IBM Curam Social Program Management
8.0.2

Curam Web Client Reference Manual

‘.II!=

Note

Before using this information and the product it supports, read the information in “Notices” on page
303

Edition
This edition applies to IBM® Ciram Social Program Management 8.0.0, 8.0.1, and 8.0.2.
Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2022.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

©

Contents

LT =T =R RPN |

T AL, e eerieiririeierereerererretereeseresensesessssesessesesessssesesssesessssesessssesessssesessasessssasessssasesss X

Chapter 1. Cliram web client reference.......ccccccereeeecereenerrenneereenerrenseereeneseenseesennseesd

CUTam WED CLIENT OVEIVIBW....civiceiiiieeieriestesteeteseeste st e steseestestesbeestesseestesssesbesssessesssesseessesssessesssessesssessenns 1
User interface metadata (UIM).....ccoiiiiiiiriiiieitecieeree sttt sie st st enbe e sasesbeesanesnsaenes 1
Application USEr iNTErfaCe OVEIVIEW.......uiiciiieciiieceeeete ettt ettt e e e e e te e e s ba e e e bae e ebaeesnsaeans 3
Social Program Management appliCatioNS.......iccieeiciie ittt ettt e ere e ere e s vae e s aee e seraeeeans 10
PaBE CONTEXT. . iiiiiiiiiiiiie ittt et e e e e s e s s s b a e e e e e e eeeeessssssssrabaaaaaeeeeesessssssssreranaaeeseessnans 11
P B AP PEANANCE. .. ttttii ittt ettt e e e se e ettt et e e e s e e s s st aa et e e e e eeeeae e e s a et e aaaeeeeeeeeesnarrraaaaaaaees 11
The application controller ISP and web client URL.......ccciiiiiiiiciieecieeciee e veeeevee e aee e vne e 11

Web client development ENVIFONMENT......c.c.ui ittt e e e e e e s te e e ree s sabee e e abeeenes 12
Outline of the client developmMENT PrOCESS.....ccciii it vee e aa e e 12
The Curam application and CDEJ installation folders..........ccueiieciieceeccieeceecreeeee e 12
(010] =N I o Tre] =Ted i o] Lo [T o3 d (¥ ot (U TS 13
Client application cOMpPOoNENnt FOLAEIS......ciiciii e e e e e e e e 15
Client application COMPONENT OFUEI....cccuviiiciieccee ettt et e et e e te e eeateeeeraeeeentae e nteesensaeennes 15
Client application component artifaCtS.......ccccieeciiiiciiie ettt s e e be e e eaaeeeas 16
Client apPliCation LOCALES.cciciieecieecctee ettt ettt e et e e e ate e s te e e s abee e ssaeenseesanseeennseenn 17
U Tl == TaTr=T o] o1 1T oz-N o] VO RST 17
1T 0] (o371 0 =12 ST 22
CUSEOMIZATION. cettiiteesite ettt ettt ste st e st et este s tee s eessbaessaesssaesssesssaesseesasaenseesaseensaessseenseesssesnseene 28

[Tor=Y L2 L[] PO OO OO PO P RSP 41
NUMIDEES ottt sttt ettt et e st e e sae e st e s bae s b e s baesssessbeesssesasaesssessbeenbaesaseenseesaseenseessseenseensneen 41
LN =Y oYt |1 o = TSP 41
LOCALES ettt ettt ettt st e e e e e bt e b e e e it e et e e e r e e s bt e heesateenbeesateebaesatesbeenaaeens 42
I L= (U E Y= o o= = L= YRS 43
UIM eXtEINALIZEA STIINES....iiiiciiieeieecciee et eete et ee e e te e e te e s teeesabeeesateesssseeesnsasesssaeaassaeansseeennseeans 43
JavaScript @XterNaliZed STIHNES....cii e et et ete e e te e e eree e s eaae e ebe e e snee e s saeesnseaesnnes 44
B P Yo (o N o] o] o 1= T =TT USSRt 45
Infrastructure widget Properties fileS... ... re e e 45
CDEJRESOUICES. PrOPEITIES. .ccitiieeciieeeiieeeiteeeiteesiteeeeteeesaeeessseeeesseesasseesassaesassaeansseeassesassseeennsessnnseen 48
ApplicationConfiguration. ProPertiES......ciiciii ittt e sre e e e e e srae e e ree e ereeeenes 48
APPLICAtION-WIE MENU...eiiiiiiieiiiecieeee ettt et e et e e e tte e e tte e e sate e s sbeessabeeenssaeennsaeannseeansseesnnses 48
Tabbed configuration artifaCtS......uu e e 48
RUNTIMIE MIESSAEES. . ttiiiiiieeitieieitieeetteeetee e et e e e teeesteeeeteeeebaeasteeesaseeeassaeeasseseassaeeassaeensseeennseesnssesanees 48

JAYoYoliTor-NaTo sl ele]ahaF={UTa- o] o PSSR 49
(00T] 1= {0 =Y Ao T T 1] (=T 50
=T ool L=t oY o o] o 1= o A [T USRS 51
FAY o7 o] 1 or= 14 o] o |- FS RPN 51
Customizing IBM CUram Smart NAViZator.......ccceecuieeiereciieeieecreeeeeeereeeteeeereesteesaeeeseesaeesseesseesaseenseens 62
Y=o 1o o [T OO PP P PR RRPRRPPRP 79
SECHION SNOMCUL PANEL..eiii e ree e et e e s ebee e s be e e s bee e e bee e sabae e snsaeeenseas 81
L1017 OO O PO P PP 84
T ACTIONS MEBNU..ciiiiiiiieieeteeee ettt e st e e be e st e e be e st e s beesasesbeessaesnseensnesaseenses 91
Yo g E= N7 F ==Y oo PO 97
OpeNING tabs anNd SECHIONS.......iii ettt et e et e e te e et e e s st e e sssseessssae e sseesssaeenseean 102

Working with the CUram USEr INTEITACE.ccviiieeieeeeecte ettt ettt et teeereeeteesre e beesaaeebeesasesabeenseens 105
Prerequisites for configuring the user interface.......ccuevieecie e 106

Creating @ SimMpPLe aPPLliCATION...c.iii ettt e sbee e sbe e e s sbe e e sbee e sbaeesbaeeeas 106

AddiNg @ SHOMTCUL PANEL .c..viiiiiiee e st e s sbee e s saee e ssate e ssaeeessneaas 110
AdAING 1D CONTENT...eiiiie e st e e ste e s st e s s be e e sbaeesabaeesabaeessaeesaseeennes 114
Configuring MOdal dialogS.....civcuiiiiiieiiiiee ettt et e e st e s s sbae e sbae s sbeeessaeessaeesane 117
Pa¥e Lo T g T = o T Fo VAT =2 LT] o TR 123
WOTKING WITR LISTS..uiiiiiiiiiiiiiiie ettt s e s st e s be e e s abe e e s abeeesabeesssbaeesnsaesssseeesnsaens 124
SESSION MANAEEMENT. .. eiiiiitieieitee ettt ettt e ettt e ertteeesteeeertteeebeeesraeesrseeessaesssaesssaessseeessaessnsaessnseessssaeennes 127
SESSION OVEIVIEW. ..utiiiureeiiuieeieieesetteeseiteeseseeesesteesastessaseesssseessaseesssseesssseessaseesssseesssseesssseesssseesssseessssens 127
B ol 2 =T] (o] ¢ VAT o O PP PRSPPI 128
SESSION CONTIGUIATION...cutiiieiieieite ettt ettt s e s bt e e s bt e e s bt e e sba e e ssaeesseeessaeesssaaesaseeesnsseenn 128
SESSION TIMEOUL WaAINING.ciietiiiiieeriieerciee st e st e sttt e ssee e sttt e ssateessseeesssteesssseesssseesassaessssaesnsseesssseesas 129
Tab SESSION LIMITAtIONS....iiiiciiiieiieeeitieecte ettt ettt s e e e s e e e s ba e e sbeeesssteessaeessaaesseeessneenn 135
Browser Specific SESSION ManNagemENT....couciiiiiiiiiierteeecte ettt sare e s sare e s saeeessaeeessseeesn 135
BrOW S MaANAEEMENT. ettt ettt e e e et er e e e e e e e e s e s nser et e e e e e e e e e e s nnnreeneeeeeaeaesannn 135
Configuring browser Back, Refresh, and Close button behavior........cccoccvvvviieiiieiniieinieeneeeee, 135
(O] o) 4100 F= 1l o] £)V V2 1= =1 U] o] o Yo o PSR 137
DOMAIN-SPECITIC CONTIOLS...ciiiieiiiee ittt e e cter e e e e ete e e e e et e e e e sesbaaeeeesasaeseeeenseaeeeennssenesssnnssnns 139
D (=3 FO T P O PO PP PUSPTOPPPPPON 139
B LT T 0 TS PP 140
Yo =T oA A e (=T Y=Y =Tt (o] TS 141
Y=Y LT oA To] o I U] £ TP PSSP 141
LT T (T =T Tot =T a1 (o U 144
RULES TTEES . ttiitiee ittt ettt sttt ettt e e st e e st e e sbe e e sbeeesabeeesabaeesasaeesasaessabaeessbeesasseessssaesssseessnseesnnses 144
MEETING VIBW. . utiiiiiieieiieieite sttt ettt et e e sttt e st e e s bt e e s abe e e s bae e s s b ee e s bee e s baeesabeeeenseeesnseeesnseaesnseeesnssaesnens 150
04 0=V {3 TR PPRRUPPRRTRR 152
HEATMAD WIdBEE . i i iiiiieiieecee ettt sttt e st e s st e e s s abe e s s abeessabaessataeessbaessssaessnseesnnee 157
WVOTKFLOW . ettt ettt ettt ettt ate e s st e s eat e e s e ate e s e ateessateeseateesanseesassaesnssaesnnsaesnssaesnnsaesnnee 158
EVIAENCE VIBW.eiiiiiiiiiiieeeciie ettt ettt s et e st e e st e e s bt e e s bteesastaesbaaessbeesseeesastaesassaessseesnsaenn 162
(021 =1 oo - 1 ORI 165
Payment STAatEMENT VIEW....cii ittt et e e e e ete e e e e et ee e e s e atee e e e ennbeeeessnsteeeseensenasnann 168
BatCh FUNCLION VIBW...iiiiiiiiiieiiie ettt sttt s st e st s e e s s e e s s baeesasaeesabaeesssaeesaseeenn 168
AATESSES. ..etitietiee ettt ettt ettt et e et e e st e e st e e sbee e s bee e s bt e e st ae e s tee e et ae e e aae e et ae e e baeeebae e e baeeebaeenraeenaee 169
SCREAULE VIEBW .. ittt ettt e st ee e st e e s bt e e sbte e ssteesstaesasaeesaneaesneeesnseesaseessane 170
T [Tol oTUTu o] g ={ o 1UT o TN OO RRPPP 171
o] o R ol o T Y= (= J OSSP PSPPSR RROPPPPPTRROt 172
FAY (=T Te F- R] Eo =Y TP 178
LOCALIZED_MESSAGE DOMAIN...ttiiiiiitiiiiieiieeiteeieecte st eteseesreesseesseesseesseesseesaeeesbeesaeesneesneesnnens 184
Custom data coNVErsion aNd SOMTING......ccicieiiiieiiiieeirteeertee st esseeessteeessreeessseessbeeesseessseessssaessaseessases 184
Data conversion and SOrting OPEratiONS......cccuiiiriierrieeirite sttt e st e st e s bt essreesssbeessbeesssseessaseens 184
Data CONVEISION LIFECYCLE. ...t crre e e et e e s e et e e e e s et ae e e eeeasaeeeeennnreeas 186
The domain hierarchy and domain PLUZ=INS......ccivciiiriiiiriieiree et e e s sae e s 186
DOMAIN PLUB=INS .utiiiiiieieiie ettt ettt e et e e st e s s bt e e st e e sttt e s bt e ess b e e essbaeesasaeesssaeessaeesssaeessseeesseaean 188
Domain plug-in CONTIGUIATION....ciiciiiiiiee ittt ettt see st e e s ree e sbe e s s be e e sbee s sbe e e sabaessaseesnaseas 190
Provided dOmMain PLUS-INS....cuiuiiiiiieiritesrte st st e st e s st essbeessbeessbee s s beessbeeessbeeessseessseessseesssens 192
T o] gl S {=T o To] { o= SO PSPPSRI 202
N AV W] o] [=Tor a (=Y o1 (Yo=Y a1 =1 o [T USSR 205
Customization guidelines for data conversion and SOMtiNG.......cccccvvrveeiriieinieeenee e eee e 206
Type checking and NULL ChECKING....ccc.uiiiiiiieeteee et s e s be e s arae s 215
PLUZ-IN INSTANCE MANAZEMENT...ciiiciiiiiiieieee ettt st e st e e ste e s ste e ssabeessaee e s steessseeesnseaesnses 215
NaMINE CONVENTIONS...cttiiiiiee ittt ettt sete e sete e ssrte e srteessbeeessbeeesbeessbeessbeeesabaeesssaesssaesssseessseesnnses 216
(CT=T =T S ol o T U= N o] o L= = L A T0] o TSR 216
(006 Ta [=1 o] LTS USSR 216
(0] a1 1= a1 o e LNV =Y U] o1 aT=T 2 SRS 216
The ONLINE NELP SYSTEM.. .. et e e e et e e e e et e e e e s e abe e e e e e nbeeeesessseaeeeennseneenan 216
(0 a1 LTl gL T o T =Y LY aa =T o SR 217
Adding or updating help CONTENT.....cii it e e sre e s be e s s aeeesaneas 218
Maintaining DYNamIC UIM PAgES......ueiiciieiiieiiiieeiiieesiieessiteeseiteesssteessstesssseeessseessaseessassessaseessaseesssseessnns 219

Working in a development enVIFONMENT......cooiiiiriiiieieerre ettt sre e s ee e s see e s sareessaeeesaeas 219

WOrKIiNG IN @ FUNNING SYSTEMLciiuiiiiiiieiiieeiriee et e et e st e s stee s ste e e steesssteessbeesssteessssaessssaessssaessseesnnee 220

O} =TS - TU (o] 0 F- L[] T OO OSSOSO 222
(O] =] {T =Y o ol PP 225
UIM dOCUMI BN LY PES e iiiiieieicciieee e ectte e e e ette e e e eette e e e estteee s seateaeeeesssaeeeseanssaeassannseaeeeesnsssnesssssssneesannns 225
UIM DS, e eeiiuutttet ettt ettt e e e ettt e e ettt e e sttt e e e e st e e e e s enet e e s e s e teeeaasseeeeeessteeeeeannteeeseanreaeeenanneaaas 225
UIM VIBWS . tteiitieeeitee sttt e sttt e seite s s ette s s tte e sbee s sbeeesbtessabeessabaeesasaessssaesassaessaseessssaessnseeensseessseessseesnnsees 225
UIM page field level validationsS......cuiiiiiiiiierieeecie ettt s e e ssaae e sssaeesaeee s 226
EXTErNAliZEA STIINES.ci ittt e st e e e s bt e s s bee e sbeeessbeeesabeeessseeesssenesnses 226
UIM Pages and VIEWS rEfEIENCE. . ..cuii ittt ste e s te e s ste e s sateessateessaeeessnteesnes 226
O N RN Ta F= Lo e =) (=T =T o LTS 282
D)= o T Lo U) SRS 296
Unsupported features in dynamiC UIM.......oo ittt e eree e s e vae e e s e rree e e s nree s 296
Dynamic UIM system iNitialiZation........cccciieeiieciiiee ettt eectee e e etee e e e e cree e e s enraee e senreeeeeennns 302

1 o] 4o - RRSC | § X |
RNV (oY o] LoV ol o] g Y[=T = [1 304
QI U LY 0 U ST 304

Figures

vi

. User interface with navigation and commonly used components selected.........cccecveeecieeccieeccieecceeenen, 3
. User interface with further levels of navigation and list COMPONENT.......ccciiiiviiiciiiice e 6
Y [T C= N e ToTe F=1 e 1 -1 o = USSR 7
B o To F= e [1 Lo =T g Y4 Y e FO PSR PPPRR 8
. Web ClIieNt FOLAEN STrUCTUIE.iiuiiiieiei ettt ettt st b e e sb e see e 13
. Default Preview Values for Domain Definitions........cooueeririienieniiineeeceeete ettt st e 21
. Error_Page SECHION EXAMPLE....cccuii ettt ee e tee e te e e te e e e te e e e ate e eeateeseateeessseeeseeeeaneeesnseaesnnees 36
. Error_Page Section Example with one default Page......ccocuieeiiiriiiiniiiececceee e 36
. Multiple Select SECtiON EXAMPLE......cii ittt et e e e re e et e e e ae e e abe e e nbaeesnsaeennraen 36
10. Disable Collapsible ClUStErS EXAMPLE...ciicccuiieeeeciiiee e eeiree e eeciree e e eeitee e e eereee e sesrreeesesbsaeeesesseeeesennssneenan 36
171. Append Colon SECION EXAMPLE.....cii ittt et e st e e s te e e s e e s be e s aaee e nsee e nsaeennseeas 36
12. AdMIN SECLION EXAMPLE.....uiiiiii ittt e et e e e tre e e e e tbe e e e e e sbaeee e e nsaeeeessssaaeesesssaeenennssnes 36
13. Static Content Base URL EXaMPLE......cocciii ittt ettt etee e ete e e s tee e svaeestaeesbaeesbaeesnsaaesnsaessnns 37
14, RElatiVe URL @XAMIPLE..uuiiiiciirieeieeciieee e ccttee e eecttee e eee e e e e e e stteee e eeabaeeeeesassaeeeesssesaeseasssasessassssseesansssseennnnnns 37
BRI -V T o)=Y T o] L= TSRS 37
ST (T oTo] g Y= o =T Vo [T USSR 38
17. Field Error INdicators EXAMPLE.....cciei ettt ettt eete e s tte e e ate e s e atee s naeesestaesentaesenteeenssaeennsaesnnes 38
18. Security Check on Page Load EXAmMPLe.. ..t iiiiiiiieeiiieeiieeesiee et e st e st e s seeesseeesssseesssseessseesssseessnnes 38
19. Enable Select All CheCK-bOX EXAMPLE.......iiiiiiieeiieeciie ettt et eetee e te e e te e s sate e e nbeessase e s nsae s ssaeenaseeans 39
20. Transfer ListS MA@ EXAMPLE....uuuii i iiie ettt ettt e rree e et e e e e tre e e e s e nbaee e senraeeesennssaeeaennssaeasans 39
271, Hide CoNAitioNal LINKS..c..eecuiiieiieieriieeneeeeese ettt sttt sttt sttt sb e st sb e s sbe b e s e s e smeenneen 39
B DI EF- L oY N YU (o I O] ya o] L=Y TSP 39

. SCIrOlDAr CONFIGUIATION. .. .iiiiiie et e et e e e te e e et e e e et e e e s abee e aseeessseeessseeeansaeennsaeennsaeans 39

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

Sample Pagination CoNfIGUATION.......ciiiiiiiiieiiciee ettt ee e s saee e seaee e ssaee e ssseeeseseeesneaasans 40
CT_APPLICATIONCODE.CEX . eeuterterteerterieeiertesieetesseeteseessestesseessesseesesaees st eeesseesesaeesseemeesseensesreensesmeenne 62
FILE_DOWNLOAD Configuration from curam-=config.XmMl......ccccceirviiiniiiiniiieinieeinieessieessieesseeesseeesnee 96
Y [aa] o1 LT AN T o I-T o] o RS 107
SIMPLEAPPHOMESECHION.SEC. . iiiiiiiiieieecctiee et e e et e e e eesreee e e e e ttaeeseesteeeesenbeeeeesansenaseeassneesanns 107
Y LaaT 10T Lo ya o - o DTSR 108
YT 0] 0] (=T Lo L= TR U 13 PSSR 108
USEIS.aMX ittt ettt ettt ettt e e s bt et s bt et e s ae e b e st e bt e e e e bt et e she e bt et e bt et e she e bt ene e resneenneeas 109
CT_APPLICATION _CODE.CEXuuuuttttieauttteeeeeiteeeesettte s st te e s et e e s sesrteesssnseeeeseaneeeesesnseeeeesanneeeessanneeeenss 109
ST Laa] 1L AN T o I- o] o USRS 111
SIMPLlEAPPWOIrKSPACESECTION.SEC. .. uiiiiiciiiieeecitee et e et e e eetre e e e e tte e e e e snbeeeeseabaeeeeesasaeeeesssnseneenan 111
SIMPLESN O CULPANELSSP . iiieiieiciiieeteeete ettt et e e e e ae e e ate e e abe e e abee e neaeesnsaeennsaeennsnesnnens 111
T 100] 0] (SR T=T= Lol TR =1 o J USSR 112
e Yo ISV ol T - V= (TSR 112
ST 100] 0] (=S T=T Lol T U1 o TR 113
Y aaT o1 Rt EYe Ta T - o TP 114
SIMPLEPErSONCONTEXT.UIM iiiiiecciiee et e e e e e e e e e tee e e s e steee e e e e steeeeesnseseeesnseeassennsenaessnnsseneeanns 115
Y LaaY o1 L] =T o=Yo 2 WU o o PO SRS 116
ST 100] 0] (=T Rd=T =Yoo 1V 11 o TSR 118
O T L= T a Y oY Lo a =Y ol =TV 1T o o T 119
CreateEmMploymentWizard. ProPertiEs. ... iiiee e e ceitee e eecttee e e eeree e e e ebee e e s esbaeeeeeesssaeeesessseneessnnns 120
CreateEmploymentWizard_pageOne.UiM........ciieecieeecieeeciee et e esteeesteeesreessteessaseesssseesssseesssseesnsseeans 121
CreateEmploymentWizard _pageTWo.UiM. .. e eeieesrieeesteeeeitesssieeessieesssieeessseesssseessseesssesssssesssnnens 122
SIMPLEPEISON TaAD ...ttt ettt e e te e s et e e s eateesssteesssteessstaessseeesnssessnsteeanstaesnssessnns 123
Y1007 0] (=T Rd=T 6To T 0\ F= A28 = N SR 124

vii

viii

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

ST 100] 0] (=S T=T Lol T U1 o TR 125
Y [aaY 1 EEIST= T Vo o U] o o PO OSSR 126
Customizing the date fOrMAL.....cocciiiicie et ae e s sbe e s sabe e s saeeeenaeas 140
Customizing the Date-Time fOrmMat......cccciiiiiiiiiieecieeece e rre e sae e e ae e e rae e e ree e ssaeee s naeeenes 140
Selection List 0N an INSEI PABE.....cucuiiiiiiiiiieiiteesite sttt e iee s s bee s be e s s e e s sbae s sbeeesbeaesseeesanens 143
Selection List 0N @ MOify PABE......cicciiiiiieiciieicte ettt ee st e s te e e s te e e s te e s s abee s ntae e sntaeesnsaeenneeas 143
Sample RulesDeciSioNCONTIg. XML File ...ttt s e e ssaae e s saaeesaeee s 146
Example of Decision ID Sourced from @ BEaN......ccciecieiiiieeiciee e cctee et screesevreesevte e ssveeesvaeesvaeeeans 147
Example of Rules Tree Items with SUMMArY FLag......ccviiriiiiiiiiiiiiieiiee st e e 147
Sample RULESEdItOrCoNfig. XML File.....uiiiuiiiciieicie ettt e e te e s te e st e e te e e ente e e eaeeas 149
Example of Decision ID Sourced from @ BEaN.........ceiicciiiieieciiiee et ecctee e ectee e serre e e s eaae e e e e nrees 150
WWOTKFLOW . ..ttt sttt ettt s bt e b s st et e st e bt st e bt e e e sbeennesreeneemeenne 159
(00T oo L1 10 1K= C=1a 0] o] (=SS 184
OISy (o] g oDl T o] Ao I 61 =T SO S 204
CUSTOM MESSAZE CAtAlOF. .. iiiiiiiiiiiiieiieiiite ettt st e st e et e s s te e s sbeessbeeesbeeessteessssaesssaessssaesssaesnnee 204
Throwing @ CUSTOM EXCEPLION...cicciiiiitie ittt ettt ettt ete e e te e s te e s s te e s eate e s saaeeeestaeesneaesneeeennens 205
Throwing MULEIPLE EXCEPTIONS. ..ciiiiitieiieiiiieerite ettt st e e ste e s ste e ssateessateessateessntaesssseesssseesnnes 205
Configuration for CUStOM FOrMAatting........cuuiiiciiiieiieeccieccte et e er e e re e e te e e e tae e e bae e sbaeennns 207
SOMTING ZEI0 DATES.ceiiuiiiiiietiiiee ettt sete e s ste e s aee e s tee e s bee e s aee e sbeeesbeeessseeesaseeesnseessseesssensnnsens 212
Configuration for CUSTOM SOMING......uiiiciieciiieectieecte ettt e e et e e e e e e sare e e s e e ssseeesaeeesaeesnsanean 212
CUSTOM EFTOr REPOITING. .eiicuteiiiiieeiciieesetiee sttt e sttt e sttt e setteeseteeeseteeesesteesasteesseeesaseeesseeesaseessaseeesaseessaseessnns 213
Custom Pattern MatCh FAilure MESSAZE.....uuiiiiiiiciieeciie ettt eetteeetee e e te e e s te e e e steeeeteeesnbaesssaeesnsaeesnseeanns 213
Custom Default Date-Time ValUe....coue ettt s 214
Example of @ FOOTER_ROW iN @ LiST....uiiiiiieiiiieiciee ettt et ete e sstteeseite e seateessnteessntee s neeesnnnaeenns 249
Example JSP SCRIPTLET RedireCting t0 @ Page....cccceiriuiiiriiiiriieeniee sttt e st e ssiteessee e sseeessseaessaeeas 255

74.

75.

76.

717.

78.

79.

80.

81.

Example JSP_SCRIPTLET Redirecting and Accessing a TeXtHelper........cocvvvveivcieiniieeiiieescieesieeene 256
Example of @ DYNAMIC LABEL......uiiiiiieeciee ettt s etee st e e te e s s ta e e s ta e s s taeesvaeeensaeesasaeesssaassasnens 257
Example of DyNamiC MENU Data......cccccuiieeieciiiieeeeeciiee e e cciieee e ceieee e eeeteeeesessteeeessnseeessensenessssnssssessennnes 269
Example of a DYNAMIC Menu Configuration FilE.......uiucuiiiiiieiiiieccieecciee ettt e e 270
Example of an INTEGRATED_CASE Menu Configuration File.......ccooviiiriiiiiiiieniteerieeeeeenee e 270
An example of wizard-type MENU UIM.ottt e sae e e sae e s e e e ae e e saae e eaes 271
Example of the required properties in the resource store property file.....ccccceeeeciieeieccceee e 272
SAMPLE tEMPLALE AETAILS...uiieiiieecieeeeeee e e et e et e e s be e e s b e e e s bee e s beeesaraeeenreeeenseas 286

Tables

1. ENVIFONMENT VAriADLES. ..cueiieiieiieieee ettt et ettt ettt e s b e s bt e b e smeesbesmeennens 18
2. Pagination CONfigUration OPTIONS.....iicciiiiiciiiieciee e et e et et e st e ste e e s te e e s teesesbeeesateeessseessnseeessseessnsaeanns 40
3. Placeholders used in Frequency Pattern SELECION.... ..ot iciee et ettt e s 46
4. Properties of the FrequenCy Pattern SELECTION.....uuiu it et e e e e 47
ST 0o o 1= {0 =Y o] T o 1T USSR 50
6. Attributes of the appliCation ELEMENT......cooi i e rrre e et ae e e e e eanae e e e e anreee e s 52
7. Supported Child Elements of the application ELemMent.........ccueiieiiiiciiiccieeeeecee e 54
8. Supported child elements of the application-menu element..........ccouveiieeciiieiccciieee e, 54
9. Attributes of the application-search elemMent............ooeiiieiii e e e e e 55
10. Supported child elements of the application-search element..........ccccoeccieeeiiciiiei e, 55
11. Supported child elements of the search-pages element.........ccueeeciieeciiecciiecceeeeeee e 55
12. Attributes of the search-page eleMENTt.......cou it ee e s saee s 56
13. Attributes of the further-options ELlEMENt.........occuiii i re e e s 56
14. Attributes of the section-ref elemMENt.......c.co et s 57
15. Attributes of the timeout-warning EleMENT...........iociiiieeeceeee e e bae e rae e 57
16. Attributes of the SECTION ELEMENT........ii ittt s b e saeeeneas 80
17. Supported Child Elements of the Section EL@MENT........c.ueiiiiiiciieceeee et 80
18. Attributes of the tab ElemMENT.....c...e it s s e s e 81
19. Attributes of the shortcut-panel-ref elemMEeNt........cccuei i 81
20. Attributes of the section-shortcut-panel EL€MENT........ooocuiiiii it 82
21. Supported Child Elements of the section-shortcut-panel Element........ccccecvevveeniiniiiniienieineenieesieenens 82
22. Attributes of the NOAE ELEMENT.....c..ii e st er e s ae e sareens 83
23. Attributes of the tab-config EL@MENt.......ccccuiiicieece e e et 85

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

Supported Child Elements of the tab-config Element.......c.ccoiviiiiiiiiiiiiiinececsce e 85
Attributes of the page-param ELEMENTt.......couiii it e e e e s be e s aaeeas 86
Attributes of the MenU ElemMENT......o e s s e s 86
Attributes of the CONtEXt ElEMENT ... et 86
Attributes of the Navigation ELEMENT......cou i s e e saees 87
Attributes of the smart-panel EleMENT......c...ui i e s eate e s saaeeeaes 87
Supported child elements of the tab-refresh element..........uoeeieiiee e 89
Attributes of the onload/oNsSUbMIit ELEMENTS.......oiiiiiiiieeieee e e e e e e e saaanes 89
Attributes of the menu-bar elemMENt.. ... e e 91
Supported child elements of the menu-bar elemMent.........cocuii i 91
Attributes of the MenU-ItEM ELEMENT ... e s 92
Attributes of the SUDMENU ELEMENT...c..coi e 93
Supported child elements of the submenu elemMeNt.........oooiiii e 94
Attributes of the menu-separator leMENt.........oo i e 94
Supported child elements of the loader-registry element........ccocveiviiinniiniiie e 94
Attributes of the l0ader ELEmMEeNT......cou ottt s 95
Attributes of the Navigation ELEMENT.......oi i aee e saeas 97
Supported child elements of the navigation elemMENt.........cociiiiciiiccieecece e 98
Supported child elements of the NOAES ElEMENT....cccceeiiii i e 98
Attributes of the navigation-group eleMENt........ccuuiiiiiiciieceee e e 98
Supported child elements of the navigation-group element.......ccccviiiiiiieniiienneeeee e 99
Attributes of the navigation-page elemMENT ... et 99
Supported child elements of the loader-registry element.......ccoccviirviiiniiiiniieiee e 100
Attributes of the loader EleMENT ... ittt 100
Tabh OPENING RULES.....eiiiiieiiteeete ettt ettt s st e e st e e s e e e s bee e s bee e s aeeesseaessbaessseesnseesnnsnns 104

xi

xii

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Files required to create an application and corresponding build targets........cccccevvvieiriieinieennieennnne 110
Files required to add a shortcut panel and corresponding build targets........ccccceeeeveeeiceecccieeceieeenee, 114
Files required to add tab content and corresponding build targets.......ccccvvreieiriieiniieeeiieeerieeeceeene 117
Files required to add modal dialogs and corresponding build targets......cccocceeveeeecieeecieeecieeeceeeenee, 123
Files required to add tab navigation and corresponding build targets........cccceveerriierriiennsiensieensieenn. 124
Files required to add an expandable list and a list actions menu, and corresponding build targets... 127
Attributes of the CONFIG lement......co ittt s 153
Attributes for CONFIG @lemMENt........o ittt ettt st st s sbe e nne s 158
ALErIDULES OF @ NOE. ettt e st e bt e s e e e be e sme e sneesneesaneenne 160
FAN A | oTUN =Y o) - g I =l (= TSR 160
Attributes of WOrkflow CONFIG @lemeNnt.....c.ceecieriiriierieeee ettt s 161
EVENT attributes in SChEM@...c.eiiiieeiieeeeeeeete ettt st 165
SINGLE_DAY_EVENT attributes iN SCHEMIA.....uuviiiiiieiieiiieeecttteeee et e e e e e arre e e e e e e e as 166
Calendar VIEW TYPE VAlUES......uuiciiieciiieecieecteeecite ettt esite e e site e e ae e s saaeeesaaaessaaeessaaeessssaessnsaeenssaesnsseesnsens 167
Parameters Passed to EVent DESCIHPIION PaBES......ccviviriieiriieinieeinieecrieessieesseeessee e sseeesseeessnsaessneeas 167
Address format CONTIGUIATIONS.......iiiciie et e et e e te e e s e e s s bae e sabaeesnbaeennseas 169
Attributes of the POPUP_PAGE ElEMENT.......cii ittt e e e ee e e eaaaraeeeeeeeeeeeeeesnssssneeens 173
Child elements of the POPUP_PAGE €LEMENT........ciiiiiiiteieieeeee et eeeeseiaaaaae e reeeeesesessannes 173
Attributes of the PLAYER @lemMENt.. ...ttt e s s 180
Attributes of the PAage ELEMENT........oo e e e e e s be e e s e e e eaes 182
Behavior of the ADSTract PLUZ-iN ClasSSES......cuuiiiiiiiiiiiiieiiieesiieessiee st e ssteessaeessaeessareesssbeessasaesssseesas 192
Provided CoNVEIEr PLUS-INS.....ccciiiicieeecieeceiteseieeeereees e e s s tee e s bee e s bae e e beeesbaeessaeeessaeessseaesnsesessesssnnees 193
Behavior of the FOrmat OperationS.. ... iieee e e ccitee ettt e e e e e e ree e e s enr e e e e s enbeee e s s nstaeeesesseneaans 194
Behavior Of the Parse OPerations.... ... iciee ettt eete e sere e seete e s satee s rteesestaessstaesssseesnnsessnns 196
Behavior of the Pre-Validate Operations..........eeiiccciiieiieciieeecccieee s eerree e eectre e e s e enae e e s s enreee e sesaseaeeseennnns 198

74.

75.

76.

717.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Provided ComParator PLUS-INS.....c.uiiiiiiiiieiiieescieessteeseeessete e seiee e sreessseesssbeessbeesssseessseessaseessnseessnnes 199
Collation StreNGth SUMMAIY.....ciiciiiicie et e ee e s ste e s s aee e e ate e sesaeeeeseeeseneeessaeesnnens 201
DefaULL ValUE PLUG NS .ci ittt ettt e et e s be e s st e e s be e s s beessabaessabaeesaseeesaseessnses 201
Classes Used for Java Object REpresentations.........cccuieeciieeciieeiiie et ecree st s e e sre e e e e s veesaaeeens 205
Attributes of the ACTION_CONTROL ELE€MENT......cciiiiiitiieieeeee et ee e eeeeenraree e e e s e e e seans 228
Child Elements of the ACTION_CONTROL EL@MENT.....uuviiiiiiiiiiiiiiiiiirieeeeeeeee e e e e e e e s e snananes 231
Attributes of the ACTION _SET ELEMENt....uueiiiiiiiieiicciriteeeeeee et ee e e e e e e eeesessarararereeseeeeeseesnnnnnns 232
Child Elements of the ACTION _SET EL@MENT....uuuiiriiiiiiiiiiiieiciiiteeeeee e e e e e e e s e aarsaereeree e 233
Attributes of the CLUSTER €lemeNnt......co ittt 233
Child Elements of the CLUSTER ELE@MENT......cciiiiiiieieieerteteeereee ettt 237
Attributes of the CONDITION @lEMENT....ccciiiiieiieiieeee ettt st es 241
Child Elements of the CONDITION EL€MENT....ccccciiriiiriiiirieiereeeetese ettt sae e 241
Child Elements of the CONNECT ELEMENT.....cociiiiiiieieeieeee ettt 241
Attributes of the CONTAINER ELEMENT....c..cociiiiiiieieeecteeetee ettt s st 242
Child Elements of the CONTAINER ELeMent......cooiiiiiieeeee e 242
Attributes of the DETAILS_ROW ELEMENT.....cciiiiiiieienieenteteeeeeee ettt st sne s 243
Child Elements of the INFORMATIONAL EL€MENT....ccciiiiiiiieriieie ettt 244
Attributes of the DESCRIPTION ELE@MENT....cc.ciiiiiiieiieieienieieeteee ettt 244
Child Elements of the DESCRIPTION Ele@MeNnt......ccoiiiiiiiiiienieenee ettt 244
Attributes of the FIELD @LeMENT.......co ittt sttt s s 245
Child Elements of the FIELD ELEMENT....ccc.ii ittt sttt st s s 248
Child Elements of the FOOTER_ROW EL@MENT.....uuviiiiiiiiiiiiieiiiitteeeeeeee et e e e e e e e e s saassaaeeee s 250
Attributes of the IMAGE ELEMENT......oo it 250
Attributes of the INCLUDE ELEMENT.....cocuiiiiiirieiteieseete ettt sttt r s s s 250
Attributes of the INITIAL ELEMENT.....co ettt st 251

xiii

xiv

99. Child Elements of the INFORMATIONAL ELE€MENT.....ccoiiiiiiiiiieieeieeeeeeeee e e e e e e e e ee e e e eee e saessaaaaans 252

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

1109.

120.

121.

122.

123.

Attributes of the INLINE_PAGE EL@MENT..c..coiiiiiiieeeeeeestteeste ettt s 252
Child Elements of the INLINE_PAGE ELE@MENt.....ccuiiiiiiiiiieiiieeieeeee e eeecirerrer e e e e e eeeeensarseaeeeeeeee s 253
Attributes Of the IS _FALSE ELEMENT.....ciiiiiiiiiecieeeeeeeeee ettt e e ee e e e e e e e e sessssaassraeeeeeeas 253
Attributes of the IS_TRUE ELEMENT.....uueeeeiiiiiii ittt e e e e ee e e sraaeaeeeeeeeeeeee s nssseenens 254
Child Elements of the LABEL EL@MENT..c..ciciiiiiieieeeeeeeteee ettt 257
Attributes of the LINK ELEMENt.... .ottt st s 258
Child Elements of the LINK EL@MENT.......ooiiiiieeeeeeteenteeteeeees ettt 261
Attributes of the LIST ELEMENT... ..o ettt s s e 263
Child Elements of the LIST ELE@MENT...c..co ittt s 265
Child elements of the LIST_CONNECT €le@MENt.....uuuiiiiiiiiiieiciiiiieeeeeee et e e arraaeee e 268
Attributes of the MENU EL@MENT.......coiiiieeeee ettt et 269
Child Elements of the MENU ELEMENT.......coriiiiiiieeee et s 269
Properties in the wizard defining rE@SOUICE.......uiiiciiiiciee ettt aae e eaae e 272
Attributes of the PAGE ELEMENT ...t s 273
Child Elements of the PAGE ELEMENT.......cociiiiiiieiieeeeeeeee ettt 275
Attributes of the PAGE_PARAMETER ELEMENT......uiiiitiiieeeee ettt eeeecrtre e e e e e s e e nnanns 276
Attributes of the PAGE_TITLE ELEMENT...c. ittt 276
Child Elements of the PAGE_TITLE ELE@MENT.....ccooi ittt eeeeennrreree e e e e e e e e seeeanes 277
Attributes of the SCRIPT EL@MENT ..ottt st 277
Attributes of the SERVER_INTERFACE ELEMENT ...ttt e e e e e e e nananes 278
Attributes of the SOURCE ELEMENT.....cc.ioiiiiieieieeeeetee ettt st s 280
Child Elements of the TAB_NAME EL@MENTt......uuuiiiiiiiiiiiecciciiteeeeeeee et e e e e e eeeesesssrarareeeeeeens 280
Attributes of the TARGET EL@MENT.....cctiiiiiiierieeetesee ettt sttt st n e s 281
Attributes of the TITLE ELEMENt... .o ittt st ee e e 281

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

1309.

140.

141.

142.

143.

144,

145.

146.

147.

148.

Child Elements of the TITLE EL@MENT....cooue et e e e e e e e e e e e e eeeeneees 281

Child Elements of the VIEW ELEMENT.....cccoiiiirieieieceeeneee ettt s s 282
Attributes of the WIDGET ELe@MENt ..ottt s e 283
Child Elements of the WIDGET ELEMENT......coiiiiriiirieieeeee ettt st 284
Attributes of the WIDGET_PARAMETER EL@MENT.....uuiiiiiiiiiiiiieeecciieeeeeeee e eeeirreee e e e e e e e e e nnnnnaees 284
Child Element of the WIDGET_PARAMETER ELEMENt......ccoveiiiirieeeeeeireee e ceerreeeeeetveeeeeenveeee e 284
Parameters to the EVIDENCE_COMPARE WidZET.....ccccutiiiiiiiiiieiiieensieesiee st s st e ssveessveessaeee s 285
Parameters t0 the FILE_EDIT WIidZET.....uiuiiiiiiieiciieeciieeeciee ettt ete e este e s ste e s ate e e ntee e snaae s sneaesnnaeas 286
FILE_EDIT widget configuration settings SUMMAIY........ccceviieeriiieriieeniieessieessreessreessseeessseeessnneesas 287
Parameters to the FILE_UPLOAD WidZEt....ccccuiiiiiiiieiieicieeeeieeccteeseieesete e eeteeeeiteeesntae s ntaessnteesnnnaeenns 289
Parameters to the FILE_DOWNLOAD WiIdZET.....ccccutiriieiriieieiieeniieeestessite s s siee e ssiee s siae s ssaeeessseessnneeas 291
Parameters to the MULTISELECT WIZet.....cceriiiirieniieeenieiestere ettt ettt 293
Parameters to the SINGLESELECT WidZET....ccccviiiiiieiiiieeiiiee ettt siee s siee s siee s siee s svee s sneessaneas 294
Parameters to the RULES_SIMULATION_EDITOR WidgEt....ccccutieirieeeiiieeiieeeiieeereeeee e eee e eee e 295
Unsupported ACTION_CONTROL FEATUIES....ciiiicciiieeeeeciieeeeeciteeeseetreeeeeecrreeeeeseseeeesssssasessessssnessennnes 296
UNsSupported ACTION _SET FEAtUIMES....cicciieccieeeciieeeiteeectteeectteeeteeeeteeeestaeeebaeessaesssaeessaeessaeessaeenns 297
UNSUPPOrted CLUSTER FEATUIES....uiiiiiciiiie e eccttee ettt eete e e e ctte e e s e tee e e e e e aaee e e s enbee e e e enseeeeesennsenaanns 298
Unsupported CONTAINER FEAtUIMES....ccccuiiieiieeieieeieieeceieeseteeseteeseteessteessaaeessaeeeesaeaesseeesnneessneeesnnees 298
UNSUPPOIrTEA FIELD FEATUIES. . uiiiiiiiiieeeiecitieececttie e e eecte e e e eevtee e e s atae e s e e aae e e s eenssaeeesenseeeesesnssenessensenes 298
Unsupported INLINE_PAGE FEATUIES......uuiicieecieecciteeceteeseteeste e sette s sevte e svee s sbae s s baessbeeesvaeesnnaaannnes 299
UNSUPPOrTEA LINK FEATUIES...cciiiiiiiee ettt ecte e e e tee e s e e etee e e s e s ate e e s seabaee s senbaaeessnnsseeessesseneeean 299
UNSUPPOIEA LIST FEALUMES...ciiiiiiieieeeeieecetee ettt e scte e setteesetteeseree e s aeeeesseessebaeeeseeesseessseesssesssnseessnsees 300
UNSUPPOrTEAd MENU FEATUIES ... eiiie ettt e e eette e ee e e s e ttee e s e e aeee e e s enaae e e s senntaeeeeenseneesennssnaeannn 300
UNSUPPOITEA PAGE FEATUIES.....uiiiciiieeiiiecctieciteeeciteeectteesste e et e e sstsee s sseesstaeeasseessseessseesssseessssaesnnseenn 301
UNsSUupported PAGE_TITLE FEATUIES.....uuiii ettt ectte e eectee e e ttee e e e e tee e e seebaee e s sensaeaeseensenaessnnns 301

XV

xvi

149. Unsupported SERVER_INTERFACE FEATUIES......uuiiiieciiieeiectiieeeeettee e eecttee e e e cvre e e et e e s e nsae e s e e nnaneas

150. Unsupported WIDGET Features

Chapter 1. Curam web client reference

Use this information to learn how to develop a standard Curam web client. The standard Curam web client
has an HTML user interface that is generated by a middle-tier web application. It conforms to the Java™
EE architecture and is driven by JavaServer pages and servlet technology. This HTML user interface uses
standard browser and Web 2.0 technologies, including JavaScript and cascading style sheets.

Related concepts

Working with the Curam user interface

Use this information to develop user interface elements with the Cram Client Development Environment
for Java. User interface elements that can be created with the Ctiram Client Development Environment for
Java include shortcut panels, tabs, modal dialogs, tab navigation, and lists.

Curam web client overview

Learn about the concepts and terminology that are related to the Ciram Client Development Environment
(CDEJ).

A basic understanding of Java EE development environments, XML and Web technologies such as
Hypertext Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS) and JavaScript
is helpful, but not required.

« Curam web application development is simplified by describing pages and applications in terms of their
content and flow rather than the graphical look-and-feel and layout of the content.

« User interface metadata (UIM) consists of definitions in XML format that describe the contents, and, to a
certain extent, the layout, of one of the main elements in the Cliram user interface, a UIM page.

- An application is a collection of user interface elements, predominantly based on UIM pages, combined
to create specific content for a particular user or role.

« Graphical layout options available to a developer are restricted to enforce a consistent user interface
across the whole application.

User interface metadata (UIM)

User interface metadata (UIM) is an XML language that describes the contents and layout of one of the
main elements in the Clram user interface, a UIM page.

UIM limits the variety of interface layout options that are available to developers, and defaults user
interface characteristics based on the known formats of server interfaces. Consequently, the UIM is kept
simple and the user interface layout has an enforced consistency across the whole application.

The developer creates the UIM page definitions in files with a . uim extension, with each file
corresponding to a single page.

Individual pages are made up from different elements such as page titles, labels, buttons, and links as
well as the most important element, the data content. UIM focuses on defining elements rather than how
they are graphically laid out. The CDEJ provides the tools to generate client screens from UIM definitions.

Page content metadata

Users can display and enter server data in the main content area of an application. Page content metadata
is used to create the content area. The basic unit of data is a field. Each field is either an output or input
parameter of a server interface.

Some XML elements correspond to the user interface elements such as PAGE, FIELD, CLUSTER, LIST,
ACTION_CONTROL, ACTION_SET. The CONNECT element is an important construct that allows fields to
be associated with parameters to server interfaces. In addition to mapping fields, connections can also

© Copyright IBM Corp. 2012, 2022 1

map page parameters and static text. The latter is not stored directly in the UIM, but is externalized in a
property file to help with language localization of user interfaces.

Other XML elements, such as PAGE_PARAMETER and SERVER_INTERFACE, do not have visual
representations in a UIM page but are important to the function of the page. A server interface is a
method that is implemented by using the Server Development Environment (SDEJ). Each UIM page can
be associated with one or more server interface methods. Each method is associated with either the
initialization phase or the process phase. When the UIM page is first opened, the initialization phase
methods run. Typically an initialization phase method uses page parameters as input parameters, and the
resulting server data is mapped to output fields on the screen.

The process phase is initiated when an action control of type Submit is selected by the user. Data from
input fields on the screen is mapped to input parameters of process phase server methods and the
methods are called. After execution of process phase methods, the flow of control is determined by the
Submit action. By default, submit returns to the same page, or you can specify a link to a new target page.

The following example shows an extract of UIM used to create the content area. The extract displays how
the major elements that make up a screen of content area, such as clusters and lists, are represented in
UIM.

<PAGE PAGE_ID="Person_search">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticTextl"/>
</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="ACTION"
CLASS="Person_fo"
OPERATION="search"
PHASE="ACTION" />

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.SearchCriteria">

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="referenceNumber"/>
</CONNECT>
</FIELD>

<FIELD CONTROL="SKIP"/>
</CLUSTER>

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.AdditionalSearchCriteria">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="forename"/>
</CONNECT>
</FIELD>

. more <FIELD> elements...
<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL LABEL="ActionControl.lLabel.Search"
IMAGE="SearchButton"
TYPE="SUBMIT">
<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="ActionControl.lLabel.Reset"
IMAGE="ResetButton">
<LINK PAGE_ID="Person_search"/>
</ACTION_CONTROL>

</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">

2 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<FIELD LABEL="Field.Title.Name" WIDTH="44">
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="personName" />

</CONNECT>
</FIELD>
... more <FIELD> elements...
</LIST>
</PAGE>

Related reference

UIM reference
User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Clram
Social Program Management web application client pages. UIM files must be well-formed XML.

Application user interface overview

The application user interface contains elements that are implemented through user interface metadata
or Carbon components.

In 8.0.0, some UIM components were updated with “Carbon components and add-ons” on page 9.

‘Application name. Application search Application menu

IBM Social Program Management I Application banner

Home CasesandOutcomes Inbox Calendar Reports I Application sections

Person Search X Sue Brennan X Income Support—273 X | Mark Brennan X I Application tab Open/close context panel

Shortcuts < I -
itle bar

Intake ~

123456789

Sue Brennan
424, State St Orem, Midway, Utah, 84058
Female

Born 12/1/1995, Age 24

Searches | Section shortcut categories

Shortcut category items Tab context panel

R 76592727 [sbrennan@myemail.com

Content area tab navigation bar

Home Eligibility ~ Evidence Careand Protection Issues and Proceedings Financial Transactions Referrals lCl\entCu\\tact Administration Applications > v > SmartPanel

Home- QD) QD . G B O Ak -

Refresh button
Home (CIEETID) Quick Notes ~
sensitviy- (D) @D Special Interest None Do

Preferred Public Office Utah Dept of Workforce Services, Heber Registration Date 9/4/2020 +BH b i uA-
City, Utah, 84032 4 2

Registration
Cases Receive Deduction Payment Details N

Currency Dollar Method Of Payment Electronic bank transfer

sz Clez
Payment Frequency Monthly Next Payment Date 20th November 2020

Action controls
Comments Open/close Cluster 2PN

Smart panel
Pending Applications ~ Current Cases ~
Reference Type Start Date Reference Type Start Date
177 Cash Assistance 9/7/2020 551 Ongoing Case 10/2/2020
185 Food Assistance 9/7/2020 273 Income Support 9/7/2020
192 Medically Needy Children 9/7/2020 276 Cash Assistance 9/7/2020
277 Food Assistance 9/7/2020
278 Medical Assistance 9/7/2020
552 Payment Correction 9/7/2020

Figure 1. User interface with navigation and commonly used components selected

The following user interface elements are shown in Figure 1.
Application banner

An application is defined to present a specific view of the data for a user or user role. The application
banner runs along the top of the application and shows the overall context of the application.

Chapter 1. Cdram web client reference 3

Application name

A name is defined for an application on the application banner.
Application search

The application search element provides a search function on the application banner.
Welcome message

A welcome message is displayed on the application banner.

Application menu

8.0.2.0

An application menu on the application banner allows up to three configurable options for a specific
view.

 Alink to log out of the application
« Alink to open the user preferences
 Alink to change the language of the view

By default, the log out and preferences links are shown. An extra link to information about the
application is always shown and cannot be hidden.

Application sections

An application contains one or more sections that allow quick access to some of the more common
user tasks and activities. Application sections are displayed as tabs under the application banner. An
application section is a collection of tabs and an optional section shortcut panel to provide navigation
in the section.

Application tab

Content in a section is displayed in a tab and each section can open multiple tabs, where each tab
represents a business object or logical grouping of information. A tab consists of a logical grouping of
UIM pages.

Tab title bar
A title can be defined for the application tab.
Tab actions menu

The actions menu on the tab provides actions that are associated with the business object that is
represented by the tab.

Tab context panel

A tab contains a context panel at the top of the tab, which contains contextual information that is
associated with the data that is displayed in the tab.

Context panel open and close chevron

By default, the content panel is opened. You can choose to have this context information always
available when you work with the data on the tab, or close it to present more content on the page.

Section shortcut panel

Each section can have a section shortcut panel displayed vertically at the side of the section, which is
collapsed by default but can be expanded to show section shortcut categories, which contain shortcut
category items.

Content area tab navigation bar

A tab consists of one or more pages of information, containing standard UIM components or Carbon
components. The pages can be navigated by using a navigation bar located under the context panel,
which contains navigation tabs that link to single pages or sets of pages. Where a navigation tab links
to a set of pages, a page group navigation bar is displayed in the page.

4 IBM Curam Social Program Management: Curam Web Client Reference Manual

Page title
A title can be defined for the page.
Page action control

Extra action controls can be associated with the page and display along the top of the page. Page
actions controls display as text for one or two actions. For three or more actions, a page action menu
overflow icon is displayed.

Refresh button

A default action control that refreshes user interface content is automatically displayed along the top
of the page.

Print button

A default action control that prints user interface content is automatically displayed along the top of
the page.

Help button

A default action control that displays help content in a new window is automatically displayed along
the top of the page.

Cluster

A cluster is a rectangular area in a page that displays fields in a tabular format. A cluster can have one
or more columns of fields, and fields can be displayed with or without an associated label. Fields can
be read-only, or they can be editable. If editable, the fields appear as a control, such as a text area,
drop-down menu, or checkbox.

Cluster title

A cluster title contains text that identifies the cluster in a page.
Label

A field label is a read-only or 'output' label that identifies the data a field.
Field

Fields are visually organized into clusters and lists on a page. There can be zero or more of each on a
page. Clusters and lists can have a title that describes the type of data displayed.

Action controls

Action controls buttons are used to submit form data, to link to related pages, or to open a modal
dialog. Action controls can be organized into action sets that are associated with clusters, lists, or the
page. Individual action controls can also be associated with a single field in a cluster or a column in

a list. When an action control links to another page it can also send parameters to the target page.
These parameters are typically used as keys to retrieve server data that populates the target page. By
default, action controls display on the widget with which they are associated.

Smart panel

An optional smart panel displays extra contextual information to the side of the tab, such as quick
notes that relate to a case or advice that was given to a client.

Cluster open or close chevron
You can open or close the cluster as needed.

Chapter 1. Ciram web client reference 5

IBM Social Program Management Q Welcome CASE WORKER L2 v

Home CasesandOutcomes Inbox Calendar Reports

Person Search X Sue Brennan X Income Support -273 X | Mark Brennan X
Shortcuts <
Sue Brennan N

Intake

123456789
Sue Brennan
424, State St Orem, Midway, Utah, 84058
Female
Born 12/1/1995, Age 24
Qo 76592727 [sbrennan@myemail.com
Home Eligibility Evidence Careand Protection Issues and Proceedings Financial Transactions Referrals Client Contact i Compli Participant Details > v <
g
special Cautions Special Cautions [Page action menu SRUENOE=NG) 2
3
. Current Previous —{EUNEECREVERTINEEIS %
Investigations — Type Start Date
goeeal > Behavioral Alert Escape Threat 9/13/2020
Utility...
Issue Cases
> Safety Alert Violent Offender History 9/14/2020 it
Registration
Page group navigation bar
Cases Delete.
Page content area ———

Figure 2. User interface with further levels of navigation and list component

The following user interface elements are shown in Figure 2.
In-page navigation tabs

A page can contain several tabs of information.
Page action menu

Extra action controls can be associated with the page and display along the top of the page. Extra
page action controls display as text for one or two actions. For three or more actions a page action
menu is displayed.

Page content area
The page content area displays the currently selected UIM page.
Page group navigation bar

Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with the
first one selected by default.

Lists

A list is used to display rows of repeating or indexed fields. As in clusters, fields can include
associated labels that are displayed as column headings in the list.

List Action menu

A list action menu is displayed at the end of the row for each list item and contains all the actions that
are associated with the list item.

6 IBM Curam Social Program Management: Ciram Web Client Reference Manual

New User Task ® x
*required field

Subject * Deadline

M/d/yyyy] HH:mm v
Priority Date input
Medium X v
Assignment Details ~
[Add To My Tasks
Assign To
v Search pop-up control Q
Comments ~
Secondary action button 1 Primary action button

Figure 3. Single modal dialog

The following user interface elements are shown in Figure 3.
Date input

The Date Time component is a combination of Date input and Time input, which is used in various
parts of the application, for example to schedule a task, to create contact logs, for meeting details,
and for meeting minutes.

Date input enables you to type or select a date from the calendar.
Time input
Time input enables you to enter a time or choose from a list of suggested times.
Search pop-up control
The search pop-up control opens a context-sensitive search modal dialog.
Text area
A text area enables you to input content and data. The component can be used for long form entries.
Primary action button

A primary modal button is an action control that is used to submit form data, to link to related pages,
or to open a modal dialog. By default, the primary action buttons are displayed last.

Secondary action button

Secondary action buttons can be used only with a primary action button as part of a pair. The
secondary modal button’s function is to perform the negative action of the set, such as Cancel or
Back.

Chapter 1. Cdram web client reference 7

Register Person Do
o Registered Person Check @ Registration @

Step 1: Registered Person Check — Perform this search to check if the client is already recorded.

*required field

Search Criteria ~
Reference Number
Additional Search Criteria ~
First Name

[show Nicknames
Last Name

[J show Sounds Like Names

Date of Birth Gender
Address Line 1 Address Line 2
City Birth Last Name

Search Results ~
Person Address Date of Birth
Secondary action button

-

Figure 4. Modal dialog in wizard

The following user interface elements are shown in Figure 4.
Modal title
The modal title contains text that identifies the current modal dialog in a wizard.
Help
An action control that displays help content in a new window by selecting the (?) icon.
Close
An action control that closes the window by selecting the (X) icon.
Wizard progress indicator
Indicates the sequence of pages in the wizard and highlights the current page in the sequence.
Page description
A description can be defined for a whole UIM page.
Text input

Text input enables you to interact with and input content and data. This component can be used for
long and short form entries.

8 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Checkbox

Checkboxes are used when there are multiple items to select in a list. You can select none, one, or any
number of items.

Date input
Date input enables you to type a date or select a date from the calendar.
Dropdown

Dropdowns present a menu list of options from which you can select an option.

Carbon components and add-ons

The IBM Cdram Social Program Management user interface (UI) uses Carbon components. For more
information about Carbon, see the Carbon Design System related link.

The following UIM components were updated with the Carbon equivalent components:

« Checkbox

- Date and time

« Date input

« Dropdown

« Modal dialog and modal buttons

 Multi-selection checkbox

 Text input

« Text area

« Time input

The following Carbon add-ons were created by using the Carbon Design System:

« Cluster
« Search pop-up control

Note: While not a Carbon component, the code table hierarchy was updated to match the Carbon
combination box style without changing the behavior from previous versions. To open the dropdown,
you must click the chevron directly.

The Social Program Management application uses Carbon styles and assets for font, color, and icons. IBM
Plex is the primary font throughout the application.

Related concepts

Social Program Management applications

When a user logs in to IBM Curam Social Program Management, they are presented with a view that is
specific to their role, which is an application. An application is a collection of user interface elements,
mostly based on UIM pages, combined to create specific content for a particular user or role.

Related reference

Application configuration

An application is a collection of user interface elements, based on UIM pages or Carbon components,
that are combined to create content for a specific user or role. You create web client applications by
configuring application configuration files.

Related information
IBM Carbon Design System v10

Chapter 1. Ciram web client reference 9

https://v10.carbondesignsystem.com

Social Program Management applications

When a user logs in to IBM Curam Social Program Management, they are presented with a view that is
specific to their role, which is an application. An application is a collection of user interface elements,
mostly based on UIM pages, combined to create specific content for a particular user or role.

In addition to defining the layout of the screen, an application controls the flow between the pages in the
application. Links to other pages are available from a section shortcut panel, the tab navigation bar, and
page group navigation bar, and from links on the page displayed in the content area.

Activating any of these links results in accessing a new page in the content area, or opening a new page
in a modal dialog. For new pages in the content area, the application definition is used to determine what
tab the page belongs to and what section the relevant tab belongs to. The page is then opened in the
context of the relevant section and tab.

Applications are defined in an XML format by using a number of different files. For example, an application
is defined by using an XML file with the extension . app. Each section that is referenced in the application
is defined by using an XML file with the extension . sec. Any tabs that are referenced by the section are
defined by using an XML file with the extension . tab.

In the following example, an application configuration . app file creates an application that contains two
sections, and an application banner with a quick search facility.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application
id="SimpleApp"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:application-search>
<ac:search-pages>
<ac:search-page type="SAS0O1"
description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>
<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />
</ac:search-pages>
<ac:further-options-link
description="Search.Further.Options.Link.Description"
page-id="Person_search" />
</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Separating the configuration into multiple files allows the reuse of different elements across multiple
applications. For example, a common inbox section can be defined and referenced by multiple
applications.

Related concepts

Application user interface overview

The application user interface contains elements that are implemented through user interface metadata
or Carbon components.

Related reference
Application configuration

10 IBM Curam Social Program Management: Ciram Web Client Reference Manual

An application is a collection of user interface elements, based on UIM pages or Carbon components,
that are combined to create content for a specific user or role. You create web client applications by
configuring application configuration files.

Page context

UIM pages are displayed in different contexts within an application. The context the UIM page is
displayed in can result in different behavior for some of the elements.

The main contexts that UIM pages are displayed in are outlined in the following list:
« Content Area

The content area is where the main content for an application is displayed. When a UIM page is
displayed in the content area, it automatically contains a refresh, help, and print button in its title bar.

Note: The IBM Curam Social Program Management application does not support the web browser File >
Print functionality. A print button is provided for printing the contents of the Content Area only.

« Context Panel
A context panel displays a specific type of UIM page that displays common information for the tab.
« List Dropdown Panel

A list dropdown panel displays a UIM page when a list row is expanded in a list. Expanded rows are a
supported feature of lists. For more information, see “LIST element” on page 263.

« Modal Dialog

A modal dialog displays a UIM page in a dialog window, displayed above the main content. While the
dialog is open, the parent content cannot be accessed. For more information, see “Modal dialogs” on

page 262.
« Smart Panel

A smart panel is an optional panel that can be added to the right of the content area in a tab and
displays a UIM page. For more information, see “Tab smart-panel element” on page 87.

Page appearance

The application and page metadata provide limited scope to specify the position and layout of user
interface elements.

Note the position and layout of the following features:

« The application banner, sections, and tabs are in fixed positions.

« Clusters and lists flow from top to bottom on a page.

- Fields are automatically positioned within the previous user interface elements.

Some control is allowed through attributes of the various elements, but sensible defaults are provided for
all these attributes to minimize the situations where they must be used. Action controls are aligned to
the center of a cluster. The action controls were aligned by configuring the ALIGNMENT attribute of the
ACTION_SET element in “Page content metadata” on page 1.

The application controller JSP and web client URL

A single JavaServer Pages (JSP) file, AppController.do, renders the Ciram client on the browser and
the URL always ends with AppController.do. The URL does not change as the user navigates between
separate pages within the Cdram application so the browser back button is not supported.

Direct browsing

You can access a page directly by typing its full URL into the browser's navigation bar, for
example, http://host:port/Curam/en_US/SomePage.do. On receipt of the request, the browser is

Chapter 1. Cdram web client reference 11

automatically redirected to AppControllexr.do, which loads the requested page. The process by which
the page is loaded depends on whether the page is associated with a tab.

If you access a page directly, the session and its associated tabs is first restored, then a request is sent
for the specified page. The page is then loaded in its associated section and tab. However, if this page is
not associated with a tab, it is loaded in the currently selected tab. In the case of a new session, this is the
Home tab.

Tabs changed in this way can be returned to their default state by closing and reopening the tab where
possible. For the Home tab, logging out and back into the application will restore the Home tab to the
user's default home page. See “Tab Restoration” on page 128 for more information about tab restoration
and session management.

Web client development environment

Use this information to understand the structure of the web client application project, including related
files in the server application, and how to develop, build and deploy the web client application.

The CDEJ transforms files that are specified in user interface metadata (UIM) format into the JavaServer
Pages (JSP) to be deployed on your web application server. These UIM files are supported by various
properties files, configuration files, and others. Collectively, these files are called the application's
artifacts.

You can divide the Ciram web client application project into different functional components for ease of
development. With this system, you can introduce application changes and updates by dropping in a new
component, which automatically overrides the artifacts of another component where appropriate.

EEEEm If you need more complex pages, you can extend UIM by using the https://github.com/IBM/spm-
ui-components to develop JavaScript screens with the IBM Carbon Design System, and drop them into
your customer folder.

Outline of the client development process

A summary of the typical steps in the process, which include running specific build scripts that are
provided.

1. Install the Curam Application and the Ciram CDEJ by installing the Ciram Application Development
Environment (ADE). For more information, see Installing a development environment.

2. The installer creates both a server application and client application project on your file system
that contain all the source files. The client application files include the UIM files for the pages, the
application configuration files, the images, and any other resources that the application requires.

3. Create new source files or customize existing files.

4. Build the application and deploy it to an application server. During development, you can deploy the
application to an application server embedded in your integrated development environment.

5. When deployed, you can test your application with a web browser. For example,
http://localhost:9080/'server_name'/AppController.do

The Curam application and CDEJ installation folders

The Curam Application and the Ciram CDEJ are installed ready for further development and
customization in your project. The Clram Application is divided into two main parts: the server application
that defines the business entities and business logic of the application, and the web client application that
defines how this information is presented to the user.

The actual folder locations vary depending on where they are installed and whether or not you are
developing the Ciram Application, additional applications or samples.

<app-dir>
The top-level application folder containing both the server application and the client application.

12 IBM Curam Social Program Management: Ciram Web Client Reference Manual

https://github.com/IBM/spm-ui-components
https://github.com/IBM/spm-ui-components

<client-dir>
The folder containing the web client application. Typically this is a folder called webclient within the
<app-dir> folder.

<server-dir>
The folder containing the server application. Typically this is a folder called EJBSexrver within the
<app-dir> folder.

<cdej-dir>
The folder containing the Ciram CDEJ, the tools and infrastructure required to build and run web
client applications. Typically this is a folder called CuramCDEJ.

<sdej-dir>
The folder containing the Caram SDEJ, the tools and infrastructure required to build and run server
applications. Typically this is a folder called CuramSDEJ.

For example, if you install into C: /Curam, then you have the following folders.

e <app-dir>isC:/Curam

<client-dir>is C:/Curam/webclient
« <server-dir>isC:/Curam/EJBServer
« <cdej-dir>isC:/Curam/CuramCDEJ]

CDEJ project folder structure

A Curam web client application project is organized into a folder structure that is recognized by the Clram
CDEJ when the application is built. The base folder of this structure is the <client-dizr> folder.

<client-dir>
+ build
+ bean-doc
+ buildlogs
+ components
+ core
+ <custom>
+ Images
+ javasouzrce
+ WebContent
+ JavaSouzrce
project
+ WebContent
+ <locale>
+ Previews
+ WEB-INF

Figure 5. Web Client Folder Structure

+

build
Temporary generated artifacts. The only contents of interest are the generated reference
documentation for the facade server interfaces.

build/bean-doc
Generated reference documentation for the fagcade server interfaces in HTML format. These are
regenerated each time the application model changes. See “Server interface reference” on page 21
for more details.

buildlogs
Log files generated from each build. See “Build Logs” on page 20 for more details.

components
The top-level folder for the application components. Each sub-folder of this folder contains a separate
application component. For more information, see “Client application component folders” on page
15.

components/coxe
The pre-defined core Cliram application component artifacts that provide the core functionality. These
artifacts should not be modified directly. To change them, you should create new artifacts in another
component to override the core artifacts.

Chapter 1. Cdram web client reference 13

components/<custom>
One or more extra application components containing artifacts that add additional application
functionality or customize existing functionality.

components/<custom>/Images
Arbitrary custom resources that you want to deploy with your application. Files and folders within this
folder will be copied to the top-level WebContent folder during the build process.

components/<custom>/javasource
Javasource code and properties files used to add extra functionality to an application or to
define externalized strings used across many application pages. There are a number of different
customizations that can be applied to files within this directory. These include updates to control one
or more of the data conversion or sorting operations. See “Custom data conversion and sorting” on
page 184 for more information about these customizations. This javasource directory is optional,
however if this directory is added, the webclient/.classpath file must be updated to reference
this new source directory. This ensures that the changes in this directory are recompiled when a
client build is run within the specified development environment. The following is an entry in the
webclient/.classpath file, (Where <custom> represents the name of a custom directory):

<classpathentry kind="src" path="components/<custom>/javasource"/>
components/<custom>/WebhContent
Arbitrary custom resources that you want to deploy with your application. Files and folders within this
folder will be copied to the top-level WebContent folder during the build process.
JavaSource

Contains the Initial_ApplicationConfiguration.properties file, thatis describedin
“Application configuration properties” on page 23.

project
Configuration files used when customizing the application deployment descriptors. See “Customizing
the web application descriptor” on page 26 for more details.

WebContent
The generated web application files. This contains the generated JSP files and other application
artifacts that can be used to start and test an application in the development environment. When an
application is to be deployed outside of the development environment, many of the files in this folder
are packaged in the application EAR file. See “Deployment” on page 22 for more details.

WebContent/<locale>
The generated JSP files for each locale supported by the application are placed in folders named after
the locales. For example, for American English pages there will be a folder named en_US. These JSP
files are generated as necessary when the application is built, so they will be replaced automatically
if deleted or out of date with respect to the corresponding UIM file. The JSP files are placed in
sub-folders of the locale folder using the first two letters of the page ID as the sub-folder name. This
reduces the likelihood that an option provided by some application server software to pre-compile the
JSP files will fail when trying to pre-compile too many JSP files at the same time.

WebContent/Previews
Generated HTML files providing a rough preview of what each corresponding JSP will look like when
the application is running. These previews can be viewed directly in a web browser without running
the application. See “Page previews” on page 21 for more information.

WebContent/WEB-INF
The standard folder which must exist in every Java EE web application. No files in this folder will
be served by the web container, the files are only used internally by the web client application. It
contains a classes folder that contains all the compiled Java class files and properties files required
by the application. In a Ciram web application project, this includes the classes and properties
files from the component specific javasource folders and the properties file from the <client-
dir>/JavaSource directory. It also contains a 1ib folder that contains all required library classes
packaged in JAR files. The CDEJ supplies all the JAR files required for this folder and they are copied
during the build process. You should not modify any files in this folder.

14 IBM Curam Social Program Management: Ciram Web Client Reference Manual

In addition to the web client folders, there are a number of folders in the <server-dir> project that are
relevant to web client application development. The <server-dir> project maintains a similar structure
to the web client, specifically in relation to the component folder.

components/<component-name>/clientapps
Application configuration artifacts. These are the XML configuration files for defining applications,
sections, tabs, etc. For more information see “Application configuration” on page 49.

components/<component-name>/tab
Application configuration artifacts pre-defined in the Ciram application. XML configuration files
shipped with the core and other out-of-the-box components will exist in this folder. These should not
be modified. To change these you should create new artifacts in the clientapps folder in another
component, which will then override these artifacts.

Client application component folders

Curam web client applications are organized into collections of artifacts called components. Each
component has its own folder below the <client-dir>/components folder.

The core component is always present. This contains all of the artifacts needed for the core functionality
of the Curam reference application. The name of the component folder is used as the name of the
component.

A component does not necessarily define a discrete part of an application; rather it defines an additional
customization layer of an application. By adding new components, it is possible to selectively replace
pages in the core application, add new pages, change the appearance of the application and alter various
settings. It should never be necessary to edit files within the core application, thereby ensuring that when
the core application is upgraded, the core changes do not overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you to organize your artifacts as
you see fit. Artifacts in a component must have unique file names and the folder structure does not affect
this. For example, you cannot place two UIM files with the same name within the same component, even
though they would be in different folders. Likewise, a UIM file in one component is considered equivalent
to a UIM file in another component, even if the folders within the components containing these UIM files
have different names. Technically, a component represents a single namespace for artifacts and the folder
structures within the components are mostly ignored.

The only exception to the requirement to use unique file names for artifacts is within the optional
WebContent folder within a component. Within this folder, you can place arbitrary files in an arbitrary
folder structure that you want to deploy with your application. The files will be copied to the main
<client-dir>/WebContent folder during the build process and the folder structure will be preserved,
so files in different folders may share the same name.

Client application component order

You can have any number of application components, but they are processed in a strict component order.
This order determines the priority that will be given to artifacts that share the same name but appear

in different components. This is fundamental to the manner in which Caram web client applications are
customized.

The component order is defined by the CLIENT_COMPONENT_ORDER environment variable. This is a
comma-separated list of component names. Use only commas; do not use spaces. You must place the
component with the highest-priority first in the list and continue in descending order of priority. The core
component always has the lowest priority and is implicitly assumed to be at the end of the list; you do not
need to add it explicitly.

For example, setting the component order to "MyComponentOne,MyComponentTwo" will give the highest
priority to artifacts in the MyComponentOne folder within <client-dir>/components, a lower priority
to artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the core folder. Any
component folder not listed in the component order will not be included in the build and a warning will be
displayed to indicate that these components have been ignored. If you do not set the component order at
all, the default component order will include all components in alphabetical order.

Chapter 1. Cdram web client reference 15

Note: The SERVER_COMPONENT_ORDER order, used for the <server-dir> project, will always

include all component folders existing in the components folder. If they are omitted from the
SERVER_COMPONENT_ORDER environment variable, they will automatically be added to the end of the
component order in alphabetical order. For more information consult the Ciram Server Developers Guide.

Localized Components

Localized components contains translated artifacts for the base components and are of the

format "<component name>_<locale>". It is not necessary for these to be added to the
CLIENT_COMPONENT_ORDER environment variable as the tooling that processes this environment
variable will prepend any available components that match entries in the LOCALE_LIST environment
variable. Localized components are matched both on complete locale entry and on the two-character,
lower-case language code. Localized components are prepended before the base component in the
complete component order.

Client application component artifacts

Components contain a number of artifacts that are used to build an application. All the artifacts in a single
component have the same priority in the component order. The artifacts in one component may be used
to customize the artifacts in a lower-priority component, or they may be entirely new artifacts that extend
the application.

The main type of artifacts are as follows:

UIM Pages
UIM pages are the principal artifacts of a web client application. Each UIM page describes a web page
that users will see when accessing the web client application with their web browsers. The files for
these artifacts use the . uim extension.

UIM Views
UIM views define portions of a page that may be re-used by many UIM pages. The files for these
artifacts use the . vim extension.

Properties Files
Properties files store the natural language text for a page separately from the pages, views and page
groups. When applications are localized into different languages, there will be a separate properties
file for each language (or locale, see “Client application locales” on page 17). This allows a single
UIM page, view or page group to be defined for all of the supported languages.

Note: UIM properties files do not support any form of visual layout or formatting capabilities such as
using carriage returns or inserting HTML elements.

Application Configuration Files
Application configuration files define the layout of the user interface and how UIM pages
are grouped into sections and tabs. The files for these artifacts are defined using the
extensions .app, .sec, .tab, .nav, .mnu, and . ssp. Note, these files are located in the <server-
dir> project. See “Application configuration” on page 49 for details.

Image Files
Images file referenced from your UIM pages or views can be added to your component's Images
sub-folder. See “Images” on page 29 for details.

Configuration Files
Configuration files are used to alter the behavior or appearance of the application or of elements
of the application. There are a variety of different configuration files that can be used for different
purposes.

Custom Resources
Custom resources are arbitrary files that you want to deploy with your application. For example, you
may want to customize the appearance of a page to reference you own image file for a logo; this image
file is a custom resource.

16 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Client application locales

A locale describes a user's language and country and determines what the user sees in the pages that
they access in their web browser. While the data largely remains the same, except for the formatting of
numbers and dates, the labels for the data display in the relevant language.

Locales are specified by a simple identifier that contains a two-character, lowercase language code
optionally followed by an underscore character and a two-character, uppercase country code. For
example, "en" indicates the English language, and "en_US" indicates the regional variation of the English
language appropriate for the United States of America. The regional variation can help to identify
differences in the dialect or usage of the language, American English in this example, but it can also
affect the way dates and numbers are formatted.

The language and country codes are standardized and support for any specific locale is determined by the
Java Runtime Environment (JRE) that you are using for your application and whether you localized your
application for that locale. For more information about the support locales, see the documentation that

is provided by the vendor of your JRE. For more information about the procedure for localizing the web
client application, “Localization” on page 41.

Before you build a Ciram application that is localized for a number of locales, you must specify what
locales you want to include. Set the LOCALE_LIST environment variable to a comma-separated list of
the locale codes. Use only commas, do not use spaces. For example, "en_US,es" specifies the American
English locale and the Spanish locale (with no regional variation). The first locale in the list is treated as
the default locale.

In addition to determining what to build, the LOCALE_LIST determines which languages an
internal user can select at run time. Internal users can change their application view language by
selecting Language from their application menu. When an administrator configures a user's default locale,
all locales that are enabled on the Locale code table are available for selection. However, some of these
locales might not be installed. Therefore, we recommend that you keep the locales that are enabled in the
Locale code table in sync with the values in the LOCALE_LIST.

Note: Although administrators can change the default locale for all users, we recommend that they do not
change it for users that use the following functionality. This functionality is available only in the English
language.

« IBM Curam Income Support application module

« IBM Curam Child Welfare Structured Decision Making (SDM) add-on module

We also recommend that the default locale is not changed for administrator users because the
administration applications contain features that do not currently support localization.

Certain operations, such as the generation of page previews (see “Page previews” on page 21), are only
performed for the default locale.

Improving Build Performance: The Cliram CDEJ does most of the translation work for the application's
locales during the build process. From a single UIM file, it produces one JSP file for each locale in the
locale list. If your application supports many locales, you might find it convenient when you develop the
application to omit some locale codes from the locale list, as this improves the build performance. You
can replace the locales when you want to view or test all of the localized pages.

Related concepts

Language toggle
You can configure whether internal users can change their default locale to update the language in which
field labels, tabs, and shortcut menu items are displayed.

Building an application

Use the following information to help you to build a standard Ciram web client application.

Chapter 1. Cdram web client reference 17

Build targets

You build client applications by using Apache Ant build scripts. These build scripts define ordered
sequences of processing steps called targets.

To invoke a target, open a command prompt, change to the <client-dir> folder, and pass the name
of the target to the command you use to start Apache Ant. Typically this command is called build or
appbuild. The name depends on the script provided for your application, but it is referred to as build
in this information. For example, to build the web client application, the command is buildclient. You
can run more than one target at a time by passing the target names separated by space characters. For
example, build clean client will first clean all the generated output that may be present before
building the full web client application again.

The following build targets are available for Clram client projects.

client
Builds the client application. For more information, see “Full and incremental builds” on page 19.

clean
Deletes all of output generated by the other build targets. For more information, see “Full and
incremental builds” on page 19.

beandoc
Generates reference documentation for the fagcade server interfaces. For more information, see
“Server interface reference” on page 21.

client-with-previews
Builds the client application and also generates previews of the pages in HTML format in the
<client-dir>/WebContent/Previews folder. For more information, see “Page previews” on page
21.

uimgen
Generates skeleton UIM pages from the fagcade server interface definitions. For more information, see
“UIM Generator Tool” on page 22.

A number of environment variables affect the build process for a web client application. Some have been
introduced already and others are explained elsewhere, but all are shown below. When you install the
Curam Application, the build command will set most of these for you, as they mostly refer to files and
folders that will be in fixed locations relative to where you installed the application. However, for a new
application, or if you are modifying the build command, you may need to confirm that these are set
correctly.

Table 1. Environment Variables

Name Required Description

CURAMCDEJ Yes The location of the installed Ciram CDEJ
infrastructure, denoted by <cdej-dir>.
See “The Cdram application and CDEJ
installation folders” on page 12 for details.

CLIENT_DIR Yes The location of your web client application,
denoted by <client-dir>. See “The
Curam application and CDEJ installation
folders” on page 12 for details.

CLIENT_PROJECT_NAME Yes Defines the name of the application being
built. This name is used as a base name for
many generated artifacts, for example, for
Java package names. The name is defined
in the UML model. For the installed Ciram
Application, the value should be "Curam".

18 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 1. Environment Variables (continued)

Name Required Description

LOCALE_LIST Yes Defines the locales to be supported by
the application. For more information, see
“Client application locales” on page 17 for
details.

CLIENT_COMPONENT_ORDER No Defines the prioritized order of the
application's components. For more
information, see “Client application
component order” on page 15. This is not
required, but it is highly recommended
that you set it explicitly. By default,

all components will be processed in
alphabetical order.

ENCODING No Defines the character encoding that will
be used to interpret files that do not
explicitly define an encoding. By default,
the system's default character encoding
will be used. For more information, see
“File encoding” on page 41.

MULTIPLE_VALIDATION_ERRORS No Controls the number of errors that are
reported during the build process before
the build terminates. For more information,
see “Error reporting” on page 20.

Related server build targets

The server application is also built using Apache Ant build scripts and some server targets are needed for
the client application. The application configuration files are located in the <server-dir> project so the
targets for processing these are part of the server project.

The following targets are used to process the client application configuration files:

inserttabconfiguration
Combines and imports the client application configuration files onto the database. For more
information, see “Configuration files” on page 50 for more details.

database
The last step of the database target is to call the insexttabconfiguration target. For more
information about the database target, see the Curam Server Developers Guide.

Full and incremental builds

The client build target generates a complete web client application. If no previous build output is
present, running this target will build the entire application as a full build. On subsequent runs of this
target, the build scripts compare your source files to the previously generated output files to detect what
you have changed. The build then updates the minimum number of output files possible in an incremental
build.

An incremental build is done automatically when the output of a previous build is present and is much
faster than a full build. To run a full build again, you must first run theclean target to remove all of the
outputs from the previous build.

warning: Building after upgrading

Chapter 1. Cdram web client reference 19

If you upgrade your Cuiram application or Ciram CDEJ, you must perform a full build by first running
theclean target. Failure to do this can result in unpredictable behavior during the build process or when
the application is running.

Platform Specific Setting: When running theclient build target from a text-only interface, such as when
you use a terminal emulator to access a UNIX computer, you must add -Djava.awt.headless=true to
theANT_OPTS environment setting.

Dependency checking

For most changes you need only the incremental build, as changes are detected automatically and only
the dependent output files are updated. However, some changes are not detected and you might need to
run a full build for your changes to take effect.

In particular, if you change a setting in the curam-config.xml configuration file that affects the build
process (typically by affecting the appearance of the pages in a way that is applied at build-time), then
you need to run a full build manually, as the changes will not be detected automatically.

Dependency checking identifies changes to server interfaces that are used by UIM pages. Server
interfaces are defined in the application's UML model and more information can be found in “Server
interface reference” on page 21. Only changes to interface properties, not their underlying domain types,
are recognized in an incremental build. For example, changing a code-table name will not be detected by
dependency checking and a clean build will be required.

Build Logs

Each time you run the client target to build the application, all of the messages produced by the build
scripts are written to a file in the <client-dir>/buildlogs folder. The files created are named for the
date and time on which the build was started. If errors occur during a build, you may find it easier to
review them by reading the log file instead of scrolling through messages at the command prompt.

Error reporting

One of the main steps performed by the client target is the generation of the JSP files from the UIM files.
This process will check the validity of your UIM files as they are processed. The validity of the UIM files is
determined in a number of steps.

1. They must contain well-formed XML and must not attempt to include VIM files that do not exist.

2. They must conform to the XML schema for UIM and to some additional context-sensitive rules that
cannot be defined in the XML schema.

3. They must refer only to externalized strings that exist in their associated properties files.

4. They must meet a number of other requirements related to the connections made to the properties of
server interfaces. For example, the property names must be unambiguous, or an address field must be
the only field in a cluster.

Normally, the processing will stop when the first error occurs and the indicated problem must be fixed
before the build can be ran again. However, for the errors detected in the second step, the schema and
schema-related validation errors, there is an option to continue processing as far as possible after an
error occurs to allow you to locate and fix more than one error at a time. Errors reported during the other
steps will always stop the build immediately.

To allow multiple validation errors to be reported during a build, set the MULTIPLE_VALIDATION_ERRORS
environment variable to true. If not set, the default value is false and the build will terminate after the
first validation error occurs.

The number of errors reported is limited by the number of UIM files being validated at one time. The
validation is typically done on files in groups of one hundred, so this option will cause all of the validations
errors in the current group to be reported before the build is terminated. No further groups will be
processed after a group containing files with validation errors has been encountered.

20 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Server interface reference

When you develop UIM pages, you need to know details about the facade server interfaces and their
properties so that you can select the information that you want to display on each page. This information
is all defined in the application's UML model. However, for your convenience, you can generate simple
reference documentation in HTML format to make the information more easily accessible.

Thebeandoc target generates this reference documentation for all of the available facade server
interfaces ("classes"), creating the HTML files in the <client-dir>/build/bean-doc folder. To see
the documentation, open the index. html file created in that folder in a web browser. This document
provides links to alphabetical lists of all classes, all operations on those classes, all domain definitions
used by properties of those operations, and all code-tables referenced by any of those domain definitions.
Each of these lists provides further links for cross-references or providing more details. Viewing a class
will display a list of its operations and selecting an operation will show a list of its properties.

In UIM, you do not have to use the full property name; you can use only part of the ending of the name if it
is unambiguous. In the reference documentation for each operation, both the full property name and the
shortest, unique ending of the property name are given. This helps you to choose a name that is short and
readable, but that won't cause any build errors later.

Beside many of the class, operation, and property names, you see a Copy button. However, for most
browsers, the Copy button does not work. You must select the text and use the normal copying
commands.

Page previews

You can produce page previews by running the client-with-previews build target. This generates
static HTML pages for the default locale in the <client-dir>/WebContent/Previews folder. Open the
pages in a browser to see approximately how the page will look when the application is running. You don't
need to start a server to view the pages.

The pages display a default value for each field but do not support any user-interaction (buttons, links,
pop-ups, etc. do not function). The preview page represents only the main content area of the page (the
part specified in UIM) and not the sidebar or page header or footer.

The default values for the fields are defined by associating a default value with the domain definition

of the field. These default values are used only for the preview pages and are defined in the domain-
defaults.xml filein <client-dir>/components/cozre. Overriding this file in other components is
not currently supported so it must be modified in place.

The file uses a simple XML format, a sample of which is shown below. The root element is
DOMAIN_DEFAULTS. This element contains one DOMAIN element for each domain definition for which
a default value is to be defined. The DOMAIN element requires a NAME attribute specifying the domain
name, and a DEFAULT attribute specifying the default value for that domain.
<DOMAIN_DEFAULTS>

<DOMAIN NAME="MY_DOMAIN" DEFAULT="My value"/>

<DOMAIN NAME="YOUR_DOMAIN" DEFAULT="Your value"/>
</DOMAIN_DEFAULTS>

Figure 6. Default Preview Values for Domain Definitions

When generating preview pages, if there is no default value defined for a domain, a warning message

will be displayed. These warnings will not prevent the preview page from being generated and a fall-back
value will be used in the generated page (for example, "[field-value]"). Note that fields that have a
complex domain value are not parsed or processed in the normal manner. Most of these are replaced by
an image of the typical output and no default value is required. Complex fields like this are described in
“Domain-specific controls” on page 139.

Chapter 1. Cdram web client reference 21

UIM Generator Tool

The UIM Generator tool provides a user interface for automatically generating a UIM page for a particular
server interface.

To start the UIM Generator tool:

1. Open a command prompt and change to the <client-dizr> folder.
2. Run build uimgen.

3. The first time you run the UIM Generator you are asked to locate a ServerAccessBeans. xml file.
This file is generated by theclient target in the <client-dixr>/build folder.

After the UIM Generator has started, the screen contains the following elements:

- A File menu containing options to view your current configuration settings and to exit the application.
« Atree on the left hand side which lists all the server interfaces in the application.

- Two options, Display Phase and Action Phase, which determine when the selected server interface is
called in the generated page.

- A Make Page button which generates the UIM for the current settings.
To generate a page, complete the following steps:

1. Select the interface you wish to test from the tree. For example, Register-Person.read.

2. Select the phase in which the interface should be called, for example, Action. Action phase pages call
the interface when the page is submitted. Data can be entered for each input field and a button is
generated to submit the page.

3. Click the Make Page button and you will be asked to specify a location for the generated UIM. You can
change the default name if you wish. The location should be in the appropriate component folder of
your application.

A UIM file and a properties file are generated. The labels for each field are given defaults based on the
name of the server interface property associated with the field.

External client applications

Because the webclient directory contains a mix of components that are targeted for different EAR
packaging, it can be difficult to use a single development environment and component order to develop
and test them. The external-client build target enables development testing to be done on these
external client applications.

The external-client build target enables the creation of an environment and the build of the
components specified for an EAR entry in the deployment_packaging.xml.

The target requires a -Dapp parameter that identifies the name of an EAR entry within the
deployment_packaging.xml.

build external-client -Dapp=SamplePublicAccess

The build target copies the components specified for this EAR entry to awebclient\build\apps\<app
name> directory. In the directory, it builds the project and creates the relevant Eclipse project
configuration files to allow the project directory to be imported into Eclipse for development testing.

Deployment

A detailed description of the deployment procedure is provided in the Cliram Deployment Guide
appropriate for your application server and operating system. However, there are a number of
configuration settings available in your web client application project prior to deployment.

22 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Application configuration properties

The ApplicationConfiguration.properties file defines the most important application
configuration settings. You might want to change some of the settings that are relevant to the client
application.

The ApplicationConfiguration.properties file must be in the curam/omega3 subfolder of

the <client-dir>/JavaSource folder. When you create a new application, this folder contains a
sample file named Initial_ApplicationConfiguration.properties. You need to copy this file
and rename it to ApplicationConfiguration.properties and change the settings to match your
requirements. For the installed Curam application, this process is done for you already, but you might still
want to change other settings.

The properties that can be set in this file are as follows:

Date and time properties

dateformat
dateformat=M d yyyy

The format that is used by the Clram date selector widget for entry and display of date fields.
The value of can be set to one of the following formats:

« Day-month-year order-d M yyyy (the default), dd MM yyyy.

« Month-day-year order-M d yyyy, MM dd yyyy.

« Year-month-day order - yyyy M d,yyyy MM dd.

In these formats, d represents the day number, dd represents the two-digit day number (padded
with a leading zero if necessary), M represents the month number, MM represents the two-digit
month number (padded with a leading zero if necessary), and yyyy represents the four-digit year.
An uppercase letter M is used for the month, as the lowercase letter mis used in Java applications to
represent the minute value when formatting times. Using MMM or MMMM to represent the month name
is not supported. The formats are specified by using a space character as a separator. The actual
separator character that you want to use is specified separately.

dateseparator
dateseparator=/

The date separator character that is applied to the specified date format. The value can be set to one
of the following characters: forward slash (/) (the default), period (.), comma (,), or dash (-).

timeformat
timeformat=HH mm

The value of timeformat can besettooneofh m s a,h m a,H m, hh mm a, HH mm, hhmm a, or
HHmm. Where not specified, HH mm is used as the default.

timeseparator
timeseparator=:

The value of timeseparator can be set by using either a colon (:) or period (.). Where not specified,
the colon (:) is used as the default.

Address properties

addressFormatType
addressFormatType=US

Default address format for addresses in the application.

addressDefaultCountryCode
addressDefaultCountryCode=US

Chapter 1. Cdram web client reference 23

Default, application-wide country code for addresses. This code must match an entry on the server
application's Country code table.

Upload properties

uploadMaximumsSize
uploadMaximumSize=-1

Maximum file upload size in bytes. Files that exceed this size are rejected. This limit needs to be set to
match the allocated storage in the database for fields that contain uploaded files. This limit cannot be
tailored to suit different database fields. The value -1 indicates no maximum limit.

uploadThresholdSize
uploadThresholdSize=1024

The maximum size in bytes of an uploaded file before a temporary file is created on the server to
reduce the memory processor usage of storing the data as it is being processed. By default, the
uploaded files are written to temporary disk storage if they exceed 1024 bytes.

uploadRepositoryPath
uploadRepositoryPath=c:/temp

Temporary files that are created during file upload are written to this location if they exceed the
upload threshold size. By default, files are written to the Java system temporary folder (as defined by
the Java system property property java.io.tmpdix).

Synchronizer token properties

use.synchronizer.token
use.synchronizer.token=true

Whether to use a synchronizer token to prevent accidental resubmission of forms due to use of the
browser's Back button. The value can be set to true (default) or false.

synchronizer.token.timeout
synchronizer.token.timeout=1800

A synchronizer token expires if its associated form is never submitted. Values are specified in
seconds. The default value for this property is 1,800 seconds.

Tab session properties

tabSessionUpdateCountThreshold
tabSessionUpdateCountThreshold=10

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. After the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of 1 causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts.

The default is every 10 updates.
For more information, see “Session management” on page 127.

tabSessionUpdatePeriodThreshold
tabSessionUpdatePeriodThreshold=120

Specifies the number of seconds that must elapse since the last time session data was persisted from
the web tier to the database before a new update triggers another write. A value of zero (or a negative
or invalid value) disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information, see “Session management” on page 127.

24 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Progress spinner properties

curam.progress.widget.enabled
curam.progress.widget.enabled=true

Enables the Progress Spinner widget. The default value is true.

When the value of this property is set to true, and the loading of content in any panel or modal dialog
takes longer than 2 seconds, a progress spinner will appear to indicate that the system is busy.

curam.progress.widget.threshold
curam.progress.widget.threshold=2000

Specifies the time offset in milliseconds for the progress spinner to be displayed. The default value is
2000 milliseconds (or 2 seconds).

This property specifies how long the progress spinner should wait before being displayed. If the page
content loads within this period, the progress spinner will not be shown.

Other properties

serverConnectionType
serverConnectionType=single

Do not change this value.

errorpage.stacktrace.output
errorpage.stacktrace.output=£false

The value of this property is true or false, where false is the default value.

Use stacktrace output in the development environment for debugging purposes. When the value of
this property is true, the Java exception errors are output into the HTML error pages.

You must set the property value to false in a production environment. The HTML error pages

that contain the Java exception stack trace are not included in the IBM Curam Social Program
Management application malicious code and filtering checks. Therefore, if you set the property to
truein a production environment, the HTML error pages could potentially make the application more
susceptible to injection attacks such as cross-site scripting and link injection.

dbtojms.credentials.getter
dbtojms.credentials.getter=curam.sample.CredentialsGetter

Specifies the name of the class that is used to obtain credentials to be used for triggering a DBtoJMS
transfer. If not specified, a default set of credentials is used for this operation. For more information
about DBtoJMS and how to use this property, see the Security Considerations section of the Cliram
Batch Processing Guide.

modal.dialogs.minimum.height
modal.dialogs.minimum.height=200

Specifies the minimum required height for a modal dialog in pixels. The parameter is used when the
calculated height of the modal dialog is less than the minimum required height or the specified height
is less than the minimum required height. The default value of 100 pixels applies if this parameter is
not set.

resourceCacheMaximumSize
resourceCacheMaximumSize=16000000

Specifies the size of the application resource store cache. By default, the cache is limited to 16 MB
(approx.) in size. When that limit is reached, the least recently used resources are ejected from the
cache to make room for newly requested resources that are not already in the cache. The size of the
cache is specified in bytes.

Note: A single resource is not cached if it exceeds the size limit for the cache.

Chapter 1. Cdram web client reference 25

dynamicUIMInitModelOnStart
dynamicUIMInitModelOnStart=false

Indicates whether the Dynamic Clram User Interface Metadata (UIM) system needs to initialize the
required information on the application model during startup or when it is first required for a Dynamic
UIM page. The default value is true and it needs to be set to false to cause the model to be
initialized when it is first required by a Dynamic UIM page.

For more information, see “Dynamic UIM system initialization” on page 302.

disable.context.panel.print
disable.context.panel.print=false

The context panel print is enabled by default along with the main printable content area, which you
can configure. You can disable the context panel print by configuring the following property:

disable.context.panel.print=true
The default value is false.
If you disable the context panel print, you must perform a client build for the property to take effect.

sanitize.link.parameter
sanitize.link.parameter=true

Enables protection from link injection attacks. The default value is false.

When the value of this property is set to true, any parameters in the request URL within the Clram
application that are built with this value are validated for security vulnerabilities. If tracing is enabled,
any parameters in which possible security vulnerabilities are detected are logged and, to maintain
security, the request is terminated at a specially created error page.

Related reference

Optimal browser support

A number of browsers and a range of browser versions are supported for use with IBM Clram Social
Program Management. The default settings for web browser versions align with the versions supported
by IBM for external applications. Users can be notified when they are not using the optimal version of a
supported web browser. You can configure the range of supported versions for a browser, the message
that users see, and the frequency at which the message is displayed.

Tracing server function calls
The CDEJResources.properties file contains a setting to enable tracing of server function calls on the
web-tier.

Add the following property to enable this tracing:
TraceOn=true

When enabled, the inputs to and outputs from all server function calls are written to Standard Out.

Note: Due to classloader issues with Apache Log4| 2, the web-tier does not currently provide a
configurable logging system in the same way as the server-tier.

Customizing the web application descriptor

The web application descriptor that is defined in a file named web . xml is a standard Java EE web
application file. A Ciram web application contains various settings that you might want to change, for
example, server connection settings and the session timeout.

The default settings are in the following files, based on the environment you are running the application
from:

Development Environment
<cdej-dir>/1lib/curam/web/WEB-INF/web.xml

26 IBM Curam Social Program Management: Ciram Web Client Reference Manual

IBM WebSphere® Application Server
<cdej-dir>/ear/WAS/war/WEB-INF/web.xml

WebLogic Application Server
<cdej-dir>/ear/WLS/war/WEB-INF/web.xml

WebSphere Application Server Liberty
<cdej-dir>/ear/WLP/war/WEB-INF/web.xml

Customizing the web . xm1 file is done differently depending on whether you are changing the version of
the file to be included in the Cliram EAR file or the version to be used at development time. For example,
in Apache Tomcat.

Customizing the web . xm1 for development time can be done by creating a custom version of the

web . xml file in the WebContent/WEB-INF directory of a particular component, for example custom.
Where multiple versions of web . xml exist in different components, the version in the highest precedence
component, based on CLIENT_COMPONENT_ORDER, will be used.

The web . xml used within a Ciram EAR file can be customized using the deployment_packaging.xml
file located in the Curam Server project/config directory. It is possible to specify a custom web . xml

using the custom-web-xml property. For more information on customizing web . xml at runtime, see the
Curam Deployment Guide for the relevant application server.

When customizing web . xm1, the existing security, filter and servlet settings should not be modified.

The server and port settings in ApplicationConfiguration.properties are now obsolete and no
longer need to be specified. They are now automatically configured as context-paramelementsin

web . xml when the Clram EAR file is created. The server and port values are set according to the values
specified in the AppServer.properties files (see the Ciram Server Deployment Guides for more
information), with the exception of the web . xml used at development time. The development web . xm1,
located in <cdej-dir>/1ib/curam/web/WEB-INF/web.xml, has the server and port set to localhost
and 900 respectively.

To change or add a locale, locate the init-paramelements of the ActionServlet and duplicate them,
changing the value of the param-name element as appropriate so it is in the form config/<locale-
code>. See the following example.

<init-param>
<param-name>config/en</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>

By default the web . xm1 for both WebSphere and WebLogic application servers is configured to enforce
HTTPS, a secure SSL connection between the web client and the server. This can be modified by changing
thetransport-guarantee from CONFIDENTIAL to NONE.

Note: Note, this does not disable access to the Ciram web client over HTTPS, but enables additional
access over HTTP. For more information, see ../Security/ctr_CuramSecurityHandbook.dita.

Customizing the 404 or Page Not Found error response

The 404 or Not Found error message is an HTTP standard response code indicating that the client was
able to communicate with the server, but the server could not find what was requested. The default
web.xml files for WebSphere, and WebLogic specify a default error page for the Ciram application when
an HTTP 404 error is thrown by the application server. You can customize the error message on the
default page.

The following is the error message displayed on that default page:

- The page you have requested is not available. One possible cause for this is that you are not licensed for
the necessary Curam module - if that is the case, you can use the User Interface administration screens
to remove these links.

This message may be customized by adding a HTTP404Error. properties file into the <client-
dir>/components/<component_name>/ folder of the application and overriding the error.message
property specified in that file.

Chapter 1. Cdram web client reference 27

Customization

You customize a Ciram web client application without modifying the original components or their
artifacts. This approach makes it easier to upgrade a base application while preserving your custom
changes to that application. Use this information to understand how the customization process works,
and how you can modify or extend a base application.

Customizations are applied according to the component order. Make your changes in a separate
component from the application's original components. The Cliram Application is installed with a number
of components, including the core component and a number of other add-on components. Create a new
component folder containing a new sub-folder called components. Always add your new component
name to the beginning of the component order to give it the highest priority when artifacts are being
selected at build-time order. You can add more that one custom component, but you must decide what
their relative position in the component order should be. For more information about component order,
see “Client application component order” on page 15.

To begin with, your custom component will be an empty folder. You make your customizations by adding
artifacts, such as UIM pages, configuration, and files to this component folder. You can create arbitrary
sub-folders to help you organize these artifacts. You can customize an application by adding new artifacts,
overriding existing artifacts, or merging new content with existing artifacts.

Adding new artifacts

You can add new artifacts to extend a base application. To add a new artifact, you simply create the new
file in your component folder. The file name of the artifact should not be the same as the file name of an
artifact in another component. If it is, the artifact will override another artifact or be merged with one.

All types of artifacts can be added to an application in this manner, note artifacts added to the
WebContent sub-folder will always override other delivered artifacts, as described in Section “Custom
resources” on page 40.

Overriding or merging artifacts

Some types of artifacts can be overridden (effectively replaced) by adding an artifact with the same file
name as an artifact in another component to your custom component. When building the application, the
artifact in the highest priority component will be selected and the others ignored. Other types of artifacts
are merged with the same named artifacts in the lower priority components.

The content of all of the artifacts is combined and, where the content is related, the content from the
highest priority component is selected. The customized artifacts only need to share the same file name,
they do not have to share the same relative folder location, though you may find it advantageous to
organize them in a similar manner.

For example, for UIM files that share the same name, the file in the highest priority component will be
selected and the others ignored; but for properties files that share the same name, all of the properties
are merged together and, where the files contain properties with the same key name, the value of the
property from the file in the highest priority component will be used. When building an application, the
artifacts in the components are not modified. The selection and merging of artifacts is performed in
temporary locations, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in the sections below.

Externalized strings

All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

The syntax of a properties file is simple. Each line contains a name=value pair, where the name is an
arbitrary name for the string that must not contain the "=" character, and the value is the localized string
value. Blank lines and lines that begin with a "#" character are ignored. The syntax is defined by the

28 IBM Curam Social Program Management: Ciram Web Client Reference Manual

java.util.Properties class in your Java Runtime Environment. For more information, see the class
API documentation.

The property value is reproduced in the final application page exactly as you type it in the properties file.
The value can contain any character from any language. It is safely processed as you intended in the
application, regardless of whether that character is reserved in XML, HTML, or elsewhere.

If you need to enter a character that you cannot generate from the keyboard in a property value, use the
Unicode value of that character in a Unicode escape sequence, which is a backslash and a "u" character
followed by the four-digit hexadecimal character code. For example, to enter a non-breaking space, the
corresponding Unicode escaped sequence is "\u00a0", see this sample properties file.

Main Titles
MyPage.Title=My First Page
Cluster.User.Title=User Details

J## Field labels
Field.FirstName.Label=First Name
Field.Surname.lLabel=Surname

Other
Separator=\u@0a0

As you can see, "." characters are a useful way to add some structure to your properties, but they are not
required.

When you customize an application, you can customize properties independently of pages and views by
adding the appropriately named properties file to your custom component and defining the externalized
string properties. You don't need to add the corresponding page or view file to your component and you
don't need to redefine any properties that you don't want to change.

Related tasks

Adding or updating help content

To add new help content, you add a help property to the UIM file for the page and add the help content

to the associated properties file. To update existing help, complete the following steps. Adjust the steps if
you are updating domain-specific controls.

Related reference

JavaScript externalized strings
All string values in JavaScript files are externalized to JavaScript property files (. js.properties files).

UIM externalized strings
All string values in UIM files are externalized to . propexrties files.

Images

All references to icons or other graphics within a UIM document are externalized in a manner similar to
normal strings.

The Image.properties file (you can include one in each component, if you wish) uses the same format
as the string properties files to associate image references with image file names. The image files should
be stored in the component's Images sub-folder and can be organized into a folder structure below this
folder if desired. Most web browsers will support images in the portable network graphics (PNG) format,
the graphics interchange format (GIF), and the joint photographic experts group (JPEG) format.

The Image.properties file simply associates a key with a path to the corresponding image file
specified relative to the component folder. A sample of this file is shown below. To use these images,
the key is used as the value of the IMAGE attribute on the ACTION_CONTROL element in the UIM page.

Button.Ok=Images/ok.gif
Button.Cancel=Images/cancel.gif
MyPage.Title.Icon=Images/bluedot.gif

The entries in the Image.properties file in the core component can be overridden individually or in
total by creating an Image . properties file in your custom component and overriding the properties as

Chapter 1. Cdram web client reference 29

required. You can override the image files themselves by creating files in your custom component with the
same names as the files in the core component.

If you need to localize your images for different languages, you can add several Image.properties files
using a different locale code as the file name suffix. See “Locales” on page 42 for details on locale code
suffixes. Each properties file should define the same keys, but the image files can be different for each
locale. If only some of the images need to be localized, the common images can be defined in the default
Image.properties file (the one without the locale code suffix) and only properties for the localized
images in the other properties files.

Image mapping

Images can also be used within the Clram application to represent different values of displayed fields
instead of presenting the value as text. For example, a typical boolean value of txue or false could be
represented by two images of, say, a green check mark and a red X.

The mapping between values and images is stored in the ImageMapConfig.xml file. There is no need to
specify this in any way in UIM. If you use a property with a domain listed in the ImageMapConfig.xml
file, it will automatically be displayed as an image. See this sample ImageMapConfig. xml file.

map>
<domain name="MY_BOOLEAN">
<locale name="en">
<mapping value="true"
image="Images/ValuesToImages/true.gif"
alt="True"/>
<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="False"/>
</locale>
<locale name="fr">
<mapping value="true"
image="Images/ValuesToImages/true.gif"
alt="Vrai"/>
<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="Pas Vrai"/>
</locale>
</domain>
</map>

In the example, a field with domain type MY_BOOLEAN has been assigned an image mapping. Note that
you should specify an image mapping for each available locale even if the images used are identical. This
is because the alternative text ("alt text") attached to the image will be different for different locales. This
text is important for accessibility reasons (users who have visual difficulties might use an audio browser,
for example, which will read out the "alt text").

ImageMapConfig.xml files in different components are merged with all unique image mappings
preserved. If the same value in the same locale is mapped in two ImageMapConfig. xml files in two
different components, the mapping from the higher priority component prevails.

CuramLinks.properties

The UIM LINK element allows links to other client pages to be specified indirectly. The PAGE_ID_REF
attribute is a key into the CuramLinks.properties file that returns the actual ID of the linked page.

Many links can point to the same page reference. The advantage of using a page reference is that all the
links can be updated by changing a single entry in this file.

Each component can have its own CuramLinks.properties file. During generation, these individual
files will be merged. If a key is present in more than one CuramLinks.propexrties file, the component
priority order decides which value is retained.

30 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Runtime configuration XML files

Some XML files in <cdej-dir>/1ib are used by the running client application. To change any of these
files, copy the original file into the custom component subdirectory and modify the copied file.

The client generators use the XML file from the highest priority as specified by the
CLIENT_COMPONENT_ORDER environment variable. The following files are used by the running client
application:

« CalendarConfig.xml

« DynamicMenuConfig.xml

« ICDynamicMenuConfig.xml
« MeetingViewConfig.xml

- RatesTableConfig.xml

e RulesDecisionConfig.xml
» RuleskEditorConfig.xml

For more information about customizing these configuration files, see “Domain-specific controls” on page
139.

Login Pages

The default logon. jsp login page is in the 1ib/curam/web/jsp directory of the Caram Client
Development Environment. You can override this default page by placing a copy with your changes
inawebclient/components/<custom component>/WebContent folder. However, there are some
guidelines that you must follow.

Include the following JavaScript in the head section of the page to prevent the login page from being
loaded in a dialog window.

<jsp:include page="no-dialog.jsp"/>
<script type="text/javascript"
src="$$pageScope.pathl?/CDEJ/jscript/curam/util/Logon.js">
//script content</script>
<script type="text/javascript">
curam.util.Logon.ensureFullPagelogon();
function window_onload() %
document.loginform.j_username.focus();
return true;

</script>
If you want to use the j_security_check login mechanism, the form submitted from the page

must have an action attribute of j_security_check, a user name input with the name attribute
j_username and a password input with the name attribute j_passwozxd.

The Curam Server Developers Guide contains details of some common customizations to the logon.jsp
file to support an external user client application and automatic login.

The styling of 1ogon. jsp can be customized in the usual way. Simply add relevant CSS to any .css filein
the custom component.

JavasScript files

The UIM SCRIPT element allows events on the page to trigger JavaScript functions. Provide a relative
path to the JavaScript file from your component folder.

For example, you can refer to the MyComponent/scripts/myScript. jsinthe SCRIPT tag as follows:
<SCRIPT SCRIPT_FILE="scripts/myScript.js" ...>
The paths that you specify are fully preserved during application generation.

JavaScript allows HTML and CSS to be queried and manipulated. The underlying HTML and CSS source
code used to style the Curam application is not documented. No guarantees are made about its stability

Chapter 1. Cdram web client reference 31

across Curam releases. Therefore, custom JavaScript may have to be updated in line with changes to
HTML structure.

JavaScript APIs for use in the custom JavaScript code are provided within the Cliram application and
documented in CuramCDEJ\doc\Javascript\index.html. Use of any other Clram JavaScript APIs,
discovered through web developer tools for example, is not supported. The same is true of the JavaScript
APIs and functions of third party frameworks used within the Cliram application. While there is nothing
prevent a developer using these, using them means the code will be impacted by changes to the Clram
application in future releases.

Using the techniques described above to add new JavaScript files to the custom component, new third
party APIs could be added to Curam pages. This is at the customer's discretion, as no guarantees can be
made on third-party APIs that have not been used and verified within the Caram application.

Cascading stylesheets

Cascading style sheets (x. css) define the appearance (colors, fonts, etc.) of the client pages when
viewed in a web browser. Default CSS files are provided for the Clram client application in the
WebContent/WEB-INF/css folder. Never update the default CSS files. If you override particular styles
or add new styles, you must create new CSS files in one of your application components.

Note: The underlying HTML and CSS source code used to style the Cliram user interface is not
documented and no guarantee is made about its stability across Clram releases. Therefore, any
customization based on that HTML and CSS might be lost as new releases are taken on. The
customizations may have to be re-applied by analyzing the HTML and CSS again.

You can view the source code by using browser developer tools.

Any CSS file located in the component/<some-component> folder or subfolder is automatically
concatenated into the custom. css file. The custom. css file is included on all pages in the Cliram
client application.

An example of customization is to view the CSS that is used to apply a font-size to a field's label. The
same CSS selector can then be added to your custom CSS file and a different font-size specified. For
example, assuming the HTML and CSS was analyzed and the CSS selector . field .label applies the
label font-size, the following CSS can override the default. The CSS takes precedence over the Curam style
because custom CSS is included on the page after Ciram's default CSS.

.field .label {
font-size: l1rem;
line-height: 1.5;
3t

Another customization technique is to create a new rule that is an extension of a Ciram rule. To continue
the preceding example, a developer analyzes the HTML and sees that an element with the class . image
is generated as a child of the . 1abel element in the Cdram application. It is possible to create a new
rule that is specific to the . image in this context. The following code outlines how to complete the
customization:

.field .label {
font-size: l1rem;
line-height: 1.5;

3

.field .label .image {
width: 1.5rem;

height: 1.5rem;

3

Note: In the preceding example, if any of these class names change in the HTML then the customization
of the . image element no longer applies as . image depends on being a child of . 1abel, which is a child
of .field.

Note: Some UIM elements support the STYLE tag, which allows specific styling to be added to any
instance of that element. This styling will always override the styling in CSS files. For more information,
see “UIM reference” on page 225.

32 IBM Curam Social Program Management: Ciram Web Client Reference Manual

If it is known where the customized image is needed, this maintenance concern can be mitigated by
specifying a custom class such as . image--1large by using the STYLE attribute and writing the styles
with a simpler selector.

.image--large {
width: 1.5rem;
height: 1.5rem;
%

This style is more reusable, resulting in less CSS while it avoids dependencies on other
classes. .image--1large uses the BEM naming convention to indicate that it is a modifier of the . image
style.

Application-specific CSS

CSS can be specific to the application being viewed. The id of the application (. app file) currently being
viewed is added as a class on the BODY element of each HTML page, allowing you to add application-
specific styling to that page.

For example, a System Administrator views the SYSADMAPP application. The following CSS is an example
of CSS specific to that application:

.SYSADMAPP .field .label {
color:red;

Browser-specific CSS

CSS can be specific to the browser used to view the web page. Developers should strive to use the same
CSS on all browsers.

Application configuration files

Add the application configuration files for defining application, section and tabs to the <server-
dir>\components\<component-name>\clientapps directory, where <component-name> is a
custom component. Subfolders are supported within the clientapps folder. Any artifacts added to
this directory will override files of the same name in the <server-dir>\components\<component-
name>\tab directory.

Do not modify files in the tab directory, which contains files that are included with existing components in
the default Ciram application.

Note: The default Cliram application uses fragments of configuration artifacts that are merged into single
files at build time, this is not supported for custom application configuration artifacts. That is, you must
not have a tab folder in EJBServer\components\custom.

When customizing the application configuration files that are included with the Clram application, the
XML configuration file and properties file should always be customized as a unit. For example, a change
to the SimpleApp.propexrties file associated with the SimpleApp.app file, requires you to add
both SimpleApp.app and SimpleApp.properties tothe clientapps folder. These files should be
based on the merged version of the files. You can use the insexttabconfiguration target to get a
development copy of the merged file. See the Curam Server Developer Guide for more information.

There are a few general rules and best practices when working with the application configuration files:

- The id attribute on the root element of each configuration file must match the name of the file. For
example, SimpleApp.app must have an id of SimpleApp.

« The id attributes must not contain the period (.) or underscore (_) characters.

« You must add localizable text to a . properties file that matches the name of the configuration file.
For example, SimpleApp.app needs a corresponding SimpleApp.properties.

 You can reuse properties files across configuration files. For example, Person.nav and Person. tab
can share the same Person.properties file.

Chapter 1. Cdram web client reference 33

« Ensure that you add the proper namespace information when developing the XML files to allow for
validation. For example:
<ac:application

%)éc:application>

General configuration

The curam-config.xml file contains a number of general-purpose configuration options that affect
the appearance or behavior of the web client application. Use this information to understand the main
elements of this configuration file.

Customizing configuration settings

The core component contains a copy of the curam-config.xml file, but you are free to augment and
override the settings by including your own curam-config.xml file in your custom component. All of
the individual curam-config. xml files are merged into one at generation time. The effect of the merge
depends on each particular setting.

The following entries are global settings for the application and must only appear once in the final output.
If you define one of these entries in a custom component, it overrides the entry of the core component.

« HELP

- ERROR_PAGE

« APPEND_COLON

- ADMIN

« POPUP_PAGES/CLEAR_TEXT_IMAGE
« MULTIPLE_POPUP_DOMAINS/CLEAR_TEXT_IMAGE
« STATIC_CONTENT_SERVER

The following entries are merged.
MULTIPLE_POPUP_DOMAINS
POPUP_PAGES

MULTIPLE_SELECT
FILE_DOWNLOAD_CONFIG
PAGINATION

« ADDRESS_CONFIG

Note, however, that particular address formats can be overridden. For example, if the core component had
the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"
LABEL="Core.Label.Address.1"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Core.lLabel.Address.2" />
<ADDRESS_ELEMENT NAME="CITY"
LABEL="Core.Label.City" />
<ADDRESS_ELEMENT NAME="STATE"
LABEL="Core.Label.State"
CODETABLE="AddressState"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Core.Label.zip" />
</ADDRESS_FORMAT>

and if your custom component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

34 IBM Curam Social Program Management: Ciram Web Client Reference Manual

LABEL="Custom.Label.Address.1"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />
<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />
<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.zip" />
</ADDRESS_FORMAT>

then it is the custom definition) that appears in the final merged curam-config.xml file. This is because
both address formats have the same name ("US").

Dividing the configuration file
The curam-config.xml file can be divided into manageable chunks. You can save one part of the
configuration in a file with a different name.

Taking the previous address format configuration as an example, you can create a file with the following
contents:

<APP_CONFIG>
<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_US"
ADDRESS_FORMAT_NAME="US">
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"
LABEL="Custom.Label.Address.1"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />
<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />
<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true" />
<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.zip" />
</ADDRESS_FORMAT>
</ADDRESS_CONFIG>
</APP_CONFIG>

Save this with a file name that ends with -config.xml anywhere in your component, for example
address-config.xml. The file must have the same APP_CONFIG root element as the full curam-
config.xml file. If you follow these conventions, all of your configuration files will be merged into a
single address-config.xml file at build time.

Configuration File Names: Two naming patterns are used for most configuration files. Some use

the pattern XConfig.xml and others X-config.xml, where "X" is some prefix. For example,
ImageMapConfig.xml and address-config.xml. The former pattern indicates a standalone
configuration file that is not related to other configuration files. The latter pattern indicates that the file is
really just part of the curam-config.xml file.

POPUP_PAGES
See “Pop-up pages” on page 172.

MULTIPLE_POPUP_DOMAINS
See “Pop-up pages” on page 172.
ERROR_PAGE

If an error occurs at run-time, the user will be redirected to a page defined here. Depending on the error
cause, two types of error page could be provided for reporting system or application failure (or a default
page for reporting both kind of errors could be configured instead).

Chapter 1. Cdram web client reference 35

<ERROR_PAGE TYPE="SYSTEM" PAGE_ID="CuramSystemErroxr"/>
<ERROR_PAGE TYPE="APPLICATION" PAGE_ID="CuramError"/>

Figure 7. Error_Page Section Example

<ERROR_PAGE PAGE_ID="CuramError"/>
Figure 8. Error_Page Section Example with one default page

Please note: when overriding the ERROR_PAGE setting it is not possible for a custom configuration

to define an ERROR_PAGE element without a TYPE attribute if a low priority component defines an
ERROR_PAGE element with a TYPE attribute. In that case, the custom component needs to use a TYPE
attribute and must override both supported types of error page to get the desired effect

MULTIPLE_SELECT
Domains which should display as multiple select list boxes in forms are specified here. The MULTIPLE
attribute, if true, allows multiple selection in the list.
<MULTIPLE_SELECT>
<DOMAIN NAME="PRIMARY_ID" MULTIPLE="true"/>
<DOMAIN NAME="OTHER_ID" MULTIPLE="true"/>
</MULTIPLE_SELECT>

Figure 9. Multiple Select Section Example

FILE_DOWNLOAD_CONFIG
For more information about file downloads, see “ACTION_CONTROL element” on page 227.

ENABLE_COLLAPSIBLE_CLUSTERS

Set to false to disable collapsible clusters. By default this value is set to true.
<ENABLE_COLLAPSIBLE_CLUSTERS>false</ENABLE_COLLAPSIBLE_CLUSTERS>
Figure 10. Disable Collapsible Clusters Example

APPEND COLON

Set to true to automatically append colons to FIELD and CONTAINER labels within CLUSTER elements.
<APPEND_COLON>true</APPEND_COLON>

Figure 11. Append Colon Section Example

ADDRESS_CONFIG

See “Domain-specific controls” on page 139.

ADMIN

The ADMIN element can contain any number of CODETABLE_UPDATE, TAB_CONFIG_UPDATE and
RESOURCE_UPDATE elements. The PAGE_ID attribute of these elements specifies the page that will clear

the relevant caches whenever its submit action is called.
<ADMIN>

<CODETABLE_UPDATE PAGE_ID="CodeTableAdmin" />
</ADMIN>

<TAB_CONFIG_UPDATE PAGE_ID="ApplicationConfigAdmin"/>
<RESOURCE_UPDATE PAGE_ID="publishResourceChanges"/>

Figure 12. Admin Section Example

Please note: The caches are only cleared for the current instance of the web application. Other instances
will have to be restarted to receive the code table updates. This feature applies at development time only.

STATIC_CONTENT_SERVER
Configure static content for IBM Curam Social Program Management

The procedures in this topic are mandatory for deploying SPM on Kubernetes.

36 IBM Curam Social Program Management: Curam Web Client Reference Manual

An application server is optimized to serve dynamic content, while an HTTP server is optimized to
serve static content. To enable static content in SPM, set the STATIC_CONTENT_SERVER element in the
curam-config.XML file and perform a full SPM build.
<STATIC_CONTENT_SERVER>

<URL>http://www.myserver.com/staticresources/</URL>
</STATIC_CONTENT_SERVER>

Figure 13. Static Content Base URL Example

The forward slash at the end of the URL in the example is optional. You can also use a relative URL.
<STATIC_CONTENT_SERVER>

<URL>/CuramStatic/</URL>
</STATIC_CONTENT_SERVER>

Figure 14. Relative URL example

A full build is required to pick up this setting.

Where this option is used, the static content can be packaged by using the zip-static-content target
available in the webclient project. This target creates a .zip file, StaticContent.zip, in the
webclient\build directory. The StaticContent. zip file contains all relevant static content to be
relocated when the STATIC_CONTENT_SERVER setting is enabled. The -Dstatic.content.zip setting can be
used to overwrite the default .zip file location. All content in the .zip file is stored under a root folder called
WebContent.

build zip-static-content -Dstatic.content.zip=<myzipfile.zip>

Figure 15. Target example

The following content is included in the .zip file:

« WebContent/*%/*.htc
« WebContent/*x/x.html
« WebContent/*x/x.htm
« WebContent/x*/*.bmp
« WebContent/*%/x.cur
» WebContent/*%/*x.gif
e WebContent/*%/*.ico
» WebContent/*%/%.jpeg
» WebContent/**/%x.jpg
« WebContent/**/*.mov
« WebContent/*%/x.png
« WebContent/**/%.psd
« WebContent/x*/x.svg
« WebContent/*%/%.swc
« WebContent/*x/x.swf
« WebContent/*%/*.eot
« WebContent/*x/x.ttf
« WebContent/*x/x.woff
e WebContent/**/x.woff2
« WebContent/*%/%.as

« WebContent/**/*.js

« WebContent/*%/*.vbs
« WebContent/*%/%.css
« WebContent/*x/x.less

Chapter 1. Cdram web client reference 37

« WebContent/**/*.json

The relocation of static content to a separate server allows for specific cache control response headers
to be set for this content. Setting a cache control response header provides an instruction to the browser
to cache this content for a period of time; the aim of which is to reduce network traffic and improve
performance. The Expires and Cache-control headers encourage the browser to cache static content.

Expires: Thu, 15 Apr 2010 20:00:00 GMT
Cache-control: max-age=86400

Figure 16. Response Headers

Note: The Expires value must match the specific formatting in figure 4 to be recognized. The max-age
attribute value is in seconds.

When the headers are set the browser caches the content until the max-age value is reached or the
Expires date is reached. When cached, no request will be made to the server.

FIELD ERROR_INDICATOR

This option indicates if field level error indicators are to be displayed when an error occurs. The error
message is the alt text of the image and is available as a tool-tip when the mouse is hovered over

the image. The feature only applies to text input and date-time fields. Also, this feature only applies to
web-tier generated messages (data-type validation, mandatory fields etc.), it does not apply to messages
generated from server side code since there is no way to associate a server exception with a client side
field.

<FIELD_ERROR_INDICATOR>true</FIELD_ERROR_INDICATOR>
Figure 17. Field Error Indicators Example

Please note if the FIELD_ERROR_INDICATOR element is not specified, it defaults to FALSE.

SECURITY_CHECK_ON_PAGE_LOAD

All server functions used on a Curam screen are checked for authorization rights when the page is initially
loaded. If a user fails authorization for any of the server functions, an authorization error message will be
displayed and the user will be prevented from viewing the page. For example, if a user has authorization
rights to access the DISPLAY phase server function, but not the ACTION phase, they will not be able to
view the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml, which is true by default, indicates
that authorization checks should be performed before the page is loaded to ensure the user has access
rights to all server functions referenced by SERVER_INTERFACE elements on the UIM page.

Setting the SECURITY_CHECK_ON_PAGE_LOAD attribute to false will disable this initial authorization
check and defer authorization to the point at which the server function is invoked. As a result, on an edit
page for example, a user would require authorization rights for the DISPLAY phase server function at a
minimum. If they did not have authorization rights for the ACTION phase server function, the page will
display, but the user will receive an authorization error message when the page is submitted.

To set SECURITY_CHECK_ON_PAGE_LOAD, and disable authorization on page load, add the following to
the curam-config.xml file:

<SECURITY_CHECK_ON_PAGE_LOAD>false</SECURITY_CHECK_ON_PAGE_LOAD>
Figure 18. Security Check on Page Load Example

Please note if the SECURITY_CHECK_ON_PAGE_LOAD element is not specified, it defaults to TRUE.

There is no security risk associated with this change, but the change has implications for auditing.
When the authorization check is performed on page load, by default authorization failures are

not added to the AuthorisationLog database table. This behavior can be modified by setting
curam.enable.logging.client.authcheck to true using the Property Administration screens.

When the authorization check is deferred to the invocation of the server function, i.e.
SECURITY_CHECK_ON_PAGE_LOAD is false, authorization failures are always logged. It is not possible

38 IBM Curam Social Program Management: Curam Web Client Reference Manual

to control or disable this behavior. As a result, the risk is that the AuthorisationLog database table will be
filled with noise in the form of authorization failures that are valid failures based on usage.

ENABLE_SELECT_ALL_CHECKBOX

The multi-select check-box WIDGET described “The MULTISELECT widget” on page 291 displays a
column of check-boxes used to select items in a LIST. The following configuration setting causes a
check-box to be displayed in the column header that can be used to select or de-select all of the
check-boxes at once.

<ENABLE_SELECT_ALL_CHECKBOX>true</ENABLE_SELECT_ALL_CHECKBOX>
Figure 19. Enable Select All Check-box Example

Please note if the ENABLE_SELECT_ALL_CHECKBOX element is not specified, it defaults to FALSE.

TRANSFER_LISTS_MODE

When set to true all multiple selection controls in an application are displayed as Transfer List widgets.
<TRANSFER_LISTS_MODE>true</TRANSFER_LISTS_MODE>
Figure 20. Transfer Lists Mode Example

Please note if the TRANSFER_LISTS_MODE element is not specified, it defaults to FALSE.

HIDE _CONDITIONAL_LINKS

When set to true all conditional links that evaluate to false are not displayed. When set to false all
conditional links that evaluate to false are displayed as disabled links.
<HIDE_CONDITIONAL_LINKS>true</HIDE_CONDITIONAL_LINKS>

Figure 21. Hide Conditional Links

Please note if the HIDE_CONDITIONAL_LINKS element is not specified, it defaults to TRUE.

DISABLE_AUTO_COMPLETE

When set to true auto complete on all input fields is disabled. When set to false auto complete on all
input fields is enabled.

<DISABLE_AUTO_COMPLETE>true</DISABLE_AUTO_COMPLETE>

Figure 22. Disable Auto Complete

Please note if the DISABLE_AUTO_COMPLETE element is not specified, it defaults to FALSE.

SCROLLBAR_CONFIG

The SCROLLBAR_CONFIG element allows a vertical scrollbar to appear on a LIST or CLUSTER element
after a maximum height is reached. It can contain two or less ENABLE_SCROLLBARS elements. The
ENABLE_SCROLLBARS element has the following attributes:

« TYPE : Specifies the element in which vertical scrollbars are to be enabled. Can only be set to LIST or
CLUSTER.

« MAX_HEIGHT : Specifies the maximum height a CLUSTER or LIST can reach before a vertical scrollbar is
displayed.

<SCROLLBAR_CONFIG>
<ENABLE_SCROLLBARS TYPE="LIST" MAX_HEIGHT="150" />
<ENABLE_SCROLLBARS TYPE="CLUSTER" MAX_HEIGHT="100" />
</SCROLLBAR_CONFIG>

Figure 23. Scrollbar Configuration

Please note if the SCROLLBAR_CONFIG element is not specified no LIST or CLUSTER element will display
a vertical scrollbar.

Chapter 1. Cdram web client reference 39

PAGINATION

This element configures the LIST pagination options for the whole application. Individual lists can
override the global settings.
<PAGINATION ENABLED="true">

<DEFAULT_PAGE_SIZE>15</DEFAULT_PAGE_SIZE>

<PAGINATION_THRESHOLD>15</PAGINATION_THRESHOLD>
</PAGINATION>

Figure 24. Sample Pagination Configuration

Table 2. Pagination configuration options

Option Name Required Default Description

ENABLED No true Enables the ability to page through lists
displayed in Clram pages. Any LIST longer
than the configured minimum size will display
only the first "page" of data and the pagination
controls will be displayed below the list.

DEFAULT_PAGE_SIZE |No 15 Specifies the page size the list will get by
default. The page size can be then changed at
runtime by the user.

PAGINATION_THRESHO |No Based on Specifies the minimum list size at which

LD the pagination will be enabled. For shorter lists
DEFAULT_P [there will be no pagination, even if otherwise
AGE_SIZE | pagination is switched on.

value.

Custom resources
You can include custom files in the web application.
Complete the following steps to include files:

1. At the root of a component, created a folder called WebContent, for example <client-dir>/
components/MyComponent/WebContent.

2. Place files in this folder using any folder structure you wish.

3. When you run the client build target these files will be copied directly to the <client-dir>/
WebContent which represents the root of the web application. The folder structure will be maintained
during the copy.

A Warning: Before you use this functionality, care should be taken to understand the effects. It is
advised to firstly view the generated WebContent folder (located webclient/WebContent) and
to be aware of what files exist in it. Placing a similar file in the WebContent folder of a component
overwrites the currently existing file in the generated WebContent folder.

Files included in the application in this way take precedence over the merging and overriding
process as described in previous sections for other resources. For example, if you include a CSS
file in this way, the contents of the file will not be included in the CSS overriding process described
in “Cascading stylesheets” on page 32.

The copying of custom resources occurs after other source artifacts are built and merged, so it is
possible to replace existing resources. Care should be taken in this case. For example, it would be
possible to have a component with a file in WebContent/WEB-INF/struts-config.xml that
would completely replace the Struts configuration file generated by the client build and therefore
break the application.

40 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Itis also important to note that the files placed in a WebContent folder within a component
are completely ignored during the build process and are not processed. They are merely copied
across. For example, if you have JavaScript properties file in the WebContent folder of your
component it will not be processed.

Finally, when multiple components have a WebContent folder they are copied based on
component priority, but the copy is time-stamp based. The copy command always uses verbose
output for these files so the developer can see exactly what files are being copied.

Localization

Use this information to learn about the various files that need to be updated when translating the
application into a new language.

To simplify the translation process, the language-specific parts of the application are separated out from
the application code.

Numbers

Numbers are language-specific and so a Ciram application treats numbers in a locale-specific manner
depending on the preferred language of the user.

For example, a decimal number can be represented as 7,99 or 7.99 depending on whether the user's
locale is French or English.

File encoding

By default, Cdram supports the development of applications that are localized into many languages. The
Curam CDEJ generators support files encoded in the various character encodings appropriate for those
languages. Definition of the encoding for a file depends on the type of file. You must set the encoding for
the different types of supported files, that is, XML files, Java properties files, or other non-XML files.

XML files

Declare the encoding for XML format files explicitly within the first line of the XML file. The following
example shows the format of the XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

The previous example tells the XML parser that the file uses UTF-8 encoding. If you omit the XML
declaration, the parser assumes UTF-8 encoding by default. UTF-8 encoding is based on the Unicode
standard, and covers most modern languages and many other languages.

Ensure that the XML declaration matches the actual file encoding. The declaration identifies the encoding
but it does not determine the encoding. If you change the declaration, the file encoding does not change
automatically. If you use a specialized XML editor application, then it typically recognizes the declaration
and changes the file encoding for you. However, plain-text editors do not change the file encoding, so you
must ensure that you select the correct encoding in your editor before you save the file.

It is highly recommended that you use UTF-8 encoding for XML files.

Java properties files

Java properties files are used in the application, for example, to define the text strings that appear on
client screens. No equivalent of the explicit XML declaration exists for Java properties files. The client
generator assumes an encoding for the client properties files based on the default system encoding of the
computer that the build is running on. On a Microsoft Windows computer in Western Europe, for example,
the system encoding is probably Cp1252, the Windows variant of ISO-8859-1. This encoding handles the
accented characters of Western European languages but does not cover, for example, Cyrillic or Chinese
characters.

Chapter 1. Cdram web client reference 41

If you are building on a computer that does not share its system encoding with the files that are being
processed, you must set the ENCODING environment variable. For example, to build a Chinese language
web client application on an English language Microsoft Windows computer, you might choose to save
your properties files in the UTF-8 encoding. Set the ENCODING environment variable to UTF-8. During the
build, you can see that the generator overrides its normal default setting:

System encoding is Cpl1252.

Using encoding UTF-8 to read properties files.

The Java Runtime Environment always assumes that properties files use the ISO-8859-1 encoding, which
does not suit if you want to use the UTF-8 encoding for localization to, for example, Chinese. To overcome
this limitation, the Ciram CDEJ automatically translates properties files from your preferred encoding into
the encoding required by Java. Your preferred encoding might be either the system default encoding, or
the encoding specified by the ENCODING environment variable. This is translation is done automatically
during the build process and your original properties files are not affected.

Troubleshooting: Where a properties file has been saved in UTF-8 encoding, and this does not match the
system encoding, build failures can occur. The build failure will report a PageGenerationException,
where the build could not find a property even though the property exists in the relevant file. This happens
where the properties file has been saved by a UTF-8 editor which adds the Byte Order Mark (BOM) at the
beginning of the file. The property reported in the error is the first property in the file. To resolve the issue,
save the file should be saved in the correct encoding, ensuring the BOM character was removed.

Note: The properties files shipped by default with Ciram use ISO-8859-1 encoding, and where necessary
use Unicode characters.

Non-XML files

The non-XML files in the Ciram Reference Application are encoded in the ASCII encoding. ASCII has the
useful property of being a subset of most other common file encodings. This means you do not generally
need to convert the English language files that ship with the default Ciram application in a new encoding
to build them in a different language environment.

Locales

The Java locale identifier is used in the Social Program Management application to identify locales. Most
locale-specific information in the application are contained in properties files. For example, "en" (English
language) or "en_US" (English language for the United States) are valid locales.

A Java locale identifier has three parts. The language code is required, but the other parts are optional.
The individual parts are separated by an underscore character.

Language
A lower-case, two-letter, ISO-639 code.

Country
An upper-case, two-letter, ISO-3166 code.

Variant
A vendor-specific or browser-specific code.

Non-JavaScript property files

To localize Non-JavaScript property files in the application, you must create properties files for each
locale. The files for the default locale are named SomeFile.propexrties. Identify the other locales by
appending an "_" (underscore) character and the locale identifier to the end of the file name.

For example, SomeFile_es.properties would be the name of the Spanish language version of
SomeFile.properties.

If the application does not find a property in SomeFile_es.properties, it then searches the default
locale SomeFile.properties file.

42 IBM Curam Social Program Management: Curam Web Client Reference Manual

After you add localized . properties files, update the LOCALE_LIST environment variable. This variable
defines the list of locales for the client build. For example, set LOCALE_LIST to "en,es" for a default
English language application and a Spanish language application. For more information about this setting,
see “Client application locales” on page 17.

The merging of localized properties files from different components is the same as for default locale
properties files. For more information about the merging of properties files, see “UIM externalized
strings” on page 43.

JavaScript property files

To localize JavaScript files in the application, you must create JavaScript property files for each locale.
The files for the default locale are named *.js.properties. Identify the other locales by appending an
"_"(underscore) character and the locale identifier to the . js extension.

For example, SomeJSFile.js_es.properties is the Spanish language version of
SomeJSFile.js.properties file. This file is automatically processed by a client build. If a property
is not found by the application in SomeJSFile. js_es.properties file, then the property from
SomeJSFile.js.propertiesis used.

Language toggle

You can configure whether internal users can change their default locale to update the language in which
field labels, tabs, and shortcut menu items are displayed.

The Social Program Management application language is displayed to internal users in their default locale.
On request, administrators can change any internal user’s default locale to any language that is included
in your installation of the application. When an administrator changes a user's default locale, all enabled
locales from the Locale code table are displayed for selection. Therefore, ensure that you enable locale
codes only for installed languages.

By setting an application property, administrators can enable a Language menu item to globally display

in the application menu for all application views. When the property is enabled, internal users can

change the language of their application view. To make the Language menu item available in the
application menu so that internal users can change their own default locale, set the application property
curam.environment.app.menu.locale.toggle.enabled. Setting the application property enables
the Language menu item globally for all application views.

Note: Although the Language menu item is available for all application views, we recommend that internal
users do not change the language of application views that include the following functionality. This
functionality is available only in the English language.

« IBM Curam Income Support application module
« IBM Curam Child Welfare Structured Decision Making (SDM) add-on module

We also recommend that administrator users do not change the language of administration applications
because these application views contain features that do not currently support localization.

UIM externalized strings
All string values in UIM files are externalized to . properties files.

For an overview of externalized strings, see “Externalized strings” on page 28.

If MyPage.uimis the UIM file, then MyPage. properties is the corresponding properties file. For more
information about adding localized properties files, see “Locales” on page 42.

The strings are stored in a properties file in the same folder as the page or view file, with the same

name and a .properties extension. For example, for a MyPage . uim file, the strings are stored in the
MyPage.properties file in the same folder. Similarly, for the MyView. vim file, the strings are stored in
the MyView. propertiesfile.

Chapter 1. Cdram web client reference 43

While UIM documents in the highest priority component override those documents in all other
components, properties files in different components are merged in two separate steps. The component
order is applied for each properties file, and then the page-view order applied to the resulting properties.

« Individual properties override those with the same property name in lower priority components.

« When a UIM page includes a UIM view (a . vim file), the properties for both the page and the view are
merged. Where properties share a name, the page properties override the view properties, even if the
view property is defined in a higher priority component.

Related reference

Externalized strings

All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

JavaScript externalized strings
All string values in JavaScript files are externalized to JavaScript property files (. js.properties files).

For an overview of externalized strings, see “Externalized strings” on page 28.

By convention, the name of the resource file for your JavaScript must be derived from name of the . js
file. For example, if your JavaScript file is called SomeJSFile. js then related localizable resources are
inthe SomeJSFile.js.propertiesfile. Ax.js.properties file can be anywhere in the component
directory, but by convention it is the same directory as the related *. js file.

The exception is that a . js file within a WebContent directory cannot have its associated
*.js.propexrties file within the same directory. The associated x. js.properties file must be in
a directory outside the WebContent directory.

For more information about adding localized JavaScript properties files, see “Locales” on page 42.

JavaScript properties files with the same name across all components are merged during processing. Any
property with the same name is overwritten by the highest component in the component order.

Placeholders in property values are supported. The placeholders must be in the format %ns or '%ns"’,
where n represents an integer from 1. . . n, and n must be within a defined range. The range is defined by
the number of placeholders in a property value.

For example, three placeholders in a property value must be numbered in the range 1 - 3, giving %1s, %2s,
9%3s. Anything outside this range is not supported.

Related reference

Externalized strings

All string values in UIM files and JavaScript must be externalized, which helps with maintenance and
allows the application to be localized. JavaScript, UIM pages, and UIM views can reference externalized
strings.

Accessing properties in JavaScript

Complete these 3 steps to access a JavaScript property.

About this task

In the examples, curam.application is the default package into which all localizable resources are
placed by the Curam infrastructure. SomeJSFile is derived from the name of the related JavaScript
properties file.

Procedure

1. Load the resources using dojo.requirelLocalization().

44 1BM Curam Social Program Management: Ciram Web Client Reference Manual

dojo.requireLocalization("curam.application", "SomeJSFile");

2. Create an instance of the curam.util.ResourceBundle object to be able to access the localized

resources.

dojo.require("curam.util.ResourceBundle");

var bundle = new curam.util.ResourceBundle("SomeJSFile");

3. Use the getProperty () method to access a property on the instantiated ResourceBundle.
This example shows how to get a property and how to get a substituted property with two

substitutions.

var localizedMessage = bundle.getProperty("myPropertyKey");

var localizedMessageWithSubstitutions

= bundle.getProperty("my.sub.key", ["a",

Image.properties

The Image.properties file is localized in the same way as other properties files. Place the localized
properties file in the same directory as the Image.properties file.

"0"1);

For more information about images, see “Images” on page 29.

For more information about localizing properties files, see “Locales” on page 42.

If the application does not find a property in a localized properties file, it checks the default locale
properties file. This is generally true for all properties files but it is particularly useful in the case of
Image.properties, where only images that contain text need to be localized. Properties for images
without text can be defined once in the default locale properties file and they are picked up in all locales.

Infra

structure widget properties files

Review the list of properties files that are associated with Infrastructure widgets. For example, the
AgendaPlayer.propexrties file is associated with the AgendaConfig. xml file, which defines the
Agenda Player widget.

AgendaPlayer.properties
BarChart.properties
Calendar.properties
ComparedEvidence.properties
DateTimeSelector.properties
DecisionMatrixAddMessage.properties
DisplayEvidence.properties
EvidenceComparison.properties
EvidenceReview.properties
EvidenceTabContainer.properties
FrequencyPatternSelector.properties
GanttChart.properties
IEGPlayer.properties
Logon.properties
MeetingView.properties
PaymentStatement.properties
RatesTable.properties
Rules.properties
TypicalPictureEditor.properties

Chapter 1. Cdram web client reference 45

« Workflow.properties
e FileEdit.properties

Note: The names of the properties files that are associated with infrastructure widgets are reserved
names and must not be used for the name of any other client properties file. No warning is printed to the
console in this scenario, so you must take care when you name new properties files.

To customize a widget properties file, create a new version under the webclient/components/custom
component folder. The default content for the file can be found in the corresponding sample widget
properties file in the <cdej-dir>/doc/defaultproperties/ folder. For each entry in the default
version of the file you want to change, add a corresponding entry to your custom file. For more information
about localizing these properties files, see “Locales” on page 42.

Frequency Pattern Selector localization

The Frequency Pattern Selector infrastructure widget is used to construct frequency patterns such as the
first day of every 1 month(s).

This sentence is made up of fixed text from its associated FrequencyPatternSelector.properties
file and values that are selected from an input field and two drop-downs in the widget. You can see an
example frequency pattern in “Frequency Pattern Selector” on page 141.

Because of grammar differences between languages, the construction of this example frequency pattern
sentence can be dramatically changed in other languages. For example, the values that are selected by
a user can be reordered. Therefore, placeholders represent user-selected values so that you can localize
every frequency pattern as "whole" into all properties in the properties file.

The example frequency pattern contains this property entry from
FrequencyPatternSelector.properties.

Text.monthly.freq.type.two= The %ordinal¥% %dayOfWeekExtended¥
of every ¥monthInterval% month(s)

The %ordinal®%, %dayOfWeekExtended®, and %$monthIntexrval® strings in this property entry are the
placeholders that map to the values to be selected from two drop-downs and one input field in the
widget.

To use these placeholders properly, you must follow two rules:
The placeholders control the layout of the widget

Any change of the location of a placeholder in a localized text for a certain frequency pattern causes
the change of the layout of this frequency pattern to be displayed on the Frequency Pattern Selector
widget.

The placeholders that can be used for every frequency pattern are fixed
You cannot add change, add, or remove placeholders for a frequency pattern.

The following table lists a description of all the placeholders that are used in the properties file of this
widget.

Table 3. Placeholders used in Frequency Pattern Selector

Placeholder Name Description
%dayInterval® A day interval. It maps to an input field where you can enter a

number for a day interval for a frequency pattern.

%weekInterval® A week interval. It maps to an input field where you can enter
a number for a week interval for a frequency pattern.

46 IBM Curam Social Program Management: Curam Web Client Reference Manual

Table 3. Placeholders used in Frequency Pattern Selector (continued)

Placeholder Name

Description

%dayOfWeek?

A set of days in a week. It maps to a collection of check boxes
where you can multi select the days in a week for a frequency
pattern.

%dayOflWeekExtended¥

An extension of the values that are represented by
%day0fWeek%, which also includes the weekday, weekend
day and day value. It maps to a drop-down where you can
select one of those day values for a frequency pattern.

%monthInterval®

A month interval. It maps to an input field where you can
enter a number for a month interval for a frequency pattern.

%ordinal%

An ordinal, such as first or second. It maps to a drop-down
where you can select an ordinal for a frequency pattern.

%dayIntervalOne?%,
%dayIntervalTwo%%

Two day intervals in a frequency pattern. They are to be used
together and map to two input fields where you can enter
numbers for two day intervals for a frequency pattern.

%ordinalOne%, %ordinalTwo%

Two ordinals in a frequency pattern. They are to be used
together and map to two drop-downs where you can select
two ordinals for a frequency pattern.

%monthOfYear%

A month in a calendar year. It maps to a drop-down where
you can select a month for a frequency pattern.

The placeholders for each frequency pattern are fixed, so you must ensure that you use them properly
when you localize properties in the widget properties file. Aside from the placeholders, customizing the
widget properties file is the same as the other infrastructure widgets. The following table lists all the
properties and the placeholders they contain for every frequency pattern sentence that is displayed on

the Frequency Pattern Selector.

Table 4. Properties of the Frequency Pattern Selector

Property Name

Placeholders

Text.daily.freq.type.one

%dayInterval%

Text.daily.freq.type.two

None.

Text.weekly.freq.type

%weekInterval, %dayOfWeek?

Text.monthly.freq.type.one

%dayInterval%%, %monthInterval%

Text.monthly.freq.type.two

%ordinal¥%, %dayOfWeekExtendedy%,
%monthInterval%

Text.bimonthly.freq.type.one

%dayIntervalOnef%, %dayIntervalTwo%

Text.bimonthly.freq.type.two

%ordinalOne%, %ordinalTwod%, %dayOfWeek?

Text.yearly.freq.type.one

%monthO0fYear¥%, %dayInterval®

Chapter 1. Cdram web client reference 47

Table 4. Properties of the Frequency Pattern Selector (continued)

Property Name Placeholders
Text.yearly.freq.type.two %ordinalf®%, %dayOfWeekExtended®,
%monthOfYeary

CDEJResources.properties

This properties file can be localized. For more information, see Locales. Images defined in this file can
also be customized per locale.

Related reference

Optimal browser support

A number of browsers and a range of browser versions are supported for use with IBM Cldram Social
Program Management. The default settings for web browser versions align with the versions supported
by IBM for external applications. Users can be notified when they are not using the optimal version of a
supported web browser. You can configure the range of supported versions for a browser, the message
that users see, and the frequency at which the message is displayed.

Locales

The Java locale identifier is used in the Social Program Management application to identify locales. Most
locale-specific information in the application are contained in properties files. For example, "en" (English
language) or "en_US" (English language for the United States) are valid locales.

ApplicationConfiguration.properties

This properties file does not, in itself, need to be localized but there are a couple of settings within this
file which are related to the localization of date and address formatting. See “Application configuration
properties” on page 23 for details.

Application-wide menu

To localize the application-wide menu menu, set the LABEL attribute of the LINK element to a
key into the CDEJResources.properties file. Then include the key in the localized version of
CDEJResources.properties.

The contents of the application-wide menu are defined in curam-config.xml. For non-translated
applications, you can put the text that will appear on screen directly into this file, in the LABEL
attribute of the LINK element. However, that approach, is not suitable if the application should

be viewable in multiple languages. The application checks if the LABEL attribute is a key into the
CDEJResources.propexrties file. If it finds the key, it will use the corresponding value in the menu.

To localize the menu, include the same key in the localized version of . For information about how to
localize properties files such as CDEJResources.properties, see “Locales” on page 42.

Tabbed configuration artifacts

Each tabbed configuration artifact has a corresponding properties file for any text that is localizable. To
localize this text for a specific language, you must add the locale-specific properties file in the same
directory as its associated tabbed configuration artifact in your <custom> component.

These properties file can be localized as per “Locales” on page 42.

Runtime messages

The CDEJ runtime messages can be localized or customized by creating a
RuntimeMessages.properties file within the <client-dir>/components/<component_name>
folder. The default content for this file can be found in the <cdej-dir>/doc/

48 IBM Curam Social Program Management: Ciram Web Client Reference Manual

defaultproperties/ folder. Messages in this file override the corresponding messages from the
RuntimeMessages.properties thatis included with the CDEJ.

Use the standard file naming convention for Java properties files to add locale-specific messages. For
example, to create a Spanish version, create RuntimeMessages_es.properties file.

You don't need to copy all of the messages into the custom message catalog when customizing only some
of them. Only the messages that are customized need to be defined in the custom message catalog. The
other messages are loaded from the default message catalog.

When resolving error messages, the custom message catalog is checked first and all the locale fall-backs
are applied. If a message is not found, then the default message catalog from the CDEJ is checked.
Therefore, a message in a custom message catalog will take precedence over one in a default catalog
even if the locale of the default catalog is more specific.

When customizing a message, the message argument placeholders cannot be changed. The message
argument placeholders have the form %ns where n is the argument number. The message arguments
can be moved around and their order changed, but no new arguments may be added and none may be

removed.

Application configuration

An application is a collection of user interface elements, based on UIM pages or Carbon components,
that are combined to create content for a specific user or role. You create web client applications by

configuring application configuration files.

An application typically consists of an application banner and one or more application sections. Each
section contains an optional section shortcut panel and one or more tabs. A tab represents a business
object or logical grouping of information. You can configure an application by using the relevant XML

configuration files.

Behavior of dropdowns

The behavior of dropdowns depends on whether you use code table hierarchies or Carbon combination
boxes. For more information about Carbon, see the Carbon Design System related link.

The following table outlines the different behaviors between dropdowns that use code table hierarchies

and those that use Carbon combination boxes.

Code table hierarchy dropdowns

Carbon combination boxes

To open a dropdown, the user must click the
chevron directly.

To open the menu, the user can click anywhere or
use the keyboard to Tab-focus on the field.

Filtering the list of options filters by strings that
‘start with’ the entered text.

Instead of filtering, the combination box highlights
the best match that is based on options that
‘contain’ the entered text.

There is no Clear button.

There is a Clear button.

The selected item in the menu is not indicated
by a checkmark and there is no background color
change.

The selected item in the menu is indicated by a
checkmark and a background color change.

When the user types into a dropdown to filter

the items and moves focus without an explicit
selection, the matching or highlighted item is
selected automatically. Where there is no matching
item, the text remains in the field as entered by the
user. There is no selection form the menu, that is,
an invalid value is possible.

Users must explicitly select by using the Enter key
or by clicking with the mouse. If users don't select
avalue, the entered text is cleared when focus is
moved away from the field.

Chapter 1. Cdram web client reference 49

Code table hierarchy dropdowns

Carbon combination boxes

As the user enters text to filter options, the
matching string of characters in the list of options
are highlighted.

As the user enters text to filter options, the
matching string of characters in the list of options
are not highlighted.

On focus, the dropdown does not highlight options
in the menu.

On focus, the dropdown highlights options in the
menu.

Related concepts
Social Program Management applications

When a user logs in to IBM Curam Social Program Management, they are presented with a view that is
specific to their role, which is an application. An application is a collection of user interface elements,
mostly based on UIM pages, combined to create specific content for a particular user or role.

Application user interface overview

The application user interface contains elements that are implemented through user interface metadata

or Carbon components.

Related reference
UIM reference

User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Curam
Social Program Management web application client pages. UIM files must be well-formed XML.

Related information
IBM Carbon Design System v10

Configuration files

Configure applications, sections, tabs and related elements in XML-based configuration files.

The configuration files are in the <server-dir>\components\<component-name>\clientapps
directory. See “Application configuration files” on page 33 for more information about the clientapps

directory, and best practices for working with application configuration files.

Each configuration file has a specific extension and an associated schema file detailing the supported
attributes. The following table provides a summary of the file extensions and related schema files.

Table 5. Configuration Files

File Schema File Description

Extensi

on

.app application-view.xsd Configuration file to define an application, including
the application banner, referenced sections and
application search.

.sec section.xsd Configuration file to define the referenced tabs and
section shortcut panel in a section.

.Ssp section-shortcut-panel.xsd Configuration file to define the contents of a
section shortcut panel.

.tab tab.xsd Configuration file to define a tab, including the
context panel and referenced navigation and
actions menu.

.nav navigation.xsd Configuration file to define the content of a tab
navigation bar.

.mnu menubar.xsd Configuration file to define the content of a tab
actions menu.

50 IBM Curam Social Program Management: Ciram Web Client Reference Manual

https://v10.carbondesignsystem.com

The schema files are all located in the <sdej-dir>\1ib directory and can be used during development
for validation in any XML editor.

The configuration files for applications, sections and tabs are processed as part of the database target
and stored on the database for use at runtime. A standalone target, insexrttabconfiguration, is also
available for processing the configuration files only. This command is useful during development because
it is more efficient than the full database target. For more information on these targets, see the Ciram
Server Developers Guide.

The insexrttabconfiguration validates all the configuration files, ensuring that they conform to the
XML schema, in addition to ensuring that all mandatory elements and attributes are specified. All files are
processed before the build fails, listing all validation errors.

Web client properties

Configure the title that is displayed in the browser tab in the COEJResources.properties file. The
CDEJResources.properties file contains values for properties that are used throughout the web
client.

The core file is located in $CURAM_DIR%
\CuramCDEJ\doc\defaultproperties\curam\omega3\il8n. ¥CURAM_DIR% is the Clram
installation directory, which by default is C: \IBM\Curam\Development.

This properties file can be localized as per Locales. Images defined in this file can also be customized per
locale.

Customizing the CDEJResources.properties file

To customize the CDEJResources.properties file, use the procedure that is outlined in the following task.

Procedure

1. Create a custom copy in the custom component, for example, webclient\components\custom.
2. Include only the properties that are being overridden.

Configuring the browser title

To customize the browser title, configure the properties that are outlined in the following task.

Procedure

« Add the properties from the following list to the custom CDEJResources.Properties file:

browser.tab.title
Defines the application name that is used in the browser tab title.

browser.tab.title.separator
Defines the text that is used to separate the page title and application name strings.

browser.tab.title.application.name.first
Controls whether the browser tab title displays the application name before the current page title.

Applications

An application is a view that is defined for a specific user or role. The application definition file details the
application banner and a reference to the sections that are part of the application.

An application banner provides the user with the context of the application they are currently accessing.
The banner contains the following elements:

« The name of the application.
« The role of the user that this application is intended for.

Chapter 1. Cdram web client reference 51

- A welcome message for the user.

An application menu, which includes links to the User Preferences dialog, application help, the about
box, and to logout of the application.

A configurable application logo, which defaults to the IBM logo, placed at the far right of the application
banner. It can be customized or removed.

« A quick search facility for the application.

The application search is an optional addition to the application banner that provides a quick search
facility. The application search supports:

« A text entry field where the user can enter their search criteria.

« An optional search type combobox, which lists the types of object that you can search for.
« A search button to trigger the actual search.

« An optional link to more search options.

Application definition
An application is defined by creating an XML file with the extension .app in the clientapps directory.

The root XML element in the . app file is the application element and the attributes allowed on this
element are defined in the following table. The application banner is configured by using these attributes.

Table 6. Attributes of the application Element

Attribute Description

id Mandatory.

The unique identifier for the application, which must match the name of
the file. This id matches to an APPLICATION_CODE entry and is used to
determine the application to display for a particular user.

See “Associate an application with a user” on page 61 for more
information.

title Optional.

The text for the title that will be displayed as part of the application
banner. The attribute must reference an entry in the associated
properties file.

sub-title Optional.

The text for the subtitle that will be displayed as part of the application
banner. The attribute must reference an entry in the associated
properties file.

user-message Optional.

The text for the welcome message that will be displayed as part of
the application banner. The attribute must reference an entry in the
associated properties file.

The text can contain a placeholder, %user-full-name, which will be
replaced with the users full name. The full name is determined based
on the FirstName and Surname fields on the Users database table.

hide-tab-container Optional.

When set to true, this indicates that there is only one section in the
application and the section tab should not be displayed. The default is
false.

52 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 6. Attributes of the application Element (continued)

Attribute

Description

header-type

Optional.

This indicates that an additional header is to be used and what type of
content will be provided. The values supported are static and dynamic.

See “Application optional header” on page 60 for more information.

header-source

Optional.

A reference to the source that will be used as an additional header. The
value of this depends on the value of header-type. For static content,
the attribute should reference a filename of a file in the resource store.
For dynamic content, the attribute should reference a custom widget.

See “Application optional header” on page 60 for more information.

logo

Optional.

A reference to the path of an image, e.g. CDEJ/themes/vé6/images/large-
application-logo.png or an image name, e.g. large-application-logo.png,
where the named image is stored in the application resource store.

This is used to configure a custom application logo displayed at the far
right of the application banner. The custom application logo will only be
displayed when the attribute logo-required is set to true, otherwise
this setting is ignored.

Note: Only images with the same height as the default IBM logo
(26 pixels in the internal application and 61 pixels in the external
application) are supported.

logo-alt-text

Optional.

The alternative text for the custom application logo specified by the
attribute 1logo. It is only used when the custom application logo is
displayed on the application banner. Otherwise, the setting for this
attribute is ignored.

logo-required

Optional.

When set to true, in conjunction with the 1ogo attribute, the referenced
custom application logo is displayed. When set to false, the application
logo is not displayed on the application banner.

Context

Optional.

The unique textual value that allows for specifying the content shaping
rules for the particular application. The value matches an entry in the
ApplicationContext table and is used by the context-aware page objects
and widgets to determine the relevant content. For more information,
see Application Context.

The application element supports the child elements detailed in “Application definition” on page 52.

Chapter 1. Ciram web client reference 53

Table 7. Supported Child Elements of the application Element

Element Description

section-ref 1..n.

The application must contain a minimum of one section-ref
element. Each section-ref element references a section to be
included in the application. See “Application section-ref element” on
page 57 for more information.

application-menu Optional.

Allows for the optional addition of links to the application banner. The
links supported include the user preferences editor and application
logout. See “Application application-menu element” on page 54 for
more information.

application-search Optional.

Allows for the optional addition of a quick search facility on the
application banner. See “Application application-search element ” on
page 54 for more information.

timeout-warning Optional.

Allows for the optional addition of a session timeout modal dialog.
See “Application timeout-warning element” on page 57 for more
information.

Application application-menu element
The application menu forms part of the application banner, and allows for the optional addition of up to
two links; a link to log out of the application and a link to open the user preferences dialog.

Each link is defined as a child element of application-menu element and the supported elements are
detailed in the following table.

Table 8. Supported child elements of the application-menu element

Element Description

preferences Optional.

Defines a link to the user preferences dialog. This dialog allows a user to
configure customizations for the application view.

The title of the preferences link is defined using the supported title
attribute. The value of the title attribute should be a reference to an
entry in the associated properties file.

logout Optional.

Defines a link to allow a user to end their session and logout of the
application.

The title of the logout link is defined using the supported title
attribute. The value of the title attribute should be a reference to an
entry in the associated properties file.

Application application-search element
To define the application search, use the application-search element.

In its simplest form, the application-search element requires two attributes, which are used when only
one type of search is available and no combination box is to be displayed:

54 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 9. Attributes of the application-search element

Attribute Description

default-search-page Optional.
A reference to the UIM page that is displayed when users click Search.

When this attribute is used, it is assumed that there is only one type of
search and no search type combination box is displayed.

initial-text Optional.

The text to be displayed in the field as a prompt. This text describes
what type of information can be provided for the search, for example,
Enter a participant reference number.

The attribute must reference an entry in the associated properties file.

Note: smart-navigator is an optional element that enables IBM Clram Smart Navigator (quick-
search="true") when added to the element application-search of the x . app files. For more information,
see Enabling or disabling IBM® Cliram Smart Navigator by changing the .app files. You cannot use the
attributes default-search-page and initial-text with smart-navigator.

If you want default-search-page enabled with smart-navigator, then you must add smart-navigator by
using the search-pages child element within the application-search element.

The application-search element supports two child elements that are used for more complex style
searches, as shown in the following table.

Table 10. Supported child elements of the application-search element

Element Description

search-pages Optional.

Defines multiple types of search, see “search-pages” on page 55.

further-options-link Optional.

Defines a link to a more advanced search page, see “further-options-
link” on page 56.

search-pages

The search-pages element is used when multiple search types are needed, for example, Person, Case, or
types of search. Other search types are Person Surname and Person Reference Number. Each search
type is listed in a combination box and a different prompt is displayed in the field depending on the
selected entry in the combination box.

The search-pages element supports the child elements that are detailed in table 3.

Table 11. Supported child elements of the search-pages element

Element Description

search-page 1.n.

Defines a single search type. The attributes of the search-page element
are defined in Table 12 on page 56.

Note: Where the search-pages element is used to define multiple types of search, the initial-text and
default-search-page must not be specified.

Chapter 1. Cdram web client reference 55

Table 12. Attributes of the search-page element

Attribute Description

type Mandatory.

The unique identifier for the type of search, it is passed as a parameter
(searchType) to the UIM page that is started when the application search
is completed.

description Mandatory.

The text to be displayed for the search option in the combination box.
The attribute must reference an entry in the associated properties file.

page-id Mandatory.

A reference to a UIM page that is displayed when a user clicks Search.

initial-text Mandatory.

The text to be displayed as a prompt in the field when that business
object is selected in the combination box. The attribute must reference
an entry in the associated properties file.

default Optional.

A Boolean indicating whether this entry is the default entry to be
selected in the combination box. Only one entry can specify the default
as true.

Note: Blank values are not allowed in the search type combination box. If the user requires a generic
search (for example, across all business objects), they must provide configuration data for this search. For
example, a business object of "All" linked to a page that searches across all of the business objects that
are defined.

Search pages are linked by using a reference to the UIM page to be opened when a user clicks Search is
clicked. The UIM pages that are defined for a search can expect a number of parameters to be passed to
them and used as part of the search:

« searchText
The search text that a user enters in the field.
« searchType

The selected search type. searchType is applicable only where multiple search types are defined.

For more information about creating UIM pages, see “UIM reference” on page 225.

further-options-link

In addition to multiple search types, the application search also supports a link to a more advanced
search page. This search is specified by using the further-options-link element, which requires the
attributes that are listed in table 5.

Table 13. Attributes of the further-options element

Attribute Description

description Mandatory.

The text of the link. The attribute must reference an entry in the
associated properties file.

56 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 13. Attributes of the further-options element (continued)

Attribute Description

page-id Mandatory.

A reference to a UIM page that is displayed when the link is clicked. This
UIM page requires no page parameters.

Related reference
Curam REST configuration properties

Enabling or disabling IBM Clram Smart Navigator by changing the .app files
You can enable or disable Smart Navigator for all user roles by changing the . app files at build time.

Application section-ref element
An application must reference a minimum of one section, and up to a maximum of five sections, by using
the section-ref element.

See “Sections” on page 79 for more information.

Table 14. Attributes of the section-ref element

Attribute Description

id Mandatory.

The id of a section configuration file (. sec).

Application timeout-warning element
Define the session timeout warning by using the timeout-warning element.

Inits simplest form, the timeout-warning element does not require any mandatory attributes. If
attributes are omitted default values will be used.

A browser session is timed from when data was most recently sent to or received from the server. In some
cases, a user might enter much data into the application without realizing that the current session has
timed out. When the user does initiate a server call, for example to submit the entered data, the browser
prompts the user to reauthenticate to the application. Therefore, the user loses all the data that the user
had entered into the application. To prevent users from losing data when their session times out, you can
configure a session timeout warning.

Table 15. Attributes of the timeout-warning element

Attribute Description

title Optional.
Configures the title on the session timeout warning dialog.

A reference to a property within the associated properties file. This value
is used to display the title on the timeout warning dialog.

user-message Optional.
Configures the main user message on the session timeout warning
dialog.

A reference to a property within the associated properties file. This value
is used to display the main user message within the timeout warning
dialog.

Chapter 1. Cdram web client reference 57

Table 15. Attributes of the timeout-warning element (continued)

Attribute Description

quit-button Optional.
Configures the text on the quit button of the session timeout warning
dialog.

A reference to a property within the associated properties file. This value
is used to display the text on the quit button within the timeout warning
dialog.

continue-button Optional.
Configures the text on the continue button of the session timeout
warning dialog.

A reference to a property within the associated properties file. This value
is used to display the text on the continue button within the timeout
warning dialog.

width Optional.
Configures the width of the session timeout warning dialog.

A reference to the width of the timeout warning dialog, in pixels.

height Optional.
Configures the height of the session timeout warning dialog.

A reference to the height of the timeout warning dialog, in pixels.

timeout Optional.

Configures the period of time in seconds that the user has to take action
within the timeout warning dialog.

A reference to the period of time in seconds that the user has to take
action within the dialog before the session expires. The countdown timer
displayed within the modal will start at this value and countdown to 0:0
until the session times out.

Application context

The application context parameter is specified and configured at the user application level and used by
infrastructure, context-aware tags, and renderers to shape the final output (content) according to the
application specifics. Application Context ensures batch reusability of UIM pages where most of the page
flow and business logic can be shared by separate applications with only content variations across them.

Configuring application context and code tables

The only part of the infrastructure that is context-aware at the moment is the code table infrastructure.
The following text describes how to configure the application context and code table infrastructure to
achieve the code table content appropriate for the current application context.

Application context is added as an attribute in the required application view, x . app file. An example of
root element is as follows:

<ac:application xmlns:xsi="http://www.w3.0xrg/2001/XMLSchema-instance"
xmlns:ac="http://www.curamsoftware.com/curam/util/client/application-
config"
id="SampleApp"
logo="SampleApp.logo"
logo-alt-text="SampleApp.logoAltText"
curam-logo="SampleApp.curamLogo"

58 IBM Curam Social Program Management: Ciram Web Client Reference Manual

title="SampleApp.title"

subtitle="SampleApp.subtitle"

user-message="SampleApp.UserMessage"
context="AppCTX1">

The parameter has the following characteristics:

« Optional.

« Is code table code from the ApplicationContext code table.

« Must be made known to the infrastructure as described in the sample XML.

To set up the new application context value into the system, it must be declared in the ApplicationContext
code table by adding or editing the appropriate ApplicationContext. ctx file. The table fragment with
the new context value can be declared in the component under design, as this code table is merged by
using the same rules as other code tables the Ciram application.

The sample XML for the ApplicationContext code table addition.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.util.codetable">
<codetable java_identifier="ApplicationContext" name="ApplicationContext">
<code default="true" java_identifier="Samplel” status="ENABLED" value="AppCTX1">
<locale language="en" sort_order="0">
<description>Sample Application Context 1</description>
<annotation></annotation>
</locale>
</code>
<code default="true" java_identifier="Sample2” status="ENABLED" value="AppCTX2">
<locale language="en" sort_order="0">
<description>Sample Application Context 2</description>
<annotation></annotation>
</locale>
</code>
</codetable>
</codetables>

The description part is used for display and explanatory purposes. The code must match both the setting
in the related application view (the ‘context’ attribute in the sample .app) and the code tables views that
support this application context.

Code table Views that use the Application Context

The context parameter is supported by the code table infrastructure and displays the different set of
codes relevant in the active context.

A view is created for a code table that contains the code table codes and values specific for a particular
application context. The example context-aware code table describes two such views with different sets
of code table codes, one for an application context of "AppCTX1" and the other with an application context
of "AppCTX2".

If an application has a specified context (for example, "AppCTX1") and the example context-aware code
table is accessed, the infrastructure ensures that only the code table codes for that particular context
(for example, "cvall”, "cval2" and "cval5") are returned when that code table is accessed within that
application. If no context is specified for that application, all of the codes for that code table are returned.

Sample XML of the context-aware code table.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="sample.package’>
<codetable java_identifier="SAMPLE" name="“SampleCodes’>
<code default="true" java_identifier="" status="ENABLED" value="cvall”>
<locale language="en" sort_order="0">
<description>Description 1</description>
<annotation/>
</locale>

2/code>

Chapter 1. Cdram web client reference 59

<code default="false" java_identifier="" status="ENABLED" value="“cval7">
<locale language="en" sort_order="0">
<description>Description 7</description>
<annotation/>
</locale>
</code>

<views>
<view context="AppCTX1"” default_code="cval5">
<code value="cvall”/>
<code value="cval2"/>
<code value="cval5"/>
</view>
<view context="AppCTX2" default_code="cval3”>
<code value="cval2"/>
<code value="cval3"/>
</view>
</views>

</codetable>
</codetables>

A code table might specify as many views for different contexts provided the contexts are properly
introduced in the ApplicationContext code table. For more details on code table views and the meta data
elements and attributes, see Code Table Files.

Related reference
Code table files

Application optional header

You can specify a custom header in addition to, or instead of, the application banner. Define the optional
header by using the header-type and header-souzxce attributes on the application element.
Define the optional header as either a static HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optional attributes of the
applications element, as listed in “Application definition” on page 52, should be omitted.

The headexr-type attribute is restricted to the values static or dynamic. Setting a static value indicates
that a HTML fragment is to be placed within the header. In this instance, the header-souzxce attribute
should reference a file that is stored in the resource store. This file must be stored with a content type of
text/xml.

If the headex-type attribute is set to dynamic, the header-souzrce attribute should reference the
custom widget to be used to display the content. This reference will be the same as that specified with
the relevant styles-config.xml. For more information on creating and referencing custom widgets
please consult the Curam Custom Widget Development Guide.

Whether a custom widget or HTML fragment is used it must always start with a <div> element.

Application example

This example shows an application that is stored in a file called SimpleApp.app.

<?xml version="1.0" encoding="UTF-8"?>
<ac:application
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:application-search>
<ac:search-pages>
<ac:search-page type="SAS0O1"
description="Search.Person.LastName.Description"

60 IBM Curam Social Program Management: Ciram Web Client Reference Manual

page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>
<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />
</ac:search-pages>
<ac:further-options-1link
description="Search.Further.Options.Link.Description"
page-id="Person_search" />
</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>
Note: In the above example a namespace, ac has been declared and all elements are prefixed with the

namespace. This is recommended practice. Consult “Application configuration files” on page 33 for more
information.

The SimpleApp.app must have a corresponding SimpleApp.properties file, which details the
localizable content. For example:

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=Clram

SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference

help.title=Help

logout.title=Logout

Search.Person.LastName.Description=Surname
Search.Person.LastName.InitialText=Enter surname to search for
Search.Person.Gender.Description=Gender
Search.Person.Gender.InitialText=Enter gender to search for
Search.Further.Options.Link.Description=Advanced Search

In the above example, the Clram logo image is referencing the default logo image shipped with the
Curam Client Development Environment (CDEJ). A custom logo can be added to the Images folder in the
component and referenced directly as Images/my-custom-logo.png.

Note: In the properties file for the SimpleApp.app example, the G in Ciram is added using the Unicode
escape sequence. An alternative approach is to add the G directly and ensure the file is saved in the UTF-8
format. Both approaches are supported for the application configuration files.

Associate an application with a user

Map a user to the application and the home page that will be displayed when the user initially logs on. The
home page is the initial page, which is displayed in its associated tab.

To map a user to an application and to a home page, configure the following mapping:
- APPLICATIONCODE field on the Users database table

maps to

« anentry in the APPLICATION_CODE codetable

maps to

« the id attribute of an application

When a user logs in, the value of the APPLICATIONCODE field in the Usexrs database table is used to
determine both the application and home page to display.

The value field of the code table entry must match the name of the application (.app) file to use and the
description field of the code table entry indicates the name of the UIM page to be displayed as the
home page. The following example shows a subset of a code table definition:

Chapter 1. Cdram web client reference 61

<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">
<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">
<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>
</locale>
</code>
</codetable>

Figure 25. CT_APPLICATIONCODE.ctx

Note: For more information on code tables see the Curam Server Developers Guide.

In this example, a code table entry SimpleApp has been defined, with a description of SimpleHome.
The code SimpleApp, matches the id of the SimpleApp.app example. The description, SimpleHome,
indicates the UIM page to be displayed as the home page. This page must be associated with the relevant
application. For more details on how to associate pages with an application, see “Opening tabs and
sections” on page 102.

Customizing IBM Ciram Smart Navigator

Customize your own search targets and keywords for Smart Navigator. When creating a new search target
you must bind the keywords to the search target implementations using Guice injection.

A keyword is a group of one or more words that users use to search the application. Examples of
keywords are integrated, integrated case, or person search. Search targets are predefined application
pages or tabs, for example Integrated Case.

Enabling or disabling IBM Ciram Smart Navigator

You can enable or disable Smart Navigator for each Curam application role. Each role defines an
applicationin a .app file, for example the caseworker role is defined in DefaultApp.app. You can
enable or disable enable Smart Navigator for a given role by editing the corresponding application. You
can edit the application by editing the . app file when you are building the application.

Enabling or disabling IBM Curam Smart Navigator by changing the . app files

You can enable or disable Smart Navigator for all user roles by changing the . app files at build time.

Enabling Smart Navigator

Before you build the application, edit the . app files directly. For example, edit DefaultApp.app and
replace:

<ac:application-search default-search-page="0rganization_resolveApplicationSearch"
initial-text="Application.Search.InitialText"/>

with:
<ac:application-search> <ac:smart-navigator initial-
text="Application.Search.IntSearch.InitialText"

description="Application.Search.IntSearch.Description" default="true" /> </ac:application-
search>

You can use any value for the initial-text and description parameters. In the example the parameters are
referenced to properties contained in DefaultApp.properties.

Disabling Smart Navigator
To disable, Smart Navigator, reverse the changes you made to the *. app files and rebuild the application.

Related reference
Application application-search element

62 IBM Curam Social Program Management: Ciram Web Client Reference Manual

To define the application search, use the application-search element.

Guide to creating a new search target

Create a search target so that users can navigate to application pages or tabs by using Smart Navigator. A
search target is a predefined application page or tab.

1. Create a search target definition in the parent code table SearchTarget. “Creating search keywords by
using code tables” on page 64 shows how to create the search target definition "Case".

2. Link a keyword to a search target definition. “Binding keywords to search target implementations” on
page 67 shows an example search target code table entry for the "Case" target.

3. Create a search target Java implementation. “Creating search targets” on page 66 shows how to
implement a search target that links to the Evidence Page of a person.

4. Bind the keyword to the search targets. “Binding keywords to search target implementations” on page
67 shows how to bind keywords to search target implementations by using Guice injection.

Creating search keywords

Create keywords that represent your search target. Your search target is triggered only when the user
types one of the keywords that are linked to your search target. By using one or more keywords, users can
search the application. Examples of keywords are integrated, integrated case, or person search. You can
either create search keywords by using the Ciram administration system or by using code tables. Using
the administration system is the simpler method.

Linking keywords to search targets

You can combine search targets with the person search by adding keywords. Whenever the keyword

is identified, Smart Navigator also searches for its related search target. Search targets can return any
object type or any page in the application. The destination page can be a modal dialog or a tab. The
standard product comes with a set of initial search targets. You can add more search targets to customize
your search.

Keywords are defined as a hierarchy of two code tables:

- Parent Code Table: SearchTarget — the Search Target Definition. SearchTarget links the keywords to a
search target implementation. Every Search Target must have only one item in this code table.

« Child Code Table: SearchTargetKeyword — keywords that users type in the search to trigger a specific
search target. Each search target can have multiple keywords.

Creating search keywords by using the administration system
As an alternative to creating search keywords in SearchTargetKeyword, you can also add keywords in the
administration system. You can add multiple keywords to the same search target.

About this task

Add keywords by using the IBM® Clirram Social Program Management administration system.

Procedure

1. Log in to the IBM® Cliram Social Program Management application as Sysadmin.

2. Browse to System Configurations > Shortcuts > Application Data > Code Tables.

3. Enter Smart Navigator in the Name field and click Search.

4. Select New Item from the list action menu ... of the Smart Navigator Search Target Keyword search
result.

5. Type in the item name and Technical ID. Item name is the keyword that a user enters in the search, for
example investigation case. Technical ID can be set to any unique string.

6. Click Publish > Yes.

Chapter 1. Cdram web client reference 63

Note: The next step links your keyword code tables to the Smart Navigator Search Target code table.
If you are creating a new Search target follow steps 7 to 11. Otherwise if you want to add new
keywords to an existing search target, go to step 12.

7. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
8. Enter Smart Navigator Search Target in the Name field and click Search.
9. Select New Item from the list action menu ... of the Smart Navigator Search Target search result.

10. Type in the item name and Technical ID. item name is the Search Target Definition Name that should
be referenced in the Search Target Java Implementation. Technical ID can be set to any unique string.

11. Click Publish > Yes.
Note: The next step defines the hierarchy of the Smart Navigator Search Target and Smart Navigator
Search Target Keyword.

12. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the
SearchKeywords hierarchy link.

13. Under Codetables, expand Search Target Keyword.

14. Find the newly added keyword in the list and select Change parent code from its list action menu,
this action opens a dialog with all of the parent codes available in a drop-down list. These codes are
the items in the parent SearchTarget code table.

Note: Ensure that the locale of both the parent and the keyword code table items match the default
server locale. Otherwise, IBM Curam Smart Navigator does not recognize the keywords

15. Select the category that you want to link the new keyword to and click Save. For example, selecting
Investigation case links the new keyword to the investigation case search target by using the
Investigation Case entry in SearchTarget code table.

16. Click Publish > Yes.

Results
Smart Navigator recognizes the new keyword.

Creating search keywords by using code tables
If the keywords defined in the SearchTargetKeyword code table are not sufficient for your search
implementation, you can add keywords to a new or existing search target category code table.

Code tables
Use the following code tables to work with search target keywords:

« SearchTarget: the parent code table that defines the search target category.
« SearchTargetKeyword: defines the keywords. SearchTargetKeyword is the child of SearchTarget.
Code tables are defined as a hierarchy. As a limitation of code tables hierarchies, your file should be

named CT_SearchTarget.ctx so that it can be merged with the existing Search Targets provided in the
standard product.

If you are implementing a new search target that uses its own set of keywords, you must add a
corresponding entry to SearchTarget. SearchTarget defines search targets categories and links search
target implementations to specific keywords. Each entry in SearchTarget has corresponding keyword
entries in SearchTargetKeyword code table.

Example code tables

The following code shows an entry in SearchTarget and another in SearchTargetKeyword, and creates a
hierarchy linking both items:

<codetables package="curam.codetable" hierarchy_name="SearchKeywords">
<description>Search Targets and Keywords</description>

64 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<!-—ADD THE SEARCH TARGET DEFINITION -->
<codetable java_identifier="SEARCHTARGET"” name="SearchTarget”>

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="T_CASE">

<locale language="en" sort_order="1">
<description>Case</description>
<annotation/>
</locale>
</code>
</codetable>

<!—- ADD THE SEARCH TARGET KEYWORDS -->

<codetable
java_identifier="SEARCHTARGETKEYWORD"
name="SearchTargetKeyword"
parent_codetable="SearchTarget">

<displaynames>
<locale language="en">Search Target Keyword</locale>
</displaynames>

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="AK_CASE"

parent_code=INEIHFE

<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>

</locale>

</code>
</codetable>

</codetables>

The following fields bind keywords to search target implementations:

- java_identifier="CASE" - the name that the generated Java accessor variable has in the source code.
This sample entry corresponds to SEARCHTARGET.CASE variable in Java.

 value="T_CASE" - the value that links the search target category to the keywords in the
SearchTargetKeyword child code table.

The field "parent_code" must match the field "value" in the SearchTarget code table to link a keyword
entry to a search target category and then, in turn, to a search target implementation.

"fava_identifier field" is not used in the application by default, but it must be unique within the code table.
"java_identifier field" has no link to entries in SearchTarget.

The "description” field contains the actual text keyword that a user enters during the search, "description”
must be locale-specific.

In the example, keyword "Case" is linked to the "CASE" search target category by matching “parent_code"
value "T_CASE" in SearchTargetKeyword to the "value" field value in SearchTarget.

You can link multiple keywords in SearchTargetKeyword to a single search target category in SearchTarget

by having the same “parent_code" values. For example, you can link keywords "outcome", "plan", and
"outcome plan" to the same search target that searches for outcome plans.

After you create both code table entries, run the build server database command to generate the
new variables in Java. You can then bind search target category and its corresponding keywords to a Java
search target implementation.

Chapter 1. Cdram web client reference 65

Result

The new keyword is now recognized by IBM Clram Smart Navigator.

Creating search targets

Create search targets so that users can navigate to application pages or tabs by using IBM Curam Smart
Navigator. A search target is a predefined application page or tab, for example Integrated Case.

Create the search target java implementation
After you create the new search target keywords, you must create the search target java implementation.

All search targets must implement the curam.smartnavigator.target. TargetObjectSearch interface by using
the following methods:

« List<TargetObjectDtls> searchTargetObject(final SearchPersonDtls person, String queryText) performs the
main search operation and returns search results in a list of TargetObjectDtls objects.

« TargetType getSearchTargetType() returns the search target type, which can have two states:
REQUIRES_PERSON or NO_REQUIREMENT.

— REQUIRES_PERSON : the search target is called if a person is found in the search only. Otherwise the
search target is not run. REQUIRES_PERSON searches for objects related to a person such as cases,
evidence, and eligibility.

— NO_REQUIREMENT: the search is always executed regardless of whether a person is found.

« String getSIDName(); returns a Security Identifier (SID) that checks whether the user has access to
the search results. String getSIDName(); is set to the display facade method signature that is used on
the page that the search results link to. For example, this method in a search target that searches
integrated cases returns "IntegratedCase.readCaseDetails1", which is the facade display-phase method
that is used on the home page of an integrated case.

« String getIcon(); returns a URL to an icon that the search results display. getIcon(); is optional, if no icon
is configured, a default icon is displayed.

Example search target

Search targets must return a list of Target Objects. Each item returned is displayed in Smart Navigator. For
search targets that link to a single page, for example the Evidence Page Search Target, a single item is
returned from the implementation.

For search targets that perform searches, for example the Case Search Target, multiple items can be
returned from the implementation. Every item is displayed in Smart Navigator.

The following example shows how to implement a simple Search Target that links the user to the
Evidence Page of a person.

List<TargetObjectDtls>
searchTargetObject (MEERENM SearchPersonDtls person, String queryText)
throws AppException, InformationalException {

List<TargetObjectDtls> targetObjects =
Arraylist<TargetObjectDtls>();

final TargetObjectDtls targetObject = TargetObjectDtls();
targetObject.url =
"PDCEvidence_listEvidencePage.do?concernRoleID=
targetObject.objectDescription "Evidence Page";
targetObject.openOnModalDialog = FEVEEN;

+ person.concernRoleld;

targetObjects.add(targetObject);
targetObjects;
b

@Override
TargetType getSearchTargetType() {

66 IBM Curam Social Program Management: Ciram Web Client Reference Manual

TargetType.REQUIRES_PERSON;

@Override

String getSIDName() £
"PDCPerson.listEvidenceForParticipant";

@Override

String getIcon() {
[return null H

3

Binding keywords to the search target java implementation

After you create the keywords and the search target implementation, you then bind the keyword to the
search target. For more information, see Binding keywords to search target implementations.

Result
The search target is now recognized by IBM Cdram Smart Navigator.

Related concepts

Creating search keywords

Create keywords that represent your search target. Your search target is triggered only when the user
types one of the keywords that are linked to your search target. By using one or more keywords, users can
search the application. Examples of keywords are integrated, integrated case, or person search. You can
either create search keywords by using the Ciram administration system or by using code tables. Using
the administration system is the simpler method.

Related reference

Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection. For more information on Guice,
see https://github.com/google/guice.

Binding keywords to search target implementations

Bind keywords to search target implementations by using Guice injection. For more information on Guice,
see https://github.com/google/guice.

SmartNavigatorModule

To bind a target search type category from SearchTarget code table to a Java search target
implementation you must implement a new module class. This class extends AbstractModule class.

Example ApplicationSearchModule:

public class SmartNavigatorModule extends AbstractModule {

@Override
protected void configure() {

final MapBinder<String, TargetObjectSearch> mapBinder =
MapBindexr
.newMapBinder (binder (), String.class, TargetObjectSearch.class);

mapBinder.addBinding (APPSEARCHTARGET.CASE) .to(PersonCaseSearch.class);
&

This class creates a Guice binding between the SearchTarget code table entry and the search target Java
implementation.

Chapter 1. Cdram web client reference 67

https://github.com/google/guice
https://github.com/google/guice

An example is as follows:

« A MapBinder object of the type <String, TargetObjectSearch> is created in the configure() method.
« The mapBinder.addBinding(SEARCHTARGET.CASE).to(PersonCaseSearch.class) method is called, where:

— SEARCHTARGET.CASE argument is the java_identifier value from CT_SearchTarget.ctx code table
entry, SEARCHTARGET is the code table identifier.

— PersonCaseSearch.class is the search target java implementation.

A Guice binding is added between SEARCHTARGET.CASE search target category and the
PersonCaseSearch.class java search target implementation.

Example SearchTarget code table entry

The SearchTarget code table entry that is being bound in the example ApplicationSearchModule:

<code
default="false"

java_identifier="CASE"
status="ENABLED"

value="T_CASE" }g

<locale
language="en"
sort_order="1">
<description>Case</description>
<annotation/>
</locale>
</code>

Add new module classes to MODULECLASSNAME . dmx

You must add new module classes to a MODULECLASSNAME . dmx file in the corresponding project data
directory so that the Clram application can use its bindings.

An example entry in MODULECLASSNAME . dmx:

<row>
<attribute name="moduleClassName">
<value>curam.SmartNavigator.target.SmartNavigatorModule</value>
</attribute>
</row>

The <value> field reflects both the package and the class name.

Note: When you complete this process, you must rebuild your database. For more information, see
Running build commands for the server and client applications.

Result

Now every time a keyword linked to T_CASE in the SearchTargetKeyword code table is entered in the
search, the logic calls the PersonCaseSearch.class search target implementation.

Related tasks

Running build commands for the server and client applications

Related reference

Creating search targets

68 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Create search targets so that users can navigate to application pages or tabs by using IBM Clram Smart
Navigator. A search target is a predefined application page or tab, for example Integrated Case.

Deleting or disabling keywords

You can delete or disable search keywords that you no longer need. Disabled keywords are removed
dynamically from the KEYWORD list, deleted keywords are removed from the KEYWORD list after you
rebuild the database. You can also disable a search target by removing all of its associated keywords.

Deleting keywords

Delete keyword entries in the Search Target code table by removing their corresponding XML entries from
CT_SearchTarget.ctx.

Use any text editor to search for and remove keyword entries.

Note: When you complete this process, you must rebuild your database. For more information, see
Running build commands for the server and client applications.

Disabling keywords

Note: This procedure disables keywords. However, if you rebuild the database, the keywords' state
reverts to default setting and Smart Navigator does not ignore the keywords' state. To permanently delete
a keyword, you must delete it from CT_SearchTarget.ctx.

To disable keywords, take the following steps:

1. Log in to the IBM Curam Social Program Management application as Sysadmin.

. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
. Enter Search Target Keyword in the Name field and click Search.

. Expand the Search Target Keyword item to display all of the keywords.

g b~ W N

. Locate the keyword that you want to delete, expand its action menu, and select Hide. The Shown field
changes to No on this item.

6. Click Publish > Yes.

Smart Navigator now ignores the keyword.

Disabling a search target
Disable a search target by removing all of its associated keywords.

If you delete or disable all of the keywords that are linked to a search target, the search target is longer
used. To avoid error situations, edit the CT_SearchTarget. ctx file, and remove all of the entries that
have parent_code as a value of the search target that is no longer needed.

You can also disable keyword entries as described in the Disabling keywords section. To view the
associated parent_code, use either CT_SearchTarget.ctx file orthe SearchKeywords code table
hierarchy as a reference.

Related tasks

Running build commands for the server and client applications

Chapter 1. Cdram web client reference 69

Modifying keywords

You can modify keyword entries in the Smart Navigator Search Target code table either by editing
the code table using the administration system, or by editing the corresponding XML entries in
CT_SearchTarget. ctx file. Using the administration system is the simpler method.

Modifying keywords by using the administration system

You can modify keyword entries in the Smart Navigator Search Target code table by editing the Smart
Navigator Search Target Keyword code table using the administration system. Any modifications to
keywords are dynamically updated in the keyword prompt box.

About this task

This procedure modifies keywords. However, if you rebuild the database, the keywords' state reverts to
their default setting. To permanently modify a keyword, you must edit CT_SearchTarget.ctx.

Procedure

1. Log in to the IBM® Cliram Social Program Management application as Sysadmin.

2. Browse to System Configurations > Shortcuts > Application Data > Code Tables
3. Enter Smart Navigator Search Target Keyword in the Name field and click Search.
4

. Expand the Smart Navigator Search Target Keyword item to display all of the keywords that are
defined.

5. Locate the keyword that you want to modify, expand its action menu, and select Edit. Item name is the
keyword text that is expected to be used in the application search.

6. Click Publish > Yes.

Results

The keyword is modified with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made to the keyword are reflected in the KEYWORD list.

Modifying keywords in CT_SearchTarget.ctx
You can modify keyword entries in the Smart Navigator Search Target code table by editing their
corresponding XML entries in CT_SearchTarget.ctx.

You can edit CT_SearchTarget.ctx with a text editor to modify the keyword entries. The field
description is the actual keyword text that the user is expected to input in the application search. You
can change this field to any text string. When you finish your edits, you must rebuild your database.

Keyword example:

<code
default="false"
java_identifier="CASE"
status="ENABLED"
value="AK_CASE"
parent_code="T_CASE">
<locale
language="en"
sort_order="1">
<annotation/>
</locale>
</code>

Result

The keyword is modified with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made to the keyword are reflected in the KEYWORD list.

70 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Translating search targets and keywords

If your implementation of IBM Clram Social Program Management supports more than one language,

you can translate search target descriptions and keywords to support users who use that language. The
correct language is used at runtime based on the user's locale. If IBM Curam Social Program Management
supports a single language, but that language is not English, you can edit the keywords in that language.
For more information, see Modifying keywords.

Related reference

Modifying keywords

You can modify keyword entries in the Smart Navigator Search Target code table either by editing

the code table using the administration system, or by editing the corresponding XML entries in
CT_SearchTarget. ctx file. Using the administration system is the simpler method.

Translating search target descriptions

Procedure

1. Log in to the IBM® Clram Social Program Management application as Sysadmin.

. Browse to System Configurations > Shortcuts > Application Data > Code Tables.
. Enter Smart Navigator Search Target in the Name field and click Search.

. Expand Smart Navigator Search Target to display all of the targets that are defined.

. Locate the search target item that you want to translate, select ... to expand its action menu, and
select Translate.......

. Select Add Translation...
. Select the language and provide the translated text.
. Click Save > Close.

. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the
SearchKeywords hierarchy link.

10. Under Codetables, expand Smart Navigator Search Target.

11. Find the correct code table in the list and select ... > Edit child codes...... from the list action menu.
12. Click Save.

13. Click Publish... > Yes.

a b 0N

O 00 9 O

Results
The target is translated with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made to the target are reflected in the KEYWORD list.

Translating search target keywords

Procedure

=

. Log in to the IBM® Clram Social Program Management application as Sysadmin.

. Browse to System Configurations > Shortcuts > Application Data > Code Tables.

. Enter Smart Navigator Search Target Keyword in the Name field and click Search.

. Expand Smart Navigator Search Target Keyword to display all of the keywords that are defined.

. Locate the keyword that you want to translate, expand its action menu, and select Translate.......
. Select Add Translation...

. Select the language and enter the translated text.

. Click Save > Close.

. Go to Shortcuts and browse to Application Data > Code Table Hierarchies, and select the
SearchKeywords hierarchy link.

. Under Codetables, expand Smart Navigator Search Target Keyword.

O 00 9 O O W

=
o

Chapter 1. Cdram web client reference 71

11. Find the correct code table in the list and select Change parent code...... from the list action menu.
12. Click Save.
13. Click Publish... > Yes.

Results
The keyword is translated with the changes you made. Log on as caseworker and select Search >
KEYWORDS. Note that changes you made are reflected in the KEYWORD list.

Overriding the person search

Overriding the person search.

Extending the curam.smartnavigator.target.impl.PersonSearchImpl class

To override the person search, you must first create a class that extends the
curam.smartnavigator.target.impl.PersonSearchImpl class. The new class contains the following methods
that can be overridden:

 public List<SearchPersonDtls> searchPersonByTermsAndDateOfBirth(final String[] termsToSearch, final
String[] allTerms, final Date date); method searches for a person by a list of terms and a date of birth.
The default implementation of this method uses termsToSearch field as a list of names that are further
broken into firstname and surname. The allTerms field enables the extension of this method so that
flags or other information that might be required for the search are available to the implementer. For
example, you might want to extend this class and use gender in the search. By default, date of birth
parameter is optional and is ignored if set to null.

« public List<SearchPersonDtls> searchPersonByIDAndDateOfBirth(final String alternatelD, final Date
date); method searches for people by their ID and a date of birth. By default, date of birth parameter is
optional and is ignored if set to null.

public String getSIDName(); method returns the SID name string in the same way as in a normal
TargetObjectSearch implementation.

Extending rather than implementing the class enables default methods to be used when you want to
override all of the methods that are not required. For example, you can have a custom method to search
people by ID, and still be able to use the default searchPersonByNameAndDateOfBirth method. Use the
new person search implementation only for methods that you want to customize.

Adding a new Guice binding

After you create the person search implementation, you must add a Guice binding. For more information,
see Binding keywords to search target implementations. However, instead of using the standard binding
to a code table entry, you must bind the new search implementation to a specific key string value

- custPerson (or SmartNavigatorConstants.kPersonSearchKeyCustom). The following example shows
binding a custom person search for a Case search:

public class CustomNavigatorModule extends AbstractModule {

@Override
protected void configure() 1§

final MapBinder<String, SmartNavigatorPersonSearch> mapBinder = MapBinder
.newMapBinder(binder (), String.class, SmartNavigatorPersonSearch.class);

mapBinder.addBinding("custPerson") .to(CustomPersonSearch.class);

72 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Adding a new module class to MODULCLASSNAME . dmx

You must add any new module class to a MODULCLASSNAME . dmx file in the corresponding project
"data" directory so that Social Program Management applications can use its bindings.

This is an example entry in MODULECLASSNAME . dmx:

<row>

<attribute name="moduleClassName">
<value>com.ibm.curam.extension.CustomNavigatorModule</value>
</attribute>

</row>

The <value> field reflects both the package and the class name. When you finish adding a module class,
you must rebuild the database. For more information, see Running build commands for the server and
client applications.

Related tasks
Running build commands for the server and client applications
Related reference

Binding keywords to search target implementations
Bind keywords to search target implementations by using Guice injection. For more information on Guice,
see https://github.com/google/guice.

Customizing case search results

When caseworkers search by a reference number or by using the case keyword, you can apply
customizations that determine the results that are returned and how they are displayed.

Overriding default filtering of case search results

When a caseworker searches by a reference number or by using the case keyword, the search results are
filtered and results that the user is not authorized to view are removed. To modify this behavior, you can
either override or extend the default filter.

When searching by reference number or by using the case keyword, the results are passed through the
bound implementation of curam.smartnavigator.core.util. SearchResultFilter. The default implementation
curam.smartnavigator.core.util. SearchResultFilterImpl removes any results that are of type Participant
Data Case, CT2001, or that the user is not authorized to view.

The authorization check maps a security identifier (SID) name to the case type code of the result and
checks the logged in user against that SID. If the user does not pass the authorization check or if there is
no mapping for the case type code, the result is removed from the list before the results are returned.

The default implementation provides the following case type code to SID name mapping:

CT5 (Integrated Case): IntegratedCase.readCaseDetails1
CT2 (Product Delivery): ProductDelivery.readHomePageDetails1

CT2000 (Investigation): InvestigationDelivery.readHomePageDetails1
CT4 (Liability): ProductDelivery.readHomePageDetails1

CT1 (Service Plan): ServicePlanDelivery.readHomePageDetails1

CT10201 (Application Case): ApplicationCase.viewApplicationHomeDetails

Chapter 1. Cdram web client reference 73

https://github.com/google/guice

Overriding the default case search results implementation

You can override the default case search results implementation by providing a custom implementation
of curam.smartnavigator.core.util.SearchResultFilter. This approach is advised when the default filtering
approach based on mapping case type codes to SIDs is not sufficient.

Implementing the curam.smartnavigator.core.util. SearchResultFilter class

To override the default SearchResultsFilter implementation, you must first create a class that implements
the interface curam.smartnavigator.core.util. SearchResultFilter. The new class contains the following
method that you must implement:

« boolean excludeResult(CaseHeaderDetails caseHeaderDetailsResult) throws AppException,
InformationalException; method is used to filter case search results that should not be returned to
the user. Return true if the case should be excluded from the results that are returned, otherwise false.

Adding a new Guice binding

Guice bindings are used to register the custom implementation.

public class CustomNavigatorModule extends AbstractModule {

@Override
protected void configure() 1§

bind(SearchResultFilterImpl.class)
.to(CustomSearchResultFilterImpl.class);

Extending the default search results implementation

You can extend the default implementation curam.smartnavigator.core.util. SearchResultFilterImpl to
modify the SID name that is returned for a case type code. To do this, you must override the getSidName
method to return results for case type codes.

Extending curam.smartnavigator.core.util. SearchResultFilterImpl

To extend the default SearchResultFilter implementation,SearchResultFilterImpl, you must first create a
class that extends curam.smartnavigator.core.util.SearchResultFilterImpl. You must override the following
method:

- protected String getSIDName(final CaseHeaderDetails caseHeaderDetailsResult); method returns the
SID Name that is mapped to the case type code or null if not mapped. This result is filtered (removed)
from the results if the SID name returned is null (not mapped) or the logged in user is not authorized for
the SID name returned.

Adding a new Guice binding

Guice bindings are used to register the custom implementation.

Adding a new Guice binding
public class CustomNavigatorModule extends AbstractModule §

@Override
protected void configure() {

bind(SearchResultFilterImpl.class)
.to(CustomSearchResultFilterImpl.class);

74 1BM Curam Social Program Management: Ciram Web Client Reference Manual

Adding a new module class to MODULCLASSNAME . dmx

You must add any new module class to a MODULCLASSNAME . dmx file in the corresponding project
"data" directory so that Social Program Management applications can use its bindings.

This is an example entry in MODULECLASSNAME . dmx:

<row>

<attribute name="moduleClassName">
<value>com.ibm.curam.extension.CustomNavigatorModule</value>
</attribute>

</row>

The <value> field reflects both the package and the class name. When you finish adding a module class,
you must rebuild the database. For more information, see running build commands for the server and
client applications.

Related tasks

Running build commands for the server and client applications

Overriding default descriptions for case search results

When a caseworker searches by reference number or by using the case keyword, the case

name that is displayed next to the number in the results is provided by an implementation of
curam.smartnavigator.core.util.CaseTypeDescriptionResolver. You can provide a custom implementation
to add descriptions for case types that are not catered for by the default implementation or to change the
case name that is displayed by the default implementation.

Implementing the curam.smartnavigator.core.util.CaseTypeDescriptionResolver class

To override the default CaseTypeDescriptionResolver implementation, create a class that implements the
interface curam.smartnavigator.core.util.CaseTypeDescriptionResolver.

The new class contains the following method that you must implement:

 ProductTypeDescription determineProductTypeDescription(CaseIDAndTypeKey key) throws AppException,
Informational Exception; method is used to return the name to use with a case search when displaying
the result.

The result that the Smart Navigator displays is a combination of the description and the reference
number in the format: ProductTypeDescription.productTypeDescription, referenceNumber. For example,
Application, 257.

Adding a new Guice binding

Guice bindings are used to register to the custom implementation.

public class CustomNavigatorModule extends AbstractModule {

@Override
protected void configure() {

final MapBinder<String, CaseTypeDescriptionResolver> mapBinder =
MapBinder.newMapBinder (binder (), String.class,
CaseTypeDescriptionResolver.class);

mapBinder.addBinding("custRes")
.to(CustomCaseTypeDescriptionResolverImpl.class);

Adding a new module class to MODULECLASSNAME . dmx

You must add any new module class to a MODULCLASSNAME . dmx file in the corresponding project
"data" directory so that Social Program Management applications can use its bindings.

For example:

Chapter 1. Cdram web client reference 75

<row>

<attribute name="moduleClassName">
<value>com.ibm.curam.extension.CustomNavigatorModule</value>
</attribute>

</row>

The <value> field reflects both the package and the class name. When you finish adding a module class,
you must rebuild the database. For more information, see Running build commands for the server and
client applications.

Related tasks

Running build commands for the server and client applications

Modifying search targets redirect URLs

Modify the search target redirect URLs if you want to use a different URL to the search target pages that
are used in Smart Navigator.

About this task

Modify the search target redirect URLs if you want to use a different URL to the search target pages. For
example you could change the URL that points to a person's eligibility page.

Procedure

1. Log in to the IBM® Clram Social Program Management application as Sysadmin.

2. Browse to System Configurations > Shortcuts > Application Data > Property Administration.
3. Search for smart.
4

. Select the select the action menu ... of the property whose the URL you want to change, for example
curam.smartnavigator.person.evidence.url.

. Select Edit Value....
. Change the property's value and Save your changes.
7. Select Publish.

o o1

Results

Log in as caseworker, search for the target URL you changed and observe that the URL is redirected.

Setting the preferred tabs by populating the attribute preferredTabs

To set the preferred tabs that are used by Smart Navigator, populate the preferredTabs attribute of the
object TargetObjectSearch.

Before you begin

When you are adding a new search target, you might find that the page that you are targeting could be
displayed on multiple tabs. If the page you want to redirect to is defined in more than one tab, you must
specify the tab or tabs to target. Use the preferred tabs option to specify the targeted tabs. For more
information on specifying tabs, see Page to tab and tab to section associations. Use preferred tabs only
when there is more than one tab configured for a page.

Associating tabs to a search target

Decide which tab, or the ordered list of preferred tabs, you need to associate to your search target.
Then, populate the attribute preferredTabs of the object TargetObjectSearch in your search target

76 IBM Curam Social Program Management: Ciram Web Client Reference Manual

implementation. The following code snippet shows an example of setting "ProspectPersonHome" as the
preferred tab of the target final SearchPersonDtls person:

public List<TargetObjectDtls> searchTargetObject(final SearchPersonDtls person,
String queryText)
throws AppException, InformationalException {

final List<TargetObjectDtls> references =
new ArraylList<TargetObjectDtls>();

final TargetObjectDtls objReference = new TargetObjectDtls();
objReference.preferredTabs = "ProspectPersonHome";

objReference.url = " ProspectPerson_resolveHomePagePage.do?concernRoleID=
"+person.concernRoleld;

// more code to populate objReference
references.add(objReference);

return references;

Result

Log in as caseworker and search for a target that you have changed. Note that the search returns content
in the updated tabs.
Related reference

Page to tab and tab to section associations

A page is associated with a tab based on the navigation configuration for the tab. A tab is associated with
a section through the section configuration file.

Enabling or disabling recent searches

To see recent searches, users can click inside the Smart Navigator Search box before inserting text. By
default, the last six search items are displayed.

About this task

Change the curam.smartnavigator.search.history.threshold property to enable or disable recent searches.
You can also increase or decrease the number of recent searches that are saved.

Procedure

1. Log in to the IBM® Curam Social Program Management application as Sysadmin.

2. Browse to System Configurations > Shortcuts > Application Data > Property Administration.
3. Search for smart.
4

. For the property property curam.smartnavigator.search.history.threshold, select the action menu ... >
Edit Value.

5. Set the property to the desired value and Save your changes.

0 Do not save recent searches
X Save X number of recent searches per person
-1 Save all recent searches per person

6. Click Publish to apply your changes in the application.

Chapter 1. Cdram web client reference 77

Results

Log in as caseworker and run some searches. If you have set property
curam.smartnavigator.search.history.threshold to -1, you will see your searches in the Search box.
Setting the debounce timeout

As a user types in the input field, IBM Cldram Smart Navigator searches for results. However, the search
is not performed on every keystroke. The debounce technique groups every keystroke into a single event
until the user stops typing for a specified time.

About this task

By default, the debounce timeout is set to 500 milliseconds (ms), so the search is triggered only when the
user stops typing for 500 ms. You can also disable search as you type, in this case the search triggers only

: .. 0 : .
if the user presses Enter or clicks *. To set the debounce timeout, take the following steps:

Procedure

1. Log in to the IBM® Curam Social Program Management application as Sysadmin.

2. Browse to System Configurations > Shortcuts > Application Data > Property Administration.

3. Search for the property curam.smartnavigator.search.debounce.timeout.

4. Select the action menu

5. Edit the value of curam.smartnavigator.search.debounce.timeout as required. The value is defined
in milliseconds. To change the default debounce to 750 milliseconds for example, set the value of
curam.smartnavigator.search.debounce.timeout to 750. To disable the debounce feature, set the value
to -1.

Results

The new debounce timeout is defined. If the value is set to -1 searches run only when the user presses

-

Enter or clicks

Implementing a navigation hook

Smart Navigator provides a hook where customized business logic can be added between the click of a
result and navigation to the related page.

About this task

Smart Navigator enables a user to directly navigate from a search result to the intended page without
requiring the user to traverse intermediate pages. However, there might be scenarios where the direct
navigation from a search result to a page is not the intended behavior and therefore the direct

navigation needs to be intercepted. The proceeding JavaScript hook addresses the problem by providing a
mechanism to insert custom logic between when the user clicks the result and when the user navigates to
the related page. For example, a custom implementation might open a modal when the user clicks a result
to display information that might be considered important but would otherwise be bypassed. To provide
an implementation of the hook, apply the proceeding steps.

Procedure

Use the proceeding sample to create the file SearchMultipleTextBoxHookPoints. js
inwebclient/components/custom/WebContent/CDEJ/jscript/curam/widget. Whereitis
indicated, use custom implementation.

/**
* @name curam.widget.SearchMultipleTextBoxHookPoints
*

78 IBM Curam Social Program Management: Ciram Web Client Reference Manual

* API for implementing hook points exposed by SearchMultipleTextBox (Smart Navigator).
*

*
define([
"dojo/topic"], function(topic) %
curam.define.singleton("curam.widget.SearchMultipleTextBoxHookPoints", 1
[/ **

*

Implement this function in order to add custom processing between
click of a Smart Navigator result and the rendering of the page.

This hook cannot alter navigation, Smart Navigator is responsible
for completing navigation, that is, saving to history and rendering
the URL.

If this hook is used to interact with the user then a modal appzroach
should be used to prevent page navigation given when this hook
completes the URL will be rendered by Smart Navigator.

@param data Object holding:
url being navigated to
concernRoleId: concernRoleID of individual if result is a person or keyword of a person.

% % ok k% ok %k Ok ok X ok F Ok o*

* @return publish message '/smartnavigator/prenavigationhook/completed' to hand back
control.
*/

preNavigationHook: function(data)1{
// Custom implementation goes here

// On completion, publish message to hand control back to smart navigator.
topic.publish('/smartnavigator/prenavigationhook/completed');

§)e

return curam.widget.SearchMultipleTextBoxHookPoints;

P

The final step in the hook implementation must be to assign control back to Smart Navigator so that
navigation can be completed.

As shown in the preceding sample, control is assigned back to Smart Navigator by using the following
code:

topic.publish('/smartnavigator/prenavigationhook/completed');

Related information
Smart Navigator navigation hook

Sections

An application can contain one or more application sections, where a section is a collection of tabs and
an optional section shortcut panel. A section shortcut panel supports quick links to open tabs and dialogs
within a section.

It is recommended that a maximum of five sections be used, each representing a different set of user
activities. The following types of sections are recommended:

Home
The Home section is intended to contain only one tab, with a single page that acts as a home page
for the user. The home page provides a summary of significant information and quick links to common
activities.

Workspace
The Workspace section contains most user tasks for the user role.

Inbox
The Inbox section is where the user can access their currently allocated work.

Calendar
The Calendar section contains a calendar of the user's activities and schedules.

Reports
The Reports section contains reports that are relevant for the user.

Chapter 1. Cdram web client reference 79

Section definition
A section is defined by creating an XML file with the extension . sec inthe clientapps directory.

The root XML element in the . sec file is the section element and the attributes allowed on this element
are defined in the following table.

Table 16. Attributes of the section Element

Attribute Description

id Mandatory.

The unique identifier for the section, which must match the name
of the file. This is used when referenced from an application (.app)
configuration file.

title Mandatory.

The text for the title that will be displayed on the section tab. The
attribute must reference an entry in the associated properties file.

hide-tab-container Optional.

When set to true, this indicates that there is only one tab in the section
and the tab bar should not be displayed. The default is false.

default-page-id Optional.

A reference to a UIM page that should be opened by default when the
section is opened. The UIM page referenced must be directly associated
with a tab. For more information on associating pages with tabs, consult
“Tabs” on page 84.

This attribute ensures that an anchored default tab is always open when
the section is opened. An anchored tab does not contain an option to
close it.

Note: The default-page-id attribute must not be used on the "Home" or first section of an application.
The user's home page, and its associated tab are opened automatically when a user logs into an
application. See “Associate an application with a user” on page 61 for more information.

The section element supports the child elements detailed in the following table.

Table 17. Supported Child Elements of the section Element

Element Description

tab 1..n.

A reference to a tab to be included in this section. See “Section tab
element” on page 80 for more information.

shortcut-panel-ref Optional.

A reference to the section shortcut panel to be included in this
section. See “Section shortcut-panel-ref element” on page 81 for more
information.

Section tab element
A section is a collection of tabs. To associate a tab with a section, use the tab element. A section
must define at least one tab element and tabs must only ever be referenced by one section in any

80 IBM Curam Social Program Management: Ciram Web Client Reference Manual

application. Therefor tabs can be reused in different sections, as long as the section is included in a
separate application.

The attributes of the tab element are detailed in the following table.

Table 18. Attributes of the tab element

Attribute Description

id Mandatory.

The id of a tab configuration file (. tab). See “Section tab element” on
page 80 for more information.

Section shortcut-panel-ref element
Use the shortcut-panel-ref element to define the section shortcut panel to add to a section.

Specify only one shortcut-panel-xref per section. See “Section shortcut panel” on page 81 for more
information.

The attributes of the shortcut-panel-ref element are detailed in the following table.

Table 19. Attributes of the shortcut-panel-ref element

Attribute Description

id Mandatory.

The id of a section shortcut panel (. sec). See “Section shortcut panel”
on page 81 for more information.

Section example

An example shows a section that is stored in a file called SimpleWorkspaceSection. sec.

<?xml version="1.0" encoding="UTF-8"?>

<sc:section
id="SimpleWorkspaceSection"
title="SimpleWorkspaceSection.title">
<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>
<sc:tab id="Person" />

<sc:tab id="Employer" />
<sc:tab id="Case" />

</sc:section>

The SimpleWorkspaceSection.sec must have a corresponding
SimpleWorkspaceSection.properties file, which details the localizable content. For example:

SimpleWorkspaceSection.title=Workspace

Section shortcut panel

Each section can optionally contain a section shortcut panel that provides quick links to open content and
complete actions within the section. The menu items in the shortcut panel can be divided into categories.

When a section is first opened, the section shortcut panel is collapsed by default, but it can be expanded
or collapsed as needed.

Menu items in a shortcut panel that open modal dialogs are identified by an ellipsis (...), which indicates
that further actions are needed.

Chapter 1. Ciram web client reference 81

Section shortcut panel definition

A section shortcut panel is defined by creating an XML file with the extension .ssp in the clientapps
directory.

The root XML element in the . ssp file is the section-shortcut-panel element and the attributes
allowed on this element are defined in the following table.

Table 20. Attributes of the section-shortcut-panel Element

Attribute Description

id Mandatory.

The unique identifier for the section shortcut panel, which must match
the name of the file. This is used when referenced from a section (. sec)
configuration file.

title Mandatory.

The text for the title that will be displayed for the sections shortcut
panel, both when it is expanded and when it is collapsed. The attribute
must reference an entry in the associated properties file.

The section-shortcut-panel element supports the child elements detailed in the following table.

Table 21. Supported Child Elements of the section-shortcut-panel Element

Element Description

nodes Mandatory.

Groups together multiple child node elements. See “Section shortcut
panel node element” on page 82 for more information.

Section shortcut panel node element
Use the node element to represent menu items and categories that are used within the shortcut panel.

There are three supported types of node element and the type attribute is used to define this:
- group

A group node in a shortcut panel represents a category and is used to categorize a number of menu
items as described in “Section shortcut panel” on page 81. "Registration" are defined using node Each
category is defined using node elements of type group. This type of node supports child node elements
of type leaf and separator.

- leaf

A leaf in a shortcut panel is a menu item within a category, which can open a page in an existing or new
tab, or open a modal dialog?. Where a menu item opens a modal dialog, an ellipsis is appended to the
text displayed to indicate more information is required.

- separator

A separator can be used to add extra space between menu items within a node of type group (i.e. a
category).

The attributes supported by the node element are detailed in the following table.

1 A modal dialog is a UIM page opened in a new window, where the parent window cannot be accessed while
it is open. Consult “Modal dialogs” on page 262 for more information.

82 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 22. Attributes of the node element

Attribute

Description

id

Mandatory.

The identifier for the node. This must be unique within the . ssp file.

type

Mandatory.

The type of node, where three types are supported:
. group

* leaf

e separator

title

Mandatory.

The text for the title of the node. The attribute must reference an entry
in the associated properties file.

Note: This is not required where the type is specified as separator.

page-id

Optional.

A reference to the UIM page to be displayed when the menu item is
selected. This is only applicable for node elements with a type of leaf.

open-as

Optional.

Where set, this attribute indicates the UIM page to be displayed when
the menu item is selected should be opened as a modal dialog. The only
value supported is modal.

This is only applicable for node elements with a type of leaf.

append-ellipsis

Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to the menu item which opens in a modal dialog should be
disabled. The default is true. The attribute is applicable only where the
type attribute is leaf and the open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not
been set will not add the ellipsis to the menu item.

Section shortcut panel example

An example shows a section shortcut panel that is stored in a file called SimpleShortcutPanel. ssp.

<?xml version="1.0" encoding="UTF-8"?>

<sc:section-shortcut-panel
id="SimpleShortcutPanel"

title="SimpleShortcutPanel.Title">

<sc:nodes>

<sc:node id="Searches" type="group"
title="Searches.Title">
<sc:node id="PersonSearch" type="leaf"

</sc:node>

page-id="Person_search"
title="PersonSearch.Title" />

<sc:node id="QuickLinks" type="group"
title="QuickLinks.Title">

</sc:node>

<sc:node id="Registration" type="group"
title="Registration.Title">

Chapter 1. Cdram web client reference 83

<sc:node id="RegisterEmployer" type="leaf"
page-id="Employer_register"
title="RegisterEmployer.Title"
open-as="modal"/>

;é&:node type="separator" id="separator"/>
</éé;node>

</sc:nodes>
</section-shortcut-panel>

The SimpleShortcutPanel.ssp must have a corresponding SimpleShortcutPanel.properties
file, which details the localizable content. For example:

SimpleShortcutPanel.Title=Shortcuts Panel
Searches.Title=Searches
PersonSearch.Title=Person Search
QuickLinks.Title=Quick Links
Registration.Title=Registration
RegisterEmployer.Title=Register an Employer

Tabs

A tab typically represents a business object, for example, a Case or a Participant, though it can also be
used to represent a logical grouping of information.

The following list describes the elements that relate to tabs.

Tab Title Bar
The title bar contains text to identify the current tab.

Tab Actions Menu
The actions menu provides actions that are associated with the business object that is represented by
the tab. The actions can be a mix of menu items and other menus, each of which links to a page that is
displayed in the tab content area or a modal dialog.

Tab Context Panel
The context panel is typically used to present summary information about the business object. The
summary information is available for every page that is displayed in the content area. The context
panel can be collapsed and expanded to provide more space for the tab content area.

Tab Content Area
A tab consists of one or more pages of information. The pages are displayed in the content area and
can be navigated by using the navigation bar.

Navigation Bar
The navigation bar contains a number of navigation tabs, each of which link to a page or set of
pages that are part of the tab. The navigation bar can be used to separate the business object
information into logical groupings of pages.

Page Group Navigation Bar

Where a tab links to a set of pages, the pages are displayed as a page group navigation bar, with
the first one selected by default.

Page Content
Selecting a navigation tab or page group entry displays the corresponding UIM page content in the
content area.

Smart panel
A smart panel is an optional panel, displaying a UIM page, that is added to the right of the content
area in a tab. It can be collapsed and expanded, and is collapsed by default. In addition, the size of the
smart panel can be increased and decreased when it is expanded.

A tab supports the ability to dynamically enable or disable, and hide or show, entries in the tab actions
menu, the tab navigation bar, and the page group navigation bar. The dynamic content is updated
based on configured refresh events. A refresh event updates the specified part of the tab based on the
submission of a modal dialog page or when a specific UIM page is loaded in the content area.

84 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Related reference

Tab tab-refresh element

The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

Tab definition
A tab is defined by creating an XML file with the extension .tab in the clientapps directory.

The root XML element in the . tab file is the tab-config element and the following table shows the
required attributes.

Table 23. Attributes of the tab-config Element

Attribute Description

id Mandatory.
The identifier for the tab, which must match the name of the file.

The 1id attribute is used to reference the tab configuration from section
configuration files (. sec). See “Section tab element” on page 80 for
more information.

The tab-config element supports the child elements that are shown in the following table. See the
child topics for more information.

Table 24. Supported Child Elements of the tab-config Element

Element Description

page-param 0..n.

Defines a parameter required when opening a tab.

menu Optional.

A reference to the actions menu configuration.

context Mandatory.

A reference to the UIM page to be used as the tab context panel, or
alternatively details of the tab name and title.

navigation Mandatory.

A reference to the tab navigation configuration, or alternatively the name
of the UIM page that will be opened in this tab.

smart-panel Optional.

A reference to the UIM page to be used for the smart panel.

tab-refresh Optional.

Defines what part of a tab should refresh under what circumstances.

Tab page-param element

The page-param element allows for multiple page parameters to be defined for a tab. Each page
parameter that is defined maps to the name of a name-value pair. The name-value pair is passed to all
UIM pages that are opened from both the tab actions menu and the navigation bar.

Page parameters are also used to identify unique instances of a tab. For example, a tab is defined for a
Person object. Two instances of this tab can be opened, one for James Smith and one for Linda Smith.
The instances are uniquely identified by the page parameter, id, which has been defined for the tab. The

Chapter 1. Cdram web client reference 85

id parameter maps to the unique id for the person and will be different for both James Smith and Linda
Smith.

Table 25. Attributes of the page-param Element

Attribute Description

name Mandatory.

A unique identifier for the page parameter.

Related reference

Opening tabs and sections
You can open new sections and tabs by using several methods.

Tab menu element
The menu element contains a reference to the tab action menu configuration which is maintained in a
separate .mnu configuration file.

The following table shows the attributes of the menu element.

Table 26. Attributes of the menu element

Attribute Description

id Mandatory.

A reference to the id of a tab action menu configuration file (.mnu).

Related reference

Tab actions menu

The tab actions menu is a drop-down menu in the tab title bar. Each menu item corresponds to a
tab-specific action.

Tab context element
The context element defines a context panel by referencing a UIM page which forms the content of the
context panel.

The context element is mandatory. If no context panel is to be defined, then a tab name and tab title
must be specified.

The tab title bar and tab name can be populated with data using either the context panel UIM page or
using the tab-name and tab-title attributes in the . tab file. Where the context panel UIM page is used
only to add content to the tab name and tab title, the height attribute should be set to zero.

Table 27. Attributes of the context element

Attribute Description

page-id Optional.

A reference to the UIM page that will be used for the content of the
context panel. If this is not specified, the tab-name and tab-title
attributes must be specified.

tab-name Optional.

The text that will be displayed in the tab bar. The attribute must
reference an entry in the associated properties file.

86 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 27. Attributes of the context element (continued)

Attribute Description

tab-title Optional.

The text that will be displayed in the tab title bar. The attribute must
reference an entry in the associated properties file.

height Optional.

The pixel height of the context panel. This is only relevant if a page-id
attribute has been specified to define a context panel.

The default value if not specified is 150 pixels.

Related reference
Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

Tab navigation element
The navigation element defines what pages are opened within a tab.

A single page can be defined using the page-id attribute, or multiple pages can be defined using a
reference to the tab navigation configuration file (. nav).

Note: The navigation element is mandatory and one of either page-id or id must be specified.

Table 28. Attributes of the navigation element

Attribute Description

page-id Optional.

A reference to the UIM page that will be opened in the tab. When a link
to this UIM page is selected, it will automatically trigger the page to be
opened in a new tab.

id Optional.

A reference to a tab navigation configuration file (. nav).

Related reference

Tab navigation
Within a tab, you can navigate to the UIM pages that are grouped as part of the tab. Tab navigation

includes the Content Area Navigation Bar and the Page Group Navigation Bar components.
Tab smart-panel element
The content of the smart panel is defined by a UIM page, referenced by the page-id attribute.

Similar to the context panel, the UIM elements that can be used are limited. Refer to User Interface
Element 20 of “Tabs” on page 84 for an example of a smart panel configured in an application.

Table 29. Attributes of the smart-panel element

Attribute Description

page-id Mandatory.

A reference to the UIM page that will be displayed in the smart panel of
the tab.

Chapter 1. Cdram web client reference 87

Table 29. Attributes of the smart-panel element (continued)

Attribute Description

title Mandatory.

The text for the title that will be displayed for the smart panel, both
when it is expanded and when it is collapsed. The attribute must
reference an entry in the associated properties file

width Optional.

The initial width of the smart panel when it is expanded. The default
value if this attribute is not set is 250 pixels.

collapsed Optional.

Boolean indicating if the smart panel should be expanded or collapsed
by default. The default value if this attribute is not set is true.

Related reference
Context panel UIM
A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

By default, only the content area of a tab is refreshed when a modal dialog is submitted. When a modal
dialog is either closed or canceled without an action being performed, the content area is not refreshed.

The tab actions menu, tab navigation and context panel can all be refreshed based on two events. The
first event is when a specific UIM page is loaded in the content area, and the second event is when a UIM
page is submitted from a modal or the content area. The following list describes how each element of a
tab is refreshed:

Tab Actions Menu
Refreshing the tab actions menu results in updating the entries in the menu that can be dynamically
disabled or hidden. See the related link for more information about dynamic support.

Tab Navigation
Refreshing the tab navigation results in updating the entries in the tab navigation bar and page group
navigation bar that can be dynamically disabled or hidden. See the related link for more information
about dynamic support.

Context Panel
Refreshing the context panel reloads the UIM page that is displayed in the context panel.

Content Area
Refreshing the content area reloads the UIM page that is displayed in the content area. This refresh
option is available for use only where a modal dialog has been opened from the list drop-down panel
of a nested expandable list.

By default only the parent of a list drop-down panel is updated when the modal dialog is submitted.
Where the list drop-down panel exists in a nested expandable list, this will result in the parent list
reloading and not the entire content area.

The two different type of refresh events can be configured by using the child elements that are detailed in
the following table.

88 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 30. Supported child elements of the tab-refresh element

Element Description

onload 1..n.
Defines a refresh event, where when the specified page is loaded in the
content area, the defined parts of the tab are updated.

onsubmit 1..n.
Defines a refresh event, where when the specified page is submitted
from a modal or in the content area, the defined parts of the tab are
updated.

onsubmit/onload

The onsubmit and onload elements both require the same set of attributes, as described in the

following table.

Table 31. Attributes of the onload/onsubmit Elements

Attribute Description
page-id Mandatory.
A reference to the UIM page to associate with the refresh event.
context Optional.
Boolean indicating if the context panel should be update when the
specified page is loaded or submitted.
menu-bar Optional.
Boolean indicating if the tab actions menu should be updated when the
specified page is loaded or submitted. See the related link for more
information about dynamic support.
navigation Optional.

Boolean indicating if the tab navigation should be updated when the
specified page is loaded or submitted. See the related link for more
information about dynamic support.

main-content

Optional.

Boolean indicating if the main content area should be updated when the
specified page is loaded or submitted.

This type of refresh event must only be used for modal dialogs that are
opened from a list dropdown panel in a nested expandable list.

Related reference

Tab actions menu dynamic support

Chapter 1. Cdram web client reference 89

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Context panel UIM

A context panel is a specific type of UIM page identified by the PAGE element that contains an attribute of
TYPE="DETAILS".

This type of UIM page can only use a subset of existing UIM elements, as indicated in the following list:

« SERVER_INTERFACE can only be used with a DISPLAY phase
« ACTION_CONTROL can only be used with an ACTION type
« The following elements are not supported:

- MENU

— SHORTCUT_TITLE
— JSP_SCRIPTLET
— DESCRIPTION

— INFORMATIONAL
— SCRIPT

— INCLUDE

— VIEW

Note: These same limitations apply to the smart panel UIM pages, but are not enforced.

A mandatory TAB_NAME element is required for context panel UIM pages, which allows for dynamic
information to be added to the tab name. Additionally, a mandatory PAGE_TITLE element is required to
add information to the tab title bar.

Related reference

TAB_NAME element

The TAB_NAME element defines the text used for the tab in the tab bar, where the UIM page is used

as a context panel UIM page. The text is constructed by concatenating a number of connection sources
together. These can include localized strings and data from server interfaces.

PAGE_TITLE element

The PAGE_TITLE element defines the title that appears at the top of a page's main content area. A title
is constructed by concatenating a number of connection sources together. These can include localized
strings and data from server interfaces.

Tab example configuration file
An example is provided of a tab configuration file.

The following example shows a tab configuration file named SimpleTab. tab.

<?xml version="1.0" encoding="UTF-8"?>
<tc:tab-config
id="SimpleTab">
<tc:page-param name="concernroleid"/>
<tc:menu id="SimpleMenu"/>

<tc:context page-id="SimpleDetailsPanel"
tab-name="simple.tab.name" />

<tc:navigation id="SimpleNavigation"/>
<tc:smart-panel page-id="SimpleSmartPanel"
title="smart.panel.title"

collapsed="true"
width="300" />

90 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<tc:tab-refresh>
<tc:onload page-id="SimpleHome" navigation="true"/>
<tc:onsubmit page-id="ModifySomething"
context="true" menu-bar="true"/>
</tc:tab-refresh>

</tc:tab-config>

The SimpleTab. tab file should have a corresponding SimpleTab. properties file, which details the
localizable content, for example:

simple.tab.name=Simple Tab
smart.panel.title=Smart Panel

Tab actions menu

The tab actions menu is a drop-down menu in the tab title bar. Each menu item corresponds to a
tab-specific action.

The menu items support opening UIM pages in the content area of a tab, or alternatively opening a modal
dialog to compete an action and are identified by an ellipsis (...). Additionally, it is possible to download a
file directly from a menu item.

The tab actions menu also supports the ability to dynamically hide and show items, and enable and
disable items in the menu. The menu items that are dynamically hidden are disabled in the menu.

Tab actions menu definition

Define a tab actions menu by creating an XML file with the extension .mnu in the clientapps directory.

The root XML element in the .mnu file is the menu-bar element and the attributes allowed on this
element are defined in the following table.

Table 32. Attributes of the menu-bar element

Attribute Description

id Mandatory.

The unique identifier for the menu, which must match the name of the
file. The identifier is used when a menu is included in a tab configuration
by using the menu element.

A menu definition can be reused and referenced by multiple tab configurations. The menu itself
comprises of menu items and submenus, which are used to group menu items. The child elements
outlined in the following table are used to define the structure of the menu. See the child topics for more
information.

Table 33. Supported child elements of the menu-bar element

Element Description

menu-item 0..n.

Defines a single entry in the menu, which links to a UIM page that can be
opened in a modal dialog or in the content area of a tab.

submenu 0..n.

Defines a grouping of menu items, which form a sub menu.

menu-separator 0..n.

Defines a separator line between entries in the menu.

Chapter 1. Cdram web client reference 91

Table 33. Supported child elements of the menu-bar element (continued)

Element Description

loader-registry Optional.

Defines the server interfaces that can be called to dynamically change
the state of the menu-items.

Tab actions menu menu-item element
An action entry in the tab actions menu is defined by the menu-item element.

The attributes of the menu-item element are defined in the following table.
A menu-itemcan do the following actions:

« Open a UIM page in the content area of a tab.
e Open a UIM page in a modal dialog.
« Download a file.

Menu items which open modal dialogs are identified by an ellipsis (...), which indicates that further actions
are required.

Table 34. Attributes of the menu-item element

Attribute Description

id Mandatory.

The unique identifier for the menu-item, which must be unique within
the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the menu-itemis selected.

title Mandatory.

The text that will be displayed for the menu-item. The attribute must
reference an entry in the associated properties file.

open-as Optional.

Where set, this attribute indicates that the UIM page to be displayed
should be opened as a modal dialog. The only value supported is modal.

append-ellipsis Optional.

A boolean attribute which indicates if the ellipsis automatically
appended to menu-item s which open in a modal dialog should be
displayed. The default is true. The attribute is applicable only where the
open-as attribute has been set.

Note: Setting this attribute to true where the open-as attribute has not
been set will not add the ellipsis to the menu-item.

92 IBM Curam Social Program Management: Curam Web Client Reference Manual

Table 34. Attributes of the menu-item element (continued)

Attribute

Description

window-options

Optional.

Defines the height and width of a modal dialog opened from the menu-
item. This is only applicable where the open-as attribute is set to
modal.

The format for the attribute is:
width=<pixel value>,height=<pixel value>
For example:
window-options="width=500,height=300"

The height portion of the window-options is optional and if not
specified, the height of the dialog will be automatically calculated.

dynamic Optional.
Boolean indicating that the menu-item can be dynamically disabled or
hidden. For more information see the related link.

visible Optional.
Boolean indicating if the menu-itemis hidden or visible. The default is
true.

type Optional.
Defines amenu-item that downloads a file when selected. The only
value supported is FILE_DOWNLOAD. For more information see the
related link.

description Optional.

Defines text which forms a description for the menu-item. This is used
for administration purposes only. The attribute must reference an entry
in the associated properties file.

Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

File download menu item

A menu-item can reference a FILE_DOWNLOAD configuration by using the type="FILE_DOWNLOAD"

attribute.

Tab actions menu submenu element
A submenu is a group of menu items and is defined by using the submenu element.

The attributes of the submenu element are defined in the following table.

Table 35. Attributes of the submenu element

Attribute

Description

id

Mandatory.

The unique identifier for the submenu, which must be unique within the
configuration file.

Chapter 1. Cdram web client reference 93

Table 35. Attributes of the submenu element (continued)

Attribute Description

title Mandatory.
The text that will be displayed for the submenu. The attribute must
reference an entry in the associated properties file.

description Optional.

Defines text which forms a description for the submenu. This is used for
administration purposes only. The attribute must reference an entry in
the associated properties file.

The submenu element allows for further submenus to be defined, in addition to including menu items and
menu separators. Use the supported child attributes that are defined in the following table:

Table 36. Supported child elements of the submenu element

Element Description
menu-item 0..n.
Defines a single entry in the submenu, which links to a UIM page that
can be opened in a modal dialog or in the content area of a tab.
submenu 0..n.

Defines a further sub grouping of menu items.

menu-separator

0..n.

Defines a separator between entries in the submenu.

Tab actions menu menu-separator element
A tab actions menu, including associated submenus, can include a line separator to divide the entries in

the menu.

Define a line separator by using a menu-separator element. The attributes of the menu-separator are

outlined in the following table.

Table 37. Attributes of the menu-separator element

Attribute

Description

id

Mandatory.

The unique identifier for the menu-separator.

Tab actions menu loader-registry element
The loader-registry element defines a list of loader implementations that is used to dynamically
enable or disable, and to hide or show the menu items in the tab actions menu.

The following table shows the supported child elements of the loader-registry element.

Table 38. Supported child elements of the loader-registry element

Element

Description

loader

1..n.

Defines one or more loader implementations that will be used to
dynamically set the visibility and enabled state of the menu items.

94 1BM Curam Social Program Management: Curam Web Client Reference Manual

Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Tab actions menu loader element
The loader element defines a single loader implementation that will dynamically set the state of the
menu items in a tab actions menu.

The following table shows the attributes of the 1oader element.

Table 39. Attributes of the loader Element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicMenuStateloader interface.

Related reference

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

Tab actions menu dynamic support

The tab actions menu supports the ability to dynamically enable or disable entries, and hide or show
entries. This feature is supported using a combination of the dynamic attribute of the menu-item
element, the loader-registry element and a Java loader implementation.

The Java loader implementation registered in the navigation configuration will be called when the tab is
first loaded and based on the refresh options configured for a tab. The refresh options are configured in
the tab configuration file (. tab).

A menu item can be specified as dynamic in the menu configuration file (. mnu) by adding
dynamic="tzxrue" to the relevant menu-item element.

Where the dynamic attribute is set, a loader-registry is then required and should define the
fully qualified classname which implements the curam.util.tab.impl.DynamicMenuStatelLoader
interface.

The DynamicMenuStateloader interface requires one method, loadMenuState, to be implemented.
The loadMenuState method is passed the following parameters:

- alist of menu item identifiers
« a set of name-value page parameters pairs

The loader implementation must decide which menu items to disable or hide. The method returns an
object that represents the state of a given menu bar. A state must be set for all identifiers in the list. For
more information on this interface, consult the Java Documentation.

Note: The list of menu item identifiers passed to the loadMenuState method are only those that have
been identified as dynamic by the dynamic attribute on the menu-item element.

Related reference
Tab tab-refresh element

Chapter 1. Cdram web client reference 95

The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

File download menu item

A menu-item can reference a FILE_DOWNLOAD configuration by using the type="FILE_DOWNLOAD"
attribute.

The following sample code shows an example of using the FILE_DOWNLOAD element in the curam-
config.xml file:

<mc: menu-item id="filedownloadItem" title="some.text.title"
type="FILE_DOWNLOAD" page-id="FileDownload"/>

The page-id attribute must match the page-id attribute specified for the FILE_DOWNLOAD element.

When configuring the FILE_DOWNLOAD element in curam-config. xml, only the parameters defined for
the tab can be used as values for the PAGE_PARAM attribute of the INPUT element.

The following example shows a fragment of the FILE_DOWNLOAD configuration from the curam-
config.xml file. In this example, the £ileID page parameter must be specified as a page-param
element in the tab configuration file (. tab).

Note also that the PAGE_ID attribute value of FileDownload matches the page-id attribute in the
example above.

<FILE_DOWNLOAD CLASS="some.pkg.readFile"
PAGE_ID="FileDownload">
<INPUT PAGE_PARAM="fileID"
PROPERTY="key$fileID"/>
<FILE_NAME PROPERTY="result$name"/>
<FILE_DATA PROPERTY="result$contents"/>
<CONTENT_TYPE PROPERTY="result$contentType"/>
</FILE_DOWNLOAD>

Figure 26. FILE_ DOWNLOAD Configuration from curam-config.xml

Related reference

ACTION_CONTROL element

The ACTION_CONTROL element defines a link (text based), button or file download link that the user can
activate on a page.

Tab actions menu example configuration file
An example is provided of a tab actions menu configuration file.

The following example shows an example tab actions menu configuration file named SimpleMenu.mnu.

<?xml version="1.0" encoding="UTF-8"?>
<mc:menu-bar
id="SimpleMenu"

<mc:loader-registry>
<mc:loader class="some.pkg.SimpleMenuStateloader"/>
</mc:loader-registry>
<mc :submenu id="Person">
<mc:menu-item id="dynamicLink"
title="dynamicLink.title"
page-id="SomeDynamicContent"
dynamic="true"/>
<mc:menu-separator id="separatorl"/>
<mc:menu-item id="simplelLink"
title="simplelLink.title"
page-id="SimplePage"/>

</mc:submenu>

96 IBM Curam Social Program Management: Curam Web Client Reference Manual

<mc:menu-item id="OpenModal"
title="openmodal.title"
page-id="DoSomethingInModal"
open-as="modal"
window-options="width=600"/>

</mc:menu-bar>

The SimpleMenu.mnu should have a corresponding SimpleMenu.properties file, which details the
localizable content, for example:
dynamicLink.title=Some Dynamic Link

simplelLink.title=A Simple Link
openmodal.title=0pen a Modal

Tab navigation

Within a tab, you can navigate to the UIM pages that are grouped as part of the tab. Tab navigation
includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

The following list describes the tab navigation components:

Navigation Bar
The navigation bar contains a number of tabs, each of which can map to a single UIM page or
alternatively a set of UIM pages. The tabs in the navigation bar are referred to as navigation tabs.

Page Group Navigation Bar
Where a navigation tab maps to a set of UIM pages, these UIM pages are displayed as a page group
navigation bar. Each link in the page group navigation bar is referred to as a navigation page.

Selecting a navigation tab or navigation page displays the relevant UIM page in the content area of the
tab. For navigation tabs that have a page group navigation bar, the first navigation page in the page group
navigation bar is selected when the navigation tab is selected.

If a user selects a subsequent navigation page and then changes to a different navigation tab, the
selected navigation page is remembered when the user returns to the original navigation tab and the page
is reloaded.

The tab navigation configuration defines when new tabs are opened and determines what UIM page is
associated with what tab.

Tab navigation definition
Tab navigation is defined by creating an XML file with the extension . nav in the clientapps directory.

The root XML element in the . nav file is the navigation element and the attributes allowed on the
element are defined in the following table.

Table 40. Attributes of the navigation element

Attribute Description

id Mandatory.

The unique identifier for the navigation configuration, which must
match the name of the file. The identifier is used when a navigation
configuration is included in a tab configuration, using the navigation
element.

The child elements outlined in the following table are used to define the structure of the navigation. For
more information, see the child topics.

Chapter 1. Cdram web client reference 97

Table 41. Supported child elements of the navigation element

Element

Description

nodes

Mandatory.

Groups navigation pages and navigation tabs together.

loader-registry

Optional.

Defines the server interfaces that can be called to dynamically change
the state of the navigation tabs and navigation pages.

Tab navigation nodes element
The nodes element groups together the elements that represent navigation tabs and navigation pages.

The elements are outlined in the following table.

Table 42. Supported child elements of the nodes element

Element

Description

navigation-page

1..n.

Defines a navigation tab that has no page group navigation bar.

navigation-group

1..n.

Defines a navigation tab which contains a page group navigation bar.
This element groups together navigation-page elements that form
the page group navigation bar.

Tab navigation navigation-group element
The navigation-group element defines a navigation tab that contains a page group navigation bar.

The attributes of the element are outlined in the following table.

Table 43. Attributes of the navigation-group element

Attribute Description

id Mandatory.
The unique identifier for the navigation-group, which must be
unique within the configuration file.

title Mandatory.
The text that will be displayed for the navigation tab in the navigation
bar. The attribute must reference an entry in the associated properties
file.

dynamic Optional.
Boolean indicating that the navigation tab can be dynamically disabled
or hidden.

visible Optional.
Boolean indicating if the navigation tab is hidden or visible. The default
is true.

98 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 43. Attributes of the navigation-group element (continued)

Attribute Description

description Optional.

Defines text which forms a description for the navigation tab. This is
used for administration purposes only. The attribute must reference an
entry in the associated properties file.

The navigation-group element groups together navigation-page elements to form the page group
navigation bar. The first navigation-page element defined indicates the UIM page to display the first
time a navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab, will remember the previously
selected navigation page.

Table 44. Supported child elements of the navigation-group element

Element Description

navigation-page 1.n.

Defines the set of navigation pages that are grouped together to form
the page group navigation bar.

Related reference

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation navigation-page element
A navigation-page element can represent both a navigation tab and navigation page.

If the navigation-page element is defined as a child element of the nodes element, it represent a
navigation tab which is part of the navigation bar. If the navigation-page element is defined as a child
element of the navigation-group element, it represent a navigation page which is part of the page
group navigation bar.

The attributes of the navigation-page element are outlined in the following table.

Table 45. Attributes of the navigation-page element

Attribute Description

id Mandatory.

The unique identifier for the navigation-page, which must be unique
within the configuration file.

page-id Mandatory.

A reference to the UIM page to open when the navigation tab or
navigation page is selected.

title Mandatory.

The text that will be displayed for the navigation tab or navigation page.
The attribute must reference an entry in the associated properties file.

dynamic Optional.

Boolean indicating that the navigation tab or navigation page can be
dynamically disabled or hidden.

Chapter 1. Cdram web client reference 99

Table 45. Attributes of the navigation-page element (continued)

Attribute Description

visible Optional.

Boolean indicating if the navigation tab or navigation page is hidden or
visible. The default is true.

description Optional.

Defines text which forms a description for the navigation tab or
navigation page. This is used for administration purposes only. The
attribute must reference an entry in the associated properties file.

Related reference

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation loader-registry element
The loader-registry element defines a list of loader implementations that are used to dynamically
enable or disable, and hide or show both the navigation pages and navigation tabs.

The following table shows the supported child elements of the loader-registry element.

Table 46. Supported child elements of the loader-registry element

Element Description

loader 1..n.

Defines one or more loader implementations that will be used to
dynamically set the visibility and enabled state of the navigation pages
and navigation tabs.

Related reference

Tab navigation dynamic support
The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation loader element
The loader element defines a single loader implementation that will dynamically set the state of the
navigation pages and navigation tabs.

The following table shows the attributes of the 1oader element.

Table 47. Attributes of the loader element

Attribute Description

class Mandatory.

The fully qualified class name of an implementation of the
curam.util.tab.impl.DynamicNavStateloader interface.

Related reference
Tab navigation dynamic support

100 IBM Curam Social Program Management: Ciram Web Client Reference Manual

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Tab navigation dynamic support

The tab navigation bar and page group navigation bar support the ability to dynamically enable or disable,
and hide or show, navigation tabs and navigation pages.

Dynamic support is implemented through a combination of the dynamic attribute of the navigation-
page and navigation-group elements, the loader-registry element and a Java loader
implementation.

The Java loader implementation registered in the menu configuration will be called when the tab is first
loaded and based on the refresh options configured for a tab. The refresh options are configured in the tab
configuration file (. tab).

A navigation tab and navigation page can be specified as dynamic in the navigation configuration
file (. nav) by adding dynamic="true" to the relevant navigation-page or navigation-group
elements.

Where a dynamic attribute is set, a loader-registzry is then required and should define the
fully qualified classname which implements the curam.util.tab.impl.DynamicNavStateloader
interface.

The DynamicNavStateloadexr interface requires one method, loadNavState, to be implemented. The
loadMenuState method is passed the following parameters:

« Alist of navigation-group and navigation-page identifiers
« A set of name-value page parameters pairs

The loader implementation must decide which items to disable or hide. The method returns an object that
represents the state of the navigation tabs and navigation pages. A state must be set for all identifiers in
the list. For more information on this interface, consult the Java Documentation.

Note: The list of navigation identifiers passed to the loadNavState method are only those that have
been identified as dynamic by the dynamic attribute on the navigation-page or navigation-group
elements.

In addition, a navigation-page and navigation-group element cannot use the same identifier. The
identifiers must be unique for all elements within the file.

Related reference

Tab tab-refresh element
The tab-refresh element allows the tab actions menu, tab navigation and context panel to be
refreshed based on different events.

Tab navigation example configuration file
An example tab navigation configuration file is provided.

The following example shows an example tab navigation configuration file named
SimpleNavigation.nav.

<?xml version="1.0" encoding="UTF-8"?>
<nc:navigation
id="SimpleNavigation"

<nc:loader-registry>
<nc:loader class="some.pkg.SimpleNavStatelLoader"/>
</nc:loader-registry>
<nc:nodes>
<nc:navigation-page id="Home"
page-id="Home"
title="Home.Title"/>

<nc:navigation-group id="Background"

Chapter 1. Cdram web client reference 101

title="Background.Title">
<nc:navigation-page id="Addresses"
page-id="ParticipantAddressList"
title="Addresses.Title"/>
<nc:navigation-page id="PhoneNumbers"
page-id="ParticipantPhoneNumbers"
title="Phone.Title"/>
</nc:navigation-group>
<nc:navigation-page id="Identity"
title="Identity.Title"
page-id="ParticipantIdentity"
dynamic="true"/>
</nc:nodes>

</nc:navigation>

The SimpleNavigation.nav should have a corresponding SimpleNavigation.properties file,
which details the localizable content. For example:

Home.Title=Home
Background.Title=Background
Addresses.Title=Addresses
Phone.Title=Phone Numbers
Identity.Title=Identity

Opening tabs and sections
You can open new sections and tabs by using several methods.

« A section can be opened directly by clicking the relevant section tab control.
« Atab can be opened directly by clicking the relevant tab control.
« Any link in the application has the potential to open a new tab.

A section can be opened when a new tab is opened that is associated with any section except the
current section.

Opening a section or tab by clicking the relevant tab control is straightforward. To open a tab that is
already open, but not in focus, the tab control is selected and focus is given to the tab.

Opening a section by clicking the relevant section tab control will give focus to that section. Any tabs
already open in that section will then be accessible.

When a section is opened (directly) for the first time, it may contain no tabs or may result in the automatic
opening of a default tab, depending on the section configuration.

Opening a section or tab as a result of selecting a link is more complicated. When a link is selected, before
the relevant UIM page is opened, the Curam client will automatically determine if it should be opened in a
new tab and if that tab should be opened in a new section. This is determined based a number of factors
that will be detailed in the following sections.

Using links to open tabs and sections

One of the actions that can trigger opening a new tab or new section is selecting a link to a UIM page.
There are many different ways in the Ciram application to open a UIM page and many different contexts
in which a UIM can be displayed.

A UIM page can be displayed in the following areas of an application:

- A content area

A tab context panel
« Atab smart panel
« A modal dialog

A list dropdown panel

102 IBM Curam Social Program Management: Ciram Web Client Reference Manual

A UIM page in any of these contexts can define links to another UIM page. There are different types of
links:

« Page level actions menu (content area only)
« Modal button bar (modal dialog only)

Buttons
« Hyperlinked text
« List actions menu

In addition to links on a UIM page, a UIM page can be opened via the following actions:

« Selecting an entry in the tab actions menu

Selecting a link in the section shortcut panel

Selecting a navigation bar tab

Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be defined in a UIM page, see
the related link. For the purposes of this section, selecting a link will apply to any action that can open a
new UIM page.

Related reference

UIM reference
User interface metadata (UIM) is an XML dialect that is used to specify the contents of the IBM Clram
Social Program Management web application client pages. UIM files must be well-formed XML.

Page to tab and tab to section associations

A page is associated with a tab based on the navigation configuration for the tab. A tab is associated with
a section through the section configuration file.

Page to tab associations

The navigation for a tab is configured using the navigation element in the tab configuration file (. tab)
and also, if defined, the navigation configuration file (. nav).

Where no tab navigation is defined for a tab, the navigation element defines a single UIM page (via the
page-id attribute) that will result in opening the tab. A link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using a page-1id attribute in the navigation
configuration file (. nav) is considered to be associated with the tab. This means that a link to any of
these referenced UIM pages will result in opening the relevant tab.

The page to tab association must be unique. This means that a page can be referenced only once by
the navigation configuration for a tab. As a result, a navigation configuration cannot be re-used across
multiple tabs.

There are a number of exceptions to this rule, but they are limited:

« The same UIM page can be referenced by more than one navigation configuration file (. nav), where the
page is only ever linked-to from within the context of the tab.

This means that any links to the UIM page are always within the same tab. For example, a Notes UIM
page is referenced by both the Person and Employer tabs. The only link to the Notes UIM page is from
the page group navigation bar. The Notes UIM page is never referenced from a shortcut panel or linked
by a UIM page that is not displayed within the context of the Employer or Person tabs.

- The same UIM page can be referenced by more than one navigation configuration for a tab, where the
tabs are included in different application configurations (. app).

« A navigation configuration file (. nav) can be reused by two tabs, where the tabs are included in two
different application configurations (. app).

Chapter 1. Cdram web client reference 103

Resolve Pages: Because of the way in which the Clram client application handles resolve pages and
opening new tabs, it is recommended not to use resolve pages in a navigation configuration. A resolve
page is a specific type of UIM page that contains only a JSP_SCRIPTLET element.

When a link to a resolve page is selected, the Cuiram client recognises that it is a resolve page and
executes the content of the JSP_SCRIPTLET. The resulting UIM page that the JSP_SCRIPTLET redirects
to is then used to determine what tab the page should be opened in.

Tab to section associations

A tab is associated with a section by listing it through the tab element in the section configuration file
(.sec).

When a new tab is opened as a result of selecting a link, the tab is opened in the associated section and
focus is given to that section and tab.

Related reference

Tab navigation
Within a tab, you can navigate to the UIM pages that are grouped as part of the tab. Tab navigation

includes the Content Area Navigation Bar and the Page Group Navigation Bar components.

JSP SCRIPTLET

The JSP_SCRIPTLET element defines JSP scriptlet code that should be inserted into the page at
that point relative to any other LIST or CLUSTER elements. Any TextHelper beans declared by a
SERVER_INTERFACE element to be in the DISPLAY phase are available to the scriptlet by getting the
attribute of the page context with the same name as the NAME attribute of the SERVER_INTERFACE
element.

Setting the preferred tabs by populating the attribute preferredTabs
To set the preferred tabs that are used by Smart Navigator, populate the preferredTabs attribute of the
object TargetObjectSearch.

Tab and section page parameters

The client determines if a new tab is opened based on the page to tab to section association. In addition,
existing open tabs, and values of the parameters that are passed to a tab, are also considered.

Two instances of the same tab can be opened, where each instance is identified by the page parameters
that have been provided. For example, James Smith and Linda Smith are uniquely identified by their
concern role ID. The concern role ID is defined as a page parameter for the Person tab.

When a link to James Smith is selected, a new tab is opened showing the details for James Smith. A
subsequent link to Linda Smith is selected and a new instance of the same tab configuration is opened,
displaying Linda Smiths details.

When a link is selected, the Cdram client application automatically determines what tab, and section, it
is associated with. It then compares this information, along with the page parameters to determine what
action to take.

The rules for opening tabs are detailed in the following table.

Note: The parameters passed when a link is selected must match the names of the page parameters
defined in the tab configuration file.

Where not all required page parameters are provided, the behavior of those tabs within the application is
not guaranteed. Any extra parameters provided will be ignored and not passed to the tab.

Table 48. Tab Opening Rules

Page to Tab Association Page Parameter Values Action

Page maps to current tab Match Page opens in current tab

Page maps to current tab Differ Page opens in new instance of tab

104 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 48. Tab Opening Rules (continued)

Page to Tab Association Page Parameter Values Action

Page maps to existing open Differ Page opens in a new instance of existing
tab tab

Page maps to existing open Match Page opens in existing tab

tab

Page maps to new, unopened | N/A Page opens in new tab

tab

Limitations: There are a number of limitations and notes to be aware of when designing UIM pages to
open in new tabs.

« Links in a modal dialog obey dialog rules first and only obey the rules for opening a tab when the dialog
is closing.

« Alink defined to open a modal dialog ignores the tab rules.

« Links in a tab navigation bar and page group navigation bar will always open within the context of the
current tab.

« A submit link within the content area cannot open a new tab, even if the UIM page is configured to be
associated with a different tab.

- If a UIM page is configured to be associated with a tab then the same page cannot be used as
INLINE_PAGE in expandable lists.

Tab ordering

A default tab ordering is configured in the application that applies when you open a new tab. You can
change the default tab ordering.

The default behavior when opening a new tab in the application is that the tab opens at the end of the tab
list. This behavior can be changed to open new tabs next to the tab where the request was made. This is
known as tab ordering.

The Application property curam.environment.enable.sequential.tabs controls tab ordering. The
default value for the tab ordering is set to false.

Related concepts
Configuring application properties

Working with the Ciram user interface

Use this information to develop user interface elements with the Cliram Client Development Environment
for Java. User interface elements that can be created with the Ciram Client Development Environment for
Java include shortcut panels, tabs, modal dialogs, tab navigation, and lists.

The topics show how to create a simple client application, and then expand the application with more
complex features.

Related concepts

Curam web client reference

Use this information to learn how to develop a standard Curam web client. The standard Curam web client
has an HTML user interface that is generated by a middle-tier web application. It conforms to the Java™
EE architecture and is driven by JavaServer pages and servlet technology. This HTML user interface uses
standard browser and Web 2.0 technologies, including JavaScript and cascading style sheets.

Chapter 1. Curam web client reference 105

Prerequisites for configuring the user interface

Before you start configuring the Ciram user interface, ensure that you have an understanding of the
necessary development environments.

You must have an understanding of development using both the Caram Client Development Environment
for Java (CDEJ) and the Cdram Server Development Environment for Java (SDEJ).

In addition, it is useful to have a basic understanding of Java Platform, Enterprise Edition (Java EE)
development environments, Extensible Markup Language (XML), and web technologies such as Hypertext
Transfer Protocol (HTTP), JavaServer Pages (JSP), Cascading Style Sheets (CSS), and JavaScript.

It is assumed that the necessary steps to install the Curam application and the related third-party tools
have been completed.

Creating a simple application

The topics in the following section describe how to create a simple application that has a single section
and a single page of content.

The simple application contains the following items:

« Application name

Application subtitle
« Welcome message
« Application menu

- Section

- Tab

After the Curam application and the related third-party tools have been installed, two main projects
are used for development, the EJBServer project and the webclient project. To create a simple
application, you must create and modify files in the following directories:

- webclient\components\component-name\

« EJBServer\components\component-name\clientapps

« EJBServer\components\component-name\codetable

« EJBServer\components\component-name\Data_Manager
« EJBServer\project\config

In each of the previous examples, component-name is the name of the custom component that is used to
store customer-specific content to the Clram application.

Defining an application

Define a simple application that will contain a single section. An application is a particular view of the
Curam client that is defined for a specific user or role.

Define an application by using an XML configuration file with the extension .app. The .app files, are in
the EJBSexrver\components\component-name\clientapps directory, where component-name is a
custom component.

106 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<?xml version="1.0" encoding="IS0-8859-1"?>
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:section-ref id="SimpleAppHomeSection"/>
</ac:application>

Figure 27. SimpleApp app

The SimpleApp.app XML configuration file requires a corresponding SimpleApp.properties file that
details the localizable content for the application, as shown in the following example:
SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png

SimpleApp.title=C\u@OFAram

SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout

The SimpleApp.app XML configuration file configures the following elements in the application banner
of the application:

« An application name (title)

« An application subtitle (subtitle)

« A welcome message (user-message)

« An application menu (application-menu)

Adding a section to an application

Add a section to an application, where an application can define between one and five sections. You can
configure each section to display multiple object tabs.

The SimpleApp.app application file references one section by using the SimpleAppHomeSection

id attribute. The id attribute refers to a section configuration file, which is an XML configuration

file with the extension . sec. Similar to the SimpleApp.app file, you must add the . sec file to the
EJBServer\components\component-name\clientapps directory, and the id attribute must match
the name of the file.

The following figure shows an example section file, SimpleAppHomeSection. sec.
<?xml version="1.0" encoding="IS0-8859-1"?>
<sc:section
id="SimpleAppHomeSection"
title="Section.Home.Title"
hide-tab-container="true">
<sc:tab id="SimpleHome"/>
</sc:section>

Figure 28. SimpleAppHomeSection.sec

The SimpleAppHomeSection. sec file has a corresponding SimpleAppHomeSection.properties
file that details the localizable content, for example:

Section.Home.Title=Home

The title attribute defines the name of the section tab. In addition, because only one tab is defined for
the section, which is SimpleHome, the hide-tab-container attribute is used to hide the object tab
bar.

Chapter 1. Cdram web client reference 107

Adding a tab to a section

Add a tab to section, where a tab represents a business object, for example, a case or a participant.
However, a tab can also represent a logical grouping of information.

The SimpleAppHomeSection. sec file references one tab by using the id SimpleHome. The id refers
to a tab configuration file, which is an XML configuration file with the extension . tab. Similar to the .app
and . sec files, the tab configuration file is added to the EJBSexrver\components\component -
name\clientapps directory. The id attribute must match the name of the file.
<?xml version="1.0" encoding="IS0-8859-1"?>
<tc:tab-config

id="SimpleHome">

<tc:context tab-name="home.tab.name"
tab-title="home.tab.name"/>

<tc:navigation page-id="SimpleHome"/>
</tc:tab-config>
Figure 29. SimpleHome.tab
The SimpleHome. tab file has a corresponding SimpleHome. properties file that details the
localizable content, for example:

home.tab.name=Home

The tab-title attribute defines what is displayed on the tab title bar. As the object tab bar is turned off
in the . sec file, the tab-name attribute is ignored.

SimpleHome. tab references a single UIM page by using the page-id attribute of the navigation
element.

Add a UIM page to a tab

Add a Curam user interface meta-data (UIM) format page to a tab. In a UIM page, you
define page content by using files that have the extension .uim. The .uimfiles are in the
webclient\components\component-name directory.

The SimpleHome. tab file references the SimpleHome UIM page.
<?xml version="1.0" encoding="UTF-8"?>

<!-- This is a sample home page. -->
<PAGE PAGE_ID="SimpleHome">

<PAGE_TITLE>
<CONNECT><SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>
</CONNECT>
</PAGE_TITLE>
</PAGE>

Figure 30. SimpleHome.uim

The SimpleHome. uim file has a corresponding SimpleHome.properties file that details the
localizable content, for example:

PageTitle.StaticText=Simple Home

The SimpleHome. uim file defines a UIM page that has no main content and only a page title,
PAGE_TITLE. The content includes the following items that are common to most UIM pages:

« Tab title

- Page title
 Refresh button
Print button
Help button

108 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Associating a user with an application
After you create the content for a simple application, create and link a user to the application.

A user exists as an entry on the Usexs database tab. Create a user by using a dmx file and adding the file
to the EJBServer\components\component-name\Data_Manager directory.

<table name="USERS">

<row>
<attribute name="USERNAME">
<value>simple</value>
</attribute>

<attribute name="ROLENAME">
<value>SUPERROLE</value>

</attribute>

<attribute name="APPLICATIONCODE">
<value>SimpleApp</value>

</attribute>

<attribute name="DEFAULTLOCALE">
<value>en</value>

</attribute>

<attribute name="FIRSTNAME">
<value>Simple</value>

</attribute>

<attribute name="SURNAME">
<value>User</value>

</attribute>

</row>

</table>
Figure 31. Users.dmx

You must reference the Usexs.dmx file in the datamanager_config.xml file that is in the
EJBServer\project\config directory, for example:
<entry name="components/custom/Data_Manager/USERS.dmx"

type="dmx" base="basedir"/>
When the entry is referenced from the Users. dmx file, it is included in the database when the database
target is executed.

The previous Usexrs . dmx file example shows the creation of a single user who is named simple with

a password of password. The APPLICATIONCODE field links the user to a particular application by
referencing a code table entry in the APPLICATION_CODE code table. When a user logs on, the value of
the APPLICATIONCODE field in the Users database table is used to determine both the application and
the user's home page. The value of the code matches the name of the application . app file to use. The
description of the code value indicates the name of the UIM page to be displayed as the home page. The
home page is displayed when a user first logs on.

The following example shows a CT_APPLICATION_CODE.ctx file thatis in the
EJBServer\components\component-name\codetable directory:

<?xml version="1.0"?>
<codetables package="curam.util.testmodel.codetable">
<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">
<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">
<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>
</locale>
</code>
</codetable>
</codetables>

Figure 32. CT_APPLICATION_CODE.ctx

Chapter 1. Cdram web client reference 109

The example defines a SimpleApp code with a description of SimpleHome. The SimpleApp code
matches the id of the SimpleApp.app application. The description, SimpleHome, maps to the
SimpleHome.uim file.

Build targets required to create a simple application

To create a simple application requires several files to be added and modified, which requires several
build targets to be executed.

The following table summarizes the files that are added and modified when you create a simple
application, and the build targets that process each of the files.

Table 49. Files required to create an application and corresponding build targets
File Location Build target
SimpleApp.app and associated EJBServer\components\ inserttabconfiguration
properties file component-
name\clientapps
SimpleAppHomeSection.sec and [EJBServer\components\ inserttabconfiguration
associated properties file component -
name\clientapps
SimpleHome.tab and associated EJBServer\components\ inserttabconfiguration
properties file component -
name\clientapps
SimpleHome.uim and associated webclient\components\ client
properties file component-name\
Users.dmx EJBServer\components\ database
component -
name\Data_Manager
datamanager_config.xml EJBServer\project\config |database
CT_APPLICATION EJBServer\components\ server
_CODE.ctx component-name\codetable

Note: The insexrttabconfiguration target is included in the database target.

After all build targets have been completed and the server and client applications have been started, the
application can be accessed by using the following URL:

http://localhost:9080/'server_name'/AppController.do
To view the simple application, log on as the simple user, with the password passwoxd.

Adding a shortcut panel

Extend a simple application to include a new section that contains an example of a shortcut panel. A
shortcut panel provides quick links to open content and to perform actions within the section.

The new section will be named Workspace and will contain the following items:
 Shortcut Panel

« Group Node

Leaf Node

» Workspace Section

Search Tab

110 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Adding a section
Add a section that includes a shortcut panel to a simple application.

The following example shows a simple app file that includes a workspace section in addition to a home
section.

<ac:application
id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>
</ac:application-menu>

<ac:section-ref id="SimpleAppHomeSection"/>
<ac:section-ref id="SimpleAppWorkspaceSection"/>
</ac:application>

Figure 33. SimpleApp.app

The workspace section is defined in the SimpleAppWorkspaceSection. sec file, which defines a
structure with two tabs. A shortcut panel has also been added to the section by including a shortcut-
panel-ref element, as shown in the following example.

<sc:section

id="SimpleAppWorkspaceSection"
title="Section.Home.Title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

<sc:tab id="SimpleSearch"/>
<sc:tab id="SimplePerson"/>

</sc:section>

Figure 34. SimpleAppWorkspaceSection.sec

The corresponding . properties contains the localizable content for the section:

Section.Home.Title=Workspace

Defining the contents of a section shortcut panel

A section shortcut panel provides quick links to open content and perform actions within the section.
Users can expand and collapse the shortcut panel as required.

Configure the contents of a shortcut panel in an XML configuration file that has an extension of . ssp and
a corresponding properties file. The following example shows an example SimpleShortcutPanel.ssp
file:
<sc:section-shortcut-panel
id="SimpleShortcutPanel"
title="Panel.Title">
<sc:nodes>
<sc:node type="group" title="Group.Title" id="UI">
<sc:node type="leaf" id="search" page-id="SimpleSearch"
title="Link.Title.Search"/>
</sc:node>
</sc:nodes>

</sc:section-shortcut-panel>

Figure 35. SimpleShortcutPanel.ssp

The corresponding . propexrties contains the localizable content for the shortcut panel:
Panel.Title=Shortcuts

Group.Title=Quick Links
Link.Title.Search=Person Search

Chapter 1. Cdram web client reference 111

The structure of the section shortcut panel consists of nodes of two different types, which are group and
leaf nodes. The type is configured through the type attribute. Group nodes allow for logical grouping of
leaf nodes. Each leaf node represents a link that is displayed on the section shortcut panel.

Both group and leaf nodes have a title attribute that allows the configuration of the text to be
displayed. Additionally, leaf nodes must specify a page-id attribute that configures the target page of the
link.

The SimpleShortcutPanel. ssp file defines a group node and a leaf node, where the group node
contains the leaf node that in turn contains a hyperlink to the search tab. Clicking the hyperlink link
causes the search tab to be opened.

Defining a search tab
Define a search tab in a section that contains a single page where users can search for a person.

The following example shows the configuration of the search tab in a section.

<tc:tab-config
id="SimpleSearch">

<tc:context tab-name="search.tab.name"
tab-title="search.tab.title"/>
<tc:navigation page-id="SimpleSearch"/>

</tc:tab-config>
Figure 36. SimpleSearch.tab

The corresponding . properties contains the localizable content for the tab:
search.tab.name=Search
search.tab.title=Person Search

Define the Search Page
The Person Search page has two distinct areas, a cluster that allows the user to enter search criteria
and a list to display the results of a search.

Figure 37 on page 112 shows a screen shot of the page to search a person (hamed as Person Seazrch)
below.

Figure 37. Person Search Page

1. Cluster

112 IBM Curam Social Program Management: Ciram Web Client Reference Manual

2. Action Control
3. List

The following is the UIM code for the page:
<PAGE PAGE_ID="SimpleSearch">

<SERVER_INTERFACE NAME="ACTION" CLASS="PersonFacade"
OPERATION="advancedSearch" PHASE="ACTION"/>

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>
</CONNECT>
</PAGE_TITLE>

<CLUSTER TITLE="Cluster.Title.Search" NUM_COLS="2">
<FIELD LABEL="Field.Label.LastName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="key$dtls$lastName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Gender">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="key$dtls$gender"/>
</CONNECT>
</FIELD>
<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Search"
TYPE="SUBMIT">
<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>
</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.Results">
<CONTAINER LABEL="Container.Label.Actions">
<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</CONTAINER>
<FIELD LABEL="Field.Label.FirstName">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="firstName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.LastName">
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="result$dtls$dtls$lastName" />
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Title">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="title"/>
</CONNECT>
</FIELD>
</LIST>
</PAGE>

Figure 38. SimpleSearch.uim

The following are the main elements of note on this UIM page:

« The SERVER_INTERFACE element defines which server interface method is called by the server when
the form is submitted.

« The CLUSTER defines the cluster on the page that contains two fields that allow the user to enter the
search criteria. These are mapped to the input parameters of the server interface method. Refer to User
Interface Element 1 in Figure 37 on page 112.

Chapter 1. Cdram web client reference 113

« An ACTION_CONTROL element defines the action control on the page that allows the search to be

submitted. Refer to User Interface Element 2 in Figure 37 on page 112.

- The LIST defines the list on the page that contains the results of a submitted search. For each result a
row is displayed which displays the person's details, and an ACTION_CONTROL which defines a link to
that person's home page. Refer to User Interface Element 3 in Figure 37 on page 112. Selecting this link
will open the person tab which will be defined next.

The corresponding . properties should contain the localizable content for the search page:

PageTitle.StaticText=Person Search

Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Control.Label.View=View

Container.Label.Actions=Actions

Cluster.Title.Search=Search Criteria

List.Title.Results=Results
Control.Label.Search=Search

Build targets required to add a shortcut panel

To add a shortcut panel requires several files to be added and modified, which requires several build

targets to be executed.

Table 50. Files required to add a shortcut panel and corresponding build targets

File

Location

Build target

SimpleApp.app and associated
properties file

EJBServer\components\
component-name\clientapps

inserttabconfiguration

SimpleWorkspaceSection.se

EJBServer\components\

inserttabconfiguration

o component-name\clientapps
and associated properties file

EJBServer\components\ inserttabconfiguration

component-name\clientapps

SimpleSearch.tab and
associated properties file

webclient\components\ client

component-name\

SimpleSeazrch.uimand
associated properties file

Adding tab content

Extend a simple application to add more complex structured tabs to a section, including a context panel
and a content area.

In a section, configure a person tab that displays details about a person and whose content includes a
context panel and a content area that displays a person page.

Defining a person tab
A person tab contains a single page that displays the details of a person.

The following example shows the configuration of the person tab and the context panel. The configuration
requires a parameter to be passed to the tab when it is opened, as defined by the page-param element.

<tc:tab-config>
<tc:page-param name="personID"/>
<tc:context page-id="SimplePersonContext"/>
<tc:navigation page-id="SimplePerson"/>
</tc:tab-config>

Figure 39. SimplePerson tab

114 IBM Curam Social Program Management: Ciram Web Client Reference Manual

The corresponding . properties file contains the localizable content for the person tab:

no.property.required=true

Defining a context panel

A context panel is displayed at the top of the tab's content area and provides important contextual
information. If configured, the context panel is always displayed regardless of the information that is
displayed in the page below it.

Define a context panel by using a UIM page. Some limitations apply to the UIM that you can use. The
following example shows the UIM code for the context panel that is defined in the person tab:

<PAGE PAGE_ID="SimplePersonContext" TYPE="DETAILS">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitle.StaticText"/>
</CONNECT>
</PAGE_TITLE>

<TAB_NAME>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Tab.title"/>
</CONNECT>
</TAB_NAME>

<PAGE_PARAMETER NAME="personID"/>

<CLUSTER>
<FIELD LABEL="Field.Label.ContextPanelFor">
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</FIELD>
</CLUSTER>

</PAGE>
Figure 40. SimplePersonContext.uim

Note the following elements and attributes in the example:

TYPE attribute
Can specify that a UIM page is intended as a context panel.

TAB_NAME element
Defines the content that is used as the name of the tab.

PAGE_TITLE element
Defines the tab title.

PAGE_PARAMETER element
Must match the page-param value that is specified in the tab configuration.

In the example, the context panel contains only one single field that outputs the unique identifier of the
person.

The corresponding . propexrties file contains the localizable content for the context panel:

PageTitle.StaticText=Person Context Panel
Tab.title=Person Tab

Field.Label.ContextPanelFor=Context Panel for user with ID:

Defining a person page
Configure a person page that is displayed in the content area of a person tab.

The following example shows the UIM that is required to display a person page in a person tab:

Chapter 1. Cdram web client reference 115

<PAGE PAGE_ID="SimplePerson">
<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<SERVER_INTERFACE NAME="DISPLAY"
CLASS="PersonFacade"
OPERATION="readPerson" />

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="DISPLAY" PROPERTY="key$personID"/>
</CONNECT>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.LastName">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="lastName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Title">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="title"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Gender">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="gender"/>
</CONNECT>
</FIELD>
</CLUSTER>
<CLUSTER TITLE="Cluster.Title.ContactDetails" NUM_COLS="2">
<FIELD LABEL="Field.Label.Email">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="email"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.PhoneNumber">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="phoneNumber"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.Address">
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="address"/>
</CONNECT>
</FIELD>
</CLUSTER>
</PAGE>

Figure 41. SimplePerson uim

This UIM is similar to what has been previously defined.

The corresponding . properties should contain the localizable content for the page:
Page.Title=Person Home Page

Cluster.Title.Details=Details
Cluster.Title.ContactDetails=Contact Details

Field.Value.Welcome=Field Value
Field.Label.Welcome=Field Label
Field.Label.FirstName=First Name
Field.Label.LastName=Last Name
Field.Label.Title=Title
Field.Label.Gender=Gender
Field.Label.Email=Email
Field.Label.PhoneNumber=Phone Number
Field.Label.Address=Address

116 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Build targets required to add tab content

To add tab content requires several files to be added and modified, which requires several build targets to

be executed.

Table 51. Files required to add tab content and corresponding build targets

File

Location

Build Target

SimpleSearch.tab and
associated properties file

EJBServer\components\

component-name\clientapps

inserttabconfiguration

SimpleSearch.uimand
associated properties file

webclient\components\
component-name\

client

SimplePerson.tab and

EJBServer\components\component -

inserttabconfiguration

associated properties file

associated properties file name\clientapps

SimpleContextPerson.ui |webclient\components) client
m and associated properties | component-name\

file

SimplePerson.uimand webclient\components\ client

component-name\

Configuring modal dialogs

A modal dialog is a window that is displayed in the user interface where users can view or edit certain
types of data in the application. Configure modal dialogs and the content that is displayed in them. You
can also configure a wizard progress bar that displays a sequence of modal dialogs to create a wizard that

can be used to edit more complex data or a larger set of data.

Modal dialogs are widely used for editing data in the Cliram application because they facilitate the
transactional editing of data. The user is forced to either submit changes or cancel them, and ambiguity is
avoided by preventing users from switching context while they configure a particular set of data.

The topics in this section demonstrate how to extend the application to add an employment history modal
dialog for a person. The modal dialog will contain the following items:

« Title bar
« Close button
« Action controls

The user cannot switch focus back to the parent interface until the modal dialog is closed, either by

submitting it or canceling it.

Opening a modal dialog

Add page level action controls to a page that open modal dialogs.

For this example, the person page that was defined in “Defining a person page” on page 115 will be
extended. The extended page will contain two action controls, one of which opens a basic modal dialog
and another that opens a wizard progress bar.

The following example shows the extended SimplePerson.uinm file.

Chapter 1. Cdram web client reference 117

<PAGE PAGE_ID="SimplePerson">

<ACTION_SET>
<ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
<LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
<ACTION_CONTROL LABEL="Control.Label.CreateEmploymentWizard">
<LINK PAGE_ID="CreateEmploymentWizard_pageOne"
OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

</PAGE>
Figure 42. SimplePerson uim

The corresponding . propexrties file is extended to include the label properties for the action controls:

Control.Label.CreateEmployment=Add Employment History
Control.Label.CreateEmployment=Add Employment in Wizazrd

Defining the content of the modal dialog

Define the content of a modal dialog. The content of a modal dialog is a standard UIM page, although it is
styled differently when it is displayed by the browser.

The key features of the modal dialog that is defined in the following example are outlined in the following
list:

- The title is displayed in the title bar of the window.
« The action controls are displayed in a bar at the bottom of the window.
« The user can click the close button on the title bar to close the window without submitting changes.

The following example shows the UIM code for the modal dialog:

118 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<PAGE PAGE_ID="CreateEmployments" WINDOW_OPTIONS="width=250">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

<SERVER_INTERFACE NAME="ACTION"
CLASS="EmploymentFacade"
OPERATION="createEmployment"
PHASE="ACTION"/>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">
<FIELD LABEL="Field.Label.EmployerName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="employerName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.JobTitle">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.FromDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fromDate"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.ToDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="toDate"/>
</CONNECT>
</FIELD>
</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.lLabel.Save" TYPE="SUBMIT">
<ACTION_CONTROL LABEL="Control.Label.Cancel" TYPE="SUBMIT"/>
</ACTION_SET>

</PAGE>
Figure 43. CreateEmployments.uim

Note the WINDOW_OPTIONS attribute of the PAGE element. In the example, the width is set to 250.
Because the height is not set, it is automatically calculated when the dialog is displayed.

The corresponding . propexrties file contains the localizable content for the modal dialog:

Page.Title=Create Employment
Cluster.Title.Details=Details
Field.Value.Welcome=Here's the details panel for a person

Control.Label.Save=Save
Control.Label.Cancel=Cancel

Field.Label.PersonID=Person ID
Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title
Field.Label.FromDate=From
Field.Label.ToDate=To

Adding a wizard progress bar

In scenarios where users need to edit a more complex set of data or a larger set of data, you might want
to split the data modifications over several windows. In the Cliram application, you configure a wizard
progress bar to create a wizard.

A modal dialog that is configured within a wizard includes the following items:

Chapter 1. Cdram web client reference 119

Wizard progress bar
Indicates the sequence of pages in the wizard, and highlights the current page in the sequence.

Step title
Indicates the title of the current page in the sequence.

Step description
Describes the content of the current page.

To illustrate the use of a wizard, the example in this section shows how to add an employment history to
the application by splitting the data entry over a sequence of two pages.

Defining the wizard progress bar configuration file
Define the wizard configuration in the CreateEmploymentWizard.properties file

The following example shows the configuration file for the wizard progress bar. The wizard has two pages
and the configuration specifies the text that is displayed in the progress bar, the step title, and the step
description for each page.

Number.Wizard.Pages=2

CreateEmploymentWizard_pageOne.Wizard.Item.Text=Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Title=

Step 1: Employer Details
CreateEmploymentWizard_pageOne.Wizard.Page.Desc=

Capture some details about Employer
Wizard.PageID.l1=CreateEmploymentWizard_pageOne

CreateEmploymentWizard_pageTwo.Wizard.Item.Text=Employment Dates
CreateEmploymentWizard_pageTwo.Wizard.Page.Title=Step 2:
Employment Period
CreateEmploymentWizard_pageTwo.Wizard.Page.Desc=
Record the time person worked for employer
Wizard.PageID.2=CreateEmploymentWizard_pageTwo

Figure 44. CreateEmploymentWizard.properties

To load the wizard configuration file into the data, add the following lines to the AppResouzrce. dmx file:

<row>

<attribute name="resourceid">
<value>l1</value>

</attribute>

<attribute name="localeIdentifier">
<value/>

</attribute>

<attribute name="name">
<value>CreateEmploymentWizard</value>

</attribute>

<attribute name="contentType">
<value>text/plain</value>

</attribute>

<attribute name="contentDisposition">
<value>inline</value>

</attribute>

<attribute name="content">
<value>./blob/CreateEmploymentWizard.properties</value>

</attribute>

<attribute name="internal">
<value>l1</value>

</attribute>

<attribute name="lastWritten">
<value>2008-06-13-19.29.40</value>

</attribute>

<attribute name="versionNo">
<value>l1</value>

</attribute>

<attribute name="category">
<value>RS_PROP</value>

</attribute>

</row>

120 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Defining wizard pages

An example shows how to configure a UIM file to define the content of a wizard for adding employment
history for a person. The wizard contains two pages, where the first page requires the user to enter
employer details and the second page requires the user to enter dates.

The following example shows the UIM that implements the first page of the wizard:
<PAGE PAGE_ID="CreateEmploymentWizard_pageOne">

<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>
<SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
</CONNECT>
</MENU>

<SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
OPERATION="validateEmployerAndJobTitle" PHASE="ACTION"/>

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

<PAGE_PARAMETER NAME="personID"/>

<CLUSTER TITLE="Cluster.Title.Details">
<FIELD LABEL="Field.Label.EmployerName">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="employerName"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.JobTitle">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>
</CONNECT>
</FIELD>

</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.Label.Next" TYPE="SUBMIT">
<LINK PAGE_ID="CreateEmploymentWizard_pageTwo"
DISMISS_MODAL="false">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="employerName"/>
<TARGET NAME="PAGE" PROPERTY="employerName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="jobTitle"/>
<TARGET NAME="PAGE" PROPERTY="jobTitle"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>
</PAGE>

Figure 45. CreateEmploymentWizard_pageOne.uim
The wizard progress bar items are added to the page by including a MENU element with the attribute
MODE="WIZARD_PROGRESS_BAR". The element references a property that is named Wizaxrd, which

is defined in the Constants.properties file as CreateEmploymentWizard. The Wizard property
associates the page with the wizard progress bar configuration file that is loaded into the database.

The corresponding . propexrties file for the first page of the wizard includes the localizable content for
the page:

Chapter 1. Cdram web client reference 121

Page.Title=Create Employment
Cluster.Title.Details=Details

Control.Label.Next=Next

Field.Label.EmployerName=Employer Name
Field.Label.JobTitle=Job Title

The following example shows the UIM that implements the second page of the wizard:
<PAGE PAGE_ID="CreateEmploymentWizard_pageTwo">

<MENU MODE="WIZARD_PROGRESS_BAR">
<CONNECT>
<SOURCE NAME="CONSTANT" PROPERTY="Wizard" />
</CONNECT>
</MENU>

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</CONNECT>
</PAGE_TITLE>

<PAGE_PARAMETER NAME="personID"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

<PAGE_PARAMETER NAME="employerName"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="employerName"/>
<TARGET NAME="ACTION" PROPERTY="employerName"/>
</CONNECT>

<PAGE_PARAMETER NAME="jobTitle"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="jobTitle"/>
<TARGET NAME="ACTION" PROPERTY="jobTitle"/>
</CONNECT>

<SERVER_INTERFACE NAME="ACTION" CLASS="EmploymentFacade"
OPERATION="createEmployment" PHASE="ACTION"/>

<CLUSTER TITLE="Cluster.Title.Details" NUM_COLS="2">

<FIELD LABEL="Field.Label.FromDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fromDate"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label.ToDate">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="toDate"/>
</CONNECT>
</FIELD>
</CLUSTER>

<ACTION_SET TOP="false">
<ACTION_CONTROL LABEL="Control.lLabel.Save" TYPE="SUBMIT">
<LINK PAGE_ID="Employments" DISMISS_MODAL="TRUE">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID" />
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

</PAGE>
Figure 46. CreateEmploymentWizard_pageTwo.uim

The corresponding . properties file includes the localizable content for the page:

122 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Page.Title=Create Employment
Cluster.Title.Details=Details
Control.Label.Save=Save

Field.Label.FromDate=From
Field.Label.ToDate=To

Build targets required to add modals and wizard progress bars

To add modal dialogs and wizard progress bars requires several files to be added and modified, which
requires several build targets to be executed.

Table 52. Files required to add modal dialogs and corresponding build targets

File Location Build target
SimplePerson.uimand webclient\components\ client
associated properties file component-name\

CreateEmployments.uim webclient\components\ client

and associated properties file |component-name\

CreateEmployments webclient\components\component-name\ client
Wizard_pageOne.uimand
associated properties file

CreateEmployments webclient\components\ client
Wizard_pageTwo.uimand component-name\
associated properties file

CreateEmploymentsWizard [EJBServer\components\ client
.properties component-
name\Data_Manager\scripts\blob

APPRESOURCES . DMX EJBServer\components\ client
component-name\Data_Manager\scripts

Adding tab navigation

Add navigation features to a tab. An example shows how to modify a person tab to include a navigation
bar.

The modified person tab will contain a content area navigation bar within one navigation tab, and a page
group navigation bar with two navigation pages.

Defining a navigation bar

Configure a tab file to contain a navigation bar in the content area. Then, configure a nav file to include a
navigation group with two navigation pages.

To configure a tab to contain a navigation bar in the content area, it is necessary to include the id of the
navigation bar configuration in the navigation element of the tab.

The following example shows the modified version of a SimplePexrson.tab file.
<tc:tab-config
id="SimplePerson">
<tc:page-param name="personID"/>
<tc:context page-id="SimplePersonContext" height="60"/>
<tc:navigation id="SimplePersonNav"/>
</tc:tab-config>
Figure 47. SimplePerson Tab

Chapter 1. Curam web client reference 123

Define the navigation bar configuration by using an XML configuration file with the extension . nav. Similar
to other tab configuration artifacts, the . nav files are in the EJBSexrver\components\component-
name\clientapps directory, where component-name is a custom component.

The following example shows the contents of the SimplePersonNav.nav file. It defines one navigation
group, with two navigation pages.

<nc:navigation id="SimplePersonNav">
<nc:nodes>
<nc:navigation-group id="PersonHome" title="PersonHome"
description="Person Details Group">
<nc:navigation-page id="SimplePerson" page-id="SimplePerson"
title="PersonDetails.Title"/>
<nc:navigation-page id="Employments" page-id="Employments"
title="EmploymentHistory.Title"/>
</nc:navigation-group>
</nc:nodes>
</nc:navigation>

Figure 48. SimplePersonNav.nav

The corresponding . propexrties file contains the localizable content for the page:
PersonHome.Title=Person Home

EmploymentHistory.Title=Employment History
PersonDetails.Title=Person Details

Build targets required to add tab navigation

To add a navigation bar to a tab requires several files to be added and modified, which requires several
build targets to be executed.

Table 53. Files required to add tab navigation and corresponding build targets

File Location Build target
SimplePersonNav.nav EJBServer\components\ inserttabconfiguration
and component-name\clientapps

associated properties file

SimplePerson.tab and EJBServer\components\ inserttabconfiguration
associated properties file component-name\clientapps

Working with lists
Extend a person search page to add an expandable list and a list actions menu.

The examples in this section show how to add an expandable list and a list actions menu to the person
search page that is defined in “Define the Search Page” on page 112.

Defining an expandabile list

Add an expandable list to a person search page. In an expandable list, users can see more information
than is displayed in a simple list, without having to navigate away from the page that contains the list.

In an expandable list, expand each row by clicking a toggle control. In the expanded state, a page that is
relevant to the row is displayed. Note the following key points:

- Atoggle control is added to the start of each row that enables the row to be expanded and collapsed.
It is possible to expand more than one row at a time and the size of the content area adjusts
automatically.

« Page level action sets are displayed as buttons in a page.

The following SimpleSearch.uim example shows a person search page UIM file that has been modified
to include an expandable list.

124 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<PAGE PAGE_ID="SimpleSearch">

<SERVER_INTERFACE NAME="ACTION"
CLASS="PersonFacade"
OPERATION="advancedSearch"
PHASE="ACTION"/>

<LIST TITLE="List.Title.Results">
<DETAILS_ROW>
<INLINE_PAGE PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</INLINE_PAGE>
</DETAILS_ROW>

</LIST>
</PAGE>

Figure 49. SimpleSearch.uim

A new element, the DETAILS_ROW, has been added to the LIST element. The DETAILS_ROW element
defines the inline page that is displayed when a row is expanded, including the parameters that are
passed to the page for each row.

Defining a list actions menu

Add a list actions menu to a person page. A list actions menu contains a set of actions that are associated
with a particular row.

A list actions menu icon is displayed at the end of each row. Clicking the icon expands the list actions
menu. The list actions menu contains one or more menu items, which are defined by action controls.

The following SimpleSearch.uim example shows a person search page UIM file that has been modified
to include a list actions menu.

Chapter 1. Cdram web client reference 125

<PAGE PAGE_ID="SimpleSearch">

<LIST TITLE="List.Title.Results">

<ACTION_SET TYPE="LIST_ROW_MENU">
<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="Control.Label.CreateEmployment">
<LINK PAGE_ID="CreateEmployments" OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
<ACTION_CONTROL
LABEL="Control.Label.CreateEmploymentiWizard">
<LINK PAGE_ID="CreateEmploymentWizard_pageOne"
OPEN_MODAL="true">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</ACTION_SET>

<!-- Removing Actions Column -->
<!--<CONTAINER LABEL="Container.Label.Actions">
<ACTION_CONTROL LABEL="Control.Label.View">
<LINK PAGE_ID="SimplePerson">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="personID"/>
</CONNECT>
</LINK>
</ACTION_CONTROL>
</CONTAINER>-->

</LIST>
</PAGE>
Figure 50. SimpleSearch.uim

Note the following points:

« An ACTION_SET that contains the three action controls has been added to the list.

« The attribute TYPE has been set to LIST_ROW_MENU to indicate that the action controls that are in this
set are to be displayed on a list actions menu.

« Because the View action control has been added to the list actions menu, the column that contains it is
no longer necessary, and therefore the corresponding UIM code has been commented out.

Localizable labels for the new action controls are in the corresponding . properties file content, for
example:

Control.Label.CreateEmployment=Create Employment
Control.Label.CreateEmploymentWizard=Create Employment Wizard

126 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Build targets required to add lists and list actions

To add and expandable list and list actions menu requires several files to be added and modified, which
requires several build targets to be executed.

Table 54. Files required to add an expandable list and a list actions menu, and corresponding build

targets

File Location Build target
SimpleSearch.uimand webclient\components\component-name\ client
associated properties file

Session management

Learn how browser sessions are handled in the Cliram application. A browser session can be defined as a
continuous period of user activity in the web browser, where successive events are separated by no more
than 30 minutes.

The following are common examples of when a Clram browser session is started or finished:

- A session starts when a user first logs into the application.
« As long as the user is actively using the browser, the session remains active.

If the browser is left inactive for a period of time, the session will timeout. In this case, the user will be
required to log back in and a new session is started.

The default timeout is 30 minutes, but this can be configured using the application server's
configuration settings. See the Cliram Deployment Guide for more information on application server
configuration.

- The user can explicitly logout, using the logout link in the application banner. The session is terminated
in this case and logging back in will start a new one.

« The browser is shutdown and a new browser instance is started. In this case, a new session is started
and the user will be required to log in.

Session Overview

There is a maximum limit on the number of tabs that can be opened per section of an application. The
system administrator can configure this limit by updating the curam.environment.max.open.tabs
property in the system administration application. The default value for the maximum limit of open tabs
per section of an application is set to fifteen.

If a user requests to open a tab and the number of open tabs reaches the maximum limit within the
current section then an informational modal dialog will be displayed immediately after the tab is initially
opened (before content in the tab is displayed). As instructed in this modal dialog, existing open tabs
within the current section should be closed before any new tabs can be opened in an application. If the
information displayed in the informational dialog is ignored and the user attempts to open more tabs
within the current section of an application, the requested tabs will not be opened and an error modal
dialog will be displayed instructing that new tabs can only be opened after existing open tabs within the
current section of the current application are closed. An error modal dialog can simply be dismissed by
clicking on the button on the bottom of the dialog.

The message and title of both the dialog can be customized by customizing by adding the
GenericModalError.js.properties file within the custom component. For more information on
localizing JavaScript property files, see “File encoding” on page 41.

The text on the button can be customized by changing the value of the Text. Ok property in
CDEJResources.properties. For more information on localizing CDEJResources.properties, see
“CDEJResources.properties” on page 48.

Chapter 1. Curam web client reference 127

The current set of open tabs for a particular user is restored each time the user logs out of the application
and logs back in. In addition, if the browser is refreshed (e.g. using the F5 button), the currently open tabs
are also restored. There are two exceptions to this:

« If the the system administrator has decreased the maximum limit of tabs that can be opened within a
section of an application since the termination of the last session then only the new maximum number
of tabs within each section will be restored. An error dialog will be displayed informing the user that the
maximum limit of open tabs has been exceeded.

- If the system administrator has updated the tab configuration to remove tabs from sections via the User
Interface administration screens, then the removed tabs will not be restored.

The browser session plays an important role in the expected behavior when restoring tabs, and this
chapter will detail how browser sessions interact with the restoration of tabs. In addition, a number of
configuration options for the tab restoration feature are detailed.

Tab Restoration

The list of currently open tabs per user is stored temporarily in the web tier, associated with the browser
session, and more permanently on the database so that it can be restored after a user logs out of the
application.

The data is persisted from the web tier to the database intermittently. As a result, there are cases where
the last few changes to the open tabs may not be restored when the user logs in. This is most likely to
happen where the session times out or the browser is restarted.

The behavior of tab restoration is different depending on whether it was the result of a browser refresh
(F5) or the start of a new session, that is, the user has logged in.

« Browser Refresh

If the browser is refreshed, tabs are restored to their current state from the web tier session data, for
the current user. No tab changes will be lost.

— The tab that was last selected for the current user in the selected section will remain the selected
tab.

— The selected tab for the current user in other sections will revert to the first tab in those sections.

— The expanded or collapsed states of the shortcut panel, smart panel and page contents for the
current user are not restored.

« New Session

When a new session starts, usually requiring the user to login, the tabs are restored to their current
state using the session data stored on the database.

— The "Home" tab is restored as the selected tab.
The selected tab in other sections will revert to the first tab in those sections.

The expanded or collapsed states of the shortcut panel, smart panel and page contents are not
restored.

If no previous tab session data is available, only the "Home" tab is opened.

For more information about a special case of tab restoration where pages are directly accessed through
the browser navigation bar, see direct browsing in “The application controller JSP and web client URL” on
page 11.

Session Configuration

Each time a new tab is opened, a tab is closed or the content area of a tab is updated, the information is
stored in the web tier. The tab session data is persisted from the web tier to the database intermittently.
How often the data is persisted can be configured using the following options, which can be set in the
ApplicationConfiguration.properties file.

» tabSessionUpdateCountThreshold

128 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Specifies the number of tab session data updates that must be received before the data is persisted
from the web tier to the database. Once the threshold is reached, the recent updates are written and
counting starts again from zero until the threshold is reached. A value of one causes writes on every
update. A value of zero (or a negative or invalid value) disables writing based on update counts. The

default is every 10 updates.

- tabSessionUpdatePeriodThreshold

Specifies the number of seconds that must have elapsed since the last time session data was persisted
from the web tier to the database before a new update will trigger another write. A value of zero (or a
negative or invalid value) disables writing based on update periods. The default value is 120 seconds, or
2 minutes.

The properties work together based on which value is reached first. In other words, if the update
count threshold (tabSessionUpdateCountThreshold) is not reached, but the update period threshold
(tabSessionUpdatePeriodThreshold) has been reached, a write will occur, and vice versa.

If the update count threshold is set to one, the update period threshold is ignored. The reason for this is
that writes will happen on every update, so there is no need to write based on a time period.

Note: Tab session data is persisted to the database when the user logs out, regardless of the value of the
current update count and update period. The exception to this is if both the update count threshold and
the update period threshold are set to zero.

Each user account has one persistent tab session database record for an application. The same
user logging in to the application from different browser sessions will cause some interference and
unpredictability in what data is persisted across sessions.

The interference and unpredictability of the persisted data, when multiple users are using the

same login ID, is most likely encountered in a testing environment. It is recommended that the
tabSessionUpdatePeriodThreshold and tabSessionUpdateCountThreshold properties are set to zero for
testing environments to prevent this. Setting both properties to zero ensures that the tab session data is
only persisted for the length of a browser session and not across sessions, i.e. login and logout.

It is also recommended that these settings are used where an "external" application is deployed and the
external users all share the same generic user account.

Session Timeout Warning

A browser session is timed from when data was most recently sent to or received from the server. In
some cases, a user might enter data into the application without realizing that the current session has
timed out. When the user does initiate a server call, for example to submit the entered data, the browser
prompts the user to reauthenticate to the application and their data can be lost. To prevent users from
losing data when their session times out, a system administrator can configure a session timeout warning.

Before a browser session times out, a session timeout warning dialog box is displayed to users at a
configured time. The dialog contains a timer that indicates the remaining period before the session times
out. Users can either reset the session timeout and continue working in the application, or end the session
and quit the application.

In IBM Curam Social Program Management, the session timeout warning is enabled by default. Default
configuration values are defined for the session timeout warning in properties.

Session timeout warning default values

The session timeout warning uses default values that are defined in the
ApplicationConfiguration.properties file and in the CDEJResources.properties file.

CDEJ resources properties

You can configure the default values of the following properties that are defined in the
CDEJResources.properties file:

Chapter 1. Curam web client reference 129

timeout.warning.modal.title
Configures the title that is displayed on the timeout warning modal dialog. The default value is
Timeout Warning.

timeout.warning.modal.user.message
Configures the message that is displayed to the user before the session expires. The default value is
You will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

timeout.warning.modal.expired.user.message
Configures the message that is displayed to the user after the session expires. The default value is
You have been automatically timed out due to a period of inactivity on your
account.

timeout.warning.modal.continue.button
Configures the text that is displayed on the Continue button in the modal dialog that is displayed to
the user before the session expires. The default value is Continue.

timeout.warning.modal.quit.button
Configures the text that is displayed on the Quit button in the modal dialog that is displayed to the
user before the session expires. The default value is Quit.

Application configuration properties
The following default values are defined in the ApplicationConfiguration.properties file:

Session timeout warning modal width
Configures the default width of the session timeout warning modal in pixels. The default value is 580.
You can override the default property value only by customizing the timeout-warning elementin an
application.

Session timeout warning modal height
Configures the default height of the session timeout warning modal in pixels. The default value is 250.
You can override the default property value only by customizing the timeout-warning elementin an
application.

Default buffering period
Configures the default buffering period in seconds to allow a server more time to respond to a client
request over a slow network. The default value is 20. You cannot override the default property value.

Customizing the session timeout warning in the caseworker application

Customize the session timeout warning in the caseworker application by configuring system application
properties, and CDEJ resource properties.

About this task

Settings that you customize in CDEJ properties apply to the whole of IBM Clram Social Program
Management.

If the timeout-warning element is configured for a specific application, the application configuration
takes precedence over the corresponding values that are configured in the application configuration
properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:

1. Log on to IBM Curam Social Program Management as a system administrative user.
2. Click System Configurations.

3. In the Shortcuts panel, click Application Data > Property Administration.

4. Search for and edit each property that you want to configure.

5. To publish the property change, click Publish.

130 IBM Curam Social Program Management: Caram Web Client Reference Manual

Procedure

Application configuration properties

- Customize the following application configuration properties for the session timeout warning as
required:

Enable or disable the session timeout warning
Edit the cuxram.environment.intexrnal.enable.timeout.warning.modal application
configuration property. The property configures whether the session timeout warning is displayed
to users, A valid Boolean value is required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.intexrnal.timeout.warning.modal.time application
configuration property. The property configures the notice period that users are given in seconds,
through the display of the session timeout warning, that their browser session is about to time
out. For example, if the default browser session length is 30 minutes, and the timeout attribute
value is configured to 120, which corresponds to a value of 2 minutes, the session timeout warning
is displayed after 28 minutes of inactivity. Then, users must click a button in the user interface
to prevent the session from automatically timing out. A valid integer value is required, where the
default value is 120.

Customize the session expiry logout page
Edit the cuxram.environment.intexrnal.timeout.warning.modal.logoutpage
application configuration property, where the default value is internal-logout-wrapper. The
property configures the logout page that is displayed when a user's session expires and the user is
automatically logged out. The property value must be a valid UIM page.

CDEJ resource properties
« Customize the following CDEJ resource properties for the session timeout warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.waxrning.modal.title CDEJ property. The property configures the title that
is displayed on the timeout warning modal dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.warning.modal.usex.message CDEJ property. The property configures the
message that is displayed to the user before the session expires. The default value is You
will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

Customize the session expiry message
Edit the timeout.warning.modal.expired.usexr.message CDEJ property. The property
configures the message that is displayed to the user after the session expires. The default value
isYou have been automatically timed out due to a period of inactivity on
your account.

Customize the Continue button text in the session timeout warning modal dialog
Edit the timeout.waxrning.modal.continue.button CDEJ property. The property configures
the text that is displayed on the Continue button in the modal dialog that is displayed to the user
before the session expires. The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.waxrning.modal.quit.button CDEJ property. The property configures the
text that is displayed on the Quit button in the modal dialog that is displayed to the user before the
session expires. The default value is Quit.

Chapter 1. Cdram web client reference 131

Customizing the session timeout warning in Universal Access

Customize the session timeout warning in Universal Access by configuring system application properties,
and CDEJ resource properties.

About this task

Settings that you customize in CDEJ properties apply to the whole of IBM Cldram Social Program
Management.

If the timeout-warning element is configured for a specific application, the application configuration
takes precedence over the corresponding values that are configured in the application configuration
properties and the CDEJ properties.

To customize system application properties, do the following preliminary steps:

1. Log on to IBM Curam Social Program Management as a system administrative user.
2. Click System Configurations.

3. In the Shortcuts panel, click Application Data > Property Administration.

4. Search for and edit each property that you want to configure.

5. To publish the property change, click Publish.

Procedure

Application configuration properties

- Customize the following application configuration properties for the session timeout warning as
required:

Enable or disable the session timeout warning
Edit the curam.environment.enable.timeout.waxrning.modal application configuration
property. The property configures whether the session timeout warning is displayed to users, A
valid Boolean value is required, where the default value is true.

Customize the session timeout warning notice period
Edit the curam.environment.timeout.warning.modal.time application configuration
property. The property configures the notice period that users are given in seconds, through
the display of the session timeout warning, that their browser session is about to time out. For
example, if the default browser session length is 30 minutes, and the timeout attribute value
is configured to 120, which corresponds to a value of 2 minutes, the session timeout warning is
displayed after 28 minutes of inactivity. Then, users must click a button in the user interface to
prevent the session from automatically timing out. A valid integer value is required, where the
default value is 120.

Customize the session expiry logout page
Edit the curam.environment.timeout.warning.modal.logoutpage application
configuration property, where the default value is LogoutWrappezx. The property configures the
logout page that is displayed when a user's session expires and the user is automatically logged
out. The property value must be a valid UIM page.

CDEJ resource properties
« Customize the following CDEJ resource properties for the session timeout warning as required:

Customize the title on the session timeout warning modal dialog
Edit the timeout.warning.modal.title CDEJ property. The property configures the title that
is displayed on the timeout warning modal dialog. The default value is Timeout Warning.

Customize the message in the session timeout warning modal dialog
Edit the timeout.waxrning.modal.usex.message CDEJ property. The property configures the
message that is displayed to the user before the session expires. The default value is You
will be timed out when the countdown reaches 0 seconds. Click Continue
to resume using the application or Quit to exit.

132 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Customize the session expiry message
Edit the timeout.warning.modal.expired.usexr.message CDEJ property. The property
configures the message that is displayed to the user after the session expires. The default value
isYou have been automatically timed out due to a period of inactivity on
your account.

Customize the Continue button text in the session timeout warning modal dialog
Edit the timeout.waxrning.modal.continue.button CDEJ property. The property configures
the text that is displayed on the Continue button in the modal dialog that is displayed to the user
before the session expires. The default value is Continue.

Customize the Quit button text in the session timeout warning modal dialog
Edit the timeout.warning.modal.quit.button CDEJ property. The property configures the
text that is displayed on the Quit button in the modal dialog that is displayed to the user before the
session expires. The default value is Quit.

Customizing the timeout warning in an application

You can configure the session timeout warning individually for each application by configuring the optional
timeout-warning element.

About this task

Optionally, configure the timeout-warning element in the application configuration XML file, which has
the extension . app. If you configure the timeout-warning element in the application, the values takes
precedence over both the values that are configured in the system application configuration properties
and the default values.

Procedure

- Configure the following attributes as required in an application's configuration file:

title
Configures the title that is displayed on the timeout warning dialog.

user-message
Configures the message that is displayed to the user before the session expires. If the
message requires more than two lines of text, to prevent text cutoff from occurring a scroll
bar is automatically displayed in the session timeout warning modal. Because the scroll bar is
implemented by using CSS styling, it is not possible to disable it by configuring a property.

expired-user-message
Configures the message that is displayed to the user after the session expires.

quit-button
Configures the text that is displayed on the Quit button in the modal dialog that is displayed to the
user before the session expires.

continue-button
Configures the text that is displayed on the Continue button in the modal dialog that is displayed
to the user before the session expires.

timeout
Configures the notice period that users are given in seconds, through the display of the session
timeout warning, that their browser session is about to time out. For example, if the default
browser session length is 30 minutes, and the timeout attribute value is configured to 120, which
corresponds to a value of 2 minutes, the session timeout warning is displayed after 28 minutes
of inactivity. Then, users must click a button in the user interface to prevent the session from
automatically timing out.

width
Configures the width of the session timeout warning modal in pixels.

Chapter 1. Cdram web client reference 133

height
Configures the height of the session timeout warning modal in pixels.

« Foran application in Universal Access, you can enable a specific logout page to be associated with the
Quit button for a modal dialog. On the logout banner menu item that is on the person banner menu,
you must set the logout attribute to true, as shown in the following example:

<ac:banner-menu type="person" title="person.title" page-id="somPageID"/>
<ac:menu-item id="logout" title="menu.logout.title" text="menu.logout.text"
page-id="LogoutWrapper" logout="true"/>

<ac:banner-menu/>

<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"

expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"

quit-button="timeout.logout"

timeout="300"

width="650"

height="300"/>

Example
The following example demonstrates how to specify values for the timeout-warning attributes:

<ac:timeout-warning title="timeout.title"
user-message="timeout.user-message"
expired-user-message = "timeout.expired-message"
continue-button="timeout.continue"
quit-button="timeout.logout"

timeout="300"

width="580"

height="200"/>

Configuring a customized logon page

If a browser session times out because of no user interaction, users are redirected to an application logon
page that is specified by the configuration properties. The logon page displays a session expiry message
that tells users that they have been logged out because of a period of inactivity on their account.

About this task

In the configuration properties, you can specify the application logon page that is displayed both in the
IBM Curam Social Program Management application and in the Universal access application.

If the application is configured to display a customized logon page instead of the default page, then use
the following procedure to insert a customized session expiry message into the customized logon page. If
a user's session times out automatically, the customized session expiry message is then displayed in the
customized logon page that the user is redirected to.

Procedure

1. To configure the custom logon JSP page, do the following steps:
a) Import the class JSPUtil by using the following page directive:

<jsp:directive.page import="curam.util.client.jsp.JspUtil"/>
b) Insert the scriptlet to print the session expired message on the page:

<jsp:scriptlet>
<![CDATA[JspUtil. printSessionExpiredMessage(pageContext); 11>
</jsp:scriptlet>

2. To configure the custom logon renderer class, do the following steps:
a) Create a div with a custom ID on your logon page to wrap the session expired message.
b) Call the following method and pass in the ID of the div as a parameter:

JspUtil.getSessionExpiredMessageScript(div.id);

134 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Tab Session Limitations

The tab session data records a limited number of tabs. The limit imposed relates to the total size of the
tab session data and is approximately 70-80 tabs. Once this limit has been exceeded, tab session data is
maintained only in the web tier and is no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected. However, if a user logs out
with more tabs open than can be recorded for a session, only the state of the tabs at the time the limit
was first exceeded will be restored.

Closing tabs will reduce the size of the tab session data and writing to the database will then resume as
normal.

Browser Specific Session Management

The version of the browser that is used can affect new sessions when they are started and when they are
shared. Two browser instances that share the same session result in the same set of open tabs that are
displayed in both instances. This sharing can cause interference and unpredictability of the persisted data
in the same way if two users that use the same user ID and password from different computers.

Example Session Issue: A user logs in to the Cdram application in one browser instance as the ‘admin’
user. They then open a new browser tab, which shares the session. From here, they access the Cliram
login page and login as a ‘caseworker’ user.

In this situation, the original browser tab still displays the tabs for the admin user. If the user refreshes
the original tab, then the tabs and application view are restored for the caseworker application.
Alternatively, if the user opens new tabs that apply to the admin application only, the tabs are persisted
for the caseworker user. Within the same browser session, a user must always log out to end the session
and be able to log in as a different user.

Users logging into two separate applications (for example, internal and external applications) within the
same browser also causes problems. Within one browser, users cannot log in to external and internal
applications at the same time.

Browser management

You can configure specific behavior for the IBM Cldram Social Program Management supported browsers,
such as warning users if they are about to leave a page without saving data, or notifying them when they
are not using an optimal browser version.

Configuring browser Back, Refresh, and Close button behavior

The standard IBM Curam Social Program Management application does not support using the browser
Back and Refresh buttons to navigate the application. Also, if users click the Close button to close the
application, they might lose data. In both the caseworker user interface and the classic Universal Access
user interface, if users click either the Back, Refresh, or Close browser buttons, by default a warning
message is displayed in a confirmation window. The warning message prompts users to either stay on
the page or leave the page as requested. You can configure properties to either enable or disable the
confirmation message from displaying on the internal application, the external application, or both. The
warning dialog to prevent the loss of data is in the internal application.

Before you begin

You must log on to IBM Cdram Social Program Management as a system administrative user.

About this task

Use the following procedure to either enable or disable confirmation messages from being displayed
when users click either the Back, Refresh, or Close browser buttons in either the caseworker user
interface or the Universal Access user interface.

Chapter 1. Curam web client reference 135

The content of the confirmation message depends on the browser, and cannot be customized.
Note: Browser-specific behavior
All browsers

In all browsers, when a warning message confirmation window is displayed after you click the Back,
Refresh, or Close buttons, the following actions are recommended:

« Itis recommended that users do not click the Leave button. Clicking the Leave button causes
unpredictable results that depend on the browser that is being used, and on where users are within
the application. Instead, it is recommended that users click the Stay button in the warning message
confirmation window. To save any data that is entered on the page, users click Stay on the Page. To
run the requested action, users click Leave the Page.

 For the Refresh button, where users are asked to confirm whether they want to reload the page,
it is recommended that users do not click the Reload button. Clicking the Reload button causes
unpredictable results that depend on the browser that is being used, and on where users are within
the application. Instead, it is recommended that users click the Don't Reload button in the warning
message confirmation window.

- If the user clicks the Back button before the page is loaded, the browser dialog is not displayed in
the browser.

« If a user does not interact with a page by clicking, touching, scrolling, or typing on the elements, the
warning message is not displayed when the user clicks the Back button.

Users can then use the supported navigational options that are provided in the application to do the
actions that users require.

Chrome and Microsoft Edge

If you enable the confirmation message to be displayed, both Chrome and Microsoft Edge display an
extra checkbox that users can select to stop the page from opening more message or confirmation
windows. If users select the checkbox, the message or confirmation window is not displayed again. It
is recommended that users do not select the checkbox.

Firefox

In Universal Access, if a user does not interact with a page by clicking, touching, scrolling, or typing
on the elements, the warning message is not displayed when the user clicks the Back button. In this
case, data is not lost if the user leaves the page.

Safari
In Universal Access, if the warning message confirmation dialog is displayed and the user clicks the
Leave button, the feature is disabled in the Safari browser. The Leave button is enabled again only
when the user closes the main current browser and then reopens the browser.

Tablets
The warning message confirmation dialog is not displayed on tablets.

Procedure

1. Click System Configurations.
2. In the Shortcuts pane, click Application Data > Property Administration.

3. To enable or disable the confirmation window in the IBM Clram Social Program Management user
interface or the Universal Access user interface, search for and edit the value of the proceeding
properties. By default, the warnings are enabled on both the internal and external application.

« For the internal application, edit the value of the
curam.internal.app.guard.against.leaving property. The property is used to indicate
whether warning messages are enabled or disabled when the user leaves or refreshes the internal
application.

136 IBM Curam Social Program Management: Ciram Web Client Reference Manual

« For the external application, edit the value of the curam.app.guard.against.leaving
property. The property is used to indicate whether warning messages are enabled or disabled when
the user leaves or refreshes the external application.

4. To publish the property change, click Publish.

Optimal browser support

A number of browsers and a range of browser versions are supported for use with IBM Clram Social
Program Management. The default settings for web browser versions align with the versions supported
by IBM for external applications. Users can be notified when they are not using the optimal version of a
supported web browser. You can configure the range of supported versions for a browser, the message
that users see, and the frequency at which the message is displayed.

Note: IBM Curam external applications are public facing applications, where mode="external" is setin
the application configuration file (*.app). Health Care Reform and Universal Access are examples of this
type of application.

The user's web browser is considered suboptimal if it is below the supported minimum version of the
browser, or above the supported maximum version of the browser.

A message displays at the top of the banner, which can be dismissed. Once the optimal browser
message is dismissed and if the browser is not updated, the message will be displayed again when a
certain number of days have elapsed. This is assuming that the fully qualified URL to the application
remains the same. An example of a fully qualified URL might be https://myserver.ibm.com:9044/
CitizenPortal/application.do.The number of days that have elapsed before the next optimal
browser check is configurable and by default it is sixty days in the future. The default optimal browser
message links to a website that assists the user to take action and update their version of the web
browser to an optimal one.

The optimal browser message essentially has three components as follows:

Warning icon
The warning icon gets the attention of the user that they should update their web browser.

Optimal browser message content
The message content that will be displayed to the user. It will consist of plain text and optionally a
hyperlink which directs the user to a website where they can take action to update their web browser.

Optimal browser message exit icon
Allows the user to dismiss the optimal browser message.

Related reference

Application configuration properties

The ApplicationConfiguration.properties file defines the most important application
configuration settings. You might want to change some of the settings that are relevant to the client
application.

CDEJResources.properties
This properties file can be localized. For more information, see Locales. Images defined in this file can
also be customized per locale.

Optimal browser support configuration

Use properties in the ApplicationConfiguration.properties file to enable or disable optimal
browser support, configure the number of days before the next browser check, and set the for minimum
and maximum browser versions.

optimal.browser.detection.enabled
Example: optimal.browser.detection.enabled=true. This is an application wide setting. It
allows this feature to be enabled or disabled. Valid values for this property are; "true", and "false". The
default value is "false".

Chapter 1. Cdram web client reference 137

optimal.browser.next.check
Example: optimal.browsexr.next.check=20. This property configures the number of days that
will elapse before the next check is done to determine if a user's web browser is at an optimal level.

Note: This must an integer value. It is recommended to use a value between 1 and 60 (inclusive). The
default value is set to 60.

If this value is incorrectly configured it will be set to the default value. Additionally, an exception will
be reported in the server logs when client side tracing is enabled. Please see “Tracing server function
calls” on page 26 for more information on setting client side tracing. It should be noted that if this
value is changed, it will not take effect until the optimal browser message is displayed again.

Properties for minimum and maximum browser versions

The following the properties define what constitutes an optimal browser. The default value for each of
these properties is in line with that supported by IBM for external applications.

Note: The value of these properties must be an integer or double value, otherwise a default value of "0"
will be set and the optimal browser feature will not work as expected when using the an application in the
associated web browser. An exception will be reported in the server logs if client side tracing is enabled.

chrome.min.version
Example: chrome.min.version=0. This property is used to configure the minimum supported
version of the Chrome web browser. Any version below this is not considered an optimal Chrome
browser when using an IBM Cdram application. The default value is set to zero because there is no
minimum supported version for Chrome.

chrome.max.version
Example: chrome.max.version=0. This property is used to configure the maximum supported
version of the Chrome web browser. Any version above this is not considered an optimal Chrome
browser when using an IBM Curam application. The default value is set to zero because there is no
maximum supported version for Chrome.

ff.min.version
Example: £f.min.version=0. This property is used to configure the minimum supported version
of the Firefox web browser. Any version below this is not considered an optimal Firefox browser
when using an IBM Curam application. The default value is set to zero because there is no minimum
supported version for Firefox.

ff.max.version
Example: £f.max.version=0. This property is used to configure the maximum supported version
of the Firefox web browser. Any version above this is not considered an optimal Firefox browser
when using an IBM Curam application. The default value is set to zero because there is no maximum
supported version for Firefox.

safari.min.version
Example: safari.min.version=0. This property is used to configure the minimum supported
version of the Safari web browser. Any version below this is not considered an optimal Safari browser
when using an IBM Curam application.

safari.max.version
Example: safari.max.version=0. This property is used to configure the maximum supported
version of the Safari web browser. Any version above this is not considered an optimal Safari browser
when using an IBM Curam application.

edge.min.version
Example: edge.min.version=0. This property is used to configure the minimum supported version
of the Microsoft Edge web browser. Any version below this is not considered an optimal Microsoft
Edge browser when using an IBM Curam application.

edge.max.version
Example: edge .max.version=0. This property is used to configure the maximum supported version
of the Microsoft Edge web browser. Any version below this is not considered an optimal Microsoft
Edge browser when using an IBM Curam application.

138 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Optimal browser message configuration

Use properties in the ApplicationConfiguration.properties file to configure the text in the
optimal browser message.

optimal.browser.msg.description
Example: optimal.browser.msg.description=optimal browser message banner. This
property configures the text for the description of the optimal browser support feature so that it
can be read by the screen reader. A default value is provided.

optimal.browser.msg.text
Example: optimal.browser.msg.text=For a better experience, please
10.1link:http://www.whatbrowser.org/tupdate your browseri0.end?. This property
configures content of the optimal browser message. The text between the §0.1ink: and {0.end}
mark-up tags configures the hyperlink and hyperlink text. These mark-up tags are optional. If they are
omitted from the value of this property then the optimal browser message will be displayed as plain
text. If the mark-up tags are included but not specified correctly, i.e. the specified hyperlink (URL)
is not in the correct format or the format of the markup tags themselves are not correct, then the
optimal message content will not be displayed as expected.

optimal.browser.msg.info

Example: optimal.browser.msg.info=Rendering. .. This property is used to configure the text
while the optimal browser message is being rendered. A default value for this property is provided.

optimal.browser.dismiss
Example: optimal.browser.dismiss=dismiss. This property is used to configure the tooltip text
associated with the button to dismiss the optimal browser message. A default value for this property
is provided.

optimal.browser.warning
Example: optimal.browser.warning=warning. This property is used to configure the text for the
warning icon so that it can be read by the screen reader. A default value for this property is provided.

Domain-specific controls

Domain-specific controls enable a more sophisticated interface for user information than the standard set
of HTML controls. Examples of domains that require sophisticated controls include dates, date-times, the
meeting view, and the rules decision tree.

A web page that is generated for UIM pages that contains a server access bean with fields of this nature
that contains a custom control appropriate to the type. For example, when a server bean contains the
CALENDAR_XML_STRING domain, a calendar is generated that expects server information in a particular
XML format.

Dates

Dates are mapped to the SVR_DATE domain. Any server access bean that contains fields of this type
shows a date selector to the user for data input. These selectors are HTML fields with an adjacent pop-up
icon that causes a menu to be displayed allowing the user to select a date or date time with ease.

Note: This function is based on JavaScript and it is important that the user enable JavaScript in their
browser for this selector to work. The appearance of the date selector pop-up can be altered by overriding
its dedicated cascading stylesheet. For more information, see “Cascading stylesheets” on page 32.

The initially configured date dialog has three input controls; a drop-down field for the month, a text input
field for the year, and the days of the month are displayed so that a day can be selected. When the day of
the month is selected, this selection populates the date field.

The date format string that is associated with date format validations are
customizable in the file CDEJResources.properties and defined by the property
curam.validation.calendar.dateFormat:

Chapter 1. Cdram web client reference 139

curam.validation.calendar.dateFormat=M/dd/yyyy
Figure 51. Customizing the date format

If this value is not set, the date format string will default to the date format setting that is specified in the
ApplicationConfiguration.properties file.

Three Field Date Selector

Dates can be mapped to the THREE_FIELD_DATE domain to enable use of an alternative date selector
widget. Server access beans that contain fields of this type will display three drop-down elements to the
user for data input.

The order of the drop-down elements and the display values of the month element reflect the date
format, as configured by the dateformat property in the ApplicationConfiguration.properties
file. The day drop-down is populated with numbers that range 1 - 31. Validation at the infrastructure
level prevents users from selecting an invalid date, for example, February 31, 2015. The year drop-down
element is populated with values that start 100 years in the past to 30 years in the future. The range and
order of the options are not configurable.

A selection from the drop-down elements is made either by scrolling to the wanted value or by typing the
value when the drop-down element is active.

To use the Three Field Date Selector widget, model a property on a struct to use a data type derived from
the THREE_FIELD_DATE domain.

Date-Times

Date-times are mapped to the SVR_DATETIME domain. Any server access bean that contains fields of this
type will display a date selector (as described in the Dates topic) next to a time entry field.

Similar to the date selector, the pop-up here requires JavaScript to function correctly. An extra control
exists for entering time as hours and minutes. It is displayed as two side-by-side drop-down lists for
selecting the hour and minute values.

Note: The user needs to enable JavaScript in their browser for these selectors to work.

The date input field will not be displayed when the CURAM_TIME domain (a descendant of the
SVR_DATETIME domain) is used,

The date time format string that is associated with date-time format validations are
customizable in the file CDEJResources.properties and defined by the property
curam.validation.calendar.dateTimeFormat:

curam.validation.calendar.dateTimeFormat=HH:mm
Figure 52. Customizing the Date-Time format

If this value is not set, the date time format string will default to HH mm ss.

Related reference

Dates

Dates are mapped to the SVR_DATE domain. Any server access bean that contains fields of this type
shows a date selector to the user for data input. These selectors are HTML fields with an adjacent pop-up
icon that causes a menu to be displayed allowing the user to select a date or date time with ease.

Representing Time-Only Values

As is described in related topics, Ciram has a base type for date-only and date-time values. No specific
base type exists for time-only values.

A CURAM_TIME domain is provided in the initial configuration of Cliram and this configuration is used
by the client infrastructure to display a corresponding time-only widget. The widget also initiates certain

140 IBM Curam Social Program Management: Caram Web Client Reference Manual

processing when parsing and formatting values based on this domain. However, the underlying data
representation is the same as for SVR_DATETIME and when it is working with time-only domains the
corresponding server-side code must ignore completely the date part of the value.

Because time-only domains are based on the SVR_DATETIME domain, the default values also will be the
same. The zero date time of 0001-01-01 00:00:00 is the value sent to the server if the field is left
blank. If the field is set to 00 : 00, then 00: 00 time value of today's date is sent.

The time input field that is rendered for CURAM_TIME domain is an editable combination box as the
following example shows. The time input field contains selectable time values for every 30 minutes. The
exact time value also can be entered directly in the field.

The values to be selected are in the application-wide format set in
ApplicationConfiguration.properties, including AM/PM for the 12-hour display. A manually
typed value ends to follow the same format.

Customizing the Time Format

The application-wide time format setting can be changed by setting or modifying the timeformat and
timeseparator valuesinthe ApplicationConfiguration.properties file

For more information, see “Application configuration properties” on page 23.

Frequency Pattern Selector

In the frequency pattern selector pop-up, users can configure a frequency pattern, such as daily, weekly,
monthly, bi-monthly, or yearly. Frequency patterns are mapped to the FREQUENCY_PATTERN domain.

Any server access bean containing fields of this type will display a frequency pattern selector to the user
for data input. These selectors are non editable HTML text fields with an adjacent pop-up icon which
causes a pop-up menu to be displayed allowing the user to select a frequency pattern with ease.

The functionality is based on JavaScript and it is important that the user have JavaScript enabled in their
browser for this selector to work. The appearance of the frequency pattern selector pop-up can be altered
by overriding its dedicated cascading stylesheet. For more information, see “Cascading stylesheets” on
page 32.

The frequency pattern text selected varies in length, depending on the pattern selected. This makes the
display of the selected pattern prone to re-sizing and wrapping, depending on the layout of the UIM page
and the display space available.

Selection lists

The use of the standard HTML selection list, the select element, is supported. Selection lists truncate
long data strings to preserve the correct page layout. The full value of the data string is available as a
tooltip for each item in the list. The list can be populated with data in a number of ways.

Adding an empty entry to a list for non-mandatory fields

By default, browsers select the first item in a selection list if no item is marked as selected. In certain
cases you might not want to suggest a value to the user and a blank entry would be more suitable. Set the
USE_BLANK attribute of the FIELD element to true to add a blank entry as the first item on the selection
list.

Drop-down, scrollable and check-boxed list types

Drop-down and scrollable lists

A selection list can be displayed as a drop-down list or as a scrollable selection list with a number of
entries visible. A drop-down selection list is displayed by default. To change this to a scrollable selection
list set the HEIGHT attribute of the FIELD element to a value greater than 1.

Chapter 1. Cdram web client reference 141

The appearance of a selection list differs from a drop-down list in two noticeable ways. On a drop-down
list only the default value is displayed and all the other selectable values are displayed only when the
drop down arrow is selected. Additionally the drop-down list is not scrollable. A scrollable selection list
does not have the drop-down arrow, a subset of the values are initially displayed. The size of the subset is
dependent on the HEIGHTvalue that is set. This list has a scrollbar which can be used to scroll the list, and
view and select the remainder of the selectable values.

Check-boxed lists

A check-boxed selection list offers an alternative method of selecting individual entries, in this case using
the check box control. This variation will be used if CONTROL attribute is set to CHECKBOXED_LIST. It

is just an alternative way of representation, so everything else applicable to Scrollable List applies for
Checkboxed List without change.

Enabling multiple selection in lists
You can enable multiple items to be selected in scrollable lists, but not in drop-down lists.

To enable this add the following items to the curam-config. xml file.

<MULTIPLE_SELECT>
<DOMAIN NAME="MY_DOMAIN" MULTIPLE="tzrue"/>
</MULTIPLE_SELECT>

For each domain that you want to enable multiple selection, add a DOMAIN child element to the
MULTIPLE_SELECT element. If a FIELD has a target connection which is based on a domain listed in the
MULTIPLE_SELECT element, multiple selection are enabled. When the form containing the selection list
is submitted, the selected values are packaged into a tab-delimited string. Therefore the target property
must be based on a string domain. The same way, the source property in this case is also expected in

the form of a tab-separated string of values to be selected initially. The the values should match some of
those values specified by HIDDEN_PROPERTY.

Populated from a code table

If a FIELD has a target connection mapped to a property based on a code-table domain, a drop-down
selection list displays all code-table entries that are marked as "enabled". The entries are sorted
alphabetically according to their code descriptions.

You can override this behavior by setting the "sort order" of each entry. Consult the Cliram Server
Developers Guide for full details on creating code tables in a Cliram application.

When the selection list is displayed the initially selected item is evaluated as follows:
1. The code value specified by the source connection of the field.

2. The default code of the code-table if the FIELD element's USE_DEFAULT attribute is not set to false.

3. The first item in the selection list, if no default code is defined or the default code is marked as
"disabled".

4. Blank, if the FIELD element's USE_DEFAULT attribute is set to false.

A drop-down selection list can also be displayed as a scrollable selection list where a number of entries
are initially displayed instead of just one. To do this simply set the HEIGHT attribute of the FIELD element
to a value greater than 1.

Populated from Server Interface Properties

Data retrieved through server interface properties can also be used to populate a selection list. The
INITIAL connection end-pointis used in this case. The following are examples of a selection list on an
insert and a modify page.

142 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<FIELD LABEL="Field.Label">
<CONNECT>
<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

Figure 53. Selection List on an Insert Page

In this example the field has an INITIAL connection end-point to populate the selection list and

a TARGET connection end-point to specify what field the selected value should be mapped to. The
PROPERTY attribute of the INITIAL connection end-point is the list of values you want the user to see

in the selection list. When the list is displayed, the first item in the list will initially be selected. The
HIDDEN_PROPERTY attribute specifies a list of corresponding values, when selected, will be mapped to
the property specified in the TARGET connection end-point. The target property is a single field, not a list.
In this example a list of people's names will be displayed but it is the selected person's unique ID that
will be mapped to the target property. In certain circumstances the set of values visible to the user may
also be what you want mapped to the target property. In this case do not use the HIDDEN_PROPERTY
attribute.

The following example shows the same selection list, but used on a modify page. The only difference
is @ SOURCE connection end-point is used to specify what is selected in the list when the page is first
displayed.

<FIELD LABEL="Field.Label">
<CONNECT>
<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="sourcePersonID" />
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

Figure 54. Selection List on a Modify Page

Transfer List widget

The Transfer List widget is a control to facilitate multiple selections for a user, which you can use as an
alternative to a regular list with multiple selection.

The Transfer List widget consists of two HTML select controls placed side by side.

« The left control contains the items from which selections can be made, see “Drop-down, scrollable and
check-boxed list types” on page 141.

« The right control displays already selected items.

Four buttons between the lists allow for selecting or deselecting individual list items or all list items,
transferring them from one list to another and back as required.

Transfer List configuration

A Transfer List widget is displayed instead of a regular HTML multiple selection control when configured in
one of the following two ways:

 To display all multiple selection controls in an application as Transfer List widgets, set the
TRANSFER_LISTS_MODE element value to true in the curam-config. xml file.

- To display individual selection controls in an application as Transfer List widgets, set the CONTROL
attribute on the appropriate UIM FIELD element to be TRANSFER_LIST. This setting is applicable only
for fields that are rendered as multiple selection controls on the resulting UIM page and is ignored in
any other case.

Chapter 1. Cdram web client reference 143

The Transfer List widget requires the same data and the same configuration for enabling multiple
selection as a regular selection list.

User Preferences Editor

The User Preferences Editor allows a user to edit a user preference value for use anywhere within the
application.

For details on the definition of user preferences please consult the Curam Server Developers Guide.

The editor may be accessed from the taskbar by clicking the preferences button. On clicking this button
a popup window displays a list of all visible user preferences. Those preferences that are editable are
shown as text fields, radio buttons or drop-down menus, depending on the type.

Users can edit the value of a preference and save the value using the Submit Changes link. When the
user returns to the editor the updated values will appear. Any changes to user preferences by using the
editor will be applied immediately.

User can click Reset to Default to return the values to those that were originally defined.

Rules Trees

The RESULT_TEXT domain contains information about the success or failure of a particular claim against
a set of rules. When the server supplies this information it is translated into a tree view that displays all
rules.

The RULES_DEFINITION domain also produces a rules tree, in this case displayed with the rules editor.
For more details on the rules editor see “Rules Editor” on page 148.

You can use the CONTROL attribute of the FIELD element to change the format of the rules display. You
can use the CONFIG attribute of the FIELD element to configure these rules trees.

Behavior of Summary and highlight-On-Failure Rules Flags
The summary-flag has no effect in this view. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a different color than rule that
succeed.

Default Rules View

The default rules view of the rules tree, specified by setting the CONTROL attribute of the FIELD element
to DEFAULT, shows data in an expanded tree view using standard HTML. This view should be visible in
most standard web browsers. However, as the rules result is often quite verbose, the resulting output can
be confusing to the viewer of your web page.

Summary Rules View

To display a summary rules view, set the CONTROL attribute of the FIELD element to SUMMARY. The view
of this tree is very similar to the default rules tree view except that the details about why a rule failed or
succeeded are not displayed in the tree.

Any rules, regardless of type, marked as summary items are displayed. The following section, “Failed
Rules View” on page 144, describes a similar view that only displays rules items whose type is explicitly
set to rule. This view can be configured in the same manner as the dynamic rules view mentioned below.
See “Dynamic Rules View” on page 145.

Failed Rules View

To display a failed rules view, set the CONTROL attribute of the FIELD element to FAILURE. This view is
similar in layout to the previously mentioned summary view. See “Summary Rules View” on page 144

144 1BM Curam Social Program Management: Ciram Web Client Reference Manual

Any rules whose type is rule (and not objective or rule group for example) and are marked as
summary items are displayed. This view can be configured in the same manner as the dynamic rules view
mentioned below. See “Dynamic Rules View” on page 145

Dynamic Rules View

When the CONTROL attribute is set to DYNAMIC, an expanding or contracting version of the decision is
displayed instead of a static tree.

In this view, the entire tree is not displayed. The view is "compressed" into multiple trees for each
rules-item that has failed coupled with the "summary" flag on the item. See “Behavior of Summary and
Highlight-On-Failure Indicator” on page 147 for more details on the summary flag.

The dynamic view provides users with a much more comprehensive and interactive view of the rules data.
The rules tree is more comprehensively organized with a supplementary conjunction text displayed next
to the rules.

There is no need to set a HEIGHT or WIDTH as the rules window resizes itself automatically. The developer
is limited to two dynamic rules windows per page.

Localization of the text to display within the viewer is accomplished through JavaScript property files as
described in “JavaScript externalized strings” on page 44. The name of these JavaScript property files
should be SVGText. For example, SVGText.js_es.properties would be the name of the Spanish
language version of SVGText.js.properties file.

All style information related to the dynamic rules widgets is held in a separate file called
curam_svg.css. For further details see “Cascading stylesheets” on page 32.

The developer can configure the rules tree using an XML configuration file. For all rules widgets based
on the RESULT_TEXT domain this configuration is read from RulesDecisionConfig.xml. A version of
this file should be in your components directory. This XML configuration file is merged during the build
process in a similar method to other XML configuration files.

The CONFIG attribute of the FIELD displaying rules is used to specify an ID matching a CONFIG element
inthe RulesDecisionConfig.xml file. The following is a sample of a RulesDecisionConfig.xml
file:

Chapter 1. Cdram web client reference 145

<RULES-CONFIG DEFAULT="default-config">
<CONFIG ID="default-config" HYPERLINK-TEXT="false">
<TYPE NAME="PRODUCT"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="ASSESSMENT"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="SUBRULESET"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="OBJECTIVE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="OBJECTIVE"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RULE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RULE_LIST_GROUP"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>
<TYPE NAME="RULE"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>
</CONFIG>
<CONFIG ID="Rules.Config.Core"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">
<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>
</RULES-CONFIG>

Figure 55. Sample RulesDecisionConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is
mandatory and should match an ID attribute value on a CONFIG element in this document. The default
configuration contains the icon information as well as the default nodes to link to if no configuration

is required for a widget. These are covered by the SUCCESS-ICON, FAILURE-ICON, and EDIT-PAGE
attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to
a rules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Note that the CONFIG with the ID of value of Rules.Config.Core has the optional attribute OPEN-
NODE - PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open
when the page is loaded. This configuration file is also used for configuration of the dynamic full tree rules
view described in the next section.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page
parameter whose value will be the source for a new parameter (named by the DECISION-ID-TARGET)
appended to each link on the widget. The above example will look for a page parameter called source-

146 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Decision-ID and pass on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD
attributes to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is
thrown if all three are present. The DECISION-ID-SOURCE attribute should be the name of a bean on

the page and the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the
decision ID value. The following is an example of this configuration:

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="tzxue"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">
<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>

Figure 56. Example of Decision ID Sourced from a Bean

Behavior of Summary and Highlight-On-Failure Indicator
The highlight-on-failure indicator on a rules item does not have any effect in this view.

If an item fails and is marked as a summary item, this item should only be displayed as a separate tree if
no item along its parent path (i.e. any group that contains it) has failed and is marked as a summary item.
Consider the following tree of rule groups and rules and note the result and summary attributes on each
item. Note that this is purely for illustrative purposes and does not represent the data-format created by
the Rules Engine.

<decision>
<rules-item id="B" type="rule-group"
result="success" summary="true">
<rules-item id="C" type="rule"
result="success" summary="false" />
<rules-item id="D" type="zrule"
result="fail" summary="true" />
</rules-item>
<rules-item id="E" type="rule-group"
result="fail" summary="true">
<rules-item id="F" type="rule"
result="fail" summary="false" />
<rules-item id="G" type="rule"
result="success" summary="false" />
</rules-item>
<rules-item id="H" type="rule-group"
result="success" summary="true">
<rules-item id="I" type="rule"
result="success" summary="true" />
<rules-item id="J" type="rule"
result="fail" summary="false" />
</rules-item>
</decision>

Figure 57. Example of Rules Tree Items with Summary Flag

A rule that fails and is marked as "not a summary item" may still display as long as it is contained within
another node that fails and has summary set to "true". A rule that fails and is marked as "not a summary
item" will never display as the root of a tree in the dynamic rules view. So, the data above will result in
separate "trees" as follows.

-D

Chapter 1. Curam web client reference 147

From the first rule-group "B", only the item "D" is displayed because it has failed and is marked as a
summary item. It appears as a single-node tree.

The rule-group "E" is marked as a summary item and it has failed, therefore it and all it's child nodes are
displayed no matter what the success\failure status or summary flag on the child nodes is.

The entire rule-group "H" is filtered out. "H" itself, and "I" have succeeded and will not be displayed.
Although "J" has failed it is not marked as a summary item and therefore is not displayed.

Dynamic Full Tree Rules View
When the CONTROL attribute is set to DYNAMIC_FULL_TREE, a view is displayed.

The functionality of the DYNAMIC_FULL_TREE view is similar to the dynamic rules view. For more
information about the functionality of the dynamic rules view, see the Dynamic Rules View related
link. The main difference between the views is that for the DYNAMIC_FULL_TREE view the entire rule
set is displayed. While similar to the default rules view, the tree is interactive. There is no filtering

of the display of rule groups in the DYNAMIC_FULL_TREE view, which potentially makes it difficult

to understand for a user who is not familiar with the rules engine. To configure the view, use the
RulesDecisionConfig.xml file. For more information, see the Dynamic Rules View related link.

Related reference

Dynamic Rules View

When the CONTROL attribute is set to DYNAMIC, an expanding or contracting version of the decision is
displayed instead of a static tree.

Rules Editor

The RULES_DEFINITION domain produces the rules editor. This control has a default HTML-only view or,
if the FIELD 's CONTROL attribute is set to DYNAMIC, an SVG view. See “Default Rules View” on page 144
and “Dynamic Rules View” on page 145 for more information.

This widget uses the CONFIG attribute to specify an ID attribute value matching the ID attribute value
of a CONFIG elementinthe RulesEditorConfig.xml file. This XML configuration file is merged during
the build process in a similar method to other XML configuration files. The following is a sample of
RuleskEditorConfig.xml:

148 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<RULES-CONFIG DEFAULT="DefaultConfig">

<CONFIG
<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

<TYPE

ID="DefaultConfig" HYPERLINK-TEXT="true">
NAME="Product"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="Assessment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="SubRuleSet"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="0bjectiveGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="0bjectivelistGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="0bjective"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="SubRuleSetLink"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="RuleGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="RulelistGroup"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>
NAME="Rule"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>
NAME="DataItemAssignment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

</CONFIG>

<CONFIG

<TYPE
<TYPE
<TYPE
<TYPE
<TYPE
<TYPE
<TYPE
<TYPE
<TYPE
<TYPE
<TYPE

</CONFIG>

ID="Editor.Config"

HYPERLINK-TEXT="true"

OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

NAME="Product" EDIT-PAGE="RulesResult"/>
NAME="Assessment" EDIT-PAGE="RulesResult"/>
NAME="SubRuleSet" EDIT-PAGE="RulesResult"/>
NAME="0bjectiveGroup" EDIT-PAGE="RulesResult"/>
NAME="0bjectivelListGroup" EDIT-PAGE="RulesResult"/>
NAME="0Objective" EDIT-PAGE="RulesResult"/>
NAME="SubRuleSetLink" EDIT-PAGE="RulesResult"/>
NAME="RuleGroup" EDIT-PAGE="RulesResult"/>
NAME="RulelListGroup" EDIT-PAGE="RulesResult"/>
NAME="Rule" />

NAME="DataItemAssignment" EDIT-PAGE="RulesResult"/>

</RULES-CONFIG>
Figure 58. Sample RulesEditorConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT attribute. This attribute is
mandatory and should match an ID on a CONFIG element in this document. The default configuration
contains the icon information as well as the default nodes to link to if no configuration is present

for a widget. These are covered by the SUCCESS-ICON, FATILURE-ICON, and EDIT-PAGE attributes
respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to specify whether the text next to
arules node in the widget is also to be used as a hyperlink to the link page set by the EDIT-PAGE for the
TYPE in question.

Chapter 1. Cdram web client reference 149

Note that the CONFIG with the ID of value of Editor.Config has the optional attribute OPEN-NODE -
PARAM. This attribute is the name of a page parameter whose value is the ID of a node to open to when
the page is opened.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-ID-TARGET are used to identify a page
parameter whose value will be the source for a new parameter (hamed by the DECISION-ID-TARGET)
appended to each link on the widget. The above example will look for a page parameter called source-
Decision-ID and pass on its value as a parameter to any links on the widget. This new value will be
identified by a parameter named decision-1ID.

The decision ID parameter may also be sourced from a field on a server bean instead of from a page
parameter. This is achieved by adding DECISTION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD
attributes to the CONFIG element instead of a DECISION-ID-SOURCE attribute. A validation error is
thrown if all three are present. The DECISION-ID-SOURCE attribute should be the name of a bean on
the page and the DECISION-ID-SOURCE-FIELD attribute should be the full name of a field providing the
decision ID value. The following is an example of this configuration:
<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">
<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>
</CONFIG>

Figure 59. Example of Decision ID Sourced from a Bean

Meeting View

The meeting view is a control that displays scheduling information in a chart format. It is associated
with the USER_DAILY_SCHEDULE domain. The data to display in the meeting view is in XML format. The
control has two modes of operation, single and multiple selection.

Single selection mode

In the single selection mode meeting view, the first column contains a list of users. The second column
indicates the duration of the event to be scheduled. The third column displays the times during the

day that the user is available or busy. The available times are hyperlinks that can be clicked to indicate
the schedule the start time for the meeting. Note that any parameters passed to a page containing the
meeting view will be included in any links within the view. Only start times that can accommodate the
relevant meeting duration will be hyperlinks. For example, if John Smith is busy from 10:30 until 12:30, it
is not possible to select 10:00 as the start time for a meeting with a duration of one hour and the 10:00
time slot will not be a hyperlink.

Note that any parameters passed to a page containing the meeting view will be included in any links
within the view.

Multiple selection mode

This view returns a tab-delimited list of the user IDs of selected rows. The meeting view widget in this
mode is the same as that described above for the single selection mode except that it has an extra
column which is inserted as the first column in the list and has a selectable checkbox for each list item.
The users in this mode of widget are chosen by selecting their associated check boxes. Time slots are not
hyperlinked and are for display only.

150 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Meeting View XML format

Configuration settings for the meeting view must be in a file called MeetingViewConfig.xml ina
component. The meeting view control expects information in a specific XML format.

An example Meeting View XML format is shown.

<SCHEDULE MODE="Single|Multiple" TYPE="User"
READ_ONLY="False" DATE="2003-30-10">
<USER NAME="John Smith" ID="12345" DURATION="90">
<BUSY START="2003-30-10 10:30:00" END="2003-30-10 12:30:00"/>
<BUSY START="2003-30-10 15:45:00" END="2003-30-10 16:15:00"/>
</USER>
<USER NAME="James Smith" ID="12346" DURATION="90">
<BUSY START="2003-30-10 12:30:00" END="2003-30-10 13:30:00"/>
<BUSY START="2003-30-10 15:00:00" END="2003-30-10 18:15:00"/>
</USER>
</SCHEDULE>

The MODE attribute is either Single or Multiple.

The DURATION attribute is in minutes.

The START and END attributes are date-times in the format "yyyy-MM-dd HH:mm:ss".

The READ_ONLY attribute, if set to false, indicates that no time slot will be selectable as a hyperlink.

The DATE attribute contains the date of the current scheduling and must be supplied. It should be in the
format "yyyy-MM-dd".

The TYPE attribute associates the schedule information with configuration settings which are also
specified in an XML format as shown:

<SCHEDULE_CONFIG>
<CONFIG TYPE="User" INTERVAL="15" START="08:00" END="16:00">
<USER_HOME PAGE="PersonHome"
ID_PARAM="UserID" NEW_WINDOW="True" />
<NEW_EVENT PAGE="AddNewEvent" ID_PARAM="UserID"
START_PARAM="start" END_PARAM="end" />
<KMULTI_SELECT PAGE="SelectedUsers"
TAB_STRING_PARAM="selectedUsers"
DATE_PARAM="eventDate" />
</CONFIG>
</SCHEDULE_CONFIG>

Where INTERVAL is the duration in minutes of each segment of the time line with valid values of 15, 30,
or 60 only. The START and END attributes detail the beginning and end times of the time line in the form
"HH:mm".

Each CONFIG element can have the following sub-elements:

USER_HOME
The PAGE attribute details which page to link to when clicking on the user's name. The ID_PARAM
attribute is the name of the parameter to supply with the user's ID as a value. NEW_WINDOW attribute,
true by default, specifies if the link opens in a new window or not.

NEW_EVENT
The PAGE attribute details which page to link to when clicking on a time slot. The ID_PARAM attribute
is the name of the parameter to supply with the user's ID as a value. The START_PARAM attribute is
the name of the parameter to supply with the start time of the new event. Similarly, the END_PARAM
describes the name of the end time parameter. Both of these attributes will be in the current
application's date-time format.

MULTI_SELECT
The PAGE attribute details which page to link to when the submit button on the multi-select view
is pressed. TAB_STRING_PARAM is the name of the link parameter to supply containing the tab-
delimited string of selected users. DATE_PARAM is the name of another link parameter containing the
date of the event in question. The date value is taken from the value of the DATE attribute on the
SCHEDULE element.

Chapter 1. Cdram web client reference 151

Charts

Charts are displayed when one of either the CHART_XML or BARCHART_XML domains (or any derivation
of them) is used as the source of a field.

Chart appearance

A bar chart displays a number of rows horizontally with a horizontal and vertical axis. Each row represents
a unit of information comprised of a caption and a stack of differently colored bars of variable length. Their
length represents the quantity of the unit in question and can be ascertained using the numbered marks
on the horizontal axis, or a data tip which is available when you hover over the unit.

The chart scale is chosen to fit the biggest stack of bars, which you can override by a configuration setting.
Each bar is a hyperlink to a page containing further information. The vertical axis of this chart displays
captions, describing each bar stack category. Captions might be dates, date ranges or textual values. They
are optionally rendered as hyperlinks leading to pages with additional information, in which case captions
are additionally visually indicated when hovered over. Both bar links and caption links are configurable, as
described in “Chart configuration” on page 152.

Textual captions might get longer than one line. In such a case long captions are wrapped within the
category segment. If a caption text exceeds two lines, though, it is truncated at that point and an
additional tool tip with the full label text is displayed when such a label is hovered over.

Textual captions are truncated to better maintain the scale and readability of the chart. Users can click the
enlarge button to see a larger version and to read any truncated labels.

A column chart is similar to the bar chart and configurable the same way, except that units of information
are displayed in column stacks rather than bars, and axes are interchanged accordingly. It is also possible
to configure a column chart so that it has a legend that describes what each of the possible shaded

areas in a column represents. The user can hover over a shaded area in a column, which displays what it
represents when mapped to an entry in the legend.

By default, charts are displayed without a legend so that all the available space can be dedicated to the
chart itself. However, charts can be configured to include a legend which shows extra information on what
is represented by the elements of the chart.

Data tips are displayed on a chart when you hover the mouse over a particular chart data element. Data
tips are shown regardless of whether a legend is included or not. The data tip for bar and column charts
shows absolute and relative quantitative information that is attributed to the element and the element
stack. The data tip also shows the category or group to which that element belongs, and the type of the
element, which corresponds to an entry in the legend if a legend is included.

Chart configuration

You can configure various aspects of charts by setting the CONFIG attribute on the appropriate UIM
fields. The appropriate XML configuration file must contain a configuration section with a unique identifier
matching the text in the CONFIG attribute.

All the necessary chart configuration files must be in your component directory.
Different types of charts are currently configured in separate configuration files:

« Bar charts and column charts both use ChartConfig.xml and are also backward compatible with the
previous configuration file version, BarChartConfig.xml (data is taken from whichever of those two
files contains a configuration with the required ID; if configurations with the same ID exist in both files,
the one found in ChartConfig.xml takes precedence).

The following is a sample of a chart configuration file:

152 IBM Curam Social Program Management: Caram Web Client Reference Manual

<CHART-CONFIG>
<CONFIG ID="Column.Chart.Config" ORIENTATION="VERTICAL"
X_AXIS_LABEL="Vert.BarChart.X-Axis"
Y_AXIS_LABEL="Vert.BarChart.Y-Axis">
<LEGEND CODETABLE="Attendance">
<ITEM CODE="CR1"/>
<ITEM CODE="CR2"/>
<ITEM CODE="CR3"/>
</LEGEND>
<LINK LOCATION="ComponentRedirect">
<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"
USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>
</LINK>
<CAPTION_LINK LOCATION="AnotherPage">
<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"
USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>
</LINK>
</CONFIG>

<CONFIG ID="BarChart.Config" ORIENTATION="HORIZONTAL"
CAPTION="Status.Caption"
CAPTION_TEXT_CODETABLE="Cars"
MIN_HEIGHT="200" MAX_HEIGHT="500">
<LEGEND VISIBLE="true" CODETABLE="0ldCars">
<ITEM CODE="CR1"/>
</LEGEND>
<LINK LOCATION="TransferPage">
<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
</LINK>
</CONFIG>
<CONFIG ID="BarChart.Config" TYPE="line"
CAPTION="Line.Chart.Caption">
<LEGEND>
<ITEM CODE="CR1"/>
</LEGEND>
<LINK LOCATION="ComponentRedirect">
<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
</LINK>
</CONFIG>
</CHART-CONFIG>

The CHART-CONFIG root element contains only CONFIG elements. The CONFIG element contains all
configuration for a particular field, identified by the ID attribute. The following table describes all

attributes of the CONFIG element. BarChart.properties referred to in this table is a properties file in
the client application's <CLIENT_DIR>\components\core folder, used to look up values required.

Table 55. Attributes of the CONFIG element

Attribute Description
ID Unique identifier for this CONFIG element.
TYPE Can be either 1ine or pie, depending on required type of chart. If not

present, ORIENTATION attribute will be used to define if bar or column
chart is to be displayed.

ORIENTATION Can be either HORIZONTAL or VERTICAL, depending on required type of
chart, HORIZONTAL meaning bar chart and VERTICAL - column chart.

CAPTION_TEXT_CODETABLE |Code table currently used for label captions throughout a chart. If not
specified, literal values from chart data will be used.

MAX_VALUE Maximum value for a numeric axis of column or bar chart. Automatically
calculated to fit the maximum element, if not specified.

Chapter 1. Cdram web client reference 153

Table 55. Attributes of the CONFIG element (continued)

Attribute

Description

MAX_INCREMENT

Maximum increment value for a numeric axis of a chart. Numbered
ticks are drawn on a chart at the specified intervals. If not specified,
numbered ticks are placed at uniform intervals along the numeric axis,
taking into account it's maximum value.

X_AXIS_LABEL

Key to a text property in BaxChart.properties. This text is used as
the label for the x-axis in a column chart, or y-axis in the bar chart.

Y_AXIS_LABEL

Key to a text property in BarChart.properties. This text is used as
the label for the y-axis in a column chart, or x-axis in the bar chart.

MIN_HEIGHT

This setting is used to define minimum chart object height and is

to be specified in pixels. Where a chart contains a small number of
items and would be short based on that content size, minimum height
introduced by this setting is used. The setting is optional, so 250px
default minimum height is used if MIN_HEIGHT is not specified.

MAX_HEIGHT

This setting is used to define the maximum chart object height on screen
and should be specified in pixels. Where a chart contains numerous
items and its contents exceeds the MAX_HEIGHT specified, this setting
is used for the chart object height and a vertical scrollbar appears to
allow for access to the rest of the items in the chart. The setting is
optional and a default of 250px is used if the attribute is not specified.

A value of -1 for MAX_HEIGHT means that the chart takes whichever
height its content needs to be displayed in full. It is worth noting that
the minimum height setting, either default or explicit, is still taken into
account in this case. As a result, charts with little content will not be
shorter than minimum or default height implies. Finally, a chart with
MAX_HEIGHT set to -1 will not display its vertical scrollbar and the
browser scrollbar will appear once the chart is too big to fit into the
screen area available.

CAPTION

Key to a text property in BarChart.properties. This text is used as
the label for the whole chart.

Note: The example lists sample ChartConfig.xml contents. The older format in
BarChartConfig.xml is almost the same except that the root element is called BARCHART - CONFIG.

The older versions of BarChartConfig.xml do not contain configuration for label links. This element
might be added, if required to this file directly; it is preferable, though, to create appropriate full
configuration with the same ID in the ChartConfig.xml which will override the older version.

The CONFIG element has three child elements: LEGEND, LINK and optional CAPTION_LINK.

« The LEGEND element defines the items available for use in the TYPE attribute of a BLOCK element in
chart data returned from the server. The element has an optional CODETABLE attribute, specifying the
code table used for legend item translation, and an optional VISIBLE attribute which indicates if the
legend should be seen on screen or not. This attribute has a default value of false, so it must be
explicitly set to true in order for the legend to be displayed.

The ITEM child element of specifies each legend entry. Its CODE attribute is the text or code table
code used to identify a legend item. The code table containing the CODE value will be ascertained first
from the CAPTION_TEXT_CODETABLE value of the CONFIG element, then the CODETABLE attribute
on the LEGEND element value, or, in case neither of these attributes are present or do not apply to a

particular CODE, the literal value will be used as a caption. The same caption is used for a context data
tip displayed when mouse pointer is over a corresponding chart element.

The LINK child element is used to configure hyperlinks on bar chart bars and column chart columns.
Its LOCATION attribute is the ID of the UIM page to link to. A LINK element can have any number

154 IBM Curam Social Program Management: Ciram Web Client Reference Manual

of PARAMETER child elements. The NAME attribute of a PARAMETER is the name to give the parameter
when transferred as part of hyperlink. The VALUE attribute is the name of the attribute on the BLOCK
element or the CAPTION element in the chart input data returned from the server (see below) to use
as a parameter value unless USE_PAGE_PARAM is true, in which case VALUE is the name of a page
parameter.

« Finally, the CAPTION_LINK element is used whenever chart captions are intended to be rendered as
links and contains separate settings for such links. The CAPTION_LINK element contents are similar to
those of the LINK element. When this element is skipped, captions are displayed as static text. Also,
captions as links are currently supported on bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by creating a properties file
called BarChart.properties inthe client application's <CLIENT_DIR>\components\cozre folder
and placing there values under keys, corresponding to the ones specified among CONFIG element
parameters as described above.

In addition, the text displayed for the word total displayed in the bar tool-tips is customizable using the
key total.tooltip.text in the BarChart.properties file.

Collapsible Cluster Support: Collapsible clusters are not supported for any cluster containing this
widget.

Customizing chart colors in system administration

Complete the following steps to modify the colors on the Assessment Delivery Results Chart, the
Assessment Delivery Details Chart, the Assessment Tracking Chart, or the Factor Ratings Line Chart.

About this task

« The default colors for the Assessment Delivery Results Chart, the Assessment
Delivery Details Chart, and the Assessment Tracking Chart, which are defined by the
curam.assessmentplanning.graphRGBColoxs application property, are 6929C4, 1192E8,
005D5D, 9F1853, FA4AD56, 520408, and 198038.

 The default color for the Factor Ratings Line Chart, which is defined by the
curam.outcomeplanning.factoxrGraphRGBColox application property, is B28600.

Procedure

1. Log in to Social Program Management as a system administrator.

2. Select System Configurations > Shortcuts > Application Data > Property Administration.
3. Enter the application property in the Name field and click Search.

4. Select ... > Edit Value.

5. Update the values and click Save to save your changes.
6. Click Publish for your changes to take effect.

Customizing colors on horizontal and vertical bar charts

Complete the following steps to modify the colors on horizontal and vertical bar charts.

Before you begin

The default colors were defined in a specific sequence to meet contrast ratio guidelines. Ensure that any
changes you make also meet contrast ratio guidelines.

Procedure

1. In your Social Program Management application development environment, edit the %CURAM_DIR%%
\CuramCDEJ\1lib\curam\xml\xsl\chart\charts.xsl file.
Where %CURAM_DIR% is the installation directory, by default C: \IBM\Curam\Development

2. Update the colors, which are defined in the <ibm:colors> XML tag.

Chapter 1. Cdram web client reference 155

<ibm:colors>

<ibm:color>6929c4</ibm:
<ibm:color>1192E8</ibm:
<ibm:color>005D5D</ibm:
<ibm:color>9F1853</ibm:
<ibm:color>FA4D56</ibm:
<ibm:color>520408</ibm:
<ibm:color>198038</ibm:

</ibm:colors>

color>
color>
color>
color>
color>
color>
color>

3. Run a Social Program Management client build to pick up the changes.

Customizing colors on the Participation Summary chart
Complete the following steps to modify the default background and hover background colors for
Scheduled Hours and Actual Hours on the Participation Summary chart in the IBM Ciram Social Program

Management.

About this task

The default background and hover background colors are:

Scheduled Hours

Actual Hours

6929C4

1192E8

Procedure

1. In your Social Program Management application development environment,
edit the <install>/webclient/components/CAAssessmentTracking/javasource/
caassessmenttracking/ParticipationSummaryResultRenderer. java file.

Where <install> is the installation directory, by default:

« C:\IBM\Curam\Development for Microsoft Windows.

« /opt/IBM/Curam/Development/ for Linux®.
2. Update the color values in this line of code.

final string jsonColorString = "{\"schColor\":\"#6929c4\",\"actColor\":\"#1192e8\"}";

3. Run a Social Program Management client build to pick up the changes.

Chart data formats

The data to be displayed in a chart comes from the server in XML format.

An example of the XML used to create a chart is shown.

<CHART>
<UNIT>

<CAPTION TEXT="TR1" START_DATE="2004-12-31"

</UNIT>
<UNIT>

END_DATE="2005-03-06"/>
<BLOCK ID="1" TYPE="CR1" DUE_DATE="2005-01-01" LENGTH="33"/>
<BLOCK ID="2" TYPE="CR3" DUE_DATE="2005-02-01" LENGTH="14"/>

<CAPTION TEXT="TR2" START_DATE="2004-12-31" />
<BLOCK ID="3" TYPE="CR3" DUE_DATE="2005-01-02" LENGTH="11"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR3" END_DATE="2005-03-08" />

<BLOCK ID="4" TYPE="CR1" DUE_DATE="2005-01-03" LENGTH="22"/>
<BLOCK ID="5" TYPE="CR2" DUE_DATE="2005-01-09" LENGTH="15"/>
<BLOCK ID="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>

</UNIT>
</CHART>

156 IBM Curam Social Program Management: Ciram Web Client Reference Manual

The root element, CHART, can contain any number of UNIT elements. These elements are used to group
related information into groups (clusters) and contain one CAPTION element and one or more BLOCK child
elements.

The CAPTION element displays an appropriate caption depending on what attributes are set:

« If either the START_DATE or both START_DATE and END_DATE attributes are set, then the caption will
be either a single start date or a range of dates.

- If the TEXT attribute is set, then the caption text is first looked for in the code table specified in
the CAPTION_TEXT_CODETABLE attribute of the CONFIG element (see above), then looked for as a
property in BaxrChart.properties using the TEXT value as a key, or, if neither attempt is a match, the
literal TEXT value is rendered as a caption.

Each BLOCK element represents a block to be drawn on a chart as a bar, or column. This element must
have an associated TYPE attribute to match it with a particular item. The LENGTH attribute is necessary to
define the measurement of the block. In the bar or column chart this is the length/height of a bar/column.
The ID attributeis a unique identifier for a block and can be used as a parameter for any hyperlinks.
The optional DUE_DATE attribute can also be used as an ID parameter for hyperlinks on a particular block.
It represents the due date for a given block.

Note: There are no restrictions on the number or names of the attributes of BLOCK element. This
facilitates passing an arbitrary set of attributes in the links from a chart (provided the configuration is
updated appropriately). However, one should keep in mind, that the names of the attributes provided in
this section are reserved and bound to the particular elements, i.e. even though START_DATE attribute
could be added to a BLOCK element, in this case it will be interpreted as a literal value and not a date as it
would be in the context of CAPTION element.

Heatmap Widget

The Heatmap widget is a control which displays a grid of items of different importance. Items in the
widget are presented by color shades varying from red to blue, indicating their importance level from
highest to lowest.

The widget is inserted into the page when the XML_HEATMAP domain is associated with UIM source
property of a FIELD.

The Heatmap widget expects XML data from the server in the following format:

<HEATMAP>

<REGION REGION_ID="R1" LABEL="highest importance"/>

<REGION REGION_ID="R2" LABEL="middle importance">
<ITEM ITEM_ID="id9" LABEL="0009" />
<ITEM ITEM_ID="id10" LABEL="0010"/>
<ITEM ITEM_ID="id21" LABEL="0021"/>

</REGION>

<REGION REGION_ID="R3" LABEL="lowest importance">
<ITEM ITEM_ID="id22" LABEL="0022"/>

</REGION>

</HEATMAP>
Here, the REGION elements specify the importance level ("heat") of their contained ITEM s. There should

be at least two regions in a heatmap widget. The color will always start from red, so if no items of that
importance are there, empty REGION elements should be inserted for the widget to render properly.

Configuration

Different types of heatmap can be configured by creating entries in the HeatmapConfig. xml file in your
components directory.

An example of the format is shown.

<HEATMAP_CONFIG>
<CONFIG ID="Mapl" NUM_COLS="10" NUM_ROWS="4"
LEGEND_POSITION="LEFT"
LEGEND_TITLE="Deadline"
LEGEND_TITLE_PROPERTY="Localised.Legend.Title">

Chapter 1. Cdram web client reference 157

<ITEM_LINK PAGE_ID="Sample_page">
<PARAM NAME="configParameter" VALUE="ITEM_ID"/>
</ITEM_LINK>
</CONFIG>
<CONFIG ID="Map2" NUM_COLS="6">
</CONFIG>
</HEATMAP_CONFIG>

The attributes of a CONFIG element are summarized in the following table:

Table 56. Attributes for CONFIG element

Attribute Description

NUM_COLS This attribute allows you to set the number of items displayed in each
row of the Heatmap

NUM_ROWS This attribute allows you to specify the number of visible rows in the
Heatmap. If this attribute is set to less rows than are required to display
the data, a vertical scrollbar will be provided. If this attribute is not
present, the widget will expand to display as many rows as are required.

LEGEND_POSITION By default, the Heatmap legend is drawn to the right of the widget. This
attribute can be used to draw the legend to the left instead, by setting
it's value to LEFT.

LEGEND_TITLE The default title for a legend is Legend. This attribute can be used to
specify a more logical title to use.

LEGEND_TITLE_PROPERTY |[Optional attribute used to customize/localize the displayed title. The
value here is the key in the CDEJResources.properties file orits
localized version (see “Localization” on page 41 for more details on
localization).

The ITEM_LINK element can be used to specify the page to which to link when a user clicks on an

item in the Heatmap, by setting it's PAGE_ID attribute. The PARAM child element can be used to specify
what page parameters to pass (the NAME attribute) and what data items to use as their value (the

VALUE attribute). Values which don't match any attributes in the ITEM elements in the Heatmap XML are
assumed to be literal values.

To specify which configuration to use for a given instance of the Heatmap widget, the CONFIG attribute of
the field containing the widget should be set to the ID of the desired configuration.

Workflow

A workflow depicts a series of steps that routinely take place in order for a unit of work to be completed.
The WORKFLOW_GRAPH_XML domain, or any derivation of it, causes a workflow to be displayed. The
data to be displayed in a workflow comes from the server in XML format.

Configuration settings for the Workflow must be in a file called WorkflowConfig. xml, of which
there can be only one per component. Any static text for this view can be customized and
localized by creating a properties file called Workflow. properties in the client application's
<CLIENT_DIR>\components\cozre folder.

In a workflow view, a box, along with a representative icon, represents a discrete unit of work and is
called an activity. Any line connecting nodes is called a transition and is intended to illustrate the flow of
work. For this reason, the start and end activities are represented by icons only. Workflow proceeds from
the left and ends at the right-most activity. An activity is a hyperlink to a tab containing further details

on that activity. An activity can have a second, smaller icon indicating that there is a notification on this
activity. Clicking on the notification icon (a small envelope in the image below) will open a separate tab
with details of the notification.

An activity has an entry point and an exit point for a transition, on the right and the left respectively. When
two or more transitions leave an exit point this is called a split. The transitions in a split can be given a

158 IBM Curam Social Program Management: Ciram Web Client Reference Manual

number to indicate their relative progression. When two or more transitions meet at an activity's entry
point this is called a join. If either a join or a split is an "and" type, also called a "conjunction”, then it

is represented as a small square. This implies that a series of transitions have to take place togetherin
order for the workflow to proceed. If a join or a split is an "xor" type, an either-or situation, then a small
circle is used. There are examples of both in the figure below. Finally, a transition can have an associated
transition condition. This means that certain criteria have to be met in order for a transition to proceed.
This is represented by an asterisk on the transition and the full condition information is displayed in a
pop-up if the user hovers the mouse over the symbol.

i

[l

o

’ .-;.:,-'l..'ll::':igl

Figure 60. Workflow

Workflow XML Formats

The workflow widgets require XML data that conforms to the workflow schema defined in the
workflow. xsd file located in the 1ib\curam\xml\schema folder of your CDEJ installation folder.

An an example of workflow XML data is shown.

<WORKFLOW ID="4791830003522207744" PROCESS-VERSION="1">

<NODE ID="6953557824660045824" X="2.0" Y="1.0"
TEXT="Loop Activity [End]" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT9" HAS-NOTIFICATION="tzrue"
IS-EXECUTED="false" SPLIT-TYPE="AND" JOIN-TYPE="AND"
TASK-ID="1"/>

<NODE ID="-3566850904877432832" X="3.0" Y="1.0"
TEXT="EndProcessActivity" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT7" IS-EXECUTED="false"
JOIN-TYPE="AND" TASK-ID="2"/>

<NODE ID="2702159776422297600" X="1.0" Y="2.0"
TEXT="Activity 1" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT5" IS-EXECUTED="false"
SPLIT-TYPE="AND" JOIN-TYPE="AND" TASK-ID="3"/>

<EDGE FROM="6953557824660045824" T0="-3566850904877432832"
HIDDEN="false" TRANSITION-ID="1621295865853378560"
IS-EXECUTED="false" REVERSE-ARROW="false"/>

<EDGE FROM="3566850904877432832" T0="2702159776422297600"
HIDDEN="false" TRANSITION-ID="0" IS-EXECUTED="false"
REVERSE-ARROW="txue" />

</WORKFLOW>

The root element, WORKFLOW, can have any number of NODE (activity) and EDGE (transition) elements. The
ID attribute on WORKFLOW identifies this particular workflow as does the PROCESS-VERSION attribute.

The NODE element represents a single activity in the workflow. All attributes of a node are defined in the
following table:

Chapter 1. Cdram web client reference 159

Table 57. Attributes of a Node

Attribute Description

ID Unique identifier for this element, supplied as a parameter in the row
header hyperlink.

X An x-coordinate for an element on the workflow graph.

Y A y-coordinate for an element on the workflow graph.

TEXT The text of an activity.

ACTIVITY-TYPE-CODE

Code for an activity type. Used as a parameter in a hyperlink.

HIDDEN

Boolean property to indicate if an edge or node is to be hidden. If true
the node will not be displayed.

IS-EXECUTED

Boolean property to indicate if an activity has already been executed for
a particular process instance. If set to true then the activity has been
executed.

SPLIT-TYPE

The split type associated with an activity.

JOIN-TYPE

The join type associated with an activity.

ACTIVITY-INSTANCE-ID

The unique identifier of an activity instance for a particular process
instance.

START-DATE-TIME

The start date time of an activity instance or transition instance for an
executed or currently executing process.

END-DATE-TIME

The end date time of an activity instance or transition instance for an
executed or currently executing process.

STATUS

The current status of an activity instance.

TASK-STATUS

Code for the status of a task.

TASK-RESERVED-BY

The name of the user reserving the task.

TASK-TOTAL-TIME-WORKED

The total time worked on a task in seconds.

NUMBER-ITERATIONS

The number of times the activity contained in a node has been executed.

TASK-1ID

The unique identifier for the task.

The EDGE element represents a single transition in the workflow. All attributes of an edge are defined in

the following table:

Table 58. Attributes of an Edge

Attribute Description
FROM The ID of the node this edge is from.
TO The ID of the node this edge is to.

TRANSITION-ID

The unique identifier of a transition.

IS-FOLLOWED

Boolean property to indicate if a particular transition has already been
followed for a process instance.

TRANSITION-INSTANCE-ID

The unique identifier of a transition instance for a particular process
instance.

160 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 58. Attributes of an Edge (continued)

Attribute Description

REVERSE -ARROW Boolean property to indicate if an arrow on an edge should be reversed.
In this case, the arrow will be going into the FROM node instead of the TO
node.

IS-EXECUTED Boolean property to indicate if an activity has already been executed for
a particular process instance. If set to true then the activity has been
executed.

TRANSITION-CONDITION The condition associated with a transition in an edge.

REAL_FROM ID of a node that this edge is actually from as opposed to an
intermediate hidden node identified by the FROM attribute.

REAL_TO ID of a node that this edge is actually to as opposed to an intermediate
hidden node identified by the TO attribute.

ENABLED Boolean property to indicate if an edge is to be enabled as a hyperlink.
This attribute is false by default.

ORDER Indicates the order of an edge relative to other edges.

As mentioned above, workflow charts are configurable. This is accomplished by setting the CONFIG
attribute on the UIM field in question. The WorkflowConfig.xml XML configuration file must contain a
configuration section with a unique identifier matching the text in the CONFIG attribute. The XML schema
format for this file is defined in the workflow-config. xsd file located in the 1ib\curam\xml\schema
folder of your CDEJ installation folder. The following is a sample of this file:

<WORKFLOW_CONFIG>
<ICON CODE="AT1" PATH="Images/manual.gif"/>
<ICON CODE="AT2" PATH="Images/automatic.gif"/>
<ICON CODE="AT4" PATH="Images/subflow.gif"/>
<ICON CODE="AT5" PATH="Images/route.gif"/>
<ICON CODE="AT6" PATH="Images/eventwait.gif"/>
<ICON CODE="AT7" PATH="Images/endprocess.gif"/>
<ICON CODE="AT8" PATH="Images/loopbegin.gif"/>
<ICON CODE="AT9" PATH="Images/loopend.gif"/>
<ICON CODE="AT10" PATH="Images/decision.gif"/>
<ICON CODE="AT11" PATH="Images/startprocess.gif"/>
<ICON NOTIFICATION="true"
PATH="CDEJ/cdej-images/notification.gif"/>
<CONFIG ID="WorkFlow.Config"
NOTIFICATION_PAGE="viewActivityNotification"
DETAILS_PAGE="componentRedirect"
START_PROCESS_TYPE="AT11" END_PROCESS_TYPE="AT7"/>
</WORKFLOW_CONFIG>

The WORKFLOW_CONFIG root element contains CONFIG elements and ICON elements. The CONFIG
element contains all configuration for a particular field, identified by the ID attribute. The following table
describes all attributes of the CONFIG element:

Table 59. Attributes of Workflow CONFIG element

Attribute Description

ID Unique identifier for this configuration.

DETAILS_PAGE ID of a UIM page to use as a destination for a hyperlink on a
node.

HEIGHT Height in pixels of a workflow chart. If height is not specified,

a height will be chosen that attempts to maximize the use of
available space.

ACTIVITY_CODETABLE Codetable name for resolving ACTIVITY-TYPE-CODE
attribute values.

Chapter 1. Cdram web client reference 161

Table 59. Attributes of Workflow CONFIG element (continued)

Attribute Description

TASKSTATUS_CODETABLE Codetable name for resolving TASK-STATUS attribute values.

PROCESSSTATUS_CODETABLE Codetable name for resolving the status of a process instance
(e.g. In Progress, Completed, Suspended or Aborted).

SHOW_INSTANCE_DATA Determines if the chart should display a text area containing
all instance data information. Valid settings are true and
false.

START_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the start
process type. This activity will be drawn without a box.

END_PROCESS_TYPE Code identifying the ACTIVITY-TYPE-CODE set as the end
process type. This activity will be drawn without a box.

NOTIFICATION_PAGE ID of a UIM page to use as a destination for a hyperlink on a
notification icon.

READONLY_VIEW Determines if the links on a workflow graph should be
disabled.

HIGHLIGHT_ACTIVITY_PARAM Represents the parameter used to determine the current

activity in a workflow. The value of the parameter is matched
with a corresponding attribute in the XML data returned from
the server to indicate which node has to be highlighted.

The ICON child element of the WORKFLOW_CONFIG root element defines all icons for the workflow chart.
Either the CODE attribute or the NOTIFICATION attribute defines what kind of icon this is. If CODE is set
then the ACTIVITY-TYPE-CODE on a NODE is used to match an icon to a particular activity type. If the
NOTIFICATION attribute is set to true then this icon is used as a graphic depicting a notification present
on an activity. The PATH attribute on ICON is used to point to an image file, relative to your project's
WebContent directory.

Evidence view

The Evidence view has two modes for displaying and comparing evidence data, evidence display mode
and evidence comparison mode.

Evidence display mode

The EVIDENCE_XML domain results in a table displaying evidence items. There are three columns in the
table. The first displays the evidence item name, the second shows the group to which evidence item
belongs and the value of the item is displayed in the third column. The value of the item will be formatted
based on its domain.

Evidence comparison mode

The EVIDENCE_XML_COMPARE domain results in three tables displaying evidence comparison results.
The comparison results consist of three tables to display items which were modified, added or deleted.
All three tables follow the same format: the first column displays the evidence item name; the second
column displays the group which the evidence item belongs to and corresponding values are displayed in
the third (the modified evidence table will have a fourth column to show previous values against current
values) column.

162 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Evidence view configuration

Configure the evidence view by changing settings in appropriate properties files. Use
DisplayEvidence.properties for Evidence Display mode, and ComparedEvidence.properties
for Evidence Comparison mode. You must create these properties files in the
<CLIENT_DIR>\components\core folder.

Configuration files contain table headers and captions for all the columns as well as visibility settings for
each column. There is also a links section for specifying links to pages for each evidence item and item
group column if needed. If a link is not required, leave the value empty rather than deleting the property
itself. Also there are properties containing textual substitution for an empty value case and textual insert
used in evidence item name.

Note: The properties specifying visibility settings are not localizable strings and should contain either
“true" or "false" depending on desired visibility of the corresponding column.

Below is an example of the configuration settings for display evidence mode:

#Textual descriptions for comparison sections.
Table.Summary.Single=This table contains evidence items.

Comparison section labels
Evidence.Table.lLabel=Evidence Items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Value.Column.Header=Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Value.Column.Visible=true

Localizable messages
Message.No.Value=This item is not set
Message.Item.Joint=referenced by rule item

J#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

The following is an example of the configuration settings for the evidence comparison mode:

#Textual descriptions for comparison sections.
Table.Summary.MODIFIED=This table contains modified evidence
Table.Summary.NEW=This table contains newly added evidence items.
Table.Summary.REMOVED=This table contains removed evidence.

Comparison section labels

Evidence.lLabel .MODIFIED=Modified evidence
Evidence.Label .NEW=Newly added evidence items
Evidence.Label.REMOVED=Removed evidence items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Oldval.Column.Header=Previous Value
Value.Column.Header=New Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
0ldval.Column.Visible=true
Value.Column.Visible=true

#Links (Values should be UIM PAGE_IDs)

Description.Column.Link=Home
Group.Column.Link=GroupHome

Chapter 1. Ciram web client reference 163

Evidence view XML data formats

The Evidence View expects specific XML formats for the Evidence Comparison and Evidence Display
modes.

An XML format example for Evidence Comparison mode is shown.

<EVIDENCE_COMPARE>
<EVIDENCE TYPE="MODIFIED">
<GROUP ID="modl1ID"
DESCRIPTION="en|EvidenceGroupl">
<EVIDENCE_ITEM ID="modIteml1ID"
DESCRIPTION="en|Number of Children"
OLDVAL="11" VALUE="13"
DOMAIN="SVR_INT32"/>
</GROUP>
<GROUP ID="mod2ID"
DESCRIPTION="en|EvidenceGroup2">
<EVIDENCE_ITEM ID="modItem3ID"
DESCRIPTION="en|Are you married"
OLDVAL="false" VALUE="true"
DOMAIN="SVR_BOOLEAN"/>
</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="NEW">
<GROUP ID="newlID"
DESCRIPTION="en|EvidenceGroupl">
<EVIDENCE_ITEM ID="newItemlID"
DESCRIPTION="en|Number of cars"
VALUE="6"
DOMAIN="SVR_INT32"/>
</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="REMOVED">
<GROUP ID="dellID"
DESCRIPTION="en|Deletion">
<EVIDENCE_ITEM ID="delIteml1ID"
DESCRIPTION="en|Number of houses"
OLDVAL="1"
DOMAIN="SVR_INT32"/>
</GROUP>
</EVIDENCE>
</EVIDENCE_COMPARE>

The following XML format is an example for the Evidence Display mode.

<evidence>
<group id="groupl" display-name="EvidenceGroupl">
<item name="iteml11"
display-name="Number of Children"
initial-value="13" no-value="false"
type="SVR_INT32"/>
<item name="iteml12"
display-name="item with no value"
initial-value="" no-value="true"
type="SVR_STRING" />
</group>
<group id="group2" display-name="EvidenceGroup2">
<item name="item21"
display-name="Are you married"
initial-value="true" no-value="false"
type="SVR_BOOLEAN" />
<item name="item22"
display-name="Some important dates"
initial-value="" no-value="false"
type="SVR_DATE">
<value position="10" description="Important date 1"
value="20050401TOOCEO0" >
<value position="18" description="Important date 2"
value="20050601TOOCEO0" >
<value position="5" description="Important date 3"
value="20051231TO00E00" >
</item>
</group>
</evidence>

164 IBM Curam Social Program Management: Ciram Web Client Reference Manual

The display-name attribute represents a description for every item or group, the description does
the same for the value element. Group ids, evidence item names and value descriptions are supplied

by the evidence text returned from the rules engine. The type attribute is used to select particular
representation for different data types from the server. The name attribute of item and the id attribute of
group are used as link parameters if a link is specified for the first or second column.

Calendar

The calendar is used by any UIM page that displays a field from a server access bean containing a
CALENDAR_XML_STRING domain. This view allows for scheduling of events from different time-frames,
monthly, weekly and daily.

Programmatically, the calendar expects to be populated with information about events in an XML format.

The following is an example of what the XML received from the server might look like for Calendar:

<CURAM_CALENDAR_DATA TYPE="UserCalendar">
<EVENT>
<ID>1</ID>
<DATE>2002-10-10</DATE>
<STARTTIME>10:10:10</STARTTIME>
<ENDTIME>10:10:10</ENDTIME>
<DURATION>0</DURATION>
<DESCRIPTION>Hello World!</DESCRIPTION>
<STATUS>ATS1</STATUS>
<PRIORITY>AP1</PRIORITY>
<LEVEL>AL1</LEVEL>
<RECURRING>false</RECURRING>
<READ_ONLY>false</READ_ONLY>
<ALL_DAY>false</ALL_DAY>
<ATTENDEE>true</ATTENDEE>
<ACCEPTANCE>true</ACCEPTANCE>
</EVENT>
<SINGLE_DAY_EVENT>
<ID>2</ID>
<DATE>2003-04-01</DATE>
<TYPE>ET1</TYPE>
<DESCRIPTION>April Fool's Day</DESCRIPTION>
</SINGLE_DAY_EVENT>
</CURAM_CALENDAR_DATA>

Notice that there can be two kinds of event elements contained within the CURAM_CALENDAR_DATA

XML data: EVENT and SINGLE_DAY_EVENT. In the schema of the XML data expected the root element,
CURAM_CALENDAR_DATA, can hold any number (zero to many) of EVENT and SINGLE_DAY_EVENT
elements; CURAM_CALENDAR_DATA can optionally have a TYPE attribute which associates this sequence
of events with a particular calendar configuration (see example below).

The following tables describe the schema definitions for each of the attributes allowed on the EVENT and
the SINGLE_DAY_EVENT elements respectively.

Table 60. EVENT attributes in schema

Attribute Name Description Required
ID A string to uniquely identify this event.
DATE The date of the event in xs:date format: (CCYY-MM-DD) | No

I.e. 21- Aug-2002 is represented as 2002-08-21.

STARTTIME The start time in xs:time format: (hh:mm:ss). I.E. 1:34
pm and 56 seconds is represented as 13:34:56.

ENDTIME The start time in xs:time format: (hh:mm:ss). No
DURATION The duration of the event in minutes. This should be an | No
integer.

Chapter 1. Cdram web client reference 165

Table 60. EVENT attributes in schema (continued)

Attribute Name Description Required
DESCRIPTION A Description of the event. No
STATUS The status of the event. This node is limited to values No

stored in the ActivityTimeStatus code table in the
reference application.

PRIORITY The priority of the event. This node is limited to values No
stored in the ActivityPriority code table in the reference
application.

LEVEL Code that shows the level of the activity. This node is No

limited to the values stored in the ActivityLevel code
table in the reference application.

RECURRING Recurring indicator: true if this event is a recurring event. | No
Otherwise false.

READ_ONLY Read-only indicator: true if this event is a read-only No
event. Otherwise false.

ALL_DAY All-day indicator: True if this is an all-day event. No
Otherwise false.

ATTENDEE Attendee indicator: true if the user is attending a No
meeting. Otherwise false.

ACCEPTANCE Acceptance indicator: True if the user has accepted an
invitation to a meeting. Otherwise false.

POSITION For a spanning event, indicates first or last component of | No
the event.

Table 61. SINGLE_DAY_EVENT attributes in schema

Attribute Name Description Required
ID A string to uniquely identify this event. No
DATE The date of the event in xs:date format. No
TYPE The type of a single day event. No
DESCRIPTION A Description of the event. No

Once a field based on the CALENDAR_XML_STRING domain returns XML information formatted according
to the aforementioned schema, it will be displayed in the appropriate time position by the calendar.

Any web page containing a calendar can be set to open on different dates and views by specifying

the startDate and calendarViewType parameters in the page's URL. The startDate parameter should be
formatted according to the date format expected by the application and the calendarViewType parameter
should be one of the following codes.

166 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 62. Calendar View Type Values

Code Value
CvTl Day view
CVT2 Week view
CVT3 Month view

You can configure the display of calendar information using the CalendarConfig.xml file. There should
be at least one copy of this in the components folder. This file should contain configuration information
for each type of calendar, the TYPE attribute of the CURAM_CALENDAR_DATA element mentioned

above associates a calendar data stream with a particular type. An example of the structure of the
CalendarConfig.xml file is shown.

<CONFIGURATION MONTH_CELL_HEIGHT="4"
SHOW_REPEAT_EVENT_TEXT="true">
<CALENDAR TYPE="UserCalendar">
<DESCRIPTION_LOCATION>DetailsPage.do</DESCRIPTION_LOCATION>
<DAY_VIEW_TIME FORMAT>24</DAY_VIEW_TIME_FORMAT>
</CALENDAR>
<EVENT_TYPES>
<TYPE NAME="ET1" ICON="Images/mandatory.gif"/>
<TYPE NAME="ET2" ICON="Images/case.gif"/>
<TYPE NAME="ET3" ICON="Images/concern.gif"/>
</EVENT_TYPES>
</CONFIGURATION>

The overall schema for this configuration file specifies the CONFIGURATION element as the root
element. The CONFIGURATION has an optional MONTH_CELL_HEIGHT attribute which sets the maximum
number of rows to display in a single cell in the month view. The default value is three. The
SHOW_REPEAT_EVENT_TEXT optional attribute, if set to true, will display the event description in each
month cell if an event spans multiple days. This attribute is false by default.

The CONFIGURATION root element can hold any number of CALENDAR elements and a single
EVENT_TYPES element. The TYPE attribute of CALENDAR associates this configuration information with
an XML stream returned from the server. The DESCRIPTION_LOCATION element of CALENDAR is for
constructing a link to a page containing more information on any event in the calendar. The following table
lists the parameters passed with this hyperlink.

Table 63. Parameters Passed to Event Description Pages

Parameter Name Description

ID the event ID

RE Recurrence indicator
AT Attendee indicator
RO Read-only indicator
LvV_ Activity level

AC Acceptance indicator

The CALENDAR element should also contain an element called DAY_VIEW_TIME_FORMAT. The valid
values for this element are 12 and 24. They specify whether the time in the day view is displayed using a
12 or 24 hour format.

Chapter 1. Cdram web client reference 167

The EVENT_TYPES element is used for mapping images to display as icons next to single day events. The
NAME attribute of the TYPE element must match a TYPE element on a SINGLE_DAY_EVENT supplied by
the server for the image specified by the ICON attribute to be displayed.

The schema for the calendar configuration file (CalendarConfiguration.xsd) and the schema for the
CALENDAR_XML_STRING domain (CuramCalendar. xsd) are located in your project's WebContent/
WEB-INF/CDEJ/schema folder.

Payment Statement view

The payment statement view is used for displaying under or over payment within the Ciram application
framework.

The payment statement view supports the display of benefits as well as liabilities. The domain
BENEFIT_REASSESSMENT_RESULT_TEXT should be used for a benefit payment statement view. The
domain LIABILITY_REASSESSMENT_RESULT_TEXT should be used for a liability payment statement view.
It is expected that all string data returned for this field follows a specific tab-delimited format. Examples
of using these domains can be found in the Cliram reference application.

There is also a properties file associated with this view: PaymentStatement.properties inthe
<CLIENT_DIR>\components\cozre folder. The link to a page providing further details on a statement
can be defined using a set of four parameters:

PaymentStatement.RowlLink.Benefit.PageID
PaymentStatement.RowlLink.Benefit.ParameterName
PaymentStatement.RowLink.Benefit.Label
PaymentStatement.RowlLink.Benefit.Image

There is one set of parameters for Benefit pages and one for Liability pages. PageID is the name of the
page to link to. ParametexrName is the name of the parameter to be passed to this page to identify the id
of the payment in question. Label supplies the text of the link, if Image is not used. Otherwise it supplies
the tool-tip for the image-based link.

The remaining properties are simply externalized strings for the widget. A sample
PaymentStatement.properties file is shown.

PaymentStatement.RowLink.Benefit.PageID=FromBenefit
PaymentStatement.RowlLink.Liability.PageID=FromLiability

PaymentStatement.RowLink.Benefit.ParameterName=paraml
PaymentStatement.RowlLink.Liability.ParameterName=param2

PaymentStatement.RowlLink.Benefit.Label=Link Text 1
PaymentStatement.RowlLink.Liability.Label=Link Text 2

#PaymentStatement.RowLink.Benefit.Image=Images/icon.gif
PaymentStatement.RowLink.Liability.Image=Images/icon.gif

PaymentStatement.Text.fromToDateSeparator=\ to
PaymentStatement.Text.Action=Action
PaymentStatement.Text.Period=Period
PaymentStatement.Text.Desc=Description
PaymentStatement.Text.Actual=Actual
PaymentStatement.Text.Reassessed=Reassessed
PaymentStatement.Text.Liability.Received=Received
PaymentStatement.Text.Diff=Difference
PaymentStatement.Text.GrossTotal=Total Gross Over Payment
PaymentStatement.Text.TaxTotal=Total Tax Deduction
PaymentStatement.Text.UtilityTotal=Total Utility Deduction
PaymentStatement.Text.LiabilityTotal=Total Liability Deduction
PaymentStatement.Text.NetTotal=Net Under or Over Payment

Batch Function View

The batch function view is generated from the PARAM_TAB_LIST domain. It allows you to enter
parameters to submit a batch program for execution. The labels of each field are provided to the view by a
single tab-delimited string.

168 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Addresses

The ADDRESS_DATA domain type maps to a tag for entering and displaying addresses. Although the user
sees several fields, addresses are stored as a single string field. Except for the STATE field, each of the
fields are, by default, text input fields. The STATE field is a drop-down.

To parse the address and display the address, the elements the address consists of must be
defined in the curam-config. xml file. Different address configurations for different locales in the
Curam application can be defined. The following address configuration demonstrates how to set the
configuration by using the ADDRESS_CONFIG element.

<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_uUS"
ADDRESS_FORMAT_NAME="US"/>
<LOCALE_MAPPING LOCALE="en_GB"
ADDRESS_FORMAT_NAME="UK" />
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US" DESCRIPTION="Address.Description">
<ADDRESS_ELEMENT LABEL="Address.Label.AptSuite"
NAME="ADD1"
CONDITIONAL_MANDATORY="true"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Street.1"
NAME="ADD2"
CONDITIONAL_MANDATORY="true"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Street.2"
NAME="ADD3" />
<ADDRESS_ELEMENT LABEL="Address.lLabel.City"
NAME="CITY"/>
<ADDRESS_ELEMENT CODETABLE="AddressState"
LABEL="Address.Label.State"
NAME="STATE" />
<ADDRESS_ELEMENT LABEL="Address.lLabel.Zip"
NAME="ZIP"/>
</ADDRESS_FORMAT>

<ADDRESS_FORMAT NAME="UK" COUNTRY_CODE="GBR">

<ADDRESS_ELEMENT LABEL="Address.lLabel.Address.1"
MANDATORY="true" NAME="ADD1"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Address.2"
NAME="ADD2" />

<ADDRESS_ELEMENT LABEL="Address.Label.Address.3"
NAME="ADD3" />

<ADDRESS_ELEMENT LABEL="Address.lLabel.Address.4"
NAME="ADD4" />

<ADDRESS_ELEMENT LABEL="Address.Label.County"
NAME="ADD5" />

<ADDRESS_ELEMENT LABEL="Address.Label.City"
NAME="CITY"/>

<ADDRESS_ELEMENT LABEL="Address.Label.PostCode"
NAME="POSTCODE" />

<ADDRESS_ELEMENT CODETABLE="Countzry"
LABEL="Address.Label.Country"
NAME="COUNTRY" />

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

The ADDRESS_CONFIG element builds by using multiple LOCALE_MAPPING and ADDRESS_FORMAT
elements. In Cdram application deployments with multiple locales, a developer might want to use a
different address format for each locale. To use a different address format for each locale, use the
LOCALE_MAPPING element. The element contains a LOCALE attribute that defines the locale and an
ADDRESS_FORMAT_NAME attribute that defines the ADDRESS_FORMAT element to be mapped. By default,
the Cdram application includes defined ADDRESS_FORMAT elements that are mapped to specific locales.
As the locales are already mapped, it is not required to define LOCALE_MAPPING elements for the locales.
However, customers can modify the elements or create new configurations, depending on a customer's
implementation. Table 1 lists the default address formats and the corresponding locale mappings.

Table 64. Address format configurations.

Address Format Name Locale Mapping

us en_US

Chapter 1. Cdram web client reference 169

Table 64. Address format configurations. (continued)
Address Format Name Locale Mapping
UK en_GB

DE de

CA en_CA

KR ko

JP ja

TW zh TW

CN zh_CN

When an address is created, the ADDRESS_FORMAT includes an optional COUNTRY_CODE attribute that
is used in the address header. If the attribute is not set, the COUNTRY_CODE defaults to GBR when the
address format specified is UK. When any other address format is specified, the COUNTRY_CODE is set
to US. The COUNTRY_CODE is not used by the infrastructure. It is one of the fields in the address string
that the application uses, but the infrastructure provides an initial value for it. The ADDRESS_FORMAT
includes another optional DESCRIPTION attribute. The attribute refers to the property that is in the
CDEJResources.propexrties file. The string provides information text that is displayed above the
address fields.

The ADDRESS_FORMAT elements contain ADDRESS_ELEMENT elements that define the fields in the
address tag. The ADDRESS_ELEMENT element includes a LABEL attribute that refers to properties that
are contained in the CDEJResouzrces.properties file. The address builds by using ADDRESS_ELEMENT
tags. The tags must have a name and label. A code table can also be specified for each
ADDRESS_ELEMENT. When a code table is specified, a drop-down displays the code table entries and

the default code is selected.

The optional MANDATORY attribute specifies whether an address element must be completed.

Note: The MANDATORY settings in curam-config.xml require that the field that provides the address
data must be marked as mandatory the application model.

The optional CONDITIONAL_MANDATORY attribute specifies whether an address element is partially
mandatory. For the US address format, as a minimum the first two address fields must be competed in a
form. When the CONDITIONAL_MANDATORY attribute is set on an ADDRESS_ELEMENT, an aria-label is set
on the field with the description text. Screen readers use the description text for visually impaired users.

Note: To provide the aria-label with the description text, the DESCRIPTION attribute must be set on the
ADDRESS_FORMAT.

Schedule view

The schedule view is used for any domain of the type SCHEDULE_DATA. This view displays a grid of
time-line information for the hours between 8 am and 8 pm. Each row in this grid represents a person
whose full name is displayed in the row header.

Each cell in the person's row represents a half hour period containing an indicator for whether they are
available or not. If a user clicks on a free cell, they should be linked to a page allowing them to enter
further schedule events.

170 IBM Curam Social Program Management: Ciram Web Client Reference Manual

The information and set up of this particular view involves a particular setup in a page's UIM file. An
example of the UIM for a schedule field is shown.

<FIELD>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="schedule"/>
</CONNECT>
<CONNECT>
<LINK PAGE_ID="IncomeScreening_confirmAppointment">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="appointmentDate"/>
<TARGET NAME="PAGE" PROPERTY="date"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="userFullName"/>
<TARGET NAME="PAGE" PROPERTY="fullUserName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="userName"/>
<TARGET NAME="PAGE" PROPERTY="userName"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="caseID"/>
<TARGET NAME="PAGE" PROPERTY="caseID"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="pageDescription"/>
<TARGET NAME="PAGE" PROPERTY="pageDescription"/>
</CONNECT>
</LINK>
</FIELD>

The Curam page generator expects any schedule FIELD element to be followed by a LINK element which
details the PAGE_ID of the page to go to when a free cell is clicked on. The following three CONNECT
elements should be fields which provide the following attributes to the link: the date of the day in
question (the time is appended to this date); the full name of the user; and the user's unique identifier.
The order of these CONNECT elements is important or the schedule view will not contain the correct links.

The SCHEDULE_DATA domain is expected to be a list of user names and 32 bit schedule fields separated
by a tab. An example of one such element of this list would be:

John Smith<tab>16777212

16777212 is the integer value which translates to the bit field 00000000111111111112111111111100.
A one represents a half hour when Mr. Smith is busy and a zero stands for free time. The bit field is read
from the least significant bit first, i.e. from right to left, with 8 am represented by the right-most bit. As

we are dealing with a twelve hour period and each bit stands for a half hour, only the first 24 bits are
important. The last byte is disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks (per user), with each block
representing half an hour. Half hour blocks of free time are displayed differently than the other blocks
(busy) in terms of color and size.

Radio button group

An alternative way to present a set of code table values is as a radio button group, each radio button
representing a code table item.

To display in the form of radio buttons, a field representing a code table value should be mapped to the
SHORT_CODETABLE_CODE domain or to a domain directly inheriting from SHORT_CODETABLE_CODE.

Chapter 1. Cdram web client reference 171

Pop-up pages

Use this information to set up a pop-up page or a multiple pop-up page as needed. The Curam application
has a number of built-in pop-up pages, such as the Date Selector pop-up, which are "helpers" that are
used to enter data. Developers can also specify their own pop-up pages.

For example, when scheduling a meeting for a person you don't want the user to have to know or fill in
that persons unique ID. Instead the user should be provided with a search facility or a pre-populated list
of valid options they can select from. This is achieved in Ciram with pop-up pages.

The default pop-up widget has a grey input field with a search - in the form of a magnifying glass - and a
clear icon beside it. When the user clicks on the search icon this will activate a pop-up page. The user can
select an item from the pop-page which will populate the text input field on the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

Using multiple pop-up search pages for a single field

In some cases we need to search for different types of Clram entities but that search is associated with
a single field. For example you may have a requirement to search for a Clram client which has a generic
domain of CURAM_CLIENT_ID. This could be a person, an employer, a product provider etc. Individual
search pages may already exist for these types so you should be able to reuse them. Assuming the
pop-up search pages already exist, this involves two extra steps which are described in the following
sections and. The resulting pop-up widget has an additional drop-down field rendered to the left of the
text input field. To activate the pop-up page for this widget, the user first selects the type of search to be
performed from the drop down list and then clicks on the search icon.

Configure a pop-up page

The first step is to configure a pop-up page. This is performed by the POPUP_PAGES element in curam-
config.xml.

<POPUP_PAGES DISPLAY_IMAGES="true|false">
<CLEAR_TEXT_IMAGE>Images/minus.gif<CLEAR_TEXT_IMAGE>
<POPUP_PAGE PAGE_ID="PersonSearch"
CREATE_PAGE_ID="RegisterPerson"
CONTROL_TYPE="textunderline|textinput"
CONTROL_EDITABLE="true|false"
CONTROL_INSERT_MODE="overwrite|insert|append">
<DOMAIN>PERSON_ID</DOMAIN>
<WIDTH>800</WIDTH>
<HEIGHT>600</HEIGHT>
<SCROLLBARS>true</SCROLLBARS>
<IMAGE>Images/search.gif</IMAGE>
<LABEL>Search</LABEL>
<CREATE_IMAGE>Images/new.gif</CREATE_IMAGE>
<CREATE_LABEL>New</CREATE_LABEL>
</POPUP_PAGE>
</POPUP_PAGES>

On the root element the DISPLAY_IMAGES attribute can be used to configure whether images or text is
used for the actions which open a pop-up or clear the currently selected value.
The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a "clear this text" button. Note that this is an
application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there must be instance of this
element. Up to two pop-ups can be associated with a single domain; one to search for an existing item,
another to create a new item. The following attributes and child elements control various aspects of how
the pop-up is presented to the user.

172 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Table 65. Attributes of the POPUP_PAGE element.

Name

Description

PAGE_ID

Specifies the UIM page id of the pop-up page to open to search for an
existing item.

CREATE_PAGE_ID

Specifies the UIM page id of the the pop-up page to open to create a
new item.

CONTROL_TYPE

Specifies the type of control where the value returned from the pop-up
will be written to. The default value is textunderline which displays
static text with an underline. To display a text input field set the value
to textinput. When a a text input control is configured, on the UIM
FIELD which uses a pop-up, the HEIGHT attribute can be used to
change from a single line text input to a multi-line text area.

CONTROL_EDITABLE

This attribute is only valid when CONTROL_TYPE is set to textinput.
It controls whether the text input field is editable or not. Set to true to
create a editable field and false to create a non-editable field.

CONTROL_INSERT_MODE

This attribute is only valid when CONTROL_TYPE is set to textinput. It
allows you to configure how a value selected from a pop-up is inserted
into the associated input control. The default is overwrite which
means the selected value will overwrite the previous contents. Setting
the attribute to insert means the selected value will be inserted at

the current cursor position. Setting the attribute to append means the
selected value will be appended to the previous contents of the input
control.

Table 66. Child elements of the

POPUP_PAGE element.

Name Description

DOMAIN Domain used to identify this pop-up page. If a FIELD element with
a TARGET connection is based on this domain, a pop-up will be used
instead of a standard text entry box.

CT_CODE This is a second way to identify a pop-up page. The attribute contains
a code table code value and is used when associating multiple pop-up
pages with a single field and is described in further detail below.

WIDTH Width in pixels of pop-up dialog. This element is optional. If not
included, the default width of 600 pixels will be used.

HEIGHT Height in pixels of pop-up dialog. This element is optional. If not
included, the height will be automatically calculated based on the page
contents.

IMAGE Location of image which when clicked launches the pop-up defined by

the POPUP_PAGE element's PAGE_ID attribute.

IMAGE_HOVER

Location of image that is displayed when a user hovers over the search
pop-up icon. Set the IMAGE_HOVER element if the IMAGE element

has been set to a location other than the default location. If the
IMAGE_HOVER element is not set, then a default image is displayed
when a user hovers over a search pop-up icon.

Chapter 1. Cdram web client reference 173

Table 66. Child elements of the POPUP_PAGE element. (continued)

Name Description

IMAGE_PROPERTY Optional key in the CDEJResources.properties file under which
the locale-specific location of the pop-up launcher image otherwise
specified by IMAGE attribute is stored. If the IMAGE is also

specified for the same configuration, it will take precedence over the
IMAGE_PROPERTY and this attribute will be ignored.

HIGH_CONTRAST_IMAGE Location of the high contrast image which when clicked launches the
pop-up defined by the POPUP_PAGE element's PAGE_ID attribute.

HIGH_CONTRAST_IMAGE_PR |Optional key in the CDEJResources.properties file under which
OPERTY the locale-specific location of the pop-up launcher image otherwise
specified by HIGH_CONTRAST_IMAGE attribute is stored. If the
HIGH_CONTRAST_IMAGE is also specified for the same configuration, it
will take precedence over the HIGH_CONTRAST_IMAGE_PROPERTY and
this attribute will be ignored.

LABEL Alternate text for the image defined by the IMAGE element. If the
POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false,
this text will be displayed instead of the image.

LABEL_PROPERTY Optional key in the CDEJResources.properties file under which
the locale-specific value of the label attribute otherwise specified by
the LABEL attribute is stored. If LABEL is also specified for the same
configuration, it will take precedence over the LABEL_PROPERTY and
this attribute will be ignored.

CREATE_IMAGE Location of image which when clicked launches the pop-up defined by
the POPUP_PAGE element's CREATE_PAGE_ID attribute.

CREATE_IMAGE_PROPERTY |Optional key inthe CDEJResources.properties file under which
the locale-specific location of the pop-up launcher image otherwise
specified by CREATE_IMAGE attribute is stored. If the CREATE_IMAGE
is also specified for the same configuration, it will take precedence over
the CREATE_IMAGE_PROPERTY and this attribute will be ignored.

CREATE_LABEL Alternate text for the image defined by the CREATE_IMAGE element. If
the POPUP_PAGE element's DISPLAY_IMAGES attribute is set to false,
this text will be displayed instead of the image.

CREATE_LABEL_PROPERTY | Optional key in the CDEJResources.properties file under
which the locale-specific value otherwise specified by the
CREATE_LABEL attribute is stored. If the CREATE_LABEL is also
specified for the configuration, it will take precedence over the
CREATE_LABEL_PROPERTY and this attribute will be ignored.

Create a pop-up page

A Curam pop-up page is written in UIM. It can be written to display a set of existing items for the user to
select from or to register a completely new item.

A pop-up that returns existing items

The following is an example of a pop-up page which accepts user input, displays a list of search results,
one of which can be selected and its unique identifier returned to the parent page.
<PAGE PAGE_ID="Person_search" POPUP_PAGE="true">

<PAGE_TITLE ICON="PersonSearchPageIcon">

<CONNECT>
<SOURCE NAME="TEXT"

174 1BM Curam Social Program Management: Caram Web Client Reference Manual

PROPERTY="PageTitle.StaticText1l"/>
</CONNECT>
</PAGE_TITLE>
<SERVER_INTERFACE NAME="ACTION"
CLASS="Person"
OPERATION="search"
PHASE="ACTION"
/>
<CLUSTER NUM_COLS="2" TITLE="Cluster.Title.SearchCriteria">

<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL LABEL="ActionControl.lLabel.Search"
TYPE="SUBMIT" DEFAULT="true">
<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>
<ACTION_CONTROL LABEL="ActionControl.lLabel.Cancel"
IMAGE="CancelButton" TYPE="DISMISS"/>
</ACTION_SET>

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>
<TARGET NAME="ACTION"
PROPERTY="personSearchKey$referenceNumber" />
</CONNECT>
</FIELD>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">
<CONTAINER LABEL="Container.Label.Action">
<ACTION_CONTROL LABEL="ActionControl.lLabel.Select"
TYPE="DISMISS" >
<LINK>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />
<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>
</LINK>
</ACTION_CONTROL>
</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$referenceNumber"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.FirstName">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personName"/>
</CONNECT>
</FIELD>
</LIST>

</PAGE>

The points to note about this example are:

The PAGE_1ID attributes of the UIM PAGE element and the POPUP_PAGE element in curam-
config.xml must match.

The POPUP_PAGE attribute of the UIM PAGE element must be set to true.

The submit action is linked to THIS. This means the page will be redisplayed after the submit button is
pressed.

To cancel the pop-up an action control of type DISMISS is used. If the action control does not have a
child LINK element, the pop-up will be closed without returning any values to the parent page which
opened it.

The search results list in this example is made up of three columns. The first contains a link which will
close the pop-up and return the selected values, the remaining columns display further information
about the person.

To close the pop-up and return values, an action control of type DISMISS is used. This is placed in a
CONTAINER so it is the first column in the search results list. The user can click this link to select one of
the search results.

Chapter 1. Cdram web client reference 175

« To specify what values should be returned a child LINK element is added to the action control. When
used in an action control to close a pop-up all standard attributes of the LINK element (e.g. PAGE_ID)
have no meaning and will be ignored.

« For Curam pop-up pages two values must always be returned. These are specified using CONNECT
elements. Both connections must use a target of PAGE and have the PROPERTY set to value and
description. The value connection specifies the value required on the page that opened the pop-up,
in this example the persons unique record ID. The description connection specifies descriptive text
to be shown to the user, in this example the person's name. So, on the page which opened the pop-up,
the person's name will be displayed to the user, but it is their unique ID which will be submitted to the
server.

It is not necessary for pop-up pages to accept input. For example, the LIST can be populated from a
display phase server interface if necessary.

A pop-up that creates a new item

A pop-up may also create a new item and have the newly generated unique identifier for that
item returned to the parent page. To do this create a page which a ACTION_CONTROL of type
SUBMIT_AND_DISMISS must be used. For example;
<ACTION_CONTROL TYPE="SUBMIT_AND_DISMISS" LABEL="Button.Submit">
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION"
PROPERTY="dt1ls$personFullName" />
<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>
</ACTION_CONTROL>
Once the type attribute is set to SUBMIT_AND_DISMISS the rules for the child LINK and CONNECT
element is the same as described in the previous section for a DISMISS action control. After the form is

successfully submitted the pop-up will be dismissed and the new values returned to the parent page.

Using the pop-up page

Pop-up pages are opened using standard UIM FIELD elements. If the field has a target connection which
is based on a domain as configured in curam-config.xml a link to open the pop-up will be generated
rather than a standard text entry field.

The following is the most basic example of a FIELD opening a pop-up. It is from an insert page so only
a target connection is specified. Using the current example, the person's unique ID will be assigned to
the field specified in the target connection and the person's name will only be used for visual purpose to
display to the user.

<FIELD LABEL="Field.Label.person">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

The following example is from a modify page which means the field will have a source value which must
be displayed to the user. It is slightly more complex that standard fields on a modify page because there
are actually two source values to handled. The person's unique ID and the person's name. In this case the
INITIAL connection is used to specify the person's name. This will only be used to display to the user
and note that is not submitted to the server. Following that the field is just like any other on a modify page.
The source connection specifies the existing value of the field, the target connection specifies where the
value should be submitted to.

<FIELD LABEL="Field.Label.person">
<CONNECT>
<INITIAL NAME="DISPLAY" PROPERTY="personName"/>
</CONNECT>
<CONNECT>

176 IBM Curam Social Program Management: Ciram Web Client Reference Manual

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
</FIELD>

When invoking a pop-up it is also possible to supply page parameters to the pop-up. This is a slight
variation on the two examples above and involves the use of the LINK element. The following is an
example of two parameters passed to a pop-up page, one sourced from an existing page parameter, the
other from a server interface property. When a LINK element is used in this context no attributes such as
PAGE_ID should be specified. Also a TEXT source connection cannot be used to supply a parameter to a

Pop-up page.

<FIELD LABEL="Field.Label.person">
<CONNECT>
<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
<LINK>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="paraml"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="personName"/>
<TARGET NAME="PAGE" PROPERTY="param2"/>
</CONNECT>
</LINK>
</FIELD>

Configure a multiple pop-up page
This can be configured through the MULTIPLE_POPUP_DOMAINS elementin curam-config.xml.

An example of multiple pop-up domains is shown.

<MULTIPLE_POPUP_DOMAINS>
<CLEAR_TEXT_IMAGE>Images/clear.gif</CLEAR_TEXT_IMAGE>
<MULTIPLE_POPUP_DOMAIN>
<DOMAIN>CURAM_CLIENT_ID</DOMAIN>
<LABEL>Search</LABEL>
<IMAGE>Images/search.gif</IMAGE>
</MULTIPLE_POPUP_DOMAIN>
</MULTIPLE_POPUP_DOMAINS>

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a "clear this text" button. This is an application
wide setting.

MULTIPLE_POPUP_DOMAIN : For each domain which you wish to associate multiple pop-up windows
create an instance of this element.

DOMAIN : The name of the domain which is associated with multiple pop-up windows
IMAGE : Location of image to be used for pop-up icon.
LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is required to select the pop-up
type. This drop-down list is populated as normal from a code-table. The code-table codes are the link
between the drop-down list and pop-up that is opened. This requires the CT_CODE child element of the
POPUP_PAGE element to be set to the code-table code value.

Using a multiple pop-up page
When the configuration is done, the final step is the write the UIM necessary to display the pop-up search.

An example of the UIM to use multiple pop-up windows is shown.

<CONTAINER LABEL="Label.person">
<FIELD LABEL="Field.Label">

Chapter 1. Cdram web client reference 177

<CONNECT>
<TARGET PROPERTY="popupType" NAME="ACTION"/>
</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label">
<CONNECT>
<TARGET PROPERTY="clientID" NAME="ACTION"/>
</CONNECT>
</FIELD>
</CONTAINER>

The main points to note are:

« ACONTAINER and two FIELD elements are required, one for the drop-down list, the other for the value
which will be returned from the pop-up. The container must not include any other FIELD elements.

« The first field should be based on a code-table domain which contains a list of codes which corresponds
to the CT_CODE element described earlier.

- The second field should have a target connection which is based on a domain using the
MULTIPLE_POPUP_DOMAIN element.

Agenda Player

The Agenda Player, or player, is a wizard-like control which provides guided navigation through a specified
set of screens. The screens in the Agenda Player are generally part of an agenda or scenario, typically
involving the step-by-step collection of information.

Note: Agenda Player widget is not supported outside the modal dialog context. An attempt to open it in
the tab content panel or elsewhere, such as in the inline page of an expandable list results in an error
message.

Agenda Player screen structure

Depending on how the Agenda Player player is configured, the screen is divided into either three or four
parts.

- Along the top is the Agenda Player header. It contains a customizable Agenda Player title on the left
and, where appropriate, a progress bar on the top right, which shows the user's progress through the
agenda. The steps completed in the progress bar will be shaded in color whereas the steps that have yet
to be completed will not.

« On the left of an Agenda Player, a navigation panel (optional) shows the list of pages in the current
agenda. The user's progress through the sequence is continuously displayed there (in addition to
progress bar) by highlighting of the current page. The appearance and behavior of the other pages in the
agenda depends on the mode used (see below). The pages in an agenda can be grouped into sections
and the player provides the ability to collapse and expand visited sections.

At the bottom of the navigation panel is the summary link, which allows users to jump directly to the
player summary page (they would also get there by navigating through all the pages in the agenda).
The summary link is only displayed if there is an appropriate element specified in the agenda XML. The
navigation panel is not displayed in the navigator-less (claimant) view of the Agenda Player.

« Along the bottom, a set of buttons is displayed to allow the user to step forward and back through the
Agenda Player. There are also buttons to jump to the summary page (displayed optionally) and to quit
the Player.

Note: The text used for these buttons can be customized (see below). However, for the remainder of
this section they are further referred as the Back, Next, Finish and Cancel buttons, which are their
default captions.

« The main area of the screen is the content area. This area displays normal client pages which might also
be used outside of the Agenda Player.

178 IBM Curam Social Program Management: Ciram Web Client Reference Manual

Navigation modes

In addition to using the back and next buttons to navigate through an agenda, the player can provide
additional options in the navigation panel, depending on the mode used.

The Agenda Player can be configured to operate in one of three navigation modes: basic, incremental
or full, with incremental mode being the default.

« The basic mode is used for strictly sequential navigation through the agenda pages. In this mode the
navigation panel is just used for additional information, indicating which page the user is currently on.
The only navigation means are the standard player buttons.

« The incremental mode expands on the basic mode by providing links in the navigation panel to any
pages which have already been visited. A user can use these links to skip back and forward between
previously visited pages, but will still need to use the next button to progress any further.

e The full mode is actually a non-sequential mode as all the navigation panel elements are initially
rendered as links. Sequential advancing is possible here as well, as the player buttons are fully
functional, but there are no restrictions placed on the order in which you navigate through the agenda.
This, however, means that things related to the sequential progress might be unavailable, or not work
properly in this mode (for example, the progress bar is not displayed for this mode at all; dynamic
parameters might not be available if a screen which expects these parameters is visited before the one
where these parameters are initialized, etc.). Because of this the full navigation mode should be used
where specifically required and the agenda should be designed/configured keeping in mind the possible
consequences.

Agenda Player mode configuration is described in “Agenda Player configuration” on page 179

Note: Within the Player screens there might be hyperlinks leading to other pages, which open in the client
area, yet do not belong to the specified Player screen set. In this case all the navigation means on the
Player, including buttons and links rendered for incremental or full mode are disabled until the flow
returns back to an Agenda Player screen. This means in particular that such a 'side' page should provide
means of returning to the AgendaPlayer page flow (by linking to the appropriate page or closing the modal
opened from the Player).

Navigator-less view

By default, an Agenda Player is displayed with all the screen parts present. However, in some situations,
you may like to simplify the view and behavior of the player using the view without the navigation panel
(also called Claimant view after the expected usage - online claimants).

In this view Agenda Player is displayed without the navigation panel. Only the standard player buttons can
be used for navigation, so the mode setting is effectively ignored.

The fourth player button, Finish, is automatically available on the button bar at the bottom of the page
for the Claimant view. The button makes it possible to jump directly to the summary page rather than
having to advance to it through all the pages. It is shown only when there is a summary page presentin
the agenda XML returned from the server.

Player configuration to allow for Claimant view is described in the section below.

Agenda Player configuration

