
Merge DICOM Toolkit™

5.21.0

Python User’s Manual

© Copyright Merge Healthcare Solutions Inc. 2025.

Licensed materials - Property of Merge Healthcare Solutions Inc..
The content of this document is confidential information of Merge Healthcare Solutions Inc. and its use and disclosure is subject to
the terms of the agreement pursuant to which you obtained the software that accompanies the documentation.
Merge Healthcare and the Merge Healthcare logo are trademarks of Merge Healthcare Inc.
Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
All other names are trademarks or registered trademarks of their respective companies.

U.S. GOVERNMENT RESTRICTED RIGHTS:

This product is a “Commercial Item” offered with “Restricted Rights.” The Government's rights to use, modify, reproduce, release,
perform, display or disclose this documentation are subject to the restrictions set forth in Federal Acquisition Regulation (“FAR”)
12.211 and 12.212 for civilian agencies and in DFARS 227.7202-3 for military agencies. Contractor is Merge Healthcare Solutions Inc.

Symbols Glossary:

The full symbols glossary can be viewed at
https://merative.com/content/dam/merative/enterprise-imaging/merge-healthcare-symbols-glossary.pdf

For application support or to report issues with user documentation, contact Customer Support:

1-877-741-5369 (North America)
+44 203808.3608 (Europe, the Middle East and Africa)
1.800.952.156 (Australia)

MC3Support@merative.com

The latest version of this document can be found at https://merge.my.site.com/mergecommunity.

Symbol Title

Manufacturer

Consult Instructions for Use

Part Date Revision Description

COM-6290 July 2025 1.0 Updated bi-annually

Merge Healthcare Incorporated
900 Walnut Ridge Drive
Hartland, WI 53029
USA

mailto:mergesupport@merative.com
https://merative.com/content/dam/merative/enterprise-imaging/merge-healthcare-symbols-glossary.pdf
mailto: MC3Support@merative.com
https://merative.com/content/dam/merative/enterprise-imaging/merge-healthcare-symbols-glossary.pdf
https://merge.my.site.com/mergecommunity

Contents

3© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 1. Overview...7

1.1. The DICOM Standard ..7

1.2. The Merge DICOM Toolkit ...10

1.3. Development Platform Requirements.. 11

1.4. Library Structure .. 11

1.4.1. Merge DICOM Toolkit Library ..12

1.4.2. Binary Message Information and Data Dictionary Files ..12

1.4.3. Sample Applications ..13

1.4.4. Merge DICOM Toolkit Extended Toolkit ...13

1.5. Conventions ...13

Chapter 2. Understanding DICOM ...14

2.1. General Concepts..14

2.1.1. Application Entities ...14

2.1.2. Services and Meta Services ...14

2.1.3. DICOM Information Model..21

2.2. Networking... 22

2.2.1. Commands .. 22

2.2.2. Association Negotiation... 23

2.3. Messages ..24

2.3.1. DICOM Data Dictionary.. 25

2.3.2. Message Handling.. 26

2.3.3. Private Attributes .. 27

2.4. Media Interchange ... 27

2.4.1. DICOM Files .. 27

2.4.2. File Sets ...34

2.4.3. The DICOMDIR ..35

2.4.4. File Management Services and Roles .. 37

2.5. Conformance..38

Chapter 3. Using Merge DICOM Toolkit..40

3.1. Configuration ..40

3.1.1. Initialization File ...40

3.2. Message Logging ...41

3.3. Utility Programs ...42

© Copyright Merge Healthcare Solutions Inc. 2025 4

Merge DICOM Toolkit 5.21.0 Python User’s Manual Contents

3.3.1. mc3comp ...42

3.3.2. mc3conv..43

3.3.3. mc3echo ...44

3.3.4. mc3list..44

3.3.5. mc3valid ..45

3.3.6. mc3file..46

Chapter 4. Developing DICOM Applications ..48

4.1. Library Initialization ..48

4.2. Registering Your Application ..48

4.3. Association Management (Network Only) ...49

4.4. Negotiated Transfer Syntaxes (Network Only)..51

4.4.1. Transfer Syntax Lists for SCUs... 52

4.4.2. Transfer Syntax Lists for SCPs ...53

4.5. Dynamic Service Lists ..54

4.6. Message Objects...54

4.6.1. Building Messages ...55

4.6.2. Parsing Messages...56

4.6.3. 8-bit Pixel Data ...56

4.6.4. Encapsulated Pixel Data..57

4.6.5. Icon Image Sequences ..58

4.6.6. Validating Messages..59

4.6.7. Streaming Messages... 62

4.7. Message Exchange (Network Only)... 63

4.7.1. General... 63

4.7.2. Asynchronous Communications ..65

4.8. Using Compression/Decompression ..67

4.9. Sequences of Items..71

4.10. DICOM Files .. 73

4.10.1. File System Interface Functions.. 73

4.10.2. Creating a File Object ...74

4.10.3. Reading Files...74

4.10.4. File Validation ...75

4.10.5. Converting Files to/from Messages ..76

4.11. Private Attributes .. 76

4.12. Multi-threading Support..76

4.13. Memory Management .. 77

© Copyright Merge Healthcare Solutions Inc. 2025 5

Merge DICOM Toolkit 5.21.0 Python User’s Manual Contents

4.13.1. Assigning Pixel Data ..78

4.13.2. Reading Messages from the Network ..78

4.13.3. Loading Messages from Disk..78

4.14. DICOM Structured Reporting...79

4.14.1. Structured Report Structure and Modules..79

4.14.2. Content Item Types ..81

4.14.3. Relationship Types between Content Items..83

4.14.4. Content Item Identifier...85

4.14.5. Observation Context ...85

4.14.6. Structured Reporting Templates ..86

4.14.7. Memory Management ..89

4.14.8. Overview of the Merge DICOM Toolkit SR Methods ... 90

4.14.9. Encoding SR Documents ..91

4.14.10. Reading SR Documents.. 93

4.15. Converting Attribute Set to/from DICOM JSON Model String...94

4.16. Converting Attribute Set to/from Native DICOM Model XML String ..94

Chapter 5. Deploying Applications ..95

5.1. Merge DICOM Toolkit Required Files...95

5.2. Configuration Options ..95

5.3. UN VR...96

Appendix A. Frequently Asked Questions...98

Appendix B. Unique Identifiers (UIDs).. 102

B.1. Summary of UID Composition... 102

B.2. Sample UID Format... 102

B.3. Obtaining a UID.. 103

B.3.1. Obtaining a UID from ANSI.. 103

Appendix C. Writing a DICOM Conformance Statement...104

C.1. Conformance Statement Sections ..104

C.1.1. Implementation Model...104

C.1.2. Application Data Flow...104

C.1.3. Sequencing of Real World Activities ... 105

C.1.4. AE Specifications.. 105

C.1.5. SOP Classes .. 106

C.1.6. Number of Associations.. 106

C.1.7. Asynchronous Nature... 106

C.1.8. Implementation Identifying Information.. 106

© Copyright Merge Healthcare Solutions Inc. 2025 6

Merge DICOM Toolkit 5.21.0 Python User’s Manual Contents

C.1.9. SOP Specific Conformance .. 107

C.1.10. Transfer Syntax Selection Policies ... 107

C.2. Network Interfaces... 107

C.2.1. Physical Network Interface .. 107

C.2.2. IPv4 and IPv6 Support.. 107

C.2.3. Configuration .. 108

C.2.4. AE Title/Presentation Address Mapping... 108

C.2.5. Configurable Parameters.. 108

C.2.6. PDU Size ... 108

C.3. Extensions/Specializations/Privatizations... 108

C.3.1. Standard Extended/Specialized/Private SOPs... 108

C.3.2. Private Transfer Syntaxes ... 109

Appendix D. Configuration Parameters...110

D.1. Initialization File ..110

D.2. Application Profile ...113

D.2.1. Sections..113

D.2.2. Parameters ...113

D.3. System Profile .. 127

D.4. Service Profile .. 152

7© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 1. Overview

This User's Manual is intended for developers of medical imaging applications who are using the
Merge DICOM Toolkit to provide DICOM network or media functionality.

The Merge DICOM Toolkit supplies you with a powerful and simplified interface to DICOM. It lets
you focus on the important details of your application and the immediate needs of your end users,
rather than the complex and often confusing details of the DICOM Standard.

The goal of this manual is to give you basic understanding of DICOM, and a clear understanding of
the Merge DICOM Toolkit.

1.1. The DICOM Standard
The Digital Imaging and Communications in Medicine (DICOM) Standard was originally developed
by a joint committee of the American College of Radiology (ACR) and the National Electrical
Manufacturers Association (NEMA) to, "facilitate the open exchange of information between digital
imaging computer systems in medical environments." 1

1 NEMA Standards Publication No. PS 3.5-1993; DICOM Part 5 - Data Structures and Encoding, p.4.

Since its initial completion in 1993, the standard has taken hold. More and more products are
advertising DICOM conformance, and more customers are requiring it. DICOM has also been
incorporated as part of a developing European standard by CEN, as a Japanese standard by JIRA,
and is increasingly becoming an international standard.

The DICOM Standard 2011 edition is composed of thousands of pages over 18 separate parts (parts
9 and 13 have been retired). Each part of the standard focuses on a different aspect of the DICOM
protocol:

Part 1: Introduction and Overview

Part 2: Conformance

Part 3: Information Object Definitions

Part 4: Service Class Specifications

Part 5: Data Structures and Encoding

Part 6: Data Dictionary

Part 7: Message Exchange

Part 8: Network Communication Support for Message Exchange

Part 9: Point-to-Point Communication Support for Message Exchange (retired)

Part 10: Common Media Storage Functions for Data Interchange

Part 11: Media Storage Application Profiles

Part 12: Media Formats and Physical Media for Data Interchange

Part 13: Print Management Point-to-Point Communication Support (retired)

Part 14: Grayscale Standard Display Function

Part 15: Security Profiles

Part 16: DICOM Content Mapping Resource

Merge DICOM Toolkit 5.21.0 Python User’s Manual

8© Copyright Merge Healthcare Solutions Inc. 2025

Part 17: Explanatory Information

Part 18: Web Services

Part 19: Application Hosting

Part 20: Transformation of DICOM to and from HL7 Standards

Part 21: Transformations between DICOM and other Representations

Part 22: Real-Time Communication

A Quick Walk Through DICOM

Part 1 of the standard gives an overview of the standard. Since this part was approved before most
of the other parts were completed, it is already somewhat outdated and can be confusing.

Part 2 describes DICOM conformance and how to write a conformance statement. A conformance
statement is important because it allows a network administrator to plan or coordinate a network of
DICOM applications. For an application to claim DICOM conformance, it must have an accurate
conformance statement.

Parts 3 and 4 define the types of services and information that can be exchanged using DICOM.

Parts 5 and 6 describe how commands and data shall be encoded so that decoding devices can
interpret them.

Part 7 describes the structure of the DICOM commands that, along with related data, make up a
DICOM message. This part also describes the association negotiation process, where two DICOM
applications mutually agree on the services they will perform over the network.

Part 8 describes how the DICOM messages are exchanged over the network using two prominent
transport layer protocols: TCP/IP and OSI. (Note that IPv4 and IPv6 are supported by DICOM and
by Merge DICOM Toolkit.) This is termed the DICOM Upper Layer Protocol (DICOM UL).

Part 9 describes how DICOM messages shall be exchanged using the 'old' 50-pin point-to-point
connection originally specified in the predecessor to DICOM (ACR/NEMA Version 2). This part has
been retired from the DICOM standard.

Part 10 describes the DICOM model for the storage of medical imaging information on removable
media. It specifies the contents of a DICOM File Set, the format of a DICOM File and the policies
associated with the maintenance of a DICOM Media Storage Directory (DICOMDIR) structure.

Part 11 specifies the Media Storage Application Profiles that standardize a number of choices
related to a specific clinical need (modality or application). This includes the specification of a
specific physical medium and media format (e.g., CD-ROM, 3.5" high-density floppy, …), as well as
the types of information (objects) that can be stored within the DICOM File Set. Part 11 also includes
useful templates to provide guidance in authoring media application conformance statements.

Part 12 details the characteristics of various physical medium and media formats that are
referenced by the Media Storage Application Profiles of Part 11.

While parts 11 and 12 of DICOM are expected to evolve along with the introduction of new clinical
procedures and the advancement of storage media and file system technology, Part 10 should
remain quite stable since it specifies file formats independent of medical application or storage
technology.

Part 13 details a point-to-point protocol for doing print management services. This part has been
retired from the DICOM standard.

Part 14 specifies a standardized display function for displaying grayscale images.

Part 15 specifies Security Profiles to which implementations may claim conformance. Profiles are
defined for secure network transfers and secure media.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

9© Copyright Merge Healthcare Solutions Inc. 2025

Part 16 specifies the DICOM Content Mapping Resource (DCMR) which defines the templates and
context groups used elsewhere in the standard.

Part 17 consolidates informative information previously contained in other parts of the standard. It
is composed of several annexes describing the use of the standard.

Part 18 specifies a web-based service for accessing and presenting DICOM persistent objects (e.g.
images, medical imaging reports).

Part 19 defines an API such that a 'plug-in' Hosted Application written to the API would be able run
in any environment provided by a Hosting System implementing the API.

Part 20 specifies transformations of DICOM data to and from HL7 standards.

Part 21 specifies the transformations between DICOM and other representations of the same
information.

Part 22 specifies an SMPTE ST 2110-10 based service, relying on RTP, for the real-time transport of
DICOM metadata. It provides a mechanism for the transport of DICOM metadata associated with a
video or an audio flow based on the SMPTE ST 2110-20 and SMPTE ST 2110-30, respectively.

The figure below maps portions of the DICOM Standard dealing with networking to the ISO Open
Systems Interconnection (OSI) basic reference model. The organization and terminology of the
DICOM Standard corresponds closely with that used in the OSI Standard.

Where to get the DICOM Standard

As a user of this toolkit, you should have access to the DICOM Standard. The Merge DICOM Toolkit
takes care of most of the details of DICOM for you. However, the standard is the final word. You will
probably find Parts 2 - 6 most useful. The DICOM Standard can be ordered from:

NEMA

1300 N. 17th Street

Suite 1847

Rosslyn, VA 22209

Merge DICOM Toolkit 5.21.0 Python User’s Manual

10© Copyright Merge Healthcare Solutions Inc. 2025

USA
http://dicomstandard.org

The DICOM Standard is typically published every other year. Each version includes approved
changes since the last publishing. The most recent version of the standard is available in PDF
format and can be downloaded from NEMA's public ftp site at: ftp://medical.nema.org/medical/
Dicom.

Special Note

Note that the DICOM Standard is evolving so rapidly that additions to the Standard are published as
'supplements'. For example, the media extensions have been incorporated into the DICOM
Standard as a supplement that contains addenda to various parts of the standard (e.g., PS3.3,
PS3.4, …). If you find that this document references a part of the Standard which you cannot find,
obtain the proper supplement from NEMA. Other additions to the Standard (e.g., new image objects
or documents) are also published as supplements. NEMA also makes all supplements to the
standard freely available on their FTP server. You can reference these supplements at:

ftp://medical.nema.org/medical/Dicom/Final/.

1.2. The Merge DICOM Toolkit
The Merge DICOM Toolkit provides a generalized implementation of DICOM in a Python Library
which you use with your application. You make simple function calls to open connections with other
DICOM devices on a network, and to build and exchange DICOM messages or DICOM files.

The figure below presents a pictorial representation of a DICOM Application Entity. The Merge
DICOM Toolkit implements Parts 5, 6, 7, 8, and 10 of the DICOM Standard. It also makes it much
easier for your application to implement according to Parts 3 and 4 by supplying many tools for the
management of DICOM messages, and to Part 12 by supplying 'hooks' to your application's
underlying file system.

The DICOM Toolkit also supplies useful utility programs for testing a DICOM network connection,
creating sample DICOM messages and writing them to a file, and validating and listing the contents
of DICOM messages.

http://medical.nema.org
ftp://medical.nema.org/medical/Dicom
ftp://medical.nema.org/medical/Dicom
ftp://medical.nema.org/medical/Dicom/Final/

Merge DICOM Toolkit 5.21.0 Python User’s Manual

11© Copyright Merge Healthcare Solutions Inc. 2025

The DICOM Standard and the Merge DICOM Toolkit allow applications to add private information to
a DICOM message or file. For most application developers, this is more than sufficient. For
applications that need to define their own non-standard private network or file services, an optional
Merge DICOM Toolkit Extended Toolkit is available.

1.3. Development Platform Requirements
To use the Merge DICOM Toolkit Library, you must run on a toolkit supported computing platform.
The DICOM Python Toolkit is available for Linux x64 and Windows 10 x64 platforms (Python version
3.13 and later). If it is not currently available for your target platform, please contact Merge
Healthcare. We may already be working on the port.

Your development environment (or at a minimum your target environment) should run on a
machine with a network interface over which you can run the TCP/IP protocol. The DICOM Toolkit
library supplies you with the DICOM protocol that runs on top of TCP/IP.

If your application will write DICOM files to interchangeable media, you will need a device driver for
the media storage device and a programming interface between your operating system and the file
system on that device.

1.4. Library Structure
The organization and components of the Merge DICOM Toolkit Library are shown in the figure
below.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

12© Copyright Merge Healthcare Solutions Inc. 2025

1.4.1. Merge DICOM Toolkit Library

The Merge DICOM Toolkit library has been carefully designed to be re-entrant and has been
validated to be thread-safe on several multi-threading capable platforms. Note, however, that with
only a few exceptions, Merge DICOM Toolkit assumes that objects are only accessed from one
thread at a time. For instance, Merge DICOM Toolkit assumes that only a single thread will
manipulate a message object at one time.

Shared libraries or dynamic link libraries (DLL's) are normally supplied by Merge DICOM Toolkit for
platforms which support them.

When a Merge DICOM Toolkit Application is first run, it reads in its configuration files; usually named
merge.ini, mergecom.app, mergecom.pro, and mergecom.srv. Toolkit configuration is
described later in this document. Usually, it is desirable to keep these configurable parameters in
ASCII files for easy modification. When modifying your configuration files, your application must be
re-run for those changes to take effect.

In cases where the toolkit configuration is unlikely to be changed or it is desirable to make these
changes within the running application, the toolkit configuration can be compiled into your
application. Most configurable parameters can be dynamically modified and reset within your
running application.

The Merge DICOM Python Toolkit with Python code includes C/C++ extension libraries
mc3adv.pyd (Window 10 x64) and mc3adv.so (Linux x64). In the process of servicing networking
calls, these libraries require the services of a Berkeley Sockets (or WinSock) Library for your
platform.

1.4.2. Binary Message Information and Data Dictionary Files

A great deal of the power of Merge DICOM Toolkit lies in its message handling and message
validation capabilities. Message Objects are what is communicated between DICOM Application
Entities. When your application creates a DICOM message object, the library accesses a binary
message info file with information about that class of message. This info file describes to the library
what attributes to expect as part of that message and each attribute's characteristics (Value Type,
Conditions, and Enumerated or Defined Terms).

Another binary file containing the data dictionary is also accessed by the library. The data dictionary
contains other characteristics of attributes (Name, Value Representation, and Value Multiplicity).

Performance Tuning

Merge DICOM Toolkit gives you added flexibility, by not requiring your application to make use of the
message info file. Certain API calls allow you to open messages without accessing the info files. This
means that the toolkit cannot validate your message against the DICOM standard, but this may not
always be necessary once an application becomes stable. These options are discussed in greater
detail in the Developing DICOM Applications section of this document.

Two specialized classes (subclasses) of message objects are also supported by the DICOM Toolkit
Library: items and files. Items are DICOM 'sub-messages' that can be stored in a DICOM message
within a sequence of items. DICOM files are specialized DICOM messages that contain additional
file meta-information and are written to or read from interchangeable media rather than
transmitted or received over a network. Most Merge DICOM Toolkit API calls dealing with message
objects can also operate on items and files (these calls would be called polymorphic in object-
oriented parlance). DICOM messages, items, and files will be described in much greater detail later
in this document.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

13© Copyright Merge Healthcare Solutions Inc. 2025

1.4.3. Sample Applications

Included with the toolkit are sample applications in Python source code. Samples include SCP/
SCU client and server applications supplied for Storage. Also, a compression sample and DICOM
File Service application are provided.

Before writing your own applications, check the sample source. While these sample applications are
primitive in features and user interface, they illustrate how to use the DICOM Toolkit API to perform
DICOM services over a network.

1.4.4. Merge DICOM Toolkit Extended Toolkit

Merge Healthcare has a DICOM Database Management System in which the DICOM standard is
maintained. This database, along with a few additional tools, is used to generate the binary message
info and dictionary files accessed by the DICOM Toolkit. As the DICOM standard is updated or
extended, by simply maintaining this database, we can generate new binary files and keep the
toolkit current. This also reduces the number of changes that must be made in the core DICOM
Toolkit library over time.

The extended version of this toolkit makes some of these tools available to application developers
who need to significantly extend the standard with private attribute and private service definitions.
The files for the extended version are packaged with the standard toolkit. The extended version
supplies you with an ASCII file database of the standard that you can extend, along with executables
for your platform that translate these ASCII files to the binary message info and data dictionary files
used by the toolkit at run time. In this way, you can extend the toolkit to validate your own private
attributes and services.

1.5. Conventions
This manual follows a few formatting conventions.

Terms that are being defined are presented in boldface.

Sample commands appear in bold courier font, while sample output , source code, and
function calls appear in standard courier font.

Hexadecimal numbers are written with a trailing H. For example 16 decimal is equivalent to 10H
hexadecimal.

14© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 2. Understanding DICOM

The eighteen separate parts of the DICOM Standard can seem overwhelming, and most would
agree that they are difficult to read. Part of what makes a successful standard is precision and
detail. Our goal here is to explain the key concepts without delving too far into the detail, most of
which is handled automatically for you by the DICOM Toolkit.

2.1. General Concepts
Some key concepts that must be understood to use the DICOM Toolkit wisely are common across
both DICOM networking and interchangeable media applications. These concepts are discussed
first.

2.1.1. Application Entities

The DICOM Standard refers extensively to Application Entities (AEs). An application entity is
simply a DICOM application. If your application interacts with other applications on a network or
with interchangeable media using the DICOM protocol, it is an application entity.

DICOM also refers to Service Class Users (SCUs) and Service Class Providers (SCPs). An
application entity is an SCU when it requests DICOM services over a network and an SCP when it
provides DICOM services over a network. We will more often refer to the SCU as a Client and the
SCP as a Server. A single DICOM application entity can act as both a client and a server. This client/
server model is a powerful and omnipresent one in the world of distributed network computing.

2.1.2. Services and Meta Services

DICOM is formed around the concepts of Services and Service Classes. The DICOM Standard
specifies a set of services that can be performed over a network. Some of the services can also be
stored to interchangeable media (these are italicized in the table below). As new services are
introduced, the standard will be further expanded. The standard also groups related services into a
service class. The table below lists the DICOM standard service classes and their component
services.

When a particular collection of services in a service class implies a higher level of service, this
collection is combined by the standard into a Meta Service. Specifying that your application
supports a specific meta service is a useful shorthand for explicitly listing out the collection of
services that make up that meta service. 2

2 The DICOM Standard actually refers to services as Service Object Pairs (SOPs) and meta
services as Meta-SOPs. We avoid this terminology to avoid unnecessary detail and confusion.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

15© Copyright Merge Healthcare Solutions Inc. 2025

Table 2.1: DICOM Services Classes and their Component Services

Service Class Services Description

Verification Verification Verifies application level
communication between
DICOM application entities
(AE's).

Storage 12-lead ECG Waveform
Acquisition Context SR
Advanced Blending Presentation State
Ambulatory ECG Waveform
Arterial Pulse Waveform
Audio Waveform Real-Time Communication
Autorefraction Measurements
Basic Structured Display
Basic Text SR
Basic Voice Audio Waveform
Blending Softcopy Presentation State
Body Position Waveform
Breast Projection X-Ray Image - For Presentation
Breast Projection X-Ray Image - For Processing
Breast Tomosynthesis Image
C-Arm Photon Electron Radiation Record
C-Arm Photon-Electron Radiation
Cardiac Electrophysiology Waveform
Chest CAD SR
Colon CAD SR
Color Palette
Color Softcopy Presentation State
Compositing Planar MPR Volumetric Presentation State
Comprehensive SR
Comprehensive 3D SR
Computed Radiography Image
Confocal Microscopy Image
Confocal Microscopy Tiled Pyramidal Image
Content Assessment Results
Corneal Topography Map
CT Defined Procedure Protocol
CT Image
CT Performed Procedure Protocol
Deformable Spatial Registration
Dermoscopic Photography Image
Digital Intra-oral X-Ray Image - For Presentation
Digital Intra-oral X-Ray Image - For Processing
Digital Mammography Image - For Presentation
Digital Mammography Image - For Processing

Transfer of medical images
and related standalone data
between DICOM application
entities, either over a
network or using
interchangeable media.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

16© Copyright Merge Healthcare Solutions Inc. 2025

Digital X-Ray Image - For Presentation
Digital X-Ray Image - For Processing
Electromyogram Waveform
Electrooculogram Waveform
Encapsulated CDA
Encapsulated MTL
Encapsulated OBJ
Encapsulated PDF
Encapsulated STL
Enhanced Continuous RT Image Storage
Enhanced CT Image
Enhanced MR Color Image
Enhanced MR Image
Enhanced PET Image
Enhanced RT Image Storage
Enhanced SR
Enhanced US Volume
Enhanced X-Ray Radiation Dose SR
Enhanced XA Image
Enhanced XRF Image
Extensible SR
General Audio Waveform
General ECG Waveform
Generic Implant Template
Grayscale Planar MPR Volumetric Presentation State
Grayscale Softcopy Presentation State
Hanging Protocol
Hardcopy Color Image
Hardcopy Grayscale Image
Height Map Segmentation
Hemodynamic Waveform
Implant Assembly Template
Implant Template Group
Implantation Plan SR Document
Intraocular Lens Calculations
Intravascular Optical Coherence Tomography Image - For
Presentation
Intravascular Optical Coherence Tomography Image - For
Processing
Inventory
Keratometry Measurements
Key Object Selection Document
Label Map Segmentation
Legacy Converted Enhanced CT Image
Legacy Converted Enhanced MR Image

Service Class Services Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

17© Copyright Merge Healthcare Solutions Inc. 2025

Legacy Converted Enhanced PET Image
Lensometry Measurements
Macular Grid Thickness and Volume Report
Mammography CAD SR
Microscopy Bulk Simple Annotations
MR Image
MR Spectroscopy
Multi-channel Respiratory Waveform
Multi-frame Grayscale Byte Secondary Capture Image
Multi-frame Grayscale Word Secondary Capture Image
Multi-frame Single Bit Secondary Capture Image
Multi-frame True Color Secondary Capture Image
Multiple Volume Rendering Volumetric Presentation State
Nuclear Medicine Image
Ophthalmic 16 bit Photography Image
Ophthalmic 8 bit Photography Image
Ophthalmic Axial Measurements
Ophthalmic Optical Coherence Tomography B-scan
Volume Analysis
Ophthalmic Optical Coherence Tomography En Face
Image
Ophthalmic Thickness Map
Ophthalmic Tomography Image
Ophthalmic Visual Field Static Perimetry Measurements
Parametric Map
Patient Radiation Dose SR
Performed Imaging Agent Administration SR
Planned Imaging Agent Administration SR
Positron Emission Tomography Image
Procedure Log
Protocol Approval
Pseudo-Color Softcopy Presentation State
Radiopharmaceutical Radiation Dose SR
Raw Data
Real World Value Mapping
Rendition Selection Document Real-Time
Communication
Respiratory Waveform
Robotic-Arm Radiation
Robotic-Arm Radiation Record
Routine Scalp Electroencephalogram Waveform
RT Beams Delivery Instruction
RT Beams Treatment Record
RT Brachy Application Setup Delivery Instruction
RT Brachy Treatment Record

Service Class Services Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

18© Copyright Merge Healthcare Solutions Inc. 2025

RT Dose
RT Image
RT Ion Beams Treatment Record
RT Ion Plan
RT Patient Position Acquisition Instruction Storage
RT Physician Intent
RT Plan
RT Radiation Record Set
RT Radiation Salvage Record
RT Radiation Set Delivery Instruction
RT Radiation Set
RT Segment Annotation
RT Structure Set
RT Treatment Preparation
RT Treatment Summary Record
Secondary Capture Image
Segmentation
Segmented Volume Rendering Volumetric Presentation
State
Simplified Adult Echo SR
Sleep Electroencephalogram Waveform
Spatial Fiducials
Spatial Registration
Spectacle Prescription Report
Standalone Curve
Standalone Modality LUT
Standalone Overlay
Standalone PET Curve
Standalone VOI LUT
Stereometric Relationship
Stored Print
Subjective Refraction Measurements
Surface Scan Mesh
Surface Scan Point Cloud
Surface Segmentation
Tomotherapeutic Radiation Record
Tomotherapeutic Radiation
Tractography Results
Ultrasound Image
Ultrasound Multi-Frame Image
Variable Modality LUT Softcopy Presentation State
Storage
Video Endoscopic Image
Video Endoscopic Image Real-Time Communication
Video Microscopic Image

Service Class Services Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

19© Copyright Merge Healthcare Solutions Inc. 2025

Video Photographic Image
Video Photographic Image Real-Time Communication
Visual Acuity Measurements
VL Endoscopic Image
VL Microscopic Image
VL Photographic Image
VL Slide-Coordinates Microscopic Image
VL Whole Slide Microscopy Image
Volume Rendering Volumetric Presentation State
Waveform Annotation SR
Waveform Presentation State
Wide Field Ophthalmic Photography 3D Coordinates
Image
Wide Field Ophthalmic Photography Stereographic
Projection Image
X-Ray 3D Angiographic Image
X-Ray 3D Craniofacial Image
X-Ray Angiographic Image
X-Ray Angiographic Bi-Plane Image
X-Ray Radiation Dose SR
X-Ray Radiofluoroscopic Image
XA/XRF Grayscale Softcopy Presentation State
XA Defined Procedure Protocol
XA Performed Procedure Protocol

Storage
Commitment

Storage Commitment Push
Storage Commitment Pull

Ensures that SOP Instances
stored with the storage
service class will not be
deleted after reception but
will be stored safely and can
be retrieved again at a later
point.

Storage
Management

Inventory Creation An application-level class-
of-service that facilitates
peer-to-peer controls for
management of persistent
storage of Composite SOP
Instances.

Media Storage DICOM Basic Directory Storage and storage of various
(italicized) services from the other Service Classes

Exists as a member of every
DICOM File Set and
contains general information
about the file set and a
hierarchical directory of the
DICOM files contained in
the file set.

Service Class Services Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

20© Copyright Merge Healthcare Solutions Inc. 2025

Query/
Retrieve

Defined Procedure Protocol Information Model Find
Defined Procedure Protocol Information Model Move
Defined Procedure Protocol Information Model Get
Inventory Find
Inventory Get
Inventory Move
Patient Root Find
Patient Root Move
Patient Root Get
Patient/Study Only Find (Retired)
Patient/Study Only Move (Retired)
Patient/Study Only Get (Retired)
Protocol Approval Information Model Find
Protocol Approval Information Model Move
Protocol Approval Information Model Get
Repository Query
Study Root Find
Study Root Move
Study Root Get

Management of images
through a query and retrieval
mechanism based on a
small number of key
attributes.

Basic Worklist
Management

Modality Worklist Find Supports the exchange of
any type of worklist from one
AE to another.

Print
Management

Basic Annotation Box
Basic Color Image Box
Basic Film Session
Basic Film Box
Basic Grayscale Image Box
Basic Print Image Overlay Box
Image Overlay Box Retired
Presentation LUT
Print Job

Printing (or filming) of
medical images and image
related data on a hard copy
medium. Also, storage of
print related data to
interchangeable media.

Print Queue Management
Printer
Printer Configuration Retrieval
Printer Referenced Image Box
Pull Print Request
VOI LUT Box
Basic Grayscale Print Mgmt. Meta
Basic Color Print Mgmt. Meta
Pull Stored Print Mgmt. Meta
Ref. Grayscale Print Mgmt. Meta
Ref. Color Print Mgmt. Meta

Service Class Services Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

21© Copyright Merge Healthcare Solutions Inc. 2025

2.1.3. DICOM Information Model

The DICOM Standard includes the specification of a DICOM Information Model. A detailed entity-
relationship diagram of this model is included in both parts 3 and 4 of the standard. This model
specifies the relationship between the different types of objects (also called entities) managed in
DICOM. For example, a Patient has one or more Studies, each of which are composed of one or
more Series and zero or more Results, etc.

a. Objects vs. Object Instances

Most of DICOM's services perform actions on or with object instances.3 An object can be thought
of as a class of data (CT Image, Film Box, etc.) while an object instance is an actual occurrence of an
object (a particular CT Image, a populated Film Box, etc.).

3 object instances are referred to as SOP Instances or managed SOPs in the DICOM standard.

b. Normalized vs. Composite

There are two types of objects (and hence, object instances) defined in DICOM. Normalized
objects are objects consisting of a single entity in the DICOM information model (e.g., a Film Box).
Composite objects are composed of several related entities (e.g., an MR Image). When possible, it
is preferable to deal with normalized object instances over the network, because they contain less
redundant data and can be more efficiently managed by an application.

Most services inherited from the ACR/NEMA Version 2.x Standard are composite services
(operate on composite object instances) for reasons of backward compatibility. Newly introduced
services, such as the HIS/RIS and Print Management Services, tend to be normalized services
(operate on normalized object instances).

Study Content
Notification

Basic Study Content Notification Allows one DICOM AE to
notify another DICOM AE of
the existence, contents, and
source location of the
images of a study.

Patient
Management

Detached Patient Management
Detached Visit Management
Detached Patient Mgmt. Meta

Creation and tracking of the
subset of patient and patient
visit information that is
required to aid in the
management of
radiographic studies.

Study
Management

Detached Study Management
Study Component Management
Modality Performed Procedure Step
Modality Performed Procedure Step Notification
Modality Performed Procedure Step Retrieve

Creation, scheduling,
performance, and tracking
of imaging studies.

Results
Management

Detached Results Management
Detached Interpretation Management
Detached Results Mgmt. Meta

Creation and tracking of
results and associated
diagnostic interpretations.

Service Class Services Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

22© Copyright Merge Healthcare Solutions Inc. 2025

2.2. Networking
Certain aspects of DICOM only apply to networking when using the DICOM Toolkit. This includes
networking commands and association negotiation.

2.2.1. Commands

DICOM defines a set of networking commands4. Each service uses a subset of these DICOM
commands to perform the service over a network. These commands usually act on object
instances. The C-commands operate on composite object instances, while the N-commands
operate on normalized object instances.

4 commands are referred to as DIMSE Services in the DICOM Standard.

The DICOM commands and brief descriptions of their actions are listed in the table below.

Table 2.2: DICOM Commands

These DICOM commands can be thought of as primitives that every networking service is built
from. In the context of a particular Service, these primitive actions translate to explicit real-world
activities on the part of an Application Entity. Hence, DICOM places requirements on an application
implementing a DICOM service. DICOM is careful to only express high-level operational
requirements, and leaves the creative detail and look and feel of the application entity to the
developer.

DICOM
Commands

Description

C-STORE Transfer an object instance to a remote AE.

C-GET Retrieve from a remote AE object instance(s) whose attributes match a specified set
of attributes.

C-MOVE Move object instance(s) whose attributes match a specified set of attributes from a
remote AE to yet another remote AE (or possibly your own AE - which would be
another form of retrieval).

C-FIND Match a set of attributes to the attributes of a set of object instances on a remote AE.

C-ECHO Verify end-to-end communications with a remote AE.

N-EVENT-
REPORT

Report an event to a remote AE.

N-GET Retrieve attribute values from a remote AE.

N-SET Request modification of attribute on a remote AE.

N-ACTION Request an action by a remote AE.

N-CREATE Request that a remote AE create a new object instance.

N-DELETE Request that a remote AE delete an existing object instance.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

23© Copyright Merge Healthcare Solutions Inc. 2025

a. Request vs. Response

For every command, there is both a request and a response. A command request indicates that a
command should be performed and is usually sent to an SCP. A command response indicates
whether a command completed or its state of completion and is usually returned to an SCU.
Example request commands are C STORE-RQ, N-GET-RQ, and N-SET-RQ. Example response
commands are C STORE-RSP, N-GET-RSP, and N-SET-RSP.

NOTE: It is important to note that this service definition level is where the Merge DICOM Toolkit
Library leaves off, and your Application begins. While Merge DICOM Toolkit supplies sample
application guides and running sample application source code for your platform, they are
only supplied as an example. They clearly explain the requirements that implementing
certain DICOM services places on your application and provide worthwhile but primitive
examples of how to approach your application with the toolkit. While you will see that the
toolkit saves you a great deal of 'DICOM work', it does not implement your end application
for you.

2.2.2. Association Negotiation

One of the two areas where Merge DICOM Toolkit does a great deal of the 'DICOM work' for you is in
opening an association (session) with another DICOM AE over the network. DICOM application
entities need to agree on certain things before they operate with one another (open an association);
these include:

● the services that can be performed between the two devices, which also impacts the
commands and object instances that can be exchanged.

● the transfer syntax that shall be used in the network communication. The transfer syntax
defines how the commands and object instances are encoded 'on the wire'.

The exchange of DICOM commands and object instances can only occur over an open association.

DICOM defines an association negotiation protocol (see the figure below). In the most common
DICOM services, a client application entity (SCU) proposes an association with a server AE (SCP).
However, some services define a mechanism where the client can be the SCP which opens an
association with the SCU. This is used when an SCP sends asynchronous event reports to an SCU
through the N EVENT REPORT command. This is done through DICOM role negotiation, which is
used during standard association negotiation. For the sake of simplicity, the remainder of this
manual refers to the client as the SCU and the server as the SCP.

The association request proposal contains the set of services the client would like to perform and
the transfer syntaxes it understands. The server then responds to the client with a subset of the
services and transfer syntaxes proposed by the client. If this subset is empty, the server has rejected
the association. If the subset is not empty, the server has accepted the association and the agreed
upon services may be performed.

The client is responsible for releasing the association when it is finished performing its network
operations. Either the client or the server can abort the association in the case of some catastrophic
failure (e.g., disk full, out of memory).

Merge DICOM Toolkit 5.21.0 Python User’s Manual

24© Copyright Merge Healthcare Solutions Inc. 2025

2.3. Messages
Service-Command Pair

Once an association is established, services are performed by AEs through the exchange of DICOM
Messages. A message is the combination of a DICOM command request or response and its
associated object instance (see the figure below). Messages containing command requests will be
referred to as request messages, while messages containing command responses will be referred
to as response messages.

When a DICOM service is stored to interchangeable media in a DICOM File, the structure of a
DICOM File is a slightly specialized class of DICOM message. Media interchange is discussed in
detail later; the only important thing to realize for now is that much of what is discussed relating to
DICOM Messages also applies to DICOM Files.

DICOM specifies the required message structure for each service-command pair. For example,
the Patient Root Find - C-FIND-RQ service-command pair has a specific message structure. The
command portion of a message is specified in Part 7 of the standard, while the object instance
portion is specified in Parts 3 and 4.

Attributes, Values and Tags

A message is constructed of attributes having values, with each attribute identified by a tag. An
attribute is a unit of data (e.g., Patient's Name, Scheduled Discharge Date, ...). A tag is a 4 byte
number identifying an attribute (e.g., 00100010H for Patient's Name, 0038001CH for Scheduled
Discharge Date, ...).

Groups and Elements

A tag is usually written as an ordered pair of two byte numbers. The first two bytes are sometimes
called a group number, with the last two bytes being called an element number (e.g., (0010, 0010),
(0038, 001C), ...). This terminology is partly a remnant of the ACR-NEMA Standard where elements
within a group were related in some manner. This can no longer be depended on in DICOM, but the
ordered pair notation is still useful and often easier to read.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

25© Copyright Merge Healthcare Solutions Inc. 2025

Also, the ordered pair notation is important when defining a Tag for a private attribute. We will see
later that all private attributes must have an odd group number.

2.3.1. DICOM Data Dictionary

Attributes have certain characteristics that apply to them no matter what message they are used in.
These characteristics are specified in the DICOM Data Dictionary (Part 6 of DICOM) and are Value
Representation (VR) and Value Multiplicity (VM).

Value Representation can be thought of as the 'type specifier' for the values that can be assigned to
an attribute. This includes the data type, as well as its format. The VRs defined by DICOM are listed
in the table below. You should refer to Part 5 of the standard for a detailed description of their
allowed values and formats.

Table 2.3: DICOM Value Representations (VR's)

VR Name VR Name

AE Application Entity OW Other Word

AS Age String PN Person Name

AT Attribute Tag SH Short String

CS Code String SL Signed Long

DA Date SQ Sequence of Items

DS Decimal String SS Signed Short

DT Date Time ST Short Text

FL Floating Point Single SV Signed 64-bit Very Long

FD Floating Point Double TM Time

IS Integer String UC Unlimited Characters

LO Long String UI Unique Identifier

LT Long Text UL Unsigned Long

OB Other Byte UN Unknown

OD Other Double UR URI or URL

OF Other Float US Unsigned Short

Merge DICOM Toolkit 5.21.0 Python User’s Manual

26© Copyright Merge Healthcare Solutions Inc. 2025

A single attribute can have multiple values. Value Multiplicity defines the number of values an
attribute can have. VM can be specified as 1, k , 1-k or 1-n, where k is some integer value and n
represents 'many'. For example, Part 6 specifies the VM of Scheduled Discharge Time (0038, 001D)
as 1, while the VM of Referenced Overlay Plane Groups (2040, 0011) is 1-99.

2.3.2. Message Handling

Given the number of services and commands specified in TABLE 2.1: DICOM SERVICES CLASSES
AND THEIR COMPONENT SERVICES ON PAGE 15 and TABLE 2.2: DICOM COMMANDS ON PAGE 22, it is
clear that there are a great deal of messages to manage in DICOM. Remember, each service-
command pair implies a different message. Fortunately, you will see later that Merge DICOM Toolkit
saves the application developer a great deal of work in the message handling arena.

DICOM specifies the required contents of each message in Parts 3, 4, and 7 of the standard. For
each attribute included in a message, additional characteristics of the attribute are defined that only
apply within the context of a service. These characteristics are Enumerated Values, Defined
Terms, and Value Type.

DICOM specifies that some attributes should have values from a specified set of values. If the
attribute is an enumerated value, it shall have a value taken from the specified set of values. A good
example of enumerated values are (M, F, O) for Patient's Sex (0010, 0040) in Storage services. If the
attribute is a defined term, it may take its value from the specified set, or the set may be extended
with additional values. An example of defined terms are (CREATED, RECORDED, TRANSCRIBED,
APPROVED) for Interpretation Status ID (4008, 0212) in Results Management services. If this set is
extended by an application with another term, such as IN PROCESS, it should be documented in
that application's conformance statement.

The most important characteristic of an attribute that is specified on a message by message basis,
is the Value Type (VT). The VT of an attribute specifies whether or not that attribute needs to be
included in a message and if it needs to have a value. Attributes can be required, optional, or only
required under certain conditions (conditional attributes). Conditional attributes are always
specified along with a condition. The value types defined by DICOM are listed in the table below.
Note that a null valued attribute has a value, that value being null (zero length).

Table 2.4: DICOM Value Types (VT's)

OL Other Long UT Unlimited Text

OV Other 64-bit Very Long UV Unsigned 64-bit Very Long

VR Name VR Name

Value Type
(VT)

Description

1 The attribute must have a value and be included in the message. The value cannot be null
(empty).

1C The attribute must have a value and be included in the message only under a specified
condition. The value cannot be null. If that condition is not met, the attribute shall not be
included in the message.

2 The attribute must have a value and be included in the message. If the value for the attribute
is unknown and cannot be specified, its value shall be null.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

27© Copyright Merge Healthcare Solutions Inc. 2025

2.3.3. Private Attributes

The DICOM Standard allows application developers to add their own private attributes to a message
as long as they are careful to follow certain rules. A private attribute is identified differently than are
standard attributes. Its tag is composed of an odd group number, a private identification code
string, and a single byte element number.

For example, ACME Imaging Inc. might define a private attribute to hold the name of the field
engineer that last serviced their equipment. They could assign this attribute to private attribute tag
(1455, 'ACME_IMG_INC', 00). This attribute has group number 1455, a private identification code
string of 'ACME_IMG_INC', and a single byte element number of 00.

ACME could assign up 255 other private attributes to private group 1455 by using the other element
numbers (01-FF). Part 5 of DICOM explains how these private tags are translated to standard group
and element numbers and encoded into a message, while avoiding collisions. Merge DICOM Toolkit
handles these details for you.

DICOM makes a couple of rules that must be followed when using private attributes:

● Private attributes shall not be used in place of required (Value Type 1, 1C, 2, or 2C) attributes.

● The possible value representations (VRs) used for private attributes shall be only those
specified by the standard (see TABLE 2.4: DICOM VALUE TYPES (VT'S) ON PAGE 26).

The way you use private attributes in your application can also greatly affect your conformance
statement. DICOM conformance is discussed in greater detail later.

2.4. Media Interchange
The DICOM Standard specifies a DICOM file format for the interchange of medical information on
removable media. This file format is a logical extension of the networking portion of the standard.
When an object instance that was communicated over a network would also be of value when
communicated via removable media, DICOM specifies the encapsulation of these object instances
in a DICOM file.

2.4.1. DICOM Files

A DICOM File is the encapsulation of a DICOM object instance, along with File Meta Information.
File meta information is stored in the header of every DICOM file and includes important identifying

2C The attribute must have a value and be included in the message only under a specified
condition. If the value for the attribute is unknown and cannot be specified, its value shall be
null. If that condition is not met, the attribute shall not be included in the message

3 The attribute is optional. It may or may not be included in the message. If included, the
attribute may or may not have a null value.

Value Type
(VT)

Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

28© Copyright Merge Healthcare Solutions Inc. 2025

information about the encapsulated object instance and its encoding within the file (see the figure
below).

The file meta information begins with a 128 byte buffer available for application profile or
implementation specific use. Application Profiles standardize a number of choices related to a
specific clinical need (modality or application) and are specified in Part 11 of the DICOM Standard.
The next four bytes of the meta information contain the DICOM prefix, which is always "DICM" in a
DICOM file and can be used as an identifying characteristic for all DICOM files. The remainder of
the file (preamble and object instance) is encoded using tagged attributes (as in a DICOM
Message).

The object instances that can be stored within the DICOM file are equivalent to a subset of the
object instances that can be transmitted in network messages. The services that can be performed
to interchangeable media are italicized in TABLE 2.1: DICOM SERVICES CLASSES AND THEIR
COMPONENT SERVICES ON PAGE 15. The Media Storage Service Class (in Part 4 of the DICOM
standard) specifies which service-command pairs can be performed to media. Remember it is the
service command pair that identifies the object instance portion of the message, and it is only the
object instance portion of the message that is stored in a DICOM file. The command attributes
associated with a network message are never stored in a DICOM File.

The service command pairs whose corresponding object instances can be stored to media are
summarized in the table below.

NOTE: The Media Storage Directory Service is not performed over a network and the single object
specified in the Basic Directory Information Object Definition (Part 3) is used.

Table 2.5: Service-Command Pairs Specifying Object Instances that can be Stored in a DICOM File

Service Command

12-lead ECG Waveform Storage C-STORE

Advanced Blending Presentation State Storage C-STORE

Ambulatory ECG Waveform Storage C-STORE

Arterial Pulse Waveform Storage C-STORE

Audio Waveform Real-Time Communication C-STORE

Autorefraction Measurements Storage C-STORE

Basic Color Image Box N-SET

Basic Film Box N-CREATE

Merge DICOM Toolkit 5.21.0 Python User’s Manual

29© Copyright Merge Healthcare Solutions Inc. 2025

Basic Film Session N-CREATE

Basic Grayscale Image Box N-SET

Basic Structured Display Storage C-STORE

Basic Text Structured Reporting C-STORE

Basic Voice Audio Waveform Storage C-STORE

Blending Softcopy Presentation State Storage C-STORE

Body Position Waveform Storage C-STORE

Breast Projection X-Ray Image Storage - For Presentation C-STORE

Breast Projection X-Ray Image Storage - For Processing C-STORE

Breast Tomosynthesis Image Storage C-STORE

C-Arm Photon-Electron Radiation Record Storage C-STORE

C-Arm Photon-Electron Radiation Storage C-STORE

Cardiac Electrophysiology Waveform Storage C-STORE

Chest CAD SR C-STORE

Colon CAD SR C-STORE

Color Palette Storage C-STORE

Color Softcopy Presentation State Storage C-STORE

Comprehensive Structured Reporting C-STORE

Computed Radiography Image Storage C-STORE

Confocal Microscopy Image C-STORE

Confocal Microscopy Tiled Pyramidal Image C-STORE

CT Image Storage C-STORE

Deformable Spatial Registration Storage C-STORE

Dermoscopic Photography Image Storage C-STORE

Detached Interpretation Management N-GET

Detached Patient Management N-GET

Detached Results Management N-GET

Detached Study Management N-GET

Detached Study Component Management N-GET

Detached Visit Management N-GET

Service Command

Merge DICOM Toolkit 5.21.0 Python User’s Manual

30© Copyright Merge Healthcare Solutions Inc. 2025

Digital Intra-oral X-Ray Image Storage - For Presentation C-STORE

Digital Intra-oral X-Ray Image Storage - For Processing C-STORE

Digital Mammography Image Storage - For Presentation C-STORE

Digital Mammography Image Storage - For Processing C-STORE

Digital X-Ray Image Storage - For Presentation C-STORE

Digital X-Ray Image Storage - For Processing C-STORE

Electromyogram Waveform Storage C-STORE

Electrooculogram Waveform Storage C-STORE

Encapsulated CDA Storage C-STORE

Encapsulated MTL Storage C-STORE

Encapsulated OBJ Storage C-STORE

Encapsulated PDF Storage C-STORE

Encapsulated STL Storage C-STORE

Enhanced Continuous RT Image Storage C-STORE

Enhanced CT Image Storage C-STORE

Enhanced MR Color Image Storage C-STORE

Enhanced MR Image Storage C-STORE

Enhanced PET Image Storage C-STORE

Enhanced RT Image Storage C-STORE

Enhanced Structured Reporting C-STORE

Enhanced US Volume Storage C-STORE

Enhanced X-Ray Radiation Dose SR Storage C-STORE

Enhanced XA Image Storage C-STORE

Enhanced XRF Image Storage C-STORE

General Audio Waveform Storage C-STORE

General ECG Waveform Storage C-STORE

Generic Implant Template Storage C-STORE

Grayscale Softcopy Presentation State Storage C-STORE

Hanging Protocol Storage C-STORE

Height Map Segmentation C-STORE

Service Command

Merge DICOM Toolkit 5.21.0 Python User’s Manual

31© Copyright Merge Healthcare Solutions Inc. 2025

Hemodynamic Waveform Storage C-STORE

Implant Assembly Template Storage C-STORE

Implant Template Group Storage C-STORE

Implantation Plan SR Document Storage C-STORE

Intraocular Lens Calculations Storage C-STORE

Intravascular Optical Coherence Tomography Image Storage - For Presentation C-STORE

Intravascular Optical Coherence Tomography Image Storage - For Processing C-STORE

Inventory C-STORE

Keratometry Measurements Storage C-STORE

Key Object Selection C-STORE

Label Map Segmentation C-STORE

Legacy Converted Enhanced CT Image Storage C-STORE

Legacy Converted Enhanced MR Image Storage C-STORE

Legacy Converted Enhanced PET Image Storage C-STORE

Lensometry Measurements Storage C-STORE

Macular Grid Thickness and Volume Report C-STORE

Mammography CAD SR C-STORE

Media Storage Directory Storage C-STORE*

Microscopy Bulk Simple Annotations Storage C-STORE

MR Image Storage C-STORE

MR Spectroscopy Storage C-STORE

Multi-channel Respiratory Waveform Storage C-STORE

Multi-frame Grayscale Byte Secondary Capture Image Storage C-STORE

Multi-frame Grayscale Word Secondary Capture Image Storage C-STORE

Multi-frame Single Bit Secondary Capture Image Storage C-STORE

Multi-frame True Color Secondary Capture Image Storage C-STORE

Multiple Volume Rendering Volumetric Presentation State Storage C-STORE

Nuclear Medicine Image Storage C-STORE

Ophthalmic 16 bit Photography Image Storage C-STORE

Ophthalmic 8 bit Photography Image Storage C-STORE

Service Command

Merge DICOM Toolkit 5.21.0 Python User’s Manual

32© Copyright Merge Healthcare Solutions Inc. 2025

Ophthalmic Axial Measurements Storage C-STORE

Ophthalmic Optical Coherence Tomography B-scan Volume Analysis Storage C-STORE

Ophthalmic Optical Coherence Tomography En Face Image Storage C-STORE

Ophthalmic Tomography Image Storage C-STORE

Ophthalmic Visual Field Static Perimetry Measurements Storage C-STORE

Parametric Map Storage C-STORE

Patient Radiation Dose SR Storage C-STORE

Performed Imaging Agent Administration SR Storage C-STORE

Planned Imaging Agent Administration SR Storage C-STORE

Positron Emission Tomography Image Storage C-STORE

Procedure Log C-STORE

Protocol Approval Storage C-STORE

Pseudo-Color Softcopy Presentation State Storage C-STORE

Raw Data Storage C-STORE

Real World Value Mapping Storage C-STORE

Rendition Selection Document Real-Time Communication C-STORE

Respiratory Waveform Storage C-STORE

Robotic-Arm Radiation Record Storage C-STORE

Robotic-Arm Radiation Storage C-STORE

Routine Scalp Electroencephalogram Waveform Storage C-STORE

RT Beams Delivery Instruction Storage C-STORE

RT Beams Treatment Record Storage C-STORE

RT Brachy Treatment Record Storage C-STORE

RT Dose Storage C-STORE

RT Image Storage C-STORE

RT Ion Beams Treatment Record Storage C-STORE

RT Ion Plan Storage C-STORE

RT Patient Position Acquisition Instruction Storage C-STORE

RT Physician Intent Storage C-STORE

RT Plan Storage C-STORE

Service Command

Merge DICOM Toolkit 5.21.0 Python User’s Manual

33© Copyright Merge Healthcare Solutions Inc. 2025

RT Radiation Record Set Storage C-STORE

RT Radiation Salvage Record Storage C-STORE

RT Radiation Set Delivery Instruction Storage C-STORE

RT Radiation Set Storage C-STORE

RT Segment Annotation Storage C-STORE

RT Structure Set Storage C-STORE

RT Treatment Preparation Storage C-STORE

RT Treatment Summary Record Storage C-STORE

Secondary Capture Image Storage C-STORE

Segmentation Storage C-STORE

Segmented Volume Rendering Volumetric Presentation State Storage C-STORE

Sleep Electroencephalogram Waveform Storage C-STORE

Spatial Registration Storage C-STORE

Spatial Fiducials Storage C-STORE

Spectacle Prescription Report Storage C-STORE

Standalone Overlay Storage C-STORE

Standalone Curve Storage C-STORE

Standalone Modality LUT Storage C-STORE

Standalone VOI LUT Storage C-STORE

Stereometric Relationship Storage C-STORE

Subjective Refraction Measurements Storage C-STORE

Surface Segmentation Storage C-STORE

Tomotherapeutic Radiation Record Storage C-STORE

Tomotherapeutic Radiation Storage C-STORE

Ultrasound Image Storage C-STORE

Ultrasound Multi-frame Image Storage C-STORE

Variable Modality LUT Softcopy Presentation State Storage C-STORE

Video Endoscopic Image Storage C-STORE

Video Endoscopic Image Real-Time Communication C-STORE

Video Microscopic Image Storage C-STORE

Service Command

Merge DICOM Toolkit 5.21.0 Python User’s Manual

34© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: * Merge DICOM Toolkit defines a C-STORE command for the Media Storage Directory
(DICOMDIR) service even though it does not formally exist In the DICOM Standard.

Finally, the DICOM file can be padded at the end with the Data Set Trailing Padding attribute (FFFC,
FFFC) whose value is specified by the standard to have no significance.

2.4.2. File Sets

DICOM Files must be stored on removable media in a DICOM File Set. A DICOM file set is defined
as a collection of DICOM files sharing a common naming space within which file ID's are unique
(e.g., a file system partition). A DICOM File Set ID is a string of up to 16 characters that provides a
name for the file set.

Video Photographic Image Real-Time Communication C-STORE

Video Photographic Image Storage C-STORE

Visual Acuity Measurements Storage C-STORE

VL Endoscopic Image Storage C-STORE

VL Microscopic Image Storage C-STORE

VL Photographic Image Storage C-STORE

VL Slide-Coordinates Microscopic Image Storage C-STORE

VL Whole Slide Microscopy Image Storage C-STORE

Volume Rendering Volumetric Presentation State Storage C-STORE

Waveform Annotation SR Storage C-STORE

Waveform Presentation State C-STORE

Wide Field Ophthalmic Photography 3D Coordinates Image Storage C-STORE

Wide Field Ophthalmic Photography Stereographic Projection Image Storage C-STORE

X-Ray Angiographic Image Storage C-STORE

X-Ray Radiofluoroscopic Image Storage C-STORE

X-Ray Radiation Dose SR Storage C-STORE

X-Ray 3D Angiographic Image Storage C-STORE

X-Ray 3D Craniofacial Image Storage C-STORE

XA/XRF Grayscale Softcopy Presentation State Storage C-STORE

XA Defined Procedure Protocol Storage C-STORE

XA Performed Procedure Protocol Storage C-STORE

Service Command

Merge DICOM Toolkit 5.21.0 Python User’s Manual

35© Copyright Merge Healthcare Solutions Inc. 2025

A File ID is a name given to a DICOM file that is mapped to each media format specification (in Part
12 of DICOM). A file ID consists of an ordered sequence of one to eight components, where each
component is a string of one to eight characters. One can certainly imagine mapping such a file ID
to a hierarchical file system, and this is done for several media formats in Part 12. It is important to
note that DICOM states that no semantic relationship between DICOM files shall be conveyed by
the contents or structure of file IDs (e.g., the hierarchy). This helps insure that DICOM files can be
stored in a media format and file system independent manner.

The allowed characters in both a file ID and file set ID are a subset of the ASCII character set
consisting of the uppercase characters (A-Z), the numerals (0-9), and the underscore (_).

2.4.3. The DICOMDIR

The DICOM Directory File or DICOMDIR is a special type of DICOM File. A single DICOMDIR must
exist within each DICOM file set, and is always given the file ID "DICOMDIR". It is the DICOMDIR file
that contains identifying information about the entire file set, and usually (dependent on the
Application Profile) a directory of the file set's contents.

The figure below shows a graphical representation of a DICOMDIR file and its central role within a
DICOM File Set.

a. The DICOMDIR Hierarchy

If the DICOMDIR file contains directory information, it is composed of a hierarchy of directory
entities, with the top-most directory entity being the root directory entity. A Directory Entity is a
grouping of semantically related directory records. A Directory Record identifies a DICOM File by
summarizing key attributes and their values in the file and specifying the file ID of the
corresponding file. The file ID can then be used, in the context of the native file system, to access
the corresponding DICOM file. Each directory record can in turn point down the hierarchy to a
semantically related directory entity.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

36© Copyright Merge Healthcare Solutions Inc. 2025

Part 3 of the DICOM Standard specifies the allowed relationships between directory records in the
section defining the Basic Directory IOD. We reproduce this table here (see the table below) for
pedagogical reasons; but, you should refer to the DICOM Standard for the most up-to-date and
accurate specification.

Table 2.6: Allowed Directory Entity

Directory Record Type Record Types which may be included in the next lower-level Directory Entity

(Root Directory Entity) PATIENT, HANGING PROTOCOL, PALETTE, IMPLANT, IMPLANT ASSY,
IMPLANT GROUP, PRIVATE

PATIENT STUDY, HL7 STRUC DOC, PRIVATE

STUDY SERIES, PRIVATE

SERIES IMAGE, RT DOSE, RT STRUCTURE SET, RT PLAN, RT TREAT RECORD,
PRESENTATION, WAVEFORM, SR DOCUMENT, KEY OBJECT DOC,
SPECTROSCOPY, RAW DATA, REGISTRATION, FIDUCIAL, ENCAP DOC, VALUE
MAP, STEREOMETRIC, PLAN, MEASUREMENT, SURFACE, PRIVATE

IMAGE PRIVATE

RT DOSE PRIVATE

RT STRUCTURE SET PRIVATE

RT PLAN PRIVATE

RT TREAT RECORD PRIVATE

PRESENTATION PRIVATE

WAVEFORM PRIVATE

SR DOCUMENT PRIVATE

KEY OBJECT DOC PRIVATE

SPECTROSCOPY PRIVATE

RAW DATA PRIVATE

REGISTRATION PRIVATE

FIDUCIAL PRIVATE

HANGING PROTOCOL PRIVATE

ENCAP DOC PRIVATE

HL7 STRUC DOC PRIVATE

VALUE MAP PRIVATE

STEREOMETRIC PRIVATE

PALETTE PRIVATE

IMPLANT PRIVATE

Merge DICOM Toolkit 5.21.0 Python User’s Manual

37© Copyright Merge Healthcare Solutions Inc. 2025

2.4.4. File Management Services and Roles

a. File Management Services

Part 10 of the DICOM Standard specifies a set of file management roles and services. There are five
DICOM File Services that describe the entire set of DICOM file operation primitives:

Table 2.7: DICOM File Services

The Merge DICOM Toolkit supplies families of functions that perform the first two file services. The
Toolkit also implements enhanced read and write functionality for the creation and maintenance of
DICOMDIR files and its hierarchy of directory entities and directory records. The remaining three
file services are best implemented by the application entity through file system calls because they
are file system dependent operations.

b. File Management Roles

DICOM Application Entities that perform file interchange functionality are in turn classified into
three roles:

● File Set Creator (FSC) - Uses M-WRITE operations to create a DICOMDIR file and one or more
DICOM files.

● File Set Reader (FSR) - Uses M-READ operations to access one or more files in a DICOM file
set. An FSR shall not modify any files of the file set (including the DICOMDIR file).

IMPLANT ASSY PRIVATE

IMPLANT GROUP PRIVATE

PLAN PRIVATE

MEASUREMENT PRIVATE

SURFACE PRIVATE

PRIVATE PRIVATE, (any of the above as privately defined)

Directory Record Type Record Types which may be included in the next lower-level Directory Entity

DICOM File Services Description

M-WRITE Create new files in a file set and assign them a file ID.

M-READ Read existing files based on their file ID.

M-DELETE Delete existing files based on their file ID.

M-INQUIRE FILE-SET Inquire free space available for creating new files within a file set.

M-INQUIRE FILE Inquire date and time of file creation (or last update if applicable) for any file
within a file set.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

38© Copyright Merge Healthcare Solutions Inc. 2025

● File Set Updater (FSU) - Performs M-READ, M-WRITE, and M-DELETE operations. It reads, but
shall not modify the content of any DICOM files other than the DICOMDIR file. It may create
additional files by means of an M-WRITE or delete existing files by means of an M-DELETE.

The concept of these roles is used within the DICOM conformance statement of an application
entity that supports media interchange to express the capabilities of the implementation more
precisely. Conforming applications shall support one of the capability sets specified in the table
below. DICOM conformance is described in greater detail in the next section.

Table 2.8: Media Application Operations and Roles

2.5. Conformance
Part 2 of DICOM discusses conformance and is important to any AE developer. For an application
to be DICOM conformant it must:

● meet the minimum general conformance requirements specified in Part 2 and service specific
conformance requirements specified in Part 4 (Network Services), and/or Parts 10 and 11
(Media Services); and

● have a published DICOM conformance statement detailing the above conformance and any
optional extensions.

Conformance also applies to aspects of the communications protocol that are managed by the
DICOM Toolkit. Most parameters are configurable by your application.

Conformance Statement templates in each of the Sample Application Guides also provide
guidance in preparing your conformance statement for your application.

Part 2 also deals with private extensions to the DICOM Standard by defining Standard Extended
Services. Standard Extended Services give your application a little more flexibility, by allowing you to
add private attributes as long as they are of value type 3 (optional) and are documented in the
conformance statement.

DICOM also allows you to define your own Specialized and Private Services. These should be
avoided by most applications since they are non-standard, add complexity to your application, and
limit interoperability.

Media Roles M-WRITE M-READ M-DELETE M-INQUIRE
FILE-SET

M-INQUIRE
FILE

FSC Mandatory not required not required Mandatory Mandatory

FSR not required Mandatory not required not required Mandatory

FSC+FSR Mandatory Mandatory not required Mandatory Mandatory

FSU Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSR Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC+FS
R

Mandatory Mandatory Mandatory Mandatory Mandatory

Merge DICOM Toolkit 5.21.0 Python User’s Manual

39© Copyright Merge Healthcare Solutions Inc. 2025

If you are significantly extending services or creating your own private services, you may need the
Merge DICOM Toolkit Extended Toolkit to assist in defining these services so that they can be
supported by the toolkit.

40© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 3. Using Merge DICOM Toolkit

You can use the Merge DICOM Toolkit 'out of the box' by using its supplied utility programs and
sample applications. In this section we discuss how to configure the toolkit and to use the utility
programs. Use of the sample applications is described in the sample application guides. Later, we
discuss how to develop your own DICOM applications using the Merge DICOM Toolkit library.

3.1. Configuration
Merge DICOM Toolkit is highly configurable, and understanding its configuration files is critical to
using the library effectively.

Related parameters are grouped into sections in a configuration file as follows:

[SECTION_1]

PARAMETER_1 = value1

PARAMETER_2 = value2

[SECTION_2]

PARAMETER_3 = value3

...

Related sections are grouped into one of four configuration files:

● initialization file

● application profile

● system profile

● service profile

Each of these configuration files is discussed separately below. Only the key configurable
parameters are summarized in this document.

3.1.1. Initialization File

The Merge DICOM Toolkit Initialization File (usually called merge.ini) provides the DICOM Toolkit
with its top-level configuration. It specifies the location of the other three configuration files, along
with message and error logging characteristics.

The method MC.initialize(inifile, license) can be used to assign the path where the
merge.ini file is located. You can also set the MERGE_INI environmentvariable to point to the Merge
Initialization File. This variable can be set within a command shell; for example:

In Unix C-shell:

setenv MERGE_INI /users/mc3adv/merge.ini

In Unix Bourne, Korn, or Bash shell:

MERGE_INI=/users/mc3adv/merge.ini; export MERGE_INI

In DOS command shell:

set MERGE_INI=\mc3adv\merge.ini

Merge DICOM Toolkit 5.21.0 Python User’s Manual

41© Copyright Merge Healthcare Solutions Inc. 2025

The initialization file contains one [MergeCOM3] section that points to the location of the other three
Merge DICOM Toolkit initialization files, specifies characteristics of the message/error log kept by
the DICOM Toolkit library, turns particular types of logging on and off, and specifies where the
messages are logged (file, screen, both, or neither). In most cases the INFO, WARNING, and
ERROR messages will be sufficient. The Tn_MESSAGE settings (where n is an integer between 1 and
9) turns on lower-level protocol tracing capabilities. These capabilities can prove useful when
running into difficulties communicating with other implementations of DICOM over a network and
can be used by Merge service engineers in diagnosing lower-level network problems.

3.2. Message Logging
Merge DICOM Toolkit supplies a message logging facility whereby three primary classes of
messages can be logged to a specified file and/or standard output:

● Errors

● Warnings

● Info

Error messages include unrecoverable errors, such as "association aborted", or "failure to connect
to remote application". Other error messages may be catastrophic but it is left to the application to
determine whether or not to abort an association, such as an "invalid attribute value" or "missing
attribute value" in a DICOM message.

Warnings are meant to alert toolkit users to unusual conditions, such as missing parameters that
are defaulted or attributes having values that are not one of the defined terms in the standard.

Info messages include high-level messages describing the opening of associations and exchanging
of messages over open associations.

As discussed earlier, other more detailed logging can be obtained by using the T1_MESSAGE
through T9_MESSAGE logging levels. For example, the T5_MESSAGE logging level can be used to log
the results of an MCattributeSet.validate(level) call.

The trace logging levels are intended strictly for debugging purposes. If left on, they can seriously
degrade toolkit performance. In particular, the T2, T7 and T9 levels should be turned off in normal
operation.

An excerpt from a Merge DICOM Toolkit message log file is included below that contains all three
classes of messages: errors, warnings, and informational.

Message Log Example:

...

03-29 21:14:54.77 MC3 W: (0010,1010): Value from stream had problem:

03-29 21:14:54.78 MC3 W: | Invalid value for this tag's VR

03-29 21:14:56.41 MC3(Read_PDU_Head) E: Error on Read_Transport call

03-29 21:14:56.41 MC3(MCI_nextPDUtype) E: Error on Read_PDU_Head call

03-29 21:14:56.41 MC3(Transport_Conn_Closed_Event) E: Transport
unexpectedly closed

03-29 21:14:56.41 MC3(MCI_ReadNextPDV) I: DUL_read_pdvs error: UL
Provider aborted the association

03-29 21:14:56.41 MC3 E: (0000,0000): Error during
MC_Stream_To_Message:

Merge DICOM Toolkit 5.21.0 Python User’s Manual

42© Copyright Merge Healthcare Solutions Inc. 2025

03-29 21:14:56.41 MC3 E: | Callback cannot comply

03-29 21:14:56.41 MC3(MC_Read_Message) E: Network connection
unexpectedly shut down

...

On many DICOM Toolkit computing platforms, additional information is logged, such as process
and thread id numbers identifying where the message was generated.

3.3. Utility Programs
The Merge DICOM Toolkit supplies several useful utility programs. These utilities can be used to
help you validate your own implementations and better understand the standard.

All these utilities use the Merge DICOM Toolkit Library and require that you set your MERGE_INI
environmental variable to point to the proper configuration files (as described earlier).

3.3.1. mc3comp

The mc3comp utility can be used to compare the differences between two DICOM objects. The
objects can be encoded in either the DICOM file or "stream" format and do not have to be encoded
in the same format. The utility will output differences in tags between the messages taking into
account differences in byte ordering and encoding. The syntax for the utility is the following:

mc3comp [-t1 <syntax> -t2 <syntax>] [-e file] [-o -m1 -m2] file1 file2

-t1 <syntax>Optional specify transfer syntax of 'file1'message, where

<syntax> = 'il' for implicit little endian (default),

 'el' for explicit little endian,

 'eb' for explicit big endian.

-t2 <syntax>Optional specify transfer syntax of 'file2' message,
where

<syntax> = 'il' for implicit little endian (default),

 'el' for explicit little endian,

 'eb' for explicit big endian.

-e <file>Optional exception file of all tags to ignore in comparison.

-oCompare OB/OW/OF (e.g.,binary pixel) data.

-m1Compare 'file1' in DICOM-3 file format.

-m2Compare 'file2' in DICOM-3 file format.

-hShow these options.

file1DICOM SOP Instance (message) file

file2Another DICOM SOP Instance (message) file

Example:mc3comp -t1 il -m2 -o 1.img 1.dcm

Merge DICOM Toolkit 5.21.0 Python User’s Manual

43© Copyright Merge Healthcare Solutions Inc. 2025

3.3.2. mc3conv

The mc3conv utility can be used to convert a DICOM object between various transfer syntaxes and
formats. The utility will read an input file and then write the output file in the transfer syntax specified
in the command line. The utility can also convert between DICOM “stream” format and the DICOM
file format. The syntax for the mc3conv utility is the following:

mc3conv input_file output_file [-t <syntax>] [-p] [-m] [-x] [-s
<syntax> [-tag <tag> <"new value">]

input_fileDICOM SOP Instance (message) file.

output_fileOutput DICOM SOP Instance (message) file.

-tSpecify transfer syntax for 'output_file', where

<syntax> = il' for implicit little endian (default)

 'el' for explicit little endian

 'eb' for explicit big endian

 'ib' for implicit big endian

 'jb' for jpeg baseline

 'je' for jpeg extended 2_4

 'jl' for jpeg lossless hier 14

 'j2lo' for jpeg 2000 lossless only

 'j2' for jpeg 2000

 'rle' for rle

-mSpecify format of 'output_file' to be DICOM-3 media (Part 10)
format.

-sSpecify transfer syntax for 'input_file'.

-pJust extract the pixel data from 'input_file' into

'output_file'.If multiframe and encapsulated, '_x'

is appended to 'output_file' for each frame.

-tagChange value for this tag in 'output_file', where

<tag> = the tag that is to be changed in hex 0x...

<new value> = the value for the tag in quotes,

multi values separated as "val1\val2".

-xSpecify format of 'output_file' to be XML format.

-hShow these options.

Example: mc3conv in.img out.dcm -t el -m

Merge DICOM Toolkit 5.21.0 Python User’s Manual

44© Copyright Merge Healthcare Solutions Inc. 2025

3.3.3. mc3echo

The mc3echo utility validates application level communication between two DICOM AEs. An echo
test is the equivalent of a network 'ping' operation, but at the DICOM application level rather than
the TCP/IP transport level.

All server (SCP) applications built with the DICOM Toolkit also have built-in support of the
Verification Service Class and the C-ECHO command.

The command syntax follows:

mc3echo [-c count] [-r remote_host] [-l local_app_title] [-p
remote_port] remote_app_title

-c countInteger number specifying the number of echoes to send to the
remote host. If -c is not specified, one echo will be
performed.

-r remote_hostHost name of the remote computer If -r is not specified,
the default value for remote_host is configured in the
Application Profile.

-l local_app_titleApplication title of this program.

If -l is not specified, the default value

For local_app_title is MERGE_ECHO_SCU

-p remote_portPort number the remote computer is listening on. If -p
is not specified, the default value for remote_host is
configured in the Application Profile.

3.3.4. mc3list

mc3list displays the contents of binary DICOM message files in an easy to read manner. The
message files could have been generated by mc3file (see below) or written out by your application.

mc3list is a useful educational tool as well as a tool that can be used for off-line display of the
DICOM messages your application generates or receives.

The command syntax follows:

mc3list <filename> [-t <syntax>] [-m]

filename Filename containing message to display

-t Specify transfer syntax of message, where syntax is:

 "il" (implicit little endian),

 "el" (explicit little endian), or

 "eb" (explicit big endian)

-m Optional display a DICOM file object

Merge DICOM Toolkit 5.21.0 Python User’s Manual

45© Copyright Merge Healthcare Solutions Inc. 2025

If the DICOM service and/or command cannot be found in the message file, a warning will be
displayed, but the message will still be listed.

The default transfer syntax is implicit little endian (the DICOM default transfer syntax). If the transfer
syntax is incorrectly specified, the message will not be displayed correctly.

3.3.5. mc3valid

The mc3valid utility validates binary message files according to the DICOM standard and notifies
you of missing attributes, improper data types, illegal values, and other problems with a message.
mc3valid is a powerful educational and validation tool that can be used for the off-line validation of
the DICOM messages your application generates or receives.

The command syntax follows:

mc3valid <filename> [-e|-w|-i] [-s <serv> -c <cmd>] [-p] [-q] [-t
<syntax>]

<filename> Filename containing message to validate

-e Display error messages only (optional)

-w Display error and warning messages (optional,

 default)

-I Display informational, error, and warning messages

 (optional)

-s <serv> Force the message to be validated against service name

 "serv", used along with '-c' (optional)

-c <cmd> Force the message to be validated against command name

 "cmd", used along with '-s' (optional)

-q Disable prompting for correct service-command pairs

 (optional)

-p Use message template to validate message against

 (optional, maintained for backward compatibility only)

-t Specify transfer syntax of message, where

 syntax = "il" (implicit little endian)

 = "el" (explicit little endian)

 = "eb" (explicit big endian)

This command validates the specified message file; printing errors, warnings, and information
generated to standard output. The user can force the message to be validated against a specified
DICOM service-command pair if the message does not already contain this information.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

46© Copyright Merge Healthcare Solutions Inc. 2025

If the service-command pair is not contained in the message, the program will list the possible
service-command pairs and the user can select one of them. When using this program with a batch
file, this option can be shut off with the -q flag.

The default transfer syntax is implicit little endian (the DICOM default transfer syntax). If the transfer
syntax is incorrectly specified, the message cannot be validated.

Limitations

While mc3valid's message validation is quite comprehensive, it does have limitations. The
DICOM Standard should always be considered the final authority.

3.3.6. mc3file

Sample DICOM messages can be generated with the mc3file utility. You specify the service,
command, and transfer syntax and mc3file generates a 'reasonable' sample message that is
written to a binary file. The contents of this file are generated in DICOM file format or in exactly the
format as the message would be streamed over the network.

The program fills in default values for all the required attributes within the message. You can also
use this utility to generate its own configuration file, which you can then modify to specify your own
values for attributes in generated messages.

These generated messages are purely meant as 'useful' examples that can be used to test message
exchange or give the application developer a feel for the structure of DICOM messages. They are
not intended to represent real world medical data.

The messages generated can be validated or listed with the mc3list and mc3valid utilities. The
command syntax for mc3file is the following:

mc3file <serv> <cmd> <num> [-g <file>] [-c <file>] [-l] [-m] [-q] [-t
<syntax>] [-f

<file>]

<serv>These two options are always used together.

<cmd>They specify the service name and command for the message to be
generated. These names can be either upper or lower case. If
the exact names for a service command pair are not known, the
-l option can be used instead to specify the service name and
command. If the service name and command are improperly
specified, mc3file will act as if the -l option was used and
ask the user to input the correct service name and command.

<num>This option specifies the number of message files to be generated
by mc3file. If the -g option is used, this option is not
needed on the command line. If the -c option is used, mc3file
assumes the number is 1, although a higher number can be
specified on the command line. mc3file will vary any fields
that have a value representation of time when multiple files
are generated, although when the -c option is used, the
utility will use the time fields as specified in the
configuration file. Thus, multiple message files generated
with the -c option are identical.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

47© Copyright Merge Healthcare Solutions Inc. 2025

-g <file>This option causes mc3file to generate an ASCII
configuration file. The file contains a listing of all the
valid attributes for the specified message. The utility also
adds sequences contained in the message along with their
attributes. Each attribute in the file contains the tag,
value representation, and the default value MC3File uses for
the attribute. If a given attribute has more than one value,
the character "\" is used to delimit the values. A default
value listed as "NULL" means the attribute is set to NULL. If
the filename specified already exists, it will be written
over my MC3File. The configuration file can be modified and
reloaded into MC3File with the -c option to generate a DICOM
message.

-c <file>This option reads in a configuration file previously
generated by mc3file. The service name and command for the
message need not be specified on the command line because
they are contained in <filename>. Because multiple files
generated with this option are identical, mc3file assume
only one file should be generated. This assumption can be
overridden by specifying a number on the command line.

-lThis option lists all the service command pairs supported by
mc3file. When generating a message, this option can be used
instead of explicitly specifying the service name and
command on the command line. When specified alone in the
command line, the complete list of pairs is printed out
without pausing.

-mThis option allows the user to generate a DICOM file. When
generating the file object, mc3file encodes the File Meta
Information.

-qThis option prevents mc3file from prompting the user for correct
service command pairs. It is a useful option when running
the program from a batch file.

-t <syntax>This option specifies the transfer syntax the DICOM
message generated is stored in. The default transfer syntax
is implicit little endian. The possible values for <syntax>
are "il" for implicit little endian, "el" for explicit
little endian, and "eb" for explicit big endian.

-f <file>This option allows the user to specify the first eight
characters of the names of the DICOM message files being
generated. mc3file will then append a unique count to the
end of the filename for each message being generated. The
default value is "file" when creating a DICOM file and
"message" when creating the format that DICOM messages send
over a network

48© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 4. Developing DICOM
Applications

The Merge DICOM Toolkit Application Programming Interface (API) provides simple yet powerful
DICOM functionality. Function calls are provided that open associations with remote servers, wait
for associations from remote clients, and deal with DICOM message exchange over an open
association. Functions are also provided for the creation and reading of DICOM files and the
creation, maintenance, and navigation of DICOMDIRs. DICOM Toolkit features include message
validation against the DICOM Standard, support of sequences of items, methods for flexible
handling of Pixel Data, and support of Private Attributes.

This section of the User's Manual attempts to present the highlights of the Merge DICOM Toolkit
API in a logical manner as it might be used in real DICOM applications. The function calls are
presented in the context of example ANSI-C source code snippets, and alternative approaches are
presented that trade off certain features for the benefits of increased performance.

Most of the discussions that follow pertain both to networking and media interchange applications;
only 4.3. ASSOCIATION MANAGEMENT (NETWORK ONLY) ON PAGE 49, 4.4. NEGOTIATED TRANSFER
SYNTAXES (NETWORK ONLY) ON PAGE 51 and 4.7. MESSAGE EXCHANGE (NETWORK ONLY) ON PAGE 63
sections are networking specific. Section 4.10. DICOM FILES ON PAGE 73 is media interchange
specific.

4.1. Library Initialization
Your first call to the Merge DICOM Toolkit Library must always be the MC.initialize(inifile,
license) function. This function specifies how and when you wish to initialize the library with the
contents of its configuration files, data dictionary, and message info files.

Almost all typical applications will initialize themselves from configuration files, and will make use of
the binary dictionary and message info files in building message objects.

Configurable parameters can be modified by your application after library initialization, at runtime,
by using the MCconfig.set() methods. The tooltkit allows you to initialize an internal system
exception handler and add the user-defined exception handler, which will be called in case of
severe system error or signal.

Function calls to Merge DICOM Toolkit throws an exception if any error occurs. The error code
might be checked against an exception ID number. Any value other than
MCstatus.MC_NORMAL_COMPLETION signifies an error.

4.2. Registering Your Application
Before performing any network or media activity, your application must register its DICOM
Application Title with the Merge DICOM Toolkit to refer to this particular AE in subsequent function
calls.

This DICOM Application Title is equivalent to the DICOM Application Entity Title defined earlier. If
your application is a server, this application title must be made known to any client application that
wishes to connect to you. If your application is a client, your application title may need to be made
known to any server you wish to connect to, depending on whether the server is configured to act as
an server (SCP) only to particular clients for security reasons.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

49© Copyright Merge Healthcare Solutions Inc. 2025

For example, if your application title is "ACME_Query_SCP", you would register with the toolkit as
follows:

app = MCapplication.getApplication('ACME_Query_SCP')

If you wish to disable your application and free up its resources to the system you should call
app.dispose() method.

Current and potentially future DICOM service classes assume that Application Entity Titles on a
DICOM network are unique. For instance, the retrieve portion of the Query/Retrieve service class
specifies that an image be moved to a specific Application Entity Title (and not to a specific
hostname and listen port). If two identical Application Entity Titles existed on a network, a server
application can only be configured to move images to one of these applications. For this reason, the
DICOM Application Entity Title for your applications should be configurable.

4.3. Association Management (Network Only)
Once you have registered one or more networking applications, you will probably want to initiate an
association if you are a client, or wait for an association if you are a server.

To initiate an association as a client, you make an MCassociation.requestAssociation() call.
You specify the parameters of Remote Application Title of the server you wish to connect to. If the
association is accepted, the function returns normally, with an Association object that is used in
future calls. When you are done making DICOM service requests (sending and receiving messages)
over the association, you should release the association with an MCassociation.release() call.

Client Side Example:

#

Creates a local DICOM application object

#

application = MCapplication.getApplication(aetitle)

#

Creates a remote DICOM application object

#

remoteApplication = MCremoteApplication('remoteAETitle',
'remoteHost', 'remotePort', MCproposedContextList('service'))

#

Request DICOM association from remote DICOM application

#

application.requestAssociation(remoteApplication)

#

Reads DICOM Media file

#

dcm = MCfile()

Merge DICOM Toolkit 5.21.0 Python User’s Manual

50© Copyright Merge Healthcare Solutions Inc. 2025

dcm.readP10File(f)

#

Reads Transfer Syntax and DICOM Service

#

ts = dcm.getTransferSyntax()

svc = dcm.getService()

#

Creates DICOM message from DICOM file and sends C-STORE request

msg = MCdimseMessage.fromFile(dcm)

msg.setServiceCommand(svc, MCcommand.C_STORE_RQ)

msg.setTransferSyntax(ts)

response = assoc.sendRequestMessage(msg, svc)

The SCP server application starts a listener for DICOM association requests directed to this
application using the startListening(address, MCproposedContextList('service'),
MChandler) method, where MChandler is an object instance which implements the
handle(association) method and that will handle the received associations. The SCP server
application detects when the client has requested association. Upon successful connection, the
association for the incoming connection is passed to MChandler.handle(association) to
actually process the connection. After completion, a typical server application processes the
incoming connection and returns back to waiting for the next incoming association.

Server Side Example of MChandler.handle(association) method:

def handle(self, obj):

 association = obj

 if not association.isActive():

 return

 try:

 association.accept()

 while association.isActive():

 rd = association.read(TIMEOUT)

 if (rd == None):

 continue

 status = rd.getStatus()

Merge DICOM Toolkit 5.21.0 Python User’s Manual

51© Copyright Merge Healthcare Solutions Inc. 2025

 if(status == MCstatus.MC_TIMEOUT):

 continue

 elif(status == MCstatus.MC_ASSOCIATION_ABORTED) or \

 (status == MCstatus.MC_ASSOCIATION_CLOSED):

 break

 elif(rd.getMessage() == None):

 break

 msg = rd.getMessage()

 if(msg.getCommand() == MCcommand.C_STORE_RQ):

 processCStore(association, msg)

 elif(msg.getCommand() == MCcommand.C_FIND_RQ):

 processCFind(association, msg)

 elif(msg.getCommand() == MCcommand.C_GET_RQ):

 processCGet(association, msg)

 elif(msg.getCommand() == MCcommand.C_MOVE_RQ):

 processCMove(association, msg)

 elif(msg.getCommand() == MCcommand.N_ACTION_RQ):

 processNAction(association, msg)

 else:

 raise MCexception(MCexception.OPERATION_NOT_ALLOWED)

 except Exception as ex:

 exception = MCexception.create(ex)

 finally:

 if association != None:

 try:

 association.abort()

 except:

 pass

4.4. Negotiated Transfer Syntaxes (Network Only)
Merge DICOM Toolkit supports all currently approved standard and encapsulated DICOM transfer
syntaxes. Encapsulated transfer syntaxes require compression of the pixel data contained in the
message. These messages can be sent and received by the toolkit, although the toolkit will not do
the actual compression and decompression. Encoding of this pixel data is discussed below.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

52© Copyright Merge Healthcare Solutions Inc. 2025

For DICOM Toolkit users, the toolkit allows for the negotiation of more than one transfer syntax for a
given DICOM service. This functionality is of most use for applications supporting encapsulated
transfer syntaxes. This functionality may be disabled by use of the
ACCEPT_MULTIPLE_PRES_CONTEXTS configuration value. In order to understand how it is
implemented, a more in depth description of DICOM association negotiation is required.

During association negotiation a client (SCU) application will propose a set of presentation contexts
over which DICOM communication can take place. Each presentation context consists of an
abstract syntax (DICOM service) and a set of transfer syntaxes that the client (SCU) understands.
The server (SCP) will typically accept a presentation context if it supports the abstract syntax and
one of the proposed transfer syntaxes.

As previously discussed, the abstract and transfer syntaxes supported by a server (SCP) are
defined through a service list contained in the Merge DICOM Toolkit Application Profile. When
support within a server (SCP) is limited to the three non-encapsulated DICOM transfer syntaxes,
the toolkit will transparently handle the use of multiple presentation contexts for a DICOM service.
However, when encapsulated DICOM transfer syntaxes are used, the server (SCP) must be able to
determine the transfer syntax of messages it receives so that it can properly parse the pixel data
contained in them.

4.4.1. Transfer Syntax Lists for SCUs

The presentation contexts supported for client (SCU) applications using Merge DICOM Toolkit are
also defined through the Merge DICOM Toolkit Application Profile. The following is a typical client
(SCU) configuration:

[Acme_Store_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STANDARD_CT

In this case, the client (SCU) would propose the CT Image Storage service in a single presentation
context. The transfer syntaxes for each service are the three standard (non-encapsulated) DICOM
transfer syntaxes.

The following example is the configuration for a client (SCU) that supports more than one
presentation context for a service:

[Acme_Store_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 2 # Number of Services

Merge DICOM Toolkit 5.21.0 Python User’s Manual

53© Copyright Merge Healthcare Solutions Inc. 2025

SERVICE_1 = STANDARD_CT

SYNTAX_LIST_1 = CT_Syntax_List_1

SERVICE_2 = STANDARD_CT

SYNTAX_LIST_2 = CT_Syntax_List_2

[CT_Syntax_List_1]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

[CT_Syntax_List_2]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes

SYNTAX_1 = IMPLICIT_LITTLE_ENDIAN

If a server (SCP) accepts both of these presentation contexts, the client (SCU) must use the
MCattributeSet.setTransferSyntax(ts) method to specify which presentation context to
send a message over.

4.4.2. Transfer Syntax Lists for SCPs

Server (SCP) applications are configured differently than client (SCU) applications. An SCP should
include all of the transfer syntaxes a service supports in a single transfer syntax list. If more than one
transfer syntax list is used for a service, server (SCP) applications will only support the transfer
syntaxes contained in the first transfer syntax list. The following is an example configuration for a
server (SCP):

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STANDARD_CT

SYNTAX_LIST_1 = CT_Syntax_List_SCP

[CT_Syntax_List_SCP]

SYNTAXES_SUPPORTED = 4 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

SYNTAX_2 = EXPLICIT_LITTLE_ENDIAN

SYNTAX_3 = IMPLICIT_LITTLE_ENDIAN

SYNTAX_4 = EXPLICIT_BIG_ENDIAN

As discussed previously, for server (SCP) applications, the order in which transfer syntaxes are
specified in a transfer syntax list dictates the priority Merge DICOM Toolkit places on them during
association negotiation. In this case, Merge DICOM Toolkit would select JPEG_BASELINE if

Merge DICOM Toolkit 5.21.0 Python User’s Manual

54© Copyright Merge Healthcare Solutions Inc. 2025

proposed, followed by EXPLICIT_LITTLE_ENDIAN, IMPLICIT_LITTLE_ENDIAN, and
EXPLICIT_BIG_ENDIAN.

Network message exchange is discussed further in one of the following sections.

4.5. Dynamic Service Lists
In addition to defining service lists in the Application Profile, Merge DICOM Toolkit has mechanisms
to define service lists and transfer syntax lists at run-time. A number of functions exist to create
transfer syntaxes and service lists in various formats. The following example shows how to create
two transfer syntax lists and a service list:

#

Creates Transfer Syntax list

#

tsl = MCtransferSyntaxList('tslJPEG', [MCtransferSyntax.JPEG_2000])

#

Creates Proposed Context

#

pc = MCproposedContext(MCsopClass.getByName(MCservices.STANDARD_CT),
tsl)

#

Creates Proposed Context list

#

pcl = MCproposedContextList("PCL", [pc])

In this example, MCtransferSyntaxList is used to create a transfer syntax list. This object is
passed an array of transfer syntaxes that are placed in the list and the user specifies a name for the
syntax list. Similar to the creation of syntax lists in the application profile, the order in which transfer
syntaxes are defined in the list dictates the priority Merge DICOM Toolkit places on the transfer
syntaxes when negotiating an association.

The MCproposedContextList object can then be used to create a new service list consisting of
created MCproposedContext services.

4.6. Message Objects
Merge DICOM Toolkit supplies several types of objects: application objects, association objects,
message objects, file objects, and item objects. Objects provide a convenient way for the toolkit to
encapsulate related data while hiding unnecessary details from the application developer.

A majority of the functionality supplied with the DICOM Toolkit deals with building, parsing,
validation, and exchange of DICOM messages, files, and items. Your applications deal with network
messages in Merge DICOM Toolkit as message objects, and DICOM files as file objects. Item

Merge DICOM Toolkit 5.21.0 Python User’s Manual

55© Copyright Merge Healthcare Solutions Inc. 2025

objects are used for attributes that are of VR Sequence of Items (SQ) within both messages and
files.

This section deals with message objects, but many of these functions are polymorphic and also
work on file and item objects. These polymorphic functions will be called out in this section.
Additional functions that are particular to file objects or item objects will be described in later
sections.

Private attributes in both message and file objects are handled in ways similar to those discussed in
this section, but will also be described later in this document.

4.6.1. Building Messages

Before you can build a message, your application must create a message object using the
constructor of MCdimseMessage class inherited from the MCattributeSet base class. Your
application must also specify a Service and Command name using
MCdimseMessage.setServiceCommand(service, command) method. The DICOM Toolkit
library uses these parameters to reference the proper message info file along with the data
dictionary and builds an unpopulated message object instance for your application to fill in. This
message object contains empty attributes. A Message ID is returned to your application that
identifies this message object.

Once you have an open message object, use the McdimseMessage.addValue(tag, value) and
MCdimseMessage.setValue() (tag, value) methods to build your message. The methods
perform the necessary type conversion from any reasonable ANSI-C data type to any compatible
DICOM value representation.

For instance, loss of precision is possible when MCdimseMessage.setValue() is called to set the
value of a float or a double attribute from a string. Let's assume the value of the attribute (of VR=FL)
is 123.456789. Internally, the toolkit converts the value to string using the %g format specification.
The returned result is the "123.457" string (the rounded value with the default precision).

If a type conversion is not reasonable (e.g., from short int to LT), then exception will be thrown
with MC_INCOMPATIBLE_VR id. Also, other exceptions will be thrown if the conversion was
reasonable but the value stored in the variable made the conversion impossible (exceptions with
MC_INVALID_VALUE_FOR_VR, MC_VALUE_OUT_OF_RANGE...ids).

Table 4.1: Acceptable Set Value/VR combinations

Large binary (bulk) values, like pixel data, can be read or set by using io.IOBase streams or by simple
byte arrays. The toolkit stores bulk data in either memory or temporary files depending on the value
of LARGE_DATA_STORE and LARGE_DATA_SIZE configuration items in mergecom.pro.
Alternatively, custom value storage may be used for handling such values. See the description of the
MCapplication.registerProvider(MCIstorageProvider, tagnumber) method for
details on custom value storage.

Set type Function may be used to set values of attributes with these Value Representations

Int AT, DS, FD, FL, IS, SS, SL, SV, US, UL, UV, SQ

Float DS, FD, FL, IS, SS, SL, SV, US, UL, UV, SQ

Str AS, AT, CS, DA, DS, DT, FD, FL, IS, LO, LT, PN, SH, SS, SL, SV, ST, TM, UI, US, UL, UV, UC,
UR, UT, SQ

Bytes OB, OW, OL, OV, OF, OD, UT, UNKNOWN_VR

Merge DICOM Toolkit 5.21.0 Python User’s Manual

56© Copyright Merge Healthcare Solutions Inc. 2025

If your application runs on a resource rich system, you should set LARGE_DATA_STORE to the value
MEM in the Service Profile, and Merge DICOM Toolkit will keep the Pixel Data values in the message
object stored in memory rather than using temporary files to improve performance.

4.6.2. Parsing Messages

When your AE receives a DICOM message, it will most often need to examine the values contained
in the message attributes to perform an action (e.g., store an image, print a film, change state…). If
your application is a server, the message conveys the operation your server should perform and the
data associated with the operation. If your application is a client, the message may be a response
message from a server on the network resulting from a previous request message to that same
server.

Once you have received a message object, use the McdimseMessage.getValue() method to
parse your message.

The McdimseMessage.getValue() family of functions also operate on DICOM file objects and
item objects, since both of these objects are also constructed of DICOM attributes.

This family of functions can be broken into four types based on their functionality as specified in the
table below.

Table 4.2: The Get Value Family of Methods

NOTE: The same acceptable conversions applies for the private DICOM attributes.

4.6.3. 8-bit Pixel Data

For DICOM's Implicit VR Little Endian transfer syntax, the pixel data attribute's (7fe0,0010) VR is
specified as being OW (independent of what the bits allocated and bits stored attributes are set to).
To reduce confusion, Merge DICOM Toolkit sets the VR of pixel data for the other non-encapsulated
transfer syntaxes to OW.

When retrieving or setting pixel data with the MCdimseMessage.getValue() and
MCdimseMessage.setValue() methods, the toolkit assumes that the OW pixel data is encoded in

Function Type Description

getValueCount() Returns the number of values assigned to an attribute in a message object.
Multi-valued attributes can have more than one value assigned to them.

getValueLength() Returns the length of attribute's value in bytes.

getValue() Gets the first (and possibly only) value of an attribute in a message object.
There are eleven functions of this type, the one you use depends on the data
type of the variable to which you are assigning to the attribute's value (e.g.,
string, short int, long int, float, …).

getValues() Gets an array containing each value of the attribute. The element type of the
array depends on the value representation of the attribute. The length of the
returned array is equal to the number of values of the attribute, except for bulk
type attributes (OB, OW, OL, OD, OF, UN) for which the length of the array is
equal to the attribute's length. For bulk attributes the return value is the same
as the return value of the getValue() method. If the attribute has no values an
array of zero length is returned.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

57© Copyright Merge Healthcare Solutions Inc. 2025

the host system's native endian format as defined by DICOM. The figure below describes how 8-bit
pixel data is encoded in an OW buffer for both big and little endian formats.

The DICOM standard specifies that the first pixel byte should be set to the least significant byte of
the OW value. The next pixel byte should be set to the most significant byte of the OW value.

4.6.4. Encapsulated Pixel Data

Merge DICOM Toolkit supports handling of single frame and multi-frame pixel data in encapsulated
transfer syntaxes, dealing with it in the same manner as standard pixel data by using the following
MCattributeSet calls:

getEncapsulatedFrame()

setEncapsulatedFrame()

getFrame()

Merge DICOM Toolkit will encode supplied data in an encapsulated format and generate the basic
offset table. The data of basic offset table could be retrieved using MCattributeSet call:

getOffsetTable()

 Merge DICOM Toolkit will provide data without the encapsulation delimiters. The data can be
compressed or decompressed using registered compression and decompression callbacks.
Registration of compression/decompression callbacks is described later in this document.
Compression libraries are also included on several platforms, including Windows, Sun Solaris and
Linux.

An example of encapsulated pixel data is illustrated in the table below.

Table 4.3: Sample Encapsulated Pixel Data

Pixel Data Element

Basic Offset Table
with NO Item Value

First Fragment (Single Frame) of
Pixel Data

Second Fragment (Single Frame)
of Pixel Data

Sequence Delimiter
Item

Item
Tag

Item
Length

Item
Tag

Item
Length

Item Value Item
Tag

Item
Length

Item Value Sequence
Delim. Tag

Item
Length

Merge DICOM Toolkit 5.21.0 Python User’s Manual

58© Copyright Merge Healthcare Solutions Inc. 2025

As specified by the DICOM standard, the various elements shown in the table above, excluding the
compressed pixel data fragments, are encoded in little endian format. The compressed pixel data
fragments are treated as OB, and thus do not have an endian. The figure below contains the sample
pixel data of the table above in little endian format.

Further examples of encapsulated pixel data encoding are contained in Part 5 of the DICOM
standard.

4.6.5. Icon Image Sequences

The Icon Image Sequence can contain small "thumbnail" images. This sequence also contains the
Pixel Data Tag (7FE0,0010) just like the main message. Because this may or may not be
compressed, some special considerations are necessary.

Sending on the network, writing a file, or writing a stream

1. Message is uncompressed, Icon is uncompressed.

There is no user intervention required. An association will negotiate one of the unencapsulated
transfer syntaxes, and both the image and the icon image will be sent as the negotiated
unencapsulated transfer syntax.

2. Message is compressed, Icon is uncompressed.

There is no user intervention required. An association will negotiate one of the encapsulated
transfer syntaxes, and the image will be sent in this encapsulated transfer syntax, and the icon
image will be sent EXPLICIT_LITTLE_ENDIAN. EXPLICIT_LITTLE_ENDIAN is the default
syntax for the non-pixel data portion of a message (including nested pixel data) when the "main"
pixel data is encapsulated.

3. Message is compressed, Icon is compressed.

Minor intervention is required.

Special creation of icon:

(FFFE,
E000)

0000
0000H

(FFFE,
E000)

0000
04C6H

Compressed
Fragment

(FFFE,
E000)

0000
024AH

Compressed
Fragment

(FFFE,
E0DD)

0000
0000H

4 bytes 4 bytes 4 bytes 4 bytes 04C6H bytes 4 bytes 4 bytes 024A H bytes 4 bytes 4 bytes

Merge DICOM Toolkit 5.21.0 Python User’s Manual

59© Copyright Merge Healthcare Solutions Inc. 2025

The only difference is that MCitem.setTransferSyntax(ts) must now be called upon
creation of the ICON_IMAGE item so that you may register compression callbacks and utilize
them.

Reading from network, a file, or a stream

No special conditions are required if the image is streamed in via
MCassociation.read(timeout), or MCassociation.readToStream(timeout,
io.IOBase) methods. The sequence item automatically assumes:

EXPLICIT_LITTLE_ENDIAN if the pixel data contained in ICON_IMAGE is of defined length

-OR-

transfer syntax of the parent if the pixel data contained in ICON_IMAGE is of undefined length.

Duplicating messages

If duplicating from an unencapsulated to an encapsulated (compressed) transfer syntax, then the
icon will be unencapsulated by default. To change the behavior, set
DUPLICATE_ENCAPSULATED_ICON to Yes in the mergecom.pro file. This can be done dynamically
(at run-time) via MCconfig.setConfig() method.

4.6.6. Validating Messages

Once your application has a populated message object, either one that you have built or one that
you have received and are about to parse, Merge DICOM Toolkit supplies DICOM Toolkit DICOM
message validation functionality. The validate() method will validate the specified message
object instance against the DICOM Standard's specification for that service-command pair. If the
method detects DICOM violations it returns a list of MCvalidationError objects describing the
first violation.

Another file supplied with Merge DICOM Toolkit is the message.txt file. This file contains a listing
of all the messages supported by the toolkit and the parameters they are validated against.
message.txt is a useful guide in your application development because it specifies the attributes
that can make up the object instance portion of each message type (service-command pair) and is
often easier to use as a quick reference than paging through two or three parts of the DICOM
Standard. message.txt also specifies the contents of items and files (see discussions of
Sequence of Items and DICOM Files later in this document). Remember though that the DICOM
Standard is the final word and that message.txt has its limitations as described further below.

validate() does not validate the attributes that make up the command portion of a DICOM
message. Command attributes (attributes with a group number less than 0008) are also not
specified in message.txt. The Merge DICOM Toolkit Library sets as many of the command group
attributes as possible automatically. In some services, your application will need to set command
attributes (e.g., the 'Affected SOP Class UID' attribute (0000,0002) in the C-MOVE response
message). These special cases are described further in the Application Guides and in Part 7 of the
DICOM Standard.

The toolkit validates the attribute set based on message definitions obtained from the DICOM
database files (mrgcom3.dct and mrgcom3.dcm). This database is provided with the toolkit and it is
updated with each version of the toolkit to reflect the latest changes and additions to the DICOM
standard. Documentation on how the database can be amended is provided in the Message
Database Manual (database.pdf).

Note that in case of some 1C or 2C attributes, the condition cannot be verified by the toolkit, in such
cases the toolkit will consider the attribute of type 3

Merge DICOM Toolkit 5.21.0 Python User’s Manual

60© Copyright Merge Healthcare Solutions Inc. 2025

An excerpt of message.txt follows for the service-command pair DETACHED_ PATIENT_
MANAGEMENT - N_ GET_ RSP as an illustration. For each attribute in the message, at least one line
of data is specified. This first line includes the tag, attribute name, value representation, and value
type. Additional lines may be included for the attribute to list conditions, enumerated values,
defined terms, and item names for attributes with a VR of SQ. You should refer to the DICOM
Standard (parts 3 and 4) for a detailed description of particular conditions and their meanings.

##

DETACHED_PATIENT_MANAGEMENT - N_GET_RSP

##

0008,0005 Specific Character set CS 1C

Condition: EXPANDED_OR_REPLACEMENT_CHARACTER_SET_USED

Defined Terms: ISO_IR 100, ISO_IR 101, ISO_IR 109, ISO_IR 110,

ISO_IR 144, ISO_IR 127, ISO_IR 126, ISO_IR 138, ISO_IR 148,

ISO_IR 166, ISO_IR 13, ISO 2022 IR 6, ISO 2022 IR 100,

ISO 2022 IR 101, ISO 2022 IR 109, ISO 2022 IR 110, ISO 2022 IR 144,

ISO 2022 IR 127, ISO 2022 IR 126, ISO 2022 IR 138, ISO 2022 IR 148,

ISO 2022 IR 149, ISO 2022 IR 166, ISO 2022 IR 13, ISO 2022 IR 87,

ISO 2022 IR 159, ISO_IR 192, GB18030

0008,1110 Referenced Study Sequence SQ 2

Item Name(s): REF_STUDY

0008,1125 Referenced Visit Sequence SQ 2

Item Name(s): REF_VISIT

0010,0010 Patient's Name PN 2

0010,0020 Patient ID LO 2

0010,0021 Issuer of Patient ID LO 3

0010,0030 Patient's Birth Date DA 2

0010,0032 Patient's Birth Time TM 3

0010,0040 Patient's Sex CS 2

Enumerated Values: M, F, O

0010,0050 Patient's Insurance Plan Code SequenceSQ3

Item Name(s): CODE_SEQUENCE_MACRO

0010,1000 Other Patient IDs LO 3

0010,1001 Other Patient Names PN 3

0010,1005 Patient's Birth Name PN 3

0010,1020 Patient's Size DS 3

0010,1040 Patient's Address LO 3

0010,1060 Patient's Mother's Birth Name PN 3

Merge DICOM Toolkit 5.21.0 Python User’s Manual

61© Copyright Merge Healthcare Solutions Inc. 2025

0010,1080 Military Rank LO 3

0010,1081 Branch of Service LO 3

0010,1090 Medical Record Locator LO 3

0010,2000 Medical Alerts LO 3

0010,2110 Allergies LO 3

0010,2150 Country of Residence LO 3

0010,2152 Region of Residence LO 3

0010,2154 Patient's Telephone Numbers SH 3

0010,2160 Ethnic Group SH 3

0010,21A0 Smoking Status CS 3

Enumerated Values: YES, NO, UNKNOWN

0010,21B0 Additional Patient History LT 3

0010,21C0 Pregnancy Status US 3

Enumerated Values: 0001, 0002, 0003, 0004

0010,21D0 Last Menstrual Date DA 3

0010,21F0 Patient's Religious Preference LO 3

0010,4000 Patient Comments LT 3

0038,0004 Referenced Patient Alias SequenceSQ 2

Item Name(s): REF_PATIENT_ALIAS

0038,0050 Special Needs LO 3

0038,0500 Patient State LO 3

While Merge DICOM Toolkit's validation is not foolproof, it is very useful and will catch many
standard violations. It validates the following:

● That the value assigned to an attribute is appropriate for that attributes VR.

● That all value type 1 attributes have a value, and that value is not null.

● That all value type 2 attributes have a value, and that value may be null.

● That a specified set of conditional attributes (value type 1C or 2C) are validated as value type 1 or
2 attributes when the specified condition is satisfied.

● That an attribute does not have too many or too few values for its specified value multiplicity.

● That an attribute that has enumerated values does not have a value that is not one of the
enumerated values. A warning is also issued if an attribute that has defined terms has a value
that is not one of those defined terms.

● That a non-private attribute is not included in the message that is not defined for that DICOM
message (service-command pair).

As mentioned, Merge DICOM Toolkit does not capture all standard violations, and the DICOM
Standard itself should be considered the final word when validating a message. Important
limitations of Merge DICOM Toolkit validation include:

● DICOM Part 3 specifies Information Object Definitions (IODs) as being composed of modules.
Each module contains attributes. Only in the case of composite IODs may an attribute be

Merge DICOM Toolkit 5.21.0 Python User’s Manual

62© Copyright Merge Healthcare Solutions Inc. 2025

specified in DICOM Part 3 as being contained in either a User Optional or Conditional Module.
Merge DICOM Toolkit treats all such attributes as being value type 3 (optional).

● Also, only in the case of composite IODs (e.g., Ultrasound Image Object) used in storage
services, may certain modules be mutually exclusive (e.g., curve and overlay modules). The
attributes defined in these modules are all treated as type 3.

● For normalized services using the N-EVENT-REPORT command, the actual contents of an N-
EVENT-REPORT message are dependent on the Event Type ID being communicated. Merge
DICOM Toolkit treats all Event Type IDs identically when performing message validation; namely
it treats all attributes as type 3.

Many times, validation is selectively used in an application as a runtime option or conditionally
compiled into the source code. Validation might only be used during integration testing or in the
field for diagnostic purposes. Reasons for this include performance since the overhead associated
with message validation may be an issue, especially for larger messages having many attributes or
on lower-end platforms. Also, validation can clutter the message log with warnings and errors that
may not be desirable in a production environment. Performance issues related to message
handling are discussed further under Message Exchange later in this document.

4.6.7. Streaming Messages

When DICOM messages are exchanged over a network, they are in an encoded format specified by
the DICOM standard and the negotiated transfer syntax. Merge DICOM Toolkit calls this encoded
format a message stream and supplies powerful functions that allow your applications to work
directly with message streams.

When your application builds or parses messages as described earlier, it works with a Merge
DICOM Toolkit message object. This message object abstracts and encapsulates the DICOM
message and hides its details from the developer. When you send the DICOM message object over
the network, Merge DICOM Toolkit internally creates a DICOM message stream that is passed over
the network. This message stream is an encoded stream of bytes that follows all the rules of
DICOM.

Merge DICOM Toolkit also supplies function calls to the developer to generate and read DICOM
message streams directly. MCdimseMessage.writeMessageToStream() converts a message
object to a message stream, while MCdimseMessage.readMessageFromStream() converts a
message stream into a message object.

A MCdimseMessage.writeMessageToStream() method converts the attributes from
(0008,0000) through (7FDF,FFFF) in the message object into a DICOM message stream using the
explicit little endian transfer syntax. Explicit little endian transfer syntax is one of the three DICOM
Transfer Syntaxes supported by Merge DICOM Toolkit. DICOM defines two other transfer syntaxes:
implicit little endian (the default DICOM transfer syntax) and explicit big endian. See Part 5 of the
DICOM Standard for a detailed description of transfer syntaxes.

Once your application has done the above and stored the stream somewhere, you could later
rebuild a message object containing only group 0008 using
MCdimseMessage.readMessageFromStream() method. This method converts only the
attributes in group 0008 of the stream and places them in the. It is important that the transfer syntax
specified in this call is identical to that used to create the stream or the call will fail with an error.

Message streams can be very valuable to your application for debugging and validation purposes.
By writing DICOM message streams out to a binary file, you have a compact and reproducible
representation of a message. You can directly examine the binary message stream to see how the
data would be sent over the network. Also, you can read this binary file in again later to reconstruct

Merge DICOM Toolkit 5.21.0 Python User’s Manual

63© Copyright Merge Healthcare Solutions Inc. 2025

the original message object. Once you have the message object you can use the usual toolkit
functions to examine or alter its contents.

Deflated Streams

The transfer syntax, Deflated Explicit VR Little Endian, gives you the ability to use the "deflate"
algorithm to compress the entire data set. This transfer syntax was added mostly for structured
reports, which are extremely redundant in their encoding, with considerable repetition of strings
and tags. The toolkit uses zlib to implement deflate/inflate. This is an open source library that is built
into the toolkit. Messages of this transfer syntax are still stored as message objects while the toolkit
is handling them. Only when a message is "streamed" is the message deflated/inflated.

4.7. Message Exchange (Network Only)

4.7.1. General

We have discussed how associations are managed as well as how messages objects are populated
and parsed. Now we'll discuss how these DICOM messages are exchanged with other application
entities over the network.

The exchange of DICOM messages between AEs only occurs over an open association. After the
DICOM client (SCU) application opens an association with a DICOM server (SCP), the client sends
request messages to the server application. For each request message, the client receives back a
corresponding response from the server. The server waits for a request message, performs the
desired service, and sends back some form of status to the client in a response message.

The method for exchanging DICOM messages is:

MCassociation.sendRequestMessage() — The method sends a request message to the
remote application. The message must have its service and command set, and the message
command must be a valid DIMSE request command.

Some DICOM services require that values for certain command set attributes (i.e. group 0
attributes) be set. With the exceptions listed below, the application must set any command set
attribute value before sending the message:

● The group length attribute (0000,0000) value is always set by the toolkit.

● If the message requires it, the Affected SOP Class UID attribute (0000,0002) value is set to
the service's abstract syntax UID

● The command attribute (0000,0100) value is always set by the toolkit

● The Message ID attribute (0000,0110) value is set to a unique number for this association

● If the message requires it, the Priority attribute (0000,0700) value is set to "medium" priority
(i.e. zero)

● The Data Set Type attribute (0000,0800) value is always set by the toolkit

● The Affected SOP Instance UID if required and not set by the application, is set by the
toolkit based on the SOP Instance UID value in the data set

The MCassociation.sendResponseMessage()method may be called after receiving a request
message.

The status parameter is used as the value for the Status (0000,0900) attribute and it provides the
status of the requested operation. The value must be a valid response code for the service involved.
Response codes are defined in the MCresponse class. Many DICOM services do not require a

Merge DICOM Toolkit 5.21.0 Python User’s Manual

64© Copyright Merge Healthcare Solutions Inc. 2025

response of more than just a status. This method can be used for services that require the setting of
several message attributes (e.g. C_FIND_RSP).

MCassociation.read() — the method reads a DICOM DIMSE (DICOM Message Service
Element) message from the network.

DICOM messages are exchanged over an active association connection. After successfully
requesting an association or accepting an association request, a DICOM application must send or
read DIMSE messages.

A DICOM service class user (SCU) sends request messages to the remote application to request
that a service be performed. The service class provider (SCP) responds by sending one or more
response messages back. The read method is used to retrieve these request and response
messages.

When a message arrives, the toolkit returns an MCdimseMessage object representing both the
DIMSE command set and the DIMSE data set which comprise the message. Methods of the
returned MCdimseMessage provide access to the command set and data set attribute values of the
message.

This method blocks until either a message is received or the number of seconds specified in the
timeout parameter expires. If a communication error occurs, the association is released by the
remote application or the association is aborted (on either side) this method throws an exception
and logs an error message. Once the toolkit begins to receive a message, the INACTIVITY_TIMEOUT
configuration value is used to determine if a transmission is stalled, meaning that the toolkit will
abort the association if it does not receive more data from the network for the configured period of
time. In that case this method will throw an exception.

MCassociation.continueRead() — the method partially reads the message from the network
until the specified tag, starting from the previous ToTag call.

MCassociation.readToStream() and MCassociation.continueReadToStream() — the
methods read a message to a io.IOBase data stream.

MCassociation.sendSuccessResponse() — sends a success response message to the remote
application. This method may be called after successfully receiving a request message and can be
used for DICOM services do not require a response of more than just a status. The value for the
Status (0000,0900) attribute of the response message is set to 0 (success).

a. Sending Messages

The MCassociation.sendResponseMessage() includes parameter, ResponseStatus, that
must be set to a valid DICOM response status. Example response status codes for the N_GET_RSP
response message are summarized in the table below. Response codes for other DICOM
commands are described in Part 4 of the DICOM Standard.

Table 4.4: Valid Response Message Status Codes for an N-GET Command

N_GET_RSP Status Codes

N_GET_SUCCESS

N_GET_WARNING_OPT_ATTRIB_UNSUPPORTED

N_GET_ATTRIBUTE_LIST_ERROR

N_GET_CLASS_INSTANCE_CONFLICT

N_GET_DUPLICATE_INVOCATION

Merge DICOM Toolkit 5.21.0 Python User’s Manual

65© Copyright Merge Healthcare Solutions Inc. 2025

Your application may want to take advantage of Merge DICOM Toolkit's message validation
functionality before sending a DICOM message out on the network, or before parsing and acting on
a message received from some other device. Also, when constructing a request or response
message, it is important to note that for some services, your application will need to set the value of
command attributes in the message. Refer back to the Validating Messages section of this
document for further discussion.

4.7.2. Asynchronous Communications

The DICOM standard defines an optional method for negotiation of an Asynchronous Operations
Window. The Asynchronous Operations Window allows the client and server during association
negotiation to define how many request messages can be sent over an association before a
response message is required to be received. When the Asynchronous Operations Window is not
negotiated (the default behavior of Merge DICOM Toolkit) only one request message can be sent
before a response is received. Use of asynchronous operations can improve network performance
when transferring a large number of messages over an association.

The specific fields negotiated over an association are the maximum number of operations, sub-
operations, or notifications invoked by the requester of the association and the maximum number
of operations, sub-operations, or notifications performed by the requester of the association. The
client proposes settings for both of these fields, and the server responds with values less than or
equal to the proposed values that are then used for the association.

The term notifications refers to N-EVENT-REPORT messages that are sent from an SCP to an SCU.
These messages are used by DICOM services such as Print Job and Storage Commitment. The
terms operations and sub-operations refer to all other message types. The term sub-operations
specifically refers to services such as Query/Retrieve where multiple response messages are sent
for a single request message.

Asynchronous definitions

For a client negotiating the SCU role, the invoked field refers to the number of operations that could
be sent without receiving a response message and the performed field would specify the maximum
number of notifications received before the client is required to send a response message. For a
client negotiating the SCP role and an asynchronous window, the invoked field would refer to the
maximum notifications sent before receiving a response and the performed field would refer to the
maximum operations received before the client is required to send a response.

Performance Tuning

Although asynchronous operations can be used for all DICOM service classes, this feature is most
useful with the Storage Service Class. Asynchronous operations can be utilized to improve the
network performance of transferring a large number of C STORE messages over an association.
During normal synchronous operations, there typically is no network activity while a Storage SCU

N_GET_MISTYPED_ARGUMENT

N_GET_NO_SUCH_SOP_CLASS

N_GET_NO_SUCH_SOP_INSTANCE

N_GET_PROCESSING_FAILURE

N_GET_RESOURCE_LIMITATION

N_GET_UNRECOGNIZED_OPERATION

N_GET_RSP Status Codes

Merge DICOM Toolkit 5.21.0 Python User’s Manual

66© Copyright Merge Healthcare Solutions Inc. 2025

waits for a response message from an SCP. Because there is a time when no data is being sent from
the SCU to the SCP, a network is typically underutilized by synchronous DICOM transfers. Also,
sending a large number of small images typically is slower than sending a smaller number of large
images because a higher percentage of the association time is spent waiting on response
messages. The figure below illustrates how an SCU waits on a response from the SCP while the SCP
processes a message.

When asynchronous operations are negotiated, the SCU can poll for a response message, but if a
message is unavailable, it can start sending the next request message right away (if the max
operations will not be exceeded). This allows an SCU to utilize the network bandwidth more fully.
There is only a small time when the SCU polls for a response message during which data is not
being sent from the SCU to the SCP.

The majority of changes required to implement asynchronous communications are on the SCU
side. A traditional SCP can effectively support asynchronous communications by simply enabling
its negotiation over associations. It is possible, however, to do further optimization of SCP
applications. On operating systems that Merge DICOM Toolkit supports threading, an SCP can be
written to process messages in the background as it is reading request messages and to send
response messages over the association when processing is completed. In this scenario, after
reading a message, the SCP would pass the received message to another thread for processing
and freeing. The main SCP thread would then go to reading the next message. Once processing is
complete for a message, the background thread would signal the main thread to send a response
message for the request. This allows the network bandwidth to be more fully utilized by having the
SCP reading data off the network as much as possible. The SCP in this case must monitor the
negotiated max operations so that it is not exceeded.

The figure below shows an example message exchange between an SCU and SCP when using
asynchronous communications. This example shows how the SCU spends less time reading the

Merge DICOM Toolkit 5.21.0 Python User’s Manual

67© Copyright Merge Healthcare Solutions Inc. 2025

response messages and moves to sending the next request message to increase bandwidth
utilization.

It is possible to create deadlock situations when writing an asynchronous application. A situation
may arise where both the client and server are attempting to send data to each other that would
cause a deadlock. In general, applications should poll for incoming messages before sending a new
message. In particular, a Storage SCU should wait for a response message before sending a new
request message. Because of the size of the messages exchanged, it is most likely that a Storage
SCU would deadlock if it were not checking for response messages.

Performance Tuning

Finally, the configuration options TCPIP_SEND_BUFFER_SIZE and
TCPIP_RECEIVE_BUFFER_SIZE are important for maximizing network performance. The send
buffer specifies the amount of data that can be queued in the TCP/IP stack of the OS without
actually being sent. The receive buffer specifies the amount of data that can be received by the
TCP/IP stack of the OS before a Merge DICOM Toolkit application must start reading the data.
These options allow data to be queued by the OS in the background while a Merge DICOM Toolkit
application is doing other activities. For instance, an entire response message can usually be stored
in the send buffer and a call to MCassociation.sendResponseMessage(). This allows the
application to start preparing the next message to be sent while data is still being transferred. The
maximum settings for these options is operating system dependent. It is suggested that these
options be configured to the maximum setting for an operating system. If the settings are too high,
an error will be logged to the merge.log file.

Use Full Duplex Networks with Asynchronous Communications

It is important that devices using asynchronous communications be configured to use full duplex
network connections. Using asynchronous communications in half duplex mode would greatly
degrade performance. Performance would more than likely be lower than if only synchronous
communications were used.

4.8. Using Compression/Decompression
The purpose of registering a compression/decompression is to support compressed transfer
syntaxes in DICOM more easily. Compressed transfer syntaxes are used to take advantage of the
decreased image size that goes along with compressed pixel data. This is important when dealing
with large images that need to be stored or transmitted across a network.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

68© Copyright Merge Healthcare Solutions Inc. 2025

The compression/decompression, when registered, are utilized any time the functions are called,
and the transfer syntax of a message has been set to JPEG_BASELINE, JPEG_EXTENDED_2_4,
JPEG_LOSSLESS_HIER_14, JPEG_2000, JPEG_2000_LOSSLESS_ONLY or RLE.

If there is no compression/decompression registered, MCattributeSet attribute set
getEncapsulatedFrame(), setEncapsulatedFrame() and getFrame() methods will work
the same as getValue() and setValue(), except encapsulation delimiters will be removed and
inserted, respectively.

MCattributeSet.setCompression(on) is used to activate the image compression/
decompression functionality which takes in uncompressed pixel data and returns a compressed
image, or takes in compressed data and returns the uncompressed pixel data.

Merge DICOM Toolkit has two sets of built in compressors and decompressors. The RLE
compressor/decompressor can be used to compress/decompress data to/from an RLE transfer
syntax encoding. These routines support data with photometric interpretation of MONOCHROME1,
MONOCHROME2, RGB, and YBR_FULL.

The other Merge DICOM Toolkit built in set are the standard compressor and decompressor. These
routines utilize libraries from Accusoft (formerly Pegasus Imaging Corporation)
(www.accusoft.com). They support the JPEG_BASELINE, JPEG_EXTENDED_2_4,
JPEG_LOSSLESS_HIER_14, JPEG_2000, JPEG_2000_LOSSLESS_ONLY transfer syntaxes with
photometric interpretations MONOCHROME1, MONOCHROME2, RGB, and YBR. There are limits on the
performance of the Pegasus libraries. These compressors are only available on platforms that
Pegasus supports.

For JPEG_BASELINE, JPEG_EXTENDED_2_4, and JPEG_LOSSLESS_HIER_14, images can be
compressed or decompressed at a maximum rate of three images (or frames) per second. For
JPEG_2000 and JPEG_2000_LOSSLESS_ONLY, a dialog will be displayed on Windows each time the
compressor or decompressor is used. For other platforms, a message will be displayed to stdout
and a several second delay of several seconds will occur. Full licenses can be purchased from
Accusoft and configured in Merge DICOM Toolkit to remove these compression and
decompression limits. The licenses can be configured in the mergecom.pro configuration file.

The JPEG_BASELINE transfer syntax is UID 1.2.840.10008.1.2.4.50, JPEG Baseline (Process 1):
Default Transfer Syntax for Lossy JPEG 8 Bit Image Compression, and uses Pegasus libraries 6420/
6520. The table below details the photometric interpretation and bit depths supported by the
standard compressor and decompressor for this transfer syntax. When lossy compressing RGB
data, the standard compressor by default compresses the data into YBR_FULL_422 format. The
compressor can also compress in YBR_FULL format if the
COMPRESSION_RGB_TRANSFORM_FORMAT configuration option is set to YBR_FULL. The
Photometric Interpretation tag must be changed by the application after compressing RGB data.
Similarly, the Photometric Interpretation tag should be changed back to RGB before
decompressing YBR_FULL or YBR_FULL_422 data.

Table 4.5: JPEG Baseline Supported Photometric Interpretations and Bit Depths

JPEG Baseline

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422

Bits Stored 8 8 8

Bits Allocated 8 8 8

Samples Per Pixel 1 3 3

www.accusoft.com
www.accusoft.com

Merge DICOM Toolkit 5.21.0 Python User’s Manual

69© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: As of the present release of the toolkit, only the JPEG_BASELINE decompression is
supported on the Android platform. The Pegasus library for JPEG_BASELINE compression
(6420) is not available on the Android platform.

The JPEG_EXTENDED_2_4 transfer syntax is UID 1.2.840.10008.1.2.4.51, JPEG Extended (Process 2
& 4): Default Transfer Syntax for Lossy JPEG 12 Bit Image Compression (Process 4 only), and uses
Pegasus libraries 6420/6520. The table below details the photometric interpretation and bit depths
supported by the standard compressor and decompressor for this transfer syntax. When lossy
compressing RGB data, the standard compressor by default compresses the data into
YBR_FULL_422 format. The compressor can also compress in YBR_FULL format if the
COMPRESSION_RGB_TRANSFORM_FORMAT configuration option is set to YBR_FULL. The
Photometric Interpretation tag must be changed by the application after compressing RGB data.
Similarly, the Photometric Interpretation tag should be changed back to RGB before decompressing
YBR_FULL or YBR_FULL_422 data.

Table 4.6: JPEG Extended Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_EXTENDED_2_4 decompression is
supported on the Android platform. The Pegasus library for JPEG_EXTENDED_2_4
compression (6420) is not available on the Android platform.

The JPEG_LOSSLESS_HIER_14 transfer syntax is UID 1.2.840.10008.1.2.4.70, JPEG Lossless, Non-
Hierarchical, First-Order Prediction (Process 14 [Selection Value 1]): Default Transfer Syntax for
Lossless JPEG Image Compression, and uses Pegasus libraries 6220/6320. The table below details
the photometric interpretation and bit depths supported by the standard compressor and
decompressor for this transfer syntax. The standard compressor does not do a color
transformation to RGB data when compressing with JPEG_LOSSLESS_HIER_14. The Photometric
Interpretation tag should be left as RGB in this case.

Table 4.7: JPEG Lossless Supported Photometric Interpretations and Bit Depths

JPEG Extended (Process 2 & 4)

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422

Bits Stored 8 10 12 8 8

Bits Allocated 8 16 16 8 8

Samples Per Pixel 1 1 1 3 3

JPEG Lossless Non-Hierarchical Process 14

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB
YBR_FULL

PALETTE COLOR

Bits Stored 2 to 16 8 1 - 16

Bits Allocated 8 or 16 8 8 or 16

Samples Per Pixel 1 3 1

Merge DICOM Toolkit 5.21.0 Python User’s Manual

70© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: As of the present release of the toolkit, only the JPEG_LOSSLESS_HIER_14 decompression
is supported on the Android platform. The Pegasus library for JPEG_LOSSLESS_HIER_14
compression (6220) is not available on the Android platform.

The JPEG_2000 transfer syntax is UID 1.2.840.10008.1.2.4.91, JPEG 2000 Image Compression, and
uses Pegasus libraries 6820/6920 for lossy or lossless. The table below details the photometric
interpretation and bit depths supported by the standard compressor and decompressor for this
transfer syntax.

Table 4.8: JPEG 2000 Lossy Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_2000 decompression is supported
on the Android platform. The Pegasus library for JPEG_2000 compression (6820) is not
available on the Android platform.

The JPEG_2000_LOSSLESS_ONLY transfer syntax is UID 1.2.840.10008.1.2.4.90, JPEG 2000 Image
Compression (Lossless Only), and uses Pegasus libraries 6820/6920 for lossless. The table below
details the photometric interpretation and bit depths supported by the standard compressor and
decompressor for this transfer syntax.

Table 4.9: JPEG 2000 Lossless Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_2000_LOSSLESS_ONLY
decompression is supported on the Android platform. The Pegasus library for
JPEG_2000_LOSSLESS_ONLY compression (6820) is not available on the Android platform.

NOTE: When using the standard compressor, all data needs to be right justified, i.e. bit 0 contains
data, but the highest bits may not. RGB and YBR must be non-planar (R1G1B1, R2G2B2, ...
or Y1Y2B1R1, Y3Y4B3R3...)

NOTE: JPEG_2000/JPEG_2000_LOSSLESS_ONLY will cause an irreversible, or reversible color
transformation when compressing RGB data. The Photometric Interpretation MUST be
changed from RGB to:

JPEG 2000 (When used for Lossy)

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

YBR_ICT RGB YBR_FULL

Bits Stored 8 10 12 16 8 8 8

Bits Allocated 8 16 16 16 8 8 8

Samples Per Pixel 1 1 1 1 3 3 3

JPEG 2000 Lossless

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

YBR_RCT
YBR_FULL

RGB PALETTE
COLOR

Bits Stored 8 10 12 16 8 8 1 - 16

Bits Allocated 8 16 16 16 8 8 8 or 16

Samples Per Pixel 1 1 1 1 3 3 1

Merge DICOM Toolkit 5.21.0 Python User’s Manual

71© Copyright Merge Healthcare Solutions Inc. 2025

- YBR_ICT if JPEG_2000 is used with COMPRESSION_WHEN_J2K_USE_LOSSY = Yes
(Lossy color transform for lossy compression)
- YBR_RCT if JPEG_2000_LOSSLESS_ONLY or JPEG_2000 are used with
COMPRESSION_WHEN_J2K_USE_LOSSY = No (Lossless color transform for lossless
compression).
Similarly, on the decompression end, the Photometric Interpretation should be changed
back to RGB, but the Lossy Image Compression attribute should indicate it has been lossy
compressed.

The UPDATE_GROUP_0028_ON_DUPLICATE configuration option can also be enabled so Merge
DICOM Toolkit will update the Group 0x0028 tags for you. When this configuration option is enabled,
the Photometric Interpretation will be updated for you as mentioned above. When decompressing
an image, the photometric interpretation will also be updated. In addition, when lossy compression
is done, the Lossy Image Compression, Lossy Image Compression Ratio, and Lossy Image
Compression Method tags will be updated by Merge DICOM Toolkit.

4.9. Sequences of Items
The DICOM Value Representation SQ is used to indicate an attribute in a DICOM message
containing a value that is a sequence of items. A sequence of items is a set of object instances,
where each object instance can also contain attributes that have a VR of SQ. This powerful
capability allows the nesting of objects, or the definition of 'container' objects (such as folders, film
boxes, directories, etc.). One can think of these nested objects as message objects minus the
command portion.

The figure below shows a DICOM message containing a sequence of items running two levels deep.
Note that these nested sequences are contained within the same Message Stream. Sequences of
items can also be contained in a DICOM file, and we will see that they are contained in DICOMDIR
files. An attribute whose value is a sequence of items is simply an attribute that has a potentially
large and complex value. Fortunately, Merge DICOM Toolkit allows your application to deal with
sequences of items an item at a time and hierarchically, as pictured in the figure below, and takes
care of the encoding of the sequence within the DICOM message stream.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

72© Copyright Merge Healthcare Solutions Inc. 2025

Encoding and decoding attributes in an item

Each item object in a sequence is a special MCitem class derived from MCattributeSet class. All
the message building and parsing functionality described in previous sections of this manual also
applies to item objects. The MCattributeSet's getValue and setValue methods work on item
(MCitem) objects as well as message (MCdimseMessage) objects.

MCitem object contains strings used to identify each item and are listed in the message.txt file for
attributes having a VR of SQ. The contents of each item are also listed in the message.txt file.
Below are two excerpts of message.txt, one showing a reference to the Issuer of Accession
Number Item, and the other the contents of that item.

##

CHEST_CAD_SR - C_STORE_RQ

##

0008,0005 Specific Character Set CS 1C

Condition: EXTENDED_OR_REPLACEMENT_CHARACTER_SET_USED

Defined Terms: ISO_IR 100, ISO_IR 101, ISO_IR 109, ISO_IR 110,

ISO_IR 144, ISO_IR 127, ISO_IR 126, ISO_IR 138, ISO_IR 148,

ISO_IR 166, ISO_IR 13, ISO 2022 IR 6, ISO 2022 IR 100,

ISO 2022 IR 101, ISO 2022 IR 109, ISO 2022 IR 110, ISO 2022 IR 144,

ISO 2022 IR 127, ISO 2022 IR 126, ISO 2022 IR 138, ISO 2022 IR 148,

ISO 2022 IR 149, ISO 2022 IR 166, ISO 2022 IR 13, ISO 2022 IR 87,

ISO 2022 IR 159, ISO_IR 192, GB18030

0008,0012 Instance Creation Date DA 3

0008,0013 Instance Creation Time TM 3

0008,0014 Instance Creator UID UI 3

0008,0015 Instance Coercion DateTime DT 3

0008,0016 SOP Class UID UI 1

0008,0018 SOP Instance UID UI 1

0008,001A Related General SOP Class UID UI 3

0008,001B Original Specialized SOP Class UID UI 3

0008,0020 Study Date DA 2

0008,0021 Series Date DA 3

0008,0023 Content Date DA 1

0008,0030 Study Time TM 2

0008,0031 Series Time TM 3

0008,0033 Content Time TM 1

0008,0050 Accession Number SH 2

0008,0051 Issuer of Accession Number Sequence SQ 3

Merge DICOM Toolkit 5.21.0 Python User’s Manual

73© Copyright Merge Healthcare Solutions Inc. 2025

Item Name(s): ISSUER_OF_ACCESSION_NUMBER

...

...

===

Item Name: ISSUER_OF_ACCESSION_NUMBER

===

0040,0031 Local Namespace Entity ID UT 1C

Condition: A00400032_NOT_PRESENT

0040,0032 Universal Entity ID UT 1C

Condition: A00400031_NOT_PRESENT

0040,0033 Universal Entity ID Type CS 1C

Condition: A00400032_PRESENT

Defined Terms: DNS,EUI64,ISO,URI,UUID,X400,X500

Encoding items in a sequence

To encode a sequence item into an attribute of Value Representation SQ, treat the attribute as a
multi-valued attribute, where each value is an MCitem object. The following sample code fragment
gives an example of encoding an Icon Image Item into a sequence:

item = MCitem()

item.setName(MCitems.ICON_IMAGE)

item.setValue(MCdicom.SPECIFIC_CHARACTER_SET, 'ISO 2022 IR 13')

item.addValue(MCdicom.SPECIFIC_CHARACTER_SET, 'ISO 2022 IR 87')

item.setValue(MCdicom.REFERRING_PHYSICIANS_NAME, 'REF PHYSICIAN')

msg.addValue(MCdicom.REFERENCED_IMAGE_SEQUENCE, item)

4.10. DICOM Files
Maintaining a DICOM file set is a matter of maintaining various DICOM files and a single DICOM
directory file (DICOMDIR). First, the functions supplied by Merge DICOM Toolkit that operate on all
DICOM files are described; followed by a description of those functions that are especially suited
for the complexities of the DICOMDIR file.

4.10.1. File System Interface Functions

This may sound strange, but all the media interchange functionality of the DICOM Toolkit relies on
functions that you supply to interface with the particular physical medium and file system format on

Merge DICOM Toolkit 5.21.0 Python User’s Manual

74© Copyright Merge Healthcare Solutions Inc. 2025

your target device. This approach was chosen because of the wide variety of media and file system
configurations allowed by the DICOM Standard and the potentially unlimited combination of media
devices, device drivers, and file system combinations for which DICOM media interchange
applications may be developed.

DICOM Toolkit provides powerful DICOM media functionality by supplying your application with:

● A greatly simplified way to deal with the complex encoding and decoding required within a
DICOM file.

● Methods that are very consistent with that used for the maintenance of DICOM messages used
in network functionality; many of the encoding and decoding functions already described apply
equally well to DICOM file objects.

To perform all this functionality on your medium of choice, you need only supply the two file system
interface functions just discussed.

4.10.2. Creating a File Object

Before the contents of an existing DICOM file can be read in or a new DICOM file can be created, an
instance of MCfile derived from McattributeSet class must be created. Its constructor
MCfile() creates the file object whose type is specified by the supplied service-command pair
with MCfile.setServiceCommand(service, command) method. For example, the following
call creates an DICOM CT image file object:

file = MCfile()

file.setName('DICOM_FILE')

file.setServiceCommand(MCservices.STANDARD_CT, MCcommand.C_STORE_RQ)

file.setValue(MCdicom.SPECIFIC_CHARACTER_SET, 'ISO 2022 IR 13')

file.addValue(MCdicom.SPECIFIC_CHARACTER_SET, 'ISO 2022 IR 87')

STANDARD_CT is the service name, and C_STORE_RQ is the command name identifying the class
of file object being created (see TABLE 2.5: SERVICE-COMMAND PAIRS SPECIFYING OBJECT INSTANCES
THAT CAN BE STORED IN A DICOM FILE ON PAGE 28).

It is important to realize that MCfile() does not create the physical DICOM file out on the medium;
the MCfile.writeP10File() method does that. MCfile() corresponds to the
MCdimseMessage() used in networking; it creates references to the proper message info file along
with the data dictionary and builds an unpopulated file object instance for your application to fill in.
This file object contains empty attributes.

When your application is done using a file object, the file object should be freed using the
MCfile.dispose() method.

4.10.3. Reading Files

To read in the contents of a DICOM file for analysis or parsing, you must open the file. Opening a
DICOM file in the DICOM Toolkit API means that a complete file object is filled in from an existing
physical file. This means the entire DICOM file is read in on the open.

The following code reads a file into the file object:

Merge DICOM Toolkit 5.21.0 Python User’s Manual

75© Copyright Merge Healthcare Solutions Inc. 2025

file = MCfile()

file.readP10File('file.dcm')

Once the file object has been read, the file's MCfile.getValue() and MCfile.setValue()
methods can be used to read and set attribute values from the file object.

Performance Tuning

Variants of MCfile readP10File() are supported by the toolkit:

● readP10FileBypassBulk() will read in all attribute's value but will not store the data of type
OB or OW. This method can be used to increase performance for handling attributes of type
OB, OW, OL, OV, OD or OF. If the application associated with this file object (see
setApplication()method) has a value storage provider registered for an attribute of type
OB, OW, OL, OV, OD or OF, this method will pass the offset of the attribute's value from the
beginning of the file along with length of the value to the value storage through the
MCIvalueStorage.receiveDataLength() method. When the data is needed by the user or
the toolkit, the value storage can retrieve it from the media.

● If the EndTag parameter is specified readP10File() will stop reading the attributes from
media into the file object when it reaches the first attribute greater than a specified tag. The
offset in bytes from the beginning of the file to the beginning of the first attribute greater than
the specified tag is returned. The user's application must then deal with reading in the rest of
the DICOM file from media. This function is most useful when the DICOM file contains pixel
data (7FE0, 0010) as its last attribute and this pixel data is very large. In these instances, you may
wish to ignore the pixel data, read it in later using callback mechanism, or process it directly
from the file using your own special filters or hardware.

● If Bypass parameter is True, readP10File() will read the attributes from the media into the
file object including a specified tag, but will not read the tag attributes value. This function is
most useful when the DICOM file contains large pixel data (7FE0, 0010) attribute. The user's
application callback must then deal with reading data from seekable DICOM file stream from
the given offset provided in the REQUEST_FOR_DATA_WITH_OFFSET command.

Once a DICOM MCfile file object has been created and read, the file can be written out to media
using a single MCfile.writeP10File method.

4.10.4. File Validation

File validation occurs in much the same manner as message validation. Before the file can be
validated it must be read into a file object and MCfile.setServiceCommand(service,
command) method must be called to identify the type of file object before validation can occur.
Please see the earlier discussion of message validation, as almost all of it applies equally well to file
validation.

Performance Tuning

DICOM file validation does involve processing overhead. The most significant overhead is in the
accessing of the message info files, and significantly less overhead is involved in actually validating
the contents of the file object structure. It is important to understand that depending on the way in
which your message object was created, this validation overhead can occur at different points in
your application.

Many times, MCfile.validate() is selectively used in an application. Validation might only be
used during integration testing or in the field for diagnostic purposes. Reasons for this include
performance since the overhead associated with file validation may be an issue, especially for larger
files having many attributes or on lower-end platforms. Also, validation can clutter the message log
with warnings and errors that may not be desirable in a production environment.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

76© Copyright Merge Healthcare Solutions Inc. 2025

4.10.5. Converting Files to/from Messages

Two very useful and powerful functions are supplied for converting file objects to message objects
and vice versa. These methods are MCfile.fromMessage() and
MCdimseMessage.fromFile(). Remember that most DICOM files (other than the DICOMDIR
file) are simply the information object portion of a DICOM message encapsulated within a DICOM
file (surrounded by a file preamble, meta information, and optional padding).

These two functions are most often useful when reading and writing image files to and from DICOM
media that were received (or will need to be transmitted) over the network as C-STORE request
messages.

4.11. Private Attributes
Private attributes supply a mechanism for applications to extend standard message objects and
were discussed earlier in this document. Private attributes in message objects are handled in much
the same way as standard attributes with three major exceptions:

● Standard attributes in the Merge DICOM Toolkit API are referenced by Tag, while private
attributes are referred to by PrivateCode, Group, and ElementByte.

● The Group number of a private attribute must always be odd and is the 4 high order
hexadecimal digits of the private Attribute Tag, while for a standard attribute it is always even.

● Private Code is the Private Creator code that will be used to identify the block of 0xFF (255)
private attributes you are reserving within private Group. Private Code can be composed of up
to 64 alphanumeric characters and the space character.

● Element Byte is the 2 hexadecimal digits identifying the private attribute within the Private Block
identified by Private Code.

Up to 255 other private attributes could be added to the ACME_IMG_CORP private block in group
0x1455 using the above call and ElementByte values of 01 through FF. If more attributes are
required, another private block (with a different PrivateCode) will need to be added.

PrivateCodes must be used to refer to private attributes, because private blocks may be placed in
different locations within a private group, depending on what other blocks of private attributes have
already been reserved. PrivateCodes are a way to refer to these blocks, independently of their
physical location in the message stream.

Adding private attributes to a message

Once private attributes have been added with MCattributeSet.addAttribute() method, their
values can be assigned and retrieved identically to standard attributes using
MCattributeSet.getValue() and MCattributeSet.setValue() methods. The next example
shows how to create and add a private attribute tag:

tag = MCtag(0x155590001, 'ACME_IMG_CORP')

msg.addAttribute(tag, MCvr.LO)

msg.setValue(tag, 'PRIVATE VALUE 1')

msg.addValue(tag, 'PRIVATE VALUE 2')

4.12. Multi-threading Support
The Merge DICOM Toolkit library has been designed to be thread safe.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

77© Copyright Merge Healthcare Solutions Inc. 2025

There are some assumptions, however, concerning the thread safety of Merge DICOM Toolkit. In
most cases, it is assumed that a Merge DICOM Toolkit object is only accessed from one thread at a
time. This applies to Message objects, file objects, item objects, and association objects. Note,
however, that different instances of an object can always be manipulated in different threads at the
same time.

There are exceptions to this rule, however. The following is a summary of them:

The sendRequest(), sendResponse(), read(), readToStream(), release() and abort()
methods of the MCassociation class can all be used in one thread while another thread is calling
MCassociation.abort() within another thread. This is useful for allowing a user to
asynchronously cancel an in-progress association.

It is also possible to access tags within a message as it is being read from the network. It is possible
to call the MCattributeSet.getValue() and MCattributeSet.setValue() methods from
one thread while another thread is calling MCassociation read(), continueRead() and
continueReadToStream() methods.

4.13. Memory Management
Performance Tuning

Merge DICOM Toolkit contains its own memory management routines that are optimized for how it
uses memory. They have been adapted to manage specific data structures that are frequently
allocated by the toolkit. These include but are not limited to data structures for associations,
messages, and tags. The memory management routines have the characteristic that they do not
actually "free" the memory that has been acquired. Instead, they mark the data as being free and
place the memory in a list for reuse later. These routines have been optimized to quickly acquire
and free memory being used by the toolkit. They also allow Merge DICOM Toolkit to not depend on
the memory management of a particular operating system.

These memory routines have also been extended for use with variable sized memory buffers. Merge
DICOM Toolkit uses these routines to allocate buffers in sizes between 4 bytes and 28K. When an
allocation is requested, the toolkit will take the smallest buffer that will fit the bytes requested. These
buffers will be kept in the toolkit's internal memory pool and never freed. For allocations larger than
28K, Merge DICOM Toolkit will simply use the 'C' functions malloc() and free(). Under most
conditions, Merge DICOM Toolkit breaks up large DICOM data elements such as pixel data into
chunks of data smaller than 28K so that they can be managed through these routines.

The end result of these routines is that applications using Merge DICOM Toolkit typically expand to
the maximum amount of memory used at one time. The total memory allocation will not shrink from
this point. In applications that repeatedly perform a consistent operation, the memory being used
by Merge DICOM Toolkit should stabilize and not increase in size. In applications using Merge
DICOM Toolkit from multiple threads, this memory usage is not as consistent and depends on the
timing of the threads using the toolkit. As a result of these routines, the first time an application
performs a DICOM operation is typically slower than subsequent operations.

Merge Python Toolkit supplies the MC.reportMemory() and MC.cleanMemory() methods to
allow some user control over this memory management. MC.reportMemory() reports how much
memory is currently allocated and in use by the toolkit. The MC.cleanMemory() routine can be
used to actually free memory allocated by Merge DICOM Toolkit. The routine looks for blocks of
memory that are no longer in use by the toolkit and frees them with the operating system. This can
be useful when a Merge DICOM Toolkit application reads a large DICOM object (such as a large
DICOMDIR or a large multi-frame image) and the user would like to free some of the memory
associated with the object.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

78© Copyright Merge Healthcare Solutions Inc. 2025

When developing a DICOM application with Merge DICOM Toolkit, the most memory intensive
operation is dealing with image data. The following sections discuss various Merge DICOM Toolkit
functions. A description is given of how these functions manage memory in conjunction with
various toolkit configuration settings.

4.13.1. Assigning Pixel Data

MCattributeSet.setValue() method is used to assign OB, OW, OL, OV, OF or OD data to a
DICOM tag. These value representations are used to store image data or other large data elements.

Data can be passed to Merge DICOM Toolkit in several ways. The entire data value can be passed in
a single MCattributeSet.setValue() call, or the data can be supplied in chunks using value
storage mechanisms (see MCIstorageProvider and MCIvalueStorage classes). When passed
data, the toolkit will allocate a buffer the size of the chunk received and copy the data into this buffer
for storage. If the data is passed in chunks smaller than 28K, Merge DICOM Toolkit's internal
memory management code will be used. If the chunks are larger than 28K, malloc() will be used
to allocate the storage for the buffers. If large images are being handled, it may be desirable to pass
these data in chunks larger than 28K, so the memory is freed after processing of the image has
been completed. This will keep the nominal memory usage of Merge DICOM Toolkit lower. When
providing data in chunks smaller than 28K, it is recommended that sizes of 16K, 20K, 24K, or 28K be
used. Using these size chunks will reduce the overhead in storing the data.

The MCattributeSet.setValue() method can also be directed to store data in temporary files.
The LARGE_DATA_STORE and LARGE_DATA_SIZE configuration options in the mergecom.pro file
dictate when data is stored in temporary files. When the LARGE_DATA_STORE option is set to FILE,
data elements that are larger than configured by the LARGE_DATA_SIZE option are stored in
temporary files. The size of the buffer passed to value storage does not have an effect on memory
usage.

4.13.2. Reading Messages from the Network

Merge DICOM Toolkit has a single function for reading messages from the network.
MCassociation.read() creates a message object and loads the message into memory while
reading from the network. When using Merge DICOM Toolkit's standard memory management
routines, the method for storing the image data can be influenced.

Data are read from the network by PDUs. However, they are stored internally in sizes dictated by the
WORK_BUFFER_SIZE configuration value. If a chunk of data read is smaller than the value for the
WORK_BUFFER_SIZE, the chunk will simply be stored. If it is larger, the data will be stored internally
in WORK_BUFFER_SIZE buffers.

By supporting a maximum PDU size and WORK_BUFFER_SIZE larger than 28K, Merge DICOM
Toolkit will store the buffers in memory allocated with the native C function malloc(). This can be
used to reduce the toolkit's typical memory usage. Note, however, that SCU systems do not
necessarily size their PDUs according to the Maximum PDU size negotiated. This solution does not
guarantee that image data will be stored with malloc().

4.13.3. Loading Messages from Disk

This functionality shares the same characteristics as when data are being read from the network
with MCassociation.read(). MCassociation.readToStream() is used to read DICOM
"stream" objects and MCfile.readP10File(), MCfile.readP10FileBypassBulk() are used
to read DICOM Part 10 format files. Whereas objects being read from the network determine

Merge DICOM Toolkit 5.21.0 Python User’s Manual

79© Copyright Merge Healthcare Solutions Inc. 2025

memory usage by the PDU size, these functions determine memory usage by the size of the buffers
passed from their callback functions. The WORK_BUFFER_SIZE configuration value has the same
impact as when reading from the network.

If the data are stored in file format, the MCfile.readP10File() and
MCfile.readP10FileBypassBulk() functions can be used to leave the image data on disk until
they are sent over the network.

a. Saving Received Images Directly to Disk

In conjunction with the registered callback function, data can also be stored directly to disk when it
is being read. The image header data can be written to disk from within the registered callback. The
user must write the attribute tag, value representation if needed, and the length of the image data
attribute to the file. The image data is written to the file in subsequent calls to the user's registered
callback function.

When MCassociation.read() is parsing a message being received, it will notify the user's
registered callback function when it has parsed the header information and determines the image
data's length. The registered callback function will be called with the PROVIDING_DATA_LENGTH
flag and is supplied the Message ID of the message being read. At this point, the user can stream
the header file to disk with MCassociation.readToStream(). As the image data is received, it
can be added to the end of this file.

Data can also be stored as DICOM files with this method. The message cannot be converted into a
file object at this point with Mcfile.fromMessage() as would normally be done. So, a separate file
must be created to add the DICOM Part 10 Meta Header information. This header can be written out
from within the callback. After the end of the meta header, the message can be streamed to disk
with a call to MCassociation.readToStream() in the transfer syntax specified in the Meta
Header. As subsequent image data is passed to the user's callback function, the data can be written
to file. Because the endian of the transfer syntax being written may be different than the endian of
the system being used, there may be a need for byte swapping of the pixel data in this
implementation.

There is a potential risk with this implementation. Although the current definition of the DICOM
image types does not include any data elements after the pixel data, future versions may add data
elements there.

4.14. DICOM Structured Reporting
The Merge DICOM Toolkit provides high-level functionality to handle DICOM Structured Report
(SR) Documents. This functionality provides a simple way for encoding and decoding SR
Document content by manipulating content items and their attributes instead of tags and values.

4.14.1. Structured Report Structure and Modules

The DICOM standard Part 3 defines the following generic types of SR Information Object
Definitions (IODs):

● Basic Text SR Information Object Definition — The Basic Text Structured Report (SR) IOD is
intended for the representation of reports with minimal usage of coded entries (typically used in
Document Title and headings) and a hierarchical tree of headings under which may appear text
and subheadings. Reference to SOP Instances (e.g. images or waveforms or other SR
Documents) is restricted to appear at the level of the leaves of this primarily textual tree. This

Merge DICOM Toolkit 5.21.0 Python User’s Manual

80© Copyright Merge Healthcare Solutions Inc. 2025

structure simplifies the encoding of conventional textual reports as SR Documents, as well as
their rendering.

● Enhanced SR Information Object Definition — The Enhanced Structured Report (SR) IOD is a
superset of the Basic Text SR IOD. It is also intended for the representation of reports with
minimal usage of coded entries (typically Document Title and headings) and a hierarchical tree
of headings under which may appear text and subheadings. In addition, it supports the use of
numeric measurements with coded measurement names and units. Reference to SOP
Instances (e.g. images or waveforms or SR Documents) is restricted to appear at the level of the
leaves of this primarily textual tree. It enhances references to SOP Instances with spatial regions
of interest (points, lines, circle, ellipse, etc.) and temporal regions of interest.

● Comprehensive SR Information Object Definition — The Comprehensive SR IOD is a superset
of the Basic Text SR IOD and the Enhanced SR IOD, which specifies a class of documents, the
content of which may include textual and a variety of coded information, numeric measurement
values, references to the SOP Instances and spatial or temporal regions of interest within such
SOP Instances. Relationships by-reference are enabled between Content Items.

There are more specific SR IODs defined in the DICOM, like Key Object Selection Document and
Mammography CAD SR. Those IODs use the same way to encode data and the difference is in the
constrains on the Content Item Types and their relationships. The figure below illustrates the typical
SR Document structure. As you can see, the top level header is very similar to the DICOM image
IODs and consists of the same Patient, Study and Series modules. The main difference from other
IODs is the SR Document Content Module. The attributes in this Module convey the content of an
SR Document.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

81© Copyright Merge Healthcare Solutions Inc. 2025

a. The SR Document Hierarchy

The Document Content Module has a tree structure and consists of a single root Content Item
(Node 1) that is the root of the SR Document tree. The root Content Item conveys either directly or
indirectly all of the other nested Content Items in the document. The hierarchical structuring of the
Content Tree provided by recursively nesting Content Items. A parent (or source) Content Item has
an explicit relationship to each child (or target) Content Item, conveyed by the Relationship Type.
The figure below depicts the relationship of SR Documents to Content Items and the relationships
of Content Items to other Content Items and to Observation Context.

Each Content Item contains the following:

● A name/value pair, consisting of:

● a single Concept Name Code that is the name of a name/value pair or a heading; and

● a value (text, numeric, code, etc.).

● References to images, waveforms or other composite objects, with or without coordinates.

● Relationships to other Items, either by-value through nested Content Sequences, or by-
reference.

NOTE: Some Content Item Types can have multiple values.

4.14.2. Content Item Types

The table below defines all possible Content Item Types that can be used in the SR Document
Content Module. The choice of which may be constrained by the IOD in which this Module is

Merge DICOM Toolkit 5.21.0 Python User’s Manual

82© Copyright Merge Healthcare Solutions Inc. 2025

contained. Merge DICOM Toolkit Definition column specifies the enumerated value used in the
Toolkit to identify the Content Item Type.

Table 4.10: SR Content Item Types

Item Type Merge DICOM Toolkit Class Concept Name Description

TEXT MCtextItem Type of text, for
example, “Findings”, or
name of identifier, for
example, “Lesion ID”

Free text, narrative
description of unlimited
length. May also be used
to provide a label or
identifier value.

NUM MCnumItem Type of numeric value
or measurement, for
example, “BPD”

Numeric value fully
qualified by coded
representation of the
measurement name and
unit of measurement.

CODE MCcodeItem Type of code, for
example, “Findings”

Categorical coded value.
Representation of
nominal or non-numeric
ordinal values.

DATETIME MCdateTimeItem Type of DateTime, for
example, “Date/Time of
onset”

Date and time of
occurrence of the type of
event denoted by the
Concept Name.

DATE MCdateItem Type of Date, for
example, “Birth Date”

Date of occurrence of the
type of event denoted by
the Concept Name.

TIME MCtimeItem Type of Time, for
example, “Start Time”

Time of occurrence of
the type of event denoted
by the Concept Name.

UIDREF MCuidReferenceItem Type of UID, for
example, “Study
Instance UID”

Unique Identifier (UID) of
the entity identified by
the Concept Name.

PNAME MCpersonNameItem Role of person, for
example, “Recording
Observer”

Person name of the
person whose role is
described by the
Concept Name.

COMPOSITE MCcompositeItem Purpose of Reference A reference to one
Composite SOP Instance
which is not an Image or
Waveform.

IMAGE MCimageItem Purpose of Reference A reference to one Image.
IMAGE Content Item may
convey a reference to a
Softcopy Presentation
State associated with the
Image.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

83© Copyright Merge Healthcare Solutions Inc. 2025

4.14.3. Relationship Types between Content Items

The table below describes the Relationship Types between Source Content Items and the Target
Content Items. The choice of which may be constrained by the IOD in which this Module is

WAVEFORM MCwaveformItem Purpose of Reference A reference to one
Waveform.

SCOORD MCspatialCoordinatesItem Purpose of Reference Spatial coordinates of a
geometric region of
interest in the DICOM
image coordinate system.
The IMAGE Content Item
from which spatial
coordinates are selected
is denoted by a
SELECTED FROM
relationship.

SCOORD3D MCspatialCoordinates3DItem Purpose of Reference 3D spatial coordinates (x,
y, z) of a geometric region
of interest in a Reference
Coordinate System.

TCOORD MCtemporalCoordDateTimeItem
MCtemporalCoordPositionsItem
MCtemporalCoordTimeOffsetsIte
m

Purpose of Reference Temporal Coordinates
(i.e. time or event based
coordinates) of a region
of interest in the DICOM
waveform coordinate
system. The WAVEFORM
or IMAGE or SCOORD
Content Item from which
Temporal Coordinates
are selected is denoted
by a SELECTED FROM
relationship.

CONTAINER MCcontainerItem Document Title or
document section
heading. Concept
Name conveys the
Document Title (if the
CONTAINER is the
Document Root
Content Item) or the
category of observation.

CONTAINER groups
Content Items and
defines the heading or
category of observation
that applies to that
content. The heading
describes the content of
the CONTAINER Content
Item and may map to a
document section
heading in a printed or
displayed document.

TABLE MCtableItem Purpose of the
tabulated data

Table of text, numeric or
datetime values.

Item Type Merge DICOM Toolkit Class Concept Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

84© Copyright Merge Healthcare Solutions Inc. 2025

contained. Merge DICOM Toolkit Definition column specifies the enumerated value used in the
Toolkit to identify the Content Item Relationship.

Table 4.11: SR Relationship Types

Relationship Type Merge DICOM
Toolkit Definition

Description

CONTAINS SR_REL_CONTAINS Source Item contains Target Content Item. For
example: CONTAINER “History” {CONTAINS: TEXT:
“mother had breast cancer”; CONTAINS IMAGE 36}

HAS OBS CONTEXT SR_REL_HAS_OBS_C
ONTEXT

Has Observation Context. Target Content Items shall
convey any specialization of Observation Context
needed for unambiguous documentation of the
Source Content Item.
For example: CONTAINER: “Report” {HAS OBS
CONTEXT: PNAME: “Recording Observer” =
“Smith^John^^Dr^”}

HAS CONCEPT MOD SR_REL_HAS_CONC
EPT_MOD

Has Concept Modifier. Used to qualify or describe
the Concept Name of the Source Content item, such
as to create a post-coordinated description of a
concept, or to further describe a concept.
For example: CODE “Chest X-Ray” {HAS CONCEPT
MOD: CODE “View = PA and Lateral”}
For example: CODE “Breast” {HAS CONCEPT MOD:
TEXT “French Translation” = “Sein”}
For example: CODE “2VCXRPALAT” {HAS
CONCEPT MOD: TEXT “Further Explanation” =
“Chest X-Ray, Two Views, Posteroanterior and
Lateral”}

HAS PROPERTIES SR_REL_HAS_PROPE
RTIES

Description of properties of the Source Content
Item.
For example: CODE “Mass” {HAS PROPERTIES:
CODE “anatomic location”, HAS PROPERTIES:
CODE “diameter”, HAS PROPERTIES: CODE
“margin”, ...}.

HAS ACQ CONTEXT SR_REL_HAS_ACQ_C
ONTEXT

Has Acquisition Context. The Target Content Item
describes the conditions present during data
acquisition of the Source Content Item.
For example: IMAGE 36 {HAS ACQ CONTEXT: CODE
“contrast agent”, HAS ACQ CONTEXT: CODE
“position of imaging subject”, ...}.

INFERRED FROM SR_REL_INFERRED_
FROM

Source Content Item conveys a measurement or
other inference made from the Target Content Items.
Denotes the supporting evidence for a measurement
or judgment.
For example: CODE “Malignancy” {INFERRED
FROM: CODE “Mass”, INFERRED FROM: CODE
“Lymphadenopathy”,...}.
For example: NUM: “BPD = 5mm” {INFERRED
FROM: SCOORD}.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

85© Copyright Merge Healthcare Solutions Inc. 2025

4.14.4. Content Item Identifier

Content Items are identified by their position in the Content Item tree. They have an implicit order
as defined by the order of the Sequence Items. When a Content Item is the target of a by reference
relationship, its position is specified as the Referenced Content Item Identifier in the source
Content Item. The figure below illustrates an SR content tree and identifiers associated with each
Content Item:

4.14.5. Observation Context

Observation Context describes who or what is performing the interpretation, whether the
examination of evidence is direct or quoted, what procedure generated the evidence that is being
interpreted, and who or what is the subject of the evidence that is being interpreted.

Initial Observation Context is defined outside the SR Document Content tree by other modules in
the SR IOD (i.e., Patient Module, Specimen Identification, General Study, Patient Study, SR
Document Series, Frame of Reference, Synchronization, General Equipment and SR Document
General modules). Observation Context defined by attributes in these modules applies to all
Content Items in the SR Document Content tree and need not be explicitly coded in the tree. The
initial Observation Context from outside the tree can be explicitly replaced.

If a Content Item in the SR Document Content tree has Observation Context different from the
context already encoded elsewhere in the IOD, the context information applying to that Content
Item shall be encoded as child nodes of the Content Item in the tree using the HAS OBS CONTEXT
relationship. That is, Observation Context is a property of its parent Content Item.

The context information specified in the Observation Context child nodes (i.e. target of the HAS
OBS CONTEXT relationship) adds to the Observation Context of their parent node Content item,
and shall apply to all the by-value descendant nodes of that parent node regardless of the
relationship type between the parent and the descendant nodes. Observation Context is encoded in

SELECTED FROM SR_REL_SELECTED_
FROM

Source Content Item conveys spatial or temporal
coordinates selected from the Target Content
Item(s).
For example: SCOORD: “CLOSED 1,1 5,10”
{SELECTED FROM: IMAGE 36}.
For example: TCOORD: “SEGMENT 60-200mS”
{SELECTED FROM: WAVEFORM}.

Relationship Type Merge DICOM
Toolkit Definition

Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

86© Copyright Merge Healthcare Solutions Inc. 2025

the same manner as any other Content Item. Observation Context shall not be inherited across by-
reference relationships.

Observation DateTime is not included as part of the HAS OBS CONTEXT relationship, and therefore
is not inherited along with other Observation Context. The Observation DateTime Attribute is
included in each Content Item which allows different observation dates and times to be attached to
different Content Items.

The IOD may specify restrictions on Content Items and Relationship Types that also constrain the
flexibility with which Observation Context may be described.

The IOD may specify Templates that offer or restrict patterns and content in Observation Context.

4.14.6. Structured Reporting Templates

Templates are patterns that specify the Concept Names, Requirements, Conditions, Value Types,
Value Multiplicity, Value Set restrictions, Relationship Types and other attributes of Content Items
for a particular application. SR Document templates are defined in the Part 16 of the DICOM
Standard. Part 17 of the DICOM also has some explanatory information on encoding SR
Documents. The Merge DICOM Toolkit SR Functions follow DICOM Templates structures and allow
straightforward encoding based on template tables.

SR Templates are described using tables of the form shown in the table below.

Table 4.12: SR Template Definition

a. Row Number

Each row of a Template Table is denoted by a row number. The first row is numbered 1 and
subsequent rows are numbered in ascending order with increments of 1. This number denotes a
row for convenient description as well as reference in conditions. The Row Number of a Content
Item in a Template may or may not be the same as the ordinal position of the corresponding node in
the encoded document. The Merge DICOM Toolkit does not use this number in any way.

b. Nesting Level (NL)

The nesting level of Content Items is denoted by “>” symbols, one per level of nesting below the
initial Source Content Item (of the Template) in a manner similar to the depiction of nested
Sequences of Items in Module Tables in Part 3 of the DICOM standard. When it is necessary to
specify the Target Content Item(s) of a relationship, they are specified in the row(s) immediately
following the corresponding Source Content Item. The Merge DICOM Toolkit provides functions to
add nested (child) Content Items to the parent Content Item node.

NL Rel with
Parent

VT Concept
Name

VM Req Type Condition Value Set
Constraint

1

2

3

Merge DICOM Toolkit 5.21.0 Python User’s Manual

87© Copyright Merge Healthcare Solutions Inc. 2025

c. Relationship with Source Content Item (Parent)

Relationship Type and Mode are specified for each row that specifies a target content item. The
Relationship Types are enumerated in TABLE 4.11: SR RELATIONSHIP TYPES ON PAGE 84.

Relationship Type and Mode may also be specified when another Template is included, either “top-
down” or “bottom-up” or both (i.e., in the “INCLUDE Template” row of the calling Template or in all
rows of the included Template or in both places). There shall be no conflict between the
Relationship Type and Mode of a row that includes another Template and the Relationship Type and
Mode of the rows of the included Template.

When the relationship is defined in a form as R-RTYPE, it means that Relationship Mode is “By-
reference” and Relationship Type is “RTYPE” (e.g., “R INFERRED FROM”).

d. Value Type (VT)

The Value Type field specifies the SR Value Type of the Content Item or conveys the word
“INCLUDE” to indicate that another Template is to be included (substituted for the row). The Merge
DICOM Toolkit uses explicit function call for each Content Item Type as is described above.

e. Concept Name

Any constraints on Concept Name are specified in this field as defined or enumerated coded
entries or as baseline or defined context groups. Alternatively, when the VT field is “INCLUDE”, the
Concept Name field specifies the template to be included.

Abbreviations used in templates

The following abbreviations are used in template definitions:

● EV Enumerated Value — values for are provided in the brackets.

● DT Defined Term — values are provided in the brackets.

● BCID Baseline Context Group ID — identifier that specifies the suggested Context Group. The
suggested values can be found in DICOM Part 16 and identified by a Context ID provided in the
brackets.

● DCID Defined Context Group ID — identifier that specifies the Context Group for a Coded Value
that shall be used. The values can be found in DICOM Part 16 and identified by a Context ID
provided in the brackets.

● BTID Baseline Template ID — identifier that specifies a template suggested to be used in the
creation of a set of Content Items. The referenced template can be found in DICOM Part 16 and
identified by a Template ID provided in the brackets.

● DTID Defined Template ID — identifier that specifies a template that shall be used in the
creation of a set of Content Items. The referenced template can be found in DICOM Part 16 and
identified by a Template ID provided in the brackets.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

88© Copyright Merge Healthcare Solutions Inc. 2025

f. Value Multiplicity (VM)

The VM field indicates the number of times that either a Content Item of the specified pattern or an
included Template may appear in this position. The table below specifies the values that are
permitted in this field.

Table 4.13: Permitted Values for VM

g. Requirement Type

The Requirement Type field specifies the requirements on the presence or absence of the Content
Item or included Template. The following symbols are used:

● M - Mandatory. Shall be present.

● MC - Mandatory Conditional. Shall be present if the specified condition is satisfied.

● U - User Option. May or may not be present.

● UC - User Option Conditional. May not be present. May be present according to the specified
condition.

h. Condition

The Condition field specifies any conditions upon which the presence or absence of the Content
Item or its values depends. This field specifies any Concept Name(s) or Values upon which there
are dependencies.

References may also be made to row numbers (e.g. to specify exclusive OR conditions that span
multiple rows of a Template table).

The following abbreviations are used:

● XOR - Exclusive OR. One and only one row shall be selected from mutually exclusive options.

NOTE: For example, if one of rows 1, 2, 3 or 4 may be included, then for row 2, the abbreviation
“XOR rows 1,3,4” is specified for the condition.

● IF - Shall be present if the condition is TRUE; may be present otherwise.

● IFF - If and only if . Shall be present if the condition is TRUE; shall not be present otherwise.

● CV - Code Value

● CSD - Coding Scheme Designator

● CM - Code Meaning

● CSV - Coding Scheme Version

Expression Definition

i (where 'i' represents
an integer)

Exactly i occurrences, where i >= 1. E.g. when i == 1 there shall be one occurrence
of the Content Item in this position.

i—j From i to j occurrences, where i and j are >= 1 and j > i.

1—n One or more occurrences.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

89© Copyright Merge Healthcare Solutions Inc. 2025

i. Value Set Constraint

Value Set Constraints, if any, are specified in this field as defined or enumerated coded entries, or as
baseline or defined context groups.

The Value Set Constraint column may specify a default value for the Content Item if the Content
Item is not present, either as a fixed value, or by reference to another Content Item, or by reference
to an Attribute from the dataset other than within the Content Sequence (0040,A730).

j. Inclusion of Templates

A Template may include another Template by specifying “INCLUDE” in the Value Type field and the
identifier of the included Template in the Concept Name field. All of the rows of the specified
Template are included in the invoking Template, effectively substituting the specified template for
the row where the inclusion is invoked. Whether or not the inclusion is user optional, mandatory or
conditional is specified in the Requirement and Condition fields. The number of times the included
Template may be repeated is specified in the VM field.

We recommend that you implement templates as a subroutine or function call. In that case, the
inclusion of the template will be implemented as a call to that template with passing parameters.
Some of the templates defined in DICOM Part 16 already have predefined parameters and they are
indicated by a name beginning with the character “$”.

4.14.7. Memory Management

The Structured Reporting API is designed in such way that you only deal with types of objects:

● Message objects which are messages and message items.

● Structured Report objects which are the root SR Content Item and child Content Items.

You can convert back and forth between these objects and work with one object type at a time.
However, it is imported to know how these objects are managed internally.

Structured Report Content Items are represented as a special SR objects in the memory. Each
object is represented by the integer object ID that is also called a Node ID. The ID value for SR
Objects is the same as the item ID or Message ID of the underlying message object. SR objects are
always mapped to the message objects and use them as attribute storage. This allows you to use SR
object ID in the basic toolkit functions like MCattributeSet.setValue(). Deletion of the SR

Merge DICOM Toolkit 5.21.0 Python User’s Manual

90© Copyright Merge Healthcare Solutions Inc. 2025

Object does not delete the underlying item object. The figure below shows the relationship between
the SR tree and the message object:

When a message or item object is mapped with the SR object, it is marked with a special flag that
prohibits some of the operations that can break the structured report hierarchy. For example,
MCattributeSet.duplicate() will not work on the messages mapped with the SR object.

4.14.8. Overview of the Merge DICOM Toolkit SR Methods

The Merge DICOM Toolkit has several types of methods that can be used for reading/writing
Structured Report IODs.

Low-level attribute access methods — These are the same methods that are used to work with
attributes in message objects. Every SR Content Item ID is mapped to the Message Item ID and can
be used to set or get additional attributes that are not covered by the High Level API.

Low-level navigation and conversion methods — These methods provide mapping and
conversion between message objects and SR objects (Content Items). The following methods are
included:

● MCstructuredReport()— initialize a new SR with SR root object and maps it to the existing
message object.

● MCstructuredReport.read(MCattributeSet)— transform Structured Report attribute set
into tree data structure

● MCstructuredReport.write(MCattributeSet)— structured Report document from a
tree data structure to DICOM attribute set.

● MCstructuredReport.createItem()— creates an SR Content Item and maps it to the
existing message item.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

91© Copyright Merge Healthcare Solutions Inc. 2025

● MCstructuredReport.findItem(MCitemIdentifier)— retrieve the child Content Item
specified given MCitemIdentifier item Id.

High-Level methods for encoding SR - These methods can be used to build an entire SR
document tree with minimum coding. The following methods are included:

● MCcontentItem.addChild(MCcontentItem, relation)— add a new Content Item child,
for example of type "TEXT" and 'relation' specifies an MCrelationType relationship between
the enclosing source Content Item and the target Content Item.

● MCcontentItem.removeChild(MCcontentItem)— remove Content Item child.

● MCcontentItem.addReference(reference)— create a MCitemRelation reference to
another Content Item node "by reference".

● MCcontentItem.removeReference(MCcontentItem)— remove a reference to another to
another Content Item node.

4.14.9. Encoding SR Documents

The creation of the SR document involves the following steps:

1. Create a new SR object as a root node.

2. Add Content Items (nodes) to the tree based on the template definitions.

3. Convert SR object to a message object.

4. Add Patient/Study/Series and other attributes required by the IOD definition,

5. Save the result message object to a file.

To create a new SR, you need to know the IOD type you are creating and the templates that will be
used to generate the SR Document Content.

a. Key Object Selection Example

The Key Object Selection document is constrained by a single template. The following template is
taken from DICOM Part 16.

TID 2010
KEY OBJECT SELECTION

Type: Non-Extensible

NL Rel with
Parent

VT Concept Name VM Req
Type

Condition Value Set
Constraint

1 > CONTAINE
R

DCID(7010) Key
Object Selection
Document Titles

1 M Root node

2 > HAS
CONCEPT
MOD

CODE EV (113011,
DCM,“Document
Title Modifier”)

1-n U

Merge DICOM Toolkit 5.21.0 Python User’s Manual

92© Copyright Merge Healthcare Solutions Inc. 2025

The code below generates a valid DICOM KO object and illustrates how the template is encoded
using the Merge DICOM Toolkit functions.

#

Create OB-GYN ULTRASOUND REPORT.

Note: This SR does not follow the DICOM template, but only some
portion of it.

#

sr = MCstructuredReport('5000', MCcontainerItem.SEPARATE,
MCcodedEntry('125000', 'DCM', 'OB-GYN Ultrasound Proc)

root = sr.getRoot()

#

IMAGE LIBRARY

3 > HAS
CONCEPT
MOD

CODE EV (113011,
DCM,“Document
Title Modifier”)

1 UC IF Row 1 Concept
Name = (113001,
DCM, “Rejected
for Quality
Reasons”) or
(113010, DCM,”
Quality Issue”)

DCID (7011)

4 > HAS
CONCEPT
MOD

CODE EV (113011,
DCM,“Document
Title Modifier”)

1 MC IF Row 1 Concept
Name = (113013,
DCM, “Best In
Set”)

DCID (7012)

5 > HAS
CONCEPT
MOD

INCLUDE DTID(1204)
Language of
Content Item and
Descendants

1 U

6 > HAS OBS
CONTEXT

INCLUDE DTID(1002)
Observer Context

1-n U

7 > CONTAINS TEXT EV(113012,
DCM,“Key Object
Description”)

1 U

8 > CONTAINS IMAGE Purpose of
Reference shall not
be present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

9 > CONTAINS WAVEFOR
M

Purpose of
Reference shall not
be present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

10 > CONTAINS COMPOSIT
E

Purpose of
Reference shall not
be present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

NL Rel with
Parent

VT Concept Name VM Req
Type

Condition Value Set
Constraint

Merge DICOM Toolkit 5.21.0 Python User’s Manual

93© Copyright Merge Healthcare Solutions Inc. 2025

#

citem = MCcontainerItem(None, MCcontainerItem.SEPARATE,
MCcodedEntry('111028', 'DCM', 'Image Library'))

root.addChild(citem, MCrelationType.CONTAINS)

item = MCcompositeItem(MCsopInstanceReference('1.2.3.4.2',
'1.2.3.4.5.2'))

citem.addChild(item, MCrelationType.CONTAINS)

item = MCimageItem(CsopInstanceReference('1.2.3.4.1', '1.2.3.4.5.1'))

citem.addChild(item, MCrelationType.CONTAINS)

item.setFrames([1, 2, 3, 4, 5])

item = MCwaveformItem(MCsopInstanceReference('1.2.3.4.3',
'1.2.3.4.5.3'))

citem.addChild(item, MCrelationType.CONTAINS)

item.setChannels([(1,2), (3,4), (5,6)])

#

PATIENT CHARACTERISTICS

#

citem = MCcontainerItem(None, MCcontainerItem.SEPARATE,
MCcodedEntry('121118', 'DCM', 'Patient Characteristics'))

root.addChild(citem, MCrelationType.CONTAINS)

item = MCtextItem('Patient looks ok', MCcodedEntry('121106', 'DCM',
'Comment'))

item.setDateTime(MCdateTime(MCdate(2000, 10, 10), MCtime(20,30,40)))

citem.addChild(item, MCrelationType.CONTAINS)

item = MCnumItem('1.85', MCcodedEntry('m', 'LN', 'meters'),
MCcodedEntry('8302-2', 'LN', 'Patient Height'))

citem.addChild(item, MCrelationType.CONTAINS)

4.14.10.Reading SR Documents

Reading SR Documents is done in a similar way as encoding, but in reverse sequence:

● Read a File or receive a message object.

● Read root level attributes.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

94© Copyright Merge Healthcare Solutions Inc. 2025

● Convert message object into SR object.

● Traverse SR content tree and extract Content Node attributes,

The following code demonstrates a reading sequence for the Key Object Document generated
above.

file = MCfile()

file.readP10File(fname)

sr = MCstructuredReport()

sr.read(file)

root = sr.getRoot()

dst = MCfile()

sr.write(dst)

dst.writeP10File(fname)

dst.dispose()

4.15. Converting Attribute Set to/from DICOM JSON
Model String

An attribute set can be converted to a DICOM JSON Model string by using the writeToJSON
method of the MCattributeSet class. The writeToJSON method creates a DICOM JSON Model
(PS3.18) string describing the contents of the attribute set. The JSON output is written to the stream
identified by the stream object provided.

The attribute values can be read from a DICOM JSON Model string into an MCattributeSet object
using the readFromJSON method of MCattributeSet.

4.16. Converting Attribute Set to/from Native DICOM
Model XML String

An attribute set can be converted to a Native DICOM Model XML string by using the
writeToXMLNative method of the MCattributeSet. The writeToXMLNative method creates a Native
DICOM Model (PS3.18) XML string describing the contents of the attribute set. The XML output is
written to the stream identified by the stream object provided.

The attribute values can be read from a Native DICOM Model XML string into an MCattributeSet
object using the readFromXMLNative method of MCattributeSet.

95© Copyright Merge Healthcare Solutions Inc. 2025

Chapter 5. Deploying Applications

There are several issues to consider when deploying a Merge DICOM Toolkit based application.
These include deciding which Merge DICOM Toolkit files are needed for your application, how to set
important configuration options to reduce problems in the field, and how to deal with potential UN
VR problems. The following sections describe these issues in further detail.

5.1. Merge DICOM Toolkit Required Files
There are a limited number of files required by Merge DICOM Toolkit applications. These files are
described in the table below. Note that the use of some of these files can be avoided by using the
genconf and gendict utilities. Each of these utilities generates a source file from the configuration
files that can then be compiled and linked into your application.

Table 5.1: Files needed when deploying an application

5.2. Configuration Options
The majority of Merge DICOM Toolkit's configuration options can be used to solve interoperability
problems in the field. There are some options, however, that can be set before deploying a Merge

File Description and Use

merge.ini Merge DICOM Toolkit initialization file. This file contains logging information and path
names for the other configuration files. Use of this file can be avoided by using the
genconf utility to link the file into the Merge DICOM Toolkit application.

mergecom.pro Merge DICOM Toolkit system profile. This file contains general run-time configuration
options. Use of this file can be avoided by using the genconf utility to link it into the
Merge DICOM Toolkit application.

mergecom.app Merge DICOM Toolkit application profile. This file contains configuration information
about the services supported by the Merge DICOM Toolkit application and information
about remote DICOM applications. Use of this file can be avoided by using the
genconf utility to link it into the Merge DICOM Toolkit application.

mergecom.srv Merge DICOM Toolkit services file. This file contains information about the services
supported by Merge DICOM Toolkit. Use of this file can be avoided by using the
genconf utility to link it into the Merge DICOM Toolkit application.

mrgcom3.msg Merge DICOM Toolkit message information file. This file contains validation
information for DICOM messages.

mrgcom3.dct Merge DICOM Toolkit data dictionary file. This file contains information about all of the
DICOM attributes. Use of this file can be avoided by using the gendict utility to link it
into the Merge DICOM Toolkit application.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

96© Copyright Merge Healthcare Solutions Inc. 2025

DICOM Toolkit application to help reduce potential problems. These options are listed in the table
below with descriptions of how they can be set.

Table 5.2: Configuration options to consider when deploying an application

5.3. UN VR
DICOM Supplement 14, Unknown Value Representation, became a part of the DICOM standard on
June 3, 1997. This supplement adds a new value representation, UN, to the DICOM standard. It was
developed to fix two related holes in the DICOM standard:

When standard or private attributes were received in an implicit value representation (VR) transfer
syntax, and the user does not have a knowledge of the VR of the attributes, there is no way to
represent the VR for these attributes in an explicit VR transfer syntax.

Every time a new VR is added to the standard, there is no way to determine if the length field in
explicit value representation transfer syntaxes should be encoded as 2 bytes or 4 bytes, so a general
parser could not be properly written to handle future VRs.

Configuration Option Description

ACCEPT_ANY_APPLICATION_TITLE When set to NO, Merge DICOM Toolkit requires that the Application
Entity title sent in an association request match one of the
registered application titles for the SCP. When there is no match, the
association will be automatically rejected. Setting this option to YES
will eliminate some association negotiation problems in the field for
SCP applications.

ACCEPT_ANY_HOSTNAME When set to NO, Merge DICOM Toolkit will attempt to resolve the IP
address of the SCU application into a hostname. If this resolution
cannot be done, the association will automatically be rejected.
Setting this option to YES will reduce configuration problems in the
field for SCP applications.

EXPORT_UN_VR_TO_MEDIA Setting this option to NO will cause UN VR attributes to not be
exported when writing DICOM Part 10 format files. See the following
sections for a further discussion of UN VR.

EXPORT_UN_VR_TO_NETWORK Setting this option to NO will cause UN VR attributes to not be
exported over the network. See the following sections for a further
discussion of UN VR.

IMPLEMENTATION_CLASS_UID The Implementation Class UID is used to uniquely identify a specific
class of implementation. PS3.7 of DICOM states: "(The
Implementation Class UID) is intended to provide respective (each
network node knows the other's implementation identity) and non-
ambiguous identification in the event of communication problems
encountered between two nodes." PS3.7 of DICOM further defines
how this UID should be defined: "different equipment of the same
type or product line (but having different serial numbers) shall use
the same Implementation Class UID if they share the same
implementation environment (that is, software)."

IMPLEMENTATION_VERSION The Implementation Version is intended to distinguish between
software versions of an implementation. It should be set to the
version of the Merge DICOM Toolkit application.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

97© Copyright Merge Healthcare Solutions Inc. 2025

The need for this supplement is mainly for use in "archive" systems. An "archive" will typically want
to preserve the private attributes contained within a message for later use. There also may be a
need to add support for new image objects with new VRs to an "archive" system without having to
change the software.

Unfortunately, the method that Supplement 14 specifies for encoding UN value representation
attributes is typically not compatible with older DICOM implementations. Versions previous to 2.2.2
of the Merge DICOM Toolkit do not parse these attributes properly. The MCassociation.read()
method will fail and the association will be aborted if a UN VR attribute is received. This has
obviously caused a variety of interoperability problems in the field.

The typical DICOM scenario where UN VR can cause a DICOM communication failure is the
following: a modality exports a series of images to a PACS or "archive" system via the DICOM
storage service class. The images were encoded in the implicit VR little endian transfer syntax and
contain multiple private attributes. Later, a DICOM workstation decides to retrieve the images from
the "archive" or PACS system. The workstation does not yet support UN VR, however, the PACS or
"archive" system does. The workstation uses the DICOM query/retrieve service class to retrieve the
series of images. When the images are exported to the workstation with an explicit VR transfer
syntax, the workstation fails to parse the first image received when it encounters the first UN VR
attribute, and the association is automatically aborted by the workstation.

We have added several methods to solve this interoperability problem through the Merge DICOM
Toolkit's configuration files. For SCU systems that are exporting UN VR tags to systems that cannot
handle them, the following can be done:

Configure the SCU to only use the Implicit VR Little Endian transfer syntax when exporting objects.
This can be done through the use of transfer syntax lists within the mergecom.app file or through
commenting out the UID definitions for the other transfer syntaxes within the mergecom.pro file.

Set the UNKNOWN_VR_CODE configuration option in the mergecom.pro file to 'OB'. This forces
unknown VR attributes to be encoded as OB instead of as UN. All implementations can handle OB
encoding. There are several drawbacks to this option. If the attributes are encoded as OB, it is
harder for these attributes to be converted back to their normal VR. Secondly, this option changes
all instances of the UN VR into OB. Systems that can handle the UN VR will now also receive these
attributes as OB.

Set the EXPORT_UN_VR_TO_NETWORK configuration option to 'No'. This will cause the Merge
DICOM Toolkit to not export attributes encoded as UN VR to the network. This option was added to
release 2.3.0 of the Merge DICOM Toolkit.

For SCP systems receiving UN VR tags when they cannot handle them, the following can be done:

Configure the SCP to only negotiate the Implicit VR Little Endian transfer syntax when receiving
objects.

With the help of these options, most UN VR problems in the field can be fixed simply by changing
configuration values with the Merge DICOM Toolkit.

98© Copyright Merge Healthcare Solutions Inc. 2025

Appendix A. Frequently Asked Questions

This appendix lists some frequently asked questions by Merge DICOM Toolkit users.

1. I recently received a new version of Merge DICOM Toolkit and wonder what is required for me to
upgrade to the new version?

There are several areas where changes typically occur between releases of the Merge DICOM
Toolkit. The following are specific areas to look at when upgrading to a new version:

● Upgrading the library — The Merge DICOM Toolkit library itself must be updated by
replacing the library.

● Upgrading the data dictionary files — The mergecom.srv, mrgcom3.msg, and
mrgcom3.dct files must all be updated when upgrading the Merge DICOM Toolkit data
dictionary. Upgrading some, but not all of these files can cause subsequent problems.

● Upgrading the configuration files — Upgrading the merge.ini, mergecom.pro, and
mergecom.app configuration files is optional. Although new configuration options are often
added to these files, Merge DICOM Toolkit will assume default values for these options if
they are not included in a configuration file. These files do not have to be updated when
moving to a new release. Note however that the descriptions of configuration options are
often updated and it is useful to have the latest versions of these files.

2. I am running the toolkit's sample applications for the first time. I have set the MERGE_INI
environment variable to point to the merge.ini file. However, the MC.initialize() is still
throwing an exception with MC_CONFIG_INFO_ERROR id. What is the cause of this problem?

This is usually only a problem under Windows. The merge.ini file contains several entries that
point to the locations of the other toolkit configuration files. These entries contain relative
pathnames for the other files. If the sample applications are not executed from the directory
where the configuration files are located, the toolkit will be unable to find the files and produce
this error. Changing these paths to absolute paths will fix the problem.

3. It is inconvenient to set absolute paths for the various configuration options in the merge.ini and
mergecom.pro files that need them. Is there a way to make these pathnames be configurable at
run-time?

Merge DICOM Toolkit allows the placement of environment variables in these pathnames. This
allows setting of a root directory for these pathnames. The following is an example of how this
functionality is used in our configuration files:

● MERGECOM_PRO = $(MERGE_ROOT)\mc3apps\mergecom.pro

● In this example, MERGE_ROOT would be an environment variable set in a similar fashion as
the MERGE_INI environment variable.

● A special macro "MC3INIDIR" is used to represent the directory where "merge.ini" is. It is
used like the environment variable with the difference that it is automatically resolved and
does not need to be set.

● If MERGECOM_3_PROFILE, MERGECOM_3_SERVICES or
MERGECOM_3_APPLICATIONS contain relative paths with a prefix "$(MC3INIDIR)" or
"%MC3INIDIR%", the toolkit considers the path relative to the location of the "merge.ini" file.

For example:

MERGECOM_3_PROFILE = $(MC3INIDIR)../config/mergecom.pro

Merge DICOM Toolkit 5.21.0 Python User’s Manual

99© Copyright Merge Healthcare Solutions Inc. 2025

The path of the profile file is "../config/mergecom.pro" relative to the location of the "merge.ini"
file.

4. I am testing the sample applications for the first time and cannot get the client (SCU)
application to connect to the server (SCP) for any of the sample applications. The
MCassociation.requestAssociation() method is throwing an exception. It appears as
though the connection is opening, but it is quickly dropped. Why is this happening?

As a security measure, the SCPs association process call attempts to determine the hostname
of SCUs connecting to it. If it cannot determine the remote hostname, it will drop the
connection. The SCPs association process uses the local system's hosts file or its configured
domain name server to translate the SCU's IP address into its hostname. By configuring the
SCU's hostname in your local hosts file, this problem will be eliminated. Also, the
ACCEPT_ANY_HOSTNAME configuration value in the mergecom.pro file disables this checking.

5. What can be done to reduce the memory requirements of the Merge DICOM Toolkit?

There are several configuration values that reduce Merge DICOM Toolkit's memory
requirements. The following describes each of these options:

● FORCE_OPEN_EMPTY_ITEM — It is especially useful for reducing the amount of memory
used when working with large DICOMDIRs.

● LARGE_DATA_STORE and LARGE_DATA_SIZE — These options control the ability of Merge
DICOM Toolkit to store pixel data in temporary files instead of RAM. This functionality is
enabled by setting LARGE_DATA_STORE to FILE, and adjusting LARGE_DATA_SIZE to the
size of data element that you want spooled to temporary file. Note that this will decrease
performance.

● DICOMDIR_STREAM_STORAGE — This option can be used when reading DICOMDIR files to
reduce the amount of memory required to store directory records within the DICOMDIR.

6. What can be done to increase the performance of the Merge DICOM Toolkit?

There are several Merge DICOM Toolkit configuration values that impact performance in
different ways. The following is a summary of these options:

● ELIMINATE_ITEM_REFERENCES — This option will disable functionality within the toolkit
that causes the toolkit to search all currently open message objects for references to an
item that is being freed by one of these calls. This call is especially useful when your
application uses very large DICOMDIR files.

● PDU_MAXIMUM_LENGTH — This option sets the maximum sized PDU that the toolkit will
receive. If during association negotiation the maximum sized PDU of the system negotiating
with the toolkit application is larger than this value, the PDU size will be limited to this value.

Setting this option so that a PDU fits within an even multiple of the default TCP/IP
Maximum Segment Size (MSS) of 1460 bytes will increase performance. Note that 6 bytes
for the PDU header must be added to the configured maximum PDU size when calculating
a multiple of the MSS. Having the PDU Maximum length an even multiple of the MSS
ensures that there are limited delays within TCP/IP stack when transferring. With the
exception of the final TCP/IP packet for a message, all packets transferred should exactly fit
within a TCP/IP packet.

● WORK_BUFFER_SIZE — This option specifies how the toolkit buffers data before storing it or
passing it to a user callback function. Setting higher values for this option will increase
performance.

● TCPIP_RECEIVE_BUFFER_SIZE — This option sets the TCP/IP receive buffer size. Higher
values for this buffer generally will increase the network performance of the toolkit for
server (SCP) applications. This value should also be slightly larger than the

Merge DICOM Toolkit 5.21.0 Python User’s Manual

100© Copyright Merge Healthcare Solutions Inc. 2025

PDU_MAXIMUM_LENGTH to increase performance. Setting this value to an even multiple of
the MSS (1460 bytes) will help increase performance on most platforms.

● TCPIP_SEND_BUFFER_SIZE — This option sets the TCP/IP send buffer size. Higher values
for this buffer generally will increase the network performance of the toolkit for client (SCU)
applications. This value should also be slightly larger than the PDU_MAXIMUM_LENGTH to
increase performance. Setting this value to an even multiple of the MSS (1460 bytes) will
help increase performance on most platforms.

● EXPORT_UNDEFINED_LENGTH_SQ — This option determines how Merge DICOM Toolkit
encodes sequences within all non-DICOMDIR messages and files. When set to Yes, the
sequences are encoded as undefined length. This eliminates the need for Merge DICOM
Toolkit to determine the length of sequences and increases performance.

● EXPORT_GROUP_LENGTHS_TO_NETWORK — This option determines if Merge DICOM Toolkit
encodes group length attributes when writing to the network (if they are included in the
message being sent). Setting this option to No increases Merge DICOM Toolkit network
performance. This eliminates the need for Merge DICOM Toolkit to determine the length of
groups when streaming to the network.

● EXPORT_GROUP_LENGTHS_TO_MEDIA — This option determines if Merge DICOM Toolkit
encodes group length attributes when writing to files. Setting this option to No increases
Merge DICOM Toolkit performance. This eliminates the need for Merge DICOM Toolkit to
determine the length of groups when writing to media.

● EXPORT_UNDEFINED_LENGTH_SQ_IN_DICOMDIR — This option determines how Merge
DICOM Toolkit exports sequence attributes in DICOMDIRs. When set to Yes, the sequences
in DICOMDIRs are encoded as undefined length. This greatly improves performance when
writing DICOMDIRs because Merge DICOM Toolkit no longer needs to calculate the length
of sequence attributes in DICOMDIRs.

7. Which of the options listed above have the greatest impact on network performance?

● The PDU_MAXIMUM_LENGTH, TCPIP_RECEIVE_BUFFER_SIZE and
TCPIP_SEND_BUFFER_SIZE configuration options have the greatest impact on network
performance. Setting these to higher values directly increases the network performance of
Merge DICOM Toolkit.

● EXPORT_UNDEFINED_LENGTH_SQ can have a large impact if many sequence attributes are
included in the message being transferred.

8. I am sending 8-bit images with Merge DICOM Toolkit, however, after sending the data to
another system, the pixel data is byte swapped incorrectly. What is causing this problem?

The Merge DICOM Toolkit User's Manual contains the section "8-bit Pixel Data" which
describes this problem. This is typically only a problem on Big Endian machines. To summarize
the problem, we expect 8-bit data to be byte swapped on big endian machines. We do not look
at the "bits allocated" and "bits stored" tags to determine that the pixel data itself is 8-bit data,
we always treat pixel data (7fe0,0010) as OW.

9. I recently upgraded to a new release of the Merge DICOM Toolkit. Since this upgrade, I have
been having problems with MCattributeSet.setValue() method throws an exception with
MC_INVALID_TAG id. This code worked before the upgrade. What is causing these problems?

The Merge DICOM Toolkit data dictionary changes from release to release. In some cases, the
identification number for a particular message type changes. When upgrading, if you do not
change all of the data dictionary files, this error will occur. The following files should be
upgraded with each release:

● mergecom.srv

Merge DICOM Toolkit 5.21.0 Python User’s Manual

101© Copyright Merge Healthcare Solutions Inc. 2025

● mrgcom3.msg

● mrgcom3.dct

10. What are the differences between the MC_NULL_VALUE, MC_EMPTY_VALUE and
MC_INVALID_TAG ?

● The MC_NULL_VALUE return value is used to identify when an attribute within a DICOM
message has zero length. DICOM allows attributes that have a Value Type of 2 to be set to
zero length when their value is unknown.

● The MC_EMPTY_VALUE and MC_INVALID_TAG return values both mean that a message
does not contain a value for the specified attribute. The use of these return values depends
on how the message, file, or item containing the attribute was created.

● Merge DICOM Toolkit loads a list of all of the valid attributes for the new created object. For
these types of attributes, the MCattributeSet.getValue() functions will throw an
exception with MC_EMPTY_VALUE id when an attribute defined for the object does not have
a value. They will throw an exception MC_INVALID_TAG id for attributes that are not defined
for the object.

11. I am trying to assign the value to a DICOM attribute within a message, but Merge DICOM Toolkit
will not allow me to do this. When I call the MCattributeSet.setValue(), they are throwing
an exception with MC_INVALID_TAG id. How can I add this attribute?

● This problem occurs when Toolkit creates a message or file of a particular type. These
functions restrict the attributes that can be added to a message. Only those attributes that
have been defined for the message type (and can be found in our message.txt file) can
be assigned to the message or file.

● When adding an attribute that has not been defined for a message,
MCattributeSet.addValue() can be called to add the tag to the definition of the
message. Subsequent calls to the MCattributeSet.setValue() functions will then allow
the user to assign the attribute.

102© Copyright Merge Healthcare Solutions Inc. 2025

Appendix B. Unique Identifiers (UIDs)

UIDs provide the capability to identify many different types of items. The purpose of UIDs is to
guarantee the uniqueness of these types of items. DICOM uses UIDs to uniquely identify items such
as SOP classes, image instances and network negotiation parameters. Part 5, Section 9 along with
Annexes B and C of the DICOM Standard discusses how UIDs are composed, encoded and
registered.

B.1. Summary of UID Composition
A UID is composed of a number of numeric values as defined by ISO 8824. The following is a typical
example of a UID:

1.2.840.10008.2.45.1.12345

A UID is composed of two parts: a <root> and a <suffix> and has the following form:

UID = <root>.<suffix>

where <root> is assigned by a registration authority (e.g., ANSI) with the distinguishing component
being the organization ID. The <root> portion of the UID uniquely identifies an organization while
the <suffix> portion is used to uniquely identify a specific object within the scope of the
organization. While the <root> component of the UID stays constant, the <suffix> portion will
change in a manner that will provide uniqueness for objects that need UIDs. Note: this implies that
the organization is responsible for maintaining the uniqueness of the <suffix>.

For example, using the UID above, <root> = 1.2.840.10008 and <suffix> = 2.45.1.12345.
Where the organization ID portion of the <root> (10008) distinguishes organizations from each
other.

NOTE: The above example is typical for UIDs obtained by ANSI during the time when the DICOM
standard was first released. The organization ID of 10008 has actually been assigned to
NEMA and is used as part of the <root> for DICOM standard UIDs such as SOP Classes,
Transfer Syntaxes, etc. For example, vendors creating images need to obtain their own
organization ID and cannot use 10008.

For future UIDs, ISO has developed a joint relationship with CCITT and has changed the <root>
structure. Therefore, new UIDs from ANSI will no longer be of the form 1.2.840.xxxxx. but are
currently assigned using the form, <root> = 2.16.840.1.10008, where, of course, 10008 is the
organization ID.

B.2. Sample UID Format
There are many methods that can be used to ensure the uniqueness of a UID. The following is one
example encoding of a UID to ensure uniqueness:

<root>.<serial>.<process id>.<timestamp>.<count>

In this example, <root> is the assigned root UID for an organization. The <serial> component
would be a unique serial number assigned to the product within the organization. It may also be an
encoding of the MAC address assigned to an Ethernet card in the system. This field along with the
root gives a base for the UIDs that is unique for a specific device. The remaining components
ensure that the UID is unique within that device.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

103© Copyright Merge Healthcare Solutions Inc. 2025

The <process id> field would be a process ID or thread ID for the process generating the UID. The
<timestamp> field would be a timestamp generated when the process or thread is created. Finally,
the <count> field would be a unique counter that is incremented for each UID created.

Some vendors also include fields within the UID to identify the type of UID. For example, the first
component after the root within the UID may be a ".1" for Study Instance UIDs, a ".2" for Series
Instance UIDs, and".3" for SOP Instance UIDs. Occasionally a product identifier will also be included
within a UID. This may be a unique number assigned to a product within an organization. Finally, a
number may also be added to signify the software revision number for a product that is generating
the UID.

B.3. Obtaining a UID
The <root> portion of the UID should be registered by an organization that guarantees global
uniqueness. The American National Standards Institute (ANSI) is the registration authority for the
United States. Other national registration authorities exist for nations throughout the world such as
IBN in Belgium, AFNOR in France, BSI in Great Britain, DIN in Germany, and COSIRA in Canada.

B.3.1. Obtaining a UID from ANSI

ANSI is the registration authority for the US for organization names (i.e. <root>) under the global
registration process established by the International Standards Organization (ISO) and the
International Telegraph and Telephone Consultative Committee (CCITT). ANSI's registration service
conforms with CCITT X.660 and ISO/IEC 9834-1. The ANSI organization name registration service
assigns one name component to the hierarchy defined by CCITT and ISO/IEC.

An organization seeking registration may do so by submitting a Request for Registration application
form along with a fee (as of August 1996 the fee is $1,000) to the Registration Coordinator. The
Request for Registration application form can be obtained from ANSI by use of the following
information:

American National Standards Institute

11 West 42nd Street

New York, New York 10036

TEL: 212.642.4900 FAX: 212.398.0023

104© Copyright Merge Healthcare Solutions Inc. 2025

Appendix C. Writing a DICOM
Conformance Statement

Detailed below is a guideline for writing a DICOM conformance statement for your application.
Since the Toolkit is not an application, this section only gives an outline of the DICOM services it
supports. Responsibility for full DICOM conformance to particular SOP classes rests with the
application developer, since many of the requirements for such conformance lie outside the realm
of the Toolkit. For example, the high level behavior of Query/Retrieve service class SCUs and SCPs
as defined in Part 4 of the DICOM standard, is implemented by the application developer in
conjunction with the toolkit functionality.

C.1. Conformance Statement Sections

C.1.1. Implementation Model

The Implementation model consists of three sections:

● the Application Data Flow Diagram which specifies the relationship between the Application
Entities and the “external world” or Real-World activities.

● a functional description of each Application Entity.

● the sequencing constraints among them.

C.1.2. Application Data Flow

As part of the Implementation model, an Application Data Flow Diagram is included. This diagram
represents all of the Application Entities present in an implementation, and graphically depicts the
relationship of the AEs' use of DICOM to Real-World Activities as well as any applicable user
interaction.

The Merge DICOM Toolkit provides the core functionality required to facilitate data flow between
SCUs and SCPs.

Application conformance statements include a data flow diagram. An example is shown below for a
simple Storage Service Class SCP.

a. Functional Definition of Application Entities (AE)

Merge DICOM Toolkit 5.21.0 Python User’s Manual

105© Copyright Merge Healthcare Solutions Inc. 2025

This section contains a functional definition for each individual, local Application Entity. It describes
in general terms, the functions that are performed by the AE, and the DICOM services used to
accomplish these functions. In this sense, "DICOM services" refers not only to DICOM Service
Classes, but also to lower level DICOM services, such as Association Services.

Application conformance statements are described in this section with a general specification of
functions to be performed by SCU or SCP.

C.1.3. Sequencing of Real World Activities

If applicable, this section will contain a description of sequencing as well as potential constraints on
real-world activities. These include any applicable user interaction as performed by all the AEs. A
UML sequence diagram that depicts the real-world activities as vertical bars, and shows events
exchanged between them as arrows, is strongly recommended.

Application conformance statements are included in this section along with any associated
sequence of real-world activities. For example, a Storage Service Class SCP might perform the
following real- world activities: store an image, modify it in some defined manner, act as a Storage
Service Class SCU and forward the modified image somewhere.

C.1.4. AE Specifications

The next section in the DICOM Conformance Statement is a set of Application Entity specifications.
There is one specification for the AE. Each individual AE specification has a subsection. There are
as many of these subsections as there are different AEs in the implementation. That is, if there are
two distinct AEs, then there are two subsections. The Merge DICOM Toolkit uses the
mergecom.app configuration file to read configuration parameters for each AE. The following
subsections are filled in for each AE:

Application Entity

● SOP Classes

● Association Policies

● General

● Number of Associations

● Asynchronous Nature

● Implementation Identifying Information

● Association Initiation Policy

● Activity

● Description and Sequencing of Activities

● Proposed Presentation Contexts

● SOP Specific Conformance for SOP Class(es)

● Association Acceptance Policy

● Activity

● Description and sequencing of Activities

● Accepted Presentation Contexts

● SOP Specific Conformance for SOP Class(es)

Merge DICOM Toolkit 5.21.0 Python User’s Manual

106© Copyright Merge Healthcare Solutions Inc. 2025

C.1.5. SOP Classes

Application conformance statements specify the DICOM SOPs which are supported by each
Application Entity. For SCP Entities, the initiation of associations. See D.3. SYSTEM PROFILE ON
PAGE 127 and the MCapplication.startListening() API in the Python source code. For SCU
Entities, the list of supported SOP classes will correspond to the services specified in
“mergecom.app” for any SCPs to which the SCU wishes to connect.

C.1.6. Number of Associations

The Merge DICOM Toolkit does not impose any limit on the number of simultaneous associations
that can be requested or accepted. The only limitation on the number of simultaneous associations
is imposed by the operating system and available resources. However, if your application enforces
this limit, it is defined here.

The MAX_PENDING_CONNECTIONS setting in the “mergecom.pro” file refers to the maximum
number of outstanding connection requests per listener socket. It does not limit the maximum
number of simultaneous associations.

C.1.7. Asynchronous Nature

Merge DICOM Toolkit does not currently support multiple outstanding transactions over a single
association.

C.1.8. Implementation Identifying Information

Application conformance statements specify the Implementation Class Unique Identifier (UID) for
the application, as well as the Implementation version name. These identifiers are taken from the
mergecom.pro configuration file under the following keys:

IMPLEMENTATION_CLASS_UID

IMPLEMENTATION_VERSION

This UID must follow the syntax rules specified in Part 5 of the DICOM standard.

a. Proposed or Accepted Presentation Contexts

Application conformance statements specify all presentation contexts that are used for association
negotiation. A presentation context consists of:

● an Abstract Syntax which is a DICOM service class name and unique identifier(UID);

● a transfer syntax name and UID. A transfer syntax represents a set of data encoding rules that
are specified in the “mergecom.pro” file. See D.3. SYSTEM PROFILE ON PAGE 127.

● the role that the application will perform within the service class. The roles associated with a
particular service class are discussed in Part 4 of the DICOM standard.

● any extended negotiation information used when creating associations. See the
MCassociation.getInfo() method.

● any rules that govern the acceptance of presentation contexts for the AE. This includes rules for
which combinations of Abstract/Transfer Syntaxes are acceptable, and rules for prioritization of
presentation contexts. Rules that govern selection of transfer syntax within a presentation

Merge DICOM Toolkit 5.21.0 Python User’s Manual

107© Copyright Merge Healthcare Solutions Inc. 2025

context are stated here. See D.2. APPLICATION PROFILE ON PAGE 113. Also, see the
MCassociation.getInfo() API to learn about the presentation contexts that are queryable
by an application program.

Refer to the table below for an example.

Table C.1: Example Presentation Context

Merge DICOM Toolkit uses mergecom.app configuration settings to specify presentation contexts
shown above.

C.1.9. SOP Specific Conformance

This section includes the SOP specific behavior, i.e., error codes, error and exception handling and
time-outs, etc. The information is described in the SOP specific Conformance Statement section of
PS 3.4 (or relevant private SOP definition).

C.1.10. Transfer Syntax Selection Policies

Merge DICOM Toolkit uses the following policy when selecting a transfer syntax:

● An SCU offers any transfer syntaxes which are defined in its mergecom.pro file.

● The SCP prefers it's native byte ordering, and will prefer explicit over implicit VR.

C.2. Network Interfaces

C.2.1. Physical Network Interface

Merge DICOM Toolkit runs over the TCP/IP protocol stack on any physical interconnection media
supporting the TCP/IP stack.

C.2.2. IPv4 and IPv6 Support

Presentation Context Table

Abstract Syntax Transfer Syntax Role Extended

Name UID Name List UID List Negotiatio
n

Computed
Radiography
Image Storage

1.2.840.10008.5.1.4.
1.1.1

DICOM
Implicit VR
Little Endian

1.2.840.10008.1.2 SCP None

DICOM Explicit
VR Little
Endian

1.2.840.10008.1.2.1

DICOM Explicit
VR Big Endian

1.2.840.10008.1.2.2

Merge DICOM Toolkit 5.21.0 Python User’s Manual

108© Copyright Merge Healthcare Solutions Inc. 2025

Merge DICOM Toolkit supports both IPv4 and IPV6 protocols and is configurable in the system
profile.

C.2.3. Configuration

Refer to APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 110 for complete configuration
information.

Applications reference four (4) configuration files. The first, merge.ini, is found through the
MERGE_INI environment variable. They are as follows:

● merge.ini - Specifies the names of the other three (3) configuration files and also contains
message logging parameters.

● mergecom.pro - Specifies run-time parameters for the application.

● mergecom.app - Defines service lists and applications on other network nodes to which
connections are possible.

● mergecom.srv - Service and sequence definitions.

C.2.4. AE Title/Presentation Address Mapping

Presentation address mapping is configured in the mergecom.app file. The Presentation Address of
an SCU/SCP application is specified by configuring the Listen Port in the mergecom.pro file, and
specifying the AE title for the SCU/SCP within the application itself.

C.2.5. Configurable Parameters

The mergecom.pro configuration file can be used to set or modify other lower-level communication
parameters. This includes time-outs and other parameters. Some information about supported
SOP classes is also stored here. Most parameters in this file should NEVER be changed. Doing
so may compromise DICOM conformance. Before modifying any parameters, such as time-out,
be sure to have a backup of the originally supplied mergecom.pro file. Also, before modifying other
parameters, you should consider contacting Merge Healthcare for advice.

C.2.6. PDU Size

● The maximum PDU size is configurable with a minimum of 4,096 bytes.

● Application conformance statements specify the chosen PDU (Protocol Data Units) size and
any general rules governing the initiation of associations. See the “System Profile” section of the
Merge DICOM Reference Manual for further information about configuring the PDU size.

C.3. Extensions/Specializations/Privatizations

C.3.1. Standard Extended/Specialized/Private SOPs

Application conformance statements list extended, specialized, or private SOPs that are supported.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

109© Copyright Merge Healthcare Solutions Inc. 2025

C.3.2. Private Transfer Syntaxes

This section describes private transfer syntaxes that are listed in the Transfer Syntax Tables. See D.3.
SYSTEM PROFILE ON PAGE 127 in APPENDIX D. CONFIGURATION PARAMETERS ON PAGE 110 for details

110© Copyright Merge Healthcare Solutions Inc. 2025

Appendix D. Configuration Parameters

This appendix describes each configuration parameter in detail. Information contained in these
tables is the parameter names, descriptions and sections where it is contained. The parameters are
listed alphabetically and organized by the initialization file where they are used.

D.1. Initialization File
The following parameters are recognized by Merge DICOM in the initialization file.

Table D.1: Initialization file parameters

Name Section Description

BLANK_FILL_LOG_FILE MergeCOM3 This parameter informs the toolkit whether or not
to expand the log file to its maximum size on
initialization. Setting this value to "NO" will
decrease the time spent in the MC.initialize() call,
but increase the time spent doing actual logging
while the application is running.
DEFAULT: YES

ERROR_MESSAGE MergeCOM3 This parameter instructs the toolkit to which
destination (File, Screen and/or Memory) to log
error messages.

INFO_MESSAGE MergeCOM3 This parameter instructs the toolkit to which
destination (File, Screen and/or Memory or none)
to log information messages.

LOG_FILE MergeCOM3 This is the name of the Merge DICOM message
log. The file will be [re-]created by Merge DICOM
Toolkit. This parameter is ignored by embedded
toolkits.
The path to the file can be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally
to the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%)
and Unix style ($) notations for the environment
variables are accepted.
DEFAULT: ./merge.log

LOG_FILE_BACKUP MergeCOM3 This is a Boolean parameter that tells Merge
DICOM to create a backup of the log file before
starting a new log. If "ON", any existing log file is
renamed with a file extension of .Lnn where nn is
an integer number between 01 and 99.
DEFAULT: OFF.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

111© Copyright Merge Healthcare Solutions Inc. 2025

LOG_FILE_LINE_LENGTH MergeCOM3 This option specifies the number of characters
that occur on a line within the merge.log file.
DEFAULT: 78
MINIMUM: 16
MAXIMUM: 254

LOG_FILE_SIZE MergeCOM3 This is the number of lines which will be created
for the log file. If BLANK_FILL_LOG_FILE is set to
YES, the file is initialized to all binary zeros before
the first message is logged.
DEFAULT: 1000
MINIMUM: 100
MAXIMUM = 30720 (30 * 1024)

LOG_MEMORY_SIZE MergeCOM3 This is the number of lines of length equal to
LOG_FILE_LINE_LENGTH which will be created
for the memory log. Note that this option is
ignored when using the .NET Assembly.
DEFAULT: 1024.

MERGECOM_3_APPLICATIONS MergeCOM3 File containing the Merge DICOM application
configurations.
The path to the file can be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally
to the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%)
and Unix style ($) notations for the environment
variables are accepted.

MERGECOM_3_PROFILE MergeCOM3 File containing the Merge DICOM system profile
parameters.
The path to the file can be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally
to the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%)
and Unix style ($) notations for the environment
variables are accepted.

Name Section Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

112© Copyright Merge Healthcare Solutions Inc. 2025

MERGECOM_3_SERVICES MergeCOM3 File containing the Merge DICOM system service
and message definitions.
The path to the file can be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not
need to be set as the toolkit will resolve it internally
to the directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%)
and Unix style ($) notations for the environment
variables are accepted.

NUM_HISTORICAL_LOG_FILES MergeCOM3 This parameter informs the toolkit of the number
of historical log files to keep. The valid range of
number for this parameter is 1 - 99. The historical
log files are named basename.L01 to
basename.LXX where basename.LXX is the latest
log file. The basename is determined by the
LOG_FILE parameter. When the maximum
number of historical log files is met, the oldest log
file is deleted and the log files are renamed. Note
that a new log file is created each time the library is
initialized. This parameter is only used when
LOG_FILE_BACKUP is set to YES.

T1_MESSAGE MergeCOM3 This logging level is not used (internal tracking).

T2_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log the entire contents of messages sent or
received over the network. The format is similar to
MCattributeSet.list's output.

T3_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages relating to association negotiation.

T4_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages when incoming associations are
automatically rejected.

T5_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages relating to regular and extended
validation.

T6_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages relating to configuration.

T7_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages relating to logging of command level
attributes in messages sent or received.

T8_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages relating to the streaming in and out
of messages and file objects.

Name Section Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

113© Copyright Merge Healthcare Solutions Inc. 2025

NOTE: The destination for the logging from the T2_MESSAGE to T9_MESSAGE trace levels can be
one or more of File, Screen and Memory or none.

D.2. Application Profile
The application profile is a configuration file that is application dependent. The application profile
does not set specific parameters. It sets parameters related to characteristics of your own
application entity.

This section will define how each parameter should be defined within the application profile.

D.2.1. Sections

The application profile contains the following sections.

Table D.2: Application profile section headings

D.2.2. Parameters

T9_MESSAGE MergeCOM3 This logging level parameter instructs the toolkit to
log messages relating to PDU's sent and received.
NOTE: Receipt and transmission of P-DATA
PDU's are logged; not the actual PDU itself.

WARNING_MESSAGE MergeCOM3 This parameter instructs the toolkit to which
destination (File, Screen and/or Memory or none)
to log warning messages.

Name Section Description

Section Description

<remote_application_title> Section describing a remote DICOM Application Entity title(s). The remote
Application Entity titles listed here must be 1 to 16 bytes in length with no
embedded spaces. Simply, this section is where you list the DICOM
applications you want to communicate with.

<service_list_name> List(s) of DICOM services that will be provided by the Application Entities
listed in the [<remote_application_title>] sections. The service names listed
here must be 1 to 33 bytes in length with no embedded spaces.
Simply, this section is where you list the services that are provided by the
remote DICOM applications.

<syntax_list_name> List(s) of DICOM transfer syntaxes that will be supported by the services
listed in the [<service_list_name>] sections. The transfer syntaxes must be
one of those listed in Table D.5, “Transfer Syntax List Parameters,” on
page 124.

Merge DICOM Toolkit 5.21.0 Python User’s Manual

114© Copyright Merge Healthcare Solutions Inc. 2025

The application profile contains the following parameters:

Table D.3: Application profile section headers

The SERVICE_LIST section of the Application Profile is used to describe the DICOM services that
will be negotiated by the listed Application Entity. The parameter values are text strings recognizable
by the Merge DICOM toolkit. These strings are defined in detail in message.txt. This file is located in
the mc3msg directory of your distribution. The following is a list of currently supported services:

Table D.4: Application profile parameters

Parameter Section Description

PORT_NUMBER <remote_application_title> This parameter is the TCP/IP port on which the
remote DICOM system listens for connections. The
commonly used port number is 104. This default
value may be overridden by the constructor of the
MCremoteApplication class.

HOST_NAME <remote_application_title> This parameter is the name of the remote host as it is
known to your TCP/IP system. This default value may
be overridden by the constructor of the
MCremoteApplication class. The parameters value
must be 1 to 19 bytes in length with no embedded
spaces. NOTE that a numeric internet address may
be used: e.g., 192.204.32.1

SERVICE_LIST <remote_application_title> This parameter is the name of a section in the
application profile which provides a list of services
for which local applications will negotiate when
attempting to establish an association. This is a
default list; another list may be specified in the
constructor of the MCremoteApplication class. The
parameters value names must be 1 to 33 bytes in
length with no embedded spaces.

Merge DICOM Toolkit Service Parameter DICOM Service Class

ACQUISITION_CONTEXT_SR Storage

ADVANCED_BLENDING_PRESENTATION_STATE Storage

ARTERIAL_PULSE_WAVEFORM Storage

AUDIO_WAVEFORM_REAL_TIME_COMMUNICATION Storage

AUTOREFRACTION_MEASUREMENTS Storage

BASIC_ANNOTATION_BOX Print Management

BASIC_COLOR_IMAGE_BOX Print Management

BASIC_FILM_BOX Print Management

BASIC_FILM_SESSION Print Management

BASIC_GRAYSCALE_IMAGE_BOX Print Management

Merge DICOM Toolkit 5.21.0 Python User’s Manual

115© Copyright Merge Healthcare Solutions Inc. 2025

BASIC_PRINT_IMAGE_OVERLAY_BOX Print Management

BASIC_STRUCTURED_DISPLAY Storage

BODY_POSITION_WAVEFORM Storage

BREAST_IMAGING_RPI_QUERY Relevant Patient Information Query

BREAST_PROJ_PRESENT Storage

BREAST_PROJ_PROCESS Storage

BREAST_TOMO_IMAGE_STORAGE Storage

C_ARM_PHOTON_ELECTRON_RADIATION Storage

C_ARM_PHOTON_ELECTRON_RADIATION_RECORD Storage

CARDIAC_RPI_QUERY Relevant Patient Information Query

CHEST_CAD_SR Storage

COLON_CAD_SR Storage

COLOR_PALETTE_FIND Query/Retrieve

COLOR_PALETTE_GET Query/Retrieve

COLOR_PALETTE_MOVE Query/Retrieve

COLOR_PALETTE_STORAGE Storage

COMPOSITE_INST_RET_NO_BULK_GET Query/Retrieve

COMPOSITE_INSTANCE_ROOT_RET_GET Query/Retrieve

COMPOSITE_INSTANCE_ROOT_RET_MOVE Query/Retrieve

COMPOSITING_PLANAR_MPR_VOLUMETRIC_PS Storage

COMPREHENSIVE_3D_SR Storage

CONFOCAL_MICROSCOPY_IMAGE Storage

CONFOCAL_MICROSCOPY_TILED_PYRAMIDAL_IMAGE Storage

CONTENT_ASSESSMENT_RESULTS Storage

CORNEAL_TOPOGRAPHY_MAP Storage

CT_DEFINED_PROCEDURE_PROTOCOL Storage

CT_PERFORMED_PROCEDURE_PROTOCOL Storage

DEFINED_PROCEDURE_PROTOCOL_FIND Query/Retrieve

DEFINED_PROCEDURE_PROTOCOL_GET Query/Retrieve

DEFINED_PROCEDURE_PROTOCOL_MOVE Query/Retrieve

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

116© Copyright Merge Healthcare Solutions Inc. 2025

DEFORMABLE_SPATIAL_REGISTRATION Storage

DERMOSCOPIC_PHOTOGRAPHY_IMAGE Storage

DETACHED_INTERP_MANAGEMENT Results Management

DETACHED_PATIENT_MANAGEMENT Patient Management

DETACHED_RESULTS_MANAGEMENT Results Management

DETACHED_STUDY_MANAGEMENT Study Management

DETACHED_VISIT_MANAGEMENT Patient Management

DICOMDIR Media Storage

DISPLAY_SYSTEM Display System Management

ELECTROMYOGRAM_WAVEFORM Storage

ELECTROOCULOGRAM_WAVEFORM Storage

ENCAPSULATED_CDA Storage

ENCAPSULATED_MTL Storage

ENCAPSULATED_OBJ Storage

ENCAPSULATED_STL Storage

ENHANCED_CONTINUOUS_RT_IMAGE Storage

ENHANCED_CT_IMAGE Storage

ENHANCED_MR_COLOR_IMAGE Storage

ENHANCED_MR_IMAGE Storage

ENHANCED_PET_IMAGE Storage

ENHANCED_RT_IMAGE Storage

ENHANCED_US_VOLUME Storage

ENHANCED_XA_IMAGE Storage

ENHANCED_XRAY_RADIATION_DOSE_SR Storage

ENHANCED_XRF_IMAGE Storage

EXTENSIBLE_SR Storage

G_P_PERFORMED_PROCEDURE_STEP_RETIRED Study Management

G_P_SCHEDULED_PROCEDURE_STEP_RETIRED Study Management

G_P_WORKLIST_RETIRED Basic Worklist Management

GENERAL_AUDIO_WAVEFORM Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

117© Copyright Merge Healthcare Solutions Inc. 2025

GENERAL_RPI_QUERY Relevant Patient Information Query

GENERIC_IMPLANT_TEMPLATE Storage

GENERIC_IMPLANT_TEMPLATE_FIND Query/Retrieve

GENERIC_IMPLANT_TEMPLATE_GET Query/Retrieve

GENERIC_IMPLANT_TEMPLATE_MOVE Query/Retrieve

GRAYSCALE_PLANAR_MPR_VOLUMETRIC_PS Storage

HANGING_PROTOCOL Hanging Protocol Storage

HANGING_PROTOCOL_FIND Hanging Protocol Query/Retrieve

HANGING_PROTOCOL_GET Hanging Protocol Query/Retrieve

HANGING_PROTOCOL_MOVE Hanging Protocol Query/Retrieve

HEIGHT_MAP_SEGMENTATION Storage

IMAGE_OVERLAY_BOX_RETIRED Print Management

IMPLANT_ASSEMBLY_TEMPLATE Storage

IMPLANT_ASSEMBLY_TEMPLATE_FIND Query/Retrieve

IMPLANT_ASSEMBLY_TEMPLATE_GET Query/Retrieve

IMPLANT_ASSEMBLY_TEMPLATE_MOVE Query/Retrieve

IMPLANT_TEMPLATE_GROUP Storage

IMPLANT_TEMPLATE_GROUP_FIND Query/Retrieve

IMPLANT_TEMPLATE_GROUP_GET Query/Retrieve

IMPLANT_TEMPLATE_GROUP_MOVE Query/Retrieve

IMPLANTATION_PLAN_SR_DOCUMENT Storage

INSTANCE_AVAIL_NOTIFICATION Instance Availability Notification

INTRAOCULAR_LENS_CALCULATIONS Storage

INVENTORY Storage

INVENTORY_CREATION Storage Management

INVENTORY_FIND Query/Retrieve

INVENTORY_GET Query/Retrieve

INVENTORY_MOVE Query/Retrieve

KERATOMETRY_MEASUREMENTS Storage

KEY_OBJECT_SELECTION_DOC Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

118© Copyright Merge Healthcare Solutions Inc. 2025

LABEL_MAP_SEGMENTATION Storage

LEGACY_CONVERTED_ENHANCED_CT_IMAGE Storage

LEGACY_CONVERTED_ENHANCED_MR_IMAGE Storage

LEGACY_CONVERTED_ENHANCED_PET_IMAGE Storage

LENSOMETRY_MEASUREMENTS Storage

MACULAR_GRID_THIICKNESS_VOLUME Storage

MAMMOGRAPHY_CAD_SR Storage

MEDIA_CREATION_MANAGEMENT Media Creation Management

MODALITY_WORKLIST_FIND Modality Work list

MR_SPECTROSCOPY Storage

MULTI_CHANNEL_RESPIRATORY_WAVEFORM Storage

MULTIPLE_VOLUME_RENDERING_VOLUMETRIC_PRESENTATIO
N_STATE

Storage

OPHT_VIS_FIELD_STATIC_PERIM_MEAS Storage

OPHTHALMIC_AXIAL_MEASUREMENTS Storage

OPHTHALMIC_OCT_BSCAN_VOLUME_ANALYSIS Storage

OPHTHALMIC_OCT_EN_FACE_IMAGE Storage

OPHTHALMIC_TOMOGRAPHY_IMAGE Storage

OPM_THICKNESS_MAP Storage

PARAMETRIC_MAP Storage

PATIENT_RADIATION_DOSE_SR Storage

PATIENT_ROOT_QR_FIND Query/Retrieve

PATIENT_ROOT_QR_GET Query/Retrieve

PATIENT_ROOT_QR_MOVE Query/Retrieve

PATIENT_STUDY_ONLY_QR_FIND_RETIRED Query/Retrieve

PATIENT_STUDY_ONLY_QR_GET_RETIRED Query/Retrieve

PATIENT_STUDY_ONLY_QR_MOVE_RETIRED Query/Retrieve

PERFORMED_IMAGING_AGENT_ADMINISTRATION_SR Storage

PERFORMED_PROCEDURE_STEP Study Management

PERFORMED_PROCEDURE_STEP_NOTIFY Study Management

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

119© Copyright Merge Healthcare Solutions Inc. 2025

PERFORMED_PROCEDURE_STEP_RETRIEVE Study Management

PHOTOACOUSTIC_IMAGE Storage

PLANNED_IMAGING_AGENT_ADMINISTRATION_SR Storage

PRESENTATION_LUT Print Management

PRINT_JOB Print Management

PRINT_QUEUE_MANAGEMENT Print Management

PRINTER Print Management

PRINTER_CONFIGURATION Print Management

PROCEDURAL_EVENT_LOGGING Application Event Logging

PROCEDURE_LOG Storage

PRODUCT_CHARACTERISTICS_QUERY Query/Retrieve

PROTOCOL_APPROVAL Storage

PROTOCOL_APPROVAL_FIND Query/Retrieve

PROTOCOL_APPROVAL_MOVE Query/Retrieve

PROTOCOL_APPROVAL_GET Query/Retrieve

PULL_PRINT_REQUEST Print Management

RADIOPHARMACEUTICAL_RADIATION_DOSE_SR Storage

RAW_DATA Storage

REAL_WORLD_VALUE_MAPPING Storage

REFERENCED_IMAGE_BOX Print Management

RENDITION_SELECTION_DOCUMENT_REAL_TIME_COMMUNIC
ATION

Storage

REPOSITORY_QUERY Query/Retrieve

RESPIRATORY_WAVEFORM Storage

ROBOTIC_ARM_RADIATION Storage

ROBOTIC_ARM_RADIATION_RECORD Storage

ROUTINE_SCALP_ELECTROENCEPHALOGRAM_WAVEFORM Storage

RT_BEAMS_DELIVERY_INSTRUCTION Storage

RT_BRACHY_APP_SETUP_DELIVERY_INSTR Storage

RT_CONVENTIONAL_MACHINE_VERIFICATION Verification

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

120© Copyright Merge Healthcare Solutions Inc. 2025

RT_ION_MACHINE_VERIFICATION Verification

RT_PATIENT_POSITION_ACQUISITION_INSTRUCTION Storage

RT_PHYSICIAN_INTENT Storage

RT_RADIATION_RECORD_SET Storage

RT_RADIATION_SALVAGE_RECORD Storage

RT_RADIATION_SET Storage

RT_SEGMENT_ANNOTATION Storage

SC_MULTIFRAME_GRAYSCALE_BYTE Storage

SC_MULTIFRAME_GRAYSCALE_WORD Storage

SC_MULTIFRAME_SINGLE_BIT Storage

SC_MULTIFRAME_TRUE_COLOR Storage

SEGMENTATION Storage

SEGMENTED_VOLUME_RENDERING_VOLUMETRIC_PRESENTA
TI ON_STATE

Storage

SIMPLIFIED_ADULT_ECHO_SR Storage

SLEEP_ELECTROENCEPHALOGRAM_WAVEFORM Storage

SPATIAL_FIDUCIALS Storage

SPATIAL_REGISTRATION Storage

SPECTACLE_PRESCRIPTION_REPORT Storage

STANDARD_BASIC_TEXT_SR Storage

STANDARD_BLENDING_SOFTCOPY_PS Storage

STANDARD_COLOR_SOFTCOPY_PS Storage

STANDARD_COMPREHENSIVE_SR Storage

STANDARD_CR Storage

STANDARD_CT Storage

STANDARD_CURVE Storage

STANDARD_DX_PRESENT Storage

STANDARD_DX_PROCESS Storage

STANDARD_ECHO Verification

STANDARD_ENCAPSULATED_PDF Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

121© Copyright Merge Healthcare Solutions Inc. 2025

STANDARD_ENHANCED_SR Storage

STANDARD_GRAYSCALE_SOFTCOPY_PS Storage

STANDARD_HARDCOPY_COLOR Storage

STANDARD_HARDCOPY_GRAYSCALE Storage

STANDARD_IO_PRESENT Storage

STANDARD_IO_PROCESS Storage

STANDARD_IVOCT_PRESENT Storage

STANDARD_IVOCT_PROCESS Storage

STANDARD_MG_PRESENT Storage

STANDARD_MG_PROCESS Storage

STANDARD_MODALITY_LUT Storage

STANDARD_MR Storage

STANDARD_NM Storage

STANDARD_NM_RETIRED Storage

STANDARD_OPHTHALMIC_16_BIT Storage

STANDARD_OPHTHALMIC_8_BIT Storage

STANDARD_OVERLAY Storage

STANDARD_PET Storage

STANDARD_PET_CURVE Storage

STANDARD_PRINT_STORAGE Storage

STANDARD_PSEUDOCOLOR_SOFTCOPY_PS Storage

STANDARD_RT_BEAMS_TREAT Storage

STANDARD_RT_BRACHY_TREAT Storage

STANDARD_RT_DOSE Storage

STANDARD_RT_IMAGE Storage

STANDARD_RT_ION_BEAMS_TREAT Storage

STANDARD_RT_ION_PLAN Storage

STANDARD_RT_PLAN Storage

STANDARD_RT_STRUCTURE_SET Storage

STANDARD_RT_TREAT_SUM Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

122© Copyright Merge Healthcare Solutions Inc. 2025

STANDARD_SEC_CAPTURE Storage

STANDARD_US Storage

STANDARD_US_MF Storage

STANDARD_US_MF_RETIRED Storage

STANDARD_US_RETIRED Storage

STANDARD_VIDEO_ENDOSCOPIC Storage

STANDARD_VIDEO_MICROSCOPIC Storage

STANDARD_VIDEO_PHOTOGRAPHIC Storage

STANDARD_VL_ENDOSCOPIC Storage

STANDARD_VL_MICROSCOPIC Storage

STANDARD_VL_PHOTOGRAPHIC Storage

STANDARD_VL_SLIDE_MICROSCOPIC Storage

STANDARD_VOI_LUT Storage

STANDARD_WAVEFORM_12_LEAD_ECG Storage

STANDARD_WAVEFORM_AMBULATORY_ECG Storage

STANDARD_WAVEFORM_BASIC_VOICE_AUDIO Storage

STANDARD_WAVEFORM_CARDIAC_EP Storage

STANDARD_WAVEFORM_GENERAL_32_BIT_ECG Storage

STANDARD_WAVEFORM_GENERAL_ECG Storage

STANDARD_WAVEFORM_HEMODYNAMIC Storage

STANDARD_XRAY_ANGIO Storage

STANDARD_XRAY_ANGIO_BIPLANE Storage

STANDARD_XRAY_RF Storage

STEREOMETRIC_RELATIONSHIP Storage

STORAGE_COMMITMENT_PULL Storage Commitment

STORAGE_COMMITMENT_PUSH Storage Commitment

STUDY_COMPONENT_MANAGEMENT Study Management

STUDY_CONTENT_NOTIFICATION Study Content Notification

STUDY_ROOT_QR_FIND Query/Retrieve

STUDY_ROOT_QR_GET Query/Retrieve

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

123© Copyright Merge Healthcare Solutions Inc. 2025

STUDY_ROOT_QR_MOVE Query/Retrieve

SUBJ_REFRACTION_MEASUREMENTS Storage

SUBSTANCE_ADMIN_LOGGING Storage

SUBSTANCE_APPROVAL_QUERY Storage

SURFACE_SCAN_MESH Storage

SURFACE_SCAN_POINT_CLOUD Storage

SURFACE_SEGMENTATION Storage

TOMOTHERAPEUTIC_RADIATION Storage

TOMOTHERAPEUTIC_RADIATION_RECORD Storage

TRACTOGRAPHY_RESULTS Storage

UPS_EVENT_SOP Unified Procedure Step Management

UPS_EVENT_SOP_TRIAL_RETIRED Unified Procedure Step Management

UPS_PULL_SOP Unified Procedure Step Management

UPS_PULL_SOP_TRIAL_RETIRED Unified Procedure Step Management

UPS_PUSH_SOP Unified Procedure Step Management

UPS_PUSH_SOP_TRIAL_RETIRED Unified Procedure Step Management

UPS_QUERY_SOP Unified Procedure Step Management

UPS_WATCH_SOP Unified Procedure Step Management

UPS_WATCH_SOP_TRIAL_RETIRED Unified Procedure Step Management

VARIABLE_MODALITY_LUT_SOFTCOPY_PRESENTATION_STATE Storage

VIDEO_ENDOSCOPIC_IMAGE_REAL_TIME_COMMUNICATION Storage

VIDEO_PHOTOGRAPHIC_IMAGE_REAL_TIME_COMMUNICATIO
N

Storage

VISUAL_ACUITY_MEASUREMENTS Storage

VL_WHOLE_SLIDE_MICROSCOPY_IMAGE Storage

VOI_LUT_BOX Print Management

VOLUME_RENDERING_VOLUMETRIC_PRESENTATION_STATE Storage

WAVEFORM_ANNOTATION_SR Storage

WAVEFORM_PRESENTATION_STATE Storage

WIDE_FIELD_OPHTHALMIC_PHOTO_3D_COORDINATES Storage

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

124© Copyright Merge Healthcare Solutions Inc. 2025

Transfer syntax lists are contained in the service lists. The following is a list of the currently
supported transfer syntaxes.

Table D.5: Transfer Syntax List Parameters

WIDE_FIELD_OPHTHALMIC_PHOTO_STEREOGRAPHIC_PROJ Storage

XA_DEFINED_PROCEDURE_PROTOCOL Storage

XA_PERFORMED_PROCEDURE_PROTOCOL Storage

XA_XRF_GRAYSCALE_SOFTCOPY_PS Storage

XRAY_3D_ANGIO_IMAGE Storage

XRAY_3D_CRANIO_IMAGE Storage

XRAY_RADIATION_DOSE_SR Storage

BASIC_COLOR_PRINT_MANAGEMENT (META_SOP) Print Management

BASIC_GRAYSCALE_PRINT_MANAGEMENT (META_SOP) Print Management

DETACHED_PATIENT_MANAGEMENT_META (META_SOP) Print Management

DETACHED_RESULTS_MANAGEMENT_META (META_SOP) Results Management

G_P_WORKLIST_MANAGEMENT_META _RETIRED (META_SOP) Basic Worklist Management

PULL_STORED_PRINT_MANAGEMENT (META_SOP) Print Management

REF_COLOR_PRINT_MANAGEMENT (META_SOP) Print Management

REF_GRAYSCALE_PRINT_MANAGEMENT (META_SOP) Print Management

STUDY_MANAGEMENT (META_SOP) Study Management

Merge DICOM Transfer Syntax Parameter Description

IMPLICIT_LITTLE_ENDIAN Implicit VR Little Endian: Default Transfer
Syntax for DICOM

IMPLICIT_BIG_ENDIAN Implicit VR Big Endian

DEFLATED_IMAGE_FRAME_COMPRESSION Deflated Image Frame Compression

ENCAPSULATED_UNCOMPRESSED_ELE Encapsulated Uncompressed Explicit VR
Little Endian

EXPLICIT_LITTLE_ENDIAN Explicit VR Little Endian

EXPLICIT_BIG_ENDIAN Explicit VR Big Endian

RLE Run length Encoding

DEFLATED_EXPLICIT_LITTLE_ENDIAN Deflated Explicit VR Little Endian

HEVC_H265_M10P_LEVEL_5_1 HEVC/H.265 Main 10 Profile / Level 5.1

Merge DICOM Toolkit Service Parameter DICOM Service Class

Merge DICOM Toolkit 5.21.0 Python User’s Manual

125© Copyright Merge Healthcare Solutions Inc. 2025

HEVC_H265_MP_LEVEL_5_1 HEVC/H.265 Main Profile / Level 5.1

HTJ2K HTJ2K

HTJ2K_LOSSLESS_ONLY HTJ2K Lossless Only

HTJ2K_LOSSLESS_RPCL HTJ2K Lossless RPCL

JPEG_BASELINE JPEG Baseline (Process 1): Default
Transfer Syntax for Lossy JPEG 8 Bit
Image Compression

JPEG_EXTENDED_2_4 JPEG Extended (Process 2 & 4): Default
Transfer Syntax for Lossy JPEG 12 Bit
Image Compression
(Process 4 only)

JPEG_EXTENDED_3_5 JPEG Extended (Process 3 & 5)

JPEG_SPEC_NON_HIER_6_8 JPEG Spectral Selection, Non-
Hierarchical (Process 6 & 8)

JPEG_SPEC_NON_HIER_7_9 JPEG Spectral Selection, Non-
Hierarchical (Process 7 & 9)

JPEG_FULL_PROG_NON_HIER_10_12 JPEG Full Progression, Non-Hierarchical
(Process 10 & 12)

JPEG_FULL_PROG_NON_HIER_11_13 JPEG Full Progression, Non-Hierarchical
(Process 11 & 13)

JPEG_LOSSLESS_NON_HIER_14 JPEG Lossless, Non-Hierarchical
(Process 14)

JPEG_LOSSLESS_NON_HIER_15 JPEG Lossless, Non-Hierarchical
(Process 15)

JPEG_EXTENDED_HIER_16_18 JPEG Extended, Hierarchical (Process 16
& 18)

JPEG_EXTENDED_HIER_17_19 JPEG Extended, Hierarchical (Process 17
& 19)

JPEG_SPEC_HIER_20_22 JPEG Spectral Selection, Hierarchical
(Process 20 & 22)

JPEG_SPEC_HIER_21_23 JPEG Spectral Selection, Hierarchical
(Process 21 & 23)

JPEG_FULL_PROG_HIER_24_26 JPEG Full Progression, Hierarchical
(Process 24 & 26)

JPEG_FULL_PROG_HIER_25_27 JPEG Full Progression, Hierarchical
(Process 25 & 27)

JPEG_LOSSLESS_HIER_28 JPEG Lossless, Hierarchical (Process 28)

JPEG_LOSSLESS_HIER_29 JPEG Lossless, Hierarchical (Process 29)

Merge DICOM Transfer Syntax Parameter Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

126© Copyright Merge Healthcare Solutions Inc. 2025

JPEG_LOSSLESS_HIER_14 JPEG Lossless, Hierarchical, First-Order
Prediction (Process 14 [Selection Value
1]): Default Transfer Syntax for Lossless
JPEG Image Compression

JPEG_2000_LOSSLESS_ONLY JPEG 2000, Lossless

JPEG_2000 JPEG 2000, Lossless or Lossy

JPEG_LS_LOSSLESS JPEG LS Lossless

JPEG_LS_LOSSY JPEG LS Lossy (Near-Lossless)

JPEG_2000_MC_LOSSLESS_ONLY JPEG 2000 Part 2 Multi-component
Image Compression (Lossless Only)

JPEG_2000_MC JPEG 2000 Part 2 Multi-component
Image Compression

JPEG_XL JPEG XL

JPEG_XL_LOSSLESS_SYNTAX JPEG XL Lossless

JPEG_XL_JPEG_RECOMPRESSION JPEG XL JPEG Recompression

JPIP_HTJ2K_REFERENCED JPIP High-Throughput JPEG 2000
Referenced

JPIP_HTJ2K_REFERENCED_DEFLATE JPIP High-Throughput JPEG 2000
Referenced Deflate

JPIP_REFERENCED JPIP Referenced

JPIP_REFERENCED_DEFLATE JPIP Referenced Deflate

MPEG2_MPHL MPEG2 Main Profile @ High Level

MPEG2_MPML MPEG2 Main Profile @ Main Level

MPEG4_AVC_H264_HP_LEVEL_4_1 MPEG-4 AVC/H.264 High Profile / Level
4.1

MPEG4_AVC_H264_BDC_HP_LEVEL_4_1 MPEG-4 AVC/H.264 BDcompatible High
Profile / Level 4.1

MPEG4_AVC_H264_HP_LEVEL_4_2_2D MPEG-4 AVC/H.264 High Profile / Level
4.2 For 2D Video

MPEG4_AVC_H264_HP_LEVEL_4_2_3D MPEG-4 AVC/H.264 High Profile / Level
4.2 For 3D Video

MPEG4_AVC_H264_STEREO_HP_LEVEL_4_2 MPEG-4 AVC/H.264 Stereo High Profile /
Level 4.2

SMPTE_ST_2110_20_UNCOMPRESSED_PRO
GRESSIVE_ACTIVE_VIDEO

SMPTE ST 2110-20 Uncompressed
Progressive Active Video

Merge DICOM Transfer Syntax Parameter Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

127© Copyright Merge Healthcare Solutions Inc. 2025

D.3. System Profile
The System Profile is used to define system-wide parameters. These parameters apply across all
associations with other DICOM application entities. The location of this file is provided by the
MERGECOM_3_PROFILE parameter of the [MergeCOM3] section of the MERGE.INI file.

The following are a few notes to keep in mind concerning the System Profile:

You must specify your own unique DICOM Implementation Class UID and place it in this file along
with an optional Implementation Version. These need to be documented in your DICOM
conformance statement.

There are several exception options specified at both the association and DIMSE levels of DICOM
communication. You should not have to modify these options in normal circumstances and doing
so could make your application non DICOM conformant.

The DICOM Upper Layer section network time-outs can be modified. This is useful on slower or
less- predictable networks (e.g., WAN's).

The section of the System Profile dealing with transport parameters is important. This is where you
specify the TCP/IP listen port for a DICOM server (SCP) application, along with the number of
simultaneous associations your server will support over this port.

SMPTE_ST_2110_20_UNCOMPRESSED_INT
ERLACED_ACTIVE_VIDEO

SMPTE ST 2110-20 Uncompressed
Interlaced Active Video

SMPTE_ST_2110_30_PCM_DIGITAL_AUDIO SMPTE ST 2110-30 PCM Digital Audio

PRIVATE_SYNTAX_1 Private transfer syntax 1 with the
characteristics specified by the
PRIVATE_SYNTAX_1_LITTLE_ENDIAN,
PRIVATE_SYNTAX_1_EXPLICIT_VR, and
PRIVATE_SYNTAX_1_ENCAPSULATED
configuration options.

PRIVATE_SYNTAX_2 Private transfer syntax 2 with the
characteristics specified by the
PRIVATE_SYNTAX_2_LITTLE_ENDIAN,
PRIVATE_SYNTAX_2_EXPLICIT_VR, and
PRIVATE_SYNTAX_2_ENCAPSULATED
configuration options.

Merge DICOM Transfer Syntax Parameter Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

128© Copyright Merge Healthcare Solutions Inc. 2025

Table D.6, “[ASSOC_PARMS] section of system profile parameters,” on page 128 through Table D.11,
“[TRANSPORT_PARMS] section of system profile parameters,” on page 149 define how each
parameter should be defined within the system profile.

Table D.6: [ASSOC_PARMS] section of system profile parameters

Name Description

ACCEPT_ANY_APPLICATION_TITLE † If set to YES, the remote system need not specify a
correct DICOM application title when requesting an
association. If set to NO a correct application title
must be used. When this value is set to YES, the
toolkit will report the remote application as
connecting to the first application registered.
DEFAULT: NO

ACCEPT_ANY_CONTEXT_NAME † If set to YES, the remote system need not specify
the LOCAL_APPL_CONTEXT_NAME when
requesting an association. If set to NO, the correct
context name must be used.
DEFAULT: NO

ACCEPT_ANY_HOSTNAME If set to YES, the toolkit will not check if applications
connecting to an SCP can have their hostname
resolved through the SCP's host file or domain
name server. If set to NO, the toolkit will
automatically reject associations from unknown
hosts.
DEFAULT: NO

ACCEPT_ANY_PRESENTATION_CONTEXT † If set to YES, the toolkit will not validate that the
presentation context ID contained in a message's
PDU header information matches the ID of the
presentation context negotiated for the type of
message contained in the PDU. If set to NO, the
toolkit will abort associations when these values do
not match.
DEFAULT: NO

ACCEPT_DIFFERENT_IC_UID † If set to NO, the remote system must specify the
local IMPLEMENTATION_CLASS_UID when
requesting an association. If set to YES, a different
implementation class UID may be used.
DEFAULT: YES

ACCEPT_DIFFERENT_VERSION † If set to NO, the remote system must specify the
local IMPLEMENTATION_VERSION when
requesting an association. If set to YES, a different
implementation version may be used.
DEFAULT: YES

ACCEPT_LEAP_SECOND Is set to YES, the value of seconds in an attribute
with VR equal to DT or TM can be in the range "00"
to "60". If set to NO, the valid range is "00" to "59".
DEFAULT: NO

Merge DICOM Toolkit 5.21.0 Python User’s Manual

129© Copyright Merge Healthcare Solutions Inc. 2025

ACCEPT_LIST_OF_APPLICATION_TITLES List of AE titles which the remote system might use
when requesting an association. The parameters
line should contain all AE titles separated by one of
predefined delimiters: ',' '\' '/' ';'. The length of each
AE title cannot exceed 16 characters.
Example: ACCEPT_LIST_OF_APPLICATION_TITLES
= MERGE_STORE_SCP/MERGE_STORE_SCU/
MERGE_STORE_RQ
DEFAULT: <none>

ACCEPT_MULTIPLE_PRES_CONTEXTS If set to YES, SCP applications will allow multiple
presentation contexts to be negotiated for a single
DICOM service. If set to NO, an SCP will only accept
a single presentation context for a DICOM service.
DEFAULT:YES

ACCEPT_RELATED_GENERAL_SERVICES This parameter sets the Merge DICOM Toolkit
behavior in regard to support for DICOM
Supplement 90.
Supplement 90 defines a method for association
requestors to specify the generalized version of a
SOP Class. When set to YES, Merge DICOM Toolkit
will allow association acceptors to accept a
presentation context whose generalized SOP Class
is supported; however, the customized SOP Class is
not specifically supported.
DEFAULT: NO

ACCEPT_STORAGE_SERVICE_CONTEXTS This parameter sets the Merge DICOM Toolkit
behavior in regard to support for DICOM
Supplement 90. When set to YES, Merge DICOM
Toolkit will accept any presentation context which is
defined as a Storage Service Class SOP Class.
DEFAULT: NO

ALLOW_EMPTY_PDV_LENGTH The DICOM standard specifies that PDVs shall not
be sent without any content in the fragment. The
toolkit however can send and accept empty PDVs.
To enforce the standard requirement, this setting
should be set to No.
DEFAULT: YES

AUTO_ECHO_SUPPORT If set to YES, the toolkit automatically handles C-
ECHO requests when the application doesn't
explicitly include STANDARD_ECHO in its
supported service list. If set to NO, the toolkit rejects
C-ECHO requests when the application doesn't
explicitly include STANDARD_ECHO in its
supported service list.
DEFAULT: YES

DEFLATED_EXPLICIT_LITTLE_ENDIAN_SYNTAX This value defines the UID of the Deflated explicit
VR little endian transfer syntax.
DEFAULT: 1.2.840.10008.1.2.1.99

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

130© Copyright Merge Healthcare Solutions Inc. 2025

DEFLATED_IMAGE_FRAME_COMPRESSION_SYNTAX This value defines the UID of the Deflated Image
Frame Compression transfer syntax.
DEFAULT: 1.2.840.10008.1.2.8.1

ENCAPSULATED_UNCOMPRESSED_ELE_SYNTAX This value defines the UID of the Encapsulated
Uncompressed Explicit VR Little Endian transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.1.98

EXPLICIT_BIG_ENDIAN_SYNTAX This value defines the UID of the Explicit VR Big
Endian transfer syntax. This transfer syntax has been
retired by the DICOM standard.
DEFAULT: 1.2.840.10008.1.2.2

EXPLICIT_LITTLE_ENDIAN_SYNTAX This value defines the UID of the Explicit VR Little
Endian transfer syntax.
DEFAULT: 1.2.840.10008.1.2.1

HTJ2K_SYNTAX This value defines the UID of the High-Throughput
JPEG 2000 Image Compression transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.203

HTJ2K_LOSSLESS_ONLY_SYNTAX This value defines the UID of the High-Throughput
JPEG 2000 Image Compression (Lossless Only)
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.201

HTJ2K_LOSSLESS_RPCL_SYNTAX This value defines the UID of the High-Throughput
JPEG 2000 with RPCL Options Image Compression
(Lossless Only) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.202

HARD_CLOSE_TCP_IP_CONNECTION This parameter specifies how TCP/IP connections
are closed by the toolkit. When set to YES, TCP/IP
connections are instantaneously closed with an RST
packet. When set to NO, TCP/IP connections are
closed gracefully with a FIN packet. Note, that in the
NO case the toolkit must wait for an operating
system dependent amount of time for the response
to the FIN packet.
DEFAULT: YES

IMPLEMENTATION_CLASS_UID The DICOM Implementation Class UID (as specified
in your DICOM conformance statement).

IMPLEMENTATION_VERSION The Implementation Version Number (as specified
in your DICOM conformance statement).

IMPLICIT_BIG_ENDIAN_SYNTAX The Implicit VR Big Endian transfer syntax is not
defined by the DICOM standard. This value is
provided to supply compatibility with private
implementations.
DEFAULT: <none>

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

131© Copyright Merge Healthcare Solutions Inc. 2025

IMPLICIT_LITTLE_ENDIAN_SYNTAX The Implicit VR Little Endian transfer syntax is the
default network transfer syntax of the DICOM
standard. The Implicit VR Little Endian transfer
syntax must always be defined.
DEFAULT: 1.2.840.10008.1.2

JPEG_2000_LOSSLESS_ONLY_SYNTAX This value defines the UID for JPEG 2000, Lossless
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.90

JPEG_2000_MC_LOSSLESS_ONLY_SYNTAX This value defines the UID for JPEG 2000 Part 2
Multi- component Image Compression (Lossless
Only) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.92

JPEG_2000_MC_SYNTAX This value defines the UID for JPEG 2000 Part 2
Multi- component Image Compression transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.93

JPEG_2000_SYNTAX This value defines the UID for JPEG 2000 transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.91

JPEG_BASELINE_SYNTAX This value defines the UID for JPEG Baseline
(Process 1) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.50

JPEG_EXTENDED_2_4_SYNTAX This value defines the UID for JPEG Extended
(Process 2 & 4) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.51

JPEG_EXTENDED_3_5_SYNTAX This value defines the UID for JPEG Extended
(Process 3 & 5) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.52

JPEG_EXTENDED_HIER_16_18_SYNTAX This value defines the UID for JPEG Extended,
Hierarchical (Process 16 & 18) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.59

JPEG_EXTENDED_HIER_17_19_SYNTAX This value defines the UID for JPEG Extended,
Hierarchical (Process 17 & 19) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.60

JPEG_FULL_PROG_HIER_24_26_SYNTAX This value defines the UID for JPEG Full
Progression, Hierarchical (Process 24 & 26) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.63

JPEG_FULL_PROG_HIER_25_27_SYNTAX This value defines the UID for JPEG Full
Progression, Hierarchical (Process 25 & 27) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.64

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

132© Copyright Merge Healthcare Solutions Inc. 2025

JPEG_FULL_PROG_NON_HIER_10_12_SYNTAX This value defines the UID for JPEG Full
Progression, Non-Hierarchical (Process 10 & 12)
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.55

JPEG_FULL_PROG_NON_HIER_11_13_SYNTAX This value defines the UID for JPEG Full
Progression, Non-Hierarchical (Process 11 & 13)
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.56

JPEG_LOSSLESS_HIER_14_SYNTAX This value defines the UID for JPEG Lossless, Non-
Hierarchical, First-Order Prediction (Process 14,
Selection Value 1) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.70

JPEG_LOSSLESS_HIER_28_SYNTAX This value defines the UID for JPEG Lossless,
Hierarchical (Process 28) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.65

JPEG_LOSSLESS_HIER_29_SYNTAX This value defines the UID for JPEG Lossless,
Hierarchical (Process 29) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.66

JPEG_LOSSLESS_NON_HIER_14_SYNTAX This value defines the UID for JPEG Lossless, Non-
Hierarchical (Process 14) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.57

JPEG_LOSSLESS_NON_HIER_15_SYNTAX This value defines the UID for JPEG Lossless, Non-
Hierarchical (Process 15) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.58

JPEG_LS_LOSSLESS_SYNTAX This value defines the UID for JPEG LS Lossless
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.80

JPEG_LS_LOSSY_SYNTAX This value defines the UID for JPEG LS Lossy (Near
Lossless) transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.81

JPEG_SPEC_HIER_20_22_SYNTAX This value defines the UID for JPEG Spectral
Selection, Hierarchical (Process 20 & 22) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.61

JPEG_SPEC_HIER_21_23_SYNTAX This value defines the UID for JPEG Spectral
Selection, Hierarchical (Process 21 & 23) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.62

JPEG_SPEC_NON_HIER_6_8_SYNTAX This value defines the UID for JPEG Spectral
Selection, Non Hierarchical (Process 6 & 8) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.53

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

133© Copyright Merge Healthcare Solutions Inc. 2025

JPEG_SPEC_NON_HIER_7_9_SYNTAX This value defines the UID for JPEG Spectral
Selection, Non Hierarchical (Process 7 & 9) transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.54

JPEG_XL_JPEG_RECOMPRESSION_SYNTAX This value defines the UID of the JPEG XL JPEG
Recompression transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.111

JPEG_XL_LOSSLESS_SYNTAX This value defines the UID of the JPEG XL Lossless
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.110

JPEG_XL_SYNTAX This value defines the UID of the JPEG XL transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.112

JPIP_HTJ2K_REFERENCED_DEFLATE_SYNTAX This value defines the UID of the JPIP High-
Throughput JPEG 2000 Referenced Deflate transfer
syntax (Explicit VR).
DEFAULT: 1.2.840.10008.1.2.4.205

JPIP_HTJ2K_REFERENCED_SYNTAX This value defines the UID of the JPIP High-
Throughput JPEG 2000 Referenced transfer syntax
(Explicit VR).
DEFAULT: 1.2.840.10008.1.2.4.204

JPIP_REFERENCED_DEFLATE_SYNTAX This value defines the UID for JPIP Referenced
Deflate transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.95

JPIP_REFERENCED_SYNTAX This value defines the UID for JPIP Referenced
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.94

LICENSE The Merge DICOM Toolkit license number that was
supplied when the toolkit was purchased.

LOCAL_APPL_CONTEXT_NAME The DICOM Application Context Name (UID) (as
specified in the DICOM Standard).
DEFAULT: 1.2.840.10008.3.1.1.1

MPEG2_MPHL_SYNTAX This value defines the UID for MPEG2 Main Profile
@ High Level transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.101

MPEG2_MPML_SYNTAX This value defines the UID for MPEG2 Main Profile
@ Main Level transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.100

MPEG4_AVC_H264_BDC_HP_LEVEL_4_1_SYNT AX This value defines the UID for MPEG-4 AVC/H.264
BD compatible High Profile / Level 4.1 transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.4.103

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

134© Copyright Merge Healthcare Solutions Inc. 2025

MPEG4_AVC_H264_HP_LEVEL_4_1_SYNTAX This value defines the UID for MPEG-4 AVC/H.264
High Profile / Level 4.1 transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.102

MPEG4_AVC_H264_HP_LEVEL_4_2_2D_SYNTA X This value defines the UID for MPEG-4 AVC/H.264
High Profile / Level 4.2For 2D Video transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.104

MPEG4_AVC_H264_HP_LEVEL_4_2_3D_SYNTA X This value defines the UID for MPEG-4 AVC/H.264
High Profile / Level 4.2For 3D Video transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.105

MPEG4_AVC_H264_STEREO_HP_LEVEL_4_2_S
YNTAX

This value defines the UID for MPEG-4 AVC/H.264
Stereo High Profile /Level 4.2 transfer syntax.
DEFAULT: 1.2.840.10008.1.2.4.106

PDU_MAXIMUM_LENGTH * The maximum size of Protocol Data Units that can
be received by this Merge DICOM Toolkit
implementation. This value will also place a limit on
how large PDU values being sent can be. Setting this
so that a PDU fits within an even multiple of the
default TCP/IP MSS (Maximum Segment Size) of
1460 will optimize network performance. Note that 6
bytes for the PDU header must be added to the
configured maximum PDU size when calculating a
multiple of the MSS.
Note also to see the TCPIP_SEND_BUFFER_SIZE
and TCPIP_RECEIVE_BUFFER_SIZE configuration
values for improving performance.
Example: (1460*44)-6 = 64234 PDU Size
DEFAULT: 64234
MINIMUM: 4K
MAXIMUM: NONE

PRIVATE_SYNTAX_1_ENCAPSULATED When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 1 as having its pixel data tag
(7fe0,0010) being encoded as undefined length in
the same manner as the JPEG and RLE transfer
syntaxes are encoded.
DEFAULT: NO

PRIVATE_SYNTAX_1_EXPLICIT_VR When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 1 as being encoded in explicit
VR format.
DEFAULT: YES

PRIVATE_SYNTAX_1_LITTLE_ENDIAN When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 1 as being encoded in little
endian format.
DEFAULT: YES

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

135© Copyright Merge Healthcare Solutions Inc. 2025

† These options allow for non-standard DICOM operations. Such exceptions, if used, should
be noted in your DICOM conformance statement.

* Performance tuning.

PRIVATE_SYNTAX_1_SYNTAX The unique identifier (UID) Merge DICOM Toolkit
will use to identify private transfer syntax 1. When
this value is set to "<none>", private transfer syntax
support is shut off.
DEFAULT: <none>

PRIVATE_SYNTAX_2_ENCAPSULATED When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 2 as having its pixel data tag
(7fe0,0010) being encoded as undefined length in
the same manner as the JPEG and RLE transfer
syntaxes are encoded.
DEFAULT: NO

PRIVATE_SYNTAX_2_EXPLICIT_VR When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 2 as being encoded in explicit
VR format.
DEFAULT: YES

PRIVATE_SYNTAX_2_LITTLE_ENDIAN When set to YES, Merge DICOM Toolkit will interpret
private transfer syntax 2 as being encoded in little
endian format.
DEFAULT: YES

PRIVATE_SYNTAX_2_SYNTAX The unique identifier (UID) Merge DICOM Toolkit
will use to identify private transfer syntax 2. When
this value is set to "<none>", private transfer syntax
support is shut off.
DEFAULT: <none>

RLE_SYNTAX This value defines the UID of the RLE Lossless
transfer syntax.
DEFAULT: 1.2.840.10008.1.2.5

SMPTE_ST_2110_20_UNCOMPRESSED_INTERL
ACED_ACTIVE_VIDEO_SYNTAX

This value defines the UID for SMPTE ST 2110-20
Uncompressed Interlaced Active Video transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.7.2

SMPTE_ST_2110_20_UNCOMPRESSED_PROGRE
SSIVE_ACTIVE_VIDEO_SYNTAX

This value defines the UID for SMPTE ST 2110-20
Uncompressed Progressive Active Video transfer
syntax.
DEFAULT: 1.2.840.10008.1.2.7.1

SMPTE_ST_2110_30_PCM_DIGITAL_AUDIO_S
YNTAX

This value defines the UID for SMPTE ST 2110-30
PCM Digital Audio transfer syntax.
DEFAULT: 1.2.840.10008.1.2.7.3

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

136© Copyright Merge Healthcare Solutions Inc. 2025

Table D.7: [DIMSE_PARMS] section of system profile parameters

Name Description

INITIATOR_NAME † The DICOM standard has retired the old ACR/NEMA Initiator Name
attribute in command messages. To generate such an attribute in
command messages, specify an initiator name. <none> means do not
put initiator name in messages.
DEFAULT: <none>

RECEIVER_NAME † The DICOM standard has retired the old ACR/NEMA Receiver Name
attribute in command messages. To generate such an attribute in
command messages, specify a receiver name. <none> means do not put
receiver name in messages.
DEFAULT: <none>

SEND_ECHO_PRIORITY † The DICOM standard has retired the message priority attribute in echo
command messages. To generate such an attribute in command
messages, specify YES. To NOT use message priority in echo messages,
specify NO.
DEFAULT: NO

SEND_LENGTH_TO_END † The DICOM standard has retired the old Group-Length-To-End attribute
in command messages. To generate such an attribute in command
messages, specify YES. If you do not want to generate Group Length To
End, specify NO.
DEFAULT: NO

SEND_MSG_ID_RESPONSE † The DICOM standard has retired the message ID attribute in response
command messages. To generate such an attribute in command
messages, specify YES. To NOT use message ID in response mes- sages,
specify NO.
DEFAULT: NO

SEND_RECOGNITION_CODE † The DICOM standard has retired the old Recognition Code attribute in
command messages. To generate such an attribute in command
messages, specify YES. If you do not want to generate such an attribute,
specify NO.
DEFAULT: NO

SEND_RESPONSE_PRIORITY † The DICOM standard has retired the message priority attribute in re-
sponse messages. To generate such an attribute in response messages,
specify YES. To NOT use message priority in response messages, specify
NO.
DEFAULT: NO

SEND_SOP_CLASS_UID † Certain DICOM service classes demand that the affected SOP class UID
be present in the message. To prevent the library from ensuring that this
is done, specify NO. To ensure that Affected SOP class UID is present,
specify YES.
DEFAULT: YES

Merge DICOM Toolkit 5.21.0 Python User’s Manual

137© Copyright Merge Healthcare Solutions Inc. 2025

† These options allow for non-standard DICOM operations. Such exceptions, if used, should
be noted in your DICOM conformance statement.

Table D.8: [DUL_PARMS] section of system profile parameters

SEND_SOP_INSTANCE_UID † Certain DICOM service classes demand that the affected SOP instance
UID be present in the message. To prevent the library from ensuring that
this is done, specify NO. To ensure that Affected SOP instance UID is
present, specify YES.
DEFAULT: YES

Name Description

ARTIM_TIMEOUT The number of seconds to use as a time out waiting for an association
request or waiting for the peer to shut down an association.
DEFAULT: 30

ASSOC_REPLY_TIMEOUT The number of seconds to wait for a reply to an associate request.
DEFAULT: 15.

CONNECT_TIMEOUT The number of seconds to wait for a network connect to be accepted.
DEFAULT: 15.

INACTIVITY_TIMEOUT The number of seconds to wait in between packets of data received
over the network after the initial packet of data in a message is received.
Used by the MCassociation.read(),
MCassociation.continueRead(),
MCassociation.readToStream() and
MCassociation.continueReadToStream() methods.
DEFAULT: 15.

INSURE_EVEN_UID_LENGTH † Set to NO, if odd-length UIDs in PDU's should NOT be padded with a
NULL to ensure even length unique Ids. Set to YES to ensure even UIDs
in PDUs.
DEFAULT: NO

RELEASE_TIMEOUT The number of seconds to wait for a reply to an associate release.
DEFAULT: 15.

WRITE_TIMEOUT The number of seconds to wait for a network write to be accepted.
DEFAULT: 15.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

138© Copyright Merge Healthcare Solutions Inc. 2025

† These options allow for non-standard DICOM operations. Such exceptions, if used, should
be noted in your DICOM conformance statement.

Table D.9: [MEDIA_PARMS] section of system profile parameters

* Performance tuning.

Table D.10: {MESSAGE_PARMS] section of system profile parameters

Name Description

DICOMDIR_STREAM_STORAGE When set to yes, DICOMDIRs read in leave their directory
records in- ternally in "stream" format and are not parsed
until the directory record is referenced. This can greatly
reduce memory usage when reading in large DICOMDIRs
when the entire DICOMDIR is not referenced.
Default: NO

EXPORT_GROUP_LENGTHS_TO_M EDIA* When set to NO, do not write group length attributes with
MCfile.writeP10File().
DEFAULT: YES

EXPORT_PRIVATE_ATTRIBUTES_TO_MEDIA When set to NO, disable the exporting of private attributes
in files writ- ten with the MCfile.writeP10File().
DEFAULT: YES

EXPORT_UN_VR_TO_MEDIA When set to NO, disable the exporting of attributes with a
VR of UN in files written with the
MCfile.writeP10File().
DEFAULT: YES

EXPORT_UNDEFINED_LENGTH_S
Q_IN_DICOMDIR*

When set to NO, DICOMDIRs written with
MCfile.writeP10File() are created with their
sequence attributes having defined lengths. Setting this
option to Yes will increase performance.
DEFAULT: YES

Name Description

ALLOW_COMMA_IN_DS_FL_FD_STRINGS When set to Yes, a comma or a period will be allowed in
the string value passed to MCattributeSet.addValue()
for attributes with a VR of DS, FL or FD. When set to No,
only a period will be acceptable as a decimal separator.
Note that the toolkit will always ensure that DS
attributes use a period decimal separator when
streaming to the network or to a file, regardless of
current locale settings.
DEFAULT: NO

ALLOW_INVALID_LENGTH_FOR_VR When set to 'Yes', data values of fixed length value
representations (SS, US, AT, SL, UL, SV, UV, FL, FD)
with incorrect length, according to DICOM, will not
cause an MC_INVALID_LENGTH_FOR_VR error on
DICOM data reading.
DEFAULT: YES

Merge DICOM Toolkit 5.21.0 Python User’s Manual

139© Copyright Merge Healthcare Solutions Inc. 2025

ALLOW_INVALID_PRIVATE_ATTRIBUTES When reading messages or file objects, this parameter
specifies if private attributes encoded in an invalid
format should be ignored or parsed.
DEFAULT: NO

ALLOW_INVALID_PRIVATE_CREATOR_CODES When reading messages or file objects, this parameter
specifies if private creator codes encoded with invalid
characters should be ignored or parsed.
DEFAULT: NO

ALLOW_OUT_OF_RANGE_BITS_JPEG_LOSSLESS During decompression of JPEG lossless images, the
Pegasus decompressor may discover that the original
compressor had failed to mask off the out-of-range
bits for the image bit depth. However, if all other
lossless JPEG computations are correct, the original
image, including such incorrect out-of-range bits, can
be losslessly recovered. The Pegasus decompressor
will return a warning status, along with the fully decoded
image.
If this flag is set by the application, the out-of-range bits
in output pixels will not be masked off, but returned in
the decoded image. Without this flag, out- of-range bits
will be masked off to keep pixel values in range.
DEFAULT: NO

ATT_00081190_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0008,1190) Retrieve URL
was changed from UT to the newly introduced UR. For
backward compatibility, this parameter specifies that,
when reading messages or file objects, the attribute is
expected to have the old UT value representation.
DEFAULT: NO

ATT_00287FE0_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0028,7FE0) Pixel Data
Provider URL was changed from UT to the newly
introduced UR. For backward compatibility, this
parameter specifies that, when reading messages or
file objects, the attribute is expected to have the old UT
value representation.
DEFAULT: NO

ATT_0040E010_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0040,E010) Retrieve URI
was changed from UT to the newly introduced UR. For
backward compatibility, this parameter specifies that,
when reading messages or file objects, the attribute is
expected to have the old UT value representation.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

140© Copyright Merge Healthcare Solutions Inc. 2025

ATT_0074100A_USE_ST_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0074,100A) Contact URI
was changed from ST to the newly introduced UR. For
backward compatibility, this parameter specifies that,
when reading messages or file objects, the attribute is
expected to have the old ST value representation.
DEFAULT: NO

CALCULATE_DEFINED_LENGTH_FOR_CB This parameter is applied when a registered callback
function expects the data length to be provided to it
and the data length is undefined. If the parameter is set
to No, the undefined length will be passed as is to the
callback function. If the parameter value is Yes, the
toolkit will calculate the actual value of the data length
before passing it tot the callback function.
DEFAULT: NO

CALLBACK_MIN_DATA_SIZE When using the MCapplication.registerProvider() call
to store large data such as pixel data, this option
specifies the minimum size of value for which the
callback function should be used. This option was
specifically added so pixel data contained in icons are
not managed with a callback function.
DEFAULT: 1

COMPRESSION_ALLOW_FRAGS Configuration Parameter for
MC_Standard_Compressor. The Pegasus libraries
allow compressed image data to be returned as it
continues to compress more image data. This may
result in an image frame having one or more fragments.
This is perfectly legal, however some viewers may not
be able to display the image if they do not support
multiple fragments per frame.
DEFAULT: YES

COMPRESSION_CHROM_FACTOR Configuration Parameter for
MC_Standard_Compressor. Values 0 through 255.
The chrominance compression factor is used to adjust
the default chrominance quantization table values.
When ChromFactor is 32, the default chrominance
quantization table values are used as is. A value of 255
corresponds to high compression, low quality.
DEFAULT: 32

COMPRESSION_J2K_LOSSY_QUALITY Configuration Parameter for
MCattributeSet.setCompression(). When
JPEG_2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes, and
COMPRESSION_J2K_LOSSY_USE_QUALITY = Yes, a
quality can be specified. Valid values are 1 to 10, 1 being
highest quality image.
DEFAULT: 1

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

141© Copyright Merge Healthcare Solutions Inc. 2025

COMPRESSION_J2K_LOSSY_RATIO Configuration Parameter for
MCattributeSet.setCompression(). When
JPEG_2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes, and
COMPRESSION_J2K_LOSSY_USE_QUALITY = No, a
ratio can be specified. The compressor attempts to
reduce the image size to 1/
COMPRESSION_J2K_LOSSY_RATIO.
DEFAULT: 10

COMPRESSION_J2K_LOSSY_USE_QUALITY Configuration Parameter for
MCattributeSet.setCompression(). When
JPEG_2000 with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes, this
indicates which metric should be used for lossy
compression, ratio or quality.
DEFAULT: YES

COMPRESSION_LUM_FACTOR Configuration Parameter for
MCattributeSet.setCompression(). Values 0
through 255. 0 is the highest quality, giving a
quantization table of all 1's. 32 corresponds to the
standard quantization tables. For values between 0 and
128, the standard tables are scaled linearly. For values
between 128 and 255, the standard tables are scaled
non-linearly and the compression increases (and the
quality decreases) by a very large amount.
DEFAULT: 32

COMPRESSION_RGB_TRANSFORM_FORMAT This parameter allows the user to select the output
format when doing Lossy JPEG compression of RGB
images. The value can be set to YBR_FULL or
YBR_FULL_422 to specifiy what photometric
interpretion Merge DICOM Toolkit should compress
into when compressing RGB images.
DEFAULT: YBR_FULL_422

COMPRESSION_USE_HEADER_QUERY If set to YES, it instructs the toolkit to give precedence
to the image parameters (rows, columns, etc.) from the
JPEG header, in case disagreement is suspected
between the DICOM header the JPEG header. If set to
NO, the DICOM header will be used.
DEFAULT: NO

COMPRESSION_WHEN_J2K_USE_LOSSY Configuration Parameter for
MCattributeSet.setCompression(). When
JPEG_2000 is used as a transfer syntax, this could
mean either lossy or lossless compression. This
parameter specifies the intended syntax.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

142© Copyright Merge Healthcare Solutions Inc. 2025

CREATE_OFFSET_TABLE This parameter specifies if an offset table is created
when MCattributeSet.duplicate() is used to
compress a DICOM message or file.
It also specifies if an offset table is created when the
MCattributeSet.addEncapsulatedFrame()
method is used.
DEFAULT: YES

DECODER_TAG_FILTER Specifies the list of tags to be ignored when reading
DICOM files or messages. The values are separated by
commas and can be specified in different formats:
Single tag, e.g.: 00080020
Tag range, e.g.: 00080020-000800FF
Single group, e.g.: G0020
Group range, e.g: G0020-G0022 All private as: PRIVATE
All ranges are inclusive, meaning that G0020-G0022 will
filter groups 20 and 22.
DEFAULT: (empty)

DECODER_PRIVATE_TAG_WHITELIST Specifies the list of private tags to be allowed during
reading DICOM files or messages. The values are
separated by commas and can bespecified in different
formats:
Single tag, e.g.: 00090001
Tag range, e.g.: 00090000-000900FF
Single group, e.g.: G0021
Group range, e.g.: G0021-G0025
All ranges are inclusive, meaning that G0021-G0025 will
allow all private groups in the range including 21 and 25.
DEFAULT: (empty)

DEFLATE_ALLOW_FLUSH Allows deflate to flush data occasionally to limit
buffering.
DEFAULT: YES

DEFLATE_COMPRESSION_LEVEL Allows the compression level of deflate to be specified
when using deflated explicit VR little endian transfer
syntax. 0 is no compression, 1 is fastest, and 9
compresses best.
DEFAULT: -1

DESIRED_LAST_PDU_SIZE This parameter allows the user to configure the length
of the last PDU sent. This allows for interoperability with
other DICOM implementations that may be intolerant
with either a zero or two byte final PDU length. The
default value used is 8.
Note: Starting with release 3.5.1, this configuration
option has a limited effect.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

143© Copyright Merge Healthcare Solutions Inc. 2025

DICTIONARY_ACCESS This parameter specifies whether or not the DICOM
dictionary is to be loaded into memory or accessed
from the dictionary file. FILE means access information
directly from the dictionary file. MEM means load the
dictionary into memory and access it there.
Note: Starting with the 3.5.1 Merge DICOM Toolkit
release, dictionary access is always memory based and
can no longer be file based. This option is now ignored.
DEFAULT: MEM

DICTIONARY_FILE This parameter specifies the name (path) of the
DICOM dictionary. An absolute or relative path may be
specified.
Note: This parameter is ignored if the dictionary has
been pre-compiled.
The path to the file can also be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not need
to be set as the toolkit will resolve it internally to the
directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
DEFAULT: ../mc3msg/mrgcom3.dct

DUPLICATE_ENCAPSULATED_ICON When duplicating to an encapsulated transfer syntax,
this configuration value specifies whether an ICON
IMAGE SEQUENCE should also be encapsulated.
DEFAULT: NO

ELIMINATE_ITEM_REFERENCE * This parameter specifies the behavior of the message/
item/file disposing method
MCattributeSet.dispose(). If this parameter is set
to YES, the above functions will search for references
in every currently open object to delete when they
encounter an item to free within an object.
DEFAULT: NO.

EMPTY_PRIVATE_CREATOR_CODES If set to NO, private creator codes contained in
messages are not emptied when the
MC_Empty_Message() or MC_Empty_File()
function calls are made.
DEFAULT: YES
Note: These underlying C/C++ toolkit functions are not
called in the Python toolkit.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

144© Copyright Merge Healthcare Solutions Inc. 2025

EXPLICIT_VR_TO_UN_FOR_LENGTH_GT_64K If set to YES, the toolkit will allow encoding in explicit
VR of data elements whose VR is none of OB, OW, OL,
OV, OD, OF, SQ or UT and whose value length exceeds
65534 bytes by effectively changing the VR to UN (as
per CP-1066).
If set to NO, the attempt to encode such date elements
will result in an MC_INVALID_LENGTH_FOR_VR error.
DEFAULT: NO

EXPORT_EMPTY_PRIVATE_CREATOR_CODES If set to NO it prevents the toolkit from exporting private
creator data elements which don't have any private
attributes in the private block. If set to YES, exporting
private creator data elements with empty private blocks
is allowed.
DEFAULT: YES

EXPORT_GROUP_LENGTHS_TO_NETWORK * When set to NO, do not export group length attributes
when using the sendRequestMessage(),
sendRequestStorage(), sendResponseMessage()
and sendResponseStorage() methods of the
MCassociation class.
DEFAULT: YES

EXPORT_PRIVATE_ATTRIBUTES_TO_NETWORK When set to NO, disable the exporting of private
attributes in messages written to the network with the
sendRequestMessage(), sendRequestStorage(),
sendResponseMessage() and
sendResponseStorage() methods of the
MCassociation class.
DEFAULT: YES

EXPORT_UN_VR_TO_NETWORK When set to NO, disable the exporting of attributes with
a VR of UN in messages written to the network with the
sendRequestMessage(), sendRequestStorage(),
sendResponseMessage() and
sendResponseStorage() methods of the
MCassociation class.
DEFAULT: YES

EXPORT_UNDEFINED_LENGTH_SQ * If YES, messages transferred over the network or
written to disk have their sequence attributes encoded
as undefined length. This increases performance of the
library.
DEFAULT: NO

FLATE_GROW_OUTPUT_BUF_SIZE * The size that the output buffer of deflate or inflate
should grow to when its size is insufficient. An Info
message is logged each time the buffer grows.
DEFAULT: 1024

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

145© Copyright Merge Healthcare Solutions Inc. 2025

FORCE_OPEN_EMPTY_ITEM * When set to YES, the MCitem constructor will act
similar to the MCmessage constructor. The up-front
performance cost of the MCitem constructor will be
reduced, but the amount of validation done when
adding tags to the item is also reduced. Setting this
value to YES will also improve the performance of the
DICOMDIR directory functions. This configuration
value does not have any effect on embedded platforms.
DEFAULT: NO

IGNORE_JPEG_BAD_SUFFIX Configuration Parameter for
MCattributeSet.setCompression() to deal with
lossless JPEG images whose suffix have been invalidly
written according to the JPEG specification. These
images have a 16-zero-bit suffix following a -32768
prefix where the JPEG spec says the suffix is omitted
following a -32768 prefix. The following are the valid
settings:
-1 = Default, fail on these images
0 = Ignore when user detects such images
1 = Let the toolkit detect and ignore automatically

LARGE_DATA_SIZE Defines "Large Data" to the toolkit. "Large Data" is
defined as an attribute value which has a length of
LARGE_DATA_SIZE or more.
DEFAULT: 200.

LARGE_DATA_STORE This parameter specifies where "Large Data" values
should be stored. FILE means store the values in
temporary files. MEM means store the values in
memory.
Note: Embedded systems should ignore this
parameter and always use MEM.
DEFAULT: MEM

LIST_SQ_DEPTH_LIMIT Limit the depth of sequences listing. This parameter
should be set to the maximum number of levels any
sequence should be listed.
DEFAULT: is 0 - means do not limit the listing of
sequences

LIST_UN_ATTRIBUTES If No, attributes with Unknown VR will not be listed by
MCattributeSet.list() and T2 logging option.
DEFAULT: YES

LIST_VALUE_LIMIT Limit the size of listed values by
MCattributeSet.list() or T2 logging option. This
parameter should be set to the maximum number of
lines to be printed for any attribute in the list.
DEFAULT: 0 - means show the whole value.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

146© Copyright Merge Healthcare Solutions Inc. 2025

MSG_FILE_ITEM_OBJ_TRACE This parameter allows the tracking of the creation,
referencing and freeing of message, file and item
objects. This option can be used if the user suspects a
memory leak in their application from not freeing one
of these object types. The logging is done at the T1 trace
level which must be enabled in the merge.ini file.
DEFAULT: NO

MSG_INFO_FILE This parameter specifies the name (path) of the
DICOM message information file. An absolute or
relative path may be specified.
The path to the file can also be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not need
to be set as the toolkit will resolve it internally to the
directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
Note: This parameter is ignored if the message
database has been pre-compiled.
DEFAULT: ../mc3msg/mrgcom3.msg

NULL_TYPE3_VALIDATION This parameter specifies how the toolkit will validate a
single NULL value in a type 3 attribute with VM > 1.
Valid values are ERR, WARN and INFO.
DEFAULT: ERR

OBOW_BUFFER_SIZE This parameter specifies the number of bytes of "Large
Data" that should be buffered before they are written to
disk. This value is only used when the parameter
LARGE_DATA_STORE is set to FILE.
DEFAULT: 4096

PEGASUS_DISP_REG_NAME When using your own Pegasus license to remove the 3
frames/second limitation, this should have the
company name that was used to generate your
Pegasus license.

PEGASUS_DISP_REGISTRATION When using your own Pegasus license to remove the 3
frames/second limitation, this should have the
registration code that goes with the Pegasus
dispatcher.

PEGASUS_NUMBER_OF_THREADS Certain Pegasus opcodes can operate in a
multithreaded manner. Use this setting to specify the
number of threads to be used by the opcode.
DEFAULT: 1

PEGASUS_OP_*_NAME When using your own Pegasus license to remove the 3
frames/second limitation, this should have the
company name that was used to generate your
Pegasus license.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

147© Copyright Merge Healthcare Solutions Inc. 2025

PEGASUS_OP_*_REGISTRATION When using your own Pegasus license to remove the 3
frames/second limitation, this should have the
registration code that goes with its respective
PEGASUS_OP_*_NAME.

PEGASUS_OPCODE_PATH This parameter specifies the directory where Pegasus
opcode DLLs are to be loaded from. The opcode DLL
refers to files like picn6220 and not the dispatcher DLL
picn20. If the option is empty, the SSM/DLL is loaded
from the same directory as the dispatcher DLL. If these
files are not found, opcode SSM/DLL is loaded using
the directory order Windows uses when loading DLLs.
The SSM/DLL is loaded from the current directory if '.' is
specified.
DEFAULT: (empty)

REJECT_INVALID_VR This parameter specifies whether or not to reject
invalid VR values in DICOM messages. If set to Yes, the
parsing is aborted and the data set is rejected with a
status of MC_INVALID_VR. This is useful in some
scenarios when invalid attribute VR and length can
result in runaway read/copy operations which may lead
to crashes.
DEFAULT: NO

RELEASE_SQ_ITEMS If set to NO, existing item IDs will not be freed when
setting a null value or an empty value or a new value to a
sequence attribute. Setting it to YES will allow
sequence items that have no other references to be
freed.
DEFAULT: NO

REMOVE_PADDING_CHARS When set to Yes, Merge DICOM Toolkit will remove
space padding characters from all text based
attributes. This removal will occur when the attribute is
encoded with MCattributeSet.setValue(), or
when the attribute is read with one of the streaming or
network read methods.
DEFAULT: NO

REMOVE_SINGLE_TRAILING_SPACE If set to YES, the toolkit will strip a single trailing
padding space character from an attribute value of
string type. Otherwise, it will not.
DEFAULT: YES

RETURN_COMMA_IN_DS_FL_FD_STRINGS When set to Yes, Merge DICOM Toolkit will return a
comma character as a decimal separator in a value
when MCattributeSet.getStringValue() is
called for an attribute with a VR of DS, FL, or FD. When
set to No, a period will always be returned for the
decimal separator. Note that DS values will always be
properly encoded with a period in DICOM message
objects.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

148© Copyright Merge Healthcare Solutions Inc. 2025

TEMP_FILE_DIRECTORY This parameter specifies the directory in which
temporary files should be created. This parameter is
used only if LARGE_DATA_STORE = FILE. An absolute
or relative path may be specified.
The path to the directory can also be specified using
environment variables (including the pseudo
environment variable MC3INIDIR which does not need
to be set as the toolkit will resolve it internally to the
directory where the merge.ini file resides).
Unicode paths can now be specified through the
environment variables. Both Windows style (%) and
Unix style ($) notations for the environment variables
are accepted.
DEFAULT: ./

TOLERATE_INVALID_IN_DEFAULT_CHARSET This parameter specifies if non-ASCII characters are to
be tolerated in the default repertoire. When set to Yes,
the validation of the attribute/message will not be
enforced, but a warning message will still be logged.
DEFAULT: YES

UN_VR_CODE VR Code to use for attributes with unknown VRs. This
may be set to 'OB' if an implementation does not
understand 'UN'.
DEFAULT: UN
VALID VALUES: UN, OB

UPDATE_GROUP_0028_ON_DUPLICATE When set to Yes, the group 0028 attributes within a
message will be updated when duplicating a message
or file with MCattributeSet.duplicate() and the
standard compressor or decompressor. The
Photometric Interpretation will be updated as
appropriate, and the Lossy Image Compression, Lossy
Image Compression Ratio and Lossy Image
Compression Method tags will be updated if Lossy
Image Compression was applied to the image.
DEFAULT: NO

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

149© Copyright Merge Healthcare Solutions Inc. 2025

* Performance tuning

Table D.11: [TRANSPORT_PARMS] section of system profile parameters

USE_FREE_DATA_CALLBACK When set to Yes, all MCIstorageProviders
registered with
MCapplication.registerProvider() are called
with the __FREE_DATA__ callback type when the
memory associated with the callback is to be freed,
because the enclosing message, file, or item is being
freed.
DEFAULT: NO

WORK_BUFFER_SIZE * This parameter specifies the amount of data that is
buffered in the toolkit before being stored internally or
passed to a user's callback function. This option
impacts the following methods:
- the sendRequestMessage(),
sendRequestStorage(),
sendResponseMessage(),
sendResponseStorage(), read(),
continueRead(), readToStream(),
continueReadToStream() of class
MCassociation

- the writeMessageToStream() and
readMessageFromStream() of class
MCattributeSet and
- the readP10File(), readP10FileBypassBulk(),
readP10Stream(), writeP10File() and
writeP10FileToStream() of class MCfile.
Setting this option to values larger than 28K will in most
cases cause the toolkit to use the operating system's
memory management scheme instead of the toolkit's
internal mechanism.
DEFAULT: 28K

Name Description

CAPTURE_FILE This parameter specifies the base name to use for capture files.
(Capture files are generated if the NETWORK_CAPTURE value is set
to Yes.) If only one capture file is requested (see
NUMBER_OF_CAP_FILES), the capture file will have the name
specified. If more than one is requested, nnn will be appended to the
base file name specified (e.g., merge001.cap)
DEFAULT: merge.cap (in the current directory)
Note: Use of this parameter is deprecated.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

150© Copyright Merge Healthcare Solutions Inc. 2025

CAPTURE_FILE_SIZE This parameter specifies the maximum size (in kilobytes) that
capture files are allowed to grow (capture files are generated if the
NETWORK_CAPTURE value is set to Yes). If more than one capture
file is requested (see NUMBER_OF_CAP_FILES), each file generated
will have this maximum size. If a value less than 1 is specified only
one capture file of unlimited length will be generated.
DEFAULT: 0
Note: Use of this parameter is deprecated.

IP_TYPE This parameter specifies the preferred IP type for network
communications. When set to IPV4, Merge DICOM Toolkit will
attempt to utilize only IPV4 network connections. When set to IPV6,
Merge DICOM Toolkit will attempt to use only IPV6 network
connections. When set to AVAILABLE in an SCP, Merge DICOM
Toolkit will prefer IPV6 if it is enabled in the operating system over
IPV4. If IPV6 is used, the socket is put into dual stack mode, if
supported by the operating system, to accept connections from
both IPV4 and IPV6. When set to AVAILABLE in an SCU, Merge
DICOM Toolkit will use the available type of IP networking.
DEFAULT: AVAILABLE
VALID VALUES: AVAILABLE, IPV4, IPV6

MAX_PENDING_CONNECTIONS This parameter specifies the maximum number of open listen
channels. Its value is used as the second argument of a TCP listen()
call.
DEFAULT: 5

NETWORK_CAPTURE This parameter specifies whether or not network data should be
captured in files suitable to be read by the MergeDPM utility. Use
these parameters to customize the network capture:
CAPTURE_FILE CAPTURE_FILE_SIZE NUMBER_OF_CAP_FILES
REWRITE_CAPTURE_FILES DEFAULT: No
Note: Use of this parameter is deprecated.

NUMBER_OF_CAP_FILES This parameter specifies the number of capture files to generate
(capture files are generated if the NETWORK_CAPTURE value is set
to Yes). Each capture file generated will have maximum size
specified by CAPTURE_FILE_SIZE. If CAPTURE_FILE_SIZE is less
than 1 (unlimited size) this parameter's value is ignored.
DEFAULT: 1
Note: Use of this parameter is deprecated.

REWRITE_CAPTURE_FILES This parameter specifies whether or not the capture files should be
rewritten when all files have reached the maximum size specified by
CAPTURE_FILE_SIZE (capture files are generated if the
NETWORK_CAPTURE value is set to Yes). If Yes is specified, the
oldest file will be rewritten. If No is specified and all requested files
have been written (see NUMBER_OF_CAP_FILES), no more data will
be captured.
DEFAULT: YES
Note: Use of this parameter is deprecated.

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

151© Copyright Merge Healthcare Solutions Inc. 2025

* Performance tuning

TCPIP_DISABLE_NAGLE This parameter specifies if the Nagle Algorithm should be used
when sending packets at the TCP/IP level. Most operating systems
enable this by default. It allows small segments of data to delay
sending a fixed amount of time to possibly be combined with other
small segments and be sent as one larger packet. Disabling this may
cause high network traffic.
DEFAULT: NO

TCPIP_LISTEN_PORT This parameter specifies the TCP/IP port on which server
applications are to listen for associate requests.
DEFAULT: 104

TCPIP_RECEIVE_BUFFER_SIZE * This parameter specifies the TCP/IP receive buffer size for each
connection. Note that the maximum values for this constant and
TCPIP_SEND_BUFFER_SIZE are operating system dependent. If the
values of these options are set too high, a message will be logged to
the toolkit's log files, although no errors will be returned through the
toolkit's API.
Larger values for these constants will greatly improve network
performance on networks with minimal network activity. Note that
for optimum performance, these values should be at least slightly
larger than the PDU_MAXIMUM_LENGTH configuration value.
Note also that setting these values to an even multiple of the TCP/IP
MSS (Maximum Segment Size) of 1460 bytes can help increase
performance.
Note, also that some operating systems such as Linux have auto-
tuning of TCP/IP buffer sizes implemented when an explicit TCP/IP
Send and Receive buffer size are not set. These options can be set
to zero to disable Merge DICOM Toolkit's setting of each buffer size.
DEFAULT: 131400
MAXIMUM: Operating System dependent

TCPIP_SEND_BUFFER_SIZE * This parameter specifies the TCP/IP send buffer size for each
connection. Note that the maximum values for this constant and
TCPIP_RECEIVE_BUFFER_SIZE are operating system dependent. If
the values of these options are set too high, a message will be logged
to the toolkit's log files, although no errors will be returned through
the toolkit's API.
Larger values for these constants will greatly improve network
performance on networks with minimal network activity. Note that
for optimum performance, these values should be at least slightly
larger than the PDU_MAXIMUM_LENGTH configuration value.
Note also that setting these values to an even multiple of the TCP/IP
MSS (Maximum Segment Size) of 1460 bytes can help increase
performance.
Note, also that some operating systems such as Linux have auto-
tuning of TCP/IP buffer sizes implemented when an explicit TCP/IP
Send and Receive buffer size are not set. These options can be set
to zero to disable Merge DICOM Toolkit's setting of each buffer size.
DEFAULT: 131400
MAXIMUM: Operating System dependent

Name Description

Merge DICOM Toolkit 5.21.0 Python User’s Manual

152© Copyright Merge Healthcare Solutions Inc. 2025

D.4. Service Profile
The Service Profile is generated by Merge OEM and contains DICOM standard services and
commands and is a useful reference (along with the message.txt file mentioned previously) to
find the Merge DICOM names for the standard DICOM services and items. It is used by the library to
negotiate the proper SOP Class UIDs and to access the binary dictionary and message information
files when creating instances of message objects and validating messages.

In most cases, it will not be necessary to modify the Service Profile. However, if you are using an
extended toolkit to create your own private services, you will need to add specifications for these
private services to the Service Profile. See the Merge DICOM Toolkit: Extended Toolkit Manual for
further details.

The location of the Service Profile is provided by the MERGECOM_3_SERVICES parameter of the
[MergeCOM3] section of the MERGE.INI file.

Remember, the Service Profile is GENERATED by the Merge DICOM Profile Database Utilities at
Merge OEM. Unless you are absolutely confident about changes being made, DO NOT CHANGE
THE CONTENTS OF THIS FILE.

The Service Profile contains the following sections.

Table D.12: Service profile parameters

Name Description

[SERVICE_TABLE] List of service names and numbers. This list registers every service available to an
Application Entity. The parameters associated with [SERVICE_LIST] are
NUMBER_OF_SERVICES_SUPPORTED (the number of service names that will be
listed immediately following NUMBER_OF_SERVICES_SUPPORTED) and one entry
for each supported service.

[<service_number>
]

One section number for each of the above services registered in [SERVICE_TABLE].
Each section contains a Service Name, a DICOM SOP Class UID for the Service, a
flag that tells whether it is a BASE or META Service (SOP) and a list of commands
supported for that service.

[ITEM_TABLE] One item name and number for each DICOM item that can be encoded in an
attribute of Value representation SQ (Sequence of Items).

	Python User’s Manual
	Chapter 1. Overview
	1.1. The DICOM Standard
	1.2. The Merge DICOM Toolkit
	1.3. Development Platform Requirements
	1.4. Library Structure
	1.5. Conventions

	Chapter 2. Understanding DICOM
	2.1. General Concepts
	2.2. Networking
	2.3. Messages
	2.4. Media Interchange
	2.5. Conformance

	Chapter 3. Using Merge DICOM Toolkit
	3.1. Configuration
	3.2. Message Logging
	3.3. Utility Programs

	Chapter 4. Developing DICOM Applications
	4.1. Library Initialization
	4.2. Registering Your Application
	4.3. Association Management (Network Only)
	4.4. Negotiated Transfer Syntaxes (Network Only)
	4.5. Dynamic Service Lists
	4.6. Message Objects
	4.7. Message Exchange (Network Only)
	4.8. Using Compression/Decompression
	4.9. Sequences of Items
	4.10. DICOM Files
	4.11. Private Attributes
	4.12. Multi-threading Support
	4.13. Memory Management
	4.14. DICOM Structured Reporting
	4.15. Converting Attribute Set to/from DICOM JSON Model String
	4.16. Converting Attribute Set to/from Native DICOM Model XML String

	Chapter 5. Deploying Applications
	5.1. Merge DICOM Toolkit Required Files
	5.2. Configuration Options
	5.3. UN VR

	Appendix A. Frequently Asked Questions
	Appendix B. Unique Identifiers (UIDs)
	B.1. Summary of UID Composition
	B.2. Sample UID Format
	B.3. Obtaining a UID

	Appendix C. Writing a DICOM Conformance Statement
	C.1. Conformance Statement Sections
	C.2. Network Interfaces
	C.3. Extensions/Specializations/Privatizations

	Appendix D. Configuration Parameters
	D.1. Initialization File
	D.2. Application Profile
	D.3. System Profile
	D.4. Service Profile

