.

Adding a new Guice binding

public class CustomNavigatorModule extends AbstractModule {

 @Override
 protected void configure() {

 bind(SearchResultFilterImpl.class)
 .to(CustomSearchResultFilterImpl.class);

 }
}

74 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Adding a new module class to MODULCLASSNAME.dmx
You must add any new module class to a MODULCLASSNAME.dmx file in the corresponding project
"data" directory so that Social Program Management applications can use its bindings.

This is an example entry in MODULECLASSNAME.dmx:

<row>
 <attribute name="moduleClassName">
 <value>com.ibm.curam.extension.CustomNavigatorModule</value>
 </attribute>
</row>

The <value> field reflects both the package and the class name. When you finish adding a module class,
you must rebuild the database. For more information, see running build commands for the server and
client applications.

Related tasks
Running build commands for the server and client applications

Overriding default descriptions for case search results
When a caseworker searches by reference number or by using the case keyword, the case
name that is displayed next to the number in the results is provided by an implementation of
curam.smartnavigator.core.util.CaseTypeDescriptionResolver. You can provide a custom implementation
to add descriptions for case types that are not catered for by the default implementation or to change the
case name that is displayed by the default implementation.

Implementing the curam.smartnavigator.core.util.CaseTypeDescriptionResolver class
To override the default CaseTypeDescriptionResolver implementation, create a class that implements the
interface curam.smartnavigator.core.util.CaseTypeDescriptionResolver.

The new class contains the following method that you must implement:

• ProductTypeDescription determineProductTypeDescription(CaseIDAndTypeKey key) throws AppException,
Informational Exception; method is used to return the name to use with a case search when displaying
the result.

The result that the Smart Navigator displays is a combination of the description and the reference
number in the format: ProductTypeDescription.productTypeDescription, referenceNumber. For example,
Application, 257.

Adding a new Guice binding
Guice bindings are used to register to the custom implementation.

public class CustomNavigatorModule extends AbstractModule {

 @Override
 protected void configure() {

 final MapBinder<String, CaseTypeDescriptionResolver> mapBinder =
 MapBinder.newMapBinder(binder(), String.class,
 CaseTypeDescriptionResolver.class);

 mapBinder.addBinding("custRes")
 .to(CustomCaseTypeDescriptionResolverImpl.class);
 }

Adding a new module class to MODULECLASSNAME.dmx
You must add any new module class to a MODULCLASSNAME.dmx file in the corresponding project
"data" directory so that Social Program Management applications can use its bindings.

For example:

Chapter 1. Cúram web client reference 75

<row>
 <attribute name="moduleClassName">
 <value>com.ibm.curam.extension.CustomNavigatorModule</value>
 </attribute>
</row>

The <value> field reflects both the package and the class name. When you finish adding a module class,
you must rebuild the database. For more information, see Running build commands for the server and
client applications.

Related tasks
Running build commands for the server and client applications

Modifying search targets redirect URLs
Modify the search target redirect URLs if you want to use a different URL to the search target pages that
are used in Smart Navigator.

About this task
Modify the search target redirect URLs if you want to use a different URL to the search target pages. For
example you could change the URL that points to a person's eligibility page.

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Property Administration.
3. Search for smart.
4. Select the select the action menu ... of the property whose the URL you want to change, for example

curam.smartnavigator.person.evidence.url.
5. Select Edit Value....
6. Change the property's value and Save your changes.
7. Select Publish.

Results
Log in as caseworker, search for the target URL you changed and observe that the URL is redirected.

Setting the preferred tabs by populating the attribute preferredTabs
To set the preferred tabs that are used by Smart Navigator, populate the preferredTabs attribute of the
object TargetObjectSearch.

Before you begin
When you are adding a new search target, you might find that the page that you are targeting could be
displayed on multiple tabs. If the page you want to redirect to is defined in more than one tab, you must
specify the tab or tabs to target. Use the preferred tabs option to specify the targeted tabs. For more
information on specifying tabs, see Page to tab and tab to section associations. Use preferred tabs only
when there is more than one tab configured for a page.

Associating tabs to a search target
Decide which tab, or the ordered list of preferred tabs, you need to associate to your search target.
Then, populate the attribute preferredTabs of the object TargetObjectSearch in your search target

76 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

implementation. The following code snippet shows an example of setting "ProspectPersonHome" as the
preferred tab of the target final SearchPersonDtls person:

 public List<TargetObjectDtls> searchTargetObject(final SearchPersonDtls person,
 String queryText)
 throws AppException, InformationalException {

 final List<TargetObjectDtls> references =
 new ArrayList<TargetObjectDtls>();

 final TargetObjectDtls objReference = new TargetObjectDtls();

 objReference.preferredTabs = "ProspectPersonHome";

 objReference.url = " ProspectPerson_resolveHomePagePage.do?concernRoleID=
"+person.concernRoleId;

 // more code to populate objReference

 references.add(objReference);

 return references;

}

Result
Log in as caseworker and search for a target that you have changed. Note that the search returns content
in the updated tabs.

Related reference
Page to tab and tab to section associations
A page is associated with a tab based on the navigation configuration for the tab. A tab is associated with
a section through the section configuration file.

Enabling or disabling recent searches
To see recent searches, users can click inside the Smart Navigator Search box before inserting text. By
default, the last six search items are displayed.

About this task
Change the curam.smartnavigator.search.history.threshold property to enable or disable recent searches.
You can also increase or decrease the number of recent searches that are saved.

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Property Administration.
3. Search for smart.
4. For the property property curam.smartnavigator.search.history.threshold, select the action menu ... >

Edit Value.
5. Set the property to the desired value and Save your changes.

 0 Do not save recent searches
 X Save X number of recent searches per person
-1 Save all recent searches per person

6. Click Publish to apply your changes in the application.

Chapter 1. Cúram web client reference 77

Results
Log in as caseworker and run some searches. If you have set property
curam.smartnavigator.search.history.threshold to -1, you will see your searches in the Search box.

Setting the debounce timeout
As a user types in the input field, IBM Cúram Smart Navigator searches for results. However, the search
is not performed on every keystroke. The debounce technique groups every keystroke into a single event
until the user stops typing for a specified time.

About this task
By default, the debounce timeout is set to 500 milliseconds (ms), so the search is triggered only when the
user stops typing for 500 ms. You can also disable search as you type, in this case the search triggers only

if the user presses Enter or clicks . To set the debounce timeout, take the following steps:

Procedure
1. Log in to the IBM® Cúram Social Program Management application as Sysadmin.
2. Browse to System Configurations > Shortcuts > Application Data > Property Administration.
3. Search for the property curam.smartnavigator.search.debounce.timeout.
4. Select the action menu
5. Edit the value of curam.smartnavigator.search.debounce.timeout as required. The value is defined

in milliseconds. To change the default debounce to 750 milliseconds for example, set the value of
curam.smartnavigator.search.debounce.timeout to 750. To disable the debounce feature, set the value
to -1.

Results
The new debounce timeout is defined. If the value is set to -1 searches run only when the user presses

Enter or clicks .

Implementing a navigation hook
Smart Navigator provides a hook where customized business logic can be added between the click of a
result and navigation to the related page.

About this task
Smart Navigator enables a user to directly navigate from a search result to the intended page without
requiring the user to traverse intermediate pages. However, there might be scenarios where the direct
navigation from a search result to a page is not the intended behavior and therefore the direct
navigation needs to be intercepted. The proceeding JavaScript hook addresses the problem by providing a
mechanism to insert custom logic between when the user clicks the result and when the user navigates to
the related page. For example, a custom implementation might open a modal when the user clicks a result
to display information that might be considered important but would otherwise be bypassed. To provide
an implementation of the hook, apply the proceeding steps.

Procedure
Use the proceeding sample to create the file SearchMultipleTextBoxHookPoints.js
in webclient/components/custom/WebContent/CDEJ/jscript/curam/widget. Where it is
indicated, use custom implementation.

/**
 * @name curam.widget.SearchMultipleTextBoxHookPoints
 *

78 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 * API for implementing hook points exposed by SearchMultipleTextBox (Smart Navigator).
 *
 */
define([
 "dojo/topic"], function(topic) {
 curam.define.singleton("curam.widget.SearchMultipleTextBoxHookPoints", {
 /**
 * Implement this function in order to add custom processing between
 * click of a Smart Navigator result and the rendering of the page.
 *
 * This hook cannot alter navigation, Smart Navigator is responsible
 * for completing navigation, that is, saving to history and rendering
 * the URL.
 *
 * If this hook is used to interact with the user then a modal approach
 * should be used to prevent page navigation given when this hook
 * completes the URL will be rendered by Smart Navigator.
 *
 * @param data Object holding:
 * url being navigated to
 * concernRoleId: concernRoleID of individual if result is a person or keyword of a person.
 *
 * @return publish message '/smartnavigator/prenavigationhook/completed' to hand back
control.
 */
 preNavigationHook: function(data){

 // Custom implementation goes here

 // On completion, publish message to hand control back to smart navigator.
 topic.publish('/smartnavigator/prenavigationhook/completed');
 }
 });
 return curam.widget.SearchMultipleTextBoxHookPoints;
});

The final step in the hook implementation must be to assign control back to Smart Navigator so that
navigation can be completed.

As shown in the preceding sample, control is assigned back to Smart Navigator by using the following
code:

topic.publish('/smartnavigator/prenavigationhook/completed');

Related information
Smart Navigator navigation hook

Sections
An application can contain one or more application sections, where a section is a collection of tabs and
an optional section shortcut panel. A section shortcut panel supports quick links to open tabs and dialogs
within a section.

It is recommended that a maximum of five sections be used, each representing a different set of user
activities. The following types of sections are recommended:

Home
The Home section is intended to contain only one tab, with a single page that acts as a home page
for the user. The home page provides a summary of significant information and quick links to common
activities.

Workspace
The Workspace section contains most user tasks for the user role.

Inbox
The Inbox section is where the user can access their currently allocated work.

Calendar
The Calendar section contains a calendar of the user's activities and schedules.

Reports
The Reports section contains reports that are relevant for the user.

Chapter 1. Cúram web client reference 79

Section definition
A section is defined by creating an XML file with the extension .sec in the clientapps directory.

The root XML element in the .sec file is the section element and the attributes allowed on this element
are defined in the following table.

Table 16. Attributes of the section Element

Attribute Description

id Mandatory.

The unique identifier for the section, which must match the name
of the file. This is used when referenced from an application (.app)
configuration file.

title Mandatory.

The text for the title that will be displayed on the section tab. The
attribute must reference an entry in the associated properties file.

hide-tab-container Optional.

When set to true, this indicates that there is only one tab in the section
and the tab bar should not be displayed. The default is false.

default-page-id Optional.

A reference to a UIM page that should be opened by default when the
section is opened. The UIM page referenced must be directly associated
with a tab. For more information on associating pages with tabs, consult
“Tabs” on page 84.

This attribute ensures that an anchored default tab is always open when
the section is opened. An anchored tab does not contain an option to
close it.

Note: The default-page-id attribute must not be used on the "Home" or first section of an application.
The user's home page, and its associated tab are opened automatically when a user logs into an
application. See “Associate an application with a user” on page 61 for more information.

The section element supports the child elements detailed in the following table.

Table 17. Supported Child Elements of the section Element

Element Description

tab 1..n.

A reference to a tab to be included in this section. See “Section tab
element” on page 80 for more information.

shortcut-panel-ref Optional.

A reference to the section shortcut panel to be included in this
section. See “Section shortcut-panel-ref element” on page 81 for more
information.

Section tab element
A section is a collection of tabs. To associate a tab with a section, use the tab element. A section
must define at least one tab element and tabs must only ever be referenced by one section in any

80 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

application. Therefor tabs can be reused in different sections, as long as the section is included in a
separate application.

The attributes of the tab element are detailed in the following table.

Table 18. Attributes of the tab element

Attribute Description

id Mandatory.

The id of a tab configuration file (.tab). See “Section tab element” on
page 80 for more information.

Section shortcut-panel-ref element
Use the shortcut-panel-ref element to define the section shortcut panel to add to a section.

Specify only one shortcut-panel-ref per section. See “Section shortcut panel” on page 81 for more
information.

The attributes of the shortcut-panel-ref element are detailed in the following table.

Table 19. Attributes of the shortcut-panel-ref element

Attribute Description

id Mandatory.

The id of a section shortcut panel (.sec). See “Section shortcut panel”
on page 81 for more information.

Section example
An example shows a section that is stored in a file called SimpleWorkspaceSection.sec.

<?xml version="1.0" encoding="UTF-8"?>
<sc:section
 id="SimpleWorkspaceSection"
 title="SimpleWorkspaceSection.title">

 <sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

 <sc:tab id="Person" />
 <sc:tab id="Employer" />
 <sc:tab id="Case" />
 ...

</sc:section>

The SimpleWorkspaceSection.sec must have a corresponding
SimpleWorkspaceSection.properties file, which details the localizable content. For example:

SimpleWorkspaceSection.title=Workspace

Section shortcut panel
Each section can optionally contain a section shortcut panel that provides quick links to open content and
complete actions within the section. The menu items in the shortcut panel can be divided into categories.

When a section is first opened, the section shortcut panel is collapsed by default, but it can be expanded
or collapsed as needed.

Menu items in a shortcut panel that open modal dialogs are identified by an ellipsis (...), which indicates
that further actions are needed.

Chapter 1. Cúram web client reference 81

Section shortcut panel definition
A section shortcut panel is defined by creating an XML file with the extension .ssp in the clientapps
directory.

The root XML element in the .ssp file is the section-shortcut-panel element and the attributes
allowed on this element are defined in the following table.

Table 20. Attributes of the section-shortcut-panel Element

Attribute Description

id Mandatory.

The unique identifier for the section shortcut panel, which must match
the name of the file. This is used when referenced from a section (.sec)
configuration file.

title Mandatory.

The text for the title that will be displayed for the sections shortcut
panel, both when it is expanded and when it is collapsed. The attribute
must reference an entry in the associated properties file.

The section-shortcut-panel element supports the child elements detailed in the following table.

Table 21. Supported Child Elements of the section-shortcut-panel Element

Element Description

nodes Mandatory.

Groups together multiple child node elements. See “Section shortcut
panel node element” on page 82 for more information.

Section shortcut panel node element
Use the node element to represent menu items and categories that are used within the shortcut panel.

There are three supported types of node element and the type attribute is used to define this:

• group

A group node in a shortcut panel represents a category and is used to categorize a number of menu
items as described in “Section shortcut panel” on page 81. "Registration" are defined using node Each
category is defined using node elements of type group. This type of node supports child node elements
of type leaf and separator.

• leaf

A leaf in a shortcut panel is a menu item within a category, which can open a page in an existing or new
tab, or open a modal dialog1. Where a menu item opens a modal dialog, an ellipsis is appended to the
text displayed to indicate more information is required.

• separator

A separator can be used to add extra space between menu items within a node of type group (i.e. a
category).

The attributes supported by the node element are detailed in the following table.

1 A modal dialog is a UIM page opened in a new window, where the parent window cannot be accessed while
it is open. Consult “Modal dialogs” on page 262 for more information.

82 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 22. Attributes of the node element

Attribute Description

id Mandatory.

The identifier for the node. This must be unique within the .ssp file.

type Mandatory.

The type of node, where three types are supported:

• group
• leaf
• separator

title Mandatory.

The text for the title of the node. The attribute must reference an entry
in the associated properties file.

Note: This is not required where the type is specified as separator.

page-id Optional.

A reference to the UIM page to be displayed when the menu item is
selected. This is only applicable for node elements with a type of leaf.

open-as Optional.

Where set, this attribute indicates the UIM page to be displayed when
the menu item is selected should be opened as a modal dialog. The only
value supported is modal.

This is only applicable for node elements with a type of leaf.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to the menu item which opens in a modal dialog should be
disabled. The default is true. The attribute is applicable only where the
type attribute is leaf and the open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not
been set will not add the ellipsis to the menu item.

Section shortcut panel example
An example shows a section shortcut panel that is stored in a file called SimpleShortcutPanel.ssp.

<?xml version="1.0" encoding="UTF-8"?>
<sc:section-shortcut-panel
 id="SimpleShortcutPanel"
 title="SimpleShortcutPanel.Title">

 <sc:nodes>
 <sc:node id="Searches" type="group"
 title="Searches.Title">
 <sc:node id="PersonSearch" type="leaf"
 page-id="Person_search"
 title="PersonSearch.Title" />
 ...
 </sc:node>
 <sc:node id="QuickLinks" type="group"
 title="QuickLinks.Title">
 ...
 </sc:node>
 <sc:node id="Registration" type="group"
 title="Registration.Title">

Chapter 1. Cúram web client reference 83

 <sc:node id="RegisterEmployer" type="leaf"
 page-id="Employer_register"
 title="RegisterEmployer.Title"
 open-as="modal"/>
 ...
 <sc:node type="separator" id="separator"/>
 ...
 </sc:node>

 </sc:nodes>
</section-shortcut-panel>

The SimpleShortcutPanel.ssp must have a corresponding SimpleShortcutPanel.properties
file, which details the localizable content. For example:

SimpleShortcutPanel.Title=Shortcuts Panel
Searches.Title=Searches
PersonSearch.Title=Person Search
QuickLinks.Title=Quick Links
Registration.Title=Registration
RegisterEmployer.Title=Register an Employer

Tabs
A tab typically represents a business object, for example, a Case or a Participant, though it can also be
used to represent a logical grouping of information.

The following list describes the elements that relate to tabs.

Tab Title Bar
The title bar contains text to identify the current tab.

Tab Actions Menu
The actions menu provides actions that are associated with the business object that is represented by
the tab. The actions can be a mix of menu items and other menus, each of which links to a page that is
displayed in the tab content area or a modal dialog.

Tab Context Panel
The context panel is typically used to present summary information about the business object. The
summary information is available for every page that is displayed in the content area. The context
panel can be collapsed and expanded to provide more space for the tab content area.

Tab Content Area
A tab consists of one or more pages of information. The pages are displayed in the content area and
can be navigated by using the navigation bar.
Navigation Bar

The navigation bar contains a number of navigation tabs, each of which link to a page or set of
pages that are part of the tab. The navigation bar can be used to separate the business object
information into logical groupings of pages.

Page Group Navigation Bar
Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with
the first one selected by default.

Page Content
Selecting a navigation tab or page group entry displays the corresponding UIM page content in the
content area.

Smart panel
A smart panel is an optional panel, displaying a UIM page, that is added to the right of the content
area in a tab. It can be collapsed and expanded, and is collapsed by default. In addition, the size of the
smart panel can be increased and decreased when it is expanded.

A tab supports the ability to dynamically enable or disable, and hide or show, entries in the tab actions
menu, the tab navigation bar, and the page group navigation bar. The dynamic content is updated
based on configured refresh events. A refresh event updates the specified part of the tab based on the
submission of a modal dialog page or when a specific UIM page is loaded in the content area.

84 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Related reference
Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

Tab definition
A tab is defined by creating an XML file with the extension .tab in the clientapps directory.

The root XML element in the .tab file is the tab-config element and the following table shows the
required attributes.

Table 23. Attributes of the tab-config Element

Attribute Description

id Mandatory.

The identifier for the tab, which must match the name of the file.

The id attribute is used to reference the tab configuration from section
configuration files (.sec). See “Section tab element” on page 80 for
more information.

The tab-config element supports the child elements that are shown in the following table. See the
child topics for more information.

Table 24. Supported Child Elements of the tab-config Element

Element Description

page-param 0..n.

Defines a parameter required when opening a tab.

menu Optional.

A reference to the actions menu configuration.

context Mandatory.

A reference to the UIM page to be used as the tab context panel, or
alternatively details of the tab name and title.

navigation Mandatory.

A reference to the tab navigation configuration, or alternatively the name
of the UIM page that will be opened in this tab.

smart-panel Optional.

A reference to the UIM page to be used for the smart panel.

tab-refresh Optional.

Defines what part of a tab should refresh under what circumstances.

Tab page-param element
The page-param element allows for multiple page parameters to be defined for a tab. Each page
parameter that is defined maps to the name of a name-value pair. The name-value pair is passed to all
UIM pages that are opened from both the tab actions menu and the navigation bar.

Page parameters are also used to identify unique instances of a tab. For example, a tab is defined for a
Person object. Two instances of this tab can be opened, one for James Smith and one for Linda Smith.
The instances are uniquely identified by the page parameter, id, which has been defined for the tab. The

Chapter 1. Cúram web client reference 85

id parameter maps to the unique id for the person and will be different for both James Smith and Linda
Smith.

Table 25. Attributes of the page-param Element

Attribute Description

name Mandatory.

A unique identifier for the page parameter.

Related reference
Opening tabs and sections
You can open new sections and tabs by using several methods.

Tab menu element
The menu element contains a reference to the tab action menu configuration which is maintained in a
separate .mnu configuration file.

The following table shows the attributes of the menu element.

Table 26. Attributes of the menu element

Attribute Description

id Mandatory.

A reference to the id of a tab action menu configuration file (.mnu).

Related reference
Tab actions menu
The tab actions menu is a drop-down menu in the tab title bar. Each menu item corresponds to a
tab-specific action.

Tab context element
The context element defines a context panel by referencing a UIM page which forms the content of the
context panel.

The context element is mandatory. If no context panel is to be defined, then a tab name and tab title
must be specified.

The tab title bar and tab name can be populated with data using either the context panel UIM page or
using the tab-name and tab-title attributes in the .tab file. Where the context panel UIM page is used
only to add content to the tab name and tab title, the height attribute should be set to zero.

Table 27. Attributes of the context element

Attribute Description

page-id Optional.

A reference to the UIM page that will be used for the content of the
context panel. If this is not specified, the tab-name and tab-title
attributes must be specified.

tab-name Optional.

The text that will be displayed in the tab bar. The attribute must
reference an entry in the associated properties file.

86 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 27. Attributes of the context element (continued)

Attribute Description

tab-title Optional.

The text that will be displayed in the tab title bar. The attribute must
reference an entry in the associated properties file.

height Optional.

The pixel height of the context panel. This is only relevant if a page-id
attribute has been specified to define a context panel.

The default value if not specified is 150 pixels.

Related reference
Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

Tab navigation element
The navigation element defines what pages are opened within a tab.

A single page can be defined using the page-id attribute, or multiple pages can be defined using a
reference to the tab navigation configuration file (.nav).

Note: The navigation element is mandatory and one of either page-id or id must be specified.

Table 28. Attributes of the navigation element

Attribute Description

page-id Optional.

A reference to the UIM page that will be opened in the tab. When a link
to this UIM page is selected, it will automatically trigger the page to be
opened in a new tab.

id Optional.

A reference to a tab navigation configuration file (.nav).

Related reference
Tab navigation
Within a tab, you can navigate to the UIM pages that are grouped as part of the tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

Tab smart-panel element
The content of the smart panel is defined by a UIM page, referenced by the page-id attribute.

Similar to the context panel, the UIM elements that can be used are limited. Refer to User Interface
Element 20 of “Tabs” on page 84 for an example of a smart panel configured in an application.

Table 29. Attributes of the smart-panel element

Attribute Description

page-id Mandatory.

A reference to the UIM page that will be displayed in the smart panel of
the tab.

Chapter 1. Cúram web client reference 87

Table 29. Attributes of the smart-panel element (continued)

Attribute Description

title Mandatory.

The text for the title that will be displayed for the smart panel, both
when it is expanded and when it is collapsed. The attribute must
reference an entry in the associated properties file

width Optional.

The initial width of the smart panel when it is expanded. The default
value if this attribute is not set is 250 pixels.

collapsed Optional.

Boolean indicating if the smart panel should be expanded or collapsed
by default. The default value if this attribute is not set is true.

Related reference
Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

By default, only the content area of a tab is refreshed when a modal dialog is submitted. When a modal
dialog is either closed or canceled without an action being performed, the content area is not refreshed.

The tab actions menu, tab navigation and context panel can all be refreshed based on two events. The
first event is when a specific UIM page is loaded in the content area, and the second event is when a UIM
page is submitted from a modal or the content area. The following list describes how each element of a
tab is refreshed:
Tab Actions Menu

Refreshing the tab actions menu results in updating the entries in the menu that can be dynamically
disabled or hidden. See the related link for more information about dynamic support.

Tab Navigation
Refreshing the tab navigation results in updating the entries in the tab navigation bar and page group
navigation bar that can be dynamically disabled or hidden. See the related link for more information
about dynamic support.

Context Panel
Refreshing the context panel reloads the UIM page that is displayed in the context panel.

Content Area
Refreshing the content area reloads the UIM page that is displayed in the content area. This refresh
option is available for use only where a modal dialog has been opened from the list drop-down panel
of a nested expandable list.

By default only the parent of a list drop-down panel is updated when the modal dialog is submitted.
Where the list drop-down panel exists in a nested expandable list, this will result in the parent list
reloading and not the entire content area.

The two different type of refresh events can be configured by using the child elements that are detailed in
the following table.

88 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 30. Supported child elements of the tab-refresh element

Element Description

onload 1..n.

Defines a refresh event, where when the specified page is loaded in the
content area, the defined parts of the tab are updated.

onsubmit 1..n.

Defines a refresh event, where when the specified page is submitted
from a modal or in the content area, the defined parts of the tab are
updated.

onsubmit/onload
The onsubmit and onload elements both require the same set of attributes, as described in the
following table.

Table 31. Attributes of the onload/onsubmit Elements

Attribute Description

page-id Mandatory.

A reference to the UIM page to associate with the refresh event.

context Optional.

Boolean indicating if the context panel should be update when the
specified page is loaded or submitted.

menu-bar Optional.

Boolean indicating if the tab actions menu should be updated when the
specified page is loaded or submitted. See the related link for more
information about dynamic support.

navigation Optional.

Boolean indicating if the tab navigation should be updated when the
specified page is loaded or submitted. See the related link for more
information about dynamic support.

main-content Optional.

Boolean indicating if the main content area should be updated when the
specified page is loaded or submitted.

This type of refresh event must only be used for modal dialogs that are
opened from a list dropdown panel in a nested expandable list.

Related reference
Tab actions menu dynamic support

Chapter 1. Cúram web client reference 89

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

This type of UIM page can only use a subset of existing UIM elements, as indicated in the following list:

• SERVER_INTERFACE can only be used with a DISPLAY phase
• ACTION_CONTROL can only be used with an ACTION type
• The following elements are not supported:

– MENU
– SHORTCUT_TITLE
– JSP_SCRIPTLET
– DESCRIPTION
– INFORMATIONAL
– SCRIPT
– INCLUDE
– VIEW

Note: These same limitations apply to the smart panel UIM pages, but are not enforced.

A mandatory TAB_NAME element is required for context panel UIM pages, which allows for dynamic
information to be added to the tab name. Additionally, a mandatory PAGE_TITLE element is required to
add information to the tab title bar.

Related reference
TAB_NAME element
The TAB_NAME element defines the text used for the tab in the tab bar, where the UIM page is used
as a context panel UIM page. The text is constructed by concatenating a number of connection sources
together. These can include localized strings and data from server interfaces.
PAGE_TITLE element
The PAGE_TITLE element defines the title that appears at the top of a page's main content area. A title
is constructed by concatenating a number of connection sources together. These can include localized
strings and data from server interfaces.

Tab example configuration file
An example is provided of a tab configuration file.

The following example shows a tab configuration file named SimpleTab.tab.

<?xml version="1.0" encoding="UTF-8"?>
<tc:tab-config
 id="SimpleTab">

 <tc:page-param name="concernroleid"/>

 <tc:menu id="SimpleMenu"/>

 <tc:context page-id="SimpleDetailsPanel"
 tab-name="simple.tab.name" />

 <tc:navigation id="SimpleNavigation"/>

 <tc:smart-panel page-id="SimpleSmartPanel"
 title="smart.panel.title"
 collapsed="true"
 width="300" />

90 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <tc:tab-refresh>
 <tc:onload page-id="SimpleHome" navigation="true"/>
 <tc:onsubmit page-id="ModifySomething"
 context="true" menu-bar="true"/>
 </tc:tab-refresh>

</tc:tab-config>

The SimpleTab.tab file should have a corresponding SimpleTab.properties file, which details the
localizable content, for example:

simple.tab.name=Simple Tab
smart.panel.title=Smart Panel

Tab actions menu
The tab actions menu is a drop-down menu in the tab title bar. Each menu item corresponds to a
tab-specific action.

The menu items support opening UIM pages in the content area of a tab, or alternatively opening a modal
dialog to compete an action and are identified by an ellipsis (...). Additionally, it is possible to download a
file directly from a menu item.

The tab actions menu also supports the ability to dynamically hide and show items, and enable and
disable items in the menu. The menu items that are dynamically hidden are disabled in the menu.

Tab actions menu definition
Define a tab actions menu by creating an XML file with the extension .mnu in the clientapps directory.

The root XML element in the .mnu file is the menu-bar element and the attributes allowed on this
element are defined in the following table.

Table 32. Attributes of the menu-bar element

Attribute Description

id Mandatory.

The unique identifier for the menu, which must match the name of the
file. The identifier is used when a menu is included in a tab configuration
by using the menu element.

A menu definition can be reused and referenced by multiple tab configurations. The menu itself
comprises of menu items and submenus, which are used to group menu items. The child elements
outlined in the following table are used to define the structure of the menu. See the child topics for more
information.

Table 33. Supported child elements of the menu-bar element

Element Description

menu-item 0..n.

Defines a single entry in the menu, which links to a UIM page that can be
opened in a modal dialog or in the content area of a tab.

submenu 0..n.

Defines a grouping of menu items, which form a sub menu.

menu-separator 0..n.

Defines a separator line between entries in the menu.

Chapter 1. Cúram web client reference 91

Table 33. Supported child elements of the menu-bar element (continued)

Element Description

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change
the state of the menu-items.

Tab actions menu menu-item element
An action entry in the tab actions menu is defined by the menu-item element.

The attributes of the menu-item element are defined in the following table.

A menu-item can do the following actions:

• Open a UIM page in the content area of a tab.
• Open a UIM page in a modal dialog.
• Download a file.

Menu items which open modal dialogs are identified by an ellipsis (...), which indicates that further actions
are required.

Table 34. Attributes of the menu-item element

Attribute Description

id Mandatory.

The unique identifier for the menu-item, which must be unique within
the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the menu-item is selected.

title Mandatory.

The text that will be displayed for the menu-item. The attribute must
reference an entry in the associated properties file.

open-as Optional.

Where set, this attribute indicates that the UIM page to be displayed
should be opened as a modal dialog. The only value supported is modal.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to menu-item s which open in a modal dialog should be
displayed. The default is true. The attribute is applicable only where the
open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not
been set will not add the ellipsis to the menu-item.

92 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 34. Attributes of the menu-item element (continued)

Attribute Description

window-options Optional.

Defines the height and width of a modal dialog opened from the menu-
item. This is only applicable where the open-as attribute is set to
modal.

The format for the attribute is:
width=<pixel value>,height=<pixel value>

For example:
window-options="width=500,height=300"

The height portion of the window-options is optional and if not
specified, the height of the dialog will be automatically calculated.

dynamic Optional.

Boolean indicating that the menu-item can be dynamically disabled or
hidden. For more information see the related link.

visible Optional.

Boolean indicating if the menu-item is hidden or visible. The default is
true.

type Optional.

Defines a menu-item that downloads a file when selected. The only
value supported is FILE_DOWNLOAD. For more information see the
related link.

description Optional.

Defines text which forms a description for the menu-item. This is used
for administration purposes only. The attribute must reference an entry
in the associated properties file.

Related reference
Tab actions menu dynamic support
The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.
File download menu item
A menu-item can reference a FILE_DOWNLOAD configuration by using the type="FILE_DOWNLOAD"
attribute.

Tab actions menu submenu element
A submenu is a group of menu items and is defined by using the submenu element.

The attributes of the submenu element are defined in the following table.

Table 35. Attributes of the submenu element

Attribute Description

id Mandatory.

The unique identifier for the submenu, which must be unique within the
configuration file.

Chapter 1. Cúram web client reference 93

Table 35. Attributes of the submenu element (continued)

Attribute Description

title Mandatory.

The text that will be displayed for the submenu. The attribute must
reference an entry in the associated properties file.

description Optional.

Defines text which forms a description for the submenu. This is used for
administration purposes only. The attribute must reference an entry in
the associated properties file.

The submenu element allows for further submenus to be defined, in addition to including menu items and
menu separators. Use the supported child attributes that are defined in the following table:

Table 36. Supported child elements of the submenu element

Element Description

menu-item 0..n.

Defines a single entry in the submenu, which links to a UIM page that
can be opened in a modal dialog or in the content area of a tab.

submenu 0..n.

Defines a further sub grouping of menu items.

menu-separator 0..n.

Defines a separator between entries in the submenu.

Tab actions menu menu-separator element
A tab actions menu, including associated submenus, can include a line separator to divide the entries in
the menu.

Define a line separator by using a menu-separator element. The attributes of the menu-separator are
outlined in the following table.

Table 37. Attributes of the menu-separator element

Attribute Description

id Mandatory.

The unique identifier for the menu-separator.

Tab actions menu loader-registry element
The loader-registry element defines a list of loader implementations that is used to dynamically
enable or disable, and to hide or show the menu items in the tab actions menu.

The following table shows the supported child elements of the loader-registry element.

Table 38. Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to
dynamically set the visibility and enabled state of the menu items.

94 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Related reference
Tab actions menu dynamic support
The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Tab actions menu loader element
The loader element defines a single loader implementation that will dynamically set the state of the
menu items in a tab actions menu.

The following table shows the attributes of the loader element.

Table 39. Attributes of the loader Element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicMenuStateLoader interface.

Related reference
Tab actions menu dynamic support
The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Tab actions menu dynamic support
The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

The Java loader implementation registered in the navigation configuration will be called when the tab is
first loaded and based on the refresh options configured for a tab. The refresh options are configured in
the tab configuration file (.tab).

A menu item can be specified as dynamic in the menu configuration file (.mnu) by adding
dynamic="true" to the relevant menu-item element.

Where the dynamic attribute is set, a loader-registry is then required and should define the
fully qualified classname which implements the curam.util.tab.impl.DynamicMenuStateLoader
interface.

The DynamicMenuStateLoader interface requires one method, loadMenuState, to be implemented.
The loadMenuState method is passed the following parameters:

• a list of menu item identifiers
• a set of name-value page parameters pairs

The loader implementation must decide which menu items to disable or hide. The method returns an
object that represents the state of a given menu bar. A state must be set for all identifiers in the list. For
more information on this interface, consult the Java Documentation.

Note: The list of menu item identifiers passed to the loadMenuState method are only those that have
been identified as dynamic by the dynamic attribute on the menu-item element.

Related reference
Tab tab-refresh element

Chapter 1. Cúram web client reference 95

The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

File download menu item
A menu-item can reference a FILE_DOWNLOAD configuration by using the type="FILE_DOWNLOAD"
attribute.

The following sample code shows an example of using the FILE_DOWNLOAD element in the curam-
config.xml file:

 <mc: menu-item id="filedownloadItem" title="some.text.title"
 type="FILE_DOWNLOAD" page-id="FileDownload"/>

The page-id attribute must match the page-id attribute specified for the FILE_DOWNLOAD element.

When configuring the FILE_DOWNLOAD element in curam-config.xml, only the parameters defined for
the tab can be used as values for the PAGE_PARAM attribute of the INPUT element.

The following example shows a fragment of the FILE_DOWNLOAD configuration from the curam-
config.xml file. In this example, the fileID page parameter must be specified as a page-param
element in the tab configuration file (.tab).

Note also that the PAGE_ID attribute value of FileDownload matches the page-id attribute in the
example above.

<FILE_DOWNLOAD CLASS="some.pkg.readFile"
 PAGE_ID="FileDownload">
 <INPUT PAGE_PARAM="fileID"
 PROPERTY="key$fileID"/>
 <FILE_NAME PROPERTY="result$name"/>
 <FILE_DATA PROPERTY="result$contents"/>
 <CONTENT_TYPE PROPERTY="result$contentType"/>
</FILE_DOWNLOAD>

Figure 26. FILE_DOWNLOAD Configuration from curam-config.xml

Related reference
ACTION_CONTROL element
The ACTION_CONTROL element defines a link (text based), button or file download link that the user can
activate on a page.

Tab actions menu example configuration file
An example is provided of a tab actions menu configuration file.

The following example shows an example tab actions menu configuration file named SimpleMenu.mnu.

<?xml version="1.0" encoding="UTF-8"?>
<mc:menu-bar
 id="SimpleMenu"

 <mc:loader-registry>
 <mc:loader class="some.pkg.SimpleMenuStateLoader"/>
 </mc:loader-registry>

 <mc:submenu id="Person">

 <mc:menu-item id="dynamicLink"
 title="dynamicLink.title"
 page-id="SomeDynamicContent"
 dynamic="true"/>

 <mc:menu-separator id="separator1"/>

 <mc:menu-item id="simpleLink"
 title="simpleLink.title"
 page-id="SimplePage"/>

 </mc:submenu>

96 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <mc:menu-item id="OpenModal"
 title="openmodal.title"
 page-id="DoSomethingInModal"
 open-as="modal"
 window-options="width=600"/>

</mc:menu-bar>

The SimpleMenu.mnu should have a corresponding SimpleMenu.properties file, which details the
localizable content, for example:
dynamicLink.title=Some Dynamic Link
simpleLink.title=A Simple Link
openmodal.title=Open a Modal

Tab navigation
Within a tab, you can navigate to the UIM pages that are grouped as part of the tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

The following list describes the tab navigation components:

Navigation Bar
The navigation bar contains a number of tabs, each of which can map to a single UIM page or
alternatively a set of UIM pages. The tabs in the navigation bar are referred to as navigation tabs.

Page Group Navigation Bar
Where a navigation tab maps to a set of UIM pages, these UIM pages are displayed as a page group
navigation bar. Each link in the page group navigation bar is referred to as a navigation page.

Selecting a navigation tab or navigation page displays the relevant UIM page in the content area of the
tab. For navigation tabs that have a page group navigation bar, the first navigation page in the page group
navigation bar is selected when the navigation tab is selected.

If a user selects a subsequent navigation page and then changes to a different navigation tab, the
selected navigation page is remembered when the user returns to the original navigation tab and the page
is reloaded.

The tab navigation configuration defines when new tabs are opened and determines what UIM page is
associated with what tab.

Tab navigation definition
Tab navigation is defined by creating an XML file with the extension .nav in the clientapps directory.

The root XML element in the .nav file is the navigation element and the attributes allowed on the
element are defined in the following table.

Table 40. Attributes of the navigation element

Attribute Description

id Mandatory.

The unique identifier for the navigation configuration, which must
match the name of the file. The identifier is used when a navigation
configuration is included in a tab configuration, using the navigation
element.

The child elements outlined in the following table are used to define the structure of the navigation. For
more information, see the child topics.

Chapter 1. Cúram web client reference 97

Table 41. Supported child elements of the navigation element

Element Description

nodes Mandatory.

Groups navigation pages and navigation tabs together.

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change
the state of the navigation tabs and navigation pages.

Tab navigation nodes element
The nodes element groups together the elements that represent navigation tabs and navigation pages.

The elements are outlined in the following table.

Table 42. Supported child elements of the nodes element

Element Description

navigation-page 1..n.

Defines a navigation tab that has no page group navigation bar.

navigation-group 1..n.

Defines a navigation tab which contains a page group navigation bar.
This element groups together navigation-page elements that form
the page group navigation bar.

Tab navigation navigation-group element
The navigation-group element defines a navigation tab that contains a page group navigation bar.

The attributes of the element are outlined in the following table.

Table 43. Attributes of the navigation-group element

Attribute Description

id Mandatory.

The unique identifier for the navigation-group, which must be
unique within the configuration file.

title Mandatory.

The text that will be displayed for the navigation tab in the navigation
bar. The attribute must reference an entry in the associated properties
file.

dynamic Optional.

Boolean indicating that the navigation tab can be dynamically disabled
or hidden.

visible Optional.

Boolean indicating if the navigation tab is hidden or visible. The default
is true.

98 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 43. Attributes of the navigation-group element (continued)

Attribute Description

description Optional.

Defines text which forms a description for the navigation tab. This is
used for administration purposes only. The attribute must reference an
entry in the associated properties file.

The navigation-group element groups together navigation-page elements to form the page group
navigation bar. The first navigation-page element defined indicates the UIM page to display the first
time a navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab, will remember the previously
selected navigation page.

Table 44. Supported child elements of the navigation-group element

Element Description

navigation-page 1..n.

Defines the set of navigation pages that are grouped together to form
the page group navigation bar.

Related reference
Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation navigation-page element
A navigation-page element can represent both a navigation tab and navigation page.

If the navigation-page element is defined as a child element of the nodes element, it represent a
navigation tab which is part of the navigation bar. If the navigation-page element is defined as a child
element of the navigation-group element, it represent a navigation page which is part of the page
group navigation bar.

The attributes of the navigation-page element are outlined in the following table.

Table 45. Attributes of the navigation-page element

Attribute Description

id Mandatory.

The unique identifier for the navigation-page, which must be unique
within the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the navigation tab or
navigation page is selected.

title Mandatory.

The text that will be displayed for the navigation tab or navigation page.
The attribute must reference an entry in the associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab or navigation page can be
dynamically disabled or hidden.

Chapter 1. Cúram web client reference 99

Table 45. Attributes of the navigation-page element (continued)

Attribute Description

visible Optional.

Boolean indicating if the navigation tab or navigation page is hidden or
visible. The default is true.

description Optional.

Defines text which forms a description for the navigation tab or
navigation page. This is used for administration purposes only. The
attribute must reference an entry in the associated properties file.

Related reference
Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation loader-registry element
The loader-registry element defines a list of loader implementations that are used to dynamically
enable or disable, and hide or show both the navigation pages and navigation tabs.

The following table shows the supported child elements of the loader-registry element.

Table 46. Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to
dynamically set the visibility and enabled state of the navigation pages
and navigation tabs.

Related reference
Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation loader element
The loader element defines a single loader implementation that will dynamically set the state of the
navigation pages and navigation tabs.

The following table shows the attributes of the loader element.

Table 47. Attributes of the loader element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicNavStateLoader interface.

Related reference
Tab navigation dynamic support

100 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Dynamic support is implemented through a combination of the dynamic attribute of the navigation-
page and navigation-group elements, the loader-registry element and a Java loader
implementation.

The Java loader implementation registered in the menu configuration will be called when the tab is first
loaded and based on the refresh options configured for a tab. The refresh options are configured in the tab
configuration file (.tab).

A navigation tab and navigation page can be specified as dynamic in the navigation configuration
file (.nav) by adding dynamic="true" to the relevant navigation-page or navigation-group
elements.

Where a dynamic attribute is set, a loader-registry is then required and should define the
fully qualified classname which implements the curam.util.tab.impl.DynamicNavStateLoader
interface.

The DynamicNavStateLoader interface requires one method, loadNavState, to be implemented. The
loadMenuState method is passed the following parameters:

• A list of navigation-group and navigation-page identifiers
• A set of name-value page parameters pairs

The loader implementation must decide which items to disable or hide. The method returns an object that
represents the state of the navigation tabs and navigation pages. A state must be set for all identifiers in
the list. For more information on this interface, consult the Java Documentation.

Note: The list of navigation identifiers passed to the loadNavState method are only those that have
been identified as dynamic by the dynamic attribute on the navigation-page or navigation-group
elements.

In addition, a navigation-page and navigation-group element cannot use the same identifier. The
identifiers must be unique for all elements within the file.

Related reference
Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

Tab navigation example configuration file
An example tab navigation configuration file is provided.

The following example shows an example tab navigation configuration file named
SimpleNavigation.nav.

<?xml version="1.0" encoding="UTF-8"?>
<nc:navigation
 id="SimpleNavigation"

 <nc:loader-registry>
 <nc:loader class="some.pkg.SimpleNavStateLoader"/>
 </nc:loader-registry>

 <nc:nodes>
 <nc:navigation-page id="Home"
 page-id="Home"
 title="Home.Title"/>

 <nc:navigation-group id="Background"

Chapter 1. Cúram web client reference 101

 title="Background.Title">
 <nc:navigation-page id="Addresses"
 page-id="ParticipantAddressList"
 title="Addresses.Title"/>
 <nc:navigation-page id="PhoneNumbers"
 page-id="ParticipantPhoneNumbers"
 title="Phone.Title"/>
 </nc:navigation-group>

 <nc:navigation-page id="Identity"
 title="Identity.Title"
 page-id="ParticipantIdentity"
 dynamic="true"/>
 </nc:nodes>

</nc:navigation>

The SimpleNavigation.nav should have a corresponding SimpleNavigation.properties file,
which details the localizable content. For example:

Home.Title=Home
Background.Title=Background
Addresses.Title=Addresses
Phone.Title=Phone Numbers
Identity.Title=Identity

Opening tabs and sections
You can open new sections and tabs by using several methods.

• A section can be opened directly by clicking the relevant section tab control.
• A tab can be opened directly by clicking the relevant tab control.
• Any link in the application has the potential to open a new tab.
• A section can be opened when a new tab is opened that is associated with any section except the

current section.

Opening a section or tab by clicking the relevant tab control is straightforward. To open a tab that is
already open, but not in focus, the tab control is selected and focus is given to the tab.

Opening a section by clicking the relevant section tab control will give focus to that section. Any tabs
already open in that section will then be accessible.

When a section is opened (directly) for the first time, it may contain no tabs or may result in the automatic
opening of a default tab, depending on the section configuration.

Opening a section or tab as a result of selecting a link is more complicated. When a link is selected, before
the relevant UIM page is opened, the Cúram client will automatically determine if it should be opened in a
new tab and if that tab should be opened in a new section. This is determined based a number of factors
that will be detailed in the following sections.

Using links to open tabs and sections
One of the actions that can trigger opening a new tab or new section is selecting a link to a UIM page.
There are many different ways in the Cúram application to open a UIM page and many different contexts
in which a UIM can be displayed.

A UIM page can be displayed in the following areas of an application:

• A content area
• A tab context panel
• A tab smart panel
• A modal dialog
• A list dropdown panel

102 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A UIM page in any of these contexts can define links to another UIM page. There are different types of
links:

• Page level actions menu (content area only)
• Modal button bar (modal dialog only)
• Buttons
• Hyperlinked text
• List actions menu

In addition to links on a UIM page, a UIM page can be opened via the following actions:

• Selecting an entry in the tab actions menu
• Selecting a link in the section shortcut panel
• Selecting a navigation bar tab
• Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be defined in a UIM page, see
the related link. For the purposes of this section, selecting a link will apply to any action that can open a
new UIM page.

Related reference
UIM reference
User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Cúram
Social Program Management web application client pages. UIM files must be well-formed XML.

Page to tab and tab to section associations
A page is associated with a tab based on the navigation configuration for the tab. A tab is associated with
a section through the section configuration file.

Page to tab associations
The navigation for a tab is configured using the navigation element in the tab configuration file (.tab)
and also, if defined, the navigation configuration file (.nav).

Where no tab navigation is defined for a tab, the navigation element defines a single UIM page (via the
page-id attribute) that will result in opening the tab. A link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using a page-id attribute in the navigation
configuration file (.nav) is considered to be associated with the tab. This means that a link to any of
these referenced UIM pages will result in opening the relevant tab.

The page to tab association must be unique. This means that a page can be referenced only once by
the navigation configuration for a tab. As a result, a navigation configuration cannot be re-used across
multiple tabs.

There are a number of exceptions to this rule, but they are limited:

• The same UIM page can be referenced by more than one navigation configuration file (.nav), where the
page is only ever linked-to from within the context of the tab.

This means that any links to the UIM page are always within the same tab. For example, a Notes UIM
page is referenced by both the Person and Employer tabs. The only link to the Notes UIM page is from
the page group navigation bar. The Notes UIM page is never referenced from a shortcut panel or linked
by a UIM page that is not displayed within the context of the Employer or Person tabs.

• The same UIM page can be referenced by more than one navigation configuration for a tab, where the
tabs are included in different application configurations (.app).

• A navigation configuration file (.nav) can be reused by two tabs, where the tabs are included in two
different application configurations (.app).

Chapter 1. Cúram web client reference 103

Resolve Pages: Because of the way in which the Cúram client application handles resolve pages and
opening new tabs, it is recommended not to use resolve pages in a navigation configuration. A resolve
page is a specific type of UIM page that contains only a JSP_SCRIPTLET element.

When a link to a resolve page is selected, the Cúram client recognises that it is a resolve page and
executes the content of the JSP_SCRIPTLET. The resulting UIM page that the JSP_SCRIPTLET redirects
to is then used to determine what tab the page should be opened in.

Tab to section associations
A tab is associated with a section by listing it through the tab element in the section configuration file
(.sec).

When a new tab is opened as a result of selecting a link, the tab is opened in the associated section and
focus is given to that section and tab.

Related reference
Tab navigation
Within a tab, you can navigate to the UIM pages that are grouped as part of the tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.
JSP SCRIPTLET
The JSP_SCRIPTLET element defines JSP scriptlet code that should be inserted into the page at
that point relative to any other LIST or CLUSTER elements. Any TextHelper beans declared by a
SERVER_INTERFACE element to be in the DISPLAY phase are available to the scriptlet by getting the
attribute of the page context with the same name as the NAME attribute of the SERVER_INTERFACE
element.
Setting the preferred tabs by populating the attribute preferredTabs
To set the preferred tabs that are used by Smart Navigator, populate the preferredTabs attribute of the
object TargetObjectSearch.

Tab and section page parameters
The client determines if a new tab is opened based on the page to tab to section association. In addition,
existing open tabs, and values of the parameters that are passed to a tab, are also considered.

Two instances of the same tab can be opened, where each instance is identified by the page parameters
that have been provided. For example, James Smith and Linda Smith are uniquely identified by their
concern role ID. The concern role ID is defined as a page parameter for the Person tab.

When a link to James Smith is selected, a new tab is opened showing the details for James Smith. A
subsequent link to Linda Smith is selected and a new instance of the same tab configuration is opened,
displaying Linda Smiths details.

When a link is selected, the Cúram client application automatically determines what tab, and section, it
is associated with. It then compares this information, along with the page parameters to determine what
action to take.

The rules for opening tabs are detailed in the following table.

Note: The parameters passed when a link is selected must match the names of the page parameters
defined in the tab configuration file.

Where not all required page parameters are provided, the behavior of those tabs within the application is
not guaranteed. Any extra parameters provided will be ignored and not passed to the tab.

Table 48. Tab Opening Rules

Page to Tab Association Page Parameter Values Action

Page maps to current tab Match Page opens in current tab

Page maps to current tab Differ Page opens in new instance of tab

104 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 48. Tab Opening Rules (continued)

Page to Tab Association Page Parameter Values Action

Page maps to existing open
tab

Differ Page opens in a new instance of existing
tab

Page maps to existing open
tab

Match Page opens in existing tab

Page maps to new, unopened
tab

N/A Page opens in new tab

Limitations: There are a number of limitations and notes to be aware of when designing UIM pages to
open in new tabs.

• Links in a modal dialog obey dialog rules first and only obey the rules for opening a tab when the dialog
is closing.

• A link defined to open a modal dialog ignores the tab rules.
• Links in a tab navigation bar and page group navigation bar will always open within the context of the

current tab.
• A submit link within the content area cannot open a new tab, even if the UIM page is configured to be

associated with a different tab.
• If a UIM page is configured to be associated with a tab then the same page cannot be used as

INLINE_PAGE in expandable lists.

Tab ordering
A default tab ordering is configured in the application that applies when you open a new tab. You can
change the default tab ordering.

The default behavior when opening a new tab in the application is that the tab opens at the end of the tab
list. This behavior can be changed to open new tabs next to the tab where the request was made. This is
known as tab ordering.

The Application property curam.environment.enable.sequential.tabs controls tab ordering. The
default value for the tab ordering is set to false.

Related concepts
Configuring application properties

Working with the Cúram user interface
Use this information to develop user interface elements with the Cúram Client Development Environment
for Java. User interface elements that can be created with the Cúram Client Development Environment for
Java include shortcut panels, tabs, modal dialogs, tab navigation, and lists.

The topics show how to create a simple client application, and then expand the application with more
complex features.

Related concepts
Cúram web client reference
Use this information to learn how to develop a standard Cúram web client. The standard Cúram web client
has an HTML user interface that is generated by a middle-tier web application. It conforms to the Java™

EE architecture and is driven by JavaServer pages and servlet technology. This HTML user interface uses
standard browser and Web 2.0 technologies, including JavaScript and cascading style sheets.

Chapter 1. Cúram web client reference 105

Prerequisites for configuring the user interface
Before you start configuring the Cúram user interface, ensure that you have an understanding of the
necessary development environments.

You must have an understanding of development using both the Cúram Client Development Environment
for Java (CDEJ) and the Cúram Server Development Environment for Java (SDEJ).

In addition, it is useful to have a basic understanding of Java Platform, Enterprise Edition (Java EE)
development environments, Extensible Markup Language (XML), and web technologies such as Hypertext
Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS), and JavaScript.

It is assumed that the necessary steps to install the Cúram application and the related third-party tools
have been completed.

Creating a simple application
The topics in the following section describe how to create a simple application that has a single section
and a single page of content.

The simple application contains the following items:

• Application name
• Application subtitle
• Welcome message
• Application menu
• Section
• Tab

After the Cúram application and the related third-party tools have been installed, two main projects
are used for development, the EJBServer project and the webclient project. To create a simple
application, you must create and modify files in the following directories:

• webclient\components\component-name\
• EJBServer\components\component-name\clientapps
• EJBServer\components\component-name\codetable
• EJBServer\components\component-name\Data_Manager
• EJBServer\project\config

In each of the previous examples, component-name is the name of the custom component that is used to
store customer-specific content to the Cúram application.

Defining an application
Define a simple application that will contain a single section. An application is a particular view of the
Cúram client that is defined for a specific user or role.

Define an application by using an XML configuration file with the extension .app. The .app files, are in
the EJBServer\components\component-name\clientapps directory, where component-name is a
custom component.

106 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<?xml version="1.0" encoding="ISO-8859-1"?>
 id="SimpleApp"
 logo="SimpleApp.logo"
 title="SimpleApp.title"
 subtitle="SimpleApp.subtitle"
 user-message="SimpleApp.UserMessage">

 <ac:application-menu>
 <ac:preferences title="preferences.title"/>
 <ac:help title="help.title"/>
 <ac:logout title="logout.title"/>
 </ac:application-menu>

 <ac:section-ref id="SimpleAppHomeSection"/>

</ac:application>

Figure 27. SimpleApp app

The SimpleApp.app XML configuration file requires a corresponding SimpleApp.properties file that
details the localizable content for the application, as shown in the following example:
SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=C\u00FAram
SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout

The SimpleApp.app XML configuration file configures the following elements in the application banner
of the application:

• An application name (title)
• An application subtitle (subtitle)
• A welcome message (user-message)
• An application menu (application-menu)

Adding a section to an application
Add a section to an application, where an application can define between one and five sections. You can
configure each section to display multiple object tabs.

The SimpleApp.app application file references one section by using the SimpleAppHomeSection
id attribute. The id attribute refers to a section configuration file, which is an XML configuration
file with the extension .sec. Similar to the SimpleApp.app file, you must add the .sec file to the
EJBServer\components\component-name\clientapps directory, and the id attribute must match
the name of the file.

The following figure shows an example section file, SimpleAppHomeSection.sec.
<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:section
 id="SimpleAppHomeSection"
 title="Section.Home.Title"
 hide-tab-container="true">

 <sc:tab id="SimpleHome"/>

</sc:section>

Figure 28. SimpleAppHomeSection.sec

The SimpleAppHomeSection.sec file has a corresponding SimpleAppHomeSection.properties
file that details the localizable content, for example:
Section.Home.Title=Home

The title attribute defines the name of the section tab. In addition, because only one tab is defined for
the section, which is SimpleHome, the hide-tab-container attribute is used to hide the object tab
bar.

Chapter 1. Cúram web client reference 107

Adding a tab to a section
Add a tab to section, where a tab represents a business object, for example, a case or a participant.
However, a tab can also represent a logical grouping of information.

The SimpleAppHomeSection.sec file references one tab by using the id SimpleHome. The id refers
to a tab configuration file, which is an XML configuration file with the extension .tab. Similar to the .app
and .sec files, the tab configuration file is added to the EJBServer\components\component-
name\clientapps directory. The id attribute must match the name of the file.
<?xml version="1.0" encoding="ISO-8859-1"?>
<tc:tab-config
 id="SimpleHome">

 <tc:context tab-name="home.tab.name"
 tab-title="home.tab.name"/>

 <tc:navigation page-id="SimpleHome"/>

</tc:tab-config>

Figure 29. SimpleHome.tab

The SimpleHome.tab file has a corresponding SimpleHome.properties file that details the
localizable content, for example:
home.tab.name=Home

The tab-title attribute defines what is displayed on the tab title bar. As the object tab bar is turned off
in the .sec file, the tab-name attribute is ignored.

SimpleHome.tab references a single UIM page by using the page-id attribute of the navigation
element.

Add a UIM page to a tab
Add a Cúram user interface meta-data (UIM) format page to a tab. In a UIM page, you
define page content by using files that have the extension .uim. The .uim files are in the
webclient\components\component-name directory.

The SimpleHome.tab file references the SimpleHome UIM page.
<?xml version="1.0" encoding="UTF-8"?>

<!-- This is a sample home page. -->
<PAGE PAGE_ID="SimpleHome">

 <PAGE_TITLE>
 <CONNECT><SOURCE NAME="TEXT"
 PROPERTY="PageTitle.StaticText"/>
 </CONNECT>
 </PAGE_TITLE>

</PAGE>

Figure 30. SimpleHome.uim

The SimpleHome.uim file has a corresponding SimpleHome.properties file that details the
localizable content, for example:
PageTitle.StaticText=Simple Home

The SimpleHome.uim file defines a UIM page that has no main content and only a page title,
PAGE_TITLE. The content includes the following items that are common to most UIM pages:

• Tab title
• Page title
• Refresh button
• Print button
• Help button

108 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Associating a user with an application
After you create the content for a simple application, create and link a user to the application.

A user exists as an entry on the Users database tab. Create a user by using a dmx file and adding the file
to the EJBServer\components\component-name\Data_Manager directory.
<table name="USERS">

 ...

 <row>
 <attribute name="USERNAME">
 <value>simple</value>
 </attribute>
 ...
 <attribute name="ROLENAME">
 <value>SUPERROLE</value>
 </attribute>
 <attribute name="APPLICATIONCODE">
 <value>SimpleApp</value>
 </attribute>
 ...
 <attribute name="DEFAULTLOCALE">
 <value>en</value>
 </attribute>
 <attribute name="FIRSTNAME">
 <value>Simple</value>
 </attribute>
 <attribute name="SURNAME">
 <value>User</value>
 </attribute>
 </row>

</table>

Figure 31. Users.dmx

You must reference the Users.dmx file in the datamanager_config.xml file that is in the
EJBServer\project\config directory, for example:
<entry name="components/custom/Data_Manager/USERS.dmx"
 type="dmx" base="basedir"/>

When the entry is referenced from the Users.dmx file, it is included in the database when the database
target is executed.

The previous Users.dmx file example shows the creation of a single user who is named simple with
a password of password. The APPLICATIONCODE field links the user to a particular application by
referencing a code table entry in the APPLICATION_CODE code table. When a user logs on, the value of
the APPLICATIONCODE field in the Users database table is used to determine both the application and
the user's home page. The value of the code matches the name of the application .app file to use. The
description of the code value indicates the name of the UIM page to be displayed as the home page. The
home page is displayed when a user first logs on.

The following example shows a CT_APPLICATION_CODE.ctx file that is in the
EJBServer\components\component-name\codetable directory:
<?xml version="1.0"?>
<codetables package="curam.util.testmodel.codetable">
 <codetable java_identifier="APPLICATION_CODE"
 name="APPLICATION_CODE">
 <code default="false" java_identifier="SIMPLE_HOME"
 status="ENABLED" value="SimpleApp">
 <locale language="en" sort_order="0">
 <description>SimpleHome</description>
 <annotation></annotation>
 </locale>
 </code>
 </codetable>
</codetables>

Figure 32. CT_APPLICATION_CODE.ctx

Chapter 1. Cúram web client reference 109

The example defines a SimpleApp code with a description of SimpleHome. The SimpleApp code
matches the id of the SimpleApp.app application. The description, SimpleHome, maps to the
SimpleHome.uim file.

Build targets required to create a simple application
To create a simple application requires several files to be added and modified, which requires several
build targets to be executed.

The following table summarizes the files that are added and modified when you create a simple
application, and the build targets that process each of the files.

Table 49. Files required to create an application and corresponding build targets

File Location Build target

SimpleApp.app and associated
properties file

EJBServer\components\
component-
name\clientapps

inserttabconfiguration

SimpleAppHomeSection.sec and
associated properties file

EJBServer\components\
component-
name\clientapps

inserttabconfiguration

SimpleHome.tab and associated
properties file

EJBServer\components\
component-
name\clientapps

inserttabconfiguration

SimpleHome.uim and associated
properties file

webclient\components\
component-name\

client

Users.dmx EJBServer\components\
component-
name\Data_Manager

database

datamanager_config.xml EJBServer\project\config database

CT_APPLICATION
_CODE.ctx

EJBServer\components\
component-name\codetable

server

Note: The inserttabconfiguration target is included in the database target.

After all build targets have been completed and the server and client applications have been started, the
application can be accessed by using the following URL:
http://localhost:9080/'server_name'/AppController.do

To view the simple application, log on as the simple user, with the password password.

Adding a shortcut panel
Extend a simple application to include a new section that contains an example of a shortcut panel. A
shortcut panel provides quick links to open content and to perform actions within the section.

The new section will be named Workspace and will contain the following items:

• Shortcut Panel
• Group Node
• Leaf Node
• Workspace Section
• Search Tab

110 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Adding a section
Add a section that includes a shortcut panel to a simple application.

The following example shows a simple app file that includes a workspace section in addition to a home
section.

 <ac:application
 id="SimpleApp"
 logo="SimpleApp.logo"
 title="SimpleApp.title"
 subtitle="SimpleApp.subtitle"
 user-message="SimpleApp.UserMessage">

 <ac:application-menu>
 <ac:preferences title="preferences.title"/>
 <ac:help title="help.title"/>
 <ac:logout title="logout.title"/>
 </ac:application-menu>

 <ac:section-ref id="SimpleAppHomeSection"/>
 <ac:section-ref id="SimpleAppWorkspaceSection"/>
 </ac:application>

Figure 33. SimpleApp.app

The workspace section is defined in the SimpleAppWorkspaceSection.sec file, which defines a
structure with two tabs. A shortcut panel has also been added to the section by including a shortcut-
panel-ref element, as shown in the following example.
<sc:section
 id="SimpleAppWorkspaceSection"
 title="Section.Home.Title">

 <sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

 <sc:tab id="SimpleSearch"/>
 <sc:tab id="SimplePerson"/>

</sc:section>

Figure 34. SimpleAppWorkspaceSection.sec

The corresponding .properties contains the localizable content for the section:
Section.Home.Title=Workspace

Defining the contents of a section shortcut panel
A section shortcut panel provides quick links to open content and perform actions within the section.
Users can expand and collapse the shortcut panel as required.

Configure the contents of a shortcut panel in an XML configuration file that has an extension of .ssp and
a corresponding properties file. The following example shows an example SimpleShortcutPanel.ssp
file:
<sc:section-shortcut-panel
 id="SimpleShortcutPanel"
 title="Panel.Title">
 <sc:nodes>
 <sc:node type="group" title="Group.Title" id="UI">
 <sc:node type="leaf" id="search" page-id="SimpleSearch"
 title="Link.Title.Search"/>
 </sc:node>
 </sc:nodes>

</sc:section-shortcut-panel>

Figure 35. SimpleShortcutPanel.ssp

The corresponding .properties contains the localizable content for the shortcut panel:
Panel.Title=Shortcuts
Group.Title=Quick Links
Link.Title.Search=Person Search

Chapter 1. Cúram web client reference 111

The structure of the section shortcut panel consists of nodes of two different types, which are group and
leaf nodes. The type is configured through the type attribute. Group nodes allow for logical grouping of
leaf nodes. Each leaf node represents a link that is displayed on the section shortcut panel.

Both group and leaf nodes have a title attribute that allows the configuration of the text to be
displayed. Additionally, leaf nodes must specify a page-id attribute that configures the target page of the
link.

The SimpleShortcutPanel.ssp file defines a group node and a leaf node, where the group node
contains the leaf node that in turn contains a hyperlink to the search tab. Clicking the hyperlink link
causes the search tab to be opened.

Defining a search tab
Define a search tab in a section that contains a single page where users can search for a person.

The following example shows the configuration of the search tab in a section.
<tc:tab-config
 id="SimpleSearch">

 <tc:context tab-name="search.tab.name"
 tab-title="search.tab.title"/>
 <tc:navigation page-id="SimpleSearch"/>

</tc:tab-config>

Figure 36. SimpleSearch.tab

The corresponding .properties contains the localizable content for the tab:
search.tab.name=Search
search.tab.title=Person Search

Define the Search Page
The Person Search page has two distinct areas, a cluster that allows the user to enter search criteria
and a list to display the results of a search.

Figure 37 on page 112 shows a screen shot of the page to search a person (named as Person Search)
below.

Figure 37. Person Search Page

1. Cluster

112 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

2. Action Control
3. List

The following is the UIM code for the page:
<PAGE PAGE_ID="SimpleSearch">

 <SERVER_INTERFACE NAME="ACTION" CLASS="PersonFacade"
 OPERATION="advancedSearch" PHASE="ACTION"/>

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT"
 PROPERTY="PageTitle.StaticText"/>
 </CONNECT>
 </PAGE_TITLE>

 <CLUSTER TITLE="Cluster.Title.Search" NUM_COLS="2">
 <FIELD LABEL="Field.Label.LastName">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="key$dtls$lastName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.Gender">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="key$dtls$gender"/>
 </CONNECT>
 </FIELD>
 <ACTION_SET TOP="false">
 <ACTION_CONTROL LABEL="Control.Label.Search"
 TYPE="SUBMIT">
 <LINK PAGE_ID="THIS"/>
 </ACTION_CONTROL>
 </ACTION_SET>
 </CLUSTER>

 <LIST TITLE="List.Title.Results">
 <CONTAINER LABEL="Container.Label.Actions">
 <ACTION_CONTROL LABEL="Control.Label.View">
 <LINK PAGE_ID="SimplePerson">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </CONTAINER>
 <FIELD LABEL="Field.Label.FirstName">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="firstName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.LastName">
 <CONNECT>
 <SOURCE NAME="ACTION"
 PROPERTY="result$dtls$dtls$lastName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.Title">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="title"/>
 </CONNECT>
 </FIELD>
 </LIST>
</PAGE>

Figure 38. SimpleSearch.uim

The following are the main elements of note on this UIM page:

• The SERVER_INTERFACE element defines which server interface method is called by the server when
the form is submitted.

• The CLUSTER defines the cluster on the page that contains two fields that allow the user to enter the
search criteria. These are mapped to the input parameters of the server interface method. Refer to User
Interface Element 1 in Figure 37 on page 112.

Chapter 1. Cúram web client reference 113

• An ACTION_CONTROL element defines the action control on the page that allows the search to be
submitted. Refer to User Interface Element 2 in Figure 37 on page 112.

• The LIST defines the list on the page that contains the results of a submitted search. For each result a
row is displayed which displays the person's details, and an ACTION_CONTROL which defines a link to
that person's home page. Refer to User Interface Element 3 in Figure 37 on page 112. Selecting this link
will open the person tab which will be defined next.

The corresponding .properties should contain the localizable content for the search page:
PageTitle.StaticText=Person Search

Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Control.Label.View=View

Container.Label.Actions=Actions

Cluster.Title.Search=Search Criteria
List.Title.Results=Results
Control.Label.Search=Search

Build targets required to add a shortcut panel
To add a shortcut panel requires several files to be added and modified, which requires several build
targets to be executed.

Table 50. Files required to add a shortcut panel and corresponding build targets

File Location Build target

SimpleApp.app and associated
properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleWorkspaceSection.se
c
and associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.uim and
associated properties file

webclient\components\
component-name\

client

Adding tab content
Extend a simple application to add more complex structured tabs to a section, including a context panel
and a content area.

In a section, configure a person tab that displays details about a person and whose content includes a
context panel and a content area that displays a person page.

Defining a person tab
A person tab contains a single page that displays the details of a person.

The following example shows the configuration of the person tab and the context panel. The configuration
requires a parameter to be passed to the tab when it is opened, as defined by the page-param element.
<tc:tab-config>
 <tc:page-param name="personID"/>
 <tc:context page-id="SimplePersonContext"/>
 <tc:navigation page-id="SimplePerson"/>

</tc:tab-config>

Figure 39. SimplePerson tab

114 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The corresponding .properties file contains the localizable content for the person tab:
no.property.required=true

Defining a context panel
A context panel is displayed at the top of the tab's content area and provides important contextual
information. If configured, the context panel is always displayed regardless of the information that is
displayed in the page below it.

Define a context panel by using a UIM page. Some limitations apply to the UIM that you can use. The
following example shows the UIM code for the context panel that is defined in the person tab:
<PAGE PAGE_ID="SimplePersonContext" TYPE="DETAILS">

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT"
 PROPERTY="PageTitle.StaticText"/>
 </CONNECT>
 </PAGE_TITLE>

 <TAB_NAME>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Tab.title"/>
 </CONNECT>
 </TAB_NAME>

 <PAGE_PARAMETER NAME="personID"/>

 <CLUSTER>
 <FIELD LABEL="Field.Label.ContextPanelFor">
 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>

</PAGE>

Figure 40. SimplePersonContext.uim

Note the following elements and attributes in the example:
TYPE attribute

Can specify that a UIM page is intended as a context panel.
TAB_NAME element

Defines the content that is used as the name of the tab.
PAGE_TITLE element

Defines the tab title.
PAGE_PARAMETER element

Must match the page-param value that is specified in the tab configuration.

In the example, the context panel contains only one single field that outputs the unique identifier of the
person.

The corresponding .properties file contains the localizable content for the context panel:
PageTitle.StaticText=Person Context Panel
Tab.title=Person Tab

Field.Label.ContextPanelFor=Context Panel for user with ID:

Defining a person page
Configure a person page that is displayed in the content area of a person tab.

The following example shows the UIM that is required to display a person page in a person tab:

Chapter 1. Cúram web client reference 115

<PAGE PAGE_ID="SimplePerson">
 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
 </CONNECT>
 </PAGE_TITLE>

 <PAGE_PARAMETER NAME="personID"/>

 <SERVER_INTERFACE NAME="DISPLAY"
 CLASS="PersonFacade"
 OPERATION="readPerson" />

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="DISPLAY" PROPERTY="key$personID"/>
 </CONNECT>

 <CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

 <FIELD LABEL="Field.Label.FirstName">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.LastName">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="lastName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.Title">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="title"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.Gender">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="gender"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>
 <CLUSTER TITLE="Cluster.Title.ContactDetails" NUM_COLS="2">
 <FIELD LABEL="Field.Label.Email">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="email"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.PhoneNumber">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="phoneNumber"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.Address">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="address"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>
</PAGE>

Figure 41. SimplePerson uim

This UIM is similar to what has been previously defined.

The corresponding .properties should contain the localizable content for the page:
Page.Title=Person Home Page

Cluster.Title.Details=Details
Cluster.Title.ContactDetails=Contact Details

Field.Value.Welcome=Field Value
Field.Label.Welcome=Field Label
Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Field.Label.Email=Email
Field.Label.PhoneNumber=Phone Number
Field.Label.Address=Address

116 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Build targets required to add tab content
To add tab content requires several files to be added and modified, which requires several build targets to
be executed.

Table 51. Files required to add tab content and corresponding build targets

File Location Build Target

SimpleSearch.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleSearch.uim and
associated properties file

webclient\components\
component-name\

client

SimplePerson.tab and
associated properties file

EJBServer\components\component-
name\clientapps

inserttabconfiguration

SimpleContextPerson.ui
m and associated properties
file

webclient\components\
component-name\

client

SimplePerson.uim and
associated properties file

webclient\components\
component-name\

client

Configuring modal dialogs
A modal dialog is a window that is displayed in the user interface where users can view or edit certain
types of data in the application. Configure modal dialogs and the content that is displayed in them. You
can also configure a wizard progress bar that displays a sequence of modal dialogs to create a wizard that
can be used to edit more complex data or a larger set of data.

Modal dialogs are widely used for editing data in the Cúram application because they facilitate the
transactional editing of data. The user is forced to either submit changes or cancel them, and ambiguity is
avoided by preventing users from switching context while they configure a particular set of data.

The topics in this section demonstrate how to extend the application to add an employment history modal
dialog for a person. The modal dialog will contain the following items:

• Title bar
• Close button
• Action controls

The user cannot switch focus back to the parent interface until the modal dialog is closed, either by
submitting it or canceling it.

Opening a modal dialog
Add page level action controls to a page that open modal dialogs.

For this example, the person page that was defined in “Defining a person page” on page 115 will be
extended. The extended page will contain two action controls, one of which opens a basic modal dialog
and another that opens a wizard progress bar.

The following example shows the extended SimplePerson.uim file.

Chapter 1. Cúram web client reference 117

 <PAGE PAGE_ID="SimplePerson">

 ...
 <ACTION_SET>
 <ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
 <LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 <ACTION_CONTROL LABEL="Control.Label.CreateEmploymentWizard">
 <LINK PAGE_ID="CreateEmploymentWizard_pageOne"
 OPEN_MODAL="true">
 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </ACTION_SET>
 ...

</PAGE>

Figure 42. SimplePerson uim

The corresponding .properties file is extended to include the label properties for the action controls:
Control.Label.CreateEmployment=Add Employment History
Control.Label.CreateEmployment=Add Employment in Wizard

Defining the content of the modal dialog
Define the content of a modal dialog. The content of a modal dialog is a standard UIM page, although it is
styled differently when it is displayed by the browser.

The key features of the modal dialog that is defined in the following example are outlined in the following
list:

• The title is displayed in the title bar of the window.
• The action controls are displayed in a bar at the bottom of the window.
• The user can click the close button on the title bar to close the window without submitting changes.

The following example shows the UIM code for the modal dialog:

118 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<PAGE PAGE_ID="CreateEmployments" WINDOW_OPTIONS="width=250">

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
 </CONNECT>
 </PAGE_TITLE>

 <PAGE_PARAMETER NAME="personID"/>

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>

 <SERVER_INTERFACE NAME="ACTION"
 CLASS="EmploymentFacade"
 OPERATION="createEmployment"
 PHASE="ACTION"/>

 <CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">
 <FIELD LABEL="Field.Label.EmployerName">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="employerName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.JobTitle">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="jobTitle"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.FromDate">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="fromDate"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.ToDate">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="toDate"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>

 <ACTION_SET TOP="false">
 <ACTION_CONTROL LABEL="Control.Label.Save" TYPE="SUBMIT">
 <ACTION_CONTROL LABEL="Control.Label.Cancel" TYPE="SUBMIT"/>
 </ACTION_SET>

</PAGE>

Figure 43. CreateEmployments.uim

Note the WINDOW_OPTIONS attribute of the PAGE element. In the example, the width is set to 250.
Because the height is not set, it is automatically calculated when the dialog is displayed.

The corresponding .properties file contains the localizable content for the modal dialog:
Page.Title=Create Employment
Cluster.Title.Details=Details
Field.Value.Welcome=Here's the details panel for a person

Control.Label.Save=Save
Control.Label.Cancel=Cancel

Field.Label.PersonID=Person ID
Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title
Field.Label.FromDate=From
Field.Label.ToDate=To

Adding a wizard progress bar
In scenarios where users need to edit a more complex set of data or a larger set of data, you might want
to split the data modifications over several windows. In the Cúram application, you configure a wizard
progress bar to create a wizard.

A modal dialog that is configured within a wizard includes the following items:

Chapter 1. Cúram web client reference 119

Wizard progress bar
Indicates the sequence of pages in the wizard, and highlights the current page in the sequence.

Step title
Indicates the title of the current page in the sequence.

Step description
Describes the content of the current page.

To illustrate the use of a wizard, the example in this section shows how to add an employment history to
the application by splitting the data entry over a sequence of two pages.

Defining the wizard progress bar configuration file
Define the wizard configuration in the CreateEmploymentWizard.properties file

The following example shows the configuration file for the wizard progress bar. The wizard has two pages
and the configuration specifies the text that is displayed in the progress bar, the step title, and the step
description for each page.
Number.Wizard.Pages=2

CreateEmploymentWizard_pageOne.Wizard.Item.Text=Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Title=
 Step 1: Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Desc=
 Capture some details about Employer
Wizard.PageID.1=CreateEmploymentWizard_pageOne

CreateEmploymentWizard_pageTwo.Wizard.Item.Text=Employment Dates
CreateEmploymentWizard_pageTwo.Wizard.Page.Title=Step 2:
 Employment Period
CreateEmploymentWizard_pageTwo.Wizard.Page.Desc=
 Record the time person worked for employer
Wizard.PageID.2=CreateEmploymentWizard_pageTwo

Figure 44. CreateEmploymentWizard.properties

To load the wizard configuration file into the data, add the following lines to the AppResource.dmx file:
<row>
 <attribute name="resourceid">
 <value>1</value>
 </attribute>
 <attribute name="localeIdentifier">
 <value/>
 </attribute>
 <attribute name="name">
 <value>CreateEmploymentWizard</value>
 </attribute>
 <attribute name="contentType">
 <value>text/plain</value>
 </attribute>
 <attribute name="contentDisposition">
 <value>inline</value>
 </attribute>
 <attribute name="content">
 <value>./blob/CreateEmploymentWizard.properties</value>
 </attribute>
 <attribute name="internal">
 <value>1</value>
 </attribute>
 <attribute name="lastWritten">
 <value>2008-06-13-19.29.40</value>
 </attribute>
 <attribute name="versionNo">
 <value>1</value>
 </attribute>
 <attribute name="category">
 <value>RS_PROP</value>
 </attribute>
 </row>

120 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Defining wizard pages
An example shows how to configure a UIM file to define the content of a wizard for adding employment
history for a person. The wizard contains two pages, where the first page requires the user to enter
employer details and the second page requires the user to enter dates.

The following example shows the UIM that implements the first page of the wizard:
<PAGE PAGE_ID="CreateEmploymentWizard_pageOne">

 <MENU MODE="WIZARD_PROGRESS_BAR">
 <CONNECT>
 <SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
 </CONNECT>
 </MENU>

 <SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
 OPERATION="validateEmployerAndJobTitle" PHASE="ACTION"/>

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
 </CONNECT>
 </PAGE_TITLE>

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>

 <PAGE_PARAMETER NAME="personID"/>

 <CLUSTER TITLE="Cluster.Title.Details">
 <FIELD LABEL="Field.Label.EmployerName">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="employerName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.JobTitle">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="jobTitle"/>
 </CONNECT>
 </FIELD>

 </CLUSTER>

 <ACTION_SET TOP="false">
 <ACTION_CONTROL LABEL="Control.Label.Next" TYPE="SUBMIT">
 <LINK PAGE_ID="CreateEmploymentWizard_pageTwo"
 DISMISS_MODAL="false">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="employerName"/>
 <TARGET NAME="PAGE" PROPERTY="employerName"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="jobTitle"/>
 <TARGET NAME="PAGE" PROPERTY="jobTitle"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </ACTION_SET>
</PAGE>

Figure 45. CreateEmploymentWizard_pageOne.uim

The wizard progress bar items are added to the page by including a MENU element with the attribute
MODE="WIZARD_PROGRESS_BAR". The element references a property that is named Wizard, which
is defined in the Constants.properties file as CreateEmploymentWizard. The Wizard property
associates the page with the wizard progress bar configuration file that is loaded into the database.

The corresponding .properties file for the first page of the wizard includes the localizable content for
the page:

Chapter 1. Cúram web client reference 121

Page.Title=Create Employment
Cluster.Title.Details=Details

Control.Label.Next=Next

Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title

The following example shows the UIM that implements the second page of the wizard:
<PAGE PAGE_ID="CreateEmploymentWizard_pageTwo">

 <MENU MODE="WIZARD_PROGRESS_BAR">
 <CONNECT>
 <SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
 </CONNECT>
 </MENU>

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
 </CONNECT>
 </PAGE_TITLE>

 <PAGE_PARAMETER NAME="personID"/>

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>

 <PAGE_PARAMETER NAME="employerName"/>

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="employerName"/>
 <TARGET NAME="ACTION" PROPERTY="employerName"/>
 </CONNECT>

 <PAGE_PARAMETER NAME="jobTitle"/>

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="jobTitle"/>
 <TARGET NAME="ACTION" PROPERTY="jobTitle"/>
 </CONNECT>

 <SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
 OPERATION="createEmployment" PHASE="ACTION"/>

 <CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

 <FIELD LABEL="Field.Label.FromDate">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="fromDate"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label.ToDate">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="toDate"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>

 <ACTION_SET TOP="false">
 <ACTION_CONTROL LABEL="Control.Label.Save" TYPE="SUBMIT">
 <LINK PAGE_ID="Employments" DISMISS_MODAL="TRUE">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID" />
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </ACTION_SET>

</PAGE>

Figure 46. CreateEmploymentWizard_pageTwo.uim

The corresponding .properties file includes the localizable content for the page:

122 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Page.Title=Create Employment
Cluster.Title.Details=Details
Control.Label.Save=Save

Field.Label.FromDate=From
Field.Label.ToDate=To

Build targets required to add modals and wizard progress bars
To add modal dialogs and wizard progress bars requires several files to be added and modified, which
requires several build targets to be executed.

Table 52. Files required to add modal dialogs and corresponding build targets

File Location Build target

SimplePerson.uim and
associated properties file

webclient\components\
component-name\

client

CreateEmployments.uim
and associated properties file

webclient\components\
component-name\

client

CreateEmployments
Wizard_pageOne.uim and
associated properties file

webclient\components\component-name\ client

CreateEmployments
Wizard_pageTwo.uim and
associated properties file

webclient\components\
component-name\

client

CreateEmploymentsWizard
.properties

EJBServer\components\
component-
name\Data_Manager\scripts\blob

client

APPRESOURCES.DMX EJBServer\components\
component-name\Data_Manager\scripts

client

Adding tab navigation
Add navigation features to a tab. An example shows how to modify a person tab to include a navigation
bar.

The modified person tab will contain a content area navigation bar within one navigation tab, and a page
group navigation bar with two navigation pages.

Defining a navigation bar
Configure a tab file to contain a navigation bar in the content area. Then, configure a nav file to include a
navigation group with two navigation pages.

To configure a tab to contain a navigation bar in the content area, it is necessary to include the id of the
navigation bar configuration in the navigation element of the tab.

The following example shows the modified version of a SimplePerson.tab file.

 <tc:tab-config
 id="SimplePerson">

 <tc:page-param name="personID"/>

 <tc:context page-id="SimplePersonContext" height="60"/>
 <tc:navigation id="SimplePersonNav"/>
 </tc:tab-config>

Figure 47. SimplePerson Tab

Chapter 1. Cúram web client reference 123

Define the navigation bar configuration by using an XML configuration file with the extension .nav. Similar
to other tab configuration artifacts, the .nav files are in the EJBServer\components\component-
name\clientapps directory, where component-name is a custom component.

The following example shows the contents of the SimplePersonNav.nav file. It defines one navigation
group, with two navigation pages.
<nc:navigation id="SimplePersonNav">
 <nc:nodes>
 <nc:navigation-group id="PersonHome" title="PersonHome"
 description="Person Details Group">
 <nc:navigation-page id="SimplePerson" page-id="SimplePerson"
 title="PersonDetails.Title"/>
 <nc:navigation-page id="Employments" page-id="Employments"
 title="EmploymentHistory.Title"/>
 </nc:navigation-group>
</nc:nodes>
</nc:navigation>

Figure 48. SimplePersonNav.nav

The corresponding .properties file contains the localizable content for the page:
PersonHome.Title=Person Home
EmploymentHistory.Title=Employment History
PersonDetails.Title=Person Details

Build targets required to add tab navigation
To add a navigation bar to a tab requires several files to be added and modified, which requires several
build targets to be executed.

Table 53. Files required to add tab navigation and corresponding build targets

File Location Build target

SimplePersonNav.nav
and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimplePerson.tab and
associated properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

Working with lists
Extend a person search page to add an expandable list and a list actions menu.

The examples in this section show how to add an expandable list and a list actions menu to the person
search page that is defined in “Define the Search Page” on page 112.

Defining an expandable list
Add an expandable list to a person search page. In an expandable list, users can see more information
than is displayed in a simple list, without having to navigate away from the page that contains the list.

In an expandable list, expand each row by clicking a toggle control. In the expanded state, a page that is
relevant to the row is displayed. Note the following key points:

• A toggle control is added to the start of each row that enables the row to be expanded and collapsed.
It is possible to expand more than one row at a time and the size of the content area adjusts
automatically.

• Page level action sets are displayed as buttons in a page.

The following SimpleSearch.uim example shows a person search page UIM file that has been modified
to include an expandable list.

124 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <PAGE PAGE_ID="SimpleSearch">

 <SERVER_INTERFACE NAME="ACTION"
 CLASS="PersonFacade"
 OPERATION="advancedSearch"
 PHASE="ACTION"/>

 ...

 <LIST TITLE="List.Title.Results">
 <DETAILS_ROW>
 <INLINE_PAGE PAGE_ID="SimplePerson">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </INLINE_PAGE>
 </DETAILS_ROW>
 ...
 </LIST>
</PAGE>

Figure 49. SimpleSearch.uim

A new element, the DETAILS_ROW, has been added to the LIST element. The DETAILS_ROW element
defines the inline page that is displayed when a row is expanded, including the parameters that are
passed to the page for each row.

Defining a list actions menu
Add a list actions menu to a person page. A list actions menu contains a set of actions that are associated
with a particular row.

A list actions menu icon is displayed at the end of each row. Clicking the icon expands the list actions
menu. The list actions menu contains one or more menu items, which are defined by action controls.

The following SimpleSearch.uim example shows a person search page UIM file that has been modified
to include a list actions menu.

Chapter 1. Cúram web client reference 125

 <PAGE PAGE_ID="SimpleSearch">

 ...

 <LIST TITLE="List.Title.Results">

 ...
 <ACTION_SET TYPE="LIST_ROW_MENU">
 <ACTION_CONTROL LABEL="Control.Label.View">
 <LINK PAGE_ID="SimplePerson">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>

 <ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
 <LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 <ACTION_CONTROL
 LABEL="Control.Label.CreateEmploymentWizard">
 <LINK PAGE_ID="CreateEmploymentWizard_pageOne"
 OPEN_MODAL="true">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </ACTION_SET>

 <!-- Removing Actions Column -->
 <!--<CONTAINER LABEL="Container.Label.Actions">
 <ACTION_CONTROL LABEL="Control.Label.View">
 <LINK PAGE_ID="SimplePerson">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="personID"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </CONTAINER>-->
 ...

 </LIST>
</PAGE>

Figure 50. SimpleSearch.uim

Note the following points:

• An ACTION_SET that contains the three action controls has been added to the list.
• The attribute TYPE has been set to LIST_ROW_MENU to indicate that the action controls that are in this

set are to be displayed on a list actions menu.
• Because the View action control has been added to the list actions menu, the column that contains it is

no longer necessary, and therefore the corresponding UIM code has been commented out.

Localizable labels for the new action controls are in the corresponding .properties file content, for
example:
Control.Label.CreateEmployment=Create Employment
Control.Label.CreateEmploymentWizard=Create Employment Wizard

126 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Build targets required to add lists and list actions
To add and expandable list and list actions menu requires several files to be added and modified, which
requires several build targets to be executed.

Table 54. Files required to add an expandable list and a list actions menu, and corresponding build
targets

File Location Build target

SimpleSearch.uim and
associated properties file

webclient\components\component-name\ client

Session management
Learn how browser sessions are handled in the Cúram application. A browser session can be defined as a
continuous period of user activity in the web browser, where successive events are separated by no more
than 30 minutes.

The following are common examples of when a Cúram browser session is started or finished:

• A session starts when a user first logs into the application.
• As long as the user is actively using the browser, the session remains active.

If the browser is left inactive for a period of time, the session will timeout. In this case, the user will be
required to log back in and a new session is started.

The default timeout is 30 minutes, but this can be configured using the application server's
configuration settings. See the Cúram Deployment Guide for more information on application server
configuration.

• The user can explicitly logout, using the logout link in the application banner. The session is terminated
in this case and logging back in will start a new one.

• The browser is shutdown and a new browser instance is started. In this case, a new session is started
and the user will be required to log in.

Session Overview
There is a maximum limit on the number of tabs that can be opened per section of an application. The
system administrator can configure this limit by updating the curam.environment.max.open.tabs
property in the system administration application. The default value for the maximum limit of open tabs
per section of an application is set to fifteen.

If a user requests to open a tab and the number of open tabs reaches the maximum limit within the
current section then an informational modal dialog will be displayed immediately after the tab is initially
opened (before content in the tab is displayed). As instructed in this modal dialog, existing open tabs
within the current section should be closed before any new tabs can be opened in an application. If the
information displayed in the informational dialog is ignored and the user attempts to open more tabs
within the current section of an application, the requested tabs will not be opened and an error modal
dialog will be displayed instructing that new tabs can only be opened after existing open tabs within the
current section of the current application are closed. An error modal dialog can simply be dismissed by
clicking on the button on the bottom of the dialog.

The message and title of both the dialog can be customized by customizing by adding the
GenericModalError.js.properties file within the custom component. For more information on
localizing JavaScript property files, see “File encoding” on page 41.

The text on the button can be customized by changing the value of the Text.Ok property in
CDEJResources.properties. For more information on localizing CDEJResources.properties, see
“CDEJResources.properties” on page 48.

Chapter 1. Cúram web client reference 127

The current set of open tabs for a particular user is restored each time the user logs out of the application
and logs back in. In addition, if the browser is refreshed (e.g. using the F5 button), the currently open tabs
are also restored. There are two exceptions to this:

• If the the system administrator has decreased the maximum limit of tabs that can be opened within a
section of an application since the termination of the last session then only the new maximum number
of tabs within each section will be restored. An error dialog will be displayed informing the user that the
maximum limit of open tabs has been exceeded.

• If the system administrator has updated the tab configuration to remove tabs from sections via the User
Interface administration screens, then the removed tabs will not be restored.

The browser session plays an important role in the expected behavior when restoring tabs, and this
chapter will detail how browser sessions interact with the restoration of tabs. In addition, a number of
configuration options for the tab restoration feature are detailed.

Tab Restoration
The list of currently open tabs per user is stored temporarily in the web tier, associated with the browser
session, and more permanently on the database so that it can be restored after a user logs out of the
application.

The data is persisted from the web tier to the database intermittently. As a result, there are cases where
the last few changes to the open tabs may not be restored when the user logs in. This is most likely to
happen where the session times out or the browser is restarted.

The behavior of tab restoration is different depending on whether it was the result of a browser refresh
(F5) or the start of a new session, that is, the user has logged in.

• Browser Refresh

If the browser is refreshed, tabs are restored to their current state from the web tier session data, for
the current user. No tab changes will be lost.

– The tab that was last selected for the current user in the selected section will remain the selected
tab.

– The selected tab for the current user in other sections will revert to the first tab in those sections.
– The expanded or collapsed states of the shortcut panel, smart panel and page contents for the

current user are not restored.
• New Session

When a new session starts, usually requiring the user to login, the tabs are restored to their current
state using the session data stored on the database.

– The "Home" tab is restored as the selected tab.
– The selected tab in other sections will revert to the first tab in those sections.
– The expanded or collapsed states of the shortcut panel, smart panel and page contents are not

restored.
– If no previous tab session data is available, only the "Home" tab is opened.

For more information about a special case of tab restoration where pages are directly accessed through
the browser navigation bar, see direct browsing in “The application controller JSP and web client URL” on
page 11.

Session Configuration
Each time a new tab is opened, a tab is closed or the content area of a tab is updated, the information is
stored in the web tier. The tab session data is persisted from the web tier to the database intermittently.
How often the data is persisted can be configured using the following options, which can be set in the
ApplicationConfiguration.properties file.

• tabSessionUpdateCountThreshold

128 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. Once the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of one causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts. The
default is every 10 updates.

• tabSessionUpdatePeriodThreshold

Specifies the number of seconds that must have elapsed since the last time session data was persisted
from the web tier to the database before a new update will trigger another write. A value of zero (or a
negative or invalid value) disables writing based on update periods. The default value is 120 seconds, or
2 minutes.

The properties work together based on which value is reached first. In other words, if the update
count threshold (tabSessionUpdateCountThreshold) is not reached, but the update period threshold
(tabSessionUpdatePeriodThreshold) has been reached, a write will occur, and vice versa.

If the update count threshold is set to one, the update period threshold is ignored. The reason for this is
that writes will happen on every update, so there is no need to write based on a time period.

Note: Tab session data is persisted to the database when the user logs out, regardless of the value of the
current update count and update period. The exception to this is if both the update count threshold and
the update period threshold are set to zero.

Each user account has one persistent tab session database record for an application. The same
user logging in to the application from different browser sessions will cause some interference and
unpredictability in what data is persisted across sessions.

The interference and unpredictability of the persisted data, when multiple users are using the
same login ID, is most likely encountered in a testing environment. It is recommended that the
tabSessionUpdatePeriodThreshold and tabSessionUpdateCountThreshold properties are set to zero for
testing environments to prevent this. Setting both properties to zero ensures that the tab session data is
only persisted for the length of a browser session and not across sessions, i.e. login and logout.

It is also recommended that these settings are used where an "external" application is deployed and the
external users all share the same generic user account.

Session Timeout Warning
A browser session is timed from when data was most recently sent to or received from the server. In
some cases, a user might enter data into the application without realizing that the current session has
timed out. When the user does initiate a server call, for example to submit the entered data, the browser
prompts the user to reauthenticate to the application and their data can be lost. To prevent users from
losing data when their session times out, a system administrator can configure a session timeout warning.

Before a browser session times out, a session timeout warning dialog box is displayed to users at a
configured time. The dialog contains a timer that indicates the remaining period before the session times
out. Users can either reset the session timeout and continue working in the application, or end the session
and quit the application.

In IBM Cúram Social Program Management, the session timeout warning is enabled by default. Default
configuration values are defined for the session timeout warning in properties.

Session timeout warning default values
The session timeout warning uses default values that are defined in the
ApplicationConfiguration.properties file and in the CDEJResources.properties file.

CDEJ resources properties
You can configure the default values of the following properties that are defined in the
CDEJResources.properties file:

Chapter 1. Cúram web client reference 129

timeout.warning.modal.title
Configures the title that is displayed on the timeout warning modal dialog. The default value is
Timeout Warning.

timeout.warning.modal.user.message
Configures the message that is displayed to the user before the session expires. The default value is
You will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

timeout.warning.modal.expired.user.message
Configures the message that is displayed to the user after the session expires. The default value is
You have been automatically timed out due to a period of inactivity on your
account.

timeout.warning.modal.continue.button
Configures the text that is displayed on the Continue button in the modal dialog that is displayed to
the user before the session expires. The default value is Continue.

timeout.warning.modal.quit.button
Configures the text that is displayed on the Quit button in the modal dialog that is displayed to the
user before the session expires. The default value is Quit.

Application configuration properties
The following default values are defined in the ApplicationConfiguration.properties file:
Session timeout warning modal width

Configures the default width of the session timeout warning modal in pixels. The default value is 580.
You can override the default property value only by customizing the timeout-warning element in an
application.

Session timeout warning modal height
Configures the default height of the session timeout warning modal in pixels. The default value is 250.
You can override the default property value only by customizing the timeout-warning element in an
application.

Default buffering period
Configures the default buffering period in seconds to allow a server more time to respond to a client
request over a slow network. The default value is 20. You cannot override the default property value.

Customizing the session timeout warning in the caseworker application
Customize the session timeout warning in the caseworker application by configuring system application
properties, and CDEJ resource properties.

About this task
Settings that you customize in CDEJ properties apply to the whole of IBM Cúram Social Program
Management.

If the timeout-warning element is configured for a specific application, the application configuration
takes precedence over the corresponding values that are configured in the application configuration
properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:

1. Log on to IBM Cúram Social Program Management as a system administrative user.
2. Click System Configurations.
3. In the Shortcuts panel, click Application Data > Property Administration.
4. Search for and edit each property that you want to configure.
5. To publish the property change, click Publish.

130 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Procedure
Application configuration properties
• Customize the following application configuration properties for the session timeout warning as

required:
Enable or disable the session timeout warning

Edit the curam.environment.internal.enable.timeout.warning.modal application
configuration property. The property configures whether the session timeout warning is displayed
to users, A valid Boolean value is required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.internal.timeout.warning.modal.time application
configuration property. The property configures the notice period that users are given in seconds,
through the display of the session timeout warning, that their browser session is about to time
out. For example, if the default browser session length is 30 minutes, and the timeout attribute
value is configured to 120, which corresponds to a value of 2 minutes, the session timeout warning
is displayed after 28 minutes of inactivity. Then, users must click a button in the user interface
to prevent the session from automatically timing out. A valid integer value is required, where the
default value is 120.

Customize the session expiry logout page
Edit the curam.environment.internal.timeout.warning.modal.logoutpage
application configuration property, where the default value is internal-logout-wrapper. The
property configures the logout page that is displayed when a user's session expires and the user is
automatically logged out. The property value must be a valid UIM page.

CDEJ resource properties
• Customize the following CDEJ resource properties for the session timeout warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property configures the title that
is displayed on the timeout warning modal dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.user.message CDEJ property. The property configures the
message that is displayed to the user before the session expires. The default value is You
will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

Customize the session expiry message
Edit the timeout.warning.modal.expired.user.message CDEJ property. The property
configures the message that is displayed to the user after the session expires. The default value
is You have been automatically timed out due to a period of inactivity on
your account.

Customize the Continue button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.continue.button CDEJ property. The property configures
the text that is displayed on the Continue button in the modal dialog that is displayed to the user
before the session expires. The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The property configures the
text that is displayed on the Quit button in the modal dialog that is displayed to the user before the
session expires. The default value is Quit.

Chapter 1. Cúram web client reference 131

Customizing the session timeout warning in Universal Access
Customize the session timeout warning in Universal Access by configuring system application properties,
and CDEJ resource properties.

About this task
Settings that you customize in CDEJ properties apply to the whole of IBM Cúram Social Program
Management.

If the timeout-warning element is configured for a specific application, the application configuration
takes precedence over the corresponding values that are configured in the application configuration
properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:

1. Log on to IBM Cúram Social Program Management as a system administrative user.
2. Click System Configurations.
3. In the Shortcuts panel, click Application Data > Property Administration.
4. Search for and edit each property that you want to configure.
5. To publish the property change, click Publish.

Procedure
Application configuration properties
• Customize the following application configuration properties for the session timeout warning as

required:
Enable or disable the session timeout warning

Edit the curam.environment.enable.timeout.warning.modal application configuration
property. The property configures whether the session timeout warning is displayed to users, A
valid Boolean value is required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.timeout.warning.modal.time application configuration
property. The property configures the notice period that users are given in seconds, through
the display of the session timeout warning, that their browser session is about to time out. For
example, if the default browser session length is 30 minutes, and the timeout attribute value
is configured to 120, which corresponds to a value of 2 minutes, the session timeout warning is
displayed after 28 minutes of inactivity. Then, users must click a button in the user interface to
prevent the session from automatically timing out. A valid integer value is required, where the
default value is 120.

Customize the session expiry logout page
Edit the curam.environment.timeout.warning.modal.logoutpage application
configuration property, where the default value is LogoutWrapper. The property configures the
logout page that is displayed when a user's session expires and the user is automatically logged
out. The property value must be a valid UIM page.

CDEJ resource properties
• Customize the following CDEJ resource properties for the session timeout warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property configures the title that
is displayed on the timeout warning modal dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.user.message CDEJ property. The property configures the
message that is displayed to the user before the session expires. The default value is You
will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

132 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Customize the session expiry message
Edit the timeout.warning.modal.expired.user.message CDEJ property. The property
configures the message that is displayed to the user after the session expires. The default value
is You have been automatically timed out due to a period of inactivity on
your account.

Customize the Continue button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.continue.button CDEJ property. The property configures
the text that is displayed on the Continue button in the modal dialog that is displayed to the user
before the session expires. The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The property configures the
text that is displayed on the Quit button in the modal dialog that is displayed to the user before the
session expires. The default value is Quit.

Customizing the timeout warning in an application
You can configure the session timeout warning individually for each application by configuring the optional
timeout-warning element.

About this task
Optionally, configure the timeout-warning element in the application configuration XML file, which has
the extension .app. If you configure the timeout-warning element in the application, the values takes
precedence over both the values that are configured in the system application configuration properties
and the default values.

Procedure
• Configure the following attributes as required in an application's configuration file:

title
Configures the title that is displayed on the timeout warning dialog.

user-message
Configures the message that is displayed to the user before the session expires. If the
message requires more than two lines of text, to prevent text cutoff from occurring a scroll
bar is automatically displayed in the session timeout warning modal. Because the scroll bar is
implemented by using CSS styling, it is not possible to disable it by configuring a property.

expired-user-message
Configures the message that is displayed to the user after the session expires.

quit-button
Configures the text that is displayed on the Quit button in the modal dialog that is displayed to the
user before the session expires.

continue-button
Configures the text that is displayed on the Continue button in the modal dialog that is displayed
to the user before the session expires.

timeout
Configures the notice period that users are given in seconds, through the display of the session
timeout warning, that their browser session is about to time out. For example, if the default
browser session length is 30 minutes, and the timeout attribute value is configured to 120, which
corresponds to a value of 2 minutes, the session timeout warning is displayed after 28 minutes
of inactivity. Then, users must click a button in the user interface to prevent the session from
automatically timing out.

width
Configures the width of the session timeout warning modal in pixels.

Chapter 1. Cúram web client reference 133

height
Configures the height of the session timeout warning modal in pixels.

• For an application in Universal Access, you can enable a specific logout page to be associated with the
Quit button for a modal dialog. On the logout banner menu item that is on the person banner menu,
you must set the logout attribute to true, as shown in the following example:

<ac:banner-menu type="person" title="person.title" page-id="somPageID"/>
<ac:menu-item id="logout" title="menu.logout.title" text="menu.logout.text"
page-id="LogoutWrapper" logout="true"/>
<ac:banner-menu/>
<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"
expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"
quit-button="timeout.logout"
timeout="300"
width="650"
height="300"/>

Example

The following example demonstrates how to specify values for the timeout-warning attributes:

<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"
expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"
quit-button="timeout.logout"
timeout="300"
width="580"
height="200"/>

Configuring a customized logon page
If a browser session times out because of no user interaction, users are redirected to an application logon
page that is specified by the configuration properties. The logon page displays a session expiry message
that tells users that they have been logged out because of a period of inactivity on their account.

About this task
In the configuration properties, you can specify the application logon page that is displayed both in the
IBM Cúram Social Program Management application and in the Universal access application.

If the application is configured to display a customized logon page instead of the default page, then use
the following procedure to insert a customized session expiry message into the customized logon page. If
a user's session times out automatically, the customized session expiry message is then displayed in the
customized logon page that the user is redirected to.

Procedure
1. To configure the custom logon JSP page, do the following steps:

a) Import the class JSPUtil by using the following page directive:

<jsp:directive.page import="curam.util.client.jsp.JspUtil"/>

b) Insert the scriptlet to print the session expired message on the page:

<jsp:scriptlet>
 <![CDATA[JspUtil. printSessionExpiredMessage(pageContext);]]>
</jsp:scriptlet>

2. To configure the custom logon renderer class, do the following steps:
a) Create a div with a custom ID on your logon page to wrap the session expired message.
b) Call the following method and pass in the ID of the div as a parameter:

JspUtil.getSessionExpiredMessageScript(div.id);

134 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Tab Session Limitations
The tab session data records a limited number of tabs. The limit imposed relates to the total size of the
tab session data and is approximately 70-80 tabs. Once this limit has been exceeded, tab session data is
maintained only in the web tier and is no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected. However, if a user logs out
with more tabs open than can be recorded for a session, only the state of the tabs at the time the limit
was first exceeded will be restored.

Closing tabs will reduce the size of the tab session data and writing to the database will then resume as
normal.

Browser Specific Session Management
The version of the browser that is used can affect new sessions when they are started and when they are
shared. Two browser instances that share the same session result in the same set of open tabs that are
displayed in both instances. This sharing can cause interference and unpredictability of the persisted data
in the same way if two users that use the same user ID and password from different computers.

Example Session Issue: A user logs in to the Cúram application in one browser instance as the 'admin'
user. They then open a new browser tab, which shares the session. From here, they access the Cúram
login page and login as a 'caseworker' user.

In this situation, the original browser tab still displays the tabs for the admin user. If the user refreshes
the original tab, then the tabs and application view are restored for the caseworker application.
Alternatively, if the user opens new tabs that apply to the admin application only, the tabs are persisted
for the caseworker user. Within the same browser session, a user must always log out to end the session
and be able to log in as a different user.

Users logging into two separate applications (for example, internal and external applications) within the
same browser also causes problems. Within one browser, users cannot log in to external and internal
applications at the same time.

Browser management
You can configure specific behavior for the IBM Cúram Social Program Management supported browsers,
such as warning users if they are about to leave a page without saving data, or notifying them when they
are not using an optimal browser version.

Configuring browser Back, Refresh, and Close button behavior
The standard IBM Cúram Social Program Management application does not support using the browser
Back and Refresh buttons to navigate the application. Also, if users click the Close button to close the
application, they might lose data. In both the caseworker user interface and the classic Universal Access
user interface, if users click either the Back, Refresh, or Close browser buttons, by default a warning
message is displayed in a confirmation window. The warning message prompts users to either stay on
the page or leave the page as requested. You can configure properties to either enable or disable the
confirmation message from displaying on the internal application, the external application, or both. The
warning dialog to prevent the loss of data is in the internal application.

Before you begin
You must log on to IBM Cúram Social Program Management as a system administrative user.

About this task
Use the following procedure to either enable or disable confirmation messages from being displayed
when users click either the Back, Refresh, or Close browser buttons in either the caseworker user
interface or the Universal Access user interface.

Chapter 1. Cúram web client reference 135

The content of the confirmation message depends on the browser, and cannot be customized.

Note: Browser-specific behavior
All browsers

In all browsers, when a warning message confirmation window is displayed after you click the Back,
Refresh, or Close buttons, the following actions are recommended:

• It is recommended that users do not click the Leave button. Clicking the Leave button causes
unpredictable results that depend on the browser that is being used, and on where users are within
the application. Instead, it is recommended that users click the Stay button in the warning message
confirmation window. To save any data that is entered on the page, users click Stay on the Page. To
run the requested action, users click Leave the Page.

• For the Refresh button, where users are asked to confirm whether they want to reload the page,
it is recommended that users do not click the Reload button. Clicking the Reload button causes
unpredictable results that depend on the browser that is being used, and on where users are within
the application. Instead, it is recommended that users click the Don't Reload button in the warning
message confirmation window.

• If the user clicks the Back button before the page is loaded, the browser dialog is not displayed in
the browser.

• If a user does not interact with a page by clicking, touching, scrolling, or typing on the elements, the
warning message is not displayed when the user clicks the Back button.

Users can then use the supported navigational options that are provided in the application to do the
actions that users require.

Chrome and Microsoft Edge

If you enable the confirmation message to be displayed, both Chrome and Microsoft Edge display an
extra checkbox that users can select to stop the page from opening more message or confirmation
windows. If users select the checkbox, the message or confirmation window is not displayed again. It
is recommended that users do not select the checkbox.

Firefox

In Universal Access, if a user does not interact with a page by clicking, touching, scrolling, or typing
on the elements, the warning message is not displayed when the user clicks the Back button. In this
case, data is not lost if the user leaves the page.

Safari
In Universal Access, if the warning message confirmation dialog is displayed and the user clicks the
Leave button, the feature is disabled in the Safari browser. The Leave button is enabled again only
when the user closes the main current browser and then reopens the browser.

Tablets
The warning message confirmation dialog is not displayed on tablets.

Procedure
1. Click System Configurations.
2. In the Shortcuts pane, click Application Data > Property Administration.
3. To enable or disable the confirmation window in the IBM Cúram Social Program Management user

interface or the Universal Access user interface, search for and edit the value of the proceeding
properties. By default, the warnings are enabled on both the internal and external application.

• For the internal application, edit the value of the
curam.internal.app.guard.against.leaving property. The property is used to indicate
whether warning messages are enabled or disabled when the user leaves or refreshes the internal
application.

136 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

• For the external application, edit the value of the curam.app.guard.against.leaving
property. The property is used to indicate whether warning messages are enabled or disabled when
the user leaves or refreshes the external application.

4. To publish the property change, click Publish.

Optimal browser support
A number of browsers and a range of browser versions are supported for use with IBM Cúram Social
Program Management. The default settings for web browser versions align with the versions supported
by IBM for external applications. Users can be notified when they are not using the optimal version of a
supported web browser. You can configure the range of supported versions for a browser, the message
that users see, and the frequency at which the message is displayed.

Note: IBM Cúram external applications are public facing applications, where mode="external" is set in
the application configuration file (*.app). Health Care Reform and Universal Access are examples of this
type of application.

The user's web browser is considered suboptimal if it is below the supported minimum version of the
browser, or above the supported maximum version of the browser.

A message displays at the top of the banner, which can be dismissed. Once the optimal browser
message is dismissed and if the browser is not updated, the message will be displayed again when a
certain number of days have elapsed. This is assuming that the fully qualified URL to the application
remains the same. An example of a fully qualified URL might be https://myserver.ibm.com:9044/
CitizenPortal/application.do.The number of days that have elapsed before the next optimal
browser check is configurable and by default it is sixty days in the future. The default optimal browser
message links to a website that assists the user to take action and update their version of the web
browser to an optimal one.

The optimal browser message essentially has three components as follows:

Warning icon
The warning icon gets the attention of the user that they should update their web browser.

Optimal browser message content
The message content that will be displayed to the user. It will consist of plain text and optionally a
hyperlink which directs the user to a website where they can take action to update their web browser.

Optimal browser message exit icon
Allows the user to dismiss the optimal browser message.

Related reference
Application configuration properties
The ApplicationConfiguration.properties file defines the most important application
configuration settings. You might want to change some of the settings that are relevant to the client
application.
CDEJResources.properties
This properties file can be localized. For more information, see Locales. Images defined in this file can
also be customized per locale.

Optimal browser support configuration
Use properties in the ApplicationConfiguration.properties file to enable or disable optimal
browser support, configure the number of days before the next browser check, and set the for minimum
and maximum browser versions.

optimal.browser.detection.enabled
Example: optimal.browser.detection.enabled=true. This is an application wide setting. It
allows this feature to be enabled or disabled. Valid values for this property are; "true", and "false". The
default value is "false".

Chapter 1. Cúram web client reference 137

optimal.browser.next.check
Example: optimal.browser.next.check=20. This property configures the number of days that
will elapse before the next check is done to determine if a user's web browser is at an optimal level.

Note: This must an integer value. It is recommended to use a value between 1 and 60 (inclusive). The
default value is set to 60.

If this value is incorrectly configured it will be set to the default value. Additionally, an exception will
be reported in the server logs when client side tracing is enabled. Please see “Tracing server function
calls” on page 26 for more information on setting client side tracing. It should be noted that if this
value is changed, it will not take effect until the optimal browser message is displayed again.

Properties for minimum and maximum browser versions
The following the properties define what constitutes an optimal browser. The default value for each of
these properties is in line with that supported by IBM for external applications.

Note: The value of these properties must be an integer or double value, otherwise a default value of "0"
will be set and the optimal browser feature will not work as expected when using the an application in the
associated web browser. An exception will be reported in the server logs if client side tracing is enabled.

chrome.min.version
Example: chrome.min.version=0. This property is used to configure the minimum supported
version of the Chrome web browser. Any version below this is not considered an optimal Chrome
browser when using an IBM Cúram application. The default value is set to zero because there is no
minimum supported version for Chrome.

chrome.max.version
Example: chrome.max.version=0. This property is used to configure the maximum supported
version of the Chrome web browser. Any version above this is not considered an optimal Chrome
browser when using an IBM Cúram application. The default value is set to zero because there is no
maximum supported version for Chrome.

ff.min.version
Example: ff.min.version=0. This property is used to configure the minimum supported version
of the Firefox web browser. Any version below this is not considered an optimal Firefox browser
when using an IBM Cúram application. The default value is set to zero because there is no minimum
supported version for Firefox.

ff.max.version
Example: ff.max.version=0. This property is used to configure the maximum supported version
of the Firefox web browser. Any version above this is not considered an optimal Firefox browser
when using an IBM Cúram application. The default value is set to zero because there is no maximum
supported version for Firefox.

safari.min.version
Example: safari.min.version=0. This property is used to configure the minimum supported
version of the Safari web browser. Any version below this is not considered an optimal Safari browser
when using an IBM Cúram application.

safari.max.version
Example: safari.max.version=0. This property is used to configure the maximum supported
version of the Safari web browser. Any version above this is not considered an optimal Safari browser
when using an IBM Cúram application.

edge.min.version
Example: edge.min.version=0. This property is used to configure the minimum supported version
of the Microsoft Edge web browser. Any version below this is not considered an optimal Microsoft
Edge browser when using an IBM Cúram application.

edge.max.version
Example: edge.max.version=0. This property is used to configure the maximum supported version
of the Microsoft Edge web browser. Any version below this is not considered an optimal Microsoft
Edge browser when using an IBM Cúram application.

138 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Optimal browser message configuration
Use properties in the ApplicationConfiguration.properties file to configure the text in the
optimal browser message.

optimal.browser.msg.description
Example: optimal.browser.msg.description=optimal browser message banner. This
property configures the text for the description of the optimal browser support feature so that it
can be read by the screen reader. A default value is provided.

optimal.browser.msg.text
Example: optimal.browser.msg.text=For a better experience, please
{0.link:http://www.whatbrowser.org/}update your browser{0.end}. This property
configures content of the optimal browser message. The text between the {0.link: and {0.end}
mark-up tags configures the hyperlink and hyperlink text. These mark-up tags are optional. If they are
omitted from the value of this property then the optimal browser message will be displayed as plain
text. If the mark-up tags are included but not specified correctly, i.e. the specified hyperlink (URL)
is not in the correct format or the format of the markup tags themselves are not correct, then the
optimal message content will not be displayed as expected.

optimal.browser.msg.info
Example: optimal.browser.msg.info=Rendering... This property is used to configure the text
while the optimal browser message is being rendered. A default value for this property is provided.

optimal.browser.dismiss
Example: optimal.browser.dismiss=dismiss. This property is used to configure the tooltip text
associated with the button to dismiss the optimal browser message. A default value for this property
is provided.

optimal.browser.warning
Example: optimal.browser.warning=warning. This property is used to configure the text for the
warning icon so that it can be read by the screen reader. A default value for this property is provided.

Domain-specific controls
Domain-specific controls enable a more sophisticated interface for user information than the standard set
of HTML controls. Examples of domains that require sophisticated controls include dates, date-times, the
meeting view, and the rules decision tree.

A web page that is generated for UIM pages that contains a server access bean with fields of this nature
that contains a custom control appropriate to the type. For example, when a server bean contains the
CALENDAR_XML_STRING domain, a calendar is generated that expects server information in a particular
XML format.

Dates
Dates are mapped to the SVR_DATE domain. Any server access bean that contains fields of this type
shows a date selector to the user for data input. These selectors are HTML fields with an adjacent pop-up
icon that causes a menu to be displayed allowing the user to select a date or date time with ease.

Note: This function is based on JavaScript and it is important that the user enable JavaScript in their
browser for this selector to work. The appearance of the date selector pop-up can be altered by overriding
its dedicated cascading stylesheet. For more information, see “Cascading stylesheets” on page 32.

The initially configured date dialog has three input controls; a drop-down field for the month, a text input
field for the year, and the days of the month are displayed so that a day can be selected. When the day of
the month is selected, this selection populates the date field.

The date format string that is associated with date format validations are
customizable in the file CDEJResources.properties and defined by the property
curam.validation.calendar.dateFormat:

Chapter 1. Cúram web client reference 139

curam.validation.calendar.dateFormat=M/dd/yyyy

Figure 51. Customizing the date format

If this value is not set, the date format string will default to the date format setting that is specified in the
ApplicationConfiguration.properties file.

Three Field Date Selector
Dates can be mapped to the THREE_FIELD_DATE domain to enable use of an alternative date selector
widget. Server access beans that contain fields of this type will display three drop-down elements to the
user for data input.

The order of the drop-down elements and the display values of the month element reflect the date
format, as configured by the dateformat property in the ApplicationConfiguration.properties
file. The day drop-down is populated with numbers that range 1 - 31. Validation at the infrastructure
level prevents users from selecting an invalid date, for example, February 31, 2015. The year drop-down
element is populated with values that start 100 years in the past to 30 years in the future. The range and
order of the options are not configurable.

A selection from the drop-down elements is made either by scrolling to the wanted value or by typing the
value when the drop-down element is active.

To use the Three Field Date Selector widget, model a property on a struct to use a data type derived from
the THREE_FIELD_DATE domain.

Date-Times
Date-times are mapped to the SVR_DATETIME domain. Any server access bean that contains fields of this
type will display a date selector (as described in the Dates topic) next to a time entry field.

Similar to the date selector, the pop-up here requires JavaScript to function correctly. An extra control
exists for entering time as hours and minutes. It is displayed as two side-by-side drop-down lists for
selecting the hour and minute values.

Note: The user needs to enable JavaScript in their browser for these selectors to work.

The date input field will not be displayed when the CURAM_TIME domain (a descendant of the
SVR_DATETIME domain) is used,

The date time format string that is associated with date-time format validations are
customizable in the file CDEJResources.properties and defined by the property
curam.validation.calendar.dateTimeFormat:

curam.validation.calendar.dateTimeFormat=HH:mm

Figure 52. Customizing the Date-Time format

If this value is not set, the date time format string will default to HH mm ss.

Related reference
Dates
Dates are mapped to the SVR_DATE domain. Any server access bean that contains fields of this type
shows a date selector to the user for data input. These selectors are HTML fields with an adjacent pop-up
icon that causes a menu to be displayed allowing the user to select a date or date time with ease.

Representing Time-Only Values
As is described in related topics, Cúram has a base type for date-only and date-time values. No specific
base type exists for time-only values.

A CURAM_TIME domain is provided in the initial configuration of Cúram and this configuration is used
by the client infrastructure to display a corresponding time-only widget. The widget also initiates certain

140 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

processing when parsing and formatting values based on this domain. However, the underlying data
representation is the same as for SVR_DATETIME and when it is working with time-only domains the
corresponding server-side code must ignore completely the date part of the value.

Because time-only domains are based on the SVR_DATETIME domain, the default values also will be the
same. The zero date time of 0001-01-01 00:00:00 is the value sent to the server if the field is left
blank. If the field is set to 00:00, then 00:00 time value of today's date is sent.

The time input field that is rendered for CURAM_TIME domain is an editable combination box as the
following example shows. The time input field contains selectable time values for every 30 minutes. The
exact time value also can be entered directly in the field.

The values to be selected are in the application-wide format set in
ApplicationConfiguration.properties, including AM/PM for the 12-hour display. A manually
typed value ends to follow the same format.

Customizing the Time Format
The application-wide time format setting can be changed by setting or modifying the timeformat and
timeseparator values in the ApplicationConfiguration.properties file

For more information, see “Application configuration properties” on page 23.

Frequency Pattern Selector
In the frequency pattern selector pop-up, users can configure a frequency pattern, such as daily, weekly,
monthly, bi-monthly, or yearly. Frequency patterns are mapped to the FREQUENCY_PATTERN domain.

Any server access bean containing fields of this type will display a frequency pattern selector to the user
for data input. These selectors are non editable HTML text fields with an adjacent pop-up icon which
causes a pop-up menu to be displayed allowing the user to select a frequency pattern with ease.

The functionality is based on JavaScript and it is important that the user have JavaScript enabled in their
browser for this selector to work. The appearance of the frequency pattern selector pop-up can be altered
by overriding its dedicated cascading stylesheet. For more information, see “Cascading stylesheets” on
page 32.

The frequency pattern text selected varies in length, depending on the pattern selected. This makes the
display of the selected pattern prone to re-sizing and wrapping, depending on the layout of the UIM page
and the display space available.

Selection lists
The use of the standard HTML selection list, the select element, is supported. Selection lists truncate
long data strings to preserve the correct page layout. The full value of the data string is available as a
tooltip for each item in the list. The list can be populated with data in a number of ways.

Adding an empty entry to a list for non-mandatory fields
By default, browsers select the first item in a selection list if no item is marked as selected. In certain
cases you might not want to suggest a value to the user and a blank entry would be more suitable. Set the
USE_BLANK attribute of the FIELD element to true to add a blank entry as the first item on the selection
list.

Drop-down, scrollable and check-boxed list types

Drop-down and scrollable lists
A selection list can be displayed as a drop-down list or as a scrollable selection list with a number of
entries visible. A drop-down selection list is displayed by default. To change this to a scrollable selection
list set the HEIGHT attribute of the FIELD element to a value greater than 1.

Chapter 1. Cúram web client reference 141

The appearance of a selection list differs from a drop-down list in two noticeable ways. On a drop-down
list only the default value is displayed and all the other selectable values are displayed only when the
drop down arrow is selected. Additionally the drop-down list is not scrollable. A scrollable selection list
does not have the drop-down arrow, a subset of the values are initially displayed. The size of the subset is
dependent on the HEIGHTvalue that is set. This list has a scrollbar which can be used to scroll the list, and
view and select the remainder of the selectable values.

Check-boxed lists
A check-boxed selection list offers an alternative method of selecting individual entries, in this case using
the check box control. This variation will be used if CONTROL attribute is set to CHECKBOXED_LIST. It
is just an alternative way of representation, so everything else applicable to Scrollable List applies for
Checkboxed List without change.

Enabling multiple selection in lists
You can enable multiple items to be selected in scrollable lists, but not in drop-down lists.

To enable this add the following items to the curam-config.xml file.

<MULTIPLE_SELECT>
 <DOMAIN NAME="MY_DOMAIN" MULTIPLE="true"/>
</MULTIPLE_SELECT>

For each domain that you want to enable multiple selection, add a DOMAIN child element to the
MULTIPLE_SELECT element. If a FIELD has a target connection which is based on a domain listed in the
MULTIPLE_SELECT element, multiple selection are enabled. When the form containing the selection list
is submitted, the selected values are packaged into a tab-delimited string. Therefore the target property
must be based on a string domain. The same way, the source property in this case is also expected in
the form of a tab-separated string of values to be selected initially. The the values should match some of
those values specified by HIDDEN_PROPERTY.

Populated from a code table
If a FIELD has a target connection mapped to a property based on a code-table domain, a drop-down
selection list displays all code-table entries that are marked as "enabled". The entries are sorted
alphabetically according to their code descriptions.

You can override this behavior by setting the "sort order" of each entry. Consult the Cúram Server
Developers Guide for full details on creating code tables in a Cúram application.

When the selection list is displayed the initially selected item is evaluated as follows:

1. The code value specified by the source connection of the field.
2. The default code of the code-table if the FIELD element's USE_DEFAULT attribute is not set to false.
3. The first item in the selection list, if no default code is defined or the default code is marked as

"disabled".
4. Blank, if the FIELD element's USE_DEFAULT attribute is set to false.

A drop-down selection list can also be displayed as a scrollable selection list where a number of entries
are initially displayed instead of just one. To do this simply set the HEIGHT attribute of the FIELD element
to a value greater than 1.

Populated from Server Interface Properties
Data retrieved through server interface properties can also be used to populate a selection list. The
INITIAL connection end-point is used in this case. The following are examples of a selection list on an
insert and a modify page.

142 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<FIELD LABEL="Field.Label">
 <CONNECT>
 <INITIAL NAME="DISPLAY" PROPERTY="personName"
 HIDDEN_PROPERTY="personID"/>
 </CONNECT>
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>
</FIELD>

Figure 53. Selection List on an Insert Page

In this example the field has an INITIAL connection end-point to populate the selection list and
a TARGET connection end-point to specify what field the selected value should be mapped to. The
PROPERTY attribute of the INITIAL connection end-point is the list of values you want the user to see
in the selection list. When the list is displayed, the first item in the list will initially be selected. The
HIDDEN_PROPERTY attribute specifies a list of corresponding values, when selected, will be mapped to
the property specified in the TARGET connection end-point. The target property is a single field, not a list.
In this example a list of people's names will be displayed but it is the selected person's unique ID that
will be mapped to the target property. In certain circumstances the set of values visible to the user may
also be what you want mapped to the target property. In this case do not use the HIDDEN_PROPERTY
attribute.

The following example shows the same selection list, but used on a modify page. The only difference
is a SOURCE connection end-point is used to specify what is selected in the list when the page is first
displayed.
<FIELD LABEL="Field.Label">
 <CONNECT>
 <INITIAL NAME="DISPLAY" PROPERTY="personName"
 HIDDEN_PROPERTY="personID"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="sourcePersonID" />
 </CONNECT>
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>
</FIELD>

Figure 54. Selection List on a Modify Page

Transfer List widget
The Transfer List widget is a control to facilitate multiple selections for a user, which you can use as an
alternative to a regular list with multiple selection.

The Transfer List widget consists of two HTML select controls placed side by side.

• The left control contains the items from which selections can be made, see “Drop-down, scrollable and
check-boxed list types” on page 141.

• The right control displays already selected items.

Four buttons between the lists allow for selecting or deselecting individual list items or all list items,
transferring them from one list to another and back as required.

Transfer List configuration
A Transfer List widget is displayed instead of a regular HTML multiple selection control when configured in
one of the following two ways:

• To display all multiple selection controls in an application as Transfer List widgets, set the
TRANSFER_LISTS_MODE element value to true in the curam-config.xml file.

• To display individual selection controls in an application as Transfer List widgets, set the CONTROL
attribute on the appropriate UIM FIELD element to be TRANSFER_LIST. This setting is applicable only
for fields that are rendered as multiple selection controls on the resulting UIM page and is ignored in
any other case.

Chapter 1. Cúram web client reference 143

The Transfer List widget requires the same data and the same configuration for enabling multiple
selection as a regular selection list.

User Preferences Editor
The User Preferences Editor allows a user to edit a user preference value for use anywhere within the
application.

For details on the definition of user preferences please consult the Cúram Server Developers Guide.

The editor may be accessed from the taskbar by clicking the preferences button. On clicking this button
a popup window displays a list of all visible user preferences. Those preferences that are editable are
shown as text fields, radio buttons or drop-down menus, depending on the type.

Users can edit the value of a preference and save the value using the Submit Changes link. When the
user returns to the editor the updated values will appear. Any changes to user preferences by using the
editor will be applied immediately.

User can click Reset to Default to return the values to those that were originally defined.

Rules Trees
The RESULT_TEXT domain contains information about the success or failure of a particular claim against
a set of rules. When the server supplies this information it is translated into a tree view that displays all
rules.

The RULES_DEFINITION domain also produces a rules tree, in this case displayed with the rules editor.
For more details on the rules editor see “Rules Editor” on page 148.

You can use the CONTROL attribute of the FIELD element to change the format of the rules display. You
can use the CONFIG attribute of the FIELD element to configure these rules trees.

Behavior of Summary and highlight-On-Failure Rules Flags
The summary-flag has no effect in this view. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a different color than rule that
succeed.

Default Rules View
The default rules view of the rules tree, specified by setting the CONTROL attribute of the FIELD element
to DEFAULT, shows data in an expanded tree view using standard HTML. This view should be visible in
most standard web browsers. However, as the rules result is often quite verbose, the resulting output can
be confusing to the viewer of your web page.

Summary Rules View
To display a summary rules view, set the CONTROL attribute of the FIELD element to SUMMARY. The view
of this tree is very similar to the default rules tree view except that the details about why a rule failed or
succeeded are not displayed in the tree.

Any rules, regardless of type, marked as summary items are displayed. The following section, “Failed
Rules View” on page 144, describes a similar view that only displays rules items whose type is explicitly
set to rule. This view can be configured in the same manner as the dynamic rules view mentioned below.
See “Dynamic Rules View” on page 145.

Failed Rules View
To display a failed rules view, set the CONTROL attribute of the FIELD element to FAILURE. This view is
similar in layout to the previously mentioned summary view. See “Summary Rules View” on page 144

144 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Any rules whose type is rule (and not objective or rule group for example) and are marked as
summary items are displayed. This view can be configured in the same manner as the dynamic rules view
mentioned below. See “Dynamic Rules View” on page 145

Dynamic Rules View
When the CONTROL attribute is set to DYNAMIC, an expanding or contracting version of the decision is
displayed instead of a static tree.

In this view, the entire tree is not displayed. The view is "compressed" into multiple trees for each
rules-item that has failed coupled with the "summary" flag on the item. See “Behavior of Summary and
Highlight-On-Failure Indicator” on page 147 for more details on the summary flag.

The dynamic view provides users with a much more comprehensive and interactive view of the rules data.
The rules tree is more comprehensively organized with a supplementary conjunction text displayed next
to the rules.

There is no need to set a HEIGHT or WIDTH as the rules window resizes itself automatically. The developer
is limited to two dynamic rules windows per page.

Localization of the text to display within the viewer is accomplished through JavaScript property files as
described in “JavaScript externalized strings” on page 44. The name of these JavaScript property files
should be SVGText. For example, SVGText.js_es.properties would be the name of the Spanish
language version of SVGText.js.properties file.

All style information related to the dynamic rules widgets is held in a separate file called
curam_svg.css. For further details see “Cascading stylesheets” on page 32.

The developer can configure the rules tree using an XML configuration file. For all rules widgets based
on the RESULT_TEXT domain this configuration is read from RulesDecisionConfig.xml. A version of
this file should be in your components directory. This XML configuration file is merged during the build
process in a similar method to other XML configuration files.

The CONFIG attribute of the FIELD displaying rules is used to specify an ID matching a CONFIG element
in the RulesDecisionConfig.xml file. The following is a sample of a RulesDecisionConfig.xml
file:

Chapter 1. Cúram web client reference 145

<RULES-CONFIG DEFAULT="default-config">
 <CONFIG ID="default-config" HYPERLINK-TEXT="false">
 <TYPE NAME="PRODUCT"
 SUCCESS-ICON="Images/product-16x16.gif"
 FAILURE-ICON="Images/productFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="ASSESSMENT"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="SUBRULESET"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="OBJECTIVE_GROUP"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="OBJECTIVE_LIST_GROUP"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="OBJECTIVE"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="RULE_GROUP"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="RULE_LIST_GROUP"
 SUCCESS-ICON="Images/rule-group-16x16.gif"
 FAILURE-ICON="Images/ruleGroupFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="RULE"
 SUCCESS-ICON="Images/rule-16x16.gif"
 FAILURE-ICON="Images/ruleFail.gif"/>
 </CONFIG>
 <CONFIG ID="Rules.Config.Core"
 HYPERLINK-TEXT="true"
 OPEN-NODE-PARAM="openNode"
 DECISION-ID-SOURCE="source-Decision-ID"
 DECISION-ID-TARGET="decision-ID">
 <TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RULE_GROUP" />
 <TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
 </CONFIG>
</RULES-CONFIG>

Figure 55. Sample RulesDecisionConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is
mandatory and should match an ID attribute value on a CONFIG element in this document. The default
configuration contains the icon information as well as the default nodes to link to if no configuration
is required for a widget. These are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE
attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to
a rules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Note that the CONFIG with the ID of value of Rules.Config.Core has the optional attribute OPEN-
NODE-PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open
when the page is loaded. This configuration file is also used for configuration of the dynamic full tree rules
view described in the next section.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page
parameter whose value will be the source for a new parameter (named by the DECISION-ID-TARGET)
appended to each link on the widget. The above example will look for a page parameter called source-

146 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Decision-ID and pass on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD
attributes to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is
thrown if all three are present. The DECISION-ID-SOURCE attribute should be the name of a bean on
the page and the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the
decision ID value. The following is an example of this configuration:
<CONFIG ID="Decision.ID.Bean.Source"
 HYPERLINK-TEXT="true"
 OPEN-NODE-PARAM="openNode"
 DECISION-ID-TARGET="decision-ID"
 DECISION-ID-SOURCE-BEAN="DISPLAY"
 DECISION-ID-SOURCE-FIELD="dtls$decision-ID">
 <TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
 <TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
 </CONFIG>

Figure 56. Example of Decision ID Sourced from a Bean

Behavior of Summary and Highlight-On-Failure Indicator
The highlight-on-failure indicator on a rules item does not have any effect in this view.

If an item fails and is marked as a summary item, this item should only be displayed as a separate tree if
no item along its parent path (i.e. any group that contains it) has failed and is marked as a summary item.
Consider the following tree of rule groups and rules and note the result and summary attributes on each
item. Note that this is purely for illustrative purposes and does not represent the data-format created by
the Rules Engine.
<decision>
 <rules-item id="B" type="rule-group"
 result="success" summary="true">
 <rules-item id="C" type="rule"
 result="success" summary="false" />
 <rules-item id="D" type="rule"
 result="fail" summary="true" />
 </rules-item>
 <rules-item id="E" type="rule-group"
 result="fail" summary="true">
 <rules-item id="F" type="rule"
 result="fail" summary="false" />
 <rules-item id="G" type="rule"
 result="success" summary="false" />
 </rules-item>
 <rules-item id="H" type="rule-group"
 result="success" summary="true">
 <rules-item id="I" type="rule"
 result="success" summary="true" />
 <rules-item id="J" type="rule"
 result="fail" summary="false" />
 </rules-item>
</decision>

Figure 57. Example of Rules Tree Items with Summary Flag

A rule that fails and is marked as "not a summary item" may still display as long as it is contained within
another node that fails and has summary set to "true". A rule that fails and is marked as "not a summary
item" will never display as the root of a tree in the dynamic rules view. So, the data above will result in
separate "trees" as follows.
- D

- E
-- F
-- G

Chapter 1. Cúram web client reference 147

From the first rule-group "B", only the item "D" is displayed because it has failed and is marked as a
summary item. It appears as a single-node tree.

The rule-group "E" is marked as a summary item and it has failed, therefore it and all it's child nodes are
displayed no matter what the success\failure status or summary flag on the child nodes is.

The entire rule-group "H" is filtered out. "H" itself, and "I" have succeeded and will not be displayed.
Although "J" has failed it is not marked as a summary item and therefore is not displayed.

Dynamic Full Tree Rules View
When the CONTROL attribute is set to DYNAMIC_FULL_TREE, a view is displayed.

The functionality of the DYNAMIC_FULL_TREE view is similar to the dynamic rules view. For more
information about the functionality of the dynamic rules view, see the Dynamic Rules View related
link. The main difference between the views is that for the DYNAMIC_FULL_TREE view the entire rule
set is displayed. While similar to the default rules view, the tree is interactive. There is no filtering
of the display of rule groups in the DYNAMIC_FULL_TREE view, which potentially makes it difficult
to understand for a user who is not familiar with the rules engine. To configure the view, use the
RulesDecisionConfig.xml file. For more information, see the Dynamic Rules View related link.

Related reference
Dynamic Rules View
When the CONTROL attribute is set to DYNAMIC, an expanding or contracting version of the decision is
displayed instead of a static tree.

Rules Editor
The RULES_DEFINITION domain produces the rules editor. This control has a default HTML-only view or,
if the FIELD 's CONTROL attribute is set to DYNAMIC, an SVG view. See “Default Rules View” on page 144
and “Dynamic Rules View” on page 145 for more information.

This widget uses the CONFIG attribute to specify an ID attribute value matching the ID attribute value
of a CONFIG element in the RulesEditorConfig.xml file. This XML configuration file is merged during
the build process in a similar method to other XML configuration files. The following is a sample of
RulesEditorConfig.xml:

148 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<RULES-CONFIG DEFAULT="DefaultConfig">
 <CONFIG ID="DefaultConfig" HYPERLINK-TEXT="true">
 <TYPE NAME="Product"
 SUCCESS-ICON="Images/product-16x16.gif"
 FAILURE-ICON="Images/productFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="Assessment"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="SubRuleSet"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="ObjectiveGroup"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="ObjectiveListGroup"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="Objective"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="SubRuleSetLink"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="RuleGroup"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="RuleListGroup"
 SUCCESS-ICON="Images/rule-group-16x16.gif"
 FAILURE-ICON="Images/ruleGroupFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 <TYPE NAME="Rule"
 SUCCESS-ICON="Images/rule-16x16.gif"
 FAILURE-ICON="Images/ruleFail.gif"/>
 <TYPE NAME="DataItemAssignment"
 SUCCESS-ICON="Images/default-16x16.gif"
 FAILURE-ICON="Images/defaultFail.gif"
 EDIT-PAGE="RatesNewColumn"/>
 </CONFIG>
 <CONFIG ID="Editor.Config"
 HYPERLINK-TEXT="true"
 OPEN-NODE-PARAM="openNode"
 DECISION-ID-SOURCE="source-Decision-ID"
 DECISION-ID-TARGET="decision-ID">
 <TYPE NAME="Product" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="Assessment" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="SubRuleSet" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="ObjectiveGroup" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="ObjectiveListGroup" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="Objective" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="SubRuleSetLink" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RuleGroup" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RuleListGroup" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="Rule"/>
 <TYPE NAME="DataItemAssignment" EDIT-PAGE="RulesResult"/>
 </CONFIG>
</RULES-CONFIG>

Figure 58. Sample RulesEditorConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is
mandatory and should match an ID on a CONFIG element in this document. The default configuration
contains the icon information as well as the default nodes to link to if no configuration is present
for a widget. These are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE attributes
respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to
a rules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Chapter 1. Cúram web client reference 149

Note that the CONFIG with the ID of value of Editor.Config has the optional attribute OPEN-NODE-
PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open to when
the page is opened.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page
parameter whose value will be the source for a new parameter (named by the DECISION-ID-TARGET)
appended to each link on the widget. The above example will look for a page parameter called source-
Decision-ID and pass on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD
attributes to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is
thrown if all three are present. The DECISION-ID-SOURCE attribute should be the name of a bean on
the page and the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the
decision ID value. The following is an example of this configuration:
<CONFIG ID="Decision.ID.Bean.Source"
 HYPERLINK-TEXT="true"
 OPEN-NODE-PARAM="openNode"
 DECISION-ID-TARGET="decision-ID"
 DECISION-ID-SOURCE-BEAN="DISPLAY"
 DECISION-ID-SOURCE-FIELD="dtls$decision-ID">
 <TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
 <TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
 <TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>

Figure 59. Example of Decision ID Sourced from a Bean

Meeting View
The meeting view is a control that displays scheduling information in a chart format. It is associated
with the USER_DAILY_SCHEDULE domain. The data to display in the meeting view is in XML format. The
control has two modes of operation, single and multiple selection.

Single selection mode
In the single selection mode meeting view, the first column contains a list of users. The second column
indicates the duration of the event to be scheduled. The third column displays the times during the
day that the user is available or busy. The available times are hyperlinks that can be clicked to indicate
the schedule the start time for the meeting. Note that any parameters passed to a page containing the
meeting view will be included in any links within the view. Only start times that can accommodate the
relevant meeting duration will be hyperlinks. For example, if John Smith is busy from 10:30 until 12:30, it
is not possible to select 10:00 as the start time for a meeting with a duration of one hour and the 10:00
time slot will not be a hyperlink.

Note that any parameters passed to a page containing the meeting view will be included in any links
within the view.

Multiple selection mode
This view returns a tab-delimited list of the user IDs of selected rows. The meeting view widget in this
mode is the same as that described above for the single selection mode except that it has an extra
column which is inserted as the first column in the list and has a selectable checkbox for each list item.
The users in this mode of widget are chosen by selecting their associated check boxes. Time slots are not
hyperlinked and are for display only.

150 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Meeting View XML format
Configuration settings for the meeting view must be in a file called MeetingViewConfig.xml in a
component. The meeting view control expects information in a specific XML format.

An example Meeting View XML format is shown.

<SCHEDULE MODE="Single|Multiple" TYPE="User"
 READ_ONLY="False" DATE="2003-30-10">
 <USER NAME="John Smith" ID="12345" DURATION="90">
 <BUSY START="2003-30-10 10:30:00" END="2003-30-10 12:30:00"/>
 <BUSY START="2003-30-10 15:45:00" END="2003-30-10 16:15:00"/>
 </USER>
 <USER NAME="James Smith" ID="12346" DURATION="90">
 <BUSY START="2003-30-10 12:30:00" END="2003-30-10 13:30:00"/>
 <BUSY START="2003-30-10 15:00:00" END="2003-30-10 18:15:00"/>
 </USER>
</SCHEDULE>

The MODE attribute is either Single or Multiple.

The DURATION attribute is in minutes.

The START and END attributes are date-times in the format "yyyy-MM-dd HH:mm:ss".

The READ_ONLY attribute, if set to false, indicates that no time slot will be selectable as a hyperlink.

The DATE attribute contains the date of the current scheduling and must be supplied. It should be in the
format "yyyy-MM-dd".

The TYPE attribute associates the schedule information with configuration settings which are also
specified in an XML format as shown:

<SCHEDULE_CONFIG>
 <CONFIG TYPE="User" INTERVAL="15" START="08:00" END="16:00">
 <USER_HOME PAGE="PersonHome"
 ID_PARAM="UserID" NEW_WINDOW="True" />
 <NEW_EVENT PAGE="AddNewEvent" ID_PARAM="UserID"
 START_PARAM="start" END_PARAM="end" />
 <MULTI_SELECT PAGE="SelectedUsers"
 TAB_STRING_PARAM="selectedUsers"
 DATE_PARAM="eventDate" />
 </CONFIG>
</SCHEDULE_CONFIG>

Where INTERVAL is the duration in minutes of each segment of the time line with valid values of 15, 30,
or 60 only. The START and END attributes detail the beginning and end times of the time line in the form
"HH:mm".

Each CONFIG element can have the following sub-elements:

USER_HOME
The PAGE attribute details which page to link to when clicking on the user's name. The ID_PARAM
attribute is the name of the parameter to supply with the user's ID as a value. NEW_WINDOW attribute,
true by default, specifies if the link opens in a new window or not.

NEW_EVENT
The PAGE attribute details which page to link to when clicking on a time slot. The ID_PARAM attribute
is the name of the parameter to supply with the user's ID as a value. The START_PARAM attribute is
the name of the parameter to supply with the start time of the new event. Similarly, the END_PARAM
describes the name of the end time parameter. Both of these attributes will be in the current
application's date-time format.

MULTI_SELECT
The PAGE attribute details which page to link to when the submit button on the multi-select view
is pressed. TAB_STRING_PARAM is the name of the link parameter to supply containing the tab-
delimited string of selected users. DATE_PARAM is the name of another link parameter containing the
date of the event in question. The date value is taken from the value of the DATE attribute on the
SCHEDULE element.

Chapter 1. Cúram web client reference 151

Charts
Charts are displayed when one of either the CHART_XML or BARCHART_XML domains (or any derivation
of them) is used as the source of a field.

Chart appearance
A bar chart displays a number of rows horizontally with a horizontal and vertical axis. Each row represents
a unit of information comprised of a caption and a stack of differently colored bars of variable length. Their
length represents the quantity of the unit in question and can be ascertained using the numbered marks
on the horizontal axis, or a data tip which is available when you hover over the unit.

The chart scale is chosen to fit the biggest stack of bars, which you can override by a configuration setting.
Each bar is a hyperlink to a page containing further information. The vertical axis of this chart displays
captions, describing each bar stack category. Captions might be dates, date ranges or textual values. They
are optionally rendered as hyperlinks leading to pages with additional information, in which case captions
are additionally visually indicated when hovered over. Both bar links and caption links are configurable, as
described in “Chart configuration” on page 152.

Textual captions might get longer than one line. In such a case long captions are wrapped within the
category segment. If a caption text exceeds two lines, though, it is truncated at that point and an
additional tool tip with the full label text is displayed when such a label is hovered over.

Textual captions are truncated to better maintain the scale and readability of the chart. Users can click the
enlarge button to see a larger version and to read any truncated labels.

A column chart is similar to the bar chart and configurable the same way, except that units of information
are displayed in column stacks rather than bars, and axes are interchanged accordingly. It is also possible
to configure a column chart so that it has a legend that describes what each of the possible shaded
areas in a column represents. The user can hover over a shaded area in a column, which displays what it
represents when mapped to an entry in the legend.

By default, charts are displayed without a legend so that all the available space can be dedicated to the
chart itself. However, charts can be configured to include a legend which shows extra information on what
is represented by the elements of the chart.

Data tips are displayed on a chart when you hover the mouse over a particular chart data element. Data
tips are shown regardless of whether a legend is included or not. The data tip for bar and column charts
shows absolute and relative quantitative information that is attributed to the element and the element
stack. The data tip also shows the category or group to which that element belongs, and the type of the
element, which corresponds to an entry in the legend if a legend is included.

Chart configuration
You can configure various aspects of charts by setting the CONFIG attribute on the appropriate UIM
fields. The appropriate XML configuration file must contain a configuration section with a unique identifier
matching the text in the CONFIG attribute.

All the necessary chart configuration files must be in your component directory.

Different types of charts are currently configured in separate configuration files:

• Bar charts and column charts both use ChartConfig.xml and are also backward compatible with the
previous configuration file version, BarChartConfig.xml (data is taken from whichever of those two
files contains a configuration with the required ID; if configurations with the same ID exist in both files,
the one found in ChartConfig.xml takes precedence).

The following is a sample of a chart configuration file:

152 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

<CHART-CONFIG>
 <CONFIG ID="Column.Chart.Config" ORIENTATION="VERTICAL"
 X_AXIS_LABEL="Vert.BarChart.X-Axis"
 Y_AXIS_LABEL="Vert.BarChart.Y-Axis">
 <LEGEND CODETABLE="Attendance">
 <ITEM CODE="CR1"/>
 <ITEM CODE="CR2"/>
 <ITEM CODE="CR3"/>
 </LEGEND>
 <LINK LOCATION="ComponentRedirect">
 <PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
 <PARAMETER NAME="dueDate" VALUE="START_DATE"
 USE_PAGE_PARAM="false"/>
 <PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>
 </LINK>
 <CAPTION_LINK LOCATION="AnotherPage">
 <PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
 <PARAMETER NAME="dueDate" VALUE="START_DATE"
 USE_PAGE_PARAM="false"/>
 <PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>
 </LINK>
 </CONFIG>

 <CONFIG ID="BarChart.Config" ORIENTATION="HORIZONTAL"
 CAPTION="Status.Caption"
 CAPTION_TEXT_CODETABLE="Cars"
 MIN_HEIGHT="200" MAX_HEIGHT="500">
 <LEGEND VISIBLE="true" CODETABLE="OldCars">
 <ITEM CODE="CR1"/>
 ...
 </LEGEND>
 <LINK LOCATION="TransferPage">
 <PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
 ...
 </LINK>
 </CONFIG>
 <CONFIG ID="BarChart.Config" TYPE="line"
 CAPTION="Line.Chart.Caption">
 <LEGEND>
 <ITEM CODE="CR1"/>
 ...
 </LEGEND>
 <LINK LOCATION="ComponentRedirect">
 <PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
 ...
 </LINK>
 </CONFIG>
</CHART-CONFIG>

The CHART-CONFIG root element contains only CONFIG elements. The CONFIG element contains all
configuration for a particular field, identified by the ID attribute. The following table describes all
attributes of the CONFIG element. BarChart.properties referred to in this table is a properties file in
the client application's <CLIENT_DIR>\components\core folder, used to look up values required.

Table 55. Attributes of the CONFIG element

Attribute Description

ID Unique identifier for this CONFIG element.

TYPE Can be either line or pie, depending on required type of chart. If not
present, ORIENTATION attribute will be used to define if bar or column
chart is to be displayed.

ORIENTATION Can be either HORIZONTAL or VERTICAL, depending on required type of
chart, HORIZONTAL meaning bar chart and VERTICAL - column chart.

CAPTION_TEXT_CODETABLE Code table currently used for label captions throughout a chart. If not
specified, literal values from chart data will be used.

MAX_VALUE Maximum value for a numeric axis of column or bar chart. Automatically
calculated to fit the maximum element, if not specified.

Chapter 1. Cúram web client reference 153

Table 55. Attributes of the CONFIG element (continued)

Attribute Description

MAX_INCREMENT Maximum increment value for a numeric axis of a chart. Numbered
ticks are drawn on a chart at the specified intervals. If not specified,
numbered ticks are placed at uniform intervals along the numeric axis,
taking into account it's maximum value.

X_AXIS_LABEL Key to a text property in BarChart.properties. This text is used as
the label for the x-axis in a column chart, or y-axis in the bar chart.

Y_AXIS_LABEL Key to a text property in BarChart.properties. This text is used as
the label for the y-axis in a column chart, or x-axis in the bar chart.

MIN_HEIGHT This setting is used to define minimum chart object height and is
to be specified in pixels. Where a chart contains a small number of
items and would be short based on that content size, minimum height
introduced by this setting is used. The setting is optional, so 250px
default minimum height is used if MIN_HEIGHT is not specified.

MAX_HEIGHT This setting is used to define the maximum chart object height on screen
and should be specified in pixels. Where a chart contains numerous
items and its contents exceeds the MAX_HEIGHT specified, this setting
is used for the chart object height and a vertical scrollbar appears to
allow for access to the rest of the items in the chart. The setting is
optional and a default of 250px is used if the attribute is not specified.
A value of -1 for MAX_HEIGHT means that the chart takes whichever
height its content needs to be displayed in full. It is worth noting that
the minimum height setting, either default or explicit, is still taken into
account in this case. As a result, charts with little content will not be
shorter than minimum or default height implies. Finally, a chart with
MAX_HEIGHT set to -1 will not display its vertical scrollbar and the
browser scrollbar will appear once the chart is too big to fit into the
screen area available.

CAPTION Key to a text property in BarChart.properties. This text is used as
the label for the whole chart.

Note: The example lists sample ChartConfig.xml contents. The older format in
BarChartConfig.xml is almost the same except that the root element is called BARCHART-CONFIG.

The older versions of BarChartConfig.xml do not contain configuration for label links. This element
might be added, if required to this file directly; it is preferable, though, to create appropriate full
configuration with the same ID in the ChartConfig.xml which will override the older version.

The CONFIG element has three child elements: LEGEND, LINK and optional CAPTION_LINK.

• The LEGEND element defines the items available for use in the TYPE attribute of a BLOCK element in
chart data returned from the server. The element has an optional CODETABLE attribute, specifying the
code table used for legend item translation, and an optional VISIBLE attribute which indicates if the
legend should be seen on screen or not. This attribute has a default value of false, so it must be
explicitly set to true in order for the legend to be displayed.

The ITEM child element of specifies each legend entry. Its CODE attribute is the text or code table
code used to identify a legend item. The code table containing the CODE value will be ascertained first
from the CAPTION_TEXT_CODETABLE value of the CONFIG element, then the CODETABLE attribute
on the LEGEND element value, or, in case neither of these attributes are present or do not apply to a
particular CODE, the literal value will be used as a caption. The same caption is used for a context data
tip displayed when mouse pointer is over a corresponding chart element.

• The LINK child element is used to configure hyperlinks on bar chart bars and column chart columns.
Its LOCATION attribute is the ID of the UIM page to link to. A LINK element can have any number

154 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

of PARAMETER child elements. The NAME attribute of a PARAMETER is the name to give the parameter
when transferred as part of hyperlink. The VALUE attribute is the name of the attribute on the BLOCK
element or the CAPTION element in the chart input data returned from the server (see below) to use
as a parameter value unless USE_PAGE_PARAM is true, in which case VALUE is the name of a page
parameter.

• Finally, the CAPTION_LINK element is used whenever chart captions are intended to be rendered as
links and contains separate settings for such links. The CAPTION_LINK element contents are similar to
those of the LINK element. When this element is skipped, captions are displayed as static text. Also,
captions as links are currently supported on bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by creating a properties file
called BarChart.properties in the client application's <CLIENT_DIR>\components\core folder
and placing there values under keys, corresponding to the ones specified among CONFIG element
parameters as described above.

In addition, the text displayed for the word total displayed in the bar tool-tips is customizable using the
key total.tooltip.text in the BarChart.properties file.

Collapsible Cluster Support: Collapsible clusters are not supported for any cluster containing this
widget.

Customizing chart colors in system administration
Complete the following steps to modify the colors on the Assessment Delivery Results Chart, the
Assessment Delivery Details Chart, the Assessment Tracking Chart, or the Factor Ratings Line Chart.

About this task
• The default colors for the Assessment Delivery Results Chart, the Assessment

Delivery Details Chart, and the Assessment Tracking Chart, which are defined by the
curam.assessmentplanning.graphRGBColors application property, are 6929C4, 1192E8,
005D5D, 9F1853, FA4D56, 520408, and 198038.

• The default color for the Factor Ratings Line Chart, which is defined by the
curam.outcomeplanning.factorGraphRGBColor application property, is B28600.

Procedure
1. Log in to Social Program Management as a system administrator.
2. Select System Configurations > Shortcuts > Application Data > Property Administration.
3. Enter the application property in the Name field and click Search.
4. Select ... > Edit Value.
5. Update the values and click Save to save your changes.
6. Click Publish for your changes to take effect.

Customizing colors on horizontal and vertical bar charts
Complete the following steps to modify the colors on horizontal and vertical bar charts.

Before you begin
The default colors were defined in a specific sequence to meet contrast ratio guidelines. Ensure that any
changes you make also meet contrast ratio guidelines.

Procedure
1. In your Social Program Management application development environment, edit the %CURAM_DIR%
\CuramCDEJ\lib\curam\xml\xsl\chart\charts.xsl file.
Where %CURAM_DIR% is the installation directory, by default C:\IBM\Curam\Development

2. Update the colors, which are defined in the <ibm:colors> XML tag.

Chapter 1. Cúram web client reference 155

<ibm:colors>
 <ibm:color>6929c4</ibm:color>
 <ibm:color>1192E8</ibm:color>
 <ibm:color>005D5D</ibm:color>
 <ibm:color>9F1853</ibm:color>
 <ibm:color>FA4D56</ibm:color>
 <ibm:color>520408</ibm:color>
 <ibm:color>198038</ibm:color>
 </ibm:colors>

3. Run a Social Program Management client build to pick up the changes.

Customizing colors on the Participation Summary chart
Complete the following steps to modify the default background and hover background colors for
Scheduled Hours and Actual Hours on the Participation Summary chart in the IBM Cúram Social Program
Management.

About this task
The default background and hover background colors are:

Scheduled Hours Actual Hours

6929C4 1192E8

Procedure
1. In your Social Program Management application development environment,

edit the <install>/webclient/components/CAAssessmentTracking/javasource/
caassessmenttracking/ParticipationSummaryResultRenderer.java file.
Where <install> is the installation directory, by default:

• C:\IBM\Curam\Development for Microsoft Windows.
• /opt/IBM/Curam/Development/ for Linux®.

2. Update the color values in this line of code.

final string jsonColorString = "{\"schColor\":\"#6929c4\",\"actColor\":\"#1192e8\"}";

3. Run a Social Program Management client build to pick up the changes.

Chart data formats
The data to be displayed in a chart comes from the server in XML format.

An example of the XML used to create a chart is shown.

<CHART>
 <UNIT>
 <CAPTION TEXT="TR1" START_DATE="2004-12-31"
 END_DATE="2005-03-06"/>
 <BLOCK ID="1" TYPE="CR1" DUE_DATE="2005-01-01" LENGTH="33"/>
 <BLOCK ID="2" TYPE="CR3" DUE_DATE="2005-02-01" LENGTH="14"/>
 </UNIT>
 <UNIT>
 <CAPTION TEXT="TR2" START_DATE="2004-12-31" />
 <BLOCK ID="3" TYPE="CR3" DUE_DATE="2005-01-02" LENGTH="11"/>
 </UNIT>
 <UNIT>
 <CAPTION TEXT="TR3" END_DATE="2005-03-08" />
 <BLOCK ID="4" TYPE="CR1" DUE_DATE="2005-01-03" LENGTH="22"/>
 <BLOCK ID="5" TYPE="CR2" DUE_DATE="2005-01-09" LENGTH="15"/>
 <BLOCK ID="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>
 </UNIT>
</CHART>

156 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The root element, CHART, can contain any number of UNIT elements. These elements are used to group
related information into groups (clusters) and contain one CAPTION element and one or more BLOCK child
elements.

The CAPTION element displays an appropriate caption depending on what attributes are set:

• If either the START_DATE or both START_DATE and END_DATE attributes are set, then the caption will
be either a single start date or a range of dates.

• If the TEXT attribute is set, then the caption text is first looked for in the code table specified in
the CAPTION_TEXT_CODETABLE attribute of the CONFIG element (see above), then looked for as a
property in BarChart.properties using the TEXT value as a key, or, if neither attempt is a match, the
literal TEXT value is rendered as a caption.

Each BLOCK element represents a block to be drawn on a chart as a bar, or column. This element must
have an associated TYPE attribute to match it with a particular item. The LENGTH attribute is necessary to
define the measurement of the block. In the bar or column chart this is the length/height of a bar/column.
The ID attribute is a unique identifier for a block and can be used as a parameter for any hyperlinks.
The optional DUE_DATE attribute can also be used as an ID parameter for hyperlinks on a particular block.
It represents the due date for a given block.

Note: There are no restrictions on the number or names of the attributes of BLOCK element. This
facilitates passing an arbitrary set of attributes in the links from a chart (provided the configuration is
updated appropriately). However, one should keep in mind, that the names of the attributes provided in
this section are reserved and bound to the particular elements, i.e. even though START_DATE attribute
could be added to a BLOCK element, in this case it will be interpreted as a literal value and not a date as it
would be in the context of CAPTION element.

Heatmap Widget
The Heatmap widget is a control which displays a grid of items of different importance. Items in the
widget are presented by color shades varying from red to blue, indicating their importance level from
highest to lowest.

The widget is inserted into the page when the XML_HEATMAP domain is associated with UIM source
property of a FIELD.

The Heatmap widget expects XML data from the server in the following format:
<HEATMAP>
 <REGION REGION_ID="R1" LABEL="highest importance"/>
 <REGION REGION_ID="R2" LABEL="middle importance">
 <ITEM ITEM_ID="id9" LABEL="0009" />
 <ITEM ITEM_ID="id10" LABEL="0010"/>
 <ITEM ITEM_ID="id21" LABEL="0021"/>
 </REGION>
 <REGION REGION_ID="R3" LABEL="lowest importance">
 <ITEM ITEM_ID="id22" LABEL="0022"/>
 </REGION>
 ...
</HEATMAP>

Here, the REGION elements specify the importance level ("heat") of their contained ITEM s. There should
be at least two regions in a heatmap widget. The color will always start from red, so if no items of that
importance are there, empty REGION elements should be inserted for the widget to render properly.

Configuration
Different types of heatmap can be configured by creating entries in the HeatmapConfig.xml file in your
components directory.

An example of the format is shown.

<HEATMAP_CONFIG>
 <CONFIG ID="Map1" NUM_COLS="10" NUM_ROWS="4"
 LEGEND_POSITION="LEFT"
 LEGEND_TITLE="Deadline"
 LEGEND_TITLE_PROPERTY="Localised.Legend.Title">

Chapter 1. Cúram web client reference 157

 <ITEM_LINK PAGE_ID="Sample_page">
 <PARAM NAME="configParameter" VALUE="ITEM_ID"/>
 </ITEM_LINK>
 </CONFIG>
 <CONFIG ID="Map2" NUM_COLS="6">
 ...
 </CONFIG>
</HEATMAP_CONFIG>

The attributes of a CONFIG element are summarized in the following table:

Table 56. Attributes for CONFIG element

Attribute Description

NUM_COLS This attribute allows you to set the number of items displayed in each
row of the Heatmap

NUM_ROWS This attribute allows you to specify the number of visible rows in the
Heatmap. If this attribute is set to less rows than are required to display
the data, a vertical scrollbar will be provided. If this attribute is not
present, the widget will expand to display as many rows as are required.

LEGEND_POSITION By default, the Heatmap legend is drawn to the right of the widget. This
attribute can be used to draw the legend to the left instead, by setting
it's value to LEFT.

LEGEND_TITLE The default title for a legend is Legend. This attribute can be used to
specify a more logical title to use.

LEGEND_TITLE_PROPERTY Optional attribute used to customize/localize the displayed title. The
value here is the key in the CDEJResources.properties file or its
localized version (see “Localization” on page 41 for more details on
localization).

The ITEM_LINK element can be used to specify the page to which to link when a user clicks on an
item in the Heatmap, by setting it's PAGE_ID attribute. The PARAM child element can be used to specify
what page parameters to pass (the NAME attribute) and what data items to use as their value (the
VALUE attribute). Values which don't match any attributes in the ITEM elements in the Heatmap XML are
assumed to be literal values.

To specify which configuration to use for a given instance of the Heatmap widget, the CONFIG attribute of
the field containing the widget should be set to the ID of the desired configuration.

Workflow
A workflow depicts a series of steps that routinely take place in order for a unit of work to be completed.
The WORKFLOW_GRAPH_XML domain, or any derivation of it, causes a workflow to be displayed. The
data to be displayed in a workflow comes from the server in XML format.

Configuration settings for the Workflow must be in a file called WorkflowConfig.xml, of which
there can be only one per component. Any static text for this view can be customized and
localized by creating a properties file called Workflow.properties in the client application's
<CLIENT_DIR>\components\core folder.

In a workflow view, a box, along with a representative icon, represents a discrete unit of work and is
called an activity. Any line connecting nodes is called a transition and is intended to illustrate the flow of
work. For this reason, the start and end activities are represented by icons only. Workflow proceeds from
the left and ends at the right-most activity. An activity is a hyperlink to a tab containing further details
on that activity. An activity can have a second, smaller icon indicating that there is a notification on this
activity. Clicking on the notification icon (a small envelope in the image below) will open a separate tab
with details of the notification.

An activity has an entry point and an exit point for a transition, on the right and the left respectively. When
two or more transitions leave an exit point this is called a split. The transitions in a split can be given a

158 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

number to indicate their relative progression. When two or more transitions meet at an activity's entry
point this is called a join. If either a join or a split is an "and" type, also called a "conjunction", then it
is represented as a small square. This implies that a series of transitions have to take place together in
order for the workflow to proceed. If a join or a split is an "xor" type, an either-or situation, then a small
circle is used. There are examples of both in the figure below. Finally, a transition can have an associated
transition condition. This means that certain criteria have to be met in order for a transition to proceed.
This is represented by an asterisk on the transition and the full condition information is displayed in a
pop-up if the user hovers the mouse over the symbol.

Figure 60. Workflow

Workflow XML Formats
The workflow widgets require XML data that conforms to the workflow schema defined in the
workflow.xsd file located in the lib\curam\xml\schema folder of your CDEJ installation folder.

An an example of workflow XML data is shown.

<WORKFLOW ID="4791830003522207744" PROCESS-VERSION="1">
 <NODE ID="6953557824660045824" X="2.0" Y="1.0"
 TEXT="Loop Activity [End]" HIDDEN="false"
 ACTIVITY-TYPE-CODE="AT9" HAS-NOTIFICATION="true"
 IS-EXECUTED="false" SPLIT-TYPE="AND" JOIN-TYPE="AND"
 TASK-ID="1"/>
 <NODE ID="-3566850904877432832" X="3.0" Y="1.0"
 TEXT="EndProcessActivity" HIDDEN="false"
 ACTIVITY-TYPE-CODE="AT7" IS-EXECUTED="false"
 JOIN-TYPE="AND" TASK-ID="2"/>
 <NODE ID="2702159776422297600" X="1.0" Y="2.0"
 TEXT="Activity 1" HIDDEN="false"
 ACTIVITY-TYPE-CODE="AT5" IS-EXECUTED="false"
 SPLIT-TYPE="AND" JOIN-TYPE="AND" TASK-ID="3"/>
 <EDGE FROM="6953557824660045824" TO="-3566850904877432832"
 HIDDEN="false" TRANSITION-ID="1621295865853378560"
 IS-EXECUTED="false" REVERSE-ARROW="false"/>
 <EDGE FROM="3566850904877432832" TO="2702159776422297600"
 HIDDEN="false" TRANSITION-ID="0" IS-EXECUTED="false"
 REVERSE-ARROW="true"/>
</WORKFLOW>

The root element, WORKFLOW, can have any number of NODE (activity) and EDGE (transition) elements. The
ID attribute on WORKFLOW identifies this particular workflow as does the PROCESS-VERSION attribute.

The NODE element represents a single activity in the workflow. All attributes of a node are defined in the
following table:

Chapter 1. Cúram web client reference 159

Table 57. Attributes of a Node

Attribute Description

ID Unique identifier for this element, supplied as a parameter in the row
header hyperlink.

X An x-coordinate for an element on the workflow graph.

Y A y-coordinate for an element on the workflow graph.

TEXT The text of an activity.

ACTIVITY-TYPE-CODE Code for an activity type. Used as a parameter in a hyperlink.

HIDDEN Boolean property to indicate if an edge or node is to be hidden. If true
the node will not be displayed.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for
a particular process instance. If set to true then the activity has been
executed.

SPLIT-TYPE The split type associated with an activity.

JOIN-TYPE The join type associated with an activity.

ACTIVITY-INSTANCE-ID The unique identifier of an activity instance for a particular process
instance.

START-DATE-TIME The start date time of an activity instance or transition instance for an
executed or currently executing process.

END-DATE-TIME The end date time of an activity instance or transition instance for an
executed or currently executing process.

STATUS The current status of an activity instance.

TASK-STATUS Code for the status of a task.

TASK-RESERVED-BY The name of the user reserving the task.

TASK-TOTAL-TIME-WORKED The total time worked on a task in seconds.

NUMBER-ITERATIONS The number of times the activity contained in a node has been executed.

TASK-ID The unique identifier for the task.

The EDGE element represents a single transition in the workflow. All attributes of an edge are defined in
the following table:

Table 58. Attributes of an Edge

Attribute Description

FROM The ID of the node this edge is from.

TO The ID of the node this edge is to.

TRANSITION-ID The unique identifier of a transition.

IS-FOLLOWED Boolean property to indicate if a particular transition has already been
followed for a process instance.

TRANSITION-INSTANCE-ID The unique identifier of a transition instance for a particular process
instance.

160 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 58. Attributes of an Edge (continued)

Attribute Description

REVERSE-ARROW Boolean property to indicate if an arrow on an edge should be reversed.
In this case, the arrow will be going into the FROM node instead of the TO
node.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for
a particular process instance. If set to true then the activity has been
executed.

TRANSITION-CONDITION The condition associated with a transition in an edge.

REAL_FROM ID of a node that this edge is actually from as opposed to an
intermediate hidden node identified by the FROM attribute.

REAL_TO ID of a node that this edge is actually to as opposed to an intermediate
hidden node identified by the TO attribute.

ENABLED Boolean property to indicate if an edge is to be enabled as a hyperlink.
This attribute is false by default.

ORDER Indicates the order of an edge relative to other edges.

As mentioned above, workflow charts are configurable. This is accomplished by setting the CONFIG
attribute on the UIM field in question. The WorkflowConfig.xml XML configuration file must contain a
configuration section with a unique identifier matching the text in the CONFIG attribute. The XML schema
format for this file is defined in the workflow-config.xsd file located in the lib\curam\xml\schema
folder of your CDEJ installation folder. The following is a sample of this file:
<WORKFLOW_CONFIG>
 <ICON CODE="AT1" PATH="Images/manual.gif"/>
 <ICON CODE="AT2" PATH="Images/automatic.gif"/>
 <ICON CODE="AT4" PATH="Images/subflow.gif"/>
 <ICON CODE="AT5" PATH="Images/route.gif"/>
 <ICON CODE="AT6" PATH="Images/eventwait.gif"/>
 <ICON CODE="AT7" PATH="Images/endprocess.gif"/>
 <ICON CODE="AT8" PATH="Images/loopbegin.gif"/>
 <ICON CODE="AT9" PATH="Images/loopend.gif"/>
 <ICON CODE="AT10" PATH="Images/decision.gif"/>
 <ICON CODE="AT11" PATH="Images/startprocess.gif"/>
 <ICON NOTIFICATION="true"
 PATH="CDEJ/cdej-images/notification.gif"/>
 <CONFIG ID="WorkFlow.Config"
 NOTIFICATION_PAGE="viewActivityNotification"
 DETAILS_PAGE="componentRedirect"
 START_PROCESS_TYPE="AT11" END_PROCESS_TYPE="AT7"/>
</WORKFLOW_CONFIG>

The WORKFLOW_CONFIG root element contains CONFIG elements and ICON elements. The CONFIG
element contains all configuration for a particular field, identified by the ID attribute. The following table
describes all attributes of the CONFIG element:

Table 59. Attributes of Workflow CONFIG element

Attribute Description

ID Unique identifier for this configuration.

DETAILS_PAGE ID of a UIM page to use as a destination for a hyperlink on a
node.

HEIGHT Height in pixels of a workflow chart. If height is not specified,
a height will be chosen that attempts to maximize the use of
available space.

ACTIVITY_CODETABLE Codetable name for resolving ACTIVITY-TYPE-CODE
attribute values.

Chapter 1. Cúram web client reference 161

Table 59. Attributes of Workflow CONFIG element (continued)

Attribute Description

TASKSTATUS_CODETABLE Codetable name for resolving TASK-STATUS attribute values.

PROCESSSTATUS_CODETABLE Codetable name for resolving the status of a process instance
(e.g. In Progress, Completed, Suspended or Aborted).

SHOW_INSTANCE_DATA Determines if the chart should display a text area containing
all instance data information. Valid settings are true and
false.

START_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the start
process type. This activity will be drawn without a box.

END_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the end
process type. This activity will be drawn without a box.

NOTIFICATION_PAGE ID of a UIM page to use as a destination for a hyperlink on a
notification icon.

READONLY_VIEW Determines if the links on a workflow graph should be
disabled.

HIGHLIGHT_ACTIVITY_PARAM Represents the parameter used to determine the current
activity in a workflow. The value of the parameter is matched
with a corresponding attribute in the XML data returned from
the server to indicate which node has to be highlighted.

The ICON child element of the WORKFLOW_CONFIG root element defines all icons for the workflow chart.
Either the CODE attribute or the NOTIFICATION attribute defines what kind of icon this is. If CODE is set
then the ACTIVITY-TYPE-CODE on a NODE is used to match an icon to a particular activity type. If the
NOTIFICATION attribute is set to true then this icon is used as a graphic depicting a notification present
on an activity. The PATH attribute on ICON is used to point to an image file, relative to your project's
WebContent directory.

Evidence view
The Evidence view has two modes for displaying and comparing evidence data, evidence display mode
and evidence comparison mode.

Evidence display mode
The EVIDENCE_XML domain results in a table displaying evidence items. There are three columns in the
table. The first displays the evidence item name, the second shows the group to which evidence item
belongs and the value of the item is displayed in the third column. The value of the item will be formatted
based on its domain.

Evidence comparison mode
The EVIDENCE_XML_COMPARE domain results in three tables displaying evidence comparison results.
The comparison results consist of three tables to display items which were modified, added or deleted.
All three tables follow the same format: the first column displays the evidence item name; the second
column displays the group which the evidence item belongs to and corresponding values are displayed in
the third (the modified evidence table will have a fourth column to show previous values against current
values) column.

162 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Evidence view configuration
Configure the evidence view by changing settings in appropriate properties files. Use
DisplayEvidence.properties for Evidence Display mode, and ComparedEvidence.properties
for Evidence Comparison mode. You must create these properties files in the
<CLIENT_DIR>\components\core folder.

Configuration files contain table headers and captions for all the columns as well as visibility settings for
each column. There is also a links section for specifying links to pages for each evidence item and item
group column if needed. If a link is not required, leave the value empty rather than deleting the property
itself. Also there are properties containing textual substitution for an empty value case and textual insert
used in evidence item name.

Note: The properties specifying visibility settings are not localizable strings and should contain either
"true" or "false" depending on desired visibility of the corresponding column.

Below is an example of the configuration settings for display evidence mode:
#Textual descriptions for comparison sections.
Table.Summary.Single=This table contains evidence items.

Comparison section labels
Evidence.Table.Label=Evidence Items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Value.Column.Header=Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Value.Column.Visible=true

Localizable messages
Message.No.Value=This item is not set
Message.Item.Joint=referenced by rule item

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

The following is an example of the configuration settings for the evidence comparison mode:
#Textual descriptions for comparison sections.
Table.Summary.MODIFIED=This table contains modified evidence
Table.Summary.NEW=This table contains newly added evidence items.
Table.Summary.REMOVED=This table contains removed evidence.

Comparison section labels
Evidence.Label.MODIFIED=Modified evidence
Evidence.Label.NEW=Newly added evidence items
Evidence.Label.REMOVED=Removed evidence items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Oldval.Column.Header=Previous Value
Value.Column.Header=New Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Oldval.Column.Visible=true
Value.Column.Visible=true

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

Chapter 1. Cúram web client reference 163

Evidence view XML data formats
The Evidence View expects specific XML formats for the Evidence Comparison and Evidence Display
modes.

An XML format example for Evidence Comparison mode is shown.

<EVIDENCE_COMPARE>
 <EVIDENCE TYPE="MODIFIED">
 <GROUP ID="mod1ID"
 DESCRIPTION="en|EvidenceGroup1">
 <EVIDENCE_ITEM ID="modItem1ID"
 DESCRIPTION="en|Number of Children"
 OLDVAL="11" VALUE="13"
 DOMAIN="SVR_INT32"/>
 </GROUP>
 <GROUP ID="mod2ID"
 DESCRIPTION="en|EvidenceGroup2">
 <EVIDENCE_ITEM ID="modItem3ID"
 DESCRIPTION="en|Are you married"
 OLDVAL="false" VALUE="true"
 DOMAIN="SVR_BOOLEAN"/>
 </GROUP>
 </EVIDENCE>
 <EVIDENCE TYPE="NEW">
 <GROUP ID="new1ID"
 DESCRIPTION="en|EvidenceGroup1">
 <EVIDENCE_ITEM ID="newItem1ID"
 DESCRIPTION="en|Number of cars"
 VALUE="6"
 DOMAIN="SVR_INT32"/>
 </GROUP>
 </EVIDENCE>
 <EVIDENCE TYPE="REMOVED">
 <GROUP ID="del1ID"
 DESCRIPTION="en|Deletion">
 <EVIDENCE_ITEM ID="delItem1ID"
 DESCRIPTION="en|Number of houses"
 OLDVAL="1"
 DOMAIN="SVR_INT32"/>
 </GROUP>
 </EVIDENCE>
</EVIDENCE_COMPARE>

The following XML format is an example for the Evidence Display mode.

<evidence>
 <group id="group1" display-name="EvidenceGroup1">
 <item name="item11"
 display-name="Number of Children"
 initial-value="13" no-value="false"
 type="SVR_INT32"/>
 <item name="item12"
 display-name="item with no value"
 initial-value="" no-value="true"
 type="SVR_STRING"/>
 </group>
 <group id="group2" display-name="EvidenceGroup2">
 <item name="item21"
 display-name="Are you married"
 initial-value="true" no-value="false"
 type="SVR_BOOLEAN"/>
 <item name="item22"
 display-name="Some important dates"
 initial-value="" no-value="false"
 type="SVR_DATE">
 <value position="10" description="Important date 1"
 value="20050401T000000">
 <value position="18" description="Important date 2"
 value="20050601T000000">
 <value position="5" description="Important date 3"
 value="20051231T000000">
 </item>
 </group>
</evidence>

164 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The display-name attribute represents a description for every item or group, the description does
the same for the value element. Group ids, evidence item names and value descriptions are supplied
by the evidence text returned from the rules engine. The type attribute is used to select particular
representation for different data types from the server. The name attribute of item and the id attribute of
group are used as link parameters if a link is specified for the first or second column.

Calendar
The calendar is used by any UIM page that displays a field from a server access bean containing a
CALENDAR_XML_STRING domain. This view allows for scheduling of events from different time-frames,
monthly, weekly and daily.

Programmatically, the calendar expects to be populated with information about events in an XML format.

The following is an example of what the XML received from the server might look like for Calendar:

<CURAM_CALENDAR_DATA TYPE="UserCalendar">
 <EVENT>
 <ID>1</ID>
 <DATE>2002-10-10</DATE>
 <STARTTIME>10:10:10</STARTTIME>
 <ENDTIME>10:10:10</ENDTIME>
 <DURATION>0</DURATION>
 <DESCRIPTION>Hello World!</DESCRIPTION>
 <STATUS>ATS1</STATUS>
 <PRIORITY>AP1</PRIORITY>
 <LEVEL>AL1</LEVEL>
 <RECURRING>false</RECURRING>
 <READ_ONLY>false</READ_ONLY>
 <ALL_DAY>false</ALL_DAY>
 <ATTENDEE>true</ATTENDEE>
 <ACCEPTANCE>true</ACCEPTANCE>
 </EVENT>
 <SINGLE_DAY_EVENT>
 <ID>2</ID>
 <DATE>2003-04-01</DATE>
 <TYPE>ET1</TYPE>
 <DESCRIPTION>April Fool's Day</DESCRIPTION>
 </SINGLE_DAY_EVENT>
</CURAM_CALENDAR_DATA>

Notice that there can be two kinds of event elements contained within the CURAM_CALENDAR_DATA
XML data: EVENT and SINGLE_DAY_EVENT. In the schema of the XML data expected the root element,
CURAM_CALENDAR_DATA, can hold any number (zero to many) of EVENT and SINGLE_DAY_EVENT
elements; CURAM_CALENDAR_DATA can optionally have a TYPE attribute which associates this sequence
of events with a particular calendar configuration (see example below).

The following tables describe the schema definitions for each of the attributes allowed on the EVENT and
the SINGLE_DAY_EVENT elements respectively.

Table 60. EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event.

DATE The date of the event in xs:date format: (CCYY-MM-DD)
I.e. 21- Aug-2002 is represented as 2002-08-21.

No

STARTTIME The start time in xs:time format: (hh:mm:ss). I.E. 1:34
pm and 56 seconds is represented as 13:34:56.

ENDTIME The start time in xs:time format: (hh:mm:ss). No

DURATION The duration of the event in minutes. This should be an
integer.

No

Chapter 1. Cúram web client reference 165

Table 60. EVENT attributes in schema (continued)

Attribute Name Description Required

DESCRIPTION A Description of the event. No

STATUS The status of the event. This node is limited to values
stored in the ActivityTimeStatus code table in the
reference application.

No

PRIORITY The priority of the event. This node is limited to values
stored in the ActivityPriority code table in the reference
application.

No

LEVEL Code that shows the level of the activity. This node is
limited to the values stored in the ActivityLevel code
table in the reference application.

No

RECURRING Recurring indicator: true if this event is a recurring event.
Otherwise false.

No

READ_ONLY Read-only indicator: true if this event is a read-only
event. Otherwise false.

No

ALL_DAY All-day indicator: True if this is an all-day event.
Otherwise false.

No

ATTENDEE Attendee indicator: true if the user is attending a
meeting. Otherwise false.

No

ACCEPTANCE Acceptance indicator: True if the user has accepted an
invitation to a meeting. Otherwise false.

POSITION For a spanning event, indicates first or last component of
the event.

No

Table 61. SINGLE_DAY_EVENT attributes in schema

Attribute Name Description Required

ID A string to uniquely identify this event. No

DATE The date of the event in xs:date format. No

TYPE The type of a single day event. No

DESCRIPTION A Description of the event. No

Once a field based on the CALENDAR_XML_STRING domain returns XML information formatted according
to the aforementioned schema, it will be displayed in the appropriate time position by the calendar.
Any web page containing a calendar can be set to open on different dates and views by specifying
the startDate and calendarViewType parameters in the page's URL. The startDate parameter should be
formatted according to the date format expected by the application and the calendarViewType parameter
should be one of the following codes.

166 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 62. Calendar View Type Values

Code Value

CVT1 Day view

CVT2 Week view

CVT3 Month view

You can configure the display of calendar information using the CalendarConfig.xml file. There should
be at least one copy of this in the components folder. This file should contain configuration information
for each type of calendar, the TYPE attribute of the CURAM_CALENDAR_DATA element mentioned
above associates a calendar data stream with a particular type. An example of the structure of the
CalendarConfig.xml file is shown.

<CONFIGURATION MONTH_CELL_HEIGHT="4"
 SHOW_REPEAT_EVENT_TEXT="true">
 <CALENDAR TYPE="UserCalendar">
 <DESCRIPTION_LOCATION>DetailsPage.do</DESCRIPTION_LOCATION>
 <DAY_VIEW_TIME_FORMAT>24</DAY_VIEW_TIME_FORMAT>
 </CALENDAR>
 <EVENT_TYPES>
 <TYPE NAME="ET1" ICON="Images/mandatory.gif"/>
 <TYPE NAME="ET2" ICON="Images/case.gif"/>
 <TYPE NAME="ET3" ICON="Images/concern.gif"/>
 </EVENT_TYPES>
</CONFIGURATION>

The overall schema for this configuration file specifies the CONFIGURATION element as the root
element. The CONFIGURATION has an optional MONTH_CELL_HEIGHT attribute which sets the maximum
number of rows to display in a single cell in the month view. The default value is three. The
SHOW_REPEAT_EVENT_TEXT optional attribute, if set to true, will display the event description in each
month cell if an event spans multiple days. This attribute is false by default.

The CONFIGURATION root element can hold any number of CALENDAR elements and a single
EVENT_TYPES element. The TYPE attribute of CALENDAR associates this configuration information with
an XML stream returned from the server. The DESCRIPTION_LOCATION element of CALENDAR is for
constructing a link to a page containing more information on any event in the calendar. The following table
lists the parameters passed with this hyperlink.

Table 63. Parameters Passed to Event Description Pages

Parameter Name Description

ID the event ID

RE Recurrence indicator

AT Attendee indicator

RO Read-only indicator

LV_ Activity level

AC Acceptance indicator

The CALENDAR element should also contain an element called DAY_VIEW_TIME_FORMAT. The valid
values for this element are 12 and 24. They specify whether the time in the day view is displayed using a
12 or 24 hour format.

Chapter 1. Cúram web client reference 167

The EVENT_TYPES element is used for mapping images to display as icons next to single day events. The
NAME attribute of the TYPE element must match a TYPE element on a SINGLE_DAY_EVENT supplied by
the server for the image specified by the ICON attribute to be displayed.

The schema for the calendar configuration file (CalendarConfiguration.xsd) and the schema for the
CALENDAR_XML_STRING domain (CuramCalendar.xsd) are located in your project's WebContent/
WEB-INF/CDEJ/schema folder.

Payment Statement view
The payment statement view is used for displaying under or over payment within the Cúram application
framework.

The payment statement view supports the display of benefits as well as liabilities. The domain
BENEFIT_REASSESSMENT_RESULT_TEXT should be used for a benefit payment statement view. The
domain LIABILITY_REASSESSMENT_RESULT_TEXT should be used for a liability payment statement view.
It is expected that all string data returned for this field follows a specific tab-delimited format. Examples
of using these domains can be found in the Cúram reference application.

There is also a properties file associated with this view: PaymentStatement.properties in the
<CLIENT_DIR>\components\core folder. The link to a page providing further details on a statement
can be defined using a set of four parameters:

PaymentStatement.RowLink.Benefit.PageID
PaymentStatement.RowLink.Benefit.ParameterName
PaymentStatement.RowLink.Benefit.Label
PaymentStatement.RowLink.Benefit.Image

There is one set of parameters for Benefit pages and one for Liability pages. PageID is the name of the
page to link to. ParameterName is the name of the parameter to be passed to this page to identify the id
of the payment in question. Label supplies the text of the link, if Image is not used. Otherwise it supplies
the tool-tip for the image-based link.

The remaining properties are simply externalized strings for the widget. A sample
PaymentStatement.properties file is shown.

PaymentStatement.RowLink.Benefit.PageID=FromBenefit
PaymentStatement.RowLink.Liability.PageID=FromLiability

PaymentStatement.RowLink.Benefit.ParameterName=param1
PaymentStatement.RowLink.Liability.ParameterName=param2

PaymentStatement.RowLink.Benefit.Label=Link Text 1
PaymentStatement.RowLink.Liability.Label=Link Text 2

#PaymentStatement.RowLink.Benefit.Image=Images/icon.gif
PaymentStatement.RowLink.Liability.Image=Images/icon.gif

PaymentStatement.Text.fromToDateSeparator=\ to
PaymentStatement.Text.Action=Action
PaymentStatement.Text.Period=Period
PaymentStatement.Text.Desc=Description
PaymentStatement.Text.Actual=Actual
PaymentStatement.Text.Reassessed=Reassessed
PaymentStatement.Text.Liability.Received=Received
PaymentStatement.Text.Diff=Difference
PaymentStatement.Text.GrossTotal=Total Gross Over Payment
PaymentStatement.Text.TaxTotal=Total Tax Deduction
PaymentStatement.Text.UtilityTotal=Total Utility Deduction
PaymentStatement.Text.LiabilityTotal=Total Liability Deduction
PaymentStatement.Text.NetTotal=Net Under or Over Payment

Batch Function View
The batch function view is generated from the PARAM_TAB_LIST domain. It allows you to enter
parameters to submit a batch program for execution. The labels of each field are provided to the view by a
single tab-delimited string.

168 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Addresses
The ADDRESS_DATA domain type maps to a tag for entering and displaying addresses. Although the user
sees several fields, addresses are stored as a single string field. Except for the STATE field, each of the
fields are, by default, text input fields. The STATE field is a drop-down.

To parse the address and display the address, the elements the address consists of must be
defined in the curam-config.xml file. Different address configurations for different locales in the
Cúram application can be defined. The following address configuration demonstrates how to set the
configuration by using the ADDRESS_CONFIG element.

<ADDRESS_CONFIG>
 <LOCALE_MAPPING LOCALE="en_US"
 ADDRESS_FORMAT_NAME="US"/>
 <LOCALE_MAPPING LOCALE="en_GB"
 ADDRESS_FORMAT_NAME="UK"/>
 <ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US" DESCRIPTION="Address.Description">
 <ADDRESS_ELEMENT LABEL="Address.Label.AptSuite"
 NAME="ADD1"
 CONDITIONAL_MANDATORY="true"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.Street.1"
 NAME="ADD2"
 CONDITIONAL_MANDATORY="true"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.Street.2"
 NAME="ADD3"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.City"
 NAME="CITY"/>
 <ADDRESS_ELEMENT CODETABLE="AddressState"
 LABEL="Address.Label.State"
 NAME="STATE"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.Zip"
 NAME="ZIP"/>
 </ADDRESS_FORMAT>

 <ADDRESS_FORMAT NAME="UK" COUNTRY_CODE="GBR">
 <ADDRESS_ELEMENT LABEL="Address.Label.Address.1"
 MANDATORY="true" NAME="ADD1"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.Address.2"
 NAME="ADD2"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.Address.3"
 NAME="ADD3"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.Address.4"
 NAME="ADD4"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.County"
 NAME="ADD5"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.City"
 NAME="CITY"/>
 <ADDRESS_ELEMENT LABEL="Address.Label.PostCode"
 NAME="POSTCODE"/>
 <ADDRESS_ELEMENT CODETABLE="Country"
 LABEL="Address.Label.Country"
 NAME="COUNTRY"/>
 </ADDRESS_FORMAT>
</ADDRESS_CONFIG>

The ADDRESS_CONFIG element builds by using multiple LOCALE_MAPPING and ADDRESS_FORMAT
elements. In Cúram application deployments with multiple locales, a developer might want to use a
different address format for each locale. To use a different address format for each locale, use the
LOCALE_MAPPING element. The element contains a LOCALE attribute that defines the locale and an
ADDRESS_FORMAT_NAME attribute that defines the ADDRESS_FORMAT element to be mapped. By default,
the Cúram application includes defined ADDRESS_FORMAT elements that are mapped to specific locales.
As the locales are already mapped, it is not required to define LOCALE_MAPPING elements for the locales.
However, customers can modify the elements or create new configurations, depending on a customer's
implementation. Table 1 lists the default address formats and the corresponding locale mappings.

Table 64. Address format configurations.

Address Format Name Locale Mapping

US en_US

Chapter 1. Cúram web client reference 169

Table 64. Address format configurations. (continued)

Address Format Name Locale Mapping

UK en_GB

DE de

CA en_CA

KR ko

JP ja

TW zh_TW

CN zh_CN

When an address is created, the ADDRESS_FORMAT includes an optional COUNTRY_CODE attribute that
is used in the address header. If the attribute is not set, the COUNTRY_CODE defaults to GBR when the
address format specified is UK. When any other address format is specified, the COUNTRY_CODE is set
to US. The COUNTRY_CODE is not used by the infrastructure. It is one of the fields in the address string
that the application uses, but the infrastructure provides an initial value for it. The ADDRESS_FORMAT
includes another optional DESCRIPTION attribute. The attribute refers to the property that is in the
CDEJResources.properties file. The string provides information text that is displayed above the
address fields.

The ADDRESS_FORMAT elements contain ADDRESS_ELEMENT elements that define the fields in the
address tag. The ADDRESS_ELEMENT element includes a LABEL attribute that refers to properties that
are contained in the CDEJResources.properties file. The address builds by using ADDRESS_ELEMENT
tags. The tags must have a name and label. A code table can also be specified for each
ADDRESS_ELEMENT. When a code table is specified, a drop-down displays the code table entries and
the default code is selected.

The optional MANDATORY attribute specifies whether an address element must be completed.

Note: The MANDATORY settings in curam-config.xml require that the field that provides the address
data must be marked as mandatory the application model.

The optional CONDITIONAL_MANDATORY attribute specifies whether an address element is partially
mandatory. For the US address format, as a minimum the first two address fields must be competed in a
form. When the CONDITIONAL_MANDATORY attribute is set on an ADDRESS_ELEMENT, an aria-label is set
on the field with the description text. Screen readers use the description text for visually impaired users.

Note: To provide the aria-label with the description text, the DESCRIPTION attribute must be set on the
ADDRESS_FORMAT.

Schedule view
The schedule view is used for any domain of the type SCHEDULE_DATA. This view displays a grid of
time-line information for the hours between 8 am and 8 pm. Each row in this grid represents a person
whose full name is displayed in the row header.

Each cell in the person's row represents a half hour period containing an indicator for whether they are
available or not. If a user clicks on a free cell, they should be linked to a page allowing them to enter
further schedule events.

170 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The information and set up of this particular view involves a particular setup in a page's UIM file. An
example of the UIM for a schedule field is shown.

<FIELD>
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="schedule"/>
 </CONNECT>
 <CONNECT>
 <LINK PAGE_ID="IncomeScreening_confirmAppointment">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="appointmentDate"/>
 <TARGET NAME="PAGE" PROPERTY="date"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="userFullName"/>
 <TARGET NAME="PAGE" PROPERTY="fullUserName"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="userName"/>
 <TARGET NAME="PAGE" PROPERTY="userName"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="caseID"/>
 <TARGET NAME="PAGE" PROPERTY="caseID"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="pageDescription"/>
 <TARGET NAME="PAGE" PROPERTY="pageDescription"/>
 </CONNECT>
 </LINK>
</FIELD>

The Cúram page generator expects any schedule FIELD element to be followed by a LINK element which
details the PAGE_ID of the page to go to when a free cell is clicked on. The following three CONNECT
elements should be fields which provide the following attributes to the link: the date of the day in
question (the time is appended to this date); the full name of the user; and the user's unique identifier.
The order of these CONNECT elements is important or the schedule view will not contain the correct links.

The SCHEDULE_DATA domain is expected to be a list of user names and 32 bit schedule fields separated
by a tab. An example of one such element of this list would be:

John Smith<tab>16777212

16777212 is the integer value which translates to the bit field 00000000111111111111111111111100.
A one represents a half hour when Mr. Smith is busy and a zero stands for free time. The bit field is read
from the least significant bit first, i.e. from right to left, with 8 am represented by the right-most bit. As
we are dealing with a twelve hour period and each bit stands for a half hour, only the first 24 bits are
important. The last byte is disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks (per user), with each block
representing half an hour. Half hour blocks of free time are displayed differently than the other blocks
(busy) in terms of color and size.

Radio button group
An alternative way to present a set of code table values is as a radio button group, each radio button
representing a code table item.

To display in the form of radio buttons, a field representing a code table value should be mapped to the
SHORT_CODETABLE_CODE domain or to a domain directly inheriting from SHORT_CODETABLE_CODE.

Chapter 1. Cúram web client reference 171

Pop-up pages
Use this information to set up a pop-up page or a multiple pop-up page as needed. The Cúram application
has a number of built-in pop-up pages, such as the Date Selector pop-up, which are "helpers" that are
used to enter data. Developers can also specify their own pop-up pages.

For example, when scheduling a meeting for a person you don't want the user to have to know or fill in
that persons unique ID. Instead the user should be provided with a search facility or a pre-populated list
of valid options they can select from. This is achieved in Cúram with pop-up pages.

The default pop-up widget has a grey input field with a search - in the form of a magnifying glass - and a
clear icon beside it. When the user clicks on the search icon this will activate a pop-up page. The user can
select an item from the pop-page which will populate the text input field on the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

Using multiple pop-up search pages for a single field
In some cases we need to search for different types of Cúram entities but that search is associated with
a single field. For example you may have a requirement to search for a Cúram client which has a generic
domain of CURAM_CLIENT_ID. This could be a person, an employer, a product provider etc. Individual
search pages may already exist for these types so you should be able to reuse them. Assuming the
pop-up search pages already exist, this involves two extra steps which are described in the following
sections and. The resulting pop-up widget has an additional drop-down field rendered to the left of the
text input field. To activate the pop-up page for this widget, the user first selects the type of search to be
performed from the drop down list and then clicks on the search icon.

Configure a pop-up page
The first step is to configure a pop-up page. This is performed by the POPUP_PAGES element in curam-
config.xml.

<POPUP_PAGES DISPLAY_IMAGES="true|false">
 <CLEAR_TEXT_IMAGE>Images/minus.gif<CLEAR_TEXT_IMAGE>
 <POPUP_PAGE PAGE_ID="PersonSearch"
 CREATE_PAGE_ID="RegisterPerson"
 CONTROL_TYPE="textunderline|textinput"
 CONTROL_EDITABLE="true|false"
 CONTROL_INSERT_MODE="overwrite|insert|append">
 <DOMAIN>PERSON_ID</DOMAIN>
 <WIDTH>800</WIDTH>
 <HEIGHT>600</HEIGHT>
 <SCROLLBARS>true</SCROLLBARS>
 <IMAGE>Images/search.gif</IMAGE>
 <LABEL>Search</LABEL>
 <CREATE_IMAGE>Images/new.gif</CREATE_IMAGE>
 <CREATE_LABEL>New</CREATE_LABEL>
 </POPUP_PAGE>
</POPUP_PAGES>

On the root element the DISPLAY_IMAGES attribute can be used to configure whether images or text is
used for the actions which open a pop-up or clear the currently selected value.

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a "clear this text" button. Note that this is an
application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there must be instance of this
element. Up to two pop-ups can be associated with a single domain; one to search for an existing item,
another to create a new item. The following attributes and child elements control various aspects of how
the pop-up is presented to the user.

172 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 65. Attributes of the POPUP_PAGE element.

Name Description

PAGE_ID Specifies the UIM page id of the pop-up page to open to search for an
existing item.

CREATE_PAGE_ID Specifies the UIM page id of the the pop-up page to open to create a
new item.

CONTROL_TYPE Specifies the type of control where the value returned from the pop-up
will be written to. The default value is textunderline which displays
static text with an underline. To display a text input field set the value
to textinput. When a a text input control is configured, on the UIM
FIELD which uses a pop-up, the HEIGHT attribute can be used to
change from a single line text input to a multi-line text area.

CONTROL_EDITABLE This attribute is only valid when CONTROL_TYPE is set to textinput.
It controls whether the text input field is editable or not. Set to true to
create a editable field and false to create a non-editable field.

CONTROL_INSERT_MODE This attribute is only valid when CONTROL_TYPE is set to textinput. It
allows you to configure how a value selected from a pop-up is inserted
into the associated input control. The default is overwrite which
means the selected value will overwrite the previous contents. Setting
the attribute to insert means the selected value will be inserted at
the current cursor position. Setting the attribute to append means the
selected value will be appended to the previous contents of the input
control.

Table 66. Child elements of the POPUP_PAGE element.

Name Description

DOMAIN Domain used to identify this pop-up page. If a FIELD element with
a TARGET connection is based on this domain, a pop-up will be used
instead of a standard text entry box.

CT_CODE This is a second way to identify a pop-up page. The attribute contains
a code table code value and is used when associating multiple pop-up
pages with a single field and is described in further detail below.

WIDTH Width in pixels of pop-up dialog. This element is optional. If not
included, the default width of 600 pixels will be used.

HEIGHT Height in pixels of pop-up dialog. This element is optional. If not
included, the height will be automatically calculated based on the page
contents.

IMAGE Location of image which when clicked launches the pop-up defined by
the POPUP_PAGE element's PAGE_ID attribute.

IMAGE_HOVER Location of image that is displayed when a user hovers over the search
pop-up icon. Set the IMAGE_HOVER element if the IMAGE element
has been set to a location other than the default location. If the
IMAGE_HOVER element is not set, then a default image is displayed
when a user hovers over a search pop-up icon.

Chapter 1. Cúram web client reference 173

Table 66. Child elements of the POPUP_PAGE element. (continued)

Name Description

IMAGE_PROPERTY Optional key in the CDEJResources.properties file under which
the locale-specific location of the pop-up launcher image otherwise
specified by IMAGE attribute is stored. If the IMAGE is also
specified for the same configuration, it will take precedence over the
IMAGE_PROPERTY and this attribute will be ignored.

HIGH_CONTRAST_IMAGE Location of the high contrast image which when clicked launches the
pop-up defined by the POPUP_PAGE element's PAGE_ID attribute.

HIGH_CONTRAST_IMAGE_PR
OPERTY

Optional key in the CDEJResources.properties file under which
the locale-specific location of the pop-up launcher image otherwise
specified by HIGH_CONTRAST_IMAGE attribute is stored. If the
HIGH_CONTRAST_IMAGE is also specified for the same configuration, it
will take precedence over the HIGH_CONTRAST_IMAGE_PROPERTY and
this attribute will be ignored.

LABEL Alternate text for the image defined by the IMAGE element. If the
POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false,
this text will be displayed instead of the image.

LABEL_PROPERTY Optional key in the CDEJResources.properties file under which
the locale-specific value of the label attribute otherwise specified by
the LABEL attribute is stored. If LABEL is also specified for the same
configuration, it will take precedence over the LABEL_PROPERTY and
this attribute will be ignored.

CREATE_IMAGE Location of image which when clicked launches the pop-up defined by
the POPUP_PAGE element's CREATE_PAGE_ID attribute.

CREATE_IMAGE_PROPERTY Optional key in the CDEJResources.properties file under which
the locale-specific location of the pop-up launcher image otherwise
specified by CREATE_IMAGE attribute is stored. If the CREATE_IMAGE
is also specified for the same configuration, it will take precedence over
the CREATE_IMAGE_PROPERTY and this attribute will be ignored.

CREATE_LABEL Alternate text for the image defined by the CREATE_IMAGE element. If
the POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false,
this text will be displayed instead of the image.

CREATE_LABEL_PROPERTY Optional key in the CDEJResources.properties file under
which the locale-specific value otherwise specified by the
CREATE_LABEL attribute is stored. If the CREATE_LABEL is also
specified for the configuration, it will take precedence over the
CREATE_LABEL_PROPERTY and this attribute will be ignored.

Create a pop-up page
A Cúram pop-up page is written in UIM. It can be written to display a set of existing items for the user to
select from or to register a completely new item.

A pop-up that returns existing items
The following is an example of a pop-up page which accepts user input, displays a list of search results,
one of which can be selected and its unique identifier returned to the parent page.
<PAGE PAGE_ID="Person_search" POPUP_PAGE="true">
 <PAGE_TITLE ICON="PersonSearchPageIcon">
 <CONNECT>
 <SOURCE NAME="TEXT"

174 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 PROPERTY="PageTitle.StaticText1"/>
 </CONNECT>
 </PAGE_TITLE>
 <SERVER_INTERFACE NAME="ACTION"
 CLASS="Person"
 OPERATION="search"
 PHASE="ACTION"
 />
 <CLUSTER NUM_COLS="2" TITLE="Cluster.Title.SearchCriteria">

 <ACTION_SET ALIGNMENT="CENTER" TOP="false">
 <ACTION_CONTROL LABEL="ActionControl.Label.Search"
 TYPE="SUBMIT" DEFAULT="true">
 <LINK PAGE_ID="THIS"/>
 </ACTION_CONTROL>
 <ACTION_CONTROL LABEL="ActionControl.Label.Cancel"
 IMAGE="CancelButton" TYPE="DISMISS"/>
 </ACTION_SET>

 <FIELD LABEL="Field.Label.ReferenceNumber">
 <CONNECT>
 <TARGET NAME="ACTION"
 PROPERTY="personSearchKey$referenceNumber"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>

 <LIST TITLE="List.Title.SearchResults">
 <CONTAINER LABEL="Container.Label.Action">
 <ACTION_CONTROL LABEL="ActionControl.Label.Select"
 TYPE="DISMISS" >
 <LINK>
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
 <TARGET NAME="PAGE" PROPERTY="value" />
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="ACTION"
 PROPERTY="dtls$personFullName" />
 <TARGET NAME="PAGE" PROPERTY="description" />
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </CONTAINER>
 <FIELD LABEL="Field.Title.ReferenceNumber">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="dtls$referenceNumber"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Title.FirstName">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="dtls$personName"/>
 </CONNECT>
 </FIELD>
 </LIST>
</PAGE>

The points to note about this example are:

• The PAGE_ID attributes of the UIM PAGE element and the POPUP_PAGE element in curam-
config.xml must match.

• The POPUP_PAGE attribute of the UIM PAGE element must be set to true.
• The submit action is linked to THIS. This means the page will be redisplayed after the submit button is

pressed.
• To cancel the pop-up an action control of type DISMISS is used. If the action control does not have a

child LINK element, the pop-up will be closed without returning any values to the parent page which
opened it.

• The search results list in this example is made up of three columns. The first contains a link which will
close the pop-up and return the selected values, the remaining columns display further information
about the person.

• To close the pop-up and return values, an action control of type DISMISS is used. This is placed in a
CONTAINER so it is the first column in the search results list. The user can click this link to select one of
the search results.

Chapter 1. Cúram web client reference 175

• To specify what values should be returned a child LINK element is added to the action control. When
used in an action control to close a pop-up all standard attributes of the LINK element (e.g. PAGE_ID)
have no meaning and will be ignored.

• For Cúram pop-up pages two values must always be returned. These are specified using CONNECT
elements. Both connections must use a target of PAGE and have the PROPERTY set to value and
description. The value connection specifies the value required on the page that opened the pop-up,
in this example the persons unique record ID. The description connection specifies descriptive text
to be shown to the user, in this example the person's name. So, on the page which opened the pop-up,
the person's name will be displayed to the user, but it is their unique ID which will be submitted to the
server.

It is not necessary for pop-up pages to accept input. For example, the LIST can be populated from a
display phase server interface if necessary.

A pop-up that creates a new item
A pop-up may also create a new item and have the newly generated unique identifier for that
item returned to the parent page. To do this create a page which a ACTION_CONTROL of type
SUBMIT_AND_DISMISS must be used. For example;
<ACTION_CONTROL TYPE="SUBMIT_AND_DISMISS" LABEL="Button.Submit">
 <CONNECT>
 <SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
 <TARGET NAME="PAGE" PROPERTY="value" />
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="ACTION"
 PROPERTY="dtls$personFullName" />
 <TARGET NAME="PAGE" PROPERTY="description" />
 </CONNECT>
</ACTION_CONTROL>

Once the type attribute is set to SUBMIT_AND_DISMISS the rules for the child LINK and CONNECT
element is the same as described in the previous section for a DISMISS action control. After the form is
successfully submitted the pop-up will be dismissed and the new values returned to the parent page.

Using the pop-up page
Pop-up pages are opened using standard UIM FIELD elements. If the field has a target connection which
is based on a domain as configured in curam-config.xml a link to open the pop-up will be generated
rather than a standard text entry field.

The following is the most basic example of a FIELD opening a pop-up. It is from an insert page so only
a target connection is specified. Using the current example, the person's unique ID will be assigned to
the field specified in the target connection and the person's name will only be used for visual purpose to
display to the user.

<FIELD LABEL="Field.Label.person">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>
</FIELD>

The following example is from a modify page which means the field will have a source value which must
be displayed to the user. It is slightly more complex that standard fields on a modify page because there
are actually two source values to handled. The person's unique ID and the person's name. In this case the
INITIAL connection is used to specify the person's name. This will only be used to display to the user
and note that is not submitted to the server. Following that the field is just like any other on a modify page.
The source connection specifies the existing value of the field, the target connection specifies where the
value should be submitted to.

<FIELD LABEL="Field.Label.person">
 <CONNECT>
 <INITIAL NAME="DISPLAY" PROPERTY="personName"/>
 </CONNECT>
 <CONNECT>

176 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <SOURCE NAME="DISPLAY" PROPERTY="personID"/>
 </CONNECT>
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>
</FIELD>

When invoking a pop-up it is also possible to supply page parameters to the pop-up. This is a slight
variation on the two examples above and involves the use of the LINK element. The following is an
example of two parameters passed to a pop-up page, one sourced from an existing page parameter, the
other from a server interface property. When a LINK element is used in this context no attributes such as
PAGE_ID should be specified. Also a TEXT source connection cannot be used to supply a parameter to a
pop-up page.

<FIELD LABEL="Field.Label.person">
 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="personID"/>
 </CONNECT>
 <LINK>
 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="personID"/>
 <TARGET NAME="PAGE" PROPERTY="param1"/>
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="personName"/>
 <TARGET NAME="PAGE" PROPERTY="param2"/>
 </CONNECT>
 </LINK>
</FIELD>

Configure a multiple pop-up page
This can be configured through the MULTIPLE_POPUP_DOMAINS element in curam-config.xml.

An example of multiple pop-up domains is shown.
<MULTIPLE_POPUP_DOMAINS>
 <CLEAR_TEXT_IMAGE>Images/clear.gif</CLEAR_TEXT_IMAGE>
 <MULTIPLE_POPUP_DOMAIN>
 <DOMAIN>CURAM_CLIENT_ID</DOMAIN>
 <LABEL>Search</LABEL>
 <IMAGE>Images/search.gif</IMAGE>
 </MULTIPLE_POPUP_DOMAIN>
</MULTIPLE_POPUP_DOMAINS>

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a "clear this text" button. This is an application
wide setting.

MULTIPLE_POPUP_DOMAIN : For each domain which you wish to associate multiple pop-up windows
create an instance of this element.

DOMAIN : The name of the domain which is associated with multiple pop-up windows

IMAGE : Location of image to be used for pop-up icon.

LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is required to select the pop-up
type. This drop-down list is populated as normal from a code-table. The code-table codes are the link
between the drop-down list and pop-up that is opened. This requires the CT_CODE child element of the
POPUP_PAGE element to be set to the code-table code value.

Using a multiple pop-up page
When the configuration is done, the final step is the write the UIM necessary to display the pop-up search.

An example of the UIM to use multiple pop-up windows is shown.

<CONTAINER LABEL="Label.person">
 <FIELD LABEL="Field.Label">

Chapter 1. Cúram web client reference 177

 <CONNECT>
 <TARGET PROPERTY="popupType" NAME="ACTION"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Label">
 <CONNECT>
 <TARGET PROPERTY="clientID" NAME="ACTION"/>
 </CONNECT>
 </FIELD>
</CONTAINER>

The main points to note are:

• A CONTAINER and two FIELD elements are required, one for the drop-down list, the other for the value
which will be returned from the pop-up. The container must not include any other FIELD elements.

• The first field should be based on a code-table domain which contains a list of codes which corresponds
to the CT_CODE element described earlier.

• The second field should have a target connection which is based on a domain using the
MULTIPLE_POPUP_DOMAIN element.

Agenda Player
The Agenda Player, or player, is a wizard-like control which provides guided navigation through a specified
set of screens. The screens in the Agenda Player are generally part of an agenda or scenario, typically
involving the step-by-step collection of information.

Note: Agenda Player widget is not supported outside the modal dialog context. An attempt to open it in
the tab content panel or elsewhere, such as in the inline page of an expandable list results in an error
message.

Agenda Player screen structure
Depending on how the Agenda Player player is configured, the screen is divided into either three or four
parts.

• Along the top is the Agenda Player header. It contains a customizable Agenda Player title on the left
and, where appropriate, a progress bar on the top right, which shows the user's progress through the
agenda. The steps completed in the progress bar will be shaded in color whereas the steps that have yet
to be completed will not.

• On the left of an Agenda Player, a navigation panel (optional) shows the list of pages in the current
agenda. The user's progress through the sequence is continuously displayed there (in addition to
progress bar) by highlighting of the current page. The appearance and behavior of the other pages in the
agenda depends on the mode used (see below). The pages in an agenda can be grouped into sections
and the player provides the ability to collapse and expand visited sections.

At the bottom of the navigation panel is the summary link, which allows users to jump directly to the
player summary page (they would also get there by navigating through all the pages in the agenda).
The summary link is only displayed if there is an appropriate element specified in the agenda XML. The
navigation panel is not displayed in the navigator-less (claimant) view of the Agenda Player.

• Along the bottom, a set of buttons is displayed to allow the user to step forward and back through the
Agenda Player. There are also buttons to jump to the summary page (displayed optionally) and to quit
the Player.

Note: The text used for these buttons can be customized (see below). However, for the remainder of
this section they are further referred as the Back, Next, Finish and Cancel buttons, which are their
default captions.

• The main area of the screen is the content area. This area displays normal client pages which might also
be used outside of the Agenda Player.

178 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Navigation modes
In addition to using the back and next buttons to navigate through an agenda, the player can provide
additional options in the navigation panel, depending on the mode used.

The Agenda Player can be configured to operate in one of three navigation modes: basic, incremental
or full, with incremental mode being the default.

• The basic mode is used for strictly sequential navigation through the agenda pages. In this mode the
navigation panel is just used for additional information, indicating which page the user is currently on.
The only navigation means are the standard player buttons.

• The incremental mode expands on the basic mode by providing links in the navigation panel to any
pages which have already been visited. A user can use these links to skip back and forward between
previously visited pages, but will still need to use the next button to progress any further.

• The full mode is actually a non-sequential mode as all the navigation panel elements are initially
rendered as links. Sequential advancing is possible here as well, as the player buttons are fully
functional, but there are no restrictions placed on the order in which you navigate through the agenda.
This, however, means that things related to the sequential progress might be unavailable, or not work
properly in this mode (for example, the progress bar is not displayed for this mode at all; dynamic
parameters might not be available if a screen which expects these parameters is visited before the one
where these parameters are initialized, etc.). Because of this the full navigation mode should be used
where specifically required and the agenda should be designed/configured keeping in mind the possible
consequences.

Agenda Player mode configuration is described in “Agenda Player configuration” on page 179

Note: Within the Player screens there might be hyperlinks leading to other pages, which open in the client
area, yet do not belong to the specified Player screen set. In this case all the navigation means on the
Player, including buttons and links rendered for incremental or full mode are disabled until the flow
returns back to an Agenda Player screen. This means in particular that such a 'side' page should provide
means of returning to the AgendaPlayer page flow (by linking to the appropriate page or closing the modal
opened from the Player).

Navigator-less view
By default, an Agenda Player is displayed with all the screen parts present. However, in some situations,
you may like to simplify the view and behavior of the player using the view without the navigation panel
(also called Claimant view after the expected usage - online claimants).

In this view Agenda Player is displayed without the navigation panel. Only the standard player buttons can
be used for navigation, so the mode setting is effectively ignored.

The fourth player button, Finish, is automatically available on the button bar at the bottom of the page
for the Claimant view. The button makes it possible to jump directly to the summary page rather than
having to advance to it through all the pages. It is shown only when there is a summary page present in
the agenda XML returned from the server.

Player configuration to allow for Claimant view is described in the section below.

Agenda Player configuration
Configure the Agenda Player by adding/modifying entries in AgendaConfig.xml. A version of this file
should be in your components directory.

The following is an example of the Agenda Player configuration file contents:

<AGENDA>
 <PLAYER ID="DefaultConfig" TITLE="Default.Title"
 MODE="incremental" CONFIRM-QUIT="false"/>
 ...
 <PLAYER ID="Claimant.Config" TITLE="Claimant.Title"
 NAVIGATOR-HIDDEN="true" MODE="incremental"
 CONFIRM-QUIT="true"/>
</AGENDA>

Chapter 1. Cúram web client reference 179

The attributes that can be used for particular configuration (PLAYER element) are as follows.

Table 67. Attributes of the PLAYER element

Attribute Description

ID The ID of this particular configuration (referred to by CONFIG
attribute of FIELD element in UIM which contains Agenda
Player).

TITLE Title key for Agenda Player title, displayed on its header.
This key is used to look up customized/localized title from
appropriate properties file as described in “Agenda Player
customization” on page 180.

MODE This attribute allows for specifying Agenda Player navigation
mode. It might have values of basic, incremental or full,
incremental being the default one, used if the attribute is
skipped in an configuration.

NAVIGATOR-HIDDEN When this attribute is specified and set to true, Agenda
Player will be displayed in Claimant View (see above).

CONFIRM-QUIT This attribute can be used to display a confirmation dialog
when a user clicks on the Cancel button. When present and
set to true, a confirmation dialog will be displayed to confirm
the user's intention to quit the Agenda Player or to cancel and
return to the player.

Agenda Player customization
The Agenda Player comes with support for customization and localization of certain elements. The
elements which can be customized are the player title, Progress Bar text, the player button texts, the
quit confirm dialog text and descriptions for each of the frames in the player.

Player related properties are kept in the files <client-
dir>/components/<component_name>/CDEJResources.properties and <client-dir>/
components/<component_name>/AgendaPlayer.properties. where <component_name>
represents the name of the component where the customizations are being applied.

Player title is customized by specifying custom value under the key used for it in AgendaConfig.xml
(see above). The value under the key is to be placed into AgendaPlayer.properties.

The Progress Bar text is customized within an Agenda Player header by modifying
the AgendaPlayer.properties file to include values for the keys: Progress.Bar.Prefix,
Progress.Bar.Middle, Progress.Bar.Suffix. Please note that all three keys must be present with blank
values for unused ones in order to ensure clean rendering of the customized Progress Bar text. If this is
not the case then a situation may occur where a non-blank default value is used instead of one undefined.

The text strings associated with Agenda Player control buttons are customizable in
the file CDEJResources.properties and defined by properties wizard.button.back.title,
wizard.button.forward.title, wizard.button.finish.title, and wizard.button.quit.title.

The frame descriptions are useful for users of screen readers but don't appear visually on the
screen. The entries for frame description customizations in CDEJResources.properties are
wizard.frameset.title, wizard.header.frame.title, wizard.navigation.frame.title, wizard.content.frame.title,
wizard.button.frame.title.

Note: The Agenda Player was formerly known as the Wizard widget, so several attribute and property
names still refer to wizard.

In order to change the default question in the quit confirmation dialog, the property Quit.Dialog.Question
should be added/changed in AgendaPlayer.properties.

180 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Agenda Player data
There are some specific UIM pages related with Agenda Player.

• Navigation page: Each Player requires a navigation page that will become the navigation panel of the
Agenda Player. This page has two required characteristics. First, the root PAGE element has a TYPE of
SPLIT_WINDOW. This indicates that the page will form part of a frame-set. Second, the page contains
a field with a single source connection and domain type AGENDA_XML. This field supplies the Agenda
Player with the list of pages, parameters and other information that drives the Agenda Player.

• Summary page: This page is optional and might just be a regular UIM page. However, summary page,
specifically displaying summary of visited and unvisited pages is also available. If this information is
to be displayed in a summary page, a WIDGET element with TYPE attribute set to WIZARD_SUMMARY
should be present among page elements.

• Exit page: This is a regular UIM page to which the user is forwarded after quitting the player.

The following is an example of the UIM used to specify the navigation page. It contains a single field which
supplies the agenda XML data.
<PAGE PAGE_ID="WizardTest" TYPE="SPLIT_WINDOW">

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="page.title"/>
 </CONNECT>
 </PAGE_TITLE>

 <SERVER_INTERFACE NAME="DISPLAY" CLASS="Agenda"
 OPERATION="getAgenda"/>

 <PAGE_PARAMETER NAME="agendaRef"/>

 <CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="agendaRef"/>
 <TARGET NAME="DISPLAY" PROPERTY="key$agendaRef"/>
 </CONNECT>

 <CLUSTER SHOW_LABELS="false">
 <FIELD>
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="agendaXML"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>

</PAGE>

The following is an example of a specific summary page:
<PAGE PAGE_ID="WizardSummary">

 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
 </CONNECT>
 </PAGE_TITLE>

 <CLUSTER SHOW_LABELS="false" TITLE="Cluster.Title">
 <WIDGET TYPE="WIZARD_SUMMARY"/>
 </CLUSTER>

</PAGE>

The agenda data that drives the Player looks like this:
<?xml version="1.0" encoding="UTF-8"?>
 <agenda>
 <page-flow>
 <section description="First section"
 status="SCT1">
 <page id="Person_homePage" description="Home"
 status="SC1" initial="true"
 submitonnext="true"/>
 </section>
 <section description="Second section"
 status="SCT2">
 <page id="Person_listAddress" status="SC2"

Chapter 1. Cúram web client reference 181

 description="Addresses"/>
 <page id="Person_listBankAccount" status="SC1"
 description="Bank Accounts"
 submitonnext="true"/>
 <page id="Person_listCommunication" status="SC3"
 description="Communications"/>
 <page id="Person_listTask" status="SC2"
 description="Tasks"/>
 <page id="Person_listCitizenship" status="SC2"
 description="Citizenships"/>
 <page id="Person_listFinancial" status="SC2"
 description="Financial"/>
 <page id="Person_listNote" status="SC4"
 description="Notes"/>
 </section>
 <summary id="WizardSummary"
 description="Summary Page"
 close-on-submit="true"
 status="SCT3"/>
 </page-flow>
 <parameters>
 <parameter name="concernRoleID" value="101"/>
 <parameter name="dynamicParam" value="0"/>
 </parameters>
 <exit-page id="Person_homePage">
 <parameters>
 <parameter name="concernRoleID" value="101"/>
 </parameters>
 </exit-page>
 </agenda>

There is one page element per screen to be displayed in the Agenda Player. The attributes that can be
used in this element are as follows.

Table 68. Attributes of the page element

Attribute Description

id The page id for the page (as set in the PAGE_ID of the PAGE
element in the page's UIM definition).

description The description of the page that will be displayed in the
Navigation Panel.

status A status code that is mapped to an image.

initial Set to true if this is the page that should be displayed when
the Agenda Player is first opened.

disableback Set to true if the Back button should be disabled on this
page.

disableforward Set to true if the Forward button should be disabled on this
page.

submitonnext Set to true if the Forward button should submit the form on
this page.

close-on-submit This attribute applies to summary element only and allows for
alternative way of quiting the player, as described below.

The important features to note are:

• The sequence of screens in the Agenda Player is exactly as listed in the agenda data.
• One of the pages in the Agenda Player can be marked as the start page by setting the initial attribute

to true. When the Agenda Player is first displayed, this page will be loaded but it will still be possible to
navigate back to previous pages. If the Player is configured to use incremental mode, pages prior to
the initial pages on the navigation panel will be rendered as hyperlinks; for a full navigation mode all
the page items except current one will be hyperlinks.

182 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

• In the XML sent back by the application server, the page elements might be contained within section
elements or there might be no section element at all. The optional summary element, however, is to
be always placed directly within page-flow.

• All pages in the Agenda Player take the same set of parameters or a subset thereof. These parameters
are specified in the agenda data.

• Page parameters can also be dynamic. These parameters initially carry special value of 0 (note
dynamicParam in the Agenda Player sample data above) and are intended to be initialized during
user interaction with Agenda Player (e.g., user ID is only available after a user registers herself).

• The exit-page denotes the page which the user will be taken to when the Cancel button is clicked.
This page will completely replace the Agenda Player and can be any page in the application with any
parameters (matching those specified by exit-page parameter sub-elements in agenda XML from
the server).

• When submitonnext is set for a page, the submit button on that page (there should only be one)
will be hidden when it is displayed within the player. The player's Next button can be used to submit
the form instead and will proceed to the next page if no validation error occurs. If there are validation
errors, the page will return to itself displaying the validation errors on the top, as it would for any other
application page.

To allow for pages where the record itself is optional (i.e. you could move on to the next screen without
creating one), but some of the fields are mandatory, if you do try to create a record, the infrastructure
will not perform mandatory field validations if no value has been entered/chosen for any field on the
page. The appropriate server interface will still be called, so it is up to the application logic to work out
what was intended (e.g. don't create a record, delete an existing record, etc.). This behavior only applies
when using the submitonnext feature.

• The summary page can provide an alternative way to quit the Player. In order to do this, the summary
page should contain a submit button, and the summary element in the agenda XML from the server
should have close-on-submit specified and set to be true. If the user clicks on the submit button
on such a summary page and the submit succeeds, the player closes down and the user is forwarded to
whatever page is specified by the link associated with the submit button.

• Each page can be assigned a status code using the status. These status codes can be anything at all as
long as they are mapped in the ImageMapConfig.xml file under the domain AGENDA_XML. When the
list of pages is displayed in the left column, each will have an icon attached corresponding to its status
code.

The following is an example of mapping status codes to images the ImageMapConfig.xml file.
<domain name="AGENDA_XML">
 <locale name="en">
 <mapping value="SC1" image="Images/Wizard/status1.gif"
 alt="English text..."/>
 ...
 <mapping value="SC4" image="Images/Wizard/status4.gif"
 alt="English text..."/>
 </locale>
 <locale name="fr">
 <mapping value="SC1" image="Images/Wizard/status1.gif"
 alt="French text..."/>
 ...
 </locale>
</domain>

The appearance of the Agenda Player control buttons, the summary screen and the navigation is defined
in CSS. For details, please see “Cascading stylesheets” on page 32.

The UIM CONDITION element allows for the conditional display of action controls, clusters or lists on a
page that is displayed within an Agenda Player (see See “CONDITION element” on page 240 for more
details on the condition element). To hide/display elements based on whether the page is in an Agenda
Player or not, the NAME and PROPERTY attributes can only have the values CONTEXT and inWizard
respectively.

Chapter 1. Cúram web client reference 183

<ACTION_SET ...>
 <CONDITION>
 <IS_TRUE NAME="CONTEXT" PROPERTY="inWizard"/>
 </CONDITION>
 ...
</ACTION_SET>

Figure 61. Condition example:

This indicates that the action set should be displayed only when that Action Set is on a page that is
displaying within a Agenda Player.

LOCALIZED_MESSAGE Domain
The LOCALIZED_MESSAGE domain allows entries in a server message catalog to be displayed on a client
screen. The domain is string-based but expects the string to be formatted in specific way.

The Cúram Server Development Environment (SDEJ) provides support for formatting a message catalog
entry in this way so it can be returned to the client. See the Cúram Server Developers Guide for full details
on working with message catalogs.

Once the message catalog entry has been formatted on the server side it must be assigned to a field
which is based on the LOCALIZED_MESSAGE domain and returned to the client. The message entry is
displayed according to the current locale and values is assigned to the message placeholders.

Custom data conversion and sorting
Use this information to learn about data formatting, parsing, validation, and sorting behavior in the Cúram
web application.

Custom data conversion and sorting allows most aspects of the management of data in the presentation
layer of Cúram applications to be customized. Customizations can control how data is formatted, parsed,
validated and sorted; error reporting can also be customized and controlled. Operations are performed
on data values according to a well-defined data life-cycle and, at each stage, the operations can be
customized. To understand how, when, and where to customize the operations, you must first understand
the operations available and how they fit into the life-cycle.

warning: Unsupported Customizations

This information describes the supported mechanisms for the customization of data conversion and
comparison operations. For completeness, and to aid understanding, some operations are described, but
the corresponding customization mechanisms are not documented, as customization of these operations
is not supported (or not supported using the programmatic mechanisms described here).

The descriptions of the Java interfaces and classes presented here may be incomplete, as unsupported
methods may be omitted from their descriptions for clarity. However, the Javadoc documentation
for these interfaces and classes may include more information and describe more comprehensive
customization mechanisms, but only the mechanisms described here are supported.

Data conversion and sorting operations
A number of operations that are carried out on data values by the client infrastructure. Some are
controlled by the domain definition options that were set in the UML model and are performed
automatically, others are controlled by domain-specific plug-ins that can be overridden and customized.

The following operations are performed on the data values.

format
When data is retrieved from the application server, it is represented by a Java object appropriate
to the root domain of the data. For example, a value in the SVR_INT64 domain is represented as a
java.lang.Long object. The format operation is responsible for converting these objects to their
string representation, as it is the string representation that must be embedded in the XHTML stream
returned to the web browser.

184 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

A format operation is only required to return a non-null string; there are no other limitations. However,
each domain-specific formatter will usually return a string representation of the Java object according
to the usual conventions. For example, a money value may have a currency symbol added during
formatting and be limited to two significant digits after the decimal point. For most data values, the
formatter should generate a string representation that can later be converted back into the original
data value.

pre-parse
When a user enters values in a form on an application page and submits the form to the client
application, the web browser submits all of these values in string format. These string values need
to be parsed to create the appropriate Java object representations, but first a pre-parse operation is
performed to prepare the string for parsing.

The UML model supports several domain definition options that are recognized by the pre-parse
operation (see the Cúram Modeling Reference Guide for more information on domain definition
options). The domain definition options may indicate that leading and trailing whitespace characters
should be trimmed from the string, that all sequences of whitespace characters should be
compressed to single space characters, and that the string should be converted to upper-case. The
pre-parse operation applies these options automatically to the string values and the modified string
values are then ready to be parsed. The pre-parse operation is controlled and customized by setting
these domain definition options in the UML model.

parse
After the pre-parse operation has completed, the parse operation must convert the resulting string
value into its Java object representation before it can be submitted to the application server. In
general, the parse operation is the reverse of the format operation. If the format operation formatted
a money value to a string and added a currency symbol and grouping separator (e.g., thousands
separator) characters, the parse operation must be able to remove these additions and create a Java
object representation of the actual money value.

All that is required of the parse operation is to produce a Java object, it does not validate that value.
However, while not explicitly a validation operation, the parse operation usually needs to perform
some validation to ensure that the value can be parsed correctly. For example, a date may later be
determined to be invalid if it is out of range, but the parse operation must first determine what the
date value is and may fail if the string does not represent a date in any recognized format.

pre-validate
Like the pre-parse operation, the pre-validate operation is performed to apply domain definition
options defined in the UML model. However, unlike the pre-parse operation, different domain
definition options are applied to data values depending on the domain. The data is not modified.
String and BLOB values are tested to ensure that they do not exceed their maximum or minimum
defined sizes (or lengths), while numeric values are tested to ensure that they do not exceed their
maximum or minimum values. Any failures will be reported as errors. See “Converter plug-ins” on
page 193 for a detailed description of the actual validations performed.

validate
The pre-validate operation is convenient and is applied automatically, but there are situations where
it may not be able to validate data sufficiently. The validate operation is a catch-all that allows any
kind of validation to be performed that is not possible using UML domain definition options alone. For
example, ID values may be tested to see if their check-digit is valid. Errors can be reported if any value
does not meet such specific conditions. Data is not modified by this operation.

compare
When a list of data is returned from the server, the sort order of the values in the list is determined
using the compare operation. This sort order is used to support the sorting of lists on application
pages when users click on the column headers. The compare operation is passed two data values
(in their Java object representations, not in their formatted string representations) and must return a
positive or negative number to indicate which comes first in the sort order. Like the format operation,
the compare operation is not restricted in what calculations it performs, but it will typically sort values
alphabetically or numerically.

Chapter 1. Cúram web client reference 185

Each data conversion operation has access to information about the active user's locale and to
information about the domain being processed. It is also possible for one operation to access and execute
any of the operations should that be necessary. For example, a format operation might format values
differently for each locale and a compare operation might invoke the format operation before making a
comparison.

Data conversion lifecycle
The CDEJ infrastructure is responsible for the retrieval of data from the application server, the display
of this data, the processing of user input, and the submission of data back to the application server.
This process has a well-defined life cycle. Operations at each stage in the life cycle are performed in a
domain-specific manner.

Not all data goes through each stage in the life cycle. Some data is displayed but not modified or
resubmitted by the user (read-only); some data is created by the user and submitted without any initial
value being retrieved from the application server (write-only); and some data is retrieved, modified by the
user, and then resubmitted to the application server (read-write).

In the context of the value of a single property, the life cycle for reading the value is as follows:

1. The value is fetched from the application server by invoking a business operation.
2. If the value is one of a list of values for the same property, the related values are sorted using the

compare operation and the resulting sort order is recorded.
3. The value is formatted to a string representation by the format operation and is stored for later display.
4. When the page is displayed, the value is retrieved and inserted into the XHTML stream.

The life cycle for writing a value is as follows:

1. A string representation of the value is entered on a form by the user and the value submitted.
2. The domain definition options for whitespace compression and trimming and for upper-case

translation are applied to the string value by the pre-parse operation. The value remains in string
form.

3. If the business operation has declared the value to be mandatory, the value is checked to ensure that
it is not empty or null. An error will be reported if this check fails.

4. The value is parsed from its string representation by the parse operation and the resulting native Java
object replaces the string value.

5. The domain definition options for the size range, value range, and pattern match are applied by the
pre-validate operation is applicable. The value is not modified by this operation. If a validation fails, an
error will be reported.

6. The value is validated by the validate operation to apply any arbitrary validation rules. Again, the value
is not modified by this operation and validation failures are reported.

7. The parsed and validated value is sent to the application server.

For a value that is treated as read-write, the life cycle is simply the combination of the read-only life cycle
followed by the write-only life cycle.

The domain hierarchy and domain plug-ins
At each step in data life-cycle, knowledge of a value's domain is required to ensure that the correct
processing is performed. Embedding this domain information in the application is one of the tasks
performed by the application code generators. With this information available, the application can invoke
data conversion and comparison operations tailored for each domain.

Not only is information about each domain available at run-time, information about the relationships
between these domains is also available. A model of the domain hierarchy is maintained in memory using
tree structures and all the necessary information about how values in the domains should be processed
"hangs" from these trees.

186 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The domain hierarchy is composed of nodes implementing the curam.util.common.domain.Domain
interface. The main methods declared in this interface are listed below. For more information see the
Cúram JavaDoc documentation for this interface.

• getName()

This method is used to get the name of this domain.
• getParent()

This method is used to get the parent domain of this domain if it exists.
• getRootDomain()

This method is used to get the ultimate root domain of this domain.
• getChildren()

This method is used to get the list of children of this domain.
• getPlugIn()

This method is used to get the named plug-in object associated with this domain.

For the purposes of writing custom data conversion and comparison operations, this interface is rarely
used directly, but it is instructive of the mechanism by which custom code is integrated into an
application.

Each domain has a unique name: the name defined for it in the UML model. As domains can be derived
from other domains, parent-children relationships exist, and these are also represented. Also, the root
domain (the ultimate ancestor of any domain) is readily accessible. A root domain is one that does not
have a parent domain. Several root domains (for dates, strings, integers, etc.) are supported in the Cúram
application, so the domain hierarchy is represented by a "forest" of separate trees, rather than a single
tree. All information about a domain, other than its name and relationships to other domains, is provided
via domain plug-ins.

As described in the list above, the curam.util.common.domain.Domain interface also describes a
method for the retrieval of plug-ins, getPlugIn, that takes the name of the type of plug-in required.
The method returns the plug-in configured for the domain or the equivalent plug-in configured for the
nearest ancestor domain if none has been configured directly; this is the simple inheritance mechanism.
Domain plug-ins are Java classes that implement the data conversion and comparison operations and
other features that are specific to each domain. There are four supported plug-in types, each with a
unique plug-in name:

"converter"
Converter plug-ins are responsible for implementing the format, pre-parse, parse, pre-validate,
and validate operations for each domain. Converter plug-ins can be customized to influence the
appearance of values on an application page, to support the parsing of new data formats, and to
prevent the submission of invalid data.

"comparator"
Comparator plug-ins are responsible for implementing the compare operation for each domain.
Comparator plug-ins can be customized to influence the sorting of data.

"default"
Default plug-ins are responsible for providing default values for each domain when no value is
available. While this type of plug-in can be customized freely, there will rarely be any need to modify
the implementations provided within the Cúram application.

"options"
Options plug-ins are responsible for providing access to the domain definition options that were
defined in the UML model. This type of plug-in is built into the client infrastructure and cannot be
customized.

The mechanism used to configure the domain plug-ins exploits the domain hierarchy to simplify the
configuration dramatically: very few domains need to be configured, as domains that are not configured
will inherit the configuration from their ancestor domains. Each root domain needs to be configured
(so that every domain has an ancestor from which it can inherit its configuration), and a small number

Chapter 1. Cúram web client reference 187

of specialized sub-domains are also configured further (the most notable being CODETABLE_CODE, a
derivative of the root domain SVR_STRING). In all, less than 1% of domains are directly configured, so
the configuration information is very manageable. The Cúram application comes complete with plug-in
implementations and configuration information for all the domains used by the reference application;
modifications are only required to handle specialized custom extensions.

Domain plug-ins
Domain plug-ins are Java classes that conform to well-defined interfaces. A base interface that describes
common features of all domain plug-ins and more specialized interfaces for each type of plug-in. At
run-time, the infrastructure co-ordinates instantiation and invocation of all plug-ins

The process of writing plug-ins is straightforward. You must implement methods that perform the data
conversion and comparison operations and very little else needs to be considered.

All plug-in classes implement the curam.util.common.domain.DomainPlugIn interface. This
defines some common operations and provides access to basic information that the plug-in may require.
The main methods declared in this interface are listed below. For more information see the Cúram
Javadoc documentation.

• getName()

This method is used to get the name of this plug-in (one of the four plug-in names described above).
• getLocale()

This method is used to get the locale associated with this plug-in instance.
• getDomain()

This method is used to get the domain applicable to this plug-in instance.
• getInstance()

This method is used to get an instance of a domain plug-in; it is not invoked in custom code.
Instantiation issues are described in more detail in “Plug-in instance management” on page 215. You
should use the default implementations of these methods provided by the Cúram plug-in classes.

The methods of the DomainPlugIn interface do not really do anything interesting. Derived interfaces
define the specific operations that each type of plug-in performs.

Converter Plug-ins
The DomainConverter interface is the one most likely to be used for customizations. It defines several
simple methods that perform the main data conversion operations.

They are listed as follows. For more information see the Cúram Javadoc documentation for this interface.

• format()

This method is used to format the given object to a string representation.
• parse()

This method is used to parse the given string representation into an object.
• validate()

This method is used to validate an object according to the domain-specific constraints. It may throw an
exception if the object is invalid, but does not modify the object or return any value.

• getDomainClass()

This method returns the class object that indicates the required type of the object that is passed to the
other converter methods or returned by them.

• getGenericLocale()

188 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

This method is used to get the locale to be used when formatting or parsing generic values. This should
be the "en_US" locale and you should not change this value; it does not matter if this locale is not
otherwise used in your application.

• formatGeneric()

This method is used to format the given object to a generic string representation.
• parseGeneric()

This method is used to parse the given generic string representation into an object of the appropriate
type for the associated domain.

As described above, the formatGeneric and parseGeneric methods are similar to the format
and parse methods, but they are used when converting the values of the domain definition options
entered in the UML model by developers or of values embedded in XML-based data. Domain definition
option values, for example: maximum date values, minimum size values, or regular expressions used for
pattern matching; are extracted from the UML model at build-time and are parsed to their Java object
representations at run-time, so that they can be used when validating data entered by a user. A similar
process is used when extracting values from XML data returned from the application server and when
constructing XML data before it is returned to the application server. The default implementations of
the formatGeneric and parseGeneric methods are sufficient for all purposes (see “Generic parse
operations” on page 216 for information on protecting the generic parse operation from side-effects).

It is by implementing these converter methods or overriding existing implementations of them that most
customizations are performed. The simple method signatures disguise the fact that, via the inherited
DomainPlugIn interface, each method has access to the active user's locale and the full domain
information if necessary.

Implementations of the pre-parse and pre-validate operations are provided for all of the root domains in
the Cúram application. As these operations are controlled completely by the setting of domain definition
options in the UML model, there is rarely any need to customize them programmatically. However,
there are circumstances where custom error messages are required, so you may need to "wrap" these
operations to intercept and replace error messages (this is described in detail in “Custom error reporting”
on page 212). These operations are defined on a separate ClientDomainConverter interface. They are
listed as follows. For more information about these methods, see the Cúram JavaDoc documentation for
this interface.

• preParse()

This method prepares a string for parsing by applying the relevant domain options. For example, the
string may have whitespace removed or compressed, or may be converted to upper-case. The locale is
used for the conversion to upper-case, if that is required.

• preValidate()

This method performs the standard validation checks that are controlled by the domain options
specified in the UML model. The checks include the maximum and minimum size, the maximum and
minimum value, and the matching of a pattern. The specific data-type of the object will determine which
of these checks are appropriate. The options and comparator are available from the domain.

Access to the ClientDomainConverter interface is only supported for the purposes of error message
interception. However, as all converter plug-ins created for use by the client infrastructure must
implement this interface, you must sub-class an existing converter plug-in class (or abstract class) when
creating custom converter plug-ins to inherit an appropriate implementation.

Comparator Plug-ins
The DomainComparator interface is used to control sort orders and it extends the DomainPlugIn
interface and the standard java.util.Comparator interface.

For more information about DomainComparator, see the Cúram Javadoc documentation.

The java.util.Comparator interface defines a compare method that takes two java.lang.Object
arguments and returns an integer that is positive if the first argument comes before the second argument

Chapter 1. Cúram web client reference 189

in the sort order, negative if it comes after, and zero if the objects are equal. (See the JavaDoc
documentation for the java.util.Comparator interface for more details.) An equals method is also
defined by that interface, but it is of lesser importance; all Java classes inherit an implementation of the
equals method from java.lang.Object or from another ancestor class and no further implementation
is necessary.

Default Value Plug-ins
The DomainDefault interface is used to define default values for domains where no default value is
available. The main methods in this interface are listed as follows.

For more information about these methods, see the Cúram Javadoc documentation for this interface.

• getAssumedDefault()

This method is used to get the default value that will be assumed when a user clears a field on a form
and submits no value.

• getDisplayedDefault()

This method is used to get the default value that should be displayed when an input field has no initial
value to display.

From the methods listed above, we can see there are two types of default value: the value assumed when
no value is available to send to the application server, and the value displayed when no initial value has
been defined for a form field on an application page. The two default values are often the same, but there
are some cases where they need to be different.

The assumed default value is needed when a form is submitted and the form data contains no value
for a field that was not defined to be mandatory. The web client never submits null data values to the
application server, so it must assume some value for the field and then submit that. The assumed value is
nearly always intuitive: zero for any kind of number, an empty string for any string value, or a zero date or
date-time for such values. The actual assumed default values used in the Cúram application are listed in
“Default value plug-ins” on page 201.

The displayed default value is needed when a form field has not been initialized with any other value (as
is usual on forms used to create new entities). The UIM FIELD element has a USE_DEFAULT attribute that
defaults to true, so, unless that attribute is set to false, the displayed default value may be used. The
displayed default value for numbers and strings is usually the same as that used as the assumed default
value, but for dates and times, the current date and time is used instead of the zero date and time. Like
the assumed default values, the displayed default values are likely to be sufficient for most applications,
so you are unlikely to need to customize them.

There is also a third source for default values: there is a domain definition option for a default value
supported in the UML model. However, if no such option is set, it is the plug-in's displayed default value
that is used as a fallback, so the two can be treated in the same way. If only the displayed default value
needs to be customized, it is easier to do this using the UML domain definition option rather than writing
and configuring a new plug-in class, but the assumed default value can only be modified via a plug-in.

The default code used for values in a code-table domain is controlled via the application's code-table
administration interface. You should not attempt to control it programmatically.

Domain plug-in configuration
Domain plug-ins are configured by using an XML configuration file, which contains a domains root
element. Insert a domain element for each domain. Within the domain element, plug-in elements

190 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

specify the name of the type of plug-in and the Java class that implements the operations of that type of
plug-in.

The domain elements are not nested within other domain elements to reflect the domain hierarchy. The
configuration information is relatively flat. Each entry configures a separate domain and the inheritance of
plug-ins is determined automatically. An example of a configuration file is shown.

<dc:domains>
 <dc:domain name="SVR_INT64">
 <dc:plug-in name="converter" class=
 "curam.util.client.domain.convert.SvrInt64Converter"/>
 <dc:plug-in name="comparator" class=
 "curam.util.client.domain.compare.SvrInt64Comparator"/>
 <dc:plug-in name="default" class=
 "curam.util.client.domain.defaults.SvrInt64Default"/>
 </dc:domain>
 <dc:domain name="INTERNAL_ID">
 <dc:plug-in name="converter" class=
 "curam.util.client.domain.convert.InternalIDConverter"/>
 </dc:domain>
</dc:domains>

The configuration elements are defined in the XML namespace. In the example, the namespace
declaration assigns the prefix "dc" to this namespace so that prefix is used before the element names.
While you must declare this namespace in your configuration file, you can declare it to be a default
namespace and omit the prefix, or even use a different prefix.

The example shows the configuration of two domains, which the actual default configurations for these
domains in the IBM Cúram Social Program Managementapplication. Three plug-ins are configured for
the Cúram root domain SVR_INT64. This set is a complete set of plug-ins, as the "options" plug-in is
built in and is never directly configured. All descendant domains of SVR_INT64 inherit these plug-ins
unless further configured. Such a configuration is provided for the INTERNAL_ID domain. This domain is
a descendant of SVR_INT64, but a different converter plug-in is configured; the comparator and default
plug-ins are inherited from SVR_INT64. This particular configuration is used within the Cúram application
to override the format operation for INTERNAL_ID values so that grouping separators are not used in
the string representations of the integers. An integer formatted by the SvrInt64Converter plug-in as
"1,234,567" is formatted by the InternalIDConverter class as "1234567". This formatting ensures
that values such as case identifiers (the CASE_ID domain is a descendant of the INTERNAL_ID domain)
are not represented as ordinary numerical values, but as more abstract unique key values. However,
sorting and the calculation of default values remains unchanged, as these plug-ins are not overridden and
the inherited plug-ins are used.

A primary configuration file that is called domains-config.xml is in your CDEJ installation's lib/
curam/xml/config folder. This file contains the complete domain configuration information for all of
the Cúram root domains and some descendant domains. You must not change this file as it is overwritten
each time the development environment is upgraded. However, the information in this file is useful when
you need to make customizations. You can override or extend any configuration setting in this file by using
the described mechanism.

Domain plug-in configuration follows the typical pattern for configuring other aspects of application
components. You create configuration files, place them in component folders, and the component order
determines which parts of each file take precedence when the files are merged together. The merge
results in a single custom configuration, which can override or extend the primary configuration without
limitation. The domain elements in the configuration are merged where they have the same domain
name defined in the name attribute. The plug-in elements of the merged domains are then collected
and elements with the same name attribute value as an existing plug-in element take precedence over
that setting. New domain configurations can also be introduced. If the newly configured domain has
descendant domains, they inherit the new configuration. When you configure plug-ins, the name that is
returned by a plug-in's getName method must match the name attribute value that is defined on the
plug-in element in the configuration file. This naming helps to avoid mistakes in the configuration file.

The configuration files that you place in your component folders must be named DomainsConfig.xml
(a slightly different name to the primary configuration file to prevent confusion of the two). You can
create one or more of these files (one in each component), but a single file is probably sufficient for

Chapter 1. Cúram web client reference 191

most purposes. The format is just that shown in the previous example. Further configuration examples are
included in “Customization guidelines for data conversion and sorting” on page 206.

Provided domain plug-ins
Domain plug-ins for all of the root domain definitions and a few others are provided in the Cúram
application.

Extending existing plug-ins
Rather than write your own plug-in implementation from scratch, it is easier to extend one of the existing
plug-ins.

The supplied plug-ins are suitable for the majority of uses, but all can be overridden in whole or in part as
necessary, or used as the basis for new plug-ins that customize the processing of values in new domains.
The details of these supplied plug-ins and the behavior of their operations are described in the sections
below.

Abstract plug-in classes are also provided to be used as the basis of new plug-ins. These abstract classes
are used by the Cúram plug-ins themselves and provide some useful functionality that is rarely necessary
to override. The abstract classes that you might use are:

• curam.util.client.domain.convert.AbstractConverter
• curam.util.client.domain.compare.AbstractComparator
• curam.util.client.domain.defaults.AbstractDefault

Their behavior is as follows:

Table 69. Behavior of the Abstract Plug-in Classes

Abstract Plug-in Class Behavior

AbstractConverter Returns the correct name for this type of plug-in: "converter".

Formats an object that is an instance of java.lang.Number
using the standard Java locale-specific number format. Other
object types are formatted by calling their toString method.

Pre-parses an object by trimming leading and trailing
whitespace, compressing sequences of spaces, and
converting to upper-case if specified by the UML domain
definition options for the domain.

Does not implement any parse operation.

Pre-validates an object by checking its maximum and
minimum values if these are specified by the UML domain
definition options for the domain.

Validates an object by throwing a
java.lang.NullPointerException if an object is null,
but otherwise performs no validation.

Performs generic parsing by invoking the ordinary parse
operation that must be implemented in the sub-class. See
“Generic parse operations” on page 216 for information on
protecting the generic parse operation from side-effects.

Performs generic formatting by invoking the object's
toString method.

Returns the correct value for the generic locale.

192 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 69. Behavior of the Abstract Plug-in Classes (continued)

Abstract Plug-in Class Behavior

AbstractComparator Returns the correct name for this type of plug-in:
"comparator".

AbstractDefault Returns the correct name for this type of plug-in: "default".

Defines constants with suitable assumed default values for
each of the root domains.

Returns the displayed default value by looking up the default
value defined in the UML domain definition options, or, if not
found there, returns the assumed default value.

Does not implement getAssumedDefault.

These abstract classes are used by the Cúram plug-in classes and all extend the
curam.util.common.domain.AbstractDomainPlugIn class. This class implements the locale and
domain properties of the DomainPlugIn interface and also provides the plug-in instance management
implementation that should be used by all plug-ins (see “Plug-in instance management” on page 215 for
details).

While it is possible to write plug-ins from scratch, it is better to follow the guidelines and extend either the
existing plug-in classes or their abstract base classes. Other approaches cannot be supported due to the
complexity of some features, such as instance management and generic parsing, that are best avoided
and the default implementations used. Reusing these classes will also ensure that your code will be
protected from changes to the plug-in interfaces, as default implementations of new interface methods
will be inherited during upgrades and no custom code changes should be necessary.

Converter plug-ins
Converter plug-ins implement the format, parse, validate, and related operations.

The following converter plug-ins are provided. While most are pre-configured against certain domains,
others must be configured. All of the plug-ins are in the curam.util.client.domain.convert Java
package.

Table 70. Provided Converter Plug-ins

Domain Converter Plug-in Class

SVR_BLOB SvrBlobConverter

SVR_BOOLEAN SvrBooleanConverter

SVR_CHAR SvrCharConverter

SVR_DATE SvrDateConverter

SVR_DATETIME DateTimeConverter

CURAM_TIME CuramTimeConverter

SVR_DOUBLE SvrDoubleConverter

SVR_FLOAT SvrFloatConverter

SVR_INT8 SvrInt8Converter

Chapter 1. Cúram web client reference 193

Table 70. Provided Converter Plug-ins (continued)

Domain Converter Plug-in Class

SVR_INT16 SvrInt16Converter

SVR_INT32 SvrInt32Converter

SVR_INT64 SvrInt64Converter

INTERNAL_ID InternalIDConverter

SVR_MONEY SvrMoneyConverter

SVR_STRING SvrStringConverter

SVR_UNBOUNDED_STRING SvrStringConverter

LOCALIZED_MESSAGE LocalizedMessageConverter

CODETABLE_CODE CodeTableCodeConverter

N/A SvrInt8BareConverter

N/A SvrInt16BareConverter

N/A SvrInt32BareConverter

N/A SvrInt64BareConverter

The format operations of these plug-ins determine the string representations of data values that appear
on application pages. The format operations behave as follows:

Table 71. Behavior of the Format Operations

Plug-in Class Formatting Behavior

SvrBlobConverter Formatted as base-64 encoded strings. The
base-64 encoding scheme is defined in RFC 2045.

SvrBooleanConverter Formatted as the string values true or false.
These values are not locale-aware. Cúram
application pages rarely display formatted Boolean
values directly, instead, check-boxes are used or
values are translated to locale-specific strings.

SvrCharConverter Formatted as Unicode characters, not as numbers.

SvrDateConverter Formatted using the application date format. If
the format includes month or day names, these
are localized using the active user's locale. If the
date is the system "zero" date, an empty string is
returned.

194 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

http://ietf.org/rfc/rfc2045.txt

Table 71. Behavior of the Format Operations (continued)

Plug-in Class Formatting Behavior

DateTimeConverter Formatted using the application date and time
formats and the user's preferred time zone. If
the format includes month or day names, these
are localized using the active user's locale. If the
date-time is the system "zero" date-time, an empty
string is returned.

CuramTimeConverter Formatted using the application time format. If the
date-time is the system "zero" date-time, an empty
string is returned.

SvrDoubleConverter Formatted as numbers with grouping separator
(e.g., thousands separator) and decimal point
characters appropriate for the active user's locale.

SvrFloatConverter Formatted in the same manner as the
SvrDoubleConverter.

SvrInt8Converter Formatted as numbers with grouping separator
(e.g., thousands separator) characters appropriate
for the active user's locale, but without any
decimal point.

SvrInt16Converter Formatted in the same manner as the
SvrInt8Converter.

SvrInt32Converter Formatted in the same manner as the
SvrInt8Converter.

SvrInt64Converter Formatted in the same manner as the
SvrInt8Converter.

InternalIDConverter Formatted as numbers in a non-locale-specific
manner without grouping separator characters.

SvrInt8BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt16BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt32BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt64BareConverter Formatted in the same manner as
InternalIDConverter.

SvrMoneyConverter Formatted in the same manner as the
SvrDoubleConverter, but with exactly two
significant digits after the decimal point.

SvrStringConverter Formatted literally, i.e., strings are not changed by
the format operation.

Chapter 1. Cúram web client reference 195

Table 71. Behavior of the Format Operations (continued)

Plug-in Class Formatting Behavior

LocalizedMessageConverter Formatted by decoding the message information,
localizing the string indicated by the message
catalog details, and replacing any encoded string
arguments. The active user's locale is used
throughout.

CodeTableCodeConverter Formatted as the code description corresponding
to the code value using the active user's locale and
the domain's associated code-table.

Pre-parse operations are used to perform string-related operations, indicated by domain definition
options set in the UML model, before the strings are parsed to their Java object representations.
The operations performed are the same for all root domains and are as follows: trimming of leading
whitespace, trimming of trailing whitespace, compression of sequences of whitespace characters to a
single space character, and conversion to upper-case. The pre-parse operations should be customized via
the domain definition options in the UML model. Customization of these options via domain plug-ins is not
necessary and not supported.

Parse operations are used to interpret string values submitted from a form on an application page or via
parameters to a URL and convert then to their Java object representations. The string values received
from the web browser are interpreted as being in the UTF-8 encoding. This encoding is used when
creating the Unicode Java strings that are passed to the parse operations. The parse operations behave as
follows:

Table 72. Behavior of the Parse Operations

Plug-in Class Parsing Behavior

SvrBlobConverter Parsed as a base-64 encoded string.

SvrBooleanConverter Recognizes any of true, yes, or on as Boolean
true values, and any of false, no, or off
as Boolean false values. The parsing is not
case-sensitive or locale-aware. Other values are
reported as errors.

SvrCharConverter Parsed as a single Unicode character. The presence
of extra characters is reported as an error.

SvrDateConverter Parsed using the application date format and the
active user's locale.

DateTimeConverter Parsed using the application date and time formats
and the active user's locale. The user's preferred
time zone is assumed.

CuramTimeConverter Parsed using the application time format. The
server's time zone is assumed.

SvrDoubleConverter Parsed as a number with optional grouping
separator characters and decimal point characters
appropriate for the active user's locale.

196 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 72. Behavior of the Parse Operations (continued)

Plug-in Class Parsing Behavior

SvrFloatConverter Parsed in the same manner as SVR_DOUBLE
values.

SvrInt8Converter Parsed as a number with optional grouping
separator characters appropriate for the active
user's locale. The presence of a decimal point is
treated as an error.

SvrInt16Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt32Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt64Converter Parsed in the same manner as the
SvrInt8Converter.

InternalIDConverter Parsed in a non-locale-specific manner. Grouping
separators are not permitted and for negative
values the minus sign must be on the left.

SvrInt8BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt16BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt32BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt64BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrMoneyConverter Parsed in the same manner as SVR_DOUBLE
values, but the magnitude of the values are limited
to 1e13 to avoid the possibility of rounding errors.

SvrStringConverter Parsed literally, i.e., strings are not changed by the
parse operation.

LocalizedMessageConverter Parsed literally in the same manner as the
SvrStringConverter. Localized messages are
not supported as input values, so this parser is
never invoked.

CodeTableCodeConverter Parsed literally as a code value in the domain's
associated code-table. An error is reported if the
code is not defined in that code-table.

Pre-validate operations are used to perform validation checks, indicated by domain definition options
set in the UML model, after values have been parsed to their Java object representations. The checks
performed are not the same for all domains. The possible validation checks are: maximum size (length),

Chapter 1. Cúram web client reference 197

minimum size (length), maximum value, minimum value, and pattern match. The maximum and minimum
values are checked using the compare operation. The pre-validate checks applied as follows:

Table 73. Behavior of the Pre-Validate Operations

Plug-in Class Max./Min. Size Max./Min
Value

Pattern Match

SvrBlobConverter Yes No No

SvrBooleanConverter No Yes No

SvrCharConverter No Yes No

SvrDateConverter No Yes No

DateTimeConverter No Yes No

CuramTimeConverter No Yes No

SvrDoubleConverter No Yes No

SvrFloatConverter No Yes No

SvrInt8Converter No Yes No

SvrInt16Converter No Yes No

SvrInt32Converter No Yes No

SvrInt64Converter No Yes No

InternalIDConverter No Yes No

SvrInt8BareConverter No Yes No

SvrInt16BareConverter No Yes No

SvrInt32BareConverter No Yes No

SvrInt64BareConverter No Yes No

SvrMoneyConverter No Yes No

LocalizedMessageConverter Yes No Yes

SvrStringConverter Yes No Yes

CodeTableCodeConverter Yes No No

The pre-validate operations should be customized via the domain definition options in the UML model.
Customization of these options via domain plug-ins is not necessary and not supported.

The default implementations of the validate operations do not perform any extra validations.

198 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Comparator plug-ins
Comparator plug-ins implement the compare operations that determine the sort order of lists of values.

Comparator plug-ins are provided for the following domains. All of the plug-ins are in the
curam.util.client.domain.compare package.

Table 74. Provided Comparator Plug-ins

Domain Plug-in Class Behavior

SVR_BLOB SvrBlobComparator Not sorted, as there is no useful
sort order for these non-human-
readable values.

SVR_BOOLEAN SvrBooleanComparator Sorted with Boolean true values
before false values.

SVR_CHAR SvrCharComparator Sorted strictly numerically with
no locale-aware processing.

SVR_DATE SvrDateComparator Sorted chronologically with the
earliest date first.

SVR_DATETIME SvrDateTimeComparator Sorted chronologically with the
earliest date-time first.

CURAM_TIME CuramTimeComparator Sorted chronologically with the
earliest time first. CURAM_TIME
is based on the SVR_DATETIME
domain, so values may included
date information, but for
comparisons, the date part is
ignored and only the time part is
used to determine the sort order.

SVR_DOUBLE SvrDoubleComparator Sorted numerically; smallest
value first.

SVR_FLOAT SvrFloatComparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT8 SvrInt8Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT16 SvrInt16Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT32 SvrInt32Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_INT64 SvrInt64Comparator Sorted in the same manner as
SVR_DOUBLE values.

SVR_MONEY SvrMoneyComparator Sorted in the same manner as
SVR_DOUBLE values.

Chapter 1. Cúram web client reference 199

Table 74. Provided Comparator Plug-ins (continued)

Domain Plug-in Class Behavior

SVR_STRING SvrStringComparator Sorted lexicographically based on
the numeric Unicode value of
each character in the string. The
comparison is not locale-aware.

SVR_STRING SvrStringCaseInsensitiveC
omparator

Sorted identically to
SvrStringComparator except
the case is ignored.

SVR_STRING SvrStringLocaleAwareCompa
rator

Sorted according to the sorting
rules defined by Unicode
Collation Algorithm for the locale.
See “Localized (cultural-aware)
string sorting” on page 201 for
details.

SVR_UNBOUNDED_STRING SvrStringComparator Sorted in the same manner as
SVR_STRING values.

CODETABLE_CODE CodeTableCodeComparator Sorted according to the defined
code-table sort order for the
code values. If the defined
sort orders are equal, the
code descriptions are sorted
lexicographically based on the
numeric Unicode value of each
character in the string. The
comparison is not locale-aware.

CODETABLE_CODE CodeTableCodeCaseInsensit
iveComparator

Sorted identically to
CodeTableCodeComparator
except case is ignored.

CODETABLE_CODE CodeTableCodeLocaleAwareC
omparator

Similar to the above, but the
comparison of code descriptions
uses the sorting rules defined
by Unicode Collation Algorithm
for the locale. See “Localized
(cultural-aware) string sorting”
on page 201 for details.

The SvrStringComparator and CodeTableCodeComparator classes are configured by
default to sort values in the SVR_STRING and CODETABLE_CODE domains respectively. If
locale-aware sorting is required, the default plug-in configuration can be overridden to
use the SvrStringLocaleAwareComparator and CodeTableCodeLocaleAwareComparator
classes instead. If case-insensitive sorting is required, override using
SvrStringCaseInsensitiveComparator and CodeTableCodeCaseInsensitiveComparator.
See “Domain plug-in configuration” on page 190 above for details on overriding the default plug-in
configuration. Using these locale-aware comparators, lists will be sorted according to the expected
sorting rules of the active locale. However, applying these sorting rules takes more time, so there will be
some performance degradation. The implementation of locale-aware sorting uses Java's built-in sorting
rules, so the availability of correct sorting rules for each locale depends on the Java JRE being used.

200 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Localized (cultural-aware) string sorting
When sorting the textual strings, Unicode Collation Algorithm implementation is used to ensure the sort
order expected by the users in different cultural environments.

The sorting order depends on both the current user locale and the so called collation strength. This
strength is configurable to ensure the exact requirements for different languages and applications.

In order to change the default strength the application property 'curam.collator.strength' should
be set to one of the valid values summarized in the table Table 75 on page 201 below.

'curam.collator.strength' is a static property and requires a server restart upon changing.

Table 75. Collation strength summary

'curam.collator.strengt
h'

Strength Name Description

1 PRIMARY Alphabetical sorting which accounts for
the base letter differences.

2 SECONDARY Diacritic sort order which takes into
account character accents.

3 TERTIARY Character case based refinement of the
sort order.

This is the default value of the
'curam.collator.strength' and
also the fall-back value where the set
value cannot be interpreted.

4 QUATERNARY Used to ignore punctuation when setting
the sort order, and to account for
minor differences. This level should also
be used when sorting Japanese text
according to JIS X 4061 standard.

5 IDENTICAL The tie-breaking level, the character
code point values are compared at this
stage.

Note: If any value beyond the acceptable range is entered for the 'curam.collator.strength', a runtime
fall-back to the default strength will occur. The notification of this will be recorded in the application
server logs.

Note: As the collation strength is increased this can have an impact on performance.

Default value plug-ins
Default value plug-ins supply the default values used when no values are available.

Default value plug-ins are provided for the following domains in the
curam.util.client.domain.defaults package.

Table 76. Default value plug-ins

Domain Plug-in Class Assumed Value Displayed Value

SVR_BLOB SvrBlobDefault Empty BLOB Empty BLOB

SVR_BOOLEAN SvrBooleanDefault False False

Chapter 1. Cúram web client reference 201

Table 76. Default value plug-ins (continued)

Domain Plug-in Class Assumed Value Displayed Value

SVR_CHAR SvrCharDefault Character zero Character zero

SVR_DATE SvrDateDefault Zero date Current date

SVR_DATETIME SvrDateTimeDefault Zero date-time Current date-
midnight

SVR_DATETIME SvrDateTimeDefaultCurrTime Zero date-time Current date -
Current time

SVR_DOUBLE SvrDoubleDefault Zero Zero

SVR_FLOAT SvrFloatDefault Zero Zero

SVR_INT8 SvrInt8Default Zero Zero

SVR_INT16 SvrInt16Default Zero Zero

SVR_INT32 SvrInt32Default Zero Zero

SVR_INT64 SvrInt64Default Zero Zero

SVR_MONEY SvrMoneyDefault Zero Zero

SVR_STRING SvrStringDefault Empty string Empty string

SVR_UNBOUNDED_STRIN
G

SvrStringDefault Empty string Empty string

CODETABLE_CODE CodeTableCodeDefault Empty code
string

Empty code
string

The zero date and time is represented as midnight on January 1,0001 in the application, which is
interpreted as if no date and time is set.

The default value for a code-table code is an empty code string. A different mechanism is used to define
default code-table codes during code-table administration.

The SvrDateTimeDefault plug-in is time-zone aware and the displayed value that it returns is offset by the
difference between the user and server time zones. The configured converter plug-in is expected to also
consider time zone settings and offset the value. The result is that the time part of the date-time value is
set to midnight regardless of the time zone settings.

Error Reporting

Infrastructure errors
Some built-in infrastructure errors exist for which the developer can perhaps do no more than retry the
page or restart the web application. If these problems persist, technical support should be notified.

These errors should be reported by keeping a copy of the error page source. The information in the source
of the page may be useful in identifying and resolving the error.

202 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Exception classes
Many customizations require you to add exception handling and error reporting code. All the necessary
infrastructure is provided to make this as simple as possible. A simple formulaic approach can be
followed that will provide all of the necessary functionality. Before looking at how you can write
customizations, you must first learn the necessary error reporting techniques.

All of the plug-in methods that throw exceptions, throw one of two exception types:

• curam.util.common.domain.DomainException
• curam.util.client.domain.convert.ConversionException

ConversionException is derived from DomainException, so instances of these exceptions can both
be treated as DomainException objects when convenient. The ConversionException class is used
for exceptions that are thrown by the methods of converter plug-ins. Unlike a DomainException, a
ConversionException can be associated with a particular property of a server interface so that
error messages reported to a user can indicate the label of the field in error and an error icon can be
placed beside that field. The only exceptions that custom code normally needs to throw are instances of
ConversionException, so this is the only exception class than needs to be understood to implement
your own exception handling and reporting.

Conversion exceptions (and most other exceptions in the client infrastructure) carry information about
the error message that needs to be reported, but not the error message itself. When an exception is
thrown, the identifier of the localized error message string, the values that will be substituted for the
placeholders in that string, and any causal exception object are included in the exception details. Each
exception class can be associated with an error message catalog (a set of localized Java properties files)
that is used when the localized message string is resolved from the message identifier. The localization
and substitution steps are not performed until the message is reported to the user, so the exception can
be propagated and augmented with more information for some time before the message string becomes
fixed. This allows, in the case of conversion exceptions, the field label to be added automatically by the
infrastructure after your custom code has thrown the exception and makes it very easy to integrate your
error reporting requirements into the system.

Custom exception classes
The purpose of a custom exception class is to integrate the look-up of localized message strings in a
custom message catalog into the mechanism that is used for error reporting in the client infrastructure.
If you need only one error message catalog, you need only one custom exception class, but there is no
restriction on the number of exception classes or message catalogs you can create.

Implementing custom exception handling using a custom exception class is formulaic. As the custom
exception class must integrate into the existing message reporting system, only numeric message
identifiers are supported for custom exceptions and there is very little room for deviation from the
prescribed approach. You cannot, for example, use literal message strings in your code, you must use
references to externalized strings.

Here is an example of a custom exception class:

Chapter 1. Cúram web client reference 203

public class CustomConversionException
 extends ConversionException {

 private static final MessageLocalizer MESSAGE_LOCALIZER
 = new CatalogMessageLocalizer("custom.ErrorMessages");

 public CustomConversionException(int messageID) {
 super(messageID);
 }

 public CustomConversionException(int messageID,
 String[] messageArgs) {
 super(messageID, messageArgs);
 }

 public CustomConversionException(int messageID,
 String messageArg) {
 super(messageID, messageArg);
 }

 public MessageLocalizer getMessageLocalizer() {
 return MESSAGE_LOCALIZER;
 }
}

Figure 62. Custom Exception Class

This class extends ConversionException and implements a number of constructors simply by
invoking the equivalent constructors in the super-class. You only need to implement the constructors
that you intend to use, the rest of the constructors in the super-class can be ignored (Java classes
do not inherit constructors, hence the need to re-implement them). The available constructors are
described in the JavaDoc. Next, it defines a static MessageLocalizer field and instantiates it with
a CatalogMessageLocalizer object that takes your custom catalog name as its argument. The
getMessageLocalizer method then returns this static object. That is all there is to it.

When you throw exceptions of this type, you need to pass your message identifier and optional arguments
to the relevant constructor. You can define constants for your numeric message identifiers in this class if
you wish. Your message strings can contain placeholders such as "%1s", "%2s", etc., to be replaced by
the argument strings (only string types are supported). For an array of arguments, "%1s" will be replaced
by the first argument in the array (index zero), and so on. The special argument "%0s" can be used to
represent the name of the field in error, but you will not need to provide any matching argument string
for that value; it will be substituted automatically. You can also use the same placeholder several times
in a single message if you want the same value to be inserted in more than one place. Here is a sample
message catalog file containing a single message:
-200000=ERROR: The field '%0s' contains an invalid value '%1s'.

Figure 63. Custom Message Catalog

The file is a standard Java properties file where each line contains a numeric identifier and a message
string separated by an equals character. A collection of properties files with the same base name but with
locale codes appended is treated as a single message catalog. The custom exception class in the example
above refers to the message catalog as "custom.ErrorMessages", so the properties files should be located
on the Java classpath in the custom package folder and in files named ErrorMessages.properties,
ErrorMessages_en_US.properties, ErrorMessages_fr_CA.properties, etc., as you would do
for any other custom properties files. There should be one properties file for each locale that your
application supports. The selection of the correct locale-specific properties file at run-time is completely
automatic once you have written your custom exception class as shown above.

Ensuring that these files end up on the classpath is simply a matter of placing them in their appropriate
package folders below your web application's <client-dir>/<custom>/javasource folder, where
custom is the name of a custom component. (see “CDEJ project folder structure” on page 13 for details).
The Java source files for your custom exceptions should also be placed below the <client-dir>/
<custom>/javasource folder in the appropriate folders for the package names you have used.

When throwing a custom exception, the code will look like this (assuming you have decided not to use
constants for your error message identifiers):

204 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

throw new CustomConversionException(-200000, myInvalidValue);

Figure 64. Throwing a Custom Exception

Remember, it is not necessary to pass any argument corresponding to the "%0s" placeholder; it will be
calculated and substituted automatically.

Numeric Message Identifiers: When creating message catalog files, try to ensure that the error numbers
do not conflict with the numbers of existing Cúram error messages, as this may cause confusion when
errors are being investigated. Values below -200000 should be safe to use, though conflicting numbers
will not actually cause any application problems, as the message catalogs are separate from those used
by the infrastructure.

If you examine the constructors of the ConversionException class, you will note that many accept a
java.lang.Throwable object as the last argument. You can implement similar constructors and pass
Throwable objects (usually other exception objects) to your custom exceptions when you want your
custom exception to include the exception that caused it. This is often very useful as error messages for
both exceptions will be reported automatically and both stack traces will be included on an application
error page if the error page is required. In fact, there is no imposed limit to the length of the chain of
exceptions that can be built this way; the exception that you add to your own may already contain a
reference to another exception, and so on.

This example show how you can even report two separate error messages at once. Perhaps one is a
generic message that states that a field does not contain a valid value and another suggests the expected
format for that value. You will have to implement the appropriate constructor to support this, but the
reporting mechanism is automatic.
throw new CustomConversionException(
 -200000, myInvalidValue,
 new CustomConversionException(-200003));

Figure 65. Throwing Multiple Exceptions

Java object representations
The data conversion and comparison operations manipulate strings and other Java objects. Each value
in a root domain is represented by an object of a corresponding Java class. The Java class used by a
root domain is the same for all descendant domains of that root domain and cannot be changed. When
customizing the operations, you must understand the type of data that is being processed.

The following table shows the Java class used for data objects for each of the root domains.

Table 77. Classes Used for Java Object Representations

Domain Java Class

SVR_BLOB curam.util.type.Blob

SVR_BOOLEAN java.lang.Boolean

SVR_CHAR java.lang.Character

SVR_DATE curam.util.type.Date

SVR_DATETIME curam.util.type.DateTime

SVR_DOUBLE java.lang.Double

SVR_FLOAT java.lang.Float

SVR_INT8 java.lang.Byte

Chapter 1. Cúram web client reference 205

Table 77. Classes Used for Java Object Representations (continued)

Domain Java Class

SVR_INT16 java.lang.Short

SVR_INT32 java.lang.Integer

SVR_INT64 java.lang.Long

SVR_MONEY curam.util.type.Money

SVR_STRING java.lang.String

SVR_UNBOUNDED_STRING java.lang.String

CODETABLE_CODE curam.util.common.util.CodeItem

Though derived from SVR_STRING, the Java class used for CODETABLE_CODE is different to that of its
parent. This is the only exception to the rule that the Java class used is the same for all descendant
domains of a root domain.

Customization guidelines for data conversion and sorting
Most customizations aim to control one or more of the data conversion or sorting operations. These
guidelines show you how each of these operations can be customized. Follow these guidelines to ensure
that your customizations are as simple and effective as possible.

When you have written your custom plug-ins, you need to configure them and ensure that the Java
classes are available at run-time. For more information about configuring plug-ins, see “Domain plug-in
configuration” on page 190. The Java source files for your custom plug-in classes are added to the
web application in the same way as the Java source code files for your custom exception classes, see
“Custom exception classes” on page 203. They are placed in their appropriate package folders in your
<client-dir>/<custom>/javasource folder, where <custom> is the name of a custom component.

Custom formatting
Custom formatting may be required when a value displayed on an application page is not in the required
format. A custom formatter might be used to pad values with extra characters, so that they appear to be
the same length; insert a currency symbol into money values; format numeric values without grouping
separator characters; or even take a date value based on the Gregorian calendar and format it after
converting it to another calendar system.

1. Identify an existing converter plug-in class that you want to customize. It will most likely be the
converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the format method.
3. In the implementation of the method, you can perform some processing before or after invoking the

super-class's method of the same name, or implement the formatting code from scratch.
4. Configure your new plug-in for the relevant domains.

The calendar scenario is somewhat unrealistic because the date selector widget would not be compatible,
but inserting a currency symbol, or an analogous operation, is something that you may want to do.
If multiple currencies are supported, then domains such as US_DOLLAR_AMOUNT or EURO_AMOUNT
might be used to represent values in each currency (though the out-of-the-box Cúram application uses a
different scheme for representing money values in different currencies). Custom converter plug-ins may
then be written to format money values for each of these domains by adding the appropriate currency
symbol.

206 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

This example shows how a converter plug-in can be written that takes a money value and prefixes the
formatted numeric value with a dollar symbol. The Cúram application includes a converter plug-in that
formats money values, but without any currency symbol, so you can reuse its format operation to simplify
the implementation.

/**
 * Converter that supports the use of a dollar symbol for
 * money values.
 */
public class USDollarConverter
 extends SvrMoneyConverter {
 public String format(Object data)
 throws ConversionException {
 return "$" + super.format(data);
 }
}

The implementation is very trivial: the super-class does all the work and returns a nicely formatted money
value; the customization just adds the dollar symbol.

The configuration file for this customization is shown below. The file might also include entries for
other customizations that have been made. As the comparator and default value plug-ins have not been
customized, they do not appear in the configuration. These plug-ins will be inherited from the ancestors of
the US_DOLLAR_AMOUNT domain (probably the SVR_MONEY domain).
<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
 <dc:plug-in name="converter"
 class="custom.USDollarConverter"/>
 </dc:domain>
</dc:domains>

Figure 66. Configuration for Custom Formatting

Values displayed on an application page (or even those passed behind the scenes in hidden page
connections) may be submitted back to the web application. If you write a formatter that inserts a
currency symbol, or you allow users to insert currency symbols in values that they type in, then you will
need to accommodate such values in the parse operation. The next section will demonstrate the custom
parse operation required to match this custom format operation.

Another common need for custom formatting is to format integer values without grouping separator
characters. For example, an integer value that represents the year "2005" should probably be formatted
as "2005" and not "2,005". If the year value is represented by the YEAR_VALUE domain and that domain
is derived from the SVR_INT16 domain, the custom format operation would look like this:

/**
 * Converter that formats year values without adding grouping
 * separator characters.
 */
public class YearValueConverter
 extends SvrInt16Converter {
 public String format(Object data)
 throws ConversionException {
 return data.toString();
 }
}

This converter overrides the format method of the SvrInt16Converter class and simply converts the
data object (a java.lang.Short) to a string. Unlike the routines used by the super-class, the toString
method will not do any locale-aware formatting or add any grouping separator characters. The parse
method is not overridden, so values that are entered with or without grouping separator characters
will be accepted. This converter is configured in the same way that the currency symbol converter was
configured.

Chapter 1. Cúram web client reference 207

Custom parsing
Custom parsing is implemented when users must enter values in a form that existing parse operations do
not recognize or when some other processing must be performed on values before they are submitted to
the application server.

Custom parsing may be as simple as a routine that first removes a currency symbol from a numeric value
before parsing it, where the currency symbol may have been entered by a user or added by a custom
format operation. It could also be something more unusual: a translation of a date to another calendar
system, a routine that pads string values, or an arbitrary calculation on numeric values.

1. Identify an existing converter plug-in class that you want to customize. It will most likely be the
converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the parse method.
3. In the implementation of the method, you can perform some processing before or after invoking the

super-class's method of the same name, or implement the parsing code from scratch.
4. Configure your new plug-in for the relevant domains.

The currency symbol scenario is continued in this example to complement the example shown for a
custom format operation above. The example below shows the same class developed to format money
values with a currency symbol; the class is now extended with a corresponding parse operation. In a case
like this, you do not write separate converter plug-ins for formatting and parsing; you must implement
both operations in the same converter plug-in and then associate the plug-in with the appropriate
domain.

/**
 * Converter that supports the use of a dollar symbol for
 * money values.
 */
public class USDollarConverter
 extends SvrMoneyConverter {
 public String format(Object data)
 throws ConversionException {
 return "$" + super.format(data);
 }

 public Object parse(String data)
 throws ConversionException {
 if (data.startsWith("$")) {
 return super.parse(data.substring(1));
 }
 return super.parse(data);
 }
}

The value passed to the parse method is the same value that was entered by the user; it is possible that
it contains no currency symbol or it might contain space characters between the currency symbol and the
value. You can use the UML domain definition options to ensure that the pre-parse operation will have
removed any whitespace before the currency symbol, or simply report an error if the currency symbol or a
digit is not the first character. The parse method above assumes that the currency symbol is the optional
first character and then leaves all other decisions up to the parse method of the super-class. This is
probably the best approach, as it limits the number of formatting rules that a user needs to be aware of
and keeps the code as simple as possible.

The configuration for this plug-in is unchanged from that shown for the custom format operation.

Custom validation
Custom validation can be performed in two ways: by setting the domain definition options in the UML
model, or by implementing a validate operation in a custom converter plug-in. You can also combine both
ways to meet your validation requirements.

The domain definition options in the UML model are limited to a small number of validations that are
described in the Cúram Modeling Reference Guide and summarized in “Converter plug-ins” on page

208 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

193 above. If the domain definition options meet your needs, you should use them in preference to
any programmatic alternative. If the options meet only some of your needs, you should use them and
also create a custom converter plug-in to complete the validations. If the options are not useful, you
should create a custom converter plug-in and implement all the validations there. Some uses for custom
validation routines might include the validation of check digits or the imposition of any other arbitrary
restrictions on the permitted values.

1. Identify an existing converter plug-in class that you want to customize. It will most likely be the
converter that is already configured for the domain in question or inherited by it from an ancestor
domain.

2. Create a new sub-class of the relevant converter plug-in and override the validate method.
3. In the implementation of the method, invoke the super-class's method of the same name to perform

any existing validations (if that is appropriate).
4. Complete the implementation by performing your validations and throwing an exception if any

validation fails.
5. Configure your new plug-in for the relevant domains.

In this example , a new converter plug-in is created that extends the InternalIDConverter plug-in
with a validation that only permits even numbers. The InternalIDConverter is derived from the
SvrInt64Converter class that is configured for use by the SVR_INT64 domain. Values in this domain
are represented by java.lang.Long objects.

/**
 * Reports ID numbers as invalid if they are odd.
 */
public class EvenIDConverter
 extends InternalIDConverter {
 public void validate(Object data)
 throws ConversionException {
 // Perform any existing validations first.
 super.validate(data);

 if (((Long) data).longValue() % 2 != 0) {
 throw new CustomConversionException(-200010);
 }
 }
}

The error message entry in the custom message catalog may look like this:

-200010=ERROR: The field '%0s' must be an even number.

If this validation is to be applied to the EVEN_ID and the NOT_ODD_ID domains, then the configuration
will look like this:

<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
 <dc:domain name="EVEN_ID">
 <dc:plug-in name="converter"
 class="custom.EvenIDConverter"/>
 </dc:domain>
 <dc:domain name="NOT_ODD_ID">
 <dc:plug-in name="converter"
 class="custom.EvenIDConverter"/>
 </dc:domain>
</dc:domains>

Custom sorting
When lists of values are displayed in an application page, a user can sort the list by clicking on the column
headers. The sort order of the rows will be determined by the sort order of the values in the selected
column. Successive clicks on a column header alternate between the forward and reverse sort order for
that column.

The sort order for any type of data can be customized easily, though the sort order for code-table codes
must be controlled by using the code-table administration interface. The sort order is calculated when

Chapter 1. Cúram web client reference 209

responding to a user's request, so the user's active locale is available by calling the inherited getLocale
method and can be used to influence the sort order in a locale-specific manner.

The domain comparator plug-ins are responsible for making the comparisons that control the sort order.
The sorting algorithms swap the position of values in their value lists depending on the value returned by
the compare method of the plug-in. The comparator plug-ins used in the Cúram application behave as
described in “Comparator plug-ins” on page 199. These sort orders are simple and intuitive, but may not
meet the needs of some specialized domains. In these cases, custom sort orders may be required and
there is no limitation on what order can be used.

What Values are Compared?: All compare operations are performed by invoking the comparator plug-ins
compare method. This takes two java.lang.Object arguments. The method is invoked automatically
by the client infrastructure before the values are formatted. This means that the objects passed are of the
types shown in “Java object representations” on page 205, not formatted string representations of the
values.

In most cases, having access to Java object representations makes the comparisons much easier to
perform: comparing dates and numbers is much easier when they are represented by objects that
conveniently provide a compareTo method that returns the same values that the compare method
must return. However, there are some situations where, for example, encoded strings are decoded by
the format operation and comparing them before they are formatted is not simple or would involve the
duplication of the formatting code. In these cases, it is possible to invoke the appropriate formatter and
compare the results. This will be described later.

The general guidelines for implementing a custom comparator plug-in to control the sort order for a
domain are as follows:

1. Create a new sub-class of the AbstractComparator class described in “Extending existing plug-ins”
on page 192.

2. Implement the compare method to perform your custom comparison.
3. Configure your new plug-in for the relevant domains.

To illustrate this, you will see how to write a comparator that compares string values as if they were
numbers. Some of the entities in the Cúram application use a string-based domain for their key values
to support the use of identifiers that may not just contain digits. Sorting of these types works well in
most cases, but there can be problems. Because the base domain is a string, the values are sorted
lexicographically, not numerically. If the values are all of the same length, this is not a problem, but if the
lengths differ, the sorting becomes confusing. For example, the string values "22" and "33" will be sorted
into the order "22", "33", but if the values are "22" and "3", the sort order will be "22", "3", because the
character "2" comes before the character "3" in a lexicographical sort and representations of numbers
with positional digits are not recognized.

There are a number of ways to solve this problem:

• The string values could be stored in the database with leading zeros used to pad all values to the same
length, this would trick the lexicographical sorting into working correctly (the lexicographical sort order
for "22" and "03" is "03", "22"). If the leading zeros were not desired for display purposes, they could
be stripped by the format operation and replaced by the parse operation. Legacy data, however, would
need to be updated to conform to the new format.

• Write a custom comparison routine that parses the numeric values from the strings and then performs
the comparison. This would work fine, but the parsing is a little complicated and it may be complicated
further if the values have trailing check letters or other non-digit characters.

• Pad the value with zeros for the purposes of making the comparison, but do this inside the compare
operation, so that no other application changes are necessary.

The latter solution is perhaps the easiest to achieve. An example of a custom comparator plug-in that
sorts strings numerically for values that are limited to no more than ten characters is shown.

/**
 * Compares string values after padding them with leading
 * zeros to make the sorting work correctly for numeric
 * values. Values must not be longer than ten characters.

210 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 */
public class IDComparator
 extends AbstractComparator {
 public int compare(Object s1, Object s2) {
 return _pad((String) s1).compareTo(_pad((String) s2));
 }

 private String _pad(String s) {
 return "0000000000".substring(0, 10 - s.length()) + s;
 }
}

The _pad method pads a value with leading zeros, so that all returned strings will be ten characters long
and numeric values will be compared correctly as the positional digits will all be aligned correctly. No
change needs to be made to the format or parse operations or to any existing values in the database;
the sort order is entirely controlled by this simple comparator code. While the numeric values could have
been parsed from the strings and a numeric comparison made, this sample code is much simpler and
more efficient.

Another need for custom sorting arises when values are in an encoded form that is decoded by the
format operation. In this case, sorting of the encoded form may not be meaningful. For example, if a
domain exists that uses an encoded string containing several localized messages and their locale codes
like this "en|Hello|es|Hola", calculating the sort orders for such strings is meaningless. The string could
be decoded, but, as decoding must be done by the format operation, it is simpler to invoke the format
operation instead and compare the values that it returns. An example of sorting formatted values is
shown.

/**
 * Compares two encoded message strings using their
 * formatted values.
 */
public class MessageComparator
 extends AbstractComparator {
 public int compare(Object value1, Object value2) {
 final DomainConverter converter;

 try {
 converter = ((ClientDomain) getDomain())
 .getConverter(getLocale());
 return converter.format(value1)
 .compareTo(converter.format(value2));
 } catch (Exception e) {
 // Do nothing except report the values to be equal.
 return 0;
 }
 }
}

This code retrieves the converter plug-in that implements the format operation for the same domain
as that of the values being compared. The returned converter will also be aware of the active user's
locale. The exact mechanism behind this is unimportant, simply copying the code above is all that is
needed. Other uses of the ClientDomain class are not supported. The exception handling is simple: it
does nothing. The compare method is not declared to throw exceptions, and thrown run-time exceptions
trigger an application error page, so there is not much useful error handling that can be performed. The
reason that none is attempted at all is that if the converter cannot be retrieved or the format operation
fails, it will be for reasons beyond the control of the comparator plug-in and these reasons will cause
failures in other places that will be reported in time. In fact, the sorting operation is carried out just before
the infrastructure formats all of the values ready for display, so the very next operation will detect and
report the errors that may have been ignored by the comparator.

A final example shows how to make the Cúram application zero date (January 1,0001), appear after all
other dates instead of before them:

Chapter 1. Cúram web client reference 211

/**
 * Compares dates, but places the zero date at the end,
 * rather than the start, or the sort order.
 */
public class ZeroDateComparator
 extends AbstractComparator {
 public int compare(Object value1, Object value2) {
 final Date date1 = (Date) value1;
 final Date date2 = (Date) value2;

 if (Date.kZeroDate.equals(date1)
 && !Date.kZeroDate.equals(date2)) {
 return -1;
 } else if (!Date.kZeroDate.equals(date1)
 && Date.kZeroDate.equals(date2)) {
 return 1;
 }
 return date1.compareTo(date2);
 }
}

Figure 67. Sorting Zero Dates

The comparator returns a negative number (the magnitude is not important) if the first date is the zero
date and the second date is not the zero date to indicate that the first date comes after the second in the
sort order. Likewise, a positive number is returned if the first date is not the zero date and the second date
is the zero date to indicate that the order is correct. Otherwise, the dates are compared as normal. This
causes the zero date to be positioned after all other dates instead of before them in the sort order.

This type of manipulation should be used with caution: the comparator plug-ins are also used during
pre-validation to check a value against the maximum and minimum values defined for its domain in
the UML model's domain definition options. In this case, if the UML domain definition options define a
maximum date and no date is set, then the zero date will be assumed and this will appear to be later than
all other dates, including the maximum date, and the pre-validation check will always fail with an error. If
no maximum value is specified in the model, then this comparator will work without problems.

To override the default comparator for all dates with this new comparator, the configuration will look like
this:
<dc:domains xmlns:dc="http://www.curamsoftware.com/curam/util/common/domain-config">
 <dc:domain name="SVR_DATE">
 <dc:plug-in name="comparator"
 class="custom.ZeroDateComparator"/>
 </dc:domain>
</dc:domains>

Figure 68. Configuration for Custom Sorting

Now, all date values for all domains that are descendants of the root SVR_DATE domain, and values in
the root domain itself, will be sorted according to the new rules. There is no need to configure any other
domains, as they will all inherit this new comparator (unless, of course, a descendant domain has been
configured with another comparator that will override any inherited comparator). This comparator could
also be applied more selectively to descendant domains of SVR_DATE.

Custom error reporting
A plug-in might do operations exactly as you require, but you might to customize the error reporting.

sOne area of the Cúram application where this may happen is in the pre-validation operation when the
pattern matching option is applied. A pattern is a regular expression defined in the UML model. When this
validation fails, the error reports that the data was "not in a recognized format", as few users would be
able to interpret the meaning of a regular expression if presented to them. If the format is a common
and intuitive one (a phone number, say), then this message will probably suffice. However, if the format is
more obscure, the error message may need to be changed to present a human-readable description of the
format (correctly localized). There are two ways to achieve this:

• Remove the pattern option from the UML model and implement your own pattern match validation as
you would for any type of custom validation.

212 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

• Intercept the exception from the pre-validation operation and replace it with a different exception
carrying your alternative error message.

A custom validation is possible and you will just need to follow the usual guidelines for such a
customization, but it is complicated by the need to access the pattern information and perform the
pattern matching operation. As you would then need to report your custom error message, it is much
simpler to let the existing infrastructure do all the pattern matching and just focus on the error message.

Custom error reporting is really only applicable to the parse and preValidate methods of a converter
plug-in. These are the only methods that may be invoked and passed values that a user has entered and
that a user may be able to correct in response to an error message. The converter plug-ins supplied with
the out-of-the-box Cúram application do not report any errors from their validate methods, so, unless
you want to customize another custom converter plug-in, the validate method can be ignored.

1. Identify the method that is generating the exception that carries the error message that you want to
customize. The likely candidates are the converter plug-in's parse and preValidate methods.

2. Create a new sub-class of the relevant converter plug-in and override the appropriate method.
3. In the implementation of the method, invoke the super-class's method of the same name and catch

any exception thrown.
4. Test the error number on the caught exception to ensure it is the one you want to override.
5. If the error number is correct, throw a new exception carrying your error message, otherwise, re-throw

the caught exception, as it is not the one you wish to override.
6. Configure your new plug-in for the relevant domains.

This example shows how this might be done to override the pattern match failure message. The custom
exception class described in “Custom exception classes” on page 203 is used.
/**
 * Reports that social security numbers must match the format
 * "xxx-xx-xxxx" when the regular expression defined in the
 * UML model "\d{3}\-\d{2}\-\d{4}" does not match a social
 * security number entered by a user.
 */
public class SSNConverter
 extends SvrStringConverter {
 public void preValidate(Object data)
 throws ConversionException {
 try {
 super.preValidate(data);
 } catch (ConversionException e) {
 if (e.getMessageObject().getMessageID()
 == e.ERR_CONV_NO_MATCH) {
 throw new CustomConversionException(-200001);
 }
 throw e;
 }
 }
}

Figure 69. Custom Error Reporting

The error message entry in the custom message catalog will look like this:
-200001=ERROR: The field '%0s' must use the format 'xxx-xx-xxxx'.

Figure 70. Custom Pattern Match Failure Message

Domains that require this converter can be configured in the same manner as shown for the other
converters above.

When using the error messages interception, please keep in mind, that Cúram error messages are subject
to change without notice. However, in the specific case of the pattern match failure message, the error
-122128 - ERR_CONV_NO_MATCH will be preserved, as the possible need to intercept this message is
recognized.

Chapter 1. Cúram web client reference 213

Custom default values
It is unlikely that you will ever need to customize a default value plug-in for a domain. The displayed
default value can be customized using the respective UML domain definition option. The predefined
assumed default values for the domains are probably sufficient for every need. However, in the unlikely
event that you need to customize an assumed default value, the steps are little different from those for
other plug-ins.

Another reason for customizing a default value plug-in is where the displayed default value is not fixed
and cannot be defined in the UML model. An example of this is the use of the current date as a displayed
default value.

1. Identify an existing default value plug-in class that you want to customize.
2. Create a new sub-class of the relevant default value plug-in and override the getDisplayedDefault

method.
3. The implementation of the method should simply return a value compatible with the Java type

used to represent values for the relevant root domain. These Java types are listed in “Java object
representations” on page 205.

4. Configure your new plug-in for the relevant domains.

In this example, the displayed default value for an interest rate is calculated dynamically using a notional
CentralBank class that somehow returns the current interest rate.
/**
 * Returns the current interest rate by contacting the
 * central bank!
 */
public class InterestRateDefault
 extends SvrFloatDefault {
 public Object getDisplayedDefault()
 throws DomainException {
 try {
 return new Float(CentralBank.getInterestRate());
 } catch (Exception e) {
 throw new CustomDomainException(-200099, e);
 }
 }
}

Figure 71. Custom Default Date-Time Value

The example assumes that the InterestRateDefault class will be associated with a descendant of
the SVR_FLOAT domain that requires a default value to be of the java.lang.Float type. By extending
the SvrFloatDefault class, the new default value plug-in will automatically use zero as the assumed
default interest rate value.

The exception handling uses a CustomDomainException class. As the getDisplayedDefault
method throws a DomainException, and not a ConversionException, you could create such
a custom exception class by deriving it from DomainException in exactly the same way as the
CustomConversionException class was derived from ConversionException in “Custom exception
classes” on page 203. You might note that, as the DomainException class is an ancestor of the
CustomConversionException class that the CustomConversionException class could be used
here instead. This will work, but you must not attempt to report a message containing the "%0s"
placeholder for the field label, as automatic replacement of the field label is not supported when a
DomainException type is expected.

The example above shows the unknown exception thrown by the CentralBank class being added to
the new custom exception. You only need to implement the appropriate constructor to support this. The
super-class already has a constructor with the same signature, so your constructor's implementation
need only call that. There is no need to extract a string value or stack trace from the exception; all will be
reported correctly when necessary.

214 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Type checking and null checking
It is not necessary to pass string or object values to the methods that are being checked to see if they are
null or of the wrong type. The client infrastructure guarantees that no method will be called with a null
value and that no conversion operation will be invoked for an object that is not compatible with the class
returned by the converter plug-in's getDomainClass method. Your custom code need never include any
error handling and reporting code for these checks.

Plug-in instance management
For efficiency, a Cúram client application pools the minimum number of domain plug-in instances
possible. This reduces the overhead involved in creating new plug-in instances each time their operations
are invoked, but it does impose some restrictions on the way plug-ins can be written.

Domain plug-ins maintain state information: a reference to the domain and the active user's locale.
Custom code can access this state information by calling the getDomain and getLocale methods
and use it as required. The potential for concurrent access to plug-ins in typical multi-threaded servers
impacts the way the plug-in instances (with their state information) are managed. If concurrent requests
are received from users who are using different locales, then the same plug-in instance cannot be used
when servicing these requests, as only one locale value can be set in a plug-in instance. However, as any
Cúram application only supports a finite number of locales, maintaining a single plug-in instance for each
locale is sufficient to avoid concurrency problems or synchronization overheads. This, of course, has to
be multiplied by the number of domains, as the domain information also constitutes state. The result is
that each domain in the domain hierarchy accesses a pool of plug-in instances specific to that domain and
each pool contains one instance of each type of plug-in for each locale.

This instance management system is entirely driven by the plug-ins themselves. Each type of plug-in
can implement its own instantiation strategy most appropriate to its needs. However, to avoid over-
complicating instance management, the AbstractDomainPlugIn class (see “Extending existing plug-
ins” on page 192) implements the single, consistent pooling strategy that balances efficiency against
other considerations.

While it would be more efficient to dispense with the domain and locale state information and pass these
values to the various converter and comparator methods, this poses several other problems that make
this approach less desirable:

• The method signatures would be complicated by values that may not be used.
• Some method signatures, such as the compare method of the java.util.Comparator interface

would not be compatible.
• The addition of new state information in the future would break all existing implementations. Using

accessor methods for state information allows the abstract super-classes to implement the accessors
and the signatures of the other interface methods can remain unchanged. During an upgrade no
changes would need to be made to any existing custom code that has followed the guidelines and
extended these abstract super-classes or other classes derived from them.

It is this latter point that is most important, successful upgrades depend on custom code that does
not attempt to implement the plug-in interfaces from scratch. This is why such an approach cannot be
supported.

The pooling strategy used means that there is one main limitation on how plug-ins can be written:
plug-ins must not attempt to store any state information. In short, no customization should add fields to
a plug-in class and attempt to store information in them; concurrent application requests will probably
cause such a plug-in to fail intermittently or introduce obscure bugs.

Domain plug-in classes must also provide a default constructor, that is, a constructor that takes no
arguments. However, any Java class that does not explicitly define a default constructor will automatically
have one defined for it if the default constructor of an ancestor class is visible. For custom plug-in classes
that extend the plug-in classes and abstract plug-in classes provided with Cúram application, no explicit
default constructor is required.

Chapter 1. Cúram web client reference 215

Naming conventions
Custom domain plug-in classes may implement utility methods to support the implementation of the
main interface methods.

For example, _pad method shown in “Custom sorting” on page 209. To avoid inadvertently overriding
another inherited method, or using a method name that conflicts with a method introduced in a later
Cúram release, prefix such utility methods with an underscore character as shown. Underscore characters
are not used in the client infrastructure, so they guarantee that no naming conflict will arise in the future.
For similar reasons, do not create classes in packages that might conflict with Cúram package names. All
Cúram packages begin with "curam", so avoiding that name is sufficient. Some examples use the package
name prefix "custom", but this is not a requirement.

Generic parse operations
The generic parse operation, performed by the DomainConverter interface's parseGeneric method,
needs some explanation, so that care can be taken not to disable its operation by mistake.

The generic parse operation is responsible for parsing the string representation of values defined in the
UML model's domain definition options. Domain options for maximum, minimum and default values
are expressed in formats that are not locale-specific, as the UML model is not locale-aware. Each
of the root domains accepts values in a particular format , such as ISO-8601 format for SVR_DATE
domains, and customization of this format is not supported. Therefore, the default implementations of the
parseGeneric method must be respected.

For some domains, the format supported by the converter's parse method is the same as the format
supported by the parseGeneric method. The default implementation of the parseGeneric method in
the AbstractConverter class just calls the parse method (which is not implemented in this class).
Therefore, if you sub-class the AbstractConverter class and implement a parse method, the same
implementation will be used by the parseGeneric method. This may be what you require, but, if it is not,
you may want to implement a different parseGeneric method.

All of provided concrete converter classes separate the implementations of the two methods, so you can
override one without changing the behavior of the other. Again, this may be what you require, but, if it is
not, you can override both methods.

Code tables
Manage data conversion and sorting for code-table domains in the code-table administration interface.
While the client infrastructure uses the same plug-in mechanism described here to manage code-table
values, the customization of code-table-related plug-ins is not supported.

Code-table data is more complex to handle (formatting and parsing are not symmetrical operations as
they are for other types) and all of the necessary customizations can be accomplished without resorting to
programmatic means.

The formatting of code-table values is achieved by modifying the descriptions of each code. Parsing
operations receive the code values and simply pass them on. Pre-parsing, pre-validation, and validation
are not important. Default codes and custom sort orders are controlled entirely by the administration
interface.

Online help development
You can embed context-sensitive help information in the Cúram web client with the Cúram online help
system. Users can access help by clicking the Help button or on a page, the help page opens in a new tab
or window. For accessibility, alternate text is provided for the help buttons.

The online help system
Where help is required on a page, help properties are created in the UIM file for the page and a properties
file is updated with the help content. The help content is generated as part of the "client" build target. At

216 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

runtime, online help is generated dynamically and does not need to be deployed separately to the main
application. This helps developers to review their online help pages quickly.

Single Source Development
Each client page has an associated user interface metadata (UIM) file that defines its content, such as
the links, buttons, and fields. The UIM file does not contain any actual text but references externalized
properties files, which map property names to text strings. UIM files may also import VIM files. VIM
files are in the same format as UIM files, they basically define a fragment of a UIM file. They also have
properties files. Properties files that are associated with UIM or VIM have the same name but a different
extension.

Each property that is defined in a property file is immediately followed by a corresponding help definition.
This enables online help developers to easily compare and update UIM properties and help entries. In
addition, having application properties and help within the same file removes the need to maintain and
synchronize a separate set of files for the help system.

The online help content is composed of the help entries in the property files. These entries provide help
about specific properties, such as fields or actions, in the associated UIM file. Within these property files,
help entries are on the line immediately following the corresponding property definition. When the online
help page is generated, all field and action help definitions are listed in an easy to understand table
format.

Integrated Localization
Online help localization is integrated with application localization. When localized properties files are
created for a particular locale, those property files will contain localized entries for both UIM properties
and the help properties.

Online help elements
The online help content is composed of entries in client property files which correspond to page
descriptions, fields, columns, links, and actions.

Client pages are installed in the webclient/components directory of the Curam installation.

Properties are lines of text of the form:

PropertyName=Value of Property

If a button on a page is labeled in the UIM file with the property Button.Save, the following properties
file entry will exist.

Button.Save=Save

To explain this in the online help, create another property called Button.Save.Help

Button.Save.Help=Use this button to save.

The online help framework generates this content into the online help format.

Page descriptions
Use the Help.PageDescription property to provide information about the user tasks on the page.

Help.PageDescription=You can view a clause
record. Clauses describe the precedents for a decision made
on an appeal and the legal articles that affect it. These
clauses can be dynamically inserted into decision documents.

Chapter 1. Cúram web client reference 217

Fields and columns
Help entries can also be provided for labeled fields or columns on a page. The online help system will
generate a separate table for these help entries.

Field.Label.Language=Language
Field.Label.Language.Help=The language for the clause from the drop-down list of languages,
e.g., English, French.

Links and actions
If there are any labeled links or action controls on the page, a help entry can be provided with a
description for them. The online help system will create a table for them, complete with title and abstract.

ActionControl.Label.Save=Save
ActionControl.Label.Save.Help=The Save action creates a new record from the information entered
on the page.

Adding or updating help content
To add new help content, you add a help property to the UIM file for the page and add the help content
to the associated properties file. To update existing help, complete the following steps. Adjust the steps if
you are updating domain-specific controls.

About this task
For domain-specific controls, the approach is slightly different. A good example of a domain-specific
control is the address elements for a particular type of address. The field elements that are displayed
on a page in the application depend on the locale that is specified. The format of the address elements
displayed for an address in the US would be different from those displayed in the UK. For this reason, the
online help cannot be specified for each of the elements within an address.

For example, the Register Employer page in the application has a registered address and a business
address. The page properties file is Employer_registerView.properties. To update the online help
regarding the Employer's business address and registered address, we could add help properties as
follows:

ADDING HELP HERE FOR REGISTERED ADDRESS
Field.Label.RegisteredAddress.Help=
The Employer can enter their registered address in the fields displayed.
 The format of the
Employers registered address will depend on the Country in which they reside.
Field.Label.BusinessAddress=Business Address
ADDING HELP HERE FOR BUSINESS ADDRESS
Field.Label.BusinessAddress.Help=
The Employer can enter their business address in the fields displayed.
The format of the
Employers business address will depend on the Country in which they reside.

For more information about domain-specific controls, see “Domain-specific controls” on page 139.

Procedure
1. Identify the correct property file to edit. The help text is contained in the property file with the same

name as the UIM file.
For example, to update the online help for Person Search in the application, update the help content in
the Person_search.properties file, which is referenced by the Person_search.uim file.

2. You must modify the property file only in webclient/components/custom' directory.
For example, if you need to update webclient/components/core/Person/Search/
Person_search.properties, then copy this file into the webclient/components/custom
directory. The Person/Search directories don't need to be created in the custom directory.

3. Update the help content in the properties file.

218 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

4. Build the client with your changes. Help is built by default as part of the client build target. The help is
generated dynamically at runtime and does not need to be explicitly included in the application.

Related reference
Externalized strings
All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

Maintaining Dynamic UIM pages
Use this information to learn how to load dynamic UIM pages into the application resource store.

The way you store your screens differs depending on whether you are working in a development
environment or a running system.

Important: Currently the development of custom dynamic UIM pages is only supported for the
presentation of decision details only. Development of dynamic UIM for any purpose beyond this is not
supported.

Related concepts
Calculating and Displaying Decision Details

Working in a development environment
To load a dynamic UIM page into the resource store, you must add two separate entries to the
AppResource.dmx file in the custom component, each entry corresponding to a dynamic UIM file and an
associated properties file.

The following is an example of how to add the DUIMSample dynamic UIM page to the AppResource.dmx
file, so that it will be loaded into the application resource store at build time.

<row>
 <attribute name="resourceid">
 <value>1</value>
 </attribute>
 <attribute name="localeIdentifier">
 <value/>
 </attribute>
 <attribute name="name">
 <value>DUIMSample</value>
 </attribute>
 <attribute name="contentType">
 <value>text/plain</value>
 </attribute>
 <attribute name="contentDisposition">
 <value>inline</value>
 </attribute>
 <attribute name="content">
 <value>./custom/data/initial/clob/DUIMSample.uim</value>
 </attribute>
 <attribute name="internal">
 <value>0</value>
 </attribute>
 <attribute name="lastWritten">
 <value>2011-06-13-19.29.40</value>
 </attribute>
 <attribute name="versionNo">
 <value>1</value>
 </attribute>
 <attribute name="category">
 <value>RS_XML</value>
 </attribute>
</row>
<row>
 <attribute name="resourceid">
 <value>2</value>
 </attribute>
 <attribute name="localeIdentifier">
 <value/>
 </attribute>

Chapter 1. Cúram web client reference 219

 <attribute name="name">
 <value>DUIMSample.properties</value>
 </attribute>
 <attribute name="contentType">
 <value>text/plain</value>
 </attribute>
 <attribute name="contentDisposition">
 <value>inline</value>
 </attribute>
 <attribute name="content">
 <value>./custom/data/initial/clob/DUIMSample.properties</value>
 </attribute>
 <attribute name="internal">
 <value>0</value>
 </attribute>
 <attribute name="lastWritten">
 <value>2011-06-13-19.29.40</value>
 </attribute>
 <attribute name="versionNo">
 <value>1</value>
 </attribute>
 <attribute name="category">
 <value>RS_PROP</value>
 </attribute>
</row>

Note: The value of the contentType attribute specifies the location on the file system that each entry
(dynamic UIM file and associated properties file) can be uploaded from. The value of the category
attribute in the AppResource.dmx categorizes a dynamic UIM page resource so that they can be
distinguished from other kinds of resources in the resource store. The dynamic UIM file should be
categorized (as shown in the example) as a RS_XML resource. The associated properties file should be
categorized as RS_PROP. Each dynamic UIM resource that is added to the AppResource.dmx should
also be given the same value so that they all belong to the same category. See the section below for
details of how new dynamic UIM pages are loaded into the resource store at runtime. The value of the
localeIdentifier attribute should be empty (as in the example) if the user's required locale is English.
Otherwise the actual locale should be used as the value for this attribute for both the UIM and properties
file.

Working in a running system
From the dynamic UIM administration screen in the application, you can add, edit, delete, or validate
dynamic UIM pages in the Resource Store.

Go to the home dynamic UIM administration screen in the application by completing the following steps:

• Log into the "admin" application.
• From the shortcut menu, select the "Dynamic UIM" menu item from the "Dynamic UIM" category. This

should open the home dynamic UIM administration screen

A user can maintain dynamic UIM pages in the resource store by performing the following actions:

• Add a dynamic UIM page to the Resource Store
• Edit a dynamic UIM page in the Resource Store
• Delete a dynamic UIM page from the Resource Store
• Validate a dynamic UIM page in the Resource Store

Search for dynamic UIM pages by category
To view the current list of dynamic UIM pages in the resource store, you must search based on the
resource store category from the home dynamic UIM administration screen.

Procedure
1. Select a menu item for the drop-down list on Category Search field.
2. Click Search to see the list of dynamic UIM pages for the selected category.

220 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Uploading a dynamic UIM page to the resource store
From the home dynamic UIM administration screen, you can add a dynamic UIM page can be added to the
resource store.

Procedure
1. Select New. A modal dialog page with four mandatory fields opens.
2. Enter the value of the page Page ID field. The value must be the same as the value of the PAGE_ID

attribute in the UIM file that is being uploaded, or an error message will be displayed.
3. Select the locale from the drop-down list on the locale field. The default is locale is English.
4. Use the Browse button on the UIM File field to navigate to the dynamic UIM file that is to be uploaded

to the resource store.
5. Use the Browse button on the Properties File field to navigate to the associated properties file to

upload to the resource store.

Editing a dynamic UIM page in the resource store
From the home dynamic UIM administration, a dynamic UIM page can be edited in the resource store.

Procedure
1. From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like to

edit (by Page ID), and select the Edit menu item for the list action menu. This should open a modal
dialog page with three fields.

2. To download the current version of the dynamic UIM file and associated properties file from the
Resource Store to the local file system for editing, select the Download button and save the zip file
to the file system. The dynamic UIM file and associated properties file can then be extracted from the
downloaded archive and edited as required.

3. To upload an edited dynamic UIM file, use the Browse button on the UIM File field to navigate to the
dynamic UIM file that is to be uploaded to the resource store.

4. To upload an edited properties file, use the Browse button on the Properties File field to navigate to
the associated properties file to upload to the resource store.

Deleting a dynamic UIM File from the resource store
From the home dynamic UIM administration, you can delete a dynamic UIM page from the resource store.

Procedure
1. From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like

to delete (by Page ID), and select the Delete from the list action menu. A confirmation message is
displayed.

2. ClickYes.

Results
A search for dynamic UIM pages in the resource store can confirm that the dynamic UIM page was
removed.

Chapter 1. Cúram web client reference 221

Validating a dynamic UIM file in the resource store
From the home dynamic UIM administration, you can validate a dynamic UIM page can be validated in the
resource store.

Procedure
From the list of dynamic UIM pages displayed, navigate to the dynamic UIM page that you would like to
validate (by Page ID), and select Validate from the list action menu. A modal dialog displays a message
stating whether the validation has passed or failed. If the validation fails, then the source of the error page
will appear in the dialog and the full details of the error can be found in the server logs.

Publish dynamic UIM files
Changes to dynamic UIM files are not made public until you publish them to the resource store.

About this task
This can be done by s

Procedure
Select Publish from the home dynamic UIM administration screen and confirm that you want to publish.

UI test automation
You can use the data-testid attribute to target specific UI components in your UI automation test
framework.

All of the following components can be directly targeted on application screens with their data-testid
attribute.

• Cluster
• Checkbox
• Text Input
• Text Area
• Dropdown
• DatePicker
• Date Time
• Time Picker
• Multiselect Checkbox
• Modal buttons, such as Next, Cancel, Back, or Submit.
• Search Popup
• Login and Logout buttons, which are custom additions of the attribute to support automation only.

The data-testid attribute
The format of the data-testid attribute concatenates the label to the UIM component prefix.

• The format of the data-testid attribute is <component>_<labelPropertyKey>.
• The format of the data-testid attribute for lists and code table hierarchy components is
<component>_<index>_<labelPropertyKey>.

The following default prefixes are used:

• The default prefix for view components is uicomponent_<labelPropertyKey>.

222 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

• The default prefix for form components is formitem_<labelPropertyKey>.
• The default prefix for a form control from a custom renderer is formcontrol_<labelPropertyKey>.

Custom renderer data-testid configuration
To generate a data-testid, you must call context.getDataTestID() from your custom renderer.

To ensure that your data-testid reflects your environment, you can set meaningful values in your
configuration files. Set dataTestidComponentPrefix to a meaningful value, as shown in the following
examples. If you don't set a custom value, the default value is used.

Example configuration files
The following example shows the configuration for the Text input and Text area components in the
TextEditRenderer plug-in class.

<pc:plug-in purpose="curam-util-client::edit-text" name="edit-renderer"
class="curam.util.client.domain.render.edit.TextEditRenderer">
<pc:property name="dataTestidComponentPrefix">textinput</pc:property>
</pc:plug-in>

The following example shows the configuration for the Date component in the DateEditRenderer
plug-in class.

<pc:plug-in purpose="edit-date" name="edit-renderer"
class="curam.util.client.domain.render.edit.DateEditRenderer">
<pc:local-plug-in local-purpose="text-input" name="edit-renderer"
purpose="edit-date-text"/>
<pc:property name="dataTestidComponentPrefix">date</pc:property>
</pc:plug-in>

The following example shows the configuration for the Time component in the TimeEditRenderer
plug-in class.

<pc:plug-in purpose="curam-util-client::edit-time" name="edit-renderer"
class="curam.util.client.domain.render.edit.TimeEditRenderer">
<pc:property name="allow-blank">true</pc:property>
<pc:property name="time-domain">CURAM_TIME</pc:property>
<pc:property name="dataTestidComponentPrefix">time</pc:property>
</pc:plug-in>

The following example shows the configuration for the Checkbox component in the
CheckboxEditRenderer plug-in class.

<pc:plug-in purpose="curam-util-client::edit-boolean" name="edit-renderer"
class="curam.util.client.domain.render.edit.CheckboxEditRenderer">
<pc:property name="dataTestidComponentPrefix">checkbox</pc:property>
</pc:plug-in>

Benefits of the data-testid attribute compared to the previous approach
The new data-testid attribute enables improved targeting of specific UI components in automated
UI framework selectors, which in turn improves the automation script and framework maintenance and
robustness. Adopting the new attribute ensures that less effort is needed when you upgrade to future
product versions. The following examples illustrate the change from the old to the new format.

Examples from 7.0.11 to 8.0.1
Scenario 1: Replacing an ID attribute that is often assigned a generic token on page load

For example, to target the First Name text input field in the second stage of the Register Person
process.

Chapter 1. Cúram web client reference 223

Previously, the input field in the DOM might be located with the following CSS selector:

input[id="__o3id2"]

This ID has the following issues:

• The ID is generic. There's nothing in your UI automation code that obviously identifies it as being the
ID for the first name field. If the code fails, it's more difficult to debug. Human-readable IDs always
work better for clean code and better maintenance as the IDs are self-explaining about the DOM
element they belong to.

• The token, the id2 part of the ID value, is tied to the order in which the text input field appears in the
UI. If the UI changes, and this text field becomes the third or the fourth text field to be loaded, this
ID changes. This change makes this ID brittle and prone to failures. You need to update the IDs in
your code repeatedly.

With data-testid, the CSS selector becomes:

input[data-testid="textinput_First Name"]

The test ID points straight to the element, and is not tied to any generic tokens. The value consistently
remains the same across all future iterations of the UI.

Scenario 2 - Replacing the use of the title attribute to uniquely identify UI elements in the DOM

For example, to target the Last Name text input field in the second stage of the Register Person
process. Previously, the input field in the DOM might use the following CSS selector:

input[title="Last Name Mandatory"]

This ID has the following issues:

• The title attribute value is tied to the English language in the UI. Last Name Mandatory as a value
for the title doesn't work if you display the UI in a different language.

• The ID is also tied to the text label of the input field. For example, if you change the label to
Surname, the title attribute changes with it, breaking the CSS selector.

With data-testid, the CSS selector becomes:

input[data-testid="textinput_Last Name"]

The test ID points straight to the element, an is not tied to the language used in the UI. The value
consistently remains the same across all future iterations of the UI.

Scenario 3 - Replacing elongated CSS selector paths that have no identifying ID

For example, to target the Next button in the first stage of the Register Person process. Previously,
you might locate the button in the DOM with the following CSS selector:

div[class*="action-set"] > a[class*="btn-id-2"] > span > span > span[class="middle"]

This ID has the following issues:

• No unique ID or any other attribute is used to identify the physical button to click.
• You must traverse through five elements in the DOM hierarchy in an exact order to reach the button

in the DOM. If any part of that DOM hierarchy is changed, this selector breaks. It can be difficult and
time consuming to follow this list of DOM elements from source to target to identify exactly where
the path was broken.

With data-testid, the CSS selector becomes:

button[class*="bx--btn--primary"][data-testid$="_modal-button_1"]

224 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

The test ID points straight to the element, and doesn't need an elongated DOM traversal to reach the
target. The value consistently remains the same across all future iterations of the UI.

UIM reference
User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Cúram
Social Program Management web application client pages. UIM files must be well-formed XML.

The CDEJ translates UIM files into JSP files to be deployed to your web application server.

You can use any text editor to write UIM documents, but a specialized XML editor is preferable. The CDEJ
includes an XML Schema file defining the syntax of a UIM document. In a schema-aware XML editor, you
have access to many time-saving facilities such as auto-completion or syntax checking.

UIM document types
Four valid root elements are used to create two types of UIM document. Use the PAGE, VIEW,
PAGE_GROUP and APPLICATIONS elements to create PAGE or VIEW UIM documents.

PAGE
PAGE defines a UIM page that is translated into a JSP page. The file name must be the same as the
value of the PAGE_ID attribute of the root element. The file extension is .uim. You can organize UIM
pages into any folder structure in a component folder for convenience in managing a large number
of files. Ultimately, all UIM pages are generated into JSP pages in a single folder, so the PAGE_ID
attribute of the PAGE element and consequently the file names of all the .uim files must be unique
within a component.

VIEW
VIEW defines a portion of a page that can be included in a PAGE element in another UIM document.
This allows common sequences of elements to be reused. The file name is not restricted. The file
extension is .vim. You can organize view pages into any folder structure in a component folder, but
the file names must be unique within that component.

UIM pages
A UIM page is the one of the main elements of the Cúram user interface. Developers create the UIM page
definitions in files with a .uim extension, with each file corresponding to a single page. Individual pages
consist of different elements such as page titles, labels, buttons, and links and the data content.

For the basic concepts behind UIM pages and an understanding of clusters, lists, action sets, action
controls, containers, and fields, see the “Cúram web client overview” on page 1.

The elements in a page must follow a strict order imposed by the XML Schema definition of UIM. However,
this order is only imposed when editing using a schema-aware XML editor. The JSP generator does not
check the ordering at present. The order in which elements are presented in the child element tables in
this reference is the order in which the elements should be used in the UIM documents unless otherwise
indicated. There is no specific ordering for attribute values.

UIM views
A PAGE element can contain an INCLUDE element anywhere at the top level that allows commonly used
fragments of UIM to be inserted at that point during translation. The included elements are defined in a
UIM document called a view.

The view document uses VIEW as the root element. Elements included from a view must be valid in
the context in which they have been included. For example, a PAGE element that already contains a
PAGE_TITLE element, cannot include a view that also defines a PAGE_TITLE element. Similarly, the
schema rules governing the order of elements in a page must be observed when elements are included
from a view.

Views are similar to pages in what they can contain, the only differences are as follows:

• A view cannot contain an INCLUDE element to include another view.

Chapter 1. Cúram web client reference 225

• A view does not have any PAGE_ID attribute, this is defined in the page that includes the view.

All other elements that are valid in a PAGE element at the top level, are also valid in a VIEW.

When including views, the name of the view file must be specified. Regardless of where in the component
the file including the view is, only the name of the view file is required, not its path.

UIM page field level validations
Field level validations display in a cluster above the fields. The validation messages do not display in the
same order as the fields are displayed.

Externalized strings
All string values and image references in UIM documents must be externalized, that is, the actual values
are stored in files separated from the UIM. This aids maintenance and allows the application to be
localized.

For information about externalizing string, see “Externalized strings” on page 28.

UIM pages and views reference
This reference information describes the PAGE and VIEW elements and all of the child elements that they
can contain with the exception of WIDGET elements.

Most elements have a list of attributes that can be used in any order. Some attributes are optional and
have default values when omitted. Others can have one of a range of values. Boolean attributes can only
have the values true and false (case-sensitive).

Many elements can have child elements and these are listed in the order in which they must be added
and include details on their cardinality. Cardinalities use "0" to indicate that the element is optional, "1" to
indicate that it can appear only once, and "n" to indicate that it can be appear any number of times. The
".." indicates the range of the cardinality. For example, "0..1" indicates that the element can appear zero
or one times in this location, i.e., it is optional, while "1..n" indicates that an element must appear at least
once, but can appear any number of times thereafter.

Connection types
UIM pages use connections for associating components on a page with actual data. The connection type
is reflected in the connection tag name and is roughly equivalent to data direction. The three types of
connection available are SOURCE, TARGET and INITIAL.

Connection endpoints are further distinguished by the setting of the NAME attribute. The value of this
attribute may be the name of the server interface used, TEXT, CONSTANT ,or JSCRIPT_REF or PAGE.
These values designate objects which supply or consume data. JSCRIPT_REF can only be a TARGET
connection with either PAGE or a server interface defined in the DISPLAY phase, as the SOURCE
connection. TEXT or CONSTANT can only be used when TARGET has a server interface defined in the
ACTION phase. See the following connection types example.

<PAGE PAGE_ID="APage">
 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Page.Title.Static"/>
 </CONNECT>
 </PAGE_TITLE>

 <SERVER_INTERFACE NAME="DISPLAY_SI"
 CLASS="sourceClass"
 OPERATION="read"
 PHASE="DISPLAY"/>
 <SERVER_INTERFACE NAME="ACTION_SI"
 CLASS="targetClass"
 OPERATION="modify"
 PHASE="ACTION/>

 <PAGE_PARAMETER NAME="P_PARAM"/>

226 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <CONNECT>
 <SOURCE NAME="CONSTANT"
 PROPERTY="From.Constants.Props"/>
 <TARGET NAME="ACTION_SI"
 PROPERTY="aProperty"/>
 </CONNECT>

 <ACTION_SET BOTTOM="true" TOP="false">
 <ACTION_CONTROL TYPE="SUBMIT" LABEL="Button.Submit">
 <LINK PAGE_ID="APage">
 <CONNECT>
 <SOURCE NAME="DISPLAY_SI" PROPERTY="PARAM"/>
 <TARGET NAME="PAGE" PROPERTY="P_PARAM"/>
 </CONNECT>
 </LINK>
 </ACTION_CONTROL>
 </ACTION_SET>

 <CLUSTER NUM_COLS="1" SHOW_LABELS="false">
 <FIELD LABEL="Label.Text">
 <CONNECT>
 <SOURCE NAME="DISPLAY_SI" PROPERTY="sourceField"/>
 </CONNECT>
 <CONNECT>
 <TARGET NAME="ACTION_SI" PROPERTY="targetField"/>
 </CONNECT>
 </FIELD>
 </CLUSTER>
</PAGE>

Most frequent is a connection to a server interface. Here, the NAME attribute corresponds to an existing
(i.e. declared on the page) SERVER_INTERFACE NAME attribute value (DISPLAY_SI and ACTION_SI in
the example above).

A value of TEXT means data is sourced from a properties file. The PROPERTY attribute in this case
contains the name of an externalized string in a page-specific property file. In the example, the file
APage.uim has a page title which references the Page.Title.Static property in the associated
APage.properties file.

A value of CONSTANT provides similar functionality to TEXT but the externalized string is component-
specific rather than page-specific and is sourced from a file called Constants.properties. In the
example, there is a page level connection to a From.Constants.Props property.

A connection might also source its data from a page parameter (i.e., a variable declared on a page,
P_PARAM in the example). In this case PAGE is used as the value of the NAME attribute.

There are limitations and restrictions on the use of the various connection types in various contexts. The
UIM element descriptions below detail these limitations where they arise.

ACTION_CONTROL element
The ACTION_CONTROL element defines a link (text based), button or file download link that the user can
activate on a page.

Cancel Button
An UIM action control with TYPE of ACTION and no explicit link specified ('previous' control further in the
text) implicitly leads to the page which linked to it and had the "SAVE_LINK=true" specified in UIM for that
link. This type of action is used for the Cancel Button.

However, as no page history is memorised and supported, only a single implicit transfer back is possible.
Therefore in a situation when consecutive screens contain 'previous' controls, only the 'previous' control
on the last screen would correctly pass the flow back with the subsequent attempt to get to the page
before it will result in an error.

The screen flow with 'previous' controls is not recommended in the content pane of the tabbed v6
application as it breaks usability, however it could still be used in the modal wizard type flows or other
contexts not bound to the tabbed navigation (like nested pages). Therefore, if such a screen flow contains
more than one consecutive "previous" controls, they must explicitly link to the page to go to when clicked.

Chapter 1. Cúram web client reference 227

File Downloads
An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD results in the generation of a hyperlink
on the page. Clicking on the hyperlink invokes a special FileDownload servlet included in the Cúram
CDEJ that returns the contents of a file from the database. The FileDownload servlet is configured with
the server interface to call to get the file contents and the parameters to pass to identify that file. The
configuration is performed in the curam-config.xml file. A single server interface can be configured
for each page of the application that includes file download action controls. An example configuration is
shown.

<APP_CONFIG>
 <FILE_DOWNLOAD_CONFIG>
 <FILE_DOWNLOAD PAGE_ID="FileDownload"
 CLASS="curam.interfaces.FilePkg.File_read_TH">
 <INPUT PAGE_PARAM="fileID" PROPERTY="key$fileID"/>
 <FILE_NAME PROPERTY="dtls$fileName"/>
 <FILE_DATA PROPERTY="dtls$fileData"/>
 </FILE_DOWNLOAD>
 </FILE_DOWNLOAD_CONFIG>
</APP_CONFIG>

A WIDGET with the TYPE set to FILE_DOWNLOAD can also be used to generate a hyperlink to download
a file. You should use the ACTION_CONTROL element when the hyperlink text is the fixed LABEL value.
The FILE_DOWNLOAD WIDGET allows the hyperlink text to be a dynamic value retrieved from a server
interface property.

Each configuration for downloading files is contained in a FILE_DOWNLOAD element within the
FILE_DOWNLOAD_CONFIG element in the configuration file. There should be one FILE_DOWNLOAD
element for each page that contains file download action controls.

The FILE_DOWNLOAD element takes two attributes: PAGE_ID for the identifier of the page containing the
action controls to which this configuration will be applied, and CLASS containing the name of the server
interface that will be called by the FileDownload servlet when the generated hyperlink is invoked.

The FILE_DOWNLOAD element can contain zero or more INPUT elements specifying the key values to set
before the server interface is called. These INPUT elements associate page parameters with properties
of the server interface. The PAGE_PARAM attribute specifies the name of the page parameter whose
value will be used as a key value, and the PROPERTY attribute specifies the key property of the server
interface that must be set to identify the file. The page parameters are set by the LINK element within the
ACTION_CONTROL, as you will see below.

The other three elements, FILE_NAME and FILE_DATA, and CONTENT_TYPE all have PROPERTY
attributes that indicate the properties of the server interface that will contain the name of the file, the
contents of the file, and the content type of the file respectively, after the server interface is called. This
data is returned to the client in response to the activation of the hyperlink and the user's browser will
present them with the download dialog box prompting them to save or open the file.

Where property names are specified, the names must be written in full and cannot be abbreviated like
they can in UIM documents.

Attributes
The ACTION_CONTROL element has the following attributes. The LABEL attribute must be present.

Table 78. Attributes of the ACTION_CONTROL Element

Attribute Name Required Default Description

LABEL Yes A reference to an externalized string containing
the label text for this action control. If the TYPE
is ACTION, this will be the text of the hyperlink.
If the TYPE is SUBMIT, this will be caption of
the submit button.

228 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 78. Attributes of the ACTION_CONTROL Element (continued)

Attribute Name Required Default Description

LABEL_ABBREVIATIO
N

No A reference to an externalized string containing
the label abbreviation text for this action
control. This label abbreviation is placed only
on table headers in a LIST.

TYPE No ACTION The type of action control to create. There
are six types: ACTION (the default) defines
a link to another page, SUBMIT forwards the
page's form data to the action phase for
processing, DISMISS closes a pop-up page,
SUBMIT_AND_DISMISS combines a submit
with closing a pop-up page (see “Pop-up pages”
on page 172 for details on working with pop-
up pages), FILE_DOWNLOAD defines a link that
triggers the download of a file from the server,
and CLIPBOARD places a predefined value to
the system clipboard.

STYLE No The class name of the CSS style to use when
formatting the action control. Supported by
action controls in action sets only.

CONFIRM No Use the CONFIRM attribute of
ACTION_CONTROL to force a confirmation
dialog when the action control is activated.

The value of the CONFIRM attribute is a
reference to the confirmation message in the
page properties file.

DEFAULT No false If there is more than one submit action on
a page, it is useful to specify which one is
executed when the user hits the Enter key.
This is especially recommended when the
submitting action controls are contained within
the different action sets as in this case the
default action could be different than the first
submit action declared on the page. The default
action can be specified by setting this attribute
to true. Note that only one submit action on a
page can have a DEFAULT value of true.

Chapter 1. Cúram web client reference 229

Table 78. Attributes of the ACTION_CONTROL Element (continued)

Attribute Name Required Default Description

ACTION_ID No A custom identifier for action controls of
TYPE = SUBMIT. It is used in conjunction
with ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE element to inform the
server side code which action control was used
to make the server call.

This attribute is only valid on action controls of
TYPE = SUBMIT.

The value of this attribute among the action
controls within the page must be unique.

The value of this attribute must be
in the format suitable for the domain
associated with the property specified
in the ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE.

This attribute must be either specified on all
action controls within the page or not specified
on any of them.

If this attribute is specified then
the ACTION_ID_PROPERTY attribute of
SERVER_INTERFACE must also be specified.

IMAGE No The value of this attribute refers to an
externalized string which maps to a specific
icon or graphic in the application. An action
control with this attribute can only be used
within a CONTAINER element.

ALIGNMENT No RIGHT When contained in a page level ACTION_SET
of a Modal Dialog, the ALIGNMENT attribute
is supported. This will define the individual
horizontal alignment of the action control. It can
be set to LEFT or RIGHT. The default is to right
aligned.

Child elements
The ACTION_CONTROL element can contain the following child elements.

230 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 79. Child Elements of the ACTION_CONTROL Element

Element Name Cardinality / Description

LINK 0..1. An action control with a TYPE of ACTION that has no
LINK element will create a link to the previous page in the
history that had SAVE_LINK set to true on the link that led to
this page (this is typically used for Cancel buttons). However
this type of ACTION_CONTROL should not be present on a page
that is directly referenced by any tabbed configuration artifact.
Also, if this type of ACTION_CONTROL is preceded by another
ACTION_CONTROL of the same type in the page history, there
is the potential of a circular reference between these pages.

An action control with a TYPE of SUBMIT that has no LINK
element will submit the field values to the action phase and
then return to the previous page in the history that had
SAVE_LINK set to true on the link that led to this page.

An action control with a TYPE of FILE_DOWNLOAD only
requires a link if it must provide the page parameter values
specified in the INPUT elements of its configuration. Each
CONNECT element in the link can contain a SOURCE element
to specify the value and a TARGET element specifying the page
parameter to which to map the value. The PROPERTY attribute
value of the page parameter must match the PAGE_PARAM
attribute value of the INPUT element in the configuration.

CONNECT 0..1. A CONNECT element specifying a single SOURCE end-
point. As a direct child it is used only for an action control
with a TYPE of CLIPBOARD. Such an action control places
predefined textual data into the system clipboard when
clicked.

Text to be copied to clipboard can be sourced from the server,
the request or a properties file.

The CONNECT element used can only contain a SOURCE
element with a NAME property of PAGE, TEXT or the name of a
server interface defined within the page.

SCRIPT 0..n. A script element associated with an action control. For a
detailed description of this element see “SCRIPT element” on
page 277.

SCRIPT elements are not supported on ACTION_CONTROL
elements with a type of CLIPBOARD.

CONDITION 0..1. Affects whether or not the ACTION_CONTROL is
displayed.

When linking to another page, the link must specify all page parameters declared on the target page.

Chapter 1. Cúram web client reference 231

ACTION SET element
The ACTION_SET element groups a number of ACTION_CONTROL elements together. Depending on the
context in which the action set is defined, the action controls will be displayed in differing ways.

At the page level, action controls are displayed at the outside of the page title bar. If the action set
contains two or less action controls, then each link is displayed side by side with a new item icon to the
left of it. The SEPARATOR child element has no affect.

If three or more action controls exist at the page level, then a drop down menu will display each action
control as a menu item. In this case, the SEPARATOR element inserts a gray separator into the drop down
menu at the position indicated in the UIM file.

At the list level, all action controls will be displayed in a menu drop down. The SEPARATOR element
inserts a gray separator into the drop down menu.

For action sets defined at the cluster or list level, the action controls can be displayed above and/or below
the element with which the action set is associated and are aligned horizontally.

In all scenarios, conditional links that evaluate to false will not display if HIDE_CONDITIONAL_LINKS
attribute is set to true, otherwise the conditional link displays but is disabled.

Attributes
The ACTION_SET element has the following attributes.

Table 80. Attributes of the ACTION_SET Element

Attribute Name Required Default Description

TOP No true Defines whether the action controls will be
displayed above the associated element.
Can be set to true (the default) or false.

BOTTOM No true Defines whether the action controls will be
displayed below the associated element.
Can be set to true (the default) or false.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the
set of action controls with respect to
the associated element. Can be set to
LEFT, RIGHT, CENTER, or DEFAULT The
value DEFAULT corresponds to the CSS
class ac_default in curam_common.css.
The default is to be left aligned. For a
page level ACTION_SET in a Modal Dialog,
ALIGNMENT is ignored as action control
size and position are determined by the
number of action controls and their type.

TYPE No DEFAULT Defines the location of the action set.
This can be set to LIST_ROW_MENU or
DEFAULT.

LIST_ROW_MENU is applicable where the
ACTION_SET is contained within a LIST.
It indicates that the action set should be
displayed as a list actions menu within
each list row entry.

232 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Note: An ACTION_SET of type LIST_ROW_MENU should not be used to open a “Using the pop-up page”
on page 176.

Child elements
The ACTION_SET element can contain the following child elements.

Table 81. Child Elements of the ACTION_SET Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. See the description of ACTION_SET 's parent element
to see what ACTION_CONTROL elements are valid in each
context.

CONDITION 0..1. Affects whether or not the ACTION_SET is displayed.

SEPARATOR 0..n. allows the for ability to add a visual separator between
action controls that display in the page action drop down
menu.

CLUSTER element
Use the CLUSTER element to lay out related information on a screen. Clusters generally show field and
label pairs in a number of columns. Clusters can also include layout elements, such as other clusters and
lists, for more complex layouts. Clusters attributes can render data from data sources, such as server
interface property values, externalized string values, or page parameter values. Fields can accept data
and sent it to other data targets, such as server interface properties, or page parameters.

Attributes
The CLUSTER element has the following attributes.

Table 82. Attributes of the CLUSTER element

Attribute Name Required Default Description

TITLE See note in
description.

A reference to an externalized string that
contains the title string for this cluster. Avoid
redundant titles when you use clusters for
layout only.

Note: The TITLE attribute is required for
collapsible clusters and optional otherwise.

Chapter 1. Cúram web client reference 233

Table 82. Attributes of the CLUSTER element (continued)

Attribute Name Required Default Description

NUM_COLS See note in
description.

1 Using a single column for forms is
recommended. Multi-column forms are more
prone to misinterpretation and interrupt the
vertical momentum of moving down the form.
However, it makes sense to place short and
logically related fields on the same row, such
as First name and Last name. For more
information about building forms, see the IBM
Carbon Design System v10.

For content panels under 672 px, which is the
Carbon Design System medium breakpoint, the
cluster is responsive and breaks into a single
column full-width layout.

For content panels larger than 672 px, you can
use NUM_COLS.

NUM_COLS sets the number of columns to
display in the cluster, where a cluster column
includes both the label and the field.

To maintain consistent grid layout, clusters
with three columns are divided into four, but
only three columns are displayed. Clusters
with more than four columns are divided into
8, but only the specified number of columns is
displayed.

Although you can use other numbers of
columns, use 1, 2, 4, and 8-column clusters
when you want to fill all available horizontal
space. Use multiple nested or sibling clusters
to achieve layouts of varying column spans.

Note: The NUM_COLS attribute is required
when a cluster contains a field element that
has the ADDRESS_DATA domain data type. The
NUM_COLS attribute is optional for all other
domain data types.

TAB_ORDER No COLUMN The order to lay out elements in a multi-
column cluster. The elements can be ordered
by ROW or COLUMN (default). If a CLUSTER has
NUM_COLS set to 2 or more and contains a mix
of LIST and FIELD elements, the TAB_ORDER
must be set to ROW.

SHOW_LABELS No true Set to true (default) to show labels at the side
of the field values or false to show no labels.

234 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

https://v10.carbondesignsystem.com/patterns/forms-pattern/
https://v10.carbondesignsystem.com/patterns/forms-pattern/
https://v10.carbondesignsystem.com/guidelines/2x-grid/overview/#breakpoints

Table 82. Attributes of the CLUSTER element (continued)

Attribute Name Required Default Description

LAYOUT_ORDER No LABEL (for
read-only
fields only)

For clusters with input or editable fields, labels
display over the fields according to IBM Carbon
Design System guidelines.

For clusters with read-only fields only, you can
also use LAYOUT_ORDER.

LAYOUT_ORDER sets whether labels display
to the left or to the right of fields. Set the
attribute value to LABEL to show labels to the
left (default) or FIELD to show labels to the
right.

Labels and field values are laid out horizontally
where the available space in the column is at
least 8rem wide for labels and 16rem wide
for field values. Where not enough space is
available, values wrap under labels.

WIDTH No The percentage width of the containing area
of the cluster. By default, this attribute is not
set and a cluster fills 100% of its container
up to the maximum width of the Carbon Grid.
On extra large screens, the cluster might not
always occupy 100% of the viewing area. The
maximum width prevents columns that contain
inputs and text from being too wide and having
excessive white space.

For more information about the
Carbon Grid maximum width,
see https://v10.carbondesignsystem.com/
guidelines/2x-grid/implementation.

If needed, you can override the Carbon Grid
maximum width by setting this attribute to 100
to force the cluster to always occupy 100% of
its container, regardless of screen size.

STYLE No The class name of the CSS style to associate
with this cluster for formatting.

DESCRIPTION No A reference to an externalized string that
provides more details about the cluster than
the title alone. It is displayed under the title on
the page.

Chapter 1. Cúram web client reference 235

https://v10.carbondesignsystem.com/guidelines/2x-grid/implementation
https://v10.carbondesignsystem.com/guidelines/2x-grid/implementation

Table 82. Attributes of the CLUSTER element (continued)

Attribute Name Required Default Description

LABEL_WIDTH No For clusters with input or editable fields,
labels use 100% of the available width of the
field, according to IBM Carbon Design System
guidelines.

For clusters with read-only fields, you can use
LABEL_WIDTH.

LABEL_WIDTH specifies the percentage of the
width of a cluster column for the label. By
default, labels display at least 8rem wide.
The max-width of read-only cluster labels is
12rem.

This attribute applies even if SHOW_LABELS is
set to false. You can, for example, use action
controls instead of text labels. You might want
to control the width of these action control
columns and you can do that by setting the
LABEL_WIDTH attribute. The specified width
is applied to every other column. Whether it
starts with the first or second column depends
on the LAYOUT_ORDER attribute.

The LABEL_WIDTH attribute does not
apply to code table hierarchy fields when
SHOW_LABELS is set to false, or when
the FIELD attribute CONFIG has a value of
CT_DISPLAY_LABELS. For more information
about code table hierarchies, see the CONFIG
attribute in “FIELD element” on page 244.

BEHAVIOR No EXPANDED Where suitable, configure clusters to be
collapsible to avoid the extra visual noise and
interaction complexity that clusters can add
to screens. Avoid nesting collapsible clusters
inside other collapsible clusters.

Collapsible clusters can be initially expanded
or collapsed on a page by setting the
EXPANDED or collapsed COLLAPSED attributes.
To remove the collapsible function from
a cluster, set the attribute to NONE. This
attribute is applicable only when the property
ENABLE_COLLAPSIBLE_CLUSTERS is not set
or is set to true in curam_config.xml. For
more information, see “General configuration”
on page 34. This feature is not supported on
clusters that contain Charts, Evidence Review
Widgets, Evidence Comparison Widgets, or
Evidence Tab Container Widgets.

236 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 82. Attributes of the CLUSTER element (continued)

Attribute Name Required Default Description

SUMMARY No A reference to an externalized string that
contains the summary of this cluster. The
SUMMARY attribute describes the purpose and
structure of a cluster.

SCROLL_HEIGHT No Specifies the maximum height of a scrollable
cluster in pixels.

Child elements
The CLUSTER element must contain one of the following elements; ACTION_SET, FIELD, WIDGET,
CONTAINER, CLUSTER, or LIST.

Table 83. Child Elements of the CLUSTER Element

Element Name Cardinality and Description

CONDITION 0..1. Affects whether the cluster is displayed.

TITLE 0..1. The TITLE element is displayed over the CLUSTER.

DESCRIPTION 0..1 The “DESCRIPTION element” on page 244 element has the same
behavior as the DESCRIPTION attribute but allows the description to be
built up from a number of sources. If both are specified, the element takes
precedence over the attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any type.
The action controls are displayed over or under the entire cluster.

FIELD 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

WIDGET 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

CONTAINER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

CLUSTER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

LIST 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER, and LIST elements can
be freely intermingled.

Dynamic conditional clusters
A dynamic conditional cluster allows input field controls within one cluster on a page to control whether
another cluster is displayed or not at runtime. The input field controls are mapped to a JavaScript function
for a cluster. When the JavaScript function is evaluated at runtime, the selected value of the input field
controls determines whether the cluster is displayed or not.

Chapter 1. Cúram web client reference 237

The TYPE attribute on the CONDITION element marks a conditional cluster as being dynamic. If it is not
set to dynamic, the data that evaluates whether a cluster on a page is displayed or hidden comes from
previous pages, not from any fields on the current page.

There are three potential sources of data for dynamic conditional clusters. One source of data is dynamic
and comes from user interactions with input field controls on that page. The two other sources of data are
static in nature and come from page connections and server interface connections.

For dynamic data the following input field controls can be used to control the behavior of a dynamic
conditional cluster:;

1. Drop Down Lists.

These can be populated from a code table, for more information, see “Populated from a code table”
on page 142. Alternatively they can be populated from a display phase server interface, for more
information, see “Selection lists” on page 141.

2. Radio Button Group,

For more information, see “Radio button group” on page 171.
3. Check box Fields.

Single check box fields based on the SVR_BOOLEAN domain are supported

Data from a page connection or display phase server interface connection can be used in addition
to dynamic data, to evaluate whether a dynamic conditional cluster gets displayed or not. For more
information, see “Connection types” on page 226 . For more information about display phase server
interfaces, see “SERVER_INTERFACE element” on page 278. For data from a page connection to
control a dynamic conditional cluster, there needs to be a source page connection mapped to a
JSCRIPT_REF target connection. For data from a display phase server interface connection to control
a dynamic conditional cluster, there needs to be a display phase server interface connection mapped to a
JSCRIPT_REF target connection

Only data types derived from the following underlying domains are supported:

• CURAM_BOOLEAN
• SVR_DATE
• SVR_DATETIME
• THREE_FIELD_DATE
• CURAM_TIME
• SVR_DOUBLE
• SVR_FLOAT
• SVR_INT8
• SVR_INT16
• SVR_INT32
• SVR_INT64
• SVR_CHAR
• SVR_STRING
• FREQUENCY_PATTERN

A dynamic conditional cluster can be displayed when a page is initially loaded (without any user
interaction) if the data that controls the cluster evaluates to true within the configured JavaScript. When
a user interacts with a input field control and selects a particular value from it, it is the raw value that will
be immediately passed to a configured JavaScript function which can be used to evaluate whether the
cluster will be displayed or hidden. When data is submitted to the server, regardless of whether it's source
is static or dynamic, it is the raw value that will be sent. For example, a raw boolean value will be sent for
boolean data, a raw unformatted string will be sent for frequency pattern data, a raw integer value will be
sent for integer data, e.t.c

238 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Data entered into the fields of a dynamic conditional cluster will only be submitted to the server if the
cluster is displayed. If the cluster is hidden when the data is submitted, then default values will be
submitted to the server. For example, for input field controls with integer data, the raw value '0' will
be submitted. For input fields with string data, the raw the raw value '' will be submitted e.t.c. If a
user changes their selection value to display a cluster that was previously hidden, any data entered into
the fields within the cluster will be reset to the default value. Dynamic conditional clusters can also be
pre-populated with initial values when the cluster in initially loaded. Initial data that has been specified
in fields contained within dynamic conditional clusters will only be submitted to the server if that cluster
is shown. However if a user changes their selection value to display a cluster with initial data that was
previously hidden, the initial data will be displayed again to the user.

There are guidelines for configuring dynamic conditional clusters within the application:

• Nested dynamic conditional clusters are supported but it is recommended that there should be a
limit of three nested levels deep, otherwise the performance and responsiveness of the page may be
impacted.

Additionally when configuring nested dynamic conditional clusters, the value of the CONTROL_REF
attribute on each field must be unique and the value of each EXPRESSION attribute must be unique. For
more information about the EXPRESSION attribute, see “SCRIPT element” on page 277.

• Multiple fields can control a single dynamic conditional cluster and the opposite is also true where one
field can control multiple dynamic conditional clusters.

• A controlling field in VIM referenced in a UIM Page can control a dynamic conditional cluster present in
that UIM page. The opposite also holds true where a controlling field in a UIM can control a dynamic
conditional cluster present in a referenced VIM.

The following are unsupported for dynamic conditional clusters:

• Only the three aforementioned input field controls are supported for dynamic data. No other input field
controls are supported.

• When configuring static data for dynamic conditional clusters, only single values are supported, not lists
of values.

• Mandatory fields within dynamic conditional clusters are not supported.
• When configuring the values of the CONTROL_REF and EXPRESSION attributes, please ensure that it is

not a JavaScript reserved word, otherwise a JavaScript error will occur.

Configuring conditional clustering
As stated static data can be configured to control dynamic conditional clusters by configuring a page
connection or display phase server interface connection as a SOURCE connection and JSCRIPT_REF as
the TARGET connection.

The value of the PROPERTY attribute on the JSCRIPT_REF target connection will be
transformed in to a JavaScript variable with the same name and which can be referenced as
curam.dcl.getField('PROPERTY_VALUE') , where PROPERTY_VALUE refers to the value of the PROPERTY
attribute on the JSCRIPT_REF target. Likewise the value of the CONTROL_REF attribute will be
transformed into a JavaScript variable with the same name and which can be referenced as
curam.dcl.getField('CONTROL_REF_VALUE'), where CONTROL_REF_VALUE refers to the value of the
CONTROL_REF attribute. The curam.dcl.getField() function gets the value from a data source as described
above. See more information on this function within the JavaScript documentation.

The following steps are required to configure dynamic conditional clusters:

1. Configure the SCRIPT_FILE attribute of the PAGE element to configure the JavaScript file that contains
the configured JavaScript functions. For more information, see “CONDITION element” on page 240.

2. The following example shows how to configure static data from a page connection and display server
interface connection respectively.

<CONNECT>
 <SOURCE NAME="PAGE" PROPERTY="param1"/>

Chapter 1. Cúram web client reference 239

 <TARGET NAME="JSCRIPT_REF" PROPERTY="staticRef1"/>
</CONNECT>
<CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="stringField1">
 <TARGET NAME="JSCRIPT_REF" PROPERTY="staticRef2">
</CONNECT>

3. To configure a field that will control a dynamic conditional cluster, add the CONTROL_REF attribute on
the appropriate FIELD element. The following example shows this.

<FIELD LABEL="Field.Label" CONTROL_REF="widgetRef1">

</FIELD>

4. At the cluster level, set the TYPE attribute to DYNAMIC on the CONDITION element. For more
information, see “CONDITION element” on page 240. An example of the setting is as follows:

<CLUSTER TITLE="Cluster.Title" ... />
 <CONDITION TYPE="DYNAMIC">
 <SCRIPT EXPRESSION="displayCluster1"/>
 </CONDITION>
</CLUSTER>

5. The recommended location for the JavaScript file that is referenced by the SCRIPT_FILE attribute
and which contains the function to evaluate whether the cluster(s) are displayed or not. It should
be located in the same location as the UIM page or an appropriate jscript directory that contains
other JavaScript files. Any variables referenced by curam.dcl.getField() must refer to a JSCRIPT_REF
property value or the value of a CONTROL_REF attribute or a JavaScript error will occur. The following
example shows how a JavaScript function consumes the data configured and may be evaluated to
display or hide a cluster.

function displayCluster1() {
 // field1 is the value defined in the CONTROL_REF attribute
 if(curam.dcl.getField('staticRef1') == true && curam.dcl.getField('staticRef1') ==
'Astring' && curam.dcl.getField('widgetRef1') == 'A_CODE_TABLE_VALUE')
 {
 return curam.dcl.CLUSTER_SHOW;;
 }
 return curam.dcl.CLUSTER_HIDE;
 }

CONDITION element
The CONDITION element represents the condition under which an ACTION_SET, ACTION_CONTROL,
LIST, or a CLUSTER is displayed.

If a condition evaluates to true, then the parent element will be displayed; if the condition evaluates
to false, then the parent element is not displayed with the following exception: an ACTION_SET
or ACTION_CONTROL element will display disabled links if the condition evaluates to false and the
HIDE_CONDITIONAL_LINKS attribute on the PAGE element or in the curam_config.xml file has
been set to false. Conditional ACTION_SETS and ACTION_CONTROLS are mutually exclusive from
one another and therefore the CONDITION element should be set for either one (depending on the
requirements) but not both.

Finally, if the condition equates to false for those conditional action sets or action controls which appear
as drop down menu items, then a single disabled menu item titled, 'No Contents' is displayed (upon
selecting the drop down menu icon).

Attributes
The CONDITION element has the following attributes.

240 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 84. Attributes of the CONDITION element

Attribute Name Required Default Description

TYPE No Configuring the TYPE to
be DYNAMIC enables
cluster be dynamically
displayed depending on
input from the current
UIM page.

Child elements
The CONDITION element must contain either an IS_TRUE element or an IS_FALSE element. It must not
be empty and it must not contain more than one element.

Table 85. Child Elements of the CONDITION Element

Element Name Cardinality / Description

IS_TRUE 0..1 If the property referenced by the IS_TRUE element
returns true then the condition is true.

IS_FALSE 0..1 If the property referenced by the IS_FALSE element
returns false then the condition is true.

SCRIPT 0..1 This is used to configure a JavaScript function that
evaluates a Dynamic Conditional Cluster.

For Agenda Player specific use, see “Agenda Player” on page 178

CONNECT element
The CONNECT element defines a data connection between two connection end points such as server
interface bean properties, page parameters, screen controls, or localized string values

Attributes
The CONNECT element has no attributes.

Child elements
The CONNECT element must contain at least one of the child elements from the table below, but the
details of how these elements are used depends on the context in which the CONNECT element is defined.
See the specific parent or child element's description for more details.

Table 86. Child Elements of the CONNECT Element

Element Name Cardinality / Description

INITIAL 0..1. This element is only valid in CONNECT elements contained
within FIELD elements.

SOURCE 0..1. Within a FIELD element, the SOURCE is the source of the
value displayed in the field control (unless INITIAL is used).

Chapter 1. Cúram web client reference 241

Table 86. Child Elements of the CONNECT Element (continued)

Element Name Cardinality / Description

TARGET 0..1. Within a FIELD element, the TARGET is the property to
which the value in the field control will be assigned.

CONTAINER element
The CONTAINER element groups FIELD, ACTION_CONTROL and IMAGE elements so that they can be
used in a single cell of a CLUSTER or LIST element.

Attributes
The CONTAINER element has the following attributes.

Table 87. Attributes of the CONTAINER Element

Attribute Name Required Default Description

LABEL No A reference to an externalized string that
should be used as the associated label for
this container.

LABEL_ABBREVIATIO
N

No A reference to an externalized string
containing the associated label abbreviation
text for this container. This label abbreviation
is placed only on table headers in a LIST.

WIDTH No 100 The percentage of the width of the field value
cell in the cluster or list that the container
should occupy.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the
elements within the container. Can be set
to LEFT, RIGHT, CENTER, or DEFAULT. The
value DEFAULT corresponds to the CSS class
default in curam_common.css. Currently the
default is to be left aligned.

SEPARATOR No A reference to an externalized string to use
as the separator between the elements within
the container.

STYLE No A CSS class to be applied to this container.

Child elements
The CONTAINER element can contain the following child elements. It must contain at least one element.

Table 88. Child Elements of the CONTAINER Element

Element Name Cardinality / Description

FIELD 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

242 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 88. Child Elements of the CONTAINER Element (continued)

Element Name Cardinality / Description

IMAGE 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

ACTION_CONTROL 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

WIDGET 0..n. The FIELD, ACTION_CONTROL, IMAGE and WIDGET
elements can be freely intermingled.

DETAILS_ROW element
The DETAILS_ROW element is used within a LIST element to enable each row to be expanded to show
more details about the row. Child elements of DETAILS_ROW define the content that is displayed when
the row is expanded. Currently only the INLINE_PAGE element is supported as a child.

When a page containing a list with expanded rows is submitted to self or refreshed after a dialog submit,
the rows will be re-expanded after the page loads again. This functionality is based on page parameters to
the corresponding INLINE_PAGE and the following limitations apply:

• The INLINE_PAGE must take page parameters and they must uniquely identify each row within the list.
• The functionality is supported for pages submitted to self or refreshed after a dialog submit. In all other

cases all rows after refresh are reset to default - collapsed.
• If the list contains duplicate items, only the first of them will retain the expanded state after refresh.
• If an edit operation in a dialog changes values that are used in the INLINE_PAGE parameters, this row

will be collapsed after refresh.
• If an expanded row is expandable conditionally and it is no longer expandable after the page is

refreshed, its state will be always set to collapsed.

Note that DETAILS_ROW element is not allowed in a list using the SCROLL_HEIGHT attribute.

Attributes
The DETAILS_ROW element has the following attribute.

Table 89. Attributes of the DETAILS_ROW Element

Attribute Name Required Default Description

MINIMUM_EXPANDED_
HEIGHT

No 30px Specifies minimum height in pixels of an
expanded row for this list. To be used for in-line
pages that are expected to contain nested lists
with long actions menus which would not fit to
the default expanded row height.

Child elements
The DETAILS_ROW element contains the following child elements.

Chapter 1. Cúram web client reference 243

Table 90. Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

INLINE_PAGE 1..1 This defines the page to be shown when the list row is
expanded. Currently this is the only supported element, hence
it's 1..1 cardinality.

CONDITION 0..1. Affects whether or not the details row is displayed.

DESCRIPTION element
The DESCRIPTION element defines the description associated with a PAGE_TITLE, CLUSTER or LIST
element. A DESCRIPTION is constructed by concatenating a number of connection sources together.

Attributes
The DESCRIPTION element has the following attributes.

Table 91. Attributes of the DESCRIPTION Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the separator
between the elements within the container.

Child elements
The DESCRIPTION element can contain child elements as follows:

Table 92. Child Elements of the DESCRIPTION Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings in a properties file.

FIELD element
The FIELD element can specify a data value to be displayed in a CLUSTER, a value to be retrieved from
the user by using an input control in a CLUSTER, or a list of data values to be displayed in a LIST column.
FIELD elements can also be aggregated within CONTAINER elements so that they fill a single cell of a
CLUSTER or LIST element.

When the FIELD element is used to display a code-table hierarchy, either on an edit or ready-only page,
the following behavior applies:

• For an edit page, only one FIELD element is needed to display a code-table hierarchy with a domain
definition that is inherited from CODETABLE_CODE that has the code-table name set to the lowest-level
code table in a hierarchy. The CDEJ infrastructure automatically determines its code-table hierarchy and
then displays however many drop-downs it has. For example, for a three-level hierarchy, then the three
levels are displayed.

• For a read-only page, only the lowest level code-table value is displayed on the screen by using a single
FIELD element as the edit page. The CDEJ infrastructure does not support displaying the full hierarchy.

244 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

• Where the code table displays as a dropdown, the options are filtered based on input that is typed into
the dropdown. Options that don't match are hidden from view. In addition, the options are filtered by
using the filter method 'contains' to show all options that contain the typed input.

Note: IEG has not been updated to use Carbon components, and as such IEG does not use the Carbon
dropdown.

Attributes
The FIELD element has the following attributes.

Table 93. Attributes of the FIELD element

Attribute Name Required Default Description

LABEL See
description
for details.

A reference to an externalized string that is
used as the associated label for this field.

Currently, the LABEL attribute is mandatory
only when a CONNECT element exists that
contains a TARGET.

However, not providing a LABEL value
results in the following accessibility
violation so ensure that you provide a value
for new and existing fields.

AVT1: "Each form control must have
associated label"

LABEL_ABBREVIATION No A reference to an externalized string that
contains the associated label abbreviation
text for this field. This label abbreviation is
placed only on table headers in a LIST.

DESCRIPTION No A reference to an externalized string that is
displayed under the label text.

ALT_TEXT No A reference to an externalized string that
is used as the alternative text for the field.
This reference is applicable only when the
field has a target connection, that is, it is
an input field. If this attribute is added to a
mandatory input field, the text Mandatory
is appended to the externalized string. If
this attribute is not specified, the LABEL is
used. Browsers that are supported by the
Cúram application display alternative text
when the mouse is hovered over the input
control.

Chapter 1. Cúram web client reference 245

Table 93. Attributes of the FIELD element (continued)

Attribute Name Required Default Description

WIDTH No Specifies the width of the field value within
its cluster or list cell. The default value is
100% if no value is specified.

If you specify a width other than 100
on a FIELD that renders as a drop-down
menu, the maximum width of the drop-
down menu is determined by the width of
the options.

The following list outlines the
form components that support
WIDTH_UNITS=CHARS attributes:

• Text input.
• Text area.
• Search pop-up.
• Drop-down.

WIDTH_UNITS No PERCENT The units in which the width is interpreted.
This measurement can be PERCENT to
indicate the percentage of the space
available to the field, or CHARS to indicate
the number of visible characters the field
needs to accommodate.

HEIGHT No 1 For input fields that resolve to a text input
control, this input specifies the number of
visible lines of text that the control displays.
For input fields that resolve to a selection
list, this value specifies the number of
entries that are initially displayed. For
example, a scrollable selection list is
displayed instead of a drop-down selection
list.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the
field value. Can be set to LEFT, RIGHT,
CENTER, or DEFAULT. The value DEFAULT
corresponds to the CSS class default in the
curam_common.css. Currently the default
is to be left-aligned. In a CLUSTER, only
input fields are aligned. In a LIST, all fields
are aligned.

USE_DEFAULT No true If set to true (the default) and the field
has no SOURCE connection, then if a
sensible default value for the field can be
determined automatically, it is displayed.

For example, numeric fields display a zero,
string fields are empty, and date fields
defaults to the current date.

246 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 93. Attributes of the FIELD element (continued)

Attribute Name Required Default Description

USE_BLANK No false If the field source is a code-table-based
property, or a server interface list property,
it is displayed in a list. If this attribute is set
to true, an extra blank value is added to
the beginning of the list.

CONTROL No DEFAULT The CONTROL attribute can take one of a
number of values:

• DEFAULT The field behaves in the
standard fashion.

• SUMMARY, DYNAMIC,
DYNAMIC_FULL_TREE, and FAILURE
These settings apply only to rules fields.
For more information, see “Rules Trees”
on page 144.

• SKIP Indicates that the field is only
present to occupy space in a CLUSTER to
balance the layout. No label or value is
displayed. However, the label background
still is presented.

• TRANSFER_LIST Enables a list on a
page to be displayed as a transfer list
widget. This mode is only applicable and
supported for list controls with multiple
selections.

• CT_HIERARCHY_HORIZONTAL Displays a
list as a horizontal code-table hierarchy.

• CT_HIERARCHY_VERTICAL Displays a
list as a vertical code-table hierarchy.
For more information about code-table
hierarchies, see the Cúram Server
Developers Guide.

CONFIG No Identifies configuration details for this
FIELD instance. This attribute can
be used only with a FIELD whose
CONTROL attribute is for a widget that
supports configuration. For example, if
the CONTROL attribute is DYNAMIC for
a FIELD of the RESULT_TEXT domain
then the CONFIG attribute needs to
match an ID on a config element in
the RulesDecisionConfig.xml file. For
more information about configuration, see
“Dynamic Rules View” on page 145.

CT_DISPLAY_LABELS displays labels for
each code table in a code-table hierarchy.
For more information about code-table
hierarchies, see the CONTROL attribute.

Chapter 1. Cúram web client reference 247

Table 93. Attributes of the FIELD element (continued)

Attribute Name Required Default Description

INITIAL_FOCUS No false A FIELD element, whose INITIAL_FOCUS
attribute is set to true, gets focus when
the page is displayed. In other words, the
cursor is placed in that field ready for data
entry. If no FIELD requests the initial focus,
the cursor is placed in the first input field
on the page. It is not allowed to have more
than one FIELD with the INITIAL_FOCUS
attribute set to true specified on a page.

PROMPT No false This attribute is used to configure a
placeholder value in the field that is
associated with a Date Selector, if the field
is blank. On focus, the placeholder text
disappears to allow for data entry.

CONTROL_REF No This setting is used to configure Dynamic
Conditional Clusters. The purpose of the
CONTROL_REF is to set the controlling
input. If something is selected, a
cluster becomes visible. The CONTROL_REF
attribute is set to an identifier that is
evaluated by the JavaScript.

Child elements
The FIELD element can contain the following child elements.

Table 94. Child Elements of the FIELD Element

Element Name Cardinality / Description

CONNECT 0..3. A field can contain up to three CONNECT elements. The SOURCE connection
defines the initial value for the field. This value is the static value that is shown
if there is no target end point, or the initial value of an input control if there is
a target end point. The TARGET end point defines the property to be set from
the field value during the action phase. If a TARGET end point is specified, the
SOURCE end point must be from a server interface property because domain
information is needed to correctly format the value for display in the input
control.

If an INITIAL end point is used and the property is not a list value, it specifies
the visible value of the field, which is read-only. The SOURCE value is hidden,
and the pair of values can be changed only with a pop-up search page. The
TARGET end point is supplied with the hidden value.

If an INITIAL end point is used and the property is a list value, it specifies the
visible values in a drop-down list. The INITIAL element's HIDDEN_PROPERTY
specifies the corresponding list of hidden values to be supplied to the TARGET
end point. In this instance, the SOURCE end point specifies one of the hidden
values in the list to be used as the initial list selection (the corresponding visible
value is displayed).

248 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 94. Child Elements of the FIELD Element (continued)

Element Name Cardinality / Description

LINK 0..1. Only valid for output fields. That is, fields with no TARGET connection end
point. The value of the output field is used as the text for the hyperlink specified
by this LINK element.

If the field is based on a domain that needs a pop-up window, the LINK
element can be used to supply parameters to the pop-up page. In this case, do
not specify a PAGE_ID attribute for the LINK element, see “Using the pop-up
page” on page 176.

LABEL 0..1. Allows the label for a FIELD to be constructed from a number of sources.
If both a LABEL attribute and LABEL child element are specified, the element
takes precedence. See “LABEL element” on page 256 for more details.

SCRIPT 0..n. A script file associated with this FIELD that contains JavaScript code to be
activated in response to the specified event on the field control. See “SCRIPT
element” on page 277 for more details and limitations on this element usage.

FOOTER_ROW element
The FOOTER_ROW element is used to define a single footer row at the end of a list. A list can have multiple
footer rows. A FOOTER_ROW element may only contain FIELD elements. The number of FIELD elements
must match the number of columns in the parent list.

There are two CSS classes associated with footer row fields. A FIELD with a TEXT SOURCE connection
is output with the footerheader CSS class. All other SOURCE connections are output with the
footervalue CSS class. Both of these classes are defined in curam_common.css and can thus be
customized.

Spanning column widths are supported through the use of skip fields. For instance, if one normal field and
two skip fields are used in a FOOTER_ROW element, this normal field will span three columns. Example
code is shown below.
<LIST TITLE="List.Title.One" DESCRIPTION="List.Description.One">
 <FIELD LABEL="Field.Title.BankId" WIDTH="40">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Title.Name" WIDTH="35">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="dtls$date"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Title.VersionNo" WIDTH="25">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="dtls$total"/>
 </CONNECT>
 </FIELD>

 <FOOTER_ROW>
 <FIELD CONTROL="SKIP"/>
 <FIELD WIDTH="40" LABEL="Field.Title.Footer" >
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Footer.Text.Entitlement"/>
 </CONNECT>
 </FIELD>
 <FIELD>
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>
 </CONNECT>
 </FIELD>
 </FOOTER_ROW>
</LIST>

Figure 72. Example of a FOOTER_ROW in a List.

Chapter 1. Cúram web client reference 249

Attributes
The FOOTER_ROW element has no attributes.

Child elements
The FOOTER_ROW element contains the following child elements.

Table 95. Child Elements of the FOOTER_ROW Element

Element Name Cardinality / Description

FIELD 1..n Each FOOTER_ROW must contain the same number FIELD
elements as there are columns in the parent LIST.

IMAGE element
The IMAGE element inserts an image into a CONTAINER.

Attributes
The IMAGE element has attributes as follows:

Table 96. Attributes of the IMAGE Element

Attribute Name Required Default Description

IMAGE Yes A reference to an entry in the
Image.properties file.

LABEL Yes The entry in the UIM's associated properties file
which is used as the alternate (or "alt") text of
the image.

STYLE No A CSS style to associate with the image.

Child Elements
The IMAGE element has no child elements.

INCLUDE element
The INCLUDE element indicates that the elements within an external UIM view document should be
included at this position in the page.

Attributes
The INCLUDE element has attributes as follows:

Table 97. Attributes of the INCLUDE Element

Attribute Name Required Default Description

FILE_NAME Yes The file name of the UIM view document to be
included. No path to the file should be specified.
The file name alone is sufficient to identify the
document.

250 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Child elements
The INCLUDE element has no child elements.

INITIAL element
The INITIAL element is only valid within a CONNECT element contained in a FIELD element.

Use of this connection type is described in further detail in the following sections:

• For pop-up pages see “Pop-up pages” on page 172
• For selection lists populated from server interface properties see “Selection lists” on page 141

Attributes
The INITIAL element has the following attributes:

Table 98. Attributes of the INITIAL Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value.

PROPERTY Yes The source of the data to be displayed
in the visible field. This can be a list or a
non-list field type.

HIDDEN_PROPERTY No The source of the list data that has a
one-to-one mapping (based on the list
indexes) to the list property specified in
the PROPERTY attribute.

Child Elements
The INITIAL element contains no child elements.

INFORMATIONAL element
The INFORMATIONAL element is used to display informational messages returned from the server. These
are different to error messages in that the server call completes successfully.

The messages are created in server side code using the SDEJ Informational Manager API (see the Cúram
Server Developers Guide for more details). This API allows a developer to assign messages to an output
list field(s). This field must then be referenced using child CONNECT elements. The message will be
displayed at the top of the page in the same area as error messages and this may not be on the page
on which the INFORMATIONAL element was defined. It could be on the following page or on the parent
page in the case of modal dialogs. Finally, messages are never displayed within the context panel of the
application, but instead are always displayed within the main content area of the page.

Attributes
The INFORMATIONAL element has no attributes.

Child elements
The INFORMATIONAL element contains the following child elements.

Chapter 1. Cúram web client reference 251

Table 99. Child Elements of the INFORMATIONAL Element

Element Name Cardinality / Description

CONNECT 1..n Each CONNECT element specifies a single SOURCE end-
point. This is a field of a bean which contains informational
messages.

INLINE_PAGE element
The INLINE_PAGE element is used to display the contents of one UIM page in-line in another. Currently
this is only supported within the DETAILS_ROW element of a LIST to support displaying extra content
when a list row is expanded.

Attributes
The INLINE_PAGE element has the following attributes.

Table 100. Attributes of the INLINE_PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes The ID of the UIM page to display.
Circular dependencies must not be
introduced. If a page is used inline, it
is not allowed for it to be mapped to a
tab at the same time.

URI_SOURCE_NAME No The name of the SERVER_INTERFACE
instance to use as the source of
the URI. This attribute is paired with
URI_SOURCE_PROPERTY. Note that a
URI can only be sourced from a
server interface. This attribute cannot
be used to specify page parameters or
properties files as a source for the URI.
The server interface reference must be
called during the "display-phase" and
the parent ACTION_CONTROL must be
of type ACTION when this property is
used.

URI_SOURCE_PROPERTY No The name of the property to use as the
source of the URI.

Child elements
The INLINE_PAGE element contains the following child elements.

252 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 101. Child Elements of the INLINE_PAGE Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on this element define the parameters
to be exported to the page targeted by the INLINE_PAGE
elements PAGE_ID attribute. The CONNECT should contain
both a SOURCE and a TARGET element and the TARGET
element should have the NAME attribute set to PAGE and the
PROPERTY attribute set to the name of the page parameter.

Restrictions on usage
The UIM page opened in an expanded row is intended for only viewing additional information about the
row. It should not be used for editing information about that row. Instead a modal dialog should be
launched from the page when an edit is required.

As these pages are for viewing information only, the following rules/restrictions should be noted for these
"in-line" pages.

• The "in-line" pages displayed in an expanded row must not be used for editing information.
• The "in-line" pages displayed in an expanded row should not display very complex widgets that require

a "full screen". This includes the following domain specific controls and UIM elements:

– Decision Assist: The Decision Matrix Widget
– Decision Assist: Typical Picture Editor Widget
– Decision Assist: Evidence Review Widget
– Agenda Player
– Batch Function View
– The Rules Simulation Editor
– The Rates Table
– The Meeting View Widget

– The FILE_EDIT Widget
– The Calendar
– Rules Trees

Note: There are no validations in place for these restrictions and it is the responsibility of the developer to
ensure they don't use unsupported widgets in an expandable list.

IS_FALSE element
A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element evaluates to true
when the referenced property value is false.

Attributes
The IS_FALSE element has the following attributes.

Table 102. Attributes of the IS_FALSE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value.

Chapter 1. Cúram web client reference 253

Table 102. Attributes of the IS_FALSE Element (continued)

Attribute Name Required Default Description

PROPERTY Yes The name of the property being
accessed. It must be a Boolean value.

See “IS_TRUE element” on page 254 for more details on the use of this element to access the values of
action-phase server interface properties.

Child Elements
The IS_FALSE element contains no child elements.

IS_TRUE element
A Boolean test to evaluate if the parent CONDITION succeeds or fails. This element evaluates to true
when the referenced property value is true.

Attributes
The IS_TRUE element has the following attributes:

Table 103. Attributes of the IS_TRUE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE
instance to use as the source of the
property value.

PROPERTY Yes The name of the property being
accessed. It must be a Boolean value.

In the majority of cases the NAME and PROPERTY combination will reference a display-phase server
interface property. However when a page submits to itself using an ACTION_CONTROL with a child LINK
element that has the PAGE_ID set to THIS (e.g., a search page), properties of the action-phase server
interface can be referenced. When the page is first displayed the action-phase server interface will not be
in scope and the property is treated as if its value is false. When the page is submitted, the action-phase
server interface will be in scope and the referenced property will be evaluated as normal.

Child Elements
The IS_TRUE element contains no child elements.

JSP SCRIPTLET
The JSP_SCRIPTLET element defines JSP scriptlet code that should be inserted into the page at
that point relative to any other LIST or CLUSTER elements. Any TextHelper beans declared by a
SERVER_INTERFACE element to be in the DISPLAY phase are available to the scriptlet by getting the
attribute of the page context with the same name as the NAME attribute of the SERVER_INTERFACE
element.

An example is shown

<SERVER_INTERFACE NAME="MyBeanName" CLASS="MyClass" OPERATION="getMyData" />
<JSP_SCRIPTLET> <![CDATA[curam.omega3.texthelper.TextHelper th
= pageContext.findAttribute("MyBeanName"); String myValue =

254 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

th.getFieldValue("myPropertyName"); out.print("VALUE: " + myValue);]]> </
JSP_SCRIPTLET>

As the code within the JSP_SCRIPTLET element may contain reserved XML characters2, you can either
replace these characters with the appropriate XML character entity or enclose the contents of the
element in the CDATA ("character data") block as shown above which will prevent the XML parser from
trying to interpret the contents of the block.

A common use of the JSP_SCRIPTLET element is to write code that redirects the current page to
another page. Other uses are not recommended and patterns such as system parameter manipulation,
the creation of logic for display purposes and the addition of JavaScript to such pages should be avoided.
“JSP SCRIPTLET” on page 254, below, shows an example of how to use JSP_SCRIPTLET for redirection
purposes.
<PAGE PAGE_ID="Activity_resolveAttendeeHome">
 <JSP_SCRIPTLET>
 <![CDATA[
 curam.omega3.request.RequestHandler rh
 = curam.omega3.request.RequestHandlerFactory
 .getRequestHandler(request);
 String context = request.getContextPath() + "/";
 context += curam.omega3.user.UserPreferencesFactory
 .getUserPreferences(pageContext.getSession())
 .getLocale() + "/";
 String url = context + "UserCalendarPage.do?"
 + "startDate=&calendarViewType=CVT3";
 url += "&" + rh.getSystemParameters();
 response.sendRedirect(response.encodeRedirectURL(url));
]]>
 </JSP_SCRIPTLET>
</PAGE>

Figure 73. Example JSP SCRIPTLET Redirecting to a Page

This demonstrates the API used to access the system parameters that control an application's
ability to return to previous pages. The information about the previous page is stored in the system
parameters accessible via the RequestHandler. getSystemParameters() method. By adding the
system parameters, any Cancel button on the following page will return to the expected page when
clicked. The RequestHandlerFactory. getRequestHandler() method is passed the JSP request
object and will return the appropriate request handler. The system parameters should be appended to the
redirect URL and just require a separating "&" character as they are already formatted in name = value
pairs.

When using a JSP_SCRIPTLET to redirect to another page, the JSP_SCRIPTLET should be the only child
element of the PAGE element. When this is the case, no HTML content will be generated for the page:
it will not be displayed, so no HTML is required. If other elements are present, then HTML content will
be generated. This can include the page header, navigation menus, footer, title, etc. If this HTML content
exceeds the size of the buffer on the web container serving the page, then the content will be transmitted
to the web browser. Once any content is transmitted in this way, the redirect operation will have no effect.
Therefore, ensuring that the page contains a single JSP_SCRIPTLET element and no other elements will
ensure that the redirect operation works as expected.

If you need to access a TextHelper instance from a JSP scriptlet that redirects to another page, then you
cannot use the SERVER_INTERFACE element to declare the TextHelper as shown in “JSP SCRIPTLET” on
page 254, as this extra element would cause HTML content to be generated. Instead, you must declare
the TextHelper instance within the scriptlet code as shown below.

It should be noted that, when using JSP_SCRIPTLET, there is limited error handling capability. Thus,
code should not make calls to secured server interface methods. Instead, the target page of any
JSP_SCRIPTLET should be secured appropriately.

2 The reserved characters in XML are " ' ", " " ", " & ", " < ", and " > ". The respective XML character entities
are " ' ", " " ", " & ", " < ",and " > ".

Chapter 1. Cúram web client reference 255

<PAGE PAGE_ID="Activity_resolveApplicationHome">
 <JSP_SCRIPTLET>
 <![CDATA[
 curam.omega3.request.RequestHandler rh
 = curam.omega3.request.RequestHandlerFactory
 .getRequestHandler(request);
 String context = request.getContextPath() + "/";
 context += curam.omega3.user.UserPreferencesFactory
 .getUserPreferences(pageContext.getSession())
 .getLocale() + "/";
 String activityID = request.getParameter("ID");
 String eventType = request.getParameter("TYPE");
 String url = context;

 curam.interfaces.ActivityPkg.Activity_readDescription_TH
 th = new curam.interfaces.ActivityPkg
 .Activity_readDescription_TH();
 th.setFieldValue(
 th.key$activityDescriptionKey$activityID_idx,
 activityID);
 th.callServer();

 String description = th.getFieldValue(
 th.result$activityDescriptionDetails$description_idx);
 if (eventType.equals("AT1")) {
 url = "Activity_viewUserRecurringActivityPage.do?";
 } else {
 url = "Activity_viewUserStandardActivityPage.do?";
 }
 url += "activityID=" + activityID;
 url += "&description="
 + curam.omega3.request.RequestUtils.escapeURL(
 description);
 url += "&" + rh.getSystemParameters();
 response.sendRedirect(response.encodeRedirectURL(url));
]]>
 </JSP_SCRIPTLET>
</PAGE>

Figure 74. Example JSP_SCRIPTLET Redirecting and Accessing a TextHelper

When adding parameters to the parameter list, care must be taken if the parameter value may contain
non-ASCII characters. Values containing non-ASCII characters must be escaped before they are added
to the parameter list to ensure that the characters are preserved correctly. The RequestUtils.
escapeURL(String) method can be used to perform the escaping. An example of the Java code to
perform this escaping is shown in the example above. Code following that pattern should be included
within your JSP scriptlet.

Attributes
The JSP_SCRIPTLET element has no attributes.

Child elements
The JSP_SCRIPTLET element contains no child elements. The body of the element must only contain the
JSP scriptlet code to be inserted into the page.

LABEL element
The LABEL element can be used as a child element of FIELD to construct a label by concatenating
multiple values.

An example of the field and label data is shown.

<CLUSTER TITLE="Cluster.Title">
 <FIELD>
 <LABEL>
 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Label.Text" />
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="personName" />
 </CONNECT>

256 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Label.Separator" />
 </CONNECT>
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="dateOfBirth" />
 </CONNECT>
 </LABEL>

 <CONNECT>
 <TARGET NAME="ACTION" PROPERTY="fieldName"/>
 </CONNECT>
 </FIELD>
</CLUSTER>

Figure 75. Example of a Dynamic LABEL

Attributes
The LABEL element has no attributes:

Child elements
The LABEL element can contain the following child elements.

Table 104. Child Elements of the LABEL Element

Element Name Cardinality / Description

CONNECT 1..n. A CONNECT element specifying a single SOURCE end-point.
Action-phase server interfaces cannot be used in the SOURCE end-
point.

LINK element
The LINK element specifies the page to go to after an action phase. Alternatively, a LINK element can
specify any external web page or certain resource. Links can contain CONNECT elements to map values to
parameters to be added to the link.

Attributes
The LINK element has the following attributes. Note that the PAGE_ID, PAGE_ID_REF, URL, URI, and
URI_REF attributes are mutually exclusive as well as the pair of attributes URI_SOURCE_NAME and
URI_SOURCE_PROPERTY.

Please note that attributes that have the ability to link to external web pages or resources (i.e mailto:
links) will have their link back functionality stripped away. This link back functionality keeps a link to the
previous page. An example of where this is needed is with cancel buttons where if they are used, the page
will link back to the previous page. In order to keep this, the link will have to be to an internal Curam page.
In order to mark a link as being a link to an internal Curam page, the keyword 'curam:' needs to be added
before the link text.

Chapter 1. Cúram web client reference 257

Table 105. Attributes of the LINK Element

Attribute Name Required Default Description

PAGE_ID No The unique identifier of the page to be
opened. This is the value of the PAGE_ID
attribute of the PAGE element in the required
UIM page document.

If this attribute is set to the PAGE_ID of the
current page, the page will be re-opened with
all the input fields reset to their default state.

If the link is on an action control with a TYPE
set to SUBMIT and this attribute is set to
the value THIS, the link will return to the
current page after the action phase and the
input fields will not be reset to their default
state. This is useful for search pages where
the search criteria need to be preserved.

PAGE_ID_REF No A PAGE_ID can alternatively be specified
by reference to an entry in the
CuramLinks.properties file. This allows
many links to refer to the same target page
yet all can be updated by changing the entry in
the CuramLinks.properties file.

URL No It is recommended to use the new URI
attribute which is described below. The
URL attribute is maintained for backward
compatibility.

URI No Rather than link to another page in the
application, the URI attribute allows the
creation of a link to any URI whatsoever.
This can be used to link to pages or
other resources completely outside of the
application. Parameters must be supplied by
CONNECT elements within the LINK to ensure
correct encoding.

URI_REF No A URI (or URL) can alternatively be
specified by reference to an entry in the
CuramLinks.properties file. This allows
many links to refer to the same target yet
all can be updated by changing the entry
in the CuramLinks.properties file. The
file can be placed in any component in the
application.

258 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 105. Attributes of the LINK Element (continued)

Attribute Name Required Default Description

URI_SOURCE_NAME No The name of the SERVER_INTERFACE
instance to use as the source of
the URI. This attribute is paired with
URI_SOURCE_PROPERTY. Note that a URI
can only be sourced from a server interface.
This attribute cannot be used to specify page
parameters or properties files as a source
for the URI. The server interface reference
must be called during the "display-phase" and
the parent ACTION_CONTROL must be of type
ACTION when this property is used.

URI_SOURCE_PROPERTY No The name of the property to use as the source
of the URI.

OPEN_NEW No false When set to true, this flag indicates that
the linked page should be opened in a new
window. When set to false (the default) the
linked page will be opened in the current
window. This setting is only supported for
links to external sites.

SAVE_LINK No true This attribute indicates that the page
containing the link should be returned to if an
action control on the target page is configured
to return to the previous page. An action
control without a LINK child element will
return the user to the previous page. If there
is a sequence of pages and any one of them
needs to go back to a "starting" page, then
each page in the sequence should set this
attribute to false so that subsequent pages
do not return to their immediate previous
page in the chain.

SET_HIERARCHY_RETUR
N_PAGE

No false This attribute is no longer used but has been
retained in the UIM schema to avoid upgrade
impact.

USE_HIERARCHY_RETUR
N_PAGE

No false This attribute is no longer used but has been
retained in the UIM schema to avoid upgrade
impact.

Chapter 1. Cúram web client reference 259

Table 105. Attributes of the LINK Element (continued)

Attribute Name Required Default Description

HOME_PAGE No If this attribute is set to true, the link will
take a user directly to their home page.
During development the home page can be
configured by setting the "application code"
field of the Cúram "users" table. This value
of this field corresponds to an entry on the
APPLICATION_CODE code-table. At runtime,
the Cúram Administration application allows
the home page to be set when creating or
editing a user.

Note, that in the development environment
Java EE security is not enabled. Therefore,
since a user name is not available the home
page link cannot be displayed.

OPEN_MODAL No "false" If this attribute is set to true, the link will
open the referenced page in a new window.
The new window is modal, meaning that
while it is open the parent window cannot
be accessed. When a user navigates from the
original page in the modal dialog, either by
submitting a form or clicking a link, the modal
dialog is closed, and the parent page that
spawned it is sent to the new location.

DISMISS_MODAL No "true" If this attribute is set to false, the link will
open the referenced page in the same pop-up
window, modal or normal depending on what
the browser supports.

260 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 105. Attributes of the LINK Element (continued)

Attribute Name Required Default Description

WINDOW_OPTIONS No "width=700
,
height=auto
-calculated"

Use the parameter to configure the size of
each modal dialog. The value of the attribute
is a comma-separated list of name value pairs.
Width is the option that is supported. The
height option is ignored, as the height is
dynamically calculated. The modal content
has a minimum height of 350 px. The width
takes an integer value, which is converted
to one of five sizes: x-small, small, default,
large, and x-large. Each modal size has a
responsive width that changes based on the
browser size. As the browser decreases, the
modal width percentage increases. This way,
the modal width maintains a proper ratio
between the modal and browser. Using any
other parameters produces an error. Set the
attribute only when OPEN_MODAL is set to
true on the same LINK tag.

The following table lists the width values and
the corresponding sizes.

Width values Size

0 - 420 X-small

421 - 576 Small

577 - 768 Default

769 - 1199 Large

1200+ X-large

Child Elements
The LINK element can contain the following child elements:

Table 106. Child Elements of the LINK Element

Element Name Cardinality / Description

CONNECT 0..n. Connections on a link define the parameters to be
exported to the page targeted by the link. The CONNECT
should contain both a SOURCE and a TARGET element and
the TARGET element should have the NAME attribute set to
PAGE and the PROPERTY attribute set to the name of the
page parameter. Any type of SOURCE element can be used
except the TEXT. Also, in the scenario where the LINK is
inside an ACTION_CONTROL with TYPE = SUBMIT, the SOURCE
must have an ACTION phase bean, a page parameter or a
CONSTANT. The reason being the URL is generated in the
action class and the DISPLAY bean is not accessible at the
stage.

Chapter 1. Cúram web client reference 261

Table 106. Child Elements of the LINK Element (continued)

Element Name Cardinality / Description

CONDITION 0..1. Affects whether or not the link is displayed.

Modal dialogs
Modal dialogs are typically used to present critical information or request user input that is needed to
complete a user’s workflow. When a modal dialog is active, users are blocked from the on-page content
and cannot return to their previous workflow until the modal task is completed or the user closes the
modal.

Comparison between modal dialogs and pop-up pages
A modal dialog is similar to a pop-up page as it opens a dialog box to display a page over the main
application content. However, a modal dialog is different in a number of ways;

• When a modal dialog is open, its parent page cannot be accessed. The parent page is grayed out and
ignores any user action.

• Changing the page in the modal dialog, either by submitting a form or by clicking a link, causes it to
close. The parent page is changed, with the following exceptions:

– If the linked page has the same ID as the current modal page, for example, a Save & New button or
link, it is refreshed in the same modal window.

– If the link has the DISMISS_MODAL attribute set to false, the linked page opens in the same modal
window.

– If the link has the OPEN_MODAL attribute set to true, it opens in a new modal window.
• The usage of modal dialogs is less complex that the usage of pop-up pages, and consists of using either

one or two optional attributes on the LINK element.

Using modal dialogs
By default, a new page opens in the same window. You can choose to open a LINK element in a modal
dialog by setting the OPEN_MODAL attribute to true as shown.

<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true" />

Setting OPEN_MODAL on a LINK inside an ACTION_CONTROL of type SUBMIT has no effect.

Setting OPEN_MODAL=true on a link implies DISMISS_MODAL=false so DISMISS_MODAL=true is
ignored.

Similarly, setting DISMISS_MODAL=false implies OPEN_MODAL=false so you don't need to set it.

Configuring individual modal dialogs
To configure individual modal dialogs, set the WINDOW_OPTIONS attribute on a LINK element where
the OPEN_MODAL attribute is set to true. The WINDOW_OPTIONS attribute is formatted as a comma-
separated list of name value pairs.

Multiple options can be set by using this attribute. The parameter that is supported is width. width sets
the width of the modal dialog and is measured in pixels as shown in the following example.

<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true"
WINDOW_OPTIONS="width=600, height=auto-calculated" />

For the WINDOW_OPTIONS attribute, the width value is a simple integer with no alphabetic characters
appended. Where no width parameter is specified, a default width of 600 pixels is used. If an
unsupported parameter is placed in the WINDOW_OPTIONS, a build time exception results.

262 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Where the WINDOW_OPTIONS attribute is also specified on the PAGE element of the page that a LINK
element points to, it takes precedence over the value that is specified on the LINK element.

The height is automatically calculated to accommodate the page contents. You can configure the
minimum height for modal dialogs by using the modal.dialogs.minimum.height property in the
ApplicationConfiguration.properties file.

Controlling individual modal dialogs from custom JavaScript
You can control individual modal dialogs with custom JavaScript by using the provided
curam.util.UimDialog API. For more information, see the full API documentation in <cdej-
dir>\doc\JavaScript\index.html.

Loading custom non-UIM pages in a modal dialog
Custom non-UIM pages must hook into a specific set of API functions to work correctly in a modal dialog.
These functions are provided by the curam.util.Dialog API. For more information, see the full API
documentation in <cdej-dir>\doc\JavaScript\index.html.

Enabling movable modal dialogs

While users cannot interact with the on-page content while a modal dialog is active, you can use custom
JavaScript to make modal dialogs draggable. Users can then drag a modal dialog to see content on
the application page while they complete their task. A sample JavaScript file is provided to help you to
customize this behavior for all modal dialogs at a global application level.

Copy the webclient/components/core/WebContent/CDEJ/jscript/curam/application/
modal/ModalHooks.js file to a custom component so you can implement this behavior.

In your custom ModalHooks.js file, implement the enableDraggableModals(modalRoot) function.
The modalRoot node of modal dialogs is available in this function and you can update it to enable
movable modal dialogs across the application.

One of the most common ways to implement a movable modal dialog is to use event listeners. The event
listeners can listen for when a user drags a modal dialog and update the position of the node by using the
style attribute.

LIST element
The LIST element defines the layout of a control used to display lists of data. Each field or action control
becomes a column and data values are then tabulated.

Attributes
The LIST element has the following attributes:

Table 107. Attributes of the LIST Element

Attribute Name Required Default Description

TITLE No A reference to an externalized string containing
the title string for this list. See also note below.

STYLE No The class name of the CSS style to associate
with this list for formatting.

Chapter 1. Cúram web client reference 263

Table 107. Attributes of the LIST Element (continued)

Attribute Name Required Default Description

DESCRIPTION No A reference to an externalized string that
provides more details about the list than the
title alone. This will be displayed below the title
on the page.

SORTABLE No true Lists can be sorted by clicking on the
appropriate headers. This is set by default to be
enabled without the use of the attribute. This
attribute allows this feature to be controlled
with false disabling the feature and true
enabling it.

SUMMARY No A reference to an externalized string containing
the summary of this list. The SUMMARY attribute
describes the purpose and/or structure of a list.

SCROLL_HEIGHT No Specifies in pixels the desired fixed height of a
scrollable list. A vertical scrollbar is provided
once the list exceeds the scroll height. The
scrollbar is only applied to the list body and
the list's column headers remain fixed Scroll
height is independent of the list contents and
therefore an empty list will still be set to the
height specified.

BEHAVIOR No Optional attribute which controls the display
and behavior of the toggle button used to
expand or collapse the list.

Three value options are available for this
attribute:

• NONE which prevents the toggle button from
being displayed in the list header.

• EXPANDED : the toggle button is displayed and
the list is initially expanded.

• COLLAPSED : the toggle button is displayed
and the list is initially collapsed.

When the BEHAVIOR is not set for a list, its
default value of EXPANDED is implied.

Note that this attribute is
only applicable when the property
ENABLE_COLLAPSIBLE_CLUSTERS is not set
or is set to true in curam_config.xml. For
details see “General configuration” on page 34.

PAGINATED No true Enables the ability to page through lists
displayed in Cúram pages. Any LIST longer
than the configured minimum size will display
only the first "page" of data and the pagination
controls will be displayed below the list.

264 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 107. Attributes of the LIST Element (continued)

Attribute Name Required Default Description

DEFAULT_PAGE_SIZE No Based on the
global
configured
value, usually
15.

Specifies the page size the list will get by
default. The page size can be then changed at
runtime by the user.

PAGINATION_THRESHO
LD

No Based on the
global
configured
value, usually
same as
DEFAULT_PAG
E_SIZE.

Specifies the minimum list size at which
pagination will be enabled. For shorter lists
there will be no pagination, even if otherwise
pagination is switched on.

Note: Lists on search pages now display the number of items found as a result of the search. The number
of items will be displayed beside the list title.

The text used to display the number of items can be customized by setting the following property in the
CDEJResources.properties file, for example:

record.number.message=Items found:

The actual number of items will be displayed after the text.

This feature only applies to search pages and must be enabled by adding the following to the curam-
config.xml file:

<LIST_ROW_COUNT>true</LIST_ROW_COUNT>

Child Elements
The LIST element can contain the following child elements. It must contain at least one
ACTION_CONTROL, FIELD, or CONTAINER element. SOURCE connections can be made to list or non-list
properties. Within a table all list properties must belong to the same list structure defined in the server
interface model. This ensures that they are all the same length. The number of rows in the list will be
equal to the number of elements in the list properties. The value of a non-list property is simply repeated
on each row.

Table 108. Child Elements of the LIST Element

Element Name Cardinality / Description

TITLE 0..1. The TITLE element will be displayed above the LIST.

DESCRIPTION 0..1. The “DESCRIPTION element” on page 244 element has
the same behavior as the DESCRIPTION attribute but allows the
description to be built up from a number of sources. If both are
specified, this element takes precedence over the corresponding
attribute.

Chapter 1. Cúram web client reference 265

Table 108. Child Elements of the LIST Element (continued)

Element Name Cardinality / Description

ACTION_CONTROL Use the ACTION_CONTROL element within a list to describe the
action menu options. The ACTION_CONTROL element can define a
text-based link, a button, or a file download link that users can
activate on a page. For more information, see the ACTION_CONTROL
element.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL elements of any
type. The action controls will be displayed above and/or below the
entire list.

FIELD 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can be
freely intermingled. Only output fields can be used, that is, fields with
no target connection.

CONTAINER 0..n. The FIELD, CONTAINER, and ACTION_CONTROL elements can
be freely intermingled. Within the container, only output fields can be
used, that is, fields with no target connection.

CONDITION 0..1. Affects whether or not the list is displayed.

DETAILS_ROW By using the DETAILS_ROW element within a LIST element, users
can expand each row to display more details about the row. When
users expand the row, the child elements of DETAILS_ROW define
the content that is displayed. Only the INLINE_PAGE element is
supported as a child. For more information, see the DETAILS_ROW
element.

FOOTER_ROW 0..n. This should be defined after all other child elements.

LIST_CONNECT 0..n. This should be defined after all other child elements. The only
supported child elements are SOURCE and TARGET. The SOURCE
connection must be a display phase bean. For more information, see
the LIST_CONNECT element.

WIDGET Use a WIDGET within a list. For example, you can use the
MULTISELECT and the SINGLESELECT widgets in the first column
of a list so that users can select a row.

Editable Lists
Pages might need some list items that are displayed to the user and are editable and other list items that
are not. Editable lists are FIELD elements in a list that have SOURCE and TARGET connections. Read-only
lists are FIELD elements in a list that have only SOURCE connections. A mixture of read-only fields and
editable fields is permitted within a list.

FIELD elements that have a TARGET connection with no SOURCE connection are not supported. Only
clusters that have input fields are to be used for creating business data in the application.

Two types of editable lists are available:

Editable lists controlled by a checkbox

If the first field in a list has SOURCE and TARGET connections and it has SVR_BOOLEAN as its
underlying domain, the first column in the list is displayed as a checkbox. When a user selects the
checkbox on a row, the other editable columns in that row can be edited (their value updated).

266 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

If a user does not select a checkbox, the other editable columns in that row are disabled and cannot
be edited. In a checkbox-controlled editable list, all editable columns are controlled by the first
column, the checkbox column.

Editable lists

If the first field in a list has SOURCE and TARGET connections and it doesn't have SVR_BOOLEAN as
its underlying domain, it is treated as a normal editable list, where all of the editable columns are
decoupled from one another. Even if there is a checkbox column within the list (not the first column), it
cannot control whether the other editable lists are editable.

Within editable lists, you can submit hidden values (per list row) that are not visible in the list to the server
with the “LIST_CONNECT element” on page 267. For example, in the context of a person object, for an
editable list on a page that displayed details about the person, you might need to submit the persons ID
(unique identifier) to the server as a hidden field without displaying it to the user. A single LIST_CONNECT
element can be configured in the list to pass the unique ID for each person (each row represents a single
person).

Only the following data types are supported on fields within editable lists:

• CURAM_BOOLEAN
• THREE_FIELD_DATE
• SVR_DOUBLE
• SVR_FLOAT
• SVR_INT8
• SVR_INT16
• SVR_INT32
• SVR_INT64
• SVR_CHAR
• SVR_STRING

LIST_CONNECT element
The LIST_CONNECT element is a child element of the LIST element and it defines a data connection
between two connection end points. It can be used to pass a list in source to a target list on a page and is
used on pages that contain editable lists.

Pages with editable lists can have some list items that are displayed to the user and are editable and
other list items that are not. You can use the LIST_CONNECT element to pass the data for fields that are
not displayed to the user to the target bean when the page is submitted, as shown in this example:

 <LIST>

 <!-- This represents a list which is not displayed to the user but is submitted with the
page. -->
 <LIST_CONNECT>
 <SOURCE NAME="ListDisplayPhaseBean" PROPERTY="listField"/>
 <TARGET NAME="ListTargetBean" PROPERTY="listField"/>
 </LIST_CONNECT>
 </LIST>

For more information about editable lists, see “Editable Lists” on page 266.

Attributes
The LIST_CONNECT element has no attributes.

Child elements
The LIST_CONNECT element contains the following child elements.

Chapter 1. Cúram web client reference 267

Table 109. Child elements of the LIST_CONNECT element

Element Name Cardinality / Description

SOURCE NAME 1..1. The SOURCE is the source of the value that is displayed in the
field control. The SOURCE connection must be a display phase bean.

TARGET NAME 1..1. The TARGET is the property to which the value in the source is
assigned.

MENU element
The MENU element is used to define six types of menus in a Cúram client application.

The menu types are:

• STATIC : The menu is made up of ACTION_CONTROL elements that will appear on the page menu. The
ACTION_CONTROL elements must have the TYPE of ACTION.

• NAVIGATION : The menu is made up of ACTION_CONTROL elements that will be appended to the
"Navigation" menu. The ACTION_CONTROL elements must have the TYPE of ACTION.

• DYNAMIC : The menu is driven by XML data constructed on the server application.
• INTEGRATED_CASE : The menu is driven by XML data constructed on the server application. This menu

is specific to the Cúram-style Integrated Case user interface and is rendered as a set of of tabs.
• IN_PAGE_NAVIGATION : The menu is made up of ACTION_CONTROL elements that will appear on the

in-page-navigation menu at the top of the main content area.
• WIZARD_PROGRESS_BAR : This is another specific type of menu rendered as a button bar on the top of

the content area in a modal dialog for displaying a sequence of related pages in the wizard manner. The
menu is driven by a resource stored in the server application.

Attributes
The MENU element has the following attribute:

268 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 110. Attributes of the MENU Element

Attribute Name Required Default Description

MODE No STATIC The type of menu to create. The mode can be
STATIC (the default), NAVIGATION, DYNAMIC,
INTEGRATED_CASE, IN_PAGE_NAVIGATION
or WIZARD_PROGRESS_BAR.

Static, navigation and in-page-navigation
menus contain one or more ACTION_CONTROL
elements that represent links to other pages.
The static menu normally appears just above
the main content area of the page. Navigation
menu items will be appended to the navigation
menu, normally on the left of the page. In-
page-navigation menu items appear at the
top of the main content area and the wizard
progress bar appears at the top of the modal
dialog content area.

Dynamic menus of both types (DYNAMIC and
INTEGRATED_CASE) are created from data
retrieved from the server and contain a single
CONNECT element specifying a SOURCE end-
point to a server interface property.

Child elements
The MENU element can contain the following child elements. Note that the ACTION_CONTROL and
CONNECT elements are mutually exclusive.

Table 111. Child Elements of the MENU Element

Element Name Cardinality / Description

ACTION_CONTROL 1..n. Only action controls with a TYPE of ACTION can be used.

CONNECT 1. A CONNECT element specifying a single SOURCE end-point.

DYNAMIC and INTEGRATED_CASE type menus
The data for both DYNAMIC and INTEGRATED_CASE menu's are driven by the same XML format. An
example of the menu data sent by the application server is shown below.
<DYNAMIC_MENU>
 <LINK PAGE_ID="CaseHome"
 DESC="2:field1:curam.omega3.myMessages:info_menu1:()"
 TYPE="case" >
 <PARAMETER NAME="caseID" VALUE="1234" />
 </LINK>
 <LINK PAGE_ID="ProductHome"
 DESC="2:field1:curam.omega3.myMessages:info_menu2:()"
 TYPE="product" >
 <PARAMETER NAME="productID" VALUE="5678" />
 <PARAMETER NAME="caseID" VALUE="1234" />
 </LINK>
</DYNAMIC_MENU>

Figure 76. Example of Dynamic MENU Data

All the menu links are contained within the DYNAMIC_MENU root element. Each entry on the menu is
specified by a LINK element. The LINK element has the following attributes:

Chapter 1. Cúram web client reference 269

• PAGE_ID : Specifies the target page for the link.
• DESC : Specifies the server message catalog entry to be looked up and used as the text for the link. The

Cúram SDEJ provides an API to create the string representation of a message catalog entry shown in the
example above. Consult the Cúram Server Developers Guide for details on using message catalogs.

• TYPE : specifies a value that is looked up in appropriate menu configuration file (described below) to
identify the icon that should be associated with the link.

Each LINK element can contain a number of PARAMETER elements that specify additional parameters
that will be added to the link from the menu. The PARAMETER element has the following attributes:

• NAME : The parameter name.
• VALUE : The parameter value.

The configuration files for the DYNAMIC and INTEGRATED_CASE menu's are DynamicMenuConfig.xml
and ICDynamicMenuConfig.xml respectively. The following are examples each configuration file.
<?xml version="1.0" encoding="UTF-8"?>
<DYNAMIC_MENU_CONFIG>
 <SEPARATOR IMAGE="Images/separator.gif"
 TEXT="Dyn.Menu.Separator"/>
 <LINK TYPE="case" IMAGE="Images/case.gif"
 TEXT="Dyn.View.Case"/>
 <LINK TYPE="product" IMAGE="Images/product-delivery.gif"
 TEXT="Dyn.View.Product"/>
</DYNAMIC_MENU_CONFIG>

Figure 77. Example of a DYNAMIC Menu Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<INTEGRATED_CASE_MENU_CONFIG>
 <LINK TYPE="case" IMAGE="Images/case.gif"
 TEXT="Dyn.View.Case"/>
 <LINK TYPE="product" IMAGE="Images/product-delivery.gif"
 TEXT="Dyn.View.Product"/>
</DYNAMIC_MENU_CONFIG>

Figure 78. Example of an INTEGRATED_CASE Menu Configuration File

The differences to note are the root elements, DYNAMIC_MENU_CONFIG and
INTEGRATED_CASE_MENU_CONFIG, and the SEPARATOR element which is not used in an
INTEGRATED_CASE because of its very specific look and feel.

The SEPARATOR element describes an image or a piece of text used to separate the menu items and has
the following attributes:

• IMAGE : Specifies an image to use as the separator.
• TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is mandatory. If an

image is specified this will be used as the alternate text for the image, if not, then the text will be
displayed.

The LINK element has the following attributes.

• TYPE : This must match the TYPE attribute of the LINK element returned from the server application.
• IMAGE : Specifies an image to use in the link. This attribute is mandatory.
• TEXT : Specifies an entry in the CDEJResources.properties file. This attribute is mandatory. It will

be used as the alternate text for the image.

The IN_PAGE_NAVIGATION type menu
The in-page navigation menu allows for the addition of a set of links, which are displayed as tabs
embedded in a UIM page. Each UIM page in the set must define the same MENU element. The currently
selected UIM page, for tab, is identified by the STYLE="in-page-current-link" attribute. This will
differ on each of the UIM pages in the set and is set on the ACTION_CONTROL that matches the UIM page
the MENU is contained in. See this example of the IN_PAGE_NAVIGATION menu in UIM.

<PAGE PAGE_ID="InPageNav">
 <PAGE_TITLE>

270 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

 <CONNECT>
 <SOURCE NAME="TEXT" PROPERTY="Title.Text"/>
 </CONNECT>
 </PAGE_TITLE>
 <MENU MODE="IN_PAGE_NAVIGATION">
 <ACTION_CONTROL LABEL="Label.page1">
 <LINK PAGE_ID="Page1" SAVE_LINK="false"/>
 </ACTION_CONTROL>
 <ACTION_CONTROL
 LABEL="Page2.Label"
 STYLE="in-page-current-link" >
 <LINK PAGE_ID="Page2" SAVE_LINK="false" />
 </ACTION_CONTROL>
 </MENU>

 </PAGE>

WIZARD_PROGRESS_BAR menu
The wizard progress menu bar is inserted on a page by including a MENU element which has a MODE
attribute set to WIZARD_PROGRESS_BAR. It binds a number of pages, allowing for the sequential
navigation through them. For instance, in a modal dialog which contains a wizard progress menu bar,
pages can be navigated through by clicking the previous or next button. At the same time, the wizard
progress menu bar presented on the top of it will indicate its progress.

The UIM wizard pages
There are some specifics regarding the UIM pages used with the WIZARD_PROGRESS_BAR menu:

• The wizard pages should open in the modal dialog. The wizard progress bar functionality should not be
used in standard non-modal UIM pages.

• Each page in the wizard flow is implemented as standard UIM with a wizard progress bar widget placed
at the top of each page.

• The pages should have action controls for advancing through the wizard (back and forward buttons as
required by the scenario). The LINK elements of these action controls should have DISMISS_MODAL
attribute set to false (except for the controls supposed to close the wizard). Additionally, the
SAVE_LINK attribute should also be set to false.

<PAGE PAGE_ID="Sample_PageOne">
 <MENU MODE="WIZARD_PROGRESS_BAR">
 <CONNECT>
 <SOURCE
 NAME="DISPLAY" PROPERTY="resourceID" />
 </CONNECT>
 </MENU>
 <PAGE_TITLE>
 <CONNECT>
 <SOURCE NAME="TEXT"
 PROPERTY="PageTitle" />
 </CONNECT>
 </PAGE_TITLE>
 <SERVER_INTERFACE
 CLASS="WizardSample"
 NAME="DISPLAY" OPERATION="getResourceID"
 PHASE="DISPLAY" />
 <ACTION_SET ALIGNMENT="CENTER" TOP="false">
 <ACTION_CONTROL
 LABEL="ActionControl.Label.Cancel"/>
 <ACTION_CONTROL
 LABEL="ActionControl.Label.Next">
 <LINK PAGE_ID="Sample_PageTwo"
 SAVE_LINK="false"
 DISMISS_MODAL="false"/>
 </ACTION_CONTROL>
 </ACTION_SET>

 </PAGE>

Figure 79. An example of wizard-type menu UIM

In the example above the connection in the MENU provides the identifier of the server-side resource
describing this wizard (see below).

Chapter 1. Cúram web client reference 271

Wizard menu configuration
The text required by the wizard progress bar items come from a property resource whose identifier must
be provided to the wizard progress bar menu.
 Number.Wizard.Pages=2
 Sample_pageOne.Wizard.Item.Text=Child
 Sample_pageOne.Wizard.Page.Title=Step 1: Child Details
 Sample_pageOne.Wizard.Page.Desc=Capture some details
 Wizard.PageID.1=Sample_pageOne

 Sample_pageTwo.Wizard.Item.Text=Parent
 Sample_pageTwo.Wizard.Page.Title=Step 2: Parent Details
 Sample_pageTwo.Wizard.Page.Desc=Capture some details 1
 Wizard.PageID.2=Sample_pageTwo

Figure 80. Example of the required properties in the resource store property file

Table 112. Properties in the wizard defining resource

Property Name Description

Number.Wizard.Pages The value of this property defines the number of items to be
rendered for the wizard progress bar. The value must be a
numeric whole number greater than zero.

<PageID>.Wizard.Item.Text Defines the text to be displayed within the wizard progress bar
item for each page of the wizard. There must be one of these
properties defined for each page in the wizard. The property
is uniquely identified for each wizard page by the <PageID>
prefix which represents the actual identifier of that UIM page
in the wizard flow.

<PageID>.Wizard.Page.Title Defines the title to be displayed within the wizard progress bar
for the current page of the wizard. There must be one of these
properties defined for each page in the wizard. The property
is uniquely identified for each wizard page by the <PageID>
prefix which represents the actual identifier of that UIM page
in the wizard flow.

<PageID>.Wizard.Page.Desc Defines the description to be displayed within the wizard
progress bar for the current page of the wizard. There must
be one of these properties defined for each page in the wizard.
The property is uniquely identified for each wizard page by the
<PageID> prefix which represents the actual identifier of that
UIM page in the wizard flow.

Wizard.PageID.<PageNum> Defines the position of the page within the wizard flow. The
widget uses this information to style the bar items correctly.
There must be one of these properties defined for each page in
the wizard. This property is uniquely identified for each wizard
page by the <PageNum> suffix which represents the position
of each page within the list of wizard menu pages.

The order of the properties declaration in the resource is important as the associated menu widget will
draw the wizard items for the progress bar in that order. The page title and description are added by the
widget for the current page of the wizard.

272 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

PAGE element
The PAGE element is the root element of a UIM document that describes the data to be included in a
generated JSP page.

Attributes
The PAGE element has the following attributes:

Table 113. Attributes of the PAGE Element

Attribute Name Required Default Description

PAGE_ID Yes An identifier for the page used when
referencing the page from LINK elements.
This identifier must be unique within a project.
The file name of the document must be the
same as the value of this attribute and have
the extension .uim.

POPUP_PAGE No false Indicates that this page is a pop-up that will
be opened from a parent page. Pop-up pages
do not include the side-bar, header and footer
of standard pages. The value can be set to
true or false. The attribute must only be
used for pages configured according to “Pop-
up pages” on page 172 (i.e., search pop-up
pages).

SCRIPT_FILE No The name of the script file containing the
JavaScript functions that are specified in the
ACTION attribute of any SCRIPT elements
on the page. If no SCRIPT_FILE attribute is
set on a particular SCRIPT element within a
FIELD or ACTION_CONTROL the PAGE script
file is used by default. The script file should
be added in a component. If another script
file has the same name in another component,
the version in the highest priority component
will be used. Each SCRIPT can specify its own
script file if required, or share this common
script file.

APPEND_COLON No Set to true to automatically append colons
to FIELD and CONTAINER labels within
CLUSTER elements. This overrides the value
of the APPEND_COLON element in the curam-
config.xml file for that individual page (see
“APPEND_COLON” on page 36).

Chapter 1. Cúram web client reference 273

Table 113. Attributes of the PAGE Element

Attribute Name Required Default Description

WINDOW_OPTIONS No "width=700
,
height=auto
-calculated"

When the page is displayed in a modal
dialog, use the parameter to configure the
page. The value of the attribute is a comma-
separated list of name value pairs. Width
is the option that is supported. The height
option is ignored, as the height is dynamically
calculated. The modal content has a minimum
height of 350 px. The width takes an
integer value, which is converted to one of
five sizes: x-small, small, default, large, and
x-large. Each modal size has a responsive
width that changes based on the browser
size. As the browser decreases, the modal
width percentage increases. This way, the
modal width maintains a proper ratio between
the modal and browser. Using any other
parameters produces an error.

Width values Size

0 - 420 X-small

421 - 576 Small

577 - 768 Default

769 - 1199 Large

1200+ X-large

TYPE No DEFAULT Used to define specific types of UIM pages.
Two types are supported, DETAILS and
SPLIT_WINDOW.

SPLIT_WINDOW enables the use of frames
within the page. If the attribute is not present
or is set to DEFAULT then frames are not
used. See “Agenda Player” on page 178 for
an example of use.

DETAILS defines a UIM page that will be used
as a context panel page. For more information
see “Context panel UIM” on page 90.

HIDE_CONDITIONAL_LI
NKS

No TRUE Set to true to hide conditional links that
evaluate to false. Set to false to show
a disabled conditional link that evaluate
to false. This overrides the value of the
HIDE_CONDITIONAL_LINKS element in the
curam-config.xml file for that individual
page (see “APPEND_COLON” on page 36).

Child elements
The PAGE element can contain child elements as follows.

274 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 114. Child Elements of the PAGE Element

Element Name Cardinality / Description

INCLUDE 0..1. This element can be used before any other child element
of a PAGE element.

PAGE_TITLE 0..1. This does not apply to context panel UIM pages. In this
case, the PAGE_TITLE element is mandatory. See “Context
panel UIM” on page 90 for more information.

DESCRIPTION 0..1

SHORTCUT_TITLE 0..1

SERVER_INTERFACE 0..n. Multiple SERVER_INTERFACE elements are
supported, however it is recommended that only one
SERVER_INTERFACE with the PHASE attribute set to ACTION
is defined per PAGE element. See “SERVER_INTERFACE
element” on page 278 for more information.

INFORMATIONAL 0..1

MENU 0..2. The page can contain one optional static and one
optional dynamic menu as well as append extra items to the
navigation menu.

ACTION_SET 0..1. In this context, the action set defines the set of action
controls that appear around the page's main content area.

PAGE_PARAMETER 0..n

CONNECT 0..n. In this context, the connections can copy values directly
from the properties of source server interfaces to properties
of the target server interfaces. Each CONNECT element should
contain both a SOURCE and a TARGET element.

JSP_SCRIPTLET 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be preserved
in the generated page.

CLUSTER 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be preserved
in the generated page.

LIST 0..n. JSP_SCRIPTLET, CLUSTER and LIST can be
intermingled freely and the order in UIM will be preserved
in the generated page.

SCRIPT 0..n. A script associated with the PAGE that will be activated
in response to the specified event. See “SCRIPT element” on
page 277 for more details.

Where a page is configured to contain a large number of scrollable list and cluster elements
(approximately 15), it may cause JSP compile issues in Weblogic. This is due to a Weblogic system

Chapter 1. Cúram web client reference 275

limitation in how big a page can be rendered at run time. To overcome this restriction, arrange the display
of the required scrollable lists and clusters over a number of pages.

PAGE_PARAMETER element
The PAGE_PARAMETER element declares a parameter to the current page. Once a parameter is declared,
it can be used as the source of a connection by setting the connection source bean NAME attribute to
PAGE.

Attributes
The PAGE_PARAMETER element has the following attributes:

Table 115. Attributes of the PAGE_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the parameter to use in SOURCE
connection end-points.

Child elements
The PAGE_PARAMETER element contains no child elements.

PAGE_TITLE element
The PAGE_TITLE element defines the title that appears at the top of a page's main content area. A title
is constructed by concatenating a number of connection sources together. These can include localized
strings and data from server interfaces.

Note: The PAGE_TITLE element defines the text for the tab title bar where the UIM page is used as a
context panel page. See “Context panel UIM” on page 90 for more information.

Attributes
The PAGE_TITLE element has the following attributes:

Table 116. Attributes of the PAGE_TITLE Element

Attribute Name Required Default Description

DESCRIPTION No A reference to a localized string that provides a
more detailed description of the page than the
title alone. This will be displayed with the title in
the page's main content area.

STYLE No The name of the CSS class to use when
displaying the title on the page.

ICON No A reference to an entry in the
Image.properties file specifying the image
file to use beside the title in the main content
area.

Child elements
The PAGE_TITLE element can contain child elements as follows.

276 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 117. Child Elements of the PAGE_TITLE Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings from a properties file.

DESCRIPTION 0..1 The “DESCRIPTION element” on page 244 element has
the same behavior as the DESCRIPTION attribute but allows
the description to be built up from a number of sources. If
both are specified, this element takes precedence over the
corresponding attribute.

SCRIPT element
The SCRIPT element defines an exit point to allow the invocation of a script (JavaScript) in response to
an event. Scripts are supported for pages, read-write fields and action controls. These elements are not
applicable and not supported for fields within a LIST or read-only fields.

Attributes
The SCRIPT element has the following attributes:

Table 118. Attributes of the SCRIPT Element

Attribute Name Required Default Description

EVENT Yes The JavaScript name of the event as defined in
the W3C HTML recommendations.

JavaScript events are valid within the PAGE,
FIELD or ACTION_CONTROL elements, with the
exception of FIELD elements within a LIST or
read-only FIELD elements.

Note that the ONCLICK event will be
ignored for ACTION_CONTROL with a TYPE of
CLIPBOARD. For more further information, see
the “ACTION_CONTROL element” on page 227.

In addition, by default when a link is clicked
in the Cúram application the link is processed
by Cúram specific code. If you are adding
some scripting to a link and do not want this
default processing to occur, the event should be
stopped using the JavaScript APIs available.

ACTION Yes The JavaScript to be invoked if
the event occurs. This must be a
function call including parameters, if
any. For example; someFunction()
or someFunction(someParam) where
someParam may be a global variable defined in
script file.

Chapter 1. Cúram web client reference 277

Table 118. Attributes of the SCRIPT Element (continued)

Attribute Name Required Default Description

SCRIPT_FILE No The name of the script file containing the
JavaScript functions that are specified in the
ACTION attribute of the SCRIPT element.
If no SCRIPT_FILE attribute is set on a
particular SCRIPT element within a FIELD or
ACTION_CONTROL the PAGE script file is used
by default. The script file should be added
in a component. If another script file has
the same name in another component, the
version in the highest priority component will
be used. If not specified, the SCRIPT will
expect to find the functions in the page-level
script file specified with the PAGE element's
SCRIPT_FILE attribute.

EXPRESSION No The name of the a JavaScript function identifier
(excluding the parenthesis) that will be used to
evaluate whether a dynamic conditional cluster
will be displayed or not. The name should
ideally reflect the encapsulated logic within the
function.

Child elements
The SCRIPT element contains no child elements.

SERVER_INTERFACE element
The SERVER_INTERFACE element defines a server interface to which other elements of the page can
connect.

Attributes
The SERVER_INTERFACE element has the following attributes:

Table 119. Attributes of the SERVER_INTERFACE Element

Attribute Name Required Default Description

NAME Yes A unique name for this instance of the server
interface on this page.

CLASS Yes The name of the server interface class.

OPERATION Yes The name of the server interface operation on
the class.

278 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 119. Attributes of the SERVER_INTERFACE Element (continued)

Attribute Name Required Default Description

PHASE No DISPLAY The phase of the page in which the server
interface is called. This can be DISPLAY (the
default) or ACTION. Server interfaces set to
the DISPLAY phase are called as the page is
displayed (i.e., the execution of the JSP page).

Server interfaces set to the ACTION phase
are only called in response to the activation
of an ACTION_CONTROL with a TYPE of
SUBMIT. It is recommended that only one
SERVER_INTERFACE is set to the ACTION
phase per PAGE.

ACTION_ID_PROPE
RTY

No Specifies a name of the server access
bean property that will be populated with
ACTION_ID of the action control used to make
the server call. The value of this attribute must
be a valid property name of the corresponding
server access bean. The use of shorthand
notation is allowed (for example specify
theProperty instead of the fully qualified
dtls$theProperty).

This attribute is only valid on server interfaces
with PHASE = ACTION and must be specified
on all server interfaces within the page or not
specified on any of them.

If multiple server interfaces specify
ACTION_ID_PROPERTY with different domains
the value of ACTION_ID on all action controls
within the page must be suitable for all of the
domains. Failing to comply with this rule will
lead to error at runtime when the corresponding
action control is activated.

If this attribute is specified then the
ACTION_ID attribute of ACTION_CONTROL
element must also be specified.

Note: It is technically possible to specify multiple SERVER_INTERFACE elements set to the ACTION
phase. However, this is not recommended. Each SERVER_INTERFACE is essentially a separate
transaction and when an invocation fails, no further invocations of other server interfaces are made and
completed transactions are not rolled back.

For example, three SERVER_INTERFACE elements are defined, each set to the ACTION phase. When the
page is executed, the first server interface invocation succeeds and the second fails. In this scenario, the
third server interface is never invoked and the action of the first will not be rolled back.

Child elements
The SERVER_INTERFACE element contains no child elements.

Chapter 1. Cúram web client reference 279

SOURCE element
The SOURCE element defines the source end-point of a data connection. The source can be the value
of a server interface property, the value of a parameter to the page (which must be declared via the
PAGE_PARAMETER element), or the value of an externalized string.

Attributes
The SOURCE element has the following attributes:

Table 120. Attributes of the SOURCE Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance to
use as the source of the property value, or PAGE,
if the source is the value of a page parameter, or
TEXT (or CONSTANT) if the source is the value of
an externalized text string. TEXT or CONSTANT can
only be used when TARGET has a server interface
defined in the ACTION phase.

PROPERTY Yes The name of the server interface property, the
name of the input page parameter, or the string
reference to the externalized string whose value is
required.

Child elements
The SOURCE element contains no child elements.

TAB_NAME element
The TAB_NAME element defines the text used for the tab in the tab bar, where the UIM page is used
as a context panel UIM page. The text is constructed by concatenating a number of connection sources
together. These can include localized strings and data from server interfaces.

This element only applies where the TYPE attribute of the PAGE element is set to DETAILS. See “Context
panel UIM” on page 90 for more information.

Child elements
The TAB_NAME element can contain child elements as follows:

Table 121. Child Elements of the TAB_NAME Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings from a properties file.

DESCRIPTION 0..1 The “DESCRIPTION element” on page 244 element has
the same behavior as the DESCRIPTION attribute but allows
the description to be built up from a number of sources. If
both are specified, this element takes precedence over the
corresponding attribute.

280 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

TARGET element
The TARGET element defines the target end-point of a data connection. The target can be the value of a
server interface property or the value of a parameter to be exported from the page.

Attributes
The TARGET element has the following attributes:

Table 122. Attributes of the TARGET Element

Attribute Name Required Default Description

NAME Yes The name of the SERVER_INTERFACE instance
to use as the target of the property value,
or PAGE, if the target is the value of a page
parameter.

PROPERTY Yes The name of the server interface property, or
the name of the output page parameter whose
value is to be set.

Child elements
The TARGET element contains no child elements.

TITLE element
The TITLE element defines the title that appears at the top of a CLUSTER or LIST element. A TITLE
is constructed by concatenating a number of connection sources together. These can include localized
strings and data from server interfaces.

Attributes
The TITLE element has the following attributes:

Table 123. Attributes of the TITLE Element

Attribute Name Required Description

SEPARATOR No A reference to an externalized string to use as the separator
between the elements within the container.

Child elements
The TITLE element can contain child elements as follows.

Table 124. Child Elements of the TITLE Element

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing SOURCE elements can
be included (one SOURCE per CONNECT). Sources can be server
interface properties or, with the NAME attribute set to TEXT,
references to strings in a properties file.

Chapter 1. Cúram web client reference 281

VIEW element
The VIEW element is the root element of a UIM document that defines elements to be included in a UIM
page document. A view cannot include other views using the INCLUDE element.

Attributes
The VIEW element has no attributes.

Child elements
The VIEW element can contain child elements as follows:

Table 125. Child Elements of the VIEW Element

Element Name Cardinality / Description

PAGE_TITLE See the PAGE element.

SHORTCUT_TITLE See the PAGE element.

SERVER_INTERFACE See the PAGE element.

MENU See the PAGE element.

ACTION_SET See the PAGE element.

PAGE_PARAMETER See the PAGE element.

CONNECT See the PAGE element.

JSP_SCRIPTLET See the PAGE element.

CLUSTER See the PAGE element.

LIST See the PAGE element.

SCRIPT See the PAGE element.

UIM widgets reference
There are a number of predefined types of WIDGET element. Each type of WIDGET can contain one or
more WIDGET_PARAMETER elements. The configuration of these WIDGET_PARAMETER elements depends
on the type of the widget.

Most widget types can only be defined within CLUSTER elements, any exceptions are described. There
can also be restrictions on how many widgets of a particular type can be included in a single UIM
document.

Use widgets when the handling of data in the client application is too complicated to do with the
automatic domain definition recognition of the FIELD element. Widgets allow several different sources of
data to be connected to a control that can then supply data to several different targets.

282 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

WIDGET element
The WIDGET element is used to define the type of widget to include and it holds the WIDGET_PARAMETER
elements that configure the widget.

Attributes
The WIDGET element has the following attributes:

Table 126. Attributes of the WIDGET Element

Attribute Name Required Default Description

TYPE Yes The type of WIDGET. This can be one of the
following:

• EVIDENCE_COMPARE

• FILE_EDIT
• FILE_UPLOAD
• MULTISELECT
• SINGLESELECT
• RULES_SIMULATION_EDITOR
• FILE_DOWNLOAD
• IEG_PLAYER

LABEL No A reference to an externalized string that
should be used as the associated label string
for this widget.

WIDTH No The width of the control specified in the
appropriate units.

WIDTH_UNITS No PERCENT The units in which the width is interpreted. This
can be PERCENT to indicate the percentage of
the space available to the widget, or CHARS to
indicate the number of visible characters wide
the widget will be.

HEIGHT No 1 A HEIGHT value that may be used by the
widget.

ALIGNMENT No DEFAULT Defines the horizontal alignment of the widget.
Can be set to LEFT, RIGHT, CENTER, or
DEFAULT. The value DEFAULT corresponds to
the CSS class default in curam_common.css.
Currently the default is to be left aligned.

HAS_CONFIRM_PAGE No false Attribute to be used only on widget of type
of MULTISELECT. Used to specify that the
widget selection data is to be submitted to the
confirmation page. Can be true or false. See
“Confirmation Pages” on page 293.

Chapter 1. Cúram web client reference 283

Child elements
The WIDGET element can contain the following child element.

Table 127. Child Elements of the WIDGET Element

Element Name Cardinality / Description

WIDGET_PARAMETER 1..n. The parameters depend on the type of widget.

WIDGET_PARAMETER element
The WIDGET_PARAMETER element is used to define the properties of an individual widget. In particular,
the WIDGET_PARAMETER elements allow connections to be made between named properties of the
widget and various source and target data end-points.

Attributes
The WIDGET_PARAMETER element has the following attribute:

Table 128. Attributes of the WIDGET_PARAMETER Element

Attribute Name Required Default Description

NAME Yes The name of the property on the WIDGET that
this element configures.

Child Elements
The WIDGET_PARAMETER element can contain the following child element.

Table 129. Child Element of the WIDGET_PARAMETER Element

Element Name Cardinality / Description

CONNECT A WIDGET_PARAMETER can be connected in one of two ways
depending on the specification for the particular WIDGET. The
first way is similar to that of FIELD elements:

1..n. The parameter can contain multiple CONNECT elements.
Usually (the FILE_DOWNLOAD WIDGET is an exception to
this) a WIDGET_PARAMETER contains up to three CONNECT
elements, SOURCE, TARGET, and INITIAL connection end-
points. The valid types of source or target depend on the
individual parameter.

The second way to connect a parameter is similar to the
CONNECT elements in a LINK element.

1..n. CONNECT elements that each connect a SOURCE end-
point to a TARGET end-point.

The EVIDENCE_COMPARE widget
The EVIDENCE_COMPARE widget displays the differences between two sets of evidence. These
differences are highlighted by using the following colors: evidence items that have changed are shown in
red; new items are shown in green; deleted items are shown in gray.

This widget should be the sole element in a CLUSTER. Its TYPE should be set to EVIDENCE_COMPARE and
its WIDGET_PARAMETER elements should be set as follows:

284 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 130. Parameters to the EVIDENCE_COMPARE Widget

Parameter Name Required Description and Connections

OLD_EVIDENCE Yes This parameter must include a single
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point should specify a
property of the EVIDENCE_TEXT domain
that contains the original evidence.

NEW_EVIDENCE Yes This parameter must include a single
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point should specify a
property of the EVIDENCE_TEXT domain
that contains the new evidence.

The FILE_EDIT widget
The FILE_EDIT widget allows users to edit a Microsoft Word document on the user's local computer and
then save the document to the IBM Cúram database. The system can create a document automatically
from a template where the template details can be set before the document is displayed to users to edit.
The FILE_EDIT widget functionality is only supported on client machines that run Microsoft Windows,
with Microsoft Word installed locally.

Google Chrome version 78 and later and Microsoft Edge version 79 and later based on Chromium are
supported by the FILE_EDIT widget feature. Internet Explorer is not supported for use with the feature.

Only the source and target documents and the template details are required by the FILE_EDIT widget.
If key details, or other data, are required by the server interfaces that handle the document, use page
parameters and page-level connections to provide these details.

NOTE: the native messaging-based solution that is supported by Google Chrome and Microsoft Edge
requires a separate installation or configuration, which is detailed in the appropriate documentation. For
more information, see the User computer configuration for the native messaging version related link.

When the page with the FILE_EDIT widget loads, it immediately starts the File Edit Control pane in the
modal dialog. The pane displays the informational messages about the editing session initialization, other
background events, and any error messages. The File Edit Control pane also allows for some minimal
interaction with the application server.

The Control panel modal dialog can be closed up to the point that the Microsoft Word application
initializes correctly and the document opens. Thereafter, the close option is not available because closing
Microsoft Word ends the process.

Once the document loads and is ready for editing, it is automatically saved locally and displays along
with the corresponding notification in the Microsoft Word status bar and also the Windows taskbar. If so
configured, see the FILE_EDIT widget configuration related link. Users can now edit the document and
save it as needed.

Each document Save operation within Microsoft Word triggers the notification message in the application
status bar and in the Windows taskbar to notify users that their changes are saved locally, but not to the
database. To save the interim versions of the document to the database, users can go back to the browser
where there the Commit changes button is displayed in the File Edit Control pane. The button is initially
disabled. It is enabled when the document is saved in the Microsoft Word application. When users select
the Commit changes button, the current document version is passed back to the server and saved to the
database. Users are notified of the result of the interim save in the pane and the Commit changes button
is disabled again until the next Save operation in Microsoft Word.

Chapter 1. Cúram web client reference 285

Because of the specific invocation of the server interfaces by the FILE_EDIT widget, you cannot use
any property of the ACTION phase server interface in a SOURCE connection of the submit button's LINK
element.

When users finish editing the document, they finish the editing session by closing either the
document that is being edited (if there are multiple documents open) or by closing Microsoft Word. At this
stage, the application in the browser saves their final changes to the server. On successful save, the File
Edit Control pane closes provided there are no error messages.

The application transfers users to the page that it is configured to go to as specified by
the ACTION_CONTROL of TYPE="SUBMIT" in the UIM page that contains the FILE_EDIT widget. If no
page is specified, the landing page is assumed to be the last visited page.

There are circumstances where this landing page is not available. In this case, the application searches to
identify which page should be opened first based on configuration. Once a page is identified, it is used as
the landing page, potentially changing the tab if necessary.

The FILE_EDIT widget can be used as follows, the WIDGET element must have the TYPE attribute set to
FILE_EDIT. The following WIDGET_PARAMETER elements are required:

Table 131. Parameters to the FILE_EDIT widget.

Parameter Name Required Description and Connections

DOCUMENT Yes Defines the source document (usually
a template) and the target to which
to write the saved document. The
parameter must contain a CONNECT
element with a SOURCE set from a
DISPLAY phase sever interface and a
TARGET set from an ACTION phase server
interface. Both fields should be Microsoft
Word documents.

The data type for both the source and
target document must be SVR_BLOB.

DETAILS Yes The template details that must be set
in the document before it is presented
to the user for editing. The parameter
must contain a CONNECT element with a
SOURCE set from a DISPLAY phase server
interface. The details are in XML format.

The data type for the template details
must be SVR_BLOB.

The template details must be provided in a simple XML format. An example of the format is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<FIELDS>
 <FIELD NAME="personName" VALUE="John Smith"/>
 <FIELD NAME="AddressLine1" VALUE="1 Main Street"/>
 <FIELD NAME="AddressLine2" VALUE="Newtown"/>
 <FIELD NAME="AddressLine3" VALUE="Erehwon"/>
</FIELDS>

Figure 81. Sample template details.

Your XML must use UTF-8 encoding to handle multi-byte characters. To preserve the correct encoding,
any code that manipulates the XML must honor the encoding of the document. If the encoding is not
honored, characters might display incorrectly when opened in Microsoft Word.

286 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Each FIELD element identifies the name of a field in the document template and the value to which it is
set.

Note: The data content that is passed to the template to populate the variables is limited to alphanumeric
characters only. Any other characters might not be displayed correctly in the rendered document. In
particular, the following restricted characters are used to populate the template variables. Do not use the
restricted characters in data content that is passed:

• #|#
• |
• >
• New line characters

While editing the document in Microsoft Word, the user cannot browse to another page (which the modal
File Edit Control pane and the absence of the Close button there would prevent) or close the browser.
If the user attempts to close the originating browser window in the middle of the editing session, the
browser warning is displayed notifying the user of the consequences.

If the user chooses to remain on the page, they can proceed with the editing or end the session by closing
Microsoft Word or the document being edited. If the user chooses to leave the page, the editing session
is terminated, and the document or Microsoft Word (if it was the only document open) closes along with
the browser; the user changes are not saved in this case, however any saved interim changes before this
termination happens are persisted in the database.

FILE_EDIT widget configuration
Use specific configuration settings to enhance the flexibility of the widget.

Table 132. FILE_EDIT widget configuration settings summary.

Setting Name Location
(.properties file)

Requ
ired

Defa
ult
value

Description

fileedit.taskbar.messag
es

CDEJResources No - Can be set to either true
or false values; prevents from
the Word status messages being
duplicated by the Window task
bar notification messages. If set
to false, no task bar notification
will be displayed, while setting it to
true or not having that property
in CDEJResources.properties
at all would cause the task
bar notification messages to be
displayed.

Please keep in mind that
suppressing the additional task
bar notification could affect the
accessibility of the FILE_EDIT
widget.

Chapter 1. Cúram web client reference 287

Table 132. FILE_EDIT widget configuration settings summary. (continued)

Setting Name Location
(.properties file)

Requ
ired

Defa
ult
value

Description

fileedit.log.on CDEJResources Yes fals
e

Can be set to either true or
false values; when set to true, it
causes the log (service) messages
to be displayed in the File Edit
Control panel dialog in addition to
the regular status messages.

These log messages do not have
value to the end user and therefore
are not translated (display in
English). Turning on the logging
should not normally be needed but
might be useful when reporting
or tracing the problems with the
widget.

User computer configuration for the native messaging version
The Microsoft Word integration functionality for Google Chrome and Microsoft Edge Chromium is based
around the extension and native messaging features of those browsers.

For more information, see the Configuring the FILE_EDIT widget with Google Chrome and Microsoft Edge
related link.
Related information
Configuring the FILE_EDIT widget with Google Chrome and Microsoft Edge

The FILE_UPLOAD widget
The FILE_UPLOAD widget is a type of widget through which users can specify a file on a local computer to
be uploaded to the server. Usually, the widget is displayed as a text field with a Browse button beside it.
The user can click the button to open a file dialog box and select a file for upload.

Button appearance: The button is created by the browser. Therefore, the actual appearance of the
button can vary depending on the browser that is being used. The normal widget attributes WIDTH and
WIDTH_UNITS do not apply to the FILE_UPLOAD widget. Some browsers do not permit the width of the
file name entry box to be set for security reasons. For example, if the width is set to zero width, the file
name entry box could be hidden while it was still active.

Also, because the FILE_UPLOAD widget uses browser-specified controls, the text on the button is
displayed in whatever locale the browser is set to, regardless of the locale that is configured in the
application.

File Size Validation: There are settings to limit the maximum size of a file that is allowed to be uploaded.
The validations for these settings are carried out on the server side after the file is fully uploaded to a
temporary directory. Therefore, it should be kept in mind that large files could be uploaded consuming
a large amount of disk space. We recommend checking the file upload folder at intervals to ensure disk
space usage meets requirements.

There are three application-level configuration settings for the FILE_UPLOAD widget. These control how
the web-server handles the incoming files. Default settings are already present, but the default values
can be overridden by adding configuration settings to the ApplicationConfiguration.properties
file. The settings follow the same name = value format of all the other entries there. The settings are as
follows:

288 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

uploadMaximumSize
This is the maximum size of a file that can be uploaded to the server. The number is specified in bytes.
If the number is negative, there is no limit to the file size. By default, the value is -1 (no limit).

uploadThresholdSize
This is maximum number of bytes of the file's content that the web-server will hold in memory while
the file is being uploaded. Once the number of bytes uploaded exceeds this limit, the web-server will
begin to store the file on disk to save memory. By default, the value is 1024.

uploadRepositoryPath
This is the path to the folder on the disk in which the files will be stored as they are uploaded if
they exceed the threshold size. By default, the value is the JVM defined temp folder, so this folder
must be present on your system. If it is not on your system, you can create it or explicitly set the
uploadRepositoryPath to a folder of your choice.

The WIDGET element should have the TYPE attribute set to FILE_UPLOAD. The widget supports the
following WIDGET_PARAMETER elements:

Table 133. Parameters to the FILE_UPLOAD Widget

Parameter Name Required Description and Connections

CONTENT Yes This parameter indicates the target connection for
the actual content of the uploaded file.

A single CONNECT element with a TARGET that
connects to a property of an ACTION phase server
interface is required.

FILE_NAME No This parameter represents the name of the file to
be uploaded. The parameter can be set to provide a
default name for the file to be uploaded, and can also
supply the name of the file chosen by the user.

If present, the parameter can include CONNECT
elements for either or both end-points: a SOURCE
end-point for the initial name of the file, and a
TARGET end-point for the file that was actually
chosen. The SOURCE end-point can specify a
property of a DISPLAY phase server interface. The
TARGET end-point can specify a property of an
ACTION phase server interface.

Note: Many browsers do not allow a default value for
the name of a file to be uploaded. In this case, setting
a SOURCE connection will have no effect.

CONTENT_TYPE No This parameter indicates the target connection for
the content type of the uploaded file. The content
type describes the format of the uploaded data. For
example, a simple text file would have a content type
of "text/plain" and a Microsoft Word document would
have a content type of "application/msword".

A single CONNECT element with a TARGET that
connects to a property of an ACTION phase server
interface is required.

Chapter 1. Cúram web client reference 289

Table 133. Parameters to the FILE_UPLOAD Widget (continued)

Parameter Name Required Description and Connections

ACCEPTABLE_CONTENT_TYPES No An HTML page only allows certain types of content
to be uploaded by default, where the actual default
types depend on the browser. This parameter can
specify the types of content that the page accepts.
The value of the parameter must be a comma-
separated list of content types. If a page contains
more than one FILE_UPLOAD widget, the acceptable
content types of all the widgets are pooled together
and define what is acceptable for the page. This
feature is a consequence of a limitation in the HTML
specification.

A single CONNECT element with a SOURCE that
connects to a CONSTANT property is allowed.

Allow enough space for the Chrome browser
In Chrome, if the file upload widget is used adjacent to another field, once selected, the longer file name
once selected might overlap with the label of that other field. To avoid this issue, do not have a file upload
adjacent to another field, or allow for enough space in between the fields.

The FILE_DOWNLOAD widget
A WIDGET with the TYPE set to FILE_DOWNLOAD results in the generation of a hyperlink on the page.
Clicking on the hyperlink invokes a special FileDownload servlet included in the Cúram CDEJ that
returns the contents of a file from the database. The FileDownload servlet is configured with the server
interface to call to get the file contents and the parameters to pass to identify that file.

The configuration is performed in the curam-config.xml file. A single server interface can be
configured for each page of the application that includes a file download widget. For an example
configuration, see the “ACTION_CONTROL element” on page 227.

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD can also be used to generate a hyperlink
to download a file. You should use the ACTION_CONTROL element when the hyperlink text is a fixed
value retrieved from the page's corresponding properties file. The FILE_DOWNLOAD WIDGET allows the
hyperlink text to be a dynamic value retrieved from a server interface property.

The FILE_DOWNLOAD widget can also be utilized within the Actions menu of the Context Panel. The menu
item TYPE must be set to FILE_DOWNLOAD. The menu item PAGE-ID must match the PAGE_ID attribute
of the FILE_DOWNLOAD widget configuration. The file identifier must be available as a page parameter in
the respective.tab file for the menu. This page parameter must match the PAGE_PARAM attribute of the
FILE_DOWNLOAD widget configuration.

The WIDGET element should have the TYPE attribute set to FILE_DOWNLOAD. The widget supports the
following WIDGET_PARAMETER elements:

290 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 134. Parameters to the FILE_DOWNLOAD Widget

Parameter Name Required Description and Connections

LINK_TEXT Yes This parameter indicates the source connection for
sourcing content of the link text which will appear on
the screen.

A single CONNECT element with a SOURCE that
connects to a property of a DISPLAY phase server
interface is required. If you want to use a fixed text
value, you should use an ACTION_CONTROL with the
TYPE set to FILE_DOWNLOAD instead of a WIDGET.

PARAMS No This optional parameter supplies the FileDownload
servlet with the necessary parameters.

The parameter can include CONNECT elements with a
SOURCE end-point for the page parameter supplying
a value for the FileDownload servlet, and a TARGET
end-point for specifying the servlet parameter to
supply the value to. The SOURCE end-point should
refer to a parameter on the page declared by
a corresponding PAGE_PARAMETER element. The
TARGET end-point can specify a parameter whose
name corresponds to a configured FileDownload
servlet parameter name. Thus both end-points
should have a NAME attribute set to PAGE.

The MULTISELECT widget
The MULTISELECT widget allows you to specify that the first column in a LIST should contain a check-
box on each row and to allow several rows to be selected. A "Select All" feature can be enabled which
displays a check-box in the column header.

For more information, see “ENABLE_SELECT_ALL_CHECKBOX” on page 39.

Each check box can represents multiple entities in the row. For each check box that is selected, the fields
on that row will be compiled into a " | " delimited string and each row will be tab delimited and passed as
a page parameter when a specific type of page link is activated.

This example UIM document shows a page with multiple rows with check boxes. When the form
is submitted, a single string, containing multiple fields for each selected row, is passed to the
in$tabbedString field on the target page.

 <PAGE PAGE_ID="MultiSelectWidgetTest"
 xsi:noNamespaceSchemaLocation="CuramUIMSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SERVER_INTERFACE NAME="DISPLAY" CLASS="MyBean"
 OPERATION="Display" PHASE="DISPLAY"/>
 <SERVER_INTERFACE NAME="ACTION" CLASS="MyBean"
 OPERATION="Submit" PHASE="ACTION"/>

 <LIST TITLE="List.Title">
 <ACTION_SET BOTTOM="false">
 <ACTION_CONTROL TYPE="SUBMIT">
 <LINK PAGE_ID="MultiSelectWidgetResult">
 <CONNECT>
 <SOURCE NAME="ACTION"
 PROPERTY="in$tabbedString"/>
 <TARGET NAME="PAGE"
 PROPERTY="referenceNumTabString"/>
 </CONNECT>
 </LINK>

Chapter 1. Cúram web client reference 291

 </ACTION_CONTROL>
 </ACTION_SET>
 <CONTAINER LABEL="List.Multiselect.Header" WIDTH="5"
 ALIGNMENT="CENTER">
 <WIDGET TYPE="MULTISELECT"
 HAS_CONFIRM_PAGE="true">
 <WIDGET_PARAMETER NAME="MULTI_SELECT_SOURCE">
 <CONNECT>
 <SOURCE PROPERTY="personID" NAME="DISPLAY"/>
 </CONNECT>
 <CONNECT>
 <SOURCE PROPERTY="caseID" NAME="DISPLAY"/>
 </CONNECT>
 </WIDGET_PARAMETER>
 <WIDGET_PARAMETER NAME="MULTI_SELECT_TARGET">
 <CONNECT>
 <TARGET PROPERTY="in$tabbedString" NAME="ACTION"/>
 </CONNECT>
 </WIDGET_PARAMETER>
 <WIDGET_PARAMETER NAME="MULTI_SELECT_INITIAL">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="out$tabString"/>
 </CONNECT>
 </WIDGET_PARAMETER>
 </WIDGET>
 </CONTAINER>
 <FIELD LABEL="Field.Title.ReferenceNumber" WIDTH="35">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="personID"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Title.Forename" WIDTH="30">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
 </CONNECT>
 </FIELD>
 <FIELD LABEL="Field.Title.Surname" WIDTH="30">
 <CONNECT>
 <SOURCE NAME="DISPLAY" PROPERTY="surname"/>
 </CONNECT>
 </FIELD>
 </LIST>
</PAGE>

The main points to note in the UIM example are:

• The WIDGET of TYPE equal to MULTISELECT is a child node of a CONTAINER element. The container's
label will be used as the column header unless the select all check box is enabled in curam-
config.xml. See “ENABLE_SELECT_ALL_CHECKBOX” on page 39 for further details.

• Up to three WIDGET_PARAMETER elements are allowed within the WIDGET element.
MULTI_SELECT_SOURCE and MULTI_SELECT_TARGET are mandatory and MULTI_SELECT_INITIAL
is optional.

• The MULTI_SELECT_SOURCE can have multiple CONNECT elements, each with one SOURCE element.
Each SOURCE is added to the " | " delimited string. If only one SOURCE element is specified the string
will not contain any " | " delimiters. Then each select row will be delimited by a tab character.

• The MULTI_SELECT_TARGET element must contain only one CONNECT element with only one TARGET
element. This TARGET element specifies the field on the action phase bean that the " | " and tab-
delimited string will be assigned to when the page is submitted.

• The MULTI_SELECT_INITIAL contains only one CONNECT element with a single SOURCE element. This
contains a " | " and tab-delimited string which specifies the rows that are selected when the page is
loaded.

• In the LIST element the ACTION_SET has one ACTION_CONTROL element.
• Optional HAS_CONFIRM_PAGE attribute is used to indicate that the page with MULTISELECT

widget submits to a confirmation page, where user selection is re-displayed for confirmation. See
“Confirmation Pages” on page 293

Below is an example of the delimited string passed as a parameter to the specified page.

101|case121 102|case122 103|case123

292 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

NOTE: The MULTISELECT widget does not support the list pagination feature and all it's items will be
displayed within one scrollable list. See “PAGINATION” on page 40 and “LIST element” on page 263 for
more details on pagination support.

Table 135. Parameters to the MULTISELECT Widget

Parameter Name Required Description and Connections

MULTI_SELECT_SOURCE Yes This parameter can include multiple
CONNECT elements that must specify a
SOURCE end-point.

The SOURCE end-point must be a list
property containing the key data for the
row.

MULTI_SELECT_TARGET Yes This parameter must include one
CONNECT element that must specify a
TARGET end-point.

The TARGET end-point must be a string
property containing the key data for
selected rows.

MULTI_SELECT_INITIAL No This parameter must include one
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point must be a string
property containing the key data for the
rows that are initially check when page is
loaded.

Confirmation Pages
MULTISELECT widget has a specific mechanism allowing for confirming user selection on a separate page.
This confirmation page is supposed to re-display values selected by an user on the MULTISELECT widget
offering a choice to review these values and confirm them or re-visit the previous page to refine the
selection.

Confirming user selection can become a problem where there is a lot of selected values from a big
MULTISELECT widget to be passed to the confirmation page. There are request length limitations in place,
so in order to pass bigger amounts of data possible in this case different request mechanism (request
forwarding) has to be used.

MULTISELECT widget with the selection to be confirmed is specified by HAS_CONFIRM_PAGE optional
attribute on the WIDGET element. The attribute is to be set to true. It is only valid for a widget of TYPE of
MULTISELECT.

Some things to keep in mind with confirmation pages:

• As request forwarding is used to carry the data in this case, the URL for the confirmation page will not be
displayed with the forwarding page URL shown instead.

• Even though the mentioned attribute is set on a MULTISELECT widget, the setting applies to the whole
page (as there is only one form per page). So, in case where multiple submit buttons exist on a page
with MULTISELECT widget to be confirmed, a confirmation step should be assumed for all of these
buttons (i.e., there is no way to have a submit with confirmation and another without confirmation on
that page).

• The confirmation is to be the immediate step carried out on submitting the form with user selection; no
resolve page should be used in the middle.

Chapter 1. Cúram web client reference 293

• It is recommended to have a read-only page for user selection confirmation, allowing user to cancel and
return to the previous page if the selection is to be refined.

The SINGLESELECT widget
The SINGLESELECT widget allows you to specify that the first column in a LIST should contain a radio
button on each row. This widget functions in same way as the MULTISELECT widget, except you are
limited to selecting a single item via radio buttons instead of check boxes.

Note: The SINGLESELECT widget does not support the list pagination feature and all it's items will be
displayed within one scrollable list. See “PAGINATION” on page 40 and “LIST element” on page 263 for
more details on pagination support.

Table 136. Parameters to the SINGLESELECT Widget

Parameter Name Required Description and Connections

SELECT_SOURCE Yes This parameter must include multiple
CONNECT elements that must specify a
SOURCE end-point.

The SOURCE end-point must be a list
property containing the key data for the
rows to be displayed.

SELECT_TARGET Yes This parameter must include one
CONNECT element that must specify a
TARGET end-point.

The TARGET end-point must be a string
property containing the key data for
selected row.

SELECT_INITIAL No This parameter must include one
CONNECT element that must specify a
SOURCE end-point.

The SOURCE end-point must be a string
property containing the key data for the
row that is initially checked when page is
loaded.

The RULES_SIMULATION_EDITOR widget
The RULES_SIMULATION_EDITOR widget is used to edit or create data used when simulating the
execution of a rule-set. The widget generates clusters of fields that correspond to the fields of Rules
Data Objects (RDO).

A normal cluster is used to display the fields of a basic RDO and a multi-column cluster is used for a list
RDO. A standard list is not used, as a list RDO with many fields would result in a list that had too many
columns to be displayed on the screen.

The user can enter or modify values on the page corresponding to the RDO fields and, for list RDO s
displayed in a multi-column cluster, press a button to create additional columns for field values.

The WIDGET element should have the TYPE attribute set to RULES_SIMULATION_EDITOR. The
parameters to the widget are as follows:

294 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 137. Parameters to the RULES_SIMULATION_EDITOR Widget

Parameter Name Required Description and Connections

VALUES Yes The simulation data values. A previous
set of values can be displayed and edited
or a new set of values can be created.

The parameter should contain a CONNECT
element with a SOURCE set to a DISPLAY
phase bean field containing the values
and a TARGET set to an ACTION phase
bean field that will receive the edited
values. If the SOURCE has no values set,
the editor will create them.

META_DATA Yes The simulation meta-data. The meta-data
contains details about the structure of
the RDO s necessary to generated the
input fields.

The parameter should contain a CONNECT
element with a SOURCE set to a DISPLAY
phase bean field containing the meta-
data.

ADD_BUTTON_CAPTION Yes The caption to use on the button
displayed at the bottom of each multi-
column cluster and used to add a new
column of extra data to a list RDO. If an
image is also specified, this caption is
used as the "alt" text of the image.

The parameter should contain a CONNECT
element with a SOURCE that gets a
localized string from a TEXT source.

ADD_BUTTON_IMAGE No The path to the image file to use if an
image button is to be used in place of a
standard button. The path is relative to
the WebContent folder.

The parameter should contain a CONNECT
element with a SOURCE that gets a
localized string from a TEXT source.

The widget should be placed in a CLUSTER element. The clusters for the RDO s will be rendered within
that cluster. The SHOW_LABELS attribute should be set to false. The LABEL_WIDTH attribute of the
CLUSTER element will be inherited by the clusters that are generated by the widget, so it can be used to
control the layout. An ACTION_CONTROL element in the cluster or on the page should be added to save
and process the simulation data created by the widget in the usual manner.

When a widget is not supplied with any simulation data values, it will display empty fields. For list RDO
s, a single empty column of fields will be displayed; values can be entered and more columns added as
needed. If values are supplied, they will be displayed. In a multi-column cluster, pressing the defined
"add" button will add a single empty column to the right of any existing columns. All other empty columns
will be removed at this time, so deleting the values in one or more columns has the effect of removing
those columns from the multi-column cluster.

Chapter 1. Cúram web client reference 295

The IEG_PLAYER widget
For more information, see the Cúram Intelligent Evidence Gathering (IEG) guide.

Dynamic UIM
Dynamic UIM is cached in the resource store in contrast to static UIM, which is stored on the file system,
so that the server and client do not have to be rebuilt in order for a page to be displayed in an application.

All string values in dynamic UIM documents must be externalized in properties files, which must also be
cached in the resource store.

When creating a dynamic UIM document, only the PAGE element is a valid root element. All the UIM
features (elements and attributes) referenced in “UIM pages and views reference” on page 226 are
supported for dynamic UIM, except for those which are listed in “Unsupported features in dynamic UIM”
on page 296.

Refer to “Maintaining Dynamic UIM pages” on page 219 on details about how to maintain dynamic UIM
pages in the Resource Store.

Unsupported features in dynamic UIM
Learn about the elements and attributes that are not supported in dynamic UIM.

Unsupported ACTION_CONTROL features
The following ACTION_CONTROL features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “ACTION_CONTROL element”
on page 227.

Table 138. Unsupported ACTION_CONTROL Features

Name Feature Type Supported/Unsupported
attribute values

CONNECT Child Element

SCRIPT Child Element

CONDITION Child Element

LABEL_ABBREVIATION Attribute

IMAGE Attribute

CONFIRM Attribute

DEFAULT Attribute

ACTION_ID Attribute

296 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 138. Unsupported ACTION_CONTROL Features (continued)

Name Feature Type Supported/Unsupported
attribute values

TYPE Attribute Only the values ACTION and
SUBMIT (An action of type SUBMIT
is not supported within a list
action menu or a page level
action menu. A list action menu
is an ACTION_SET element within
a LIST that has a value of
'LIST_ROW_MENU' on it's 'TYPE'
attribute. A page level action menu
is an ACTION_SET defined at the
PAGE level. See the “ACTION SET
element” on page 232 for further
details. All other submit actions
are supported.) are supported, all
other values are unsupported

(An action of type SUBMIT is not
supported within a list action menu
or a page level action menu. A
list action menu is an ACTION_SET
element within a LIST that has a
value of 'LIST_ROW_MENU' on it's
'TYPE' attribute. A page level action
menu is an ACTION_SET defined at
the PAGE level. See the “ACTION
SET element” on page 232 for
further details. All other submit
actions are supported.)

Unsupported ACTION_SET features
The following ACTION_SET features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “ACTION SET element” on
page 232.

Table 139. Unsupported ACTION_SET Features

Name Feature Type

CONDITION Child Element

SEPARATOR Child Element

TOP Attribute

BOTTOM Attribute

Chapter 1. Cúram web client reference 297

Unsupported CLUSTER features
The following CLUSTER features are not supported in dynamic UIM.

For more information about the supported features of this element in static UIM, see “CLUSTER element”
on page 233.

Table 140. Unsupported CLUSTER Features

Name Feature Type Supported/Unsupported
attribute values

TITLE Child Element

DESCRIPTION Child Element

WIDGET Child Element

SUMMARY Attribute

TAB_ORDER Attribute

Note: Dynamic conditional clusters are not supported for dynamic UIM pages. For more information about
dynamic conditional clusters, see Dynamic conditional clusters.

Unsupported CONTAINER features
The following CONTAINER features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “CONTAINER element” on
page 242.

Table 141. Unsupported CONTAINER Features

Name Feature Type

IMAGE Child Element

LABEL_ABBREVIATION Attribute

Unsupported FIELD features
The following FIELD features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “FIELD element” on page 244.

Table 142. Unsupported FIELD Features

Name Feature Type

LABEL Child Element

SCRIPT Child Element

EDITABLE Attribute

LABEL_ABBREVIATION Attribute

DESCRIPTION Attribute

298 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Table 142. Unsupported FIELD Features (continued)

Name Feature Type

INITIAL_FOCUS Attribute

ALT_TEXT Attribute

CONTROL Attribute

CONFIG Attribute

Unsupported INFORMATIONAL features
The following INFORMATIONAL features are not supported in dynamic UIM.

Only Informationals whose connections endpoints are associated with a server interface defined in
the DISPLAY phase, are supported. See “INFORMATIONAL element” on page 251 for more details on
informationals.). Informationals with other any type of connection endpoints are not supported.

Unsupported INLINE_PAGE features
The following INLINE_PAGE features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “INLINE_PAGE element” on
page 252.

Table 143. Unsupported INLINE_PAGE Features

Name Feature Type

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

Unsupported LINK features
The following LINK features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “LINK element” on page 257.

Table 144. Unsupported LINK Features

Name Feature Type

CONDITION Child Element

PAGE_ID_REF Attribute

SAVE_LINK Attribute

URL Attribute

URI_REF Attribute

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

Chapter 1. Cúram web client reference 299

Table 144. Unsupported LINK Features (continued)

Name Feature Type

SET_HIERARCHY_RETURN_PAGE Attribute

USE_HIERARCHY_RETURN_PAGE Attribute

HOME_PAGE Attribute

Unsupported LIST features
The following LIST features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “LIST element” on page 263.

Table 145. Unsupported LIST Features

Name Feature Type Supported/Unsupported
attribute values

TITLE Child Element

DESCRIPTION Child Element

FOOTER_ROW Child Element

ACTION_CONTROL Child Element

SUMMARY Attribute

SORTABLE Attribute

PAGINATED Attribute

DEFAULT_PAGE_SIZE Attribute

PAGINATION_THRESHOLD Attribute

Unsupported MENU features
The following MENU features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “MENU element” on page 268.

Table 146. Unsupported MENU Features

Name Feature Type Supported/Unsupported attribute
values

CONNECT Child Element

MODE Attribute Only the value IN_PAGE_NAVIGATION
is supported, all other values are
unsupported.

300 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Unsupported PAGE features
The following PAGE features are not supported in dynamic UIM.

Table 147. Unsupported PAGE Features

Name Feature Type

FIELD Child Element

CONTAINER Child Element

WIDGET Child Element

INCLUDE Child Element

SHORTCUT_TITLE Child Element

TAB_NAME Child Element

JSP_SCRIPTLET Child Element

SCRIPT Child Element

SCRIPT_FILE Attribute

POPUP_PAGE Attribute

APPEND_COLON Attribute

HIDE_CONDITIONAL_LINKS Attribute

COMPONENT_STYLE Attribute

TYPE Attribute

Unsupported PAGE_TITLE features
The following PAGE_TITLE features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “PAGE_TITLE element” on
page 276.

Table 148. Unsupported PAGE_TITLE Features

Name Feature Type

DESCRIPTION Child Element

ICON Attribute

Unsupported SERVER_INTERFACE features
The following SERVER_INTERFACE features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “SERVER_INTERFACE
element” on page 278.

Chapter 1. Cúram web client reference 301

Table 149. Unsupported SERVER_INTERFACE Features

Name Feature Type

ACTION_ID_PROPERTY Attribute

Unsupported WIDGET features
The following WIDGET features are not supported in dynamic UIM.

For full details on the supported features of this element in static UIM, see “WIDGET element” on page
283.

Table 150. Unsupported WIDGET Features

Name Feature Type Supported/Unsupported
attribute values

WIDTH Attribute

WIDTH_UNITS Attribute

ALIGNMENT Attribute

HAS_CONFIRM_PAGE Attribute

CONFIG Attribute

COMPONENT_STYLE Attribute

TYPE Attribute Only the value SINGLESELECT and
MULTISELECT are supported, all
other values are unsupported

Dynamic UIM system initialization
The Dynamic UIM system can be initialized in two ways, when the application is started, or the first time
that there is a request for a Dynamic UIM page in the running application. By default the Dynamic UIM
system is initialized when the application is started.

To override the default initialization of the Dynamic UIM system - so that it is
initialized when a Dynamic UIM page is first requested, add a configuration setting to the
ApplicationConfiguration.properties file. This setting follows the same name = value format
of all the other entries there. It should be set as follows:

dynamicUIMInitModelOnStart
This value should be set to false in order to override the default setting.

If a developer intends to access dynamic UIM pages in the application, then the default initialization
of the dynamic UIM system must be used. Otherwise, if the developer is not using dynamic UIM pages
and finds their Tomcat start-up time is too slow, the default initialization of the dynamic UIM should be
overridden, as described above.

302 IBM Cúram Social Program Management: Cúram Web Client Reference Manual

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2022 303

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”
and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

304 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 305

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Figures
	Tables
	Chapter 1. Cúram web client reference
	Cúram web client overview
	User interface metadata (UIM)
	Page content metadata

	Application user interface overview
	Social Program Management applications
	Page context
	Page appearance
	The application controller JSP and web client URL

	Web client development environment
	Outline of the client development process
	The Cúram application and CDEJ installation folders
	CDEJ project folder structure
	Client application component folders
	Client application component order
	Localized Components

	Client application component artifacts
	Client application locales
	Building an application
	Build targets
	Related server build targets
	Full and incremental builds
	Dependency checking
	Build Logs
	Error reporting
	Server interface reference
	Page previews
	UIM Generator Tool
	External client applications

	Deployment
	Application configuration properties
	Tracing server function calls

	Customizing the web application descriptor
	Customizing the 404 or Page Not Found error response

	Customization
	Adding new artifacts
	Overriding or merging artifacts
	Externalized strings
	Images
	Image mapping
	CuramLinks.properties
	Runtime configuration XML files
	Login Pages
	JavaScript files
	Cascading stylesheets
	Application configuration files
	General configuration
	Customizing configuration settings
	Dividing the configuration file
	POPUP_PAGES
	MULTIPLE_POPUP_DOMAINS
	ERROR_PAGE
	MULTIPLE_SELECT
	FILE_DOWNLOAD_CONFIG
	ENABLE_COLLAPSIBLE_CLUSTERS
	APPEND_COLON
	ADDRESS_CONFIG
	ADMIN
	STATIC_CONTENT_SERVER
	FIELD_ERROR_INDICATOR
	SECURITY_CHECK_ON_PAGE_LOAD
	ENABLE_SELECT_ALL_CHECKBOX
	TRANSFER_LISTS_MODE
	HIDE_CONDITIONAL_LINKS
	DISABLE_AUTO_COMPLETE
	SCROLLBAR_CONFIG
	PAGINATION

	Custom resources

	Localization
	Numbers
	File encoding
	Locales
	Non-JavaScript property files
	JavaScript property files

	Language toggle
	UIM externalized strings
	JavaScript externalized strings
	Accessing properties in JavaScript

	Image.properties
	Infrastructure widget properties files
	Frequency Pattern Selector localization

	CDEJResources.properties
	ApplicationConfiguration.properties
	Application-wide menu
	Tabbed configuration artifacts
	Runtime messages

	Application configuration
	Configuration files
	Web client properties
	Customizing the CDEJResources.properties file
	Configuring the browser title

	Applications
	Application definition
	Application application-menu element
	Application application-search element
	Application section-ref element
	Application timeout-warning element
	Application context

	Application optional header
	Application example
	Associate an application with a user

	Customizing IBM Cúram Smart Navigator
	Enabling or disabling IBM Cúram Smart Navigator
	Enabling or disabling IBM Cúram Smart Navigator by changing the .app files

	Guide to creating a new search target
	Creating search keywords
	Creating search keywords by using the administration system
	Creating search keywords by using code tables

	Creating search targets
	Binding keywords to search target implementations
	Deleting or disabling keywords
	Modifying keywords
	Modifying keywords by using the administration system
	Modifying keywords in CT_SearchTarget.ctx

	Translating search targets and keywords
	Translating search target descriptions
	Translating search target keywords

	Overriding the person search
	Customizing case search results
	Overriding default filtering of case search results
	Overriding the default case search results implementation
	Extending the default search results implementation

	Overriding default descriptions for case search results

	Modifying search targets redirect URLs
	Setting the preferred tabs by populating the attribute preferredTabs
	Enabling or disabling recent searches
	Setting the debounce timeout
	Implementing a navigation hook

	Sections
	Section definition
	Section tab element
	Section shortcut-panel-ref element

	Section example

	Section shortcut panel
	Section shortcut panel definition
	Section shortcut panel node element

	Section shortcut panel example

	Tabs
	Tab definition
	Tab page-param element
	Tab menu element
	Tab context element
	Tab navigation element
	Tab smart-panel element
	Tab tab-refresh element

	Context panel UIM
	Tab example configuration file

	Tab actions menu
	Tab actions menu definition
	Tab actions menu menu-item element
	Tab actions menu submenu element
	Tab actions menu menu-separator element
	Tab actions menu loader-registry element
	Tab actions menu loader element

	Tab actions menu dynamic support
	File download menu item
	Tab actions menu example configuration file

	Tab navigation
	Tab navigation definition
	Tab navigation nodes element
	Tab navigation navigation-group element
	Tab navigation navigation-page element
	Tab navigation loader-registry element
	Tab navigation loader element

	Tab navigation dynamic support
	Tab navigation example configuration file

	Opening tabs and sections
	Using links to open tabs and sections
	Page to tab and tab to section associations
	Tab and section page parameters
	Tab ordering

	Working with the Cúram user interface
	Prerequisites for configuring the user interface
	Creating a simple application
	Defining an application
	Adding a section to an application
	Adding a tab to a section
	Add a UIM page to a tab
	Associating a user with an application
	Build targets required to create a simple application

	Adding a shortcut panel
	Adding a section
	Defining the contents of a section shortcut panel
	Defining a search tab
	Define the Search Page

	Build targets required to add a shortcut panel

	Adding tab content
	Defining a person tab
	Defining a context panel
	Defining a person page

	Build targets required to add tab content

	Configuring modal dialogs
	Opening a modal dialog
	Defining the content of the modal dialog
	Adding a wizard progress bar
	Defining the wizard progress bar configuration file
	Defining wizard pages

	Build targets required to add modals and wizard progress bars

	Adding tab navigation
	Defining a navigation bar
	Build targets required to add tab navigation

	Working with lists
	Defining an expandable list
	Defining a list actions menu
	Build targets required to add lists and list actions

	Session management
	Session Overview
	Tab Restoration
	Session Configuration
	Session Timeout Warning
	Session timeout warning default values
	Customizing the session timeout warning in the caseworker application
	Customizing the session timeout warning in Universal Access
	Customizing the timeout warning in an application
	Configuring a customized logon page

	Tab Session Limitations
	Browser Specific Session Management

	Browser management
	Configuring browser Back, Refresh, and Close button behavior
	Optimal browser support
	Optimal browser support configuration
	Optimal browser message configuration

	Domain-specific controls
	Dates
	Three Field Date Selector

	Date-Times
	Representing Time-Only Values
	Customizing the Time Format

	Frequency Pattern Selector
	Selection lists
	Drop-down, scrollable and check-boxed list types
	Enabling multiple selection in lists
	Populated from a code table
	Populated from Server Interface Properties
	Transfer List widget

	User Preferences Editor
	Rules Trees
	Default Rules View
	Summary Rules View
	Failed Rules View
	Dynamic Rules View
	Behavior of Summary and Highlight-On-Failure Indicator

	Dynamic Full Tree Rules View
	Rules Editor

	Meeting View
	Meeting View XML format

	Charts
	Chart appearance
	Chart configuration
	Customizing chart colors in system administration
	Customizing colors on horizontal and vertical bar charts
	Customizing colors on the Participation Summary chart

	Chart data formats

	Heatmap Widget
	Configuration

	Workflow
	Workflow XML Formats

	Evidence view
	Evidence view configuration
	Evidence view XML data formats

	Calendar
	Payment Statement view
	Batch Function View
	Addresses
	Schedule view
	Radio button group
	Pop-up pages
	Configure a pop-up page
	Create a pop-up page
	Using the pop-up page
	Configure a multiple pop-up page
	Using a multiple pop-up page

	Agenda Player
	Agenda Player screen structure
	Navigation modes
	Navigator-less view
	Agenda Player configuration
	Agenda Player customization
	Agenda Player data

	LOCALIZED_MESSAGE Domain

	Custom data conversion and sorting
	Data conversion and sorting operations
	Data conversion lifecycle
	The domain hierarchy and domain plug-ins
	Domain plug-ins
	Converter Plug-ins
	Comparator Plug-ins
	Default Value Plug-ins

	Domain plug-in configuration
	Provided domain plug-ins
	Extending existing plug-ins
	Converter plug-ins
	Comparator plug-ins
	Localized (cultural-aware) string sorting

	Default value plug-ins

	Error Reporting
	Infrastructure errors
	Exception classes
	Custom exception classes

	Java object representations
	Customization guidelines for data conversion and sorting
	Custom formatting
	Custom parsing
	Custom validation
	Custom sorting
	Custom error reporting
	Custom default values

	Type checking and null checking
	Plug-in instance management
	Naming conventions
	Generic parse operations
	Code tables

	Online help development
	The online help system
	Online help elements
	Adding or updating help content

	Maintaining Dynamic UIM pages
	Working in a development environment
	Working in a running system
	Search for dynamic UIM pages by category
	Uploading a dynamic UIM page to the resource store
	Editing a dynamic UIM page in the resource store
	Deleting a dynamic UIM File from the resource store
	Validating a dynamic UIM file in the resource store
	Publish dynamic UIM files

	UI test automation
	UIM reference
	UIM document types
	UIM pages
	UIM views
	UIM page field level validations
	Externalized strings
	UIM pages and views reference
	Connection types
	ACTION_CONTROL element
	ACTION SET element
	CLUSTER element
	Dynamic conditional clusters

	CONDITION element
	CONNECT element
	CONTAINER element
	DETAILS_ROW element
	DESCRIPTION element
	FIELD element
	FOOTER_ROW element
	IMAGE element
	INCLUDE element
	INITIAL element
	INFORMATIONAL element
	INLINE_PAGE element
	IS_FALSE element
	IS_TRUE element
	JSP SCRIPTLET
	LABEL element
	LINK element
	Modal dialogs

	LIST element
	Editable Lists

	LIST_CONNECT element
	MENU element
	DYNAMIC and INTEGRATED_CASE type menus
	The IN_PAGE_NAVIGATION type menu
	WIZARD_PROGRESS_BAR menu
	The UIM wizard pages
	Wizard menu configuration

	PAGE element
	PAGE_PARAMETER element
	PAGE_TITLE element
	SCRIPT element
	SERVER_INTERFACE element
	SOURCE element
	TAB_NAME element
	TARGET element
	TITLE element
	VIEW element

	UIM widgets reference
	WIDGET element
	WIDGET_PARAMETER element
	The EVIDENCE_COMPARE widget
	The FILE_EDIT widget
	FILE_EDIT widget configuration
	User computer configuration for the native messaging version

	The FILE_UPLOAD widget
	The FILE_DOWNLOAD widget
	The MULTISELECT widget
	Confirmation Pages

	The SINGLESELECT widget
	The RULES_SIMULATION_EDITOR widget
	The IEG_PLAYER widget

	Dynamic UIM
	Unsupported features in dynamic UIM
	Unsupported ACTION_CONTROL features
	Unsupported ACTION_SET features
	Unsupported CLUSTER features
	Unsupported CONTAINER features
	Unsupported FIELD features
	Unsupported INFORMATIONAL features
	Unsupported INLINE_PAGE features
	Unsupported LINK features
	Unsupported LIST features
	Unsupported MENU features
	Unsupported PAGE features
	Unsupported PAGE_TITLE features
	Unsupported SERVER_INTERFACE features
	Unsupported WIDGET features

	Dynamic UIM system initialization

	Notices
	Privacy Policy considerations
	Trademarks

