
IBM Cúram Social Program Management
Version 7.0.3

Cúram Workflow Reference Guide

IBM



 
Note

Before using this information and the product it supports, read the information in “Notices” on page
107

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .



Contents

List of Figures........................................................................................................ v
List of Tables........................................................................................................ vi

Chapter 1. Cúram Workflow Reference...................................................................1
Overview.......................................................................................................................................................1

Prerequisites...........................................................................................................................................1
How to use the guide..............................................................................................................................1
Structure of this Document.................................................................................................................... 1

Creating a Workflow Process....................................................................................................................... 4
Process definition lifecycle.....................................................................................................................4
Process execution...................................................................................................................................7
Method Reference Library...................................................................................................................... 8
WDO templates.......................................................................................................................................9

Process Definition Metadata......................................................................................................................10
Metadata...............................................................................................................................................10
Validations............................................................................................................................................ 12
Description of Context WDOs...............................................................................................................12

Workflow Data Objects.............................................................................................................................. 12
Metadata...............................................................................................................................................14
Validations............................................................................................................................................ 16
List of Context WDOs............................................................................................................................17
Runtime Information............................................................................................................................18

Process Enactment.................................................................................................................................... 19
Code enactment (enactment service API).......................................................................................... 19
Event enactment.................................................................................................................................. 21

Base Activity...............................................................................................................................................23
Metadata...............................................................................................................................................24
Validations............................................................................................................................................ 25
Basic Activity Types..............................................................................................................................25

Automatic...................................................................................................................................................25
Prerequisites........................................................................................................................................ 25
Cúram Business Methods.................................................................................................................... 26
Input Mappings.................................................................................................................................... 27
Output Mappings.................................................................................................................................. 31
Description of Context WDOs...............................................................................................................35

Event Wait.................................................................................................................................................. 36
Prerequisites........................................................................................................................................ 36
List of events.........................................................................................................................................36
Deadline................................................................................................................................................39
Output Mappings.................................................................................................................................. 42
Reminders.............................................................................................................................................43

Manual........................................................................................................................................................45
Prerequisites........................................................................................................................................ 45
Task details...........................................................................................................................................45
Allocation strategy............................................................................................................................... 51
Business Object Associations.............................................................................................................. 58
Event Wait.............................................................................................................................................59

Decision......................................................................................................................................................59
Prerequisites........................................................................................................................................ 59
Task Details.......................................................................................................................................... 60
Question Details................................................................................................................................... 63

  iii



Subflow...................................................................................................................................................... 67
Prerequisites........................................................................................................................................ 67
Subflow Process................................................................................................................................... 67
Input Mappings.................................................................................................................................... 68
Output Mappings.................................................................................................................................. 69

Loop Begin and Loop End.......................................................................................................................... 70
Prerequisites........................................................................................................................................ 70
Overview............................................................................................................................................... 70
Metadata...............................................................................................................................................70
Runtime Information............................................................................................................................71
Description of Context WDOs...............................................................................................................71

Parallel....................................................................................................................................................... 72
Prerequisites........................................................................................................................................ 72
Metadata...............................................................................................................................................72

Activity Notifications..................................................................................................................................76
Notification Details...............................................................................................................................77
Notification Allocation Strategy........................................................................................................... 81

Transitions..................................................................................................................................................83
Metadata...............................................................................................................................................83
Validations............................................................................................................................................ 84
Runtime Information............................................................................................................................84

Conditions.................................................................................................................................................. 85
Metadata...............................................................................................................................................86
Validations............................................................................................................................................ 88

Split/Join.................................................................................................................................................... 89
Choice XOR Split...................................................................................................................................89
Parallel AND split..................................................................................................................................90

Workflow Structure....................................................................................................................................90
Graph Structure.................................................................................................................................... 90
Block Structure.....................................................................................................................................91
Structural Rules....................................................................................................................................92
Validations............................................................................................................................................ 93

Workflow Web Services............................................................................................................................. 94
Exposing a workflow web service........................................................................................................ 94
Invocation from BPEL processes......................................................................................................... 95

File Locations............................................................................................................................................. 96
Workflow Process Definition Files....................................................................................................... 96
Event Definition Files............................................................................................................................97

Configuration..............................................................................................................................................97
Application Properties..........................................................................................................................98

JMSLite.......................................................................................................................................................99
What JMSLite Does...............................................................................................................................99
Why JMSLite?....................................................................................................................................... 99
Using JMSLite..................................................................................................................................... 100
Debugging workflows.........................................................................................................................100

Inbox and Task Management.................................................................................................................. 100
Inbox Configuration........................................................................................................................... 100
Inbox Customization.......................................................................................................................... 103

Notices..............................................................................................................107
Privacy Policy considerations..................................................................................................................108
Trademarks.............................................................................................................................................. 108

iv  



List of Figures

1. Visualization of Close Case Workflow Process Definition............................................................................ 4
2. Process Enactment Port Type..................................................................................................................... 95
3. Callback Port Type.......................................................................................................................................96
4. WSDL extensions for BPEL..........................................................................................................................96

  v



List of Tables

1. Description of the ProcEnactmentEvt Table...............................................................................................22
2. Description of the ProcEnactEvtData Table................................................................................................22
3. Subject Text Data Conversion..................................................................................................................... 47
4. Condition Expression Operators................................................................................................................. 87
5. Inbox List Sizes Configuration Settings.................................................................................................... 101
6. Get Next Task Configuration Settings.......................................................................................................102
7. Security Identifiers and Associated Actions............................................................................................ 102
8. Customization Points................................................................................................................................ 103

vi  



Chapter 1. Cúram Workflow Reference
The Cúram Workflow Management system is used to define processes to achieve certain business goals.
A process definition is the central component that describes the business process. Process definition
metadata is the top-level concept in a process definition. It contains information to identify and describe
the process definition. In-depth descriptions of the workflow metadata can be entered. The effects of that
metadata at run time can be set.

Overview
The Workflow Reference Guide is intended to provide detailed explanations of the concepts of the Cúram
Workflow Management System (WMS). It aims to describe how to define a process to achieve certain
goals by giving in-depth descriptions of the workflow metadata as well as the effects of that metadata at
runtime. The guide is not intended as a tutorial document but rather a concise description of all the
features available in Cúram workflow.

Prerequisites
The guide assumes some familiarity with workflow concepts and how they are realized in the Cúram WMS.

In particular it assumes that you have at least read the Business Analyst Guides: Cúram Workflow
Overview Guide.

How to use the guide
As the guide is a reference manual, the sections are as independent of others as possible. The intent is
that a reader is aware of a concept that they want to get further details on, finds the relevant section in
the guide and need read only that section. While it is not expected that this document be read from cover
to cover it is structured in such a way as to make such a reading possible and productive.

Some parts of the Cúram WMS itself draw heavily on each other and as such the documentation reflects
this. These external references come in two flavors: prerequisites, which are pointers to information that
is indispensable in understanding the section at hand and general links, which highlight related but not
required information.

Structure of this Document
The guide can be also viewed in a number of distinct sections each of which reflects an area of the Cúram
WMS and how these interact with each other. The following sections include a summary of what these
logical sections are, what other sections are included in those logical sections and what areas of the
Cúram WMS are covered within those related sections.

Workflow Processes
The Workflow Processes section of the document describes the metadata that is associated with a
workflow process definition. The lifecycle of a process definition is also described.

“Creating a Workflow Process” on page 4 describes how to create and visualize a workflow process by
using the Cúram workflow system. Releasing a process is also described while its effect on the versioning
associated with process definitions is also detailed. Importing and exporting process definitions is
discussed while the localization of the text contained within a process is outlined. Running a workflow
process by using the Cúram workflow engine is described in detail. A description of the method library
and the workflow data object (see “Workflow Data Objects” on page 12) template library is also
provided.

“Process Definition Metadata” on page 10 describes the metadata that is associated with a workflow
process definition. Each metadata field is outlined while the validations and context workflow data
objects associated with the workflow process as a whole are detailed.

© Copyright IBM Corp. 2012, 2018 1



Data Flow
The Data Flow section of the document describes how data is stored and manipulated in a process
instance. In particular issues of how data is conveyed from the outside world (at process enactment) and
between activities and transitions within the process is described.

“Workflow Data Objects” on page 12 describes the objects that are used to maintain and pass data
around in the workflow engine. The metadata that constitutes workflow data objects and their attributes
is outlined in detail. Validations that pertain to the creation and modification of workflow data objects are
discussed. Finally, the context workflow data objects that are made available by the Process Definition
Tool and workflow engine are also described in the section.

“Process Enactment” on page 19 describes the starting of a process instance (that is, the performing of
the work that is defined in the process definition). The enactment service API is described while the
enactment mappings metadata associated with the enactment of a process is discussed. Associated
validations and code examples are also provided. It is also possible to start a process in response to an
event being raised and this is also described in the section. The configuration data to perform this action
is outlined in detail. Any validations that are run when the mappings between events and workflow
processes are created is described.

Activities
Activities are central in a workflow process as they are the steps at which the business processing for the
workflow takes place. The various activity types that are supported by the Cúram WMS are all described in
the Activities section of the document. As notifications are also pertinent to each activity type, they are
also described in the guide.

“Base Activity” on page 23 describes the metadata details common to all of the supported activity types
in the Cúram workflow system. The validations that are run when creating or modifying an activity are also
outlined. Finally, some of the more simple activity types are described including the route activity and the
start and end process activities.

“Automatic” on page 25 describes the metadata details associated with an automatic activity. Both the
input and output mappings that are specified for the method that is associated with the automatic activity
are discussed in detail. The validations run when creating or modifying the metadata for an automatic
activity are outlined. Finally, the Context_Result and Context_Error workflow data objects that are
available for use in transitions from automatic activities are also described in the section.

“Event Wait” on page 36 describes the metadata details associated with an event wait activity. This
includes the list of events, the deadline details (including any deadline reminders) associated with an
event wait and also any output mappings that can be specified. The validations that are run when creating
or modifying event wait metadata are also described. The runtime information that is associated with the
execution of event wait activities by the workflow engine is also outlined in detail. Finally, the
Context_Event and Context_Deadline workflow data objects that are available for use in transitions
from event wait activities are also detailed in the section.

“Manual” on page 45 describes the metadata details associated with a manual activity. This includes the
manual task details, the allocation strategy, the business object associations, and the event wait
associated with the manual activity. The validations that are run when creating or modifying manual
activity metadata are also described. The runtime information that is associated with the execution of
manual activities by the workflow engine is also outlined in detail. Finally, a description of the
Context_Task workflow data object that is available for use in the various mappings that are associated
with a manual activity is also provided in the section.

“Decision” on page 59 describes the metadata details associated with a decision activity. This metadata
includes the decision task details (which is similar to the manual activity task details) and the question
details for multiple choice and free text questions. The various validations that are run when creating or
modifying the task or question details that are associated with a decision activity are outlined. The section
also includes a description of the runtime information that is present when the workflow engine ran a
decision activity. A description of the Context_Decision workflow data object is also provided in the
section.

“Subflow” on page 67 describes the metadata details associated with a subflow activity. This includes
details of the subflow process that is associated with the subflow activity and any input mappings that are

2  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



required to enact that subflow process. The various validations that are run when creating or modifying
this metadata and a description of these is also provided in the section.

“Loop Begin and Loop End” on page 70 describes the metadata details associated with a loop begin and
loop end activity. The loop type, loop condition, and end loop activity reference of a loop begin activity are
described. The section also includes a description of the runtime information that is present when the
workflow engine runs a loop in a workflow process definition. A description of the Context_Loop
workflow data object is also provided in this section.

“Parallel” on page 72 describes the metadata details associated with a parallel activity. Parallel
activities wrap existing activity types including “Manual” on page 45 activities and “Decision” on page
59 activities. Since the metadata that is associated with these activity types remains the same, it is not
described again in the section. The validations run when creating or modifying parallel activity metadata
are also described. The runtime information that is associated with the execution of parallel activities by
the workflow engine is also outlined in detail. Finally, a description of the Context_Parallel workflow
data object that is available for use in the various mappings that are associated with a parallel activity is
also provided in the section.

“Activity Notifications” on page 76 describes the metadata details associated with an activity
notification. These details include the delivery mechanism, the subject, the body, the allocation strategy,
and actions associated with the notification. A number of validations that are run when creating or
modifying notification metadata are also outlined in the section. A description of the runtime information
when the workflow engine creates a notification is also provided. Finally, there are a number of
implementation details that are required in the Cúram application to allow notifications to be delivered
correctly. These are also discussed in the section.

Flow Control
A workflow process models the flow of information through an organization, passing through steps that
are carried out by human agent or computer software to achieve a business goal. The Flow Control section
of the document details how such information flow (between activities) is specified in and managed by
the Cúram WMS.

“Transitions” on page 83 describes the links between activities. The metadata that is associated with
transitions is described in detail. Validations that pertain to the creation and modification of transitions
are also discussed. The runtime information that is associated with the processing of transitions by the
workflow engine is also described.

“Conditions” on page 85 describes the process definition metadata construct that represents a
condition. Validations that pertain to the creation and modification of conditions are also discussed.

“Split/Join” on page 89 describes the metadata that is associated with activity splits and joins, when
they are used and the various types available.

“Workflow Structure” on page 90 describes the structure of a workflow process as determined by the
activities in the process and the transitions between them. The constraints present when a process
definition is constructed to ensure that it is a valid block structure are outlined while validations that are
executed as part of these constraints are discussed.

Development and Runtime
The Development and Runtime section of the document describes the specifics of the development and
runtime environment for Cúram workflows. Specifically, it details how to run, configure, and debug
workflows.

“Workflow Web Services” on page 94 describes the steps necessary to allow process enactment through
web services by exposing Cúram workflow process as a web services.

“File Locations” on page 96 details where the various outputs of such utilities as the Process Definition
Tool and other administration user interfaces are exported to and version controlled. These outputs
include process definition metadata files and also the source files that are associated with events.

“Configuration” on page 97 describes the workflow-related application properties, their names, their
default settings and what they are used for in the Cúram workflow system.

Cúram Workflow Reference  3



“JMSLite” on page 99 details the Cúram lightweight JMS server that can run alongside the RMI testing
environment in a supported Integrated Development Environment. The steps that are required to start the
JMSLite server are outlined while a detailed description of how to debug workflows by using JMSLite is
also discussed.

Inbox Configuration and Customization
The Inbox Configuration and Customization section of the document describes the configuration and
customization options that are available in the Inbox and Task Management section of the Cúram WMS.
Specifically, it details how to configure the number of tasks that are displayed on the various lists that are
displayed in the Inbox and also how to customize the various Inbox and Task Management actions that
are available in the system.

“Inbox and Task Management” on page 100 describes the configuration options available to be used in
the Inbox. It also details how to customize the available Inbox and Task Management functions by using
the Google Guice framework.

Creating a Workflow Process

Process definition lifecycle
The process definition is the central concept in any workflow system so naturally how it is created and
used is of critical importance. The section describes the facilities that are provided by the Cúram workflow
system to create and administer process definitions.

Process creation
The Cúram workflow system provides a Process Definition Tool (PDT) for creating and maintaining process
definitions, which can then be interpreted by the workflow engine. Creating a process definition involves
by using the Process Definition Tool to describe the wanted process behavior in terms of activities and
transitions.

A number of utilities are provided as part of the Process Definition Tool that can aid in process creation.
The PDT allows a process definition to be visualized during design. Processes can also be copied,
imported, and exported by using the PDT.

Process visualization
A read-only graphical utility is provided as part of the Process Definition Tool, which enables process
administrators to visualize processes as they are being created or modified. This tool allows
administrators to view all activities and transitions in a process definition and provides a high-level view of
all the possible paths through the workflow process during execution. The following figure shows an
example of a graphical representation of a workflow process definition.

Figure 1: Visualization of Close Case Workflow Process Definition

The visualized process comprises a number of nodes on a graph that represents the activities in the
process. The nodes are linked by graph edges and these reflect the transitions that are defined in the

4  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



process definition. Clicking an activity in the graph displays the details of the activity in the PDT. Similarly,
clicking a transition between activities on the graph displays the details of the transition in the PDT.

The graphical tool displays the following information for each process visualized:

• The type and name of each activity. Each activity type is identified by a specific icon.
• The notifications that are defined for each activity (See “Activity Notifications” on page 76). If an

activity has an associated notification, it is represented as an envelope, which is click-able through to
the associated activity notification page.

• The split/join type. See “Split/Join” on page 89 for each activity. A split or join type of "choice" on an
activity is represented as a circle, while a split or join type of "parallel" is represented as a square.

• The transitions between activities. Where a transition between activities has an associated transition
condition (See “Conditions” on page 85), this is represented as an asterisk. The details of the condition
are displayed when the mouse is placed over that asterisk.

• The ordering of each choice split (See “Split/Join” on page 89) from an activity. As the ordering of a
choice split from an activity is important (the first eligible transition in the list is followed), the order of
each transition from the activity is displayed as a number on that transition.

Releasing a process
When a process definition is created and is ready for use, it must be released before it can be run by the
workflow engine.

See “Process execution” on page 7. As a process is being released by using the PDT, it is examined to
ensure all the information the engine needs to run the process is present and internally consistent. The
validations that are required to release a process are described in the various metadata sections of this
document.

Only processes that are passed all of the required validations can be released and made available to the
workflow engine. After a process definition is released, it becomes read-only and can no longer be edited
by the Process Definition Tool without creating a new version.

Process versions (process editing)
Changes can be required to a released process over time, but as a released process is read-only, a new
version is required before any modifications can be applied. Attempting to edit a released process in the
PDT automatically creates a new unreleased version of that process.

There can be only one unreleased version of a process at any time. If the administrator wants to edit a
released process, any existing unreleased versions must first be released or deleted.

Process import, export, and copy
The import and export functionality allows developers to move process definitions as required. For
example, a process definition might be developed on a development system and only moved to a
production system after testing is completed.

Exporting a process exports the process metadata to the file system. This metadata can then be imported
by using the import process option in the PDT. A process that is imported in this way is assigned the
highest version number available, and is unreleased regardless of its released state when imported. This
is to ensure that imported process definitions are subject to the same release validations as other
definitions developed locally. An overwrite option is available when importing that ensures any existing
unreleased version of the process is overwritten with the imported version.

There can be situations where a process definition differs only slightly from another in the workflow
system. A copy process option is available, which allows an existing process to be copied to a new
process when required. The new process is always unreleased when copied with a version set to 1,
regardless of the status of the original process.

Validations

• A process definition cannot be imported if an unreleased version of a process exists already with the
same name, and the overwrite option is not selected.

• A process definition cannot be imported if a name for that process is not specified.

Cúram Workflow Reference  5



• A process definition cannot be imported if a process exists with the same name and different process
identifier. This validation ensures that an imported definition cannot inadvertently overwrite an existing
process definition unless the process identifiers match.

• When an existing process is copied, the name of the new process must be unique within the workflow
system.

• The length of the name of the workflow process definition to be imported must not exceed the
maximum length that is allowed for such a name. This length is 254 characters.

• The length of the names of any of the workflow data objects that are contained in the workflow process
definition to be imported must not exceed the maximum length that is allowed for such a name. This
length is 75 characters.

• The length of the names of any of the workflow data object attributes contained in the workflow process
definition to be imported must not exceed the maximum length that is allowed for such a name. This
length is 75 characters.

• Any code table values that are contained in the workflow process definition to be imported must be
valid (that is, the code table must exist and the specified code must exist in that codetable).

• For each localizable text in the process definition to be imported, there must exist at least an entry for
the English (that is, "en") locale. Entries in other locales can also exist (for example, the different user
locales that are supported by the application) but each translation must be accompanied by an entry for
the English locale.

• The identifiers for activities, transitions, transition condition expressions, loop condition expressions,
events, and reminders must be unique in the workflow process definition to be imported.

Localization
Workflow process definitions contain metadata text that needs to be viewed in different languages by
different users. For example, when a manual activity is run, it creates a task, which has an associated
subject. The Process Definition Tool enables the process developer to localize this subject string for each
of the locales that are supported by the application.

Localizable strings can be identified in a process definition by the metadata that is specified in “Localized
Text” on page 24. Any localizable text strings that are specified in a process definition must at least have
a corresponding entry for the English (that is, "en") locale. When a localized string is added to a process
definition, the PDT by default adds the string to both the user's and the English locales. Any subsequent
changes to localized text (that is, additions, deletions or modifications) can be made through the
localization screen of the PDT.

The following is a list of the localizable text strings that can be specified in a process definition.

• Process display name
• Process description
• Workflow Data Object display name
• Workflow Data Object description
• Workflow Data Object attribute display name
• Activity name
• Activity description
• Manual Activity Task message
• Manual Activity Task Action message
• Parallel Manual Activity Task message
• Parallel Manual Activity Task Action message
• Decision Activity Action message
• Decision Activity Question message
• Decision Activity Secondary Action message
• Decision Activity Answer display value

6  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



• Parallel Decision Activity Action message
• Parallel Decision Activity Question message
• Parallel Decision Activity Secondary Action message
• Parallel Decision Activity Answer display value
• Activity Notification Subject message
• Activity Notification Body message
• Activity Notification Action message
• Reminder Notification Subject message
• Reminder Notification Body message
• Reminder Notification Action message

The LocalizableStringResolver API provides routines that resolve and return the various
localizable strings for tasks and notifications that exist in a workflow process definition for the locale of
the current user. Where a text string is not localized for the current user locale, the text for the English
(that is, "en") locale is returned instead.

Process execution
A workflow process definition describes the tasks and flow of a business process in terms that are
understood by the Cúram Workflow Management System. To perform the work that is described in the
specified process definition, an instance of it must be created and run by the workflow engine. The
mechanism by which this is done is described in this section. A process instance can be considered as the
runtime data for an enacted workflow process definition.

Basic engine behavior
The Cúram Workflow Management System includes a workflow engine, which provides the runtime
execution environment for a process instance.

There are various mechanisms available to enact a workflow process and these are discussed in “Process
Enactment” on page 95. When a process is enacted, the workflow engine examines the relevant
database table and uses the latest released version of the specified process definition to create the
process instance to run.

As each activity is run, an associated activity instance record is created and managed by the workflow
engine. This record contains the runtime data for an activity instance in the enacted workflow. As the
workflow progresses, the engine evaluates the transitions (see “Transitions” on page 83) for the various
activities to decide which path through the process to take. This involves determining the types of splits
and joins (see “Split/Join” on page 89) that the activity possesses and also running any conditions (see
“Conditions” on page 85) that the various transitions in the process can have. Transition instance
records (which contain the runtime data for a workflow transition) for each transition that is followed in
the workflow process are also created and managed by the engine.

Executing multiple versions
Modifying and releasing a new version of a process does not affect any currently running instances of that
process. A process runs to completion in the workflow engine with the version that it was started with,
regardless of any subsequent versions that might be released.

Process Instance Administration
A workflow administrator can influence the execution of a running process instance through the Cúram
Workflow Administration interface.

The following functions are available for this purpose:

Suspend a Process Instance
Any currently running process instance can be suspended. When this occurs, the workflow engine
allows all activity instances that are in progress within that process instance to complete. However,
the next set of activities that are required to be run for that process instance are started by the
workflow engine and immediately suspended. Any synchronous subflow processes (see “Subflow” on

Cúram Workflow Reference  7



page 67) associated with the process instance to be suspended is also suspended by the workflow
engine.

Resume a Process Instance
Any workflow process instance that is suspended can be resumed. When this occurs, the activity
instances that were previously suspended for that process instance are restarted by the workflow
engine. Any suspended synchronous subflow processes (see “Subflow” on page 67) associated with
that process instance is also resumed by the workflow engine.

Aborting a Process Instance
Any currently running or suspended process instance can be aborted. All activities that are in progress
in the aborted process instance are completed. If the process contains any manual or decision
activities that are in progress, the associated tasks are closed by the workflow engine when the
process instance is aborted. No new activities that are associated with an aborted process instance
are started by the workflow engine. Any synchronous subflow processes (see “Subflow” on page 67)
associated with the process instance is also aborted. An aborted process instance cannot be
resumed.

Method Reference Library
Several situations exist in the Cúram Workflow Management System where it is necessary to interact with
the Cúram application by calling some business process or entity methods.

See “Cúram Business Methods” on page 26 for one example of such an interaction. Any business
process object (BPO) or entity method in the application can be called by the workflow engine. However,
there are far too many such methods to present to a process designer for use in their process definitions
in an acceptable way. The purpose of this library is to allow an administrator to assign methods that are
likely to be of use in process definitions to a more manageable list for use in process design. Of course, it
is not necessary to pre-populate the library with all methods that might be used in the future. New
methods can be added to the library as required.

Referencing Cúram methods
Business process object (BPO) or entity methods must be added to the Method Reference Library before
they can be referenced in a process definition. The method type that is defined when the library is added
to, dictates where that method is available for use within a process definition.

Removing a method reference from the Method Reference Library does not remove it from any process
definitions that reference it. If the method is still a valid Cúram application method any process
definitions that reference it remains valid.

Method types
A Cúram business process object (BPO) or entity method must be added to the Method Reference Library
with one of the three defined method types. A method can be associated with more than one method
type, but the method must be added repeatedly with the different method type each time. Detailed here
are different method types in the Method Reference Library, along with the restrictions on their use.
General

Methods with a type of General are only available as application methods to be started from automatic
activities. See “Cúram Business Methods” on page 26. The Process Definition Tool restricts access to
only these methods when a method to be started is selected from an automatic activity.

Allocation
Methods in the library with an Allocation type are only available for use as allocation strategy
functions associated with manual activities, decision activities, parallel activities, and activity
notifications. See “Allocation strategy” on page 51. All methods that are specified with an allocation
method type must have a return type of
curam.util.workflow.struct.AllocationTargetList.

Deadline
Methods of type Deadline in the method library can be referenced only as deadline handler methods
associated with event-wait, manual, decision, and parallel activities. See “Deadline” on page 39.

8  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



WDO templates
Data is maintained and passed around in the workflow engine as workflow data objects (see: “Workflow
Data Objects” on page 12) The workflow data objects that a process can use are defined within the
process definition itself. However it is conceivable that some workflow data objects are useful in many
process definitions. Therefore, it would be convenient if they might be imported from some pool instead
of having to be re-created in each individual process. This is the purpose of this library.

Metadata
<wdo is-list-wdo="false" initialize-attributes="false">
    <wdo-name>TaskCreateDetails</wdo-name>
    <display-name>
        <localized-text>
            <locale language="en">TaskCreateDetailsName</locale>
        </localized-text>
    </display-name>
    <description>
        <localized-text>
            <locale language="en">The Task Create Details WDO 
              Template</locale>
        </localized-text>
    </description>
    <attributes>
        <attribute>
            <attribute-name>subject</attribute-name>
            <display-name>
                <localized-text>
                    <locale language="en">Task Subject</locale>
                </localized-text>
            </display-name>
            <type>STRING</type>
            <required-at-enactment>false</required-at-enactment>
            <process-output>false</process-output>
            <constant-value/>            
        </attribute>
        <attribute>
            <attribute-name>dueDate</attribute-name>
            <display-name>
                <localized-text>
                  <locale language="en">Task Due Date</locale>
              </localized-text>
          </display-name>
          <type>DATE</type>
            <required-at-enactment>false</required-at-enactment>
            <process-output>false</process-output>
            <constant-value/>         
        </attribute>
    </attributes>
  </wdo>

The metadata that is defined for workflow data object templates is the same as that defined for workflow
data objects. For a full description of this metadata, see “Workflow Data Objects” on page 12. The
workflow data object template library is stored on the WDOTemplateLibrary database table.

The initialize-attributes element of a workflow data object and the required-at-enactment,
process-output, and the constant-value elements of a workflow data object attribute are not
available for editing in workflow data object templates. These elements are automatically initialized to
their default values in the associated metadata.

Import and syncing

The templates that are defined in the workflow data object template library are available for use when
process definitions are created. Importing a workflow data object template from the library adds the
workflow data object and all its attributes to the current process definition.

After a workflow data object template is imported into a process definition, it can be synchronized with its
corresponding entry in the workflow data object template library at any time. Synchronizing the template
for a process definition forces the name and display name of the workflow data object to be updated from
the template library. Along with this, any new attribute entries that exist in the template library entry is
automatically added to the workflow data object in the process definition. The user can optionally decide
to override existing attributes in the workflow data object with those from the template library when

Cúram Workflow Reference  9



synchronizing. Overriding existing attributes can invalidate the process definition and require updates
where the old attribute values are used.

Validations

• A workflow data object cannot be imported from a template if one exists already in the associated
workflow process definition with the same name.

Process Definition Metadata
The process is the top-level concept in a process definition. Primarily, it contains information to identify
and describe the process definition. This information includes the identifier and the version of the process
definition, its name, and a brief description. It also includes a description of the failure allocation strategy
that can be specified for a process. The following sections describe this top-level information.

Metadata
<workflow-process id="100" process-version="2" 
                    language-version="1.0"
                    released="false" category="PC5" 
                    createdBy="testuser" 
                    creationDate="20050812T135800">
    <name>ApprovePlannedItem</name>
    <process-display-name>
      <localized-text>
        <locale language="en">Approve Planned Item</locale>
      </localized-text>
    </process-display-name>
    <description>
      <localized-text>
        <locale language="en">This workflow process may be 
        enacted to approve a planned item.</locale>
      </localized-text>
    </description>
    <documentation>Refer to the approve planned 
                   item documentation.
    </documentation>
    <web-service expose="true">
      <callback-service>wsconnector.ApprovePlannedItem
      </callback-service>
    </web-service>
    <failure-allocation-strategy>
      <allocation-strategy type="target" 
       identifier="FAILUREALLOCATIONSTRATEGY" />
    </failure-allocation-strategy>    

  ...

  </workflow-process>

workflow-process
The parent tag of all process definition metadata.
id

This is a 64-bit identifier that is supplied by the Cúram key server when a process is created in the
process definition tool. The process identifier is required to be unique in the Cúram workflow
system. The reason for this is that the process identifier along with the process version number is
how the workflow engine distinguishes one process definition record from another for database
reads.

process-version
This number represents the version of a workflow process definition. A workflow process
definition record is uniquely identified by its identifier and version number. A process definition
may have many released versions and one version that is in edit. When a process definition is
released, a new version is created and it can no longer be updated. Any subsequent updates
require a new version to be created and this version are not active until it is released. When a
process is enacted the highest released version number is used. Process instances that begin with
a version number remain bound to that version until completion.

10  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



language-version
The process definition metadata is the Cúram workflow language. As new features and
enhancements are added, this language can change. This version number allows either the
workflow engine to run old language versions different from newer ones or more likely upgrade
tools to convert old process definitions to new language versions.

released
This represents a Boolean flag that indicates if the process definition is released. Only process
definitions that are released can be enacted or selected as subprocesses in a subflow activity
(see: “Subflow” on page 67).

category
A process definition must be placed into a category. The category must be selected in the Process
Definition Tool and is taken from the ProcessCategory code-table. This attribute is intended to
be used for process definition search functionality and has no functional effect on the process in
the workflow engine.

createdBy
This represents the name of the user that created the workflow process definition. This attribute is
intended to be used for process definition search functionality and has no functional effect on the
process in the workflow engine.

creationDate
This represents the date and time that the workflow process definition was created. This attribute
is intended to be used for process definition search functionality and has no functional effect on
the process in the workflow engine.

process-display-name
This is the display name of the process definition. This is the name of the process that the user sees in
the PDT. It is presented in the user's locale. The process display name is localizable and can be edited
in the localization screen.

name
This is the technical identifier of the process definition. It is the means by which the process is
identified for enactment. The enactment service (the API used to enact a process in code) identifies
the process to enact by its name. As such this name is required to be unique within the workflow
system and cannot be changed when the process is created. Since the process name is effectively a
constant, it is not localizable like an activity name.

description
A process can also have an optional description that briefly specifies what the process does for the
benefit of those editing the process definition in the future. This is localizable text field in the same
format as all localizable fields in a process definition (see: “Localized Text” on page 24).

documentation
A process can also have a link to some documentation that can explain the process in a more
descriptive fashion. This is a free-form text field where the developer can enter the name of a
document pertinent to the workflow process or indeed a link to such a document.

web-service
This optional element describes the web service details of a workflow process. A process can be
marked as a Web Service by setting this metadata value, which indicates that the process should be
exposed as a Web Service. This allows the process to be able to participate in a BPEL (Business
Process Execution Language) orchestrated process and means that the process can be called from a
BPEL process. Further details on this functionality can be seen in “Workflow Web Services” on page
94.
expose

This attribute represents a Boolean flag that indicates if the process definition should be exposed
as a Web Service. A workflow process definition is not exposed as a Web Service by default.

callback-service
This is an optional element because not all invocations from a BPEL process require a callback.
The value is a fully qualified name of a class that extends the
org.apache.axis2.client.ServiceClient class (which is part of the Service (Axis API) of

Cúram Workflow Reference  11



the Apache Axis 2 project). The org.apache.axis2.client.ServiceClient class is
generated by the Cúram web services connector functionality for outbound web services.

failure-allocation-strategy
A process can also have an optional failure allocation strategy that is specified for it. When a task is
allocated (associated with a “Manual” on page 45 or “Decision” on page 59 activity), the workflow
engine starts the associated allocation strategy to retrieve the list of allocation targets. If no allocation
targets are returned from this invocation, the workflow engine then checks for the presence of a
failure allocation strategy and uses this strategy to attempt to allocate the task. Since the allocation
strategy of type TARGET specifies an allocation target directly, there is never a need to fall back to the
failure allocation strategy. The failure allocation strategy is a process-wide strategy and if specified is
used for all the manual and decision activities in the process when required.
allocation-strategy

This describes the failure allocation strategy that is used for the process. The failure allocation
strategy must be of type TARGET. If the work resolver cannot assign the task to a user, an
organizational object (for example, organization unit, position, or job) or a work queue by using the
specified allocation target the task is assigned to the default work queue. The identifier attribute
represents the identifier of the allocation target that is used as the failure allocation strategy.

Validations
• A workflow process must have a unique process name. This means that a process cannot be created if

the process name is empty or if a process with the same name exists.
• A workflow process must have a process display name in the English (that is, "en") locale. A display

name in the user's locale should also be specified, but this is optional.
• A workflow process is required to specify a category.
• A released version of workflow process cannot be deleted when it is enacted. This is required as even if

a newer version of a process exists, process instances that are in progress when the new version
becomes available run to completion with the version that they started with. Process definitions are also
a necessary historical record that is drawn upon to create auditing information.

• A released version of workflow process cannot be deleted if it is referenced by a subflow activity in a
released version of another process, where that released version is the latest released version.

• If a failure allocation strategy is specified for the workflow process, then its type must be TARGET.
• The callback service class name cannot be specified if the workflow process is not exposed as a

webservice.
• The callback service class name must represent a class that can be found on the application classpath.
• The callback service class name must represent a class that extends the
org.apache.axis.client.Service class.

Description of Context WDOs
Certain generic system runtime information about the workflow engine is required to be made available to
the activities and the transitions during the lifetime of a process instance.

Details of the Context_RuntimeInformation workflow data object that provides this information can
see be seen in the following location: “List of Context WDOs” on page 17.

Workflow Data Objects
Data is maintained and passed around in the workflow engine as workflow data objects and list workflow
data objects. These are logical objects that are defined in the process definition that have a name and a
list of attributes of various types to which data can be assigned. They are conceptually similar to objects in
programming languages although their manifestation in the workflow system is quite different. Workflow
data object values can be written at process enactment or from the output of various activity types.

12  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Workflow data object instances and list workflow data object instances exist as soon as the process is
enacted and exist until the process completes. As such they are available to be used in the activities and
the transitions throughout the lifetime of that process instance. Therefore, it is the responsibility of the
process designer to ensure that attributes of workflow data objects are populated before they are used.
Attempts to use workflow data object attributes before they are populated results in failures at runtime.

Cúram Workflow Reference  13



Metadata
<workflow-process id="32456" ..... >
    <name>CreateManualTask</name>
    .....
    </description>
    <enactment-mappings>
      ......
    </enactment-mappings>
    <wdos>
      <wdo is-list-wdo="false" initialize-attributes="true">
        <wdo-name>TaskCreateDetails</wdo-name>
        <display-name>
          <localized-text>
            <locale language="en">Task Create Details</locale>
          </localized-text>
        </display-name>
        <description>
          <localized-text>
            <locale language="en">This workflow data object 
            contains the attributes required for the 
            manual creation of a task.</locale>
          </localized-text>
        </description>
        <attributes>
          <attribute>
            <attribute-name>subject</attribute-name>
            <display-name>
              <localized-text>
                <locale language="en">Task subject</locale>
              </localized-text>
            </display-name>
            <type>STRING</type>
            <required-at-enactment>true</required-at-enactment>
            <process-output>true</process-output>            
          </attribute>
          <attribute>
            <attribute-name>participantRoleID</attribute-name>
            <display-name>
              <localized-text>
                <locale language="en">Participant Role ID</locale>
              </localized-text>
            </display-name>
            <type>INT64</type>
            <required-at-enactment>true</required-at-enactment>
            <process-output>true</process-output>            
          </attribute>
          <attribute>
          <attribute-name>deadlineDateTime</attribute-name>
          <display-name>
            <localized-text>
              <locale language="en">Deadline date</locale>
            </localized-text>
          </display-name>
          <type>DATETIME</type>
          <required-at-enactment>true</required-at-enactment>
          <process-output>false</process-output>          
        </attribute>
        <attribute>
          <attribute-name>deadlineDuration</attribute-name>
          <display-name>
            <localized-text>
              <locale language="en">Deadline Duration</locale>
            </localized-text>
          </display-name>
          <type>INT32</type>
          <required-at-enactment>false</required-at-enactment>
          <process-output>false</process-output>
          <initial-value>300</initial-value>          
        </attribute>
        <attribute>
          <attribute-name>priority</attribute-name>
          <display-name>
            <localized-text>
              <locale language="en">Task priority</locale>
            </localized-text>
          </display-name>
          <type>INT32</type>
          <required-at-enactment>false</required-at-enactment>
          <process-output>false</process-output>
          <constant-value>TP1</constant-value>
        </attribute>        
      </attributes>
     </wdo>
     <wdo is-list-wdo="true" initialize-attributes="false">
       <wdo-name>ChildDetails</wdo-name>
         <display-name>
           <localized-text>
             <locale language="en">Child Details</locale>
           </localized-text>
         </display-name>
         <description>
           <localized-text>
             <locale language="en">This workflow data object 
             contains the details of all the children
             associated with the claimant.</locale>
           </localized-text>
         </description>
         <attributes>
           <attribute>
             <attribute-name>identifier</attribute-name>
             <display-name>
               <localized-text>
                 <locale language="en">Identifier</locale>
               </localized-text>
             </display-name>
             <type>INT64</type>
             <required-at-enactment>true</required-at-enactment>
             <process-output>true</process-output>
           </attribute>
           <attribute>
             <attribute-name>fullName</attribute-name>
             <display-name>
               <localized-text>
                 <locale language="en">The full name of the 
                                       child.</locale>
               </localized-text>
             </display-name>
             <type>STRING</type>
             <required-at-enactment>true</required-at-enactment>
             <process-output>false</process-output>
           </attribute>
          <attribute>        
        </attributes>
      </wdo>     
    </wdos>
  <activities>
    ....
  </activities>
    ....
  </workflow-process>

14  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



wdos
This is optional (as a workflow process definition does not have to contain any workflow data objects)
and contains the details of all the workflow data objects that are defined for the workflow process
definition.

wdo
This contains the details of one the workflow data objects that are defined for the workflow process
definition. This includes the generic details of the workflow data object itself and also details of each
of its attributes. The metadata that describe a workflow data object and its attributes are described
here:

is-list-wdo
This contains a BOOLEAN value, which indicates whether the specified workflow data object is a list
workflow data object or not. When set to true, the specified workflow data object acts as a list and
thus can be used to make lists of data available throughout the workflow.

initialize-attributes
This contains a BOOLEAN value, which indicates whether the attributes that are associated with the
workflow data object should be initialized when the workflow data object is first used. The default
values that are used are the same as would be set in a Cúram struct.

wdo-name
This contains the name of the workflow data object.

display-name
This contains the display name of the workflow data object. This name represents a short description
of the workflow data object and is displayed throughout the Process Definition Tool. It is a localizable
string that does not contain any parameters. For more details on the localized text and associated
metadata, see “Localized Text” on page 24.

description
This contains a more detailed description of the workflow data object. It is also a localizable string
with no parameters. For more details on the localized text and associated metadata, see “Localized
Text” on page 24.

attributes
This contains the details of all of the attributes that are associated with the workflow data object.

attribute
This contains the details of one of the attributes that are associated with the workflow data object.
The following metadata described here make up a workflow data object attribute:
attribute-name

This contains the name of the workflow data object attribute.
display-name

This represents the display name of the workflow data object attribute. This name represents a
short description of the workflow data object attribute. It is a localizable string that does not
contain any parameters. For more details of the localized text and associated metadata, see
“Localized Text” on page 24.

type
Each workflow data object attribute that is defined must specify a type, which must be a valid
Cúram base domain. When creating a workflow data object attribute in the Process Definition Tool
this type is selected from the DomainType codetable. This codetable should be consulted to
obtain the full list of types available for workflow data object attributes. The type of a workflow
data object attribute is used to ensure that the data mappings that are contained within a
workflow process are compatible and does not cause failures at runtime. An example of this
would be that if a business process object method parameter field was of type STRING, then the
workflow data object attribute used to map the data into that field must also be of type STRING.

required-at-enactment
Enactment mappings represent the minimum amount of data that the workflow requires to be
enacted. They must contain an entry for each workflow data object attribute that has its required
at enactment flag set to true. Conversely, setting this flag to false (the default) means that this

Cúram Workflow Reference  15



workflow data object attribute is not required for the enactment of the associated process. The
Process Definition Tool is used to create these enactment mappings and it does so by examining
each workflow data object attribute that is defined and creating a mapping for those that have the
required at enactment flag set to true. When a released workflow process definition is selected
as a subflow process in a subflow activity (see “Subflow” on page 67), all of the workflow data
objects that are marked as required for enactment in the subflow process must be mapped before
that parent process definition can be released.

process-output
A workflow process can be marked as a Web Service by setting a metadata value, which indicates
that the process should be exposed as a Web Service. This allows the process to be able to
participate in a BPEL (Business Process Execution Language) orchestrated process and means
that the process can be called from a BPEL process either synchronously or asynchronously. It can
also be necessary to map data out from a workflow process back into the BPEL process that called
it. When set to true, this optional element indicates that the data from this workflow data object
attribute should be passed back to the calling BPEL process when the Cúram workflow process
completes. The default for this element is false.

constant-value
This optional element indicates if the workflow data object attribute represents a constant value.
In numerous places throughout a workflow process definition, workflow data object attributes are
used in input mappings (that is, allocation function mappings, deadline function mappings and so
on.). In some of these cases, it is required to be allowed to use constants in some of these
mappings. By providing a constant value, workflow data object attributes of this type can be used
for this purpose. A workflow data object attribute cannot have its required for enactment flag set
to true and also contain a constant value. Data that is passed in as enactment data is deemed to
be dynamic and subject to change. The data that is specified in a constant workflow data object
attribute is not suitable for this purpose as its value is already known.

initial-value
This element indicates if the workflow data object attribute has an initial value. This feature can be
useful in the situations where a workflow data object attribute is used in the workflow before it is
populated by an automatic activity or otherwise (that is, to prevent having to use an automatic
activity to populate workflow data object attributes just to ensure that these attributes are not null
when they are used as part of transition conditions later in the workflow). When this element is
populated, the workflow data object attribute is initialized to the specified value the first time it is
used. The initial value of a workflow data object attribute can be overwritten later by the various
output mappings that exist in a workflow process. A workflow data object attribute cannot have
both a constant value and an initial value that is specified for it.

Validations
• A workflow process must contain only one Context_RuntimeInformation workflow data object.
• A workflow data object name must be unique in the context of the containing workflow process
definition.

• The name of a workflow data object must be a valid Java™ identifier.
• A user-defined workflow data object name cannot contain the prefix Context_ as this is a reserved
prefix in the Cúram workflow system.

• Each workflow data object specified in the workflow process definition must contain at least one
associated attribute.

• The workflow data object attribute name must be a valid Java identifier.
• A workflow data object attribute cannot be created with the name "value". This is a reserved attribute

name in the Cúram workflow system.
• The type of a workflow data object attribute must be a valid Cúram base domain and must be contained

in the DomainType codetable.
• A workflow data object attribute cannot be both marked as required for enactment and also marked as

a constant value.

16  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



• A workflow data object attribute cannot have both a constant value and an initial value that is specified
for it.

• If a workflow data object attribute is marked as a constant, then a constant value must be supplied.
Conversely, if the attribute is not marked as a constant, then no such value should be specified.

• If the workflow data object attribute is marked as a constant, then a blank value can be specified only
for that attribute if the type of the attribute is a STRING.

• If the workflow data object attribute is specified with an initial value, then a blank initial value can be
specified only for that attribute if the type of the attribute is a STRING.

• If the workflow data object attribute is marked as a constant, then the value that is specified as that
constant must be compatible with the type of the associated attribute.

• If the workflow data object attribute is specified with an initial value, then the value that is specified as
that initial value must be compatible with the type of the associated attribute.

• The process output flag can be set only to true for a specified workflow data object attribute if the
associated workflow process is exposed as a webservice.

List of Context WDOs
Context workflow data objects are those that are not explicitly defined in the workflow process definition
metadata but are made available by the Process Definition Tool and workflow engine at various places
during the execution of a process. The following is a brief description of these context workflow data
objects and links are provided to where further information can be found about them.
Context_RuntimeInformation Workflow Data Object

The Context_RuntimeInformation workflow data object is a workflow data object that is made
available and maintained by the workflow engine. It contains information that is pertinent throughout
the lifecycle of a workflow process instance and the attributes available reflect this. These attributes
are as follows:

• processInstanceID : The system generated identifier of the process instance (taken from the
Cúram key server by using the workflow key set).

• enactingUser : The username of the user whose actions in the application resulted in the
workflow process that is enacted.

• enactmentTime : The date and time at which the process was enacted.

Context_Result Workflow Data Object
A transition from an automatic activity should be able to use the return value of the started method in
its condition directly without the need for mappings to workflow data object attributes. However, due
to the transactional model of the workflow engine this data must persist outside the transaction of the
business process object method invocation. To achieve this, a workflow data object definition is
created at runtime if the return value is used in outbound transition conditions. These return value
definitions never need to be persisted as they are inferred wherever needed in the workflow engine.
The actual workflow data object data is persisted until after the transitions from the activity instances
in question are evaluated, at which point they are deleted. For more details on the Context_Result
workflow data object, see “Description of Context WDOs” on page 35

Context_Event Workflow Data Object
The Context_Event workflow data object is available for use in a data item or function conditions (see
“Conditions” on page 85) for a transition from an activity that contains an event wait. It makes
available certain information (for example, the event class and event type of the event raised, the time
the event was raised and so on.) contained in the event raised to complete that activity instance. This
information can then be used to model the path from that specified activity. For more details on the
Context_Event workflow data object, see “Description of Context WDOs” on page 43.

Context_Decision Workflow Data Object
The Context_Decision workflow data object is available for use in a data item or function condition
(see “Conditions” on page 85) for a transition from a decision activity. The attributes available
depend on the answer format that is defined for the decision activity. For more details on the
Context_Decision workflow data object, see “Description of Context WDOs” on page 66

Cúram Workflow Reference  17



Context_Task Workflow Data Object
The Context_Task workflow data object is available for use in various mappings that are associated
with a manual activity task (for example, Allocation Function Input mappings, Deadline Function Input
mappings, Manual Activity Action Link parameters). This context workflow data object makes
available the identifier of the task that is created as a result of the execution of the containing activity.
For more details on the Context_Task workflow data object, see “Description of Context WDOs” on
page 50.

Context_Loop Workflow Data Object
The Context_Loop workflow data object is available for use when the loop condition that is associated
with a loop-begin activity is created. It is also available for creating outgoing transition conditions for
any activity within a loop, and for when input mappings, text parameters and action link parameters
for some activities and functions that are contained within a loop are specified. This context workflow
data object makes the number of times that a loop is iterated over available for such mappings. For
more details on the Context_Loop workflow data object, see “Description of Context WDOs” on page
71.

Context_Deadline Workflow Data Object
The Context_Deadline workflow data object is available for use when creating a data item or function
condition (see “Conditions” on page 85) for a transition from an activity that has an event wait with a
deadline specified for it. It is available to allow a developer to model different paths of execution from
an activity that contains a deadline depending on whether that deadline is expired. For more details
on the Context_Deadline workflow data object, see “Description of Context WDOs” on page 42.

Context_Parallel Workflow Data Object
The Context_Parallel workflow data object is available for use in the various mappings that are
associated with a parallel manual activity (for example, task subject and task action text parameters,
allocation strategy mappings and so on) and a parallel decision activity (for example, decision action
text parameters, secondary action text parameters, question text parameters and so on). It makes
available the index of the item from the Parallel Activity List Workflow Data Object that is used to
create the specified instance of the wrapped activity. For more details on the Context_Parallel
workflow data object, see “Description of Context WDOs” on page 76.

Context_Error Workflow Data Object
The Context_Error workflow data object is available for use in a data item or function condition (see
“Conditions” on page 85) for a transition from an automatic activity. It allows a process developer to
model an exception path out of an automatic activity, that is, a transition that is followed if the
automatic activity fails due to an unhandled exception. For more details on the Context_Error
workflow data object, see “Description of Context WDOs” on page 35

Runtime Information
Instances of workflow data objects and list workflow data objects exist as soon as a workflow process is
enacted and exist until the process completes. These workflow data object instances are thus available to
be used in the activities (for example, pass data to a BPO method) and the transitions (for example, make
data available in the evaluation of transition conditions) throughout the lifetime of that process instance.

The enactingUser attribute of the Context_RuntimeInformation Workflow Data Object is set to the
username of the user whose actions in the application resulted in the workflow process that is enacted.
This does not result in the same value being assigned to the transaction when a BPO method is
subsequently started in the workflow process instance. This is due to the transaction demarcation in the
workflow engine when automatic activities (that is, BPO methods) are started in the application server.
Due to the asynchronous nature of this invocation and the requirement to ensure that the call to the
application code is in its own transaction, the BPO method is started by the workflow engine (SYSTEM
user) rather than the user who enacted the workflow process in the first place. Indeed in a real business
sense, the person who enacted the workflow cannot even know that they have started that BPO method.

In a similar fashion, it should be noted that the enacting user of a workflow process instance is not passed
into any of the subflow process instances that can be started from the parent process. If the enacting user
of the parent process instance is required in any of the subflow process instances, it should be passed
explicitly by using a workflow data object attribute in the input mappings for that subflow process.

18  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Care should also be taken when updating workflow data object attribute instance data while running
parallel automatic activities in a workflow process instance. If such automatic activities start the same
BPO method and that method attempts to update the data for the exact same workflow data object
attribute, then a database record deadlock situation can occur. The workflow process designer should
alleviate such situations that occur by designing the workflow process definition to ensure automatic
activities run in parallel do not update the same workflow data object attribute.

Process Enactment
A process definition defines the structure of a business process and to start performing the work that is
defined in that process definition an instance of the process must be created.

The starting of a process instance is referred to as process enactment. Most process definitions require a
minimum set of initial data, which is used primarily to identify the specific business objects the process
instance operates on. All enactment mechanisms must have a way to accept the input data for starting a
process. This input data is known as the enactment data for a process.

Currently, there are four enactment mechanisms that are supported by Cúram workflow:

• Enactment from code
• Enactment from an event
• Enactment as a subflow
• Enactment through a web service

The first two mechanisms are described in this section. The subflow enactment mechanism is described
in “Subflow” on page 67. The web service enactment mechanism is described in “Workflow Web
Services” on page 94.

Code enactment (enactment service API)
The most direct way of enacting a process is by identifying a location in the application from which a
process instance must be started. Code must then be inserted at that point to call the enactment service
API. This API allows the developer to specify the name of the process to start and to supply the
enactment data that is required by the process.

While enacting a process in this way is simple and intuitive, it does have the draw back of being hardcoded
in the application logic. This being the case, alterations such as removing the enactment, changing the
process to start or indeed even minor changes to the required enactment data requires code changes and
redeployment of the application.

Cúram Workflow Reference  19



Metadata
<enactment-mappings>
    <mapping>
      <source-attribute 
          struct-name="curam.core.sl.struct.TaskCreateDetails" 
          name="subject" />
      <target-attribute 
          wdo-name="TaskCreateDetails" 
          name="subject" />
    </mapping>
    <mapping>
      <source-attribute 
          struct-name="curam.core.sl.struct.GroupMemberDetails" 
          name="dtls.memberName" />
      <target-attribute 
          wdo-name="MemberCreateDetails" 
          name="memberName" />
    </mapping>
    <mapping>
      <source-attribute 
          struct-name="curam.core.sl.struct.ChildDetailsList" 
          name="dtls.identifier" />
      <target-attribute 
          wdo-name="ChildDetails" 
          name="identifier" />
    </mapping>    
    
    ...

  </enactment-mappings>

enactment-mappings
Contains a list of mappings that can be used as initial data in enacting the associated process
instance. A process definition is not required to have enactment mappings that are defined in order for
it to be enacted.

mapping
A mapping represents a data item that is supplied from a Cúram struct attribute to be used in
enacting the associated process instance.

source-attribute
This represents a Cúram struct attribute to be used in populating the enactment data for the process
and is mandatory in an enactment mapping.
struct-name

The name of a Cúram struct that contains an attribute that is required to enact the workflow
process. Aggregated and list structs can also be used to pass enactment data into a workflow
process, as illustrated in the metadata snippet here.

name
The name of the attribute of a Cúram struct that is required to enact the associated workflow
process. Where a field from an aggregated struct or list struct is being used, this name represents
the fully qualified name of that field. In such a case, the name consists of the role name from the
association between the parent and child struct in addition to the actual field name. This is
illustrated in the metadata snippet here.

target-attribute
This represents a workflow data object attribute, which is to be populated with enactment data for the
process and is mandatory in an enactment mapping.
wdo-name

The name of a Cúram workflow data object containing the target attribute to be mapped. (See
“Workflow Data Objects” on page 12).

name
The name of a Cúram workflow data object attribute that is marked as being required for
enactment. The value of the corresponding Cúram struct source attribute is mapped to this
attribute when the process is enacted.

20  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Validations

• The Cúram struct attribute used as a source attribute in an enactment mapping must be valid and be of
the correct type for the associated target workflow data object attribute.

• The target workflow data object attribute in an enactment mapping must be valid and must be marked
as being required for enactment.

• If the target attribute of the enactment mapping is from a list workflow data object, then the source
attribute must be a field from a list struct.

Code
// Create the list we will pass to the enactment service.
    final List enactmentStructs = new ArrayList();

    final TaskCreateDetails taskCreateDetails =
      new TaskCreateDetails();

    taskCreateDetails.subject = "The subject of a Task";
    taskCreateDetails.reservedBy = "someUser";

    enactmentStructs.add(taskCreateDetailsStruct);
    
    // An aggregated struct.
    GroupMemberDetails groupMemberDetails 
      = new GroupMemberDetails();
      
    groupMemberDetails.dtls.memberName = "Test User";
    
    enactmentStructs.add(groupMemberDetails);
    
    // A list struct.
    ChildDetailsList childDetailsList 
      = new ChildDetailsList();
      
    ChildDetails recordOne = new ChildDetails();
    recordOne.identifier = 1;
    childDetailsList.dtls.add(recordOne);
    
    ChildDetails recordTwo = new ChildDetails();
    recordTwo.identifier = 2;
    childDetailsList.dtls.add(recordTwo);
    
    enactmentStructs.add(childDetailsList);
    

    EnactmentService.startProcess(
      "TASKCREATEWORKFLOW", enactmentStructs);

• The EnactmentService API is provided to allow for the enacting of workflow processes from
application code. The list of Cúram structs provided to the startProcess() method must be sufficient
to fully populate the enactment mappings of the associated process. Enacting a process in this way is
asynchronous and the process gets kicked off when the current application transaction completes.

• The startProcessInV3CompatibilityMode method is provided for the use of the core application
Task API only. Direct use of this method in custom code is not supported and can hamper future
upgrades.

Event enactment
It is possible to start a process in response to an event being raised. This requires the setup of some
configuration data (either through an administration interface or as pre-configured database entries). The
configuration specifies the process/processes to start in response to a specific event being raised.
Mappings of event data to the enactment data that is required by the process can also be configured in
this way.

Process enactment event configuration is stored on the database and a user interface is supplied to allow
the manipulation of this data. As such process enactment that is created in this way can be enabled,
disabled, changed, and even removed at runtime. The main drawback of this approach is that since events
have a finite amount of information, only process definitions that require such a small amount of
enactment data can be enacted in this way.

Cúram Workflow Reference  21



A Process Enactment Event Handler is supplied with Cúram and is automatically registered to listen for
events that are raised in the application. Where a process is configured to be enacted from an event, the
data from the event is mapped into the enactment data of the process, and the process is started.

Configuration data
Enabling an event to enact a process requires an event-process association to be configured. Every event
raised in the application checks to see if any processes are associated and are required to be enacted.
The latest released version of a process is always enacted for an associated event.

The registration of an event to trigger a process is stored as a record on the ProcEnactmentEvt table. The
process enactment event handler searches a cached representation of this table for matching entries
when an event is raised in the application and enacts any matching processes. The following table
describes the data that is required to populate the ProcEnactmentEvt table.

Table 1: Description of the ProcEnactmentEvt Table

Entity Field Name Description of Field

procStartEventID The unique identifier of the event-process
association.

eventClass The event class of the event that is
specified to enact the workflow process.

eventType The event type of the event that is specified
to enact the workflow process.

processToStart If an event containing the specified event
class and type describe here is raised, the
latest released version of the workflow
process that is specified by this name is
enacted.

enabled This Boolean flag indicates if the event-
process association is enabled. This allows
the enactment of a workflow process by a
specified event to be enabled/disabled at
runtime.

The ProcEnactEvtData table stores the data to be mapped from a business event to the workflow being
enacted when that specified event is raised. The following table describes the data that is required to
populate the ProcEnactEvtData table.

Table 2: Description of the ProcEnactEvtData Table

Entity Field Name Description of Field

procEventMappingID The unique identifier of the process
enactment event data mapping.

22  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Table 2: Description of the ProcEnactEvtData Table (continued)

Entity Field Name Description of Field

procStartEventID The unique identifier of the event-process
association. This field is the unique key on
the associated ProcEnactmentEvt table and
is used to associate all of the data that is
required to enact the workflow process
when a specified event is raised.

eventField This indicates which of the three fields of
an event are used to populate the workflow
data object attribute. The values for this
field are taken from the EventField
codetable and are described in more detail
here.

wdoAttribute The fully qualified name of a workflow data
object attribute to populate with data from
the event field when a process is enacted.
This table includes an entry for each
workflow data object attribute that is
marked as required for enactment in the
process being enacted by the raised event.

There are three fields of an event can be used as enactment mappings. These are enumerated in the
EventField codetable and are described here.

primary event data
A unique identifier that is related to the event class from which the event is raised. For example,
where the business object type that is specified for an event is equal to 'Case', the event data might be
case identifier.

secondary event data
This can be any numeric value and is intended for events that must represent an association between
two entities.

raised by user
The Cúram username of the user who raised the event.

Validations

• The data available from an event must be sufficient to fully populate the enactment data for the
associated process definition.

• Where a process is already configured for event-based enactment, subsequent modifications to the
processes enactment data must satisfy the existing event data mappings.

• Where a process is configured to be enacted from an event, it cannot have its latest released version
that is deleted if the next latest released version is unable to have its enactment data that is fully
populated from the event.

Base Activity
All the activity types that are supported by Cúram workflow have some base details in common. This
information allows them to be uniquely identified by the workflow engine and displayed both textually and
graphically in the Process Definition Tool. Every activity has a name and an optional description, both of
which are localizable. This allows various administration user interfaces to display the information in the
appropriate locale.

Cúram Workflow Reference  23



This base level uniformity allows activities to be identified and run by the workflow engine without the
knowing the specific type of the activity. Each activity type knows its own metadata and how to behave
when run. This arrangement allows the addition of new activity types, if required, without affecting the
core behavior of the workflow engine.

Metadata
<automatic-activity id="1" category="AC1">
    <name>
      <localized-text>
        <locale language="en">ApproveCase</locale>
      </localized-text>      
    </name>
    <description>
      <localized-text>
        <locale language="en">This automatic activity
        will be executed to approve a case.</locale>
      </localized-text>
    </description>
  
    ...
  
  </automatic-activity>

id
This is a 64-bit identifier that is supplied by the Cúram key server when activities are created in the
process definition tool. The activity identifier is required to be unique within a process definition but
global uniqueness within all of the process definitions on the system is not required.

category
An activity can optionally be placed into a category. The category must be selected in the Process
Definition Tool and is taken from the ActivityCategory code-table. This attribute is intended to be
used for searching functionality based on activities and has no functional effect on the activity.

name
The name of the activity is the means by which the activity is identified for the purpose of display. This
is in contrast to the activity identifier, which is used to identify the activity for the purpose of execution
by the workflow engine.

description
An activity can also have an optional description that briefly specifies what the activity does for the
benefit of those editing the process definition in the future.

Localized Text
As shown in the XML fragment above, the activity name and description are not just text fields, but are
defined in terms of a localized-text element. This is general purpose element that is used throughout
the process definition metadata where ever text is required to be localizable.

A valid localized-text element must have at least one locale child element. Except for the
localization screen, any localizable text that is entered in the process definition tool is saved under both
the user's and the English (that is, "en") locales.
<localized-text>
    <locale language="en">ApproveCase</locale>
    <locale language="en" country="US">ApproveCase</locale>
    <locale language="fr">ApprouverAffaire</locale>
    <locale language="fr" country="CA">ApprouverAffaire</locale>
  </localized-text>

locale
This contains the text for the locale that is specified by the language and country attributes. Note:
A locale is uniquely identified by both the language and the country that mean that en, en_US and
en_GB all represent different locales.

language
This is mandatory and is the two letter ISO language code.

country
This is optional and is the two letter ISO country code.

24  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Validations
• The activity name is mandatory and must be unique within a specified workflow process definition.

However, the activity name is also a localizable string. This validation also ensures that a specified
activity name is also unique for each locale specified.

• An activity must be one of the permitted activity types. In practice this rule is self-satisfying as there is
no way to create activities without selecting an appropriate type in the process definition tool. Even
when process definitions are constructed manually in a text editor, the activity type names correspond
to the metadata element names making it impossible to create valid markup that represents a
nonexistent activity type.

Basic Activity Types
Namely, some activity types route, start-process, and end-process activities have no additional metadata
other than that common to all activity types. Their behavior is also sufficiently intuitive to be described
here. All of the other activity types have dedicated sections.

Route Activity
A route activity is an activity that performs no business functionality. It can be considered a null activity as
its execution does not affect the application data nor the business process in any way.

The primary purpose of the route activity is to help flow control. Route activities are often used as branch
(split) and synchronization (join) points. They are also useful when the activities that are required by a
business process do not naturally form a valid block structure that the workflow engine can run.

Since all activity types can have notifications that are associated with them (see: “Activity Notifications”
on page 76), route activities can be used to provide the effect of a pure notification that is not connected
to any other functionality.

Start/End Process Activity
The start-process and end-process activities provide markers for the beginning and end of a process.
They are anchor points to which other activities can be attached by using transitions thus creating a series
of steps from the start to the end of the process.

In a valid process definition that traverses all the transitions between activities starting from the start-
process activity should lead to end-process activity (note that in a running process instance not all paths
is necessarily traversed, for example if a split (see “Split/Join” on page 89) is encountered only some of
the paths can be followed depending on the evaluation of transition conditions). As such the simplest (and
incidentally the most useless) process definition is one that contains only these two activities and a
transition from the start-process to the end-process activity.

Every process definition must have exactly one start-process and exactly one end-process activity. When
a process by using the Process Definition Tool is defined, these two activities are created automatically on
process creation and are not required to be (in fact cannot be) explicitly created by the user.

The start-process and end-process activities form the outermost block of a validly block-structured
process definition as required by Cúram workflow.

Automatic
An automatic activity is a step in a workflow process that is wholly automated and under normal
circumstances no human intervention is required for the completion of such a step. An automatic activity
step starts a method in the application to perform some processing that is required as part of the overall
business process. Typical uses for automatic activities include: performing calculations, updating entities
in the application and pulling data into the workflow engine.

Prerequisites
The base details common to all the activity types that are supported by Cúram workflow are described in
“Base Activity” on page 23 and are applicable to the automatic activity that is described here.

Cúram Workflow Reference  25



Cúram Business Methods
Much of the processing for an automatic activity is performed in the application code that is started.
Automatic activities do their work by starting Cúram business methods (both BPO (business process
object) and entity methods are supported). Technically these are public methods on Cúram business
process objects and entities. A critical part of the automatic activity definition is the method to start and
the parameters to pass to it.

The following sections describe these.

Metadata
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createAssociatedProductDeliveryForPlannedItem">
      <formal-parameters>

         ...

      </formal-parameters>
    </bpo-mapping>
  </automatic-activity>

bpo-mapping
This contains the details of the Cúram business method that is started when the associated automatic
activity is run. These details include the name of the interface and associated method and also any
input and return mappings that are associated with the method that is started. The input and output
mappings are described in the following sections. The mandatory attributes of a business process
object (BPO) mapping are described here.
interface-name

This represents the fully qualified name of the Cúram interface that contains the method that is
associated with the automatic activity.

method-name
This represents the method on the specified Cúram interface that is started when the automatic
activity is run.

Validations

• Both the interface and method names must be specified for the automatic activity business process
object method mapping.

• The interface name that is specified must be a valid class and this class must exist on the Cúram
application classpath.

• The method name must be a valid method name and must exist on the specified interface.

Code
Any valid public Cúram business method (BPO or entity) can be associated with an automatic activity in a
workflow process and hence be started when that activity is run. In general, a failure of such a method
when an automatic activity is run causes the Workflow Error Handling strategy to be started.

This can cause, for example, the activity that is associated with the failed method to be retried a number
of times. Based on this fact, the methods that are associated with automatic activities do not throw in
general exceptions. If the modeled exceptions feature is being used, then when a BPO method throws an
exception and is retried the required number of times, all of the transitions from the automatic activity
that contain the Context_Error workflow data object are evaluated. If any of these transitions evaluate
to true, their paths are followed and in this way, remedial processing can take place after the automatic
activity BPO method failed.

26  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Input Mappings
There must be a way to supply the parameters that are required by a method to start it in the workflow
engine. The workflow engine has a pool of data at its disposal in the form of workflow data objects.

Refer to “Workflow Data Objects” on page 12. Input mappings are used to declare which workflow data
object attributes are used to populate the values of the specific method parameters when the method is
started. Input mappings are optional where struct fields are specified as method parameters. However,
primitive base type parameters must be mapped.

Metadata

The following metadata is common to all three types of parameter input mappings (base type, struct, and
aggregated structs) and hence are not described again.

formal-parameters
This contains the list of formal parameters as defined in the automatic activity business method
signature.

formal-parameter
This contains the details of one formal parameter input mapping as defined in the associated business
method signature. In this instance, a formal parameter mapping entry exists for each parameter that
is defined in the associated business method.
index

This represents the position of the formal parameter in the list of formal parameters that are
defined for the specified method. It is a zero-based index.

Input mappings for base type parameters

Base type parameters provide the simplest type of input mapping. In this instance, input mappings are
created for each base type formal parameter contained in the business method associated with the
automatic activity. A base type parameter in a Cúram business method represents a domain definition
(see the Cúram Modeling Reference Guide for details on domain definitions).
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createDelivery">
      <formal-parameters>
        <formal-parameter index="0">
          <base-type type="STRING">
            <wdo-attribute wdo-name="SPProductDeliveryPI"
                           name="description"/>
          </base-type>
        </formal-parameter>
        <formal-parameter index="1">
          <base-type type="INT64">
            <wdo-attribute wdo-name="SPProductDeliveryPI"
                           name="plannedItemID"/>
          </base-type>
        </formal-parameter>
      </formal-parameters>
    </bpo-mapping>
  </automatic-activity>

base-type
This contains the details of one base type input mapping. A base type mapping indicates that the field
being mapped to is primitive (unlike the struct and nested struct mappings described below). A base
type input mapping contains the following mandatory attribute:
type

This describes the type of the primitive field being mapped to. For a base type input mapping, this
is the type of the domain definition specified as the formal parameter in the method.

Cúram Workflow Reference  27



wdo-attribute
This contains the details of the workflow data object (see “Workflow Data Objects” on page 12)
attribute containing the data that will be used to populate the associated base type parameter when
the automatic activity business method is invoked. The mandatory attributes are described below:
wdo-name

This describes the name of the workflow data object used in the input mapping.
name

This describes the name of the attribute on the specified workflow data object used in the input
mapping.

Input mappings for struct parameters

Structs may be specified as parameters to business process object methods. This section describes the
metadata of the input mappings associated with such parameters.
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createAssociatedProductDeliveryForPlannedItem">
      <formal-parameters>
        <formal-parameter index="0">
          <struct
          type="curam.struct.SampleBenefitPlanItemDetails">
            <field name="description">
              <base-type type="STRING">
                <wdo-attribute wdo-name="SPProductDeliveryPI"
                               name="description"/>
              </base-type>
            </field>
            <field name="plannedItemIDKey">
              <base-type type="INT64">
                <wdo-attribute wdo-name="SPProductDeliveryPI"
                               name="plannedItemID"/>
              </base-type>
            </field>
            <field name="plannedItemName">
        <base-type type="STRING" />
            </field>
          </struct>
        </formal-parameter>
      </formal-parameters>
    </bpo-mapping>
  </automatic-activity>

struct
This contains the details of one struct input mapping, including the type of the struct and mappings
for each field defined in that struct. A struct input mapping contains the following mandatory
attribute:
type

This describes the type of the struct that has been specified as the formal parameter in the
method. This is represented as the fully qualified name of the struct specified as the formal
parameter.

field
This contains the details of the input mapping for one of the fields defined in the struct parameter. A
field contains the details of the input mapping for the primitive base type associated with that field as
well as the following mandatory attribute:
name

This describes the name of the field as defined in the struct specified as the formal parameter.
base-type

This contains the details of one base type input mapping for the specified field. A base type input
mapping contains the following mandatory attribute:
type

This describes the type of the primitive field being mapped to.

28  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



wdo-attribute
This contains the details of the workflow data object (see “Workflow Data Objects” on page 12)
attribute containing the data that will be used to populate the associated base type field when the
method is invoked. This will not be present if the user has not specified an input mapping for this
method parameter. This element, when specified, contains the following mandatory attributes:
wdo-name

This describes the name of the workflow data object used in the input mapping.
name

This describes the name of the attribute on the specified workflow data object used in the input
mapping.

Input mappings for aggregated struct parameters

Aggregated structs (see the Cúram Modeling Reference Guide for details on struct aggregation) may be
specified as parameters to business methods. In this instance, the metadata is similar to that described
above for struct formal parameters (see “Input mappings for struct parameters” on page 28). The subtle
difference is, however, that a field in the struct parameter defined may resolve down to another struct and
not to a primitive type as seen in the struct mappings example. In this scenario, the field name is not the
name of the field being mapped associated with the struct parameter but is the name of the role
contained in the association between the specified struct and the struct it aggregates. The following
metadata snippet provides an example of such input mappings. The metadata elements have been
previously described above in the struct input mappings section.
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createBenefit">
      <formal-parameters>
        <formal-parameter index="0">
          <struct type="curam.struct.PlannedItemDetails">
            <field name="description">
              <base-type type="STRING">
                <wdo-attribute wdo-name="SPProductDeliveryPI"
                               name="description"/>
              </base-type>
            </field>
            <field name="plannedItemID">
              <base-type type="INT64">
                <wdo-attribute wdo-name="SPProductDeliveryPI"
                               name="plannedItemID"/>
              </base-type>
            </field>
            <field name="dtls">
              <struct type="curam.struct.PlannedItemKey">
                <field name="subject">
                  <base-type type="STRING">
                    <wdo-attribute wdo-name="SPProductDeliveryPI"
                                   name="subject"/>
                  </base-type>
                </field>
                <field name="concernRoleID">
                  <base-type type="INT64">
                    <wdo-attribute wdo-name="SPProductDeliveryPI"
                                   name="concernRoleID"/>
                  </base-type>
                </field>
              </struct>
            </field>
          </struct>
        </formal-parameter>
      </formal-parameters>
    </bpo-mapping>
  </automatic-activity>

Input mappings for list struct parameters

Input mappings for list structure parameters may now also be specified. In this instance, the metadata is
similar to that described above for aggregate formal parameters (see “Input mappings for aggregated
struct parameters” on page 29). The type of the struct specified in the metadata for a list struct parameter

Cúram Workflow Reference  29



is the name of the list structure. The name of the first field specifies the name of the role contained in the
association between the specified list struct and the child struct it aggregates. Typically, this field then
resolves down to another struct (the child struct contained within the list struct). The workflow data
object specified in such a mapping is a list workflow data object. The following metadata snippet provides
an example of such input mappings. The metadata elements have been previously described above in the
struct input mappings section.
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="processClaimantDependents">
      <formal-parameters>
        <formal-parameter index="0">
          <struct type="curam.sample.struct.
                        ClaimantDependentDetailsList">
            <field name="dtls">
              <struct type="curam.sample.struct.
                            ClaimantDependentDetails">
                <field name="identifier">
                  <base-type type="INT64">
                    <wdo-attribute wdo-name="ClaimantDependent"
                    name="identifier"/>
                  </base-type>
                </field>
                <field name="firstName">
                  <base-type type="STRING">
                    <wdo-attribute wdo-name="ClaimantDependent"
                    name="firstName"/>
                  </base-type>
                </field>
                <field name="surname">
                  <base-type type="STRING">
                    <wdo-attribute wdo-name="ClaimantDependent"
                    name="surname"/>
                  </base-type>
                </field>
              </struct>
            </field>
          </struct>
        </formal-parameter>
      </formal-parameters>
    </bpo-mapping>
  </automatic-activity>

Input mappings and indexed items from list workflow data objects

For activities contained within loops, an item from a list workflow data object can be used in an input
mapping to populate a formal parameter field. When this type of input mapping is used, each time the
loop containing the activity is iterated over, the formal parameter field will be populated with the next
value from that list workflow data object. This is highlighted here as the metadata syntax for such a
mapping is subtly different than that of the other input mapping types. The metadata snippet provides an
example of such input mappings. The name of the list workflow data object used to populate the formal
parameter field is qualified with the [Context_Loop.loopCount] syntax. This is used by the workflow
engine at runtime to determine which iteration of the loop is being executed and hence which item from
the list workflow data object to retrieve the data to populate the formal parameter field with.

30  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="retrieveClaimantDependentDetails">
      <formal-parameters>
        <formal-parameter index="0">
          <struct type="curam.sample.struct.
                        ClaimantDependentDetails">
            <field name="identifier">
              <base-type type="INT64">
                <wdo-attribute name="identifier"
                wdo-name=
                  "ClaimantDependent[Context_Loop.loopCount]"/>
              </base-type>
            </field>
            <field name="fullName">
              <base-type type="STRING">
                <wdo-attribute name="fullName"
                wdo-name=
                  "ClaimantDependent[Context_Loop.loopCount]"/>
              </base-type>
            </field>
          </struct>
        </formal-parameter>
      </formal-parameters>
    </bpo-mapping>
  </automatic-activity>

Validations

• The workflow data object attributes specified in the input mappings must be valid. The criteria that
defines a valid workflow data object attribute can be seen in “Validations” on page 16

• The type of the formal parameter that is mapped to and the type of the workflow data object attribute
being used in that input mapping must be compatible. For example, if the input mapping that is created
is a struct field that has a type of STRING, then the workflow data object attribute being used for that
mapping must also be of type STRING.

• The Context_Task workflow data object cannot be used in an input mapping if the associated activity
is not a manual or decision activity.

• The Context_Loop workflow data object cannot be used in an input mapping if the associated activity
is not contained within a loop.

• A validation warning is displayed if all struct parameters that are defined in the business process object
method do not contain an associated input mapping.

• All primitive base type formal parameters that are defined in the business process object method, which
must contain an associated input mapping.

• If the formal parameter field that is mapped is a base type parameter, then an attribute from a list
workflow data object cannot be used.

• If the formal parameter field that is mapped is from a list structure, then it must be mapped to an
attribute from a list workflow data object.

• If the indexed item from a list workflow data object (that is,
ClaimantDependent[Context_Loop.loopCount]) is being used in an input mapping, then the
associated workflow data object must be a list workflow data object and the activity that contains the
input mappings must be contained within a loop.

Runtime Information
The values of the workflow data object attributes that are defined in the input parameter mappings are
provided as input data to the specified method before it is started when the associated automatic activity
is run.

Output Mappings
Workflow data objects are the workflow engines data store. Some of the attributes on the specified
workflow data objects are populated when the process is enacted. However, it is useful to update or set
the values of workflow data object attributes as the workflow process is run. In support, some activity

Cúram Workflow Reference  31



types can map data back into the workflow engine. This is useful for automatic activities as the business
methods they start might conceivably access data that is stored on any entity in the application and return
it for use in subsequent activities in the workflow process. These return mappings from a business
process object method that is associated with an automatic activity are optional.

See “Workflow Data Objects” on page 12.

Metadata
In a similar fashion to input mappings, output mappings are supported for primitive return types, struct
return types, nested (aggregated) struct return types and list struct return types.

See “Input Mappings” on page 27. If the return type is a primitive type, one return mapping entry can be
specified. If the return type is a struct, an aggregated struct or a list struct, return mappings for one or
more of the fields in the specified struct can be created. The following metadata snippets provide
examples of such mappings:

Primitive return type
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createAssociatedProductDeliveryForPlannedItem">
      <formal-parameters>
        <formal-parameter index="0">
          ...
        </formal-parameter>
      </formal-parameters>
      <return>
        <base-type>
          <wdo-attribute wdo-name="SPProductDeliveryPI"
                         name="plannedItemID"/>
        </base-type>
      </return>
    </bpo-mapping>
  </automatic-activity>

Struct return type
<automatic-activity id="1" category="AC1">
    ...

    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createAssociatedProductDeliveryForPlannedItem">
      <formal-parameters>
        <formal-parameter index="0">
           ...
        </formal-parameter>
      </formal-parameters>
      <return>
        <struct>
          <field name="description">
            <base-type>
              <wdo-attribute wdo-name="SPProductDeliveryPI"
                             name="description"/>
            </base-type>
          </field>
          <field name="subject">
            <base-type>
              <wdo-attribute wdo-name="SPProductDeliveryPI"
                             name="subject"/>
            </base-type>
          </field>
        </struct>
      </return>
    </bpo-mapping>
  </automatic-activity>

32  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Aggregated struct return type
<automatic-activity id="1" category="AC1">
    ...
    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="createAssociatedProductDeliveryForPlannedItem">
      <formal-parameters>
        <formal-parameter index="0">
          ...
        </formal-parameter>
      </formal-parameters>
      <return>
        <struct>
          <field name="description">
            <base-type>
              <wdo-attribute wdo-name="SPProductDeliveryPI"
                             name="description"/>
            </base-type>
          </field>
          <field name="subject">
            <base-type>
              <wdo-attribute wdo-name="SPProductDeliveryPI"
                             name="subject"/>
            </base-type>
          </field>
          <field name="dtls">
            <struct>
              <field name="concernRoleID">
                <base-type>
                  <wdo-attribute wdo-name="SPProductDeliveryPI"
                                 name="concernRoleID"/>
                </base-type>
              </field>
              <field name="participantID">
                <base-type>
                  <wdo-attribute wdo-name="SPProductDeliveryPI"
                                 name="participantID"/>
                </base-type>
              </field>
            </struct>
          </field>
        </struct>
      </return>
    </bpo-mapping>
  </automatic-activity>

Cúram Workflow Reference  33



List struct return type
<automatic-activity id="1" category="AC1">
    ...
    <bpo-mapping
      interface-name="curam.sample.facade.intf.SampleBenefit"
      method-name="readClaimantDependentDetails">
      <formal-parameters>
        <formal-parameter index="0">
          ...
        </formal-parameter>
      </formal-parameters>
      <return>
        <struct>
          <field name="dtls">
            <struct>
              <field name="identifier">
                <base-type>
                  <wdo-attribute wdo-name="ClaimantDependent"
                  name="identifier"/>
                </base-type>
              </field>
              <field name="firstName">
                <base-type>
                  <wdo-attribute wdo-name="ClaimantDependent"
                  name="firstName"/>
                </base-type>
              </field>
              <field name="surname">
                <base-type>
                  <wdo-attribute wdo-name="ClaimantDependent"
                  name="surname"/>
                </base-type>
              </field>
            </struct>
          </field>
        </struct>
      </return>
    </bpo-mapping>
  </automatic-activity>

return
This contains the details of the output mappings that are specified for the business method that is
associated with the automatic activity. For a primitive return type, one entry of the base type
metadata is present as shown in the example here (see “Primitive return type” on page 32). For a
struct, aggregated struct and list struct return types, the struct metadata tag is specified and contains
fields whose base types are mapped by using workflow data object attributes.

struct
This contains the details of the struct output mapping. A struct output mapping contains the following
mandatory attribute.

field
This contains the details of the output mapping for one of the fields that are defined in the struct
return type. A field contains the details of the output mapping for the primitive base type that is
associated with that field and the following mandatory attribute:
name

This represents the name of the field as defined in the struct that is specified as the return type.
For non-aggregated struct return types, this represents the name of the field on the specified
return struct that is being mapped. For aggregated struct and list struct return types, the field
name represents the name of the role that is contained in the association between the specified
struct and the struct it aggregates.

base-type
This contains the details of one base type output mapping for the specified field or a primitive return
type.

wdo-attribute
This contains the details of the workflow data object (see “Workflow Data Objects” on page 12)
attribute that the data present in the associated return type field will be mapped into and persisted.
The mandatory attributes are described below:

34  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



wdo-name
This represents the name of the workflow data object used in the output mapping.

name
This represents the name of the workflow data object attribute that is used in the output mapping.

Validations

• No duplicate output parameter mappings are allowed. In other words, a workflow data object attribute
can be specified only once in any list of output return mappings.

• All of the workflow data object attributes specified in the output mappings must be valid workflow data
object attributes in the context of the containing workflow process definition.

• The type of the return field that is mapped from and the type of the workflow data object attribute being
mapped to must be compatible.

• Output mappings cannot be created for workflow data object attributes that are marked as constant
workflow data object attributes. Constant workflow data object attributes represent data that remain
constant for the lifetime of the process instance (see “Metadata” on page 14). If these attributes were
allowed to be used in output mappings, this data would be overwritten with that specified in the output
mappings.

• If the return struct is a list return struct, then the workflow data object used in the return mapping must
be a list workflow data object.

Runtime information
The values of the return type fields that are defined in the output parameter mappings are persisted by
using the specified workflow data object attributes after the associated automatic activity is run.

Description of Context WDOs
There are two context workflow data objects that are available when data item and function conditions for
transitions from an automatic activity are created. These data objects are described here.
Context_Result Workflow Data Object

The Context_Result workflow data object is available for use in a data item or function conditions (see
“Conditions” on page 85) for a transition from an automatic activity. This allows the use of the return
value of the started method in the said conditions. The conventions for the attributes available for the
Context_Result workflow data object are as follows:

• If the return type is a base type, the attribute available is called value (that is,
Context_Result.value).

• If the return value is a struct then the Context_Result attribute values available are all the fields
present on the struct return class (that is, Context_Result.description, and so on).

• If the return value is a nested (aggregated struct) then the Context_Result attribute values available
are the fields available in the containing struct (that is, Context_Result.description and so
on) and also the fully qualified names of those fields in the nested structs (that is,
Context_Result.dtls:concernRoleID and so on). Regardless of the depth of the nesting of
the return value struct, there is only one Context_Result workflow data object available with the
names of the nested structs that form part of the attribute names. The separator between a nested
struct and its fields is a colon as seen in the example here.

• If the return type is a list struct, the Context_Result workflow data object is not available.

Context_Error Workflow Data Object
A BPO method that is called by an automatic activity can sometimes fail (that is, throw an exception
that causes the activity transaction to roll back). When this happens, it can be useful to be able to
model follow-on actions after the failure. The Context_Error workflow data object enables this
type of "error path" modeling. It is available for use in a data item or function conditions (see
“Conditions” on page 85) for a transition from an automatic activity. The Context_Error workflow
data object has one attribute exceptionOccurred, which is described here:

Cúram Workflow Reference  35



• The exceptionOccurred attribute is a boolean value that indicates whether the BPO method that
is associated with an automatic activity failed. It defaults to false and is set to true if the associated
BPO method fails.

At runtime, if the BPO method that is called in an automatic activity fails (and is retried the
prerequisite number of times and still fails), the workflow engine sets the exceptionOccurred
attribute of Context_Error to true. Any transitions by using the Context_Error workflow data
object are then evaluated and followed if they resolve to true. This enables a workflow process
instance to proceed along the defined error path even though the automatic activity failed.

If the BPO method that is called fails and there are no transitions by using the Context_Error
workflow data object, then the activity is halted and an entry is created in the Failed Messages Admin
console.

Note: The Context_Error workflow data object takes no account of the cause of the failure, only
whether there was one.

Event Wait
The Cúram application can raise events at various points to inform any registered listeners of what is
happening. A number of different event listeners can be registered to listen for a specified event. These
event listeners are application functions that implement the
curam.util.events.impl.EventHandler interface.

When a specified event is raised, the workflow engine starts the associated event handler function (see
the Cúram Server Developers Guide for more details on events and event handlers).

Workflow uses this facility in a slightly different way through event wait activities. An event wait activity
pauses the execution of a particular branch of a process instance until a particular event occurs.

Prerequisites
The base details common to all the activity types that are supported by Cúram workflow are described in
“Base Activity” on page 23 and are applicable to the event wait activity described here.

List of events
It is not correct to say that an event wait activity pauses a workflow process until a particular event is
raised. An event wait can in fact specify any number of events to wait for. If it is specified not to wait for all
of these events to be raised to complete the activity, the first event that matches one of the specified
events waits completes the activity and progresses the workflow.

In this scenario, whether the rest of the events ever get raised has no effect on the process. It is also
possible to specify that all of the event waits must be matched by associated raised events before
completing the activity and continuing the workflow process.

36  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Metadata
<event-wait-activity id="1" category="AC1">

    ...

    <event-wait wait-on-all-events="true">
      <events>
        <event event-class="Task" event-type="Close" 
               identifier="1">
          <event-match-attribute name="taskID" 
                                 wdo-name="Context_Task"/>
        </event>
        <event event-class="Parent" event-type="Approve" 
               identifier="1">
          <event-match-attribute name="identifier" 
            wdo-name="ParentList[Context_Loop.loopCount]"/>
        </event>        
        <event event-class="Child" event-type="Approve"
               identifier="2">
          <event-match-attribute name="identifier" 
                                 wdo-name="ChildDetails"/>
          <multiple-occurring-event>
            <list-wdo-name>ChildDetails</list-wdo-name>
          </multiple-occurring-event>
        </event>
      </events>
    </event-wait>

    ...

  </event-wait-activity>

event-wait
This contains the details of the event wait associated with the specified activity. This includes the
details of all the events for the event wait.
wait-on-all-events

The value of this flag indicates to the workflow engine if it can wait for events to be raised for all of
the specified event waits before the associated activity is completed. If set to false, the first event
that matches one of the specified event waits results in the completion of associated activity and
the workflow progressing. When set to true, an event must be raised for each of the event waits
specified for the activity before the activity is completed and the workflow progressed.

events
This contains the details of all of the events that the specified activity is waiting on.

event
This contains the details of one specific event that this activity is waiting on. The event details contain
the following mandatory attributes:
event-class

This represents the class of business event that this process is waiting on.
event-type

This represents the type of business event that this process is waiting on. The combination of
event-class and event-type denotes the business event required.

identifier
This represents the unique identifier of this event. The identifier is required to be unique only
within the list of events for this activity.

event-match-attribute
This represents the workflow data object attribute (see “Workflow Data Objects” on page 12) that is
used to match the required instance of the specific event. For example, in the first event that is
specified in the metadata above, the workflow data object attribute would refer to the task identifier
associated with the closing of a specific task. When this event is raised, the workflow engine uses the
data in the event match attribute to uniquely identify the task to close.

multiple-occurring-event
This signifies that this event represents a multiple occurring event. This means that if this metadata is
specified for an event, the workflow engine creates one event wait record for each item in the list

Cúram Workflow Reference  37



workflow data object specified as the multiple occurring event when that activity is executed. This
allows the workflow engine to wait on multiple occurrences of the same event.

If the multiple occurring event is specified for an event, then an attribute from the associated list
workflow data object must be used as the event match data for the event. This ensures that each
event that is generated by the workflow engine for the multiple occurring event is unique.

list-wdo-name
This represents the name of the list workflow data object to be used as the multiple occurring
event.

Validations

• A least one event must be defined for the event wait information that is associated with an event wait
activity.

• The event class and type that is specified for each business event must be valid entries on the relevant
event database tables.

• An event and associated event match attribute can be defined only once in an event wait activity. That
is, the same event class, event type and event match attribute can be used only once as a specific event
that is waited on for an event wait activity.

• The workflow data object attribute mapped to the event match attribute for an event must be valid, and
as it is used as a unique identifier in the event matching mechanism, it must be of type LONG to reflect
the 64-bit identifiers that are used in Cúram.

• The Context_Task workflow data object can be used only as the event match data workflow data object
attribute if the activity is either a manual or parallel manual activity and the event is not a multiple
occurring event.

• If an indexed item from a list workflow data object (that is, ParentList[Context_Loop.loopCount]) is used
as the event match data, then the workflow data object must be a list workflow data object and the
activity that contains the event mapping must be contained within a loop.

• If an indexed item from the Parallel List Workflow Data Object is used as the event match data, then the
activity that contain the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• If the multiple occurring event list workflow data object is not specified for the event and the activity
that contains the event mapping is not a parallel activity, then an attribute from a list workflow data
object cannot be used as the event match data for that event.

• If the multiple occurring event list workflow data object is specified for the event, then an attribute from
this list workflow data object must be used as the event match data for that event.

• The workflow data object attribute that is mapped as the multiple occurring event must be valid. It must
also be a list workflow data object.

Code
A Workflow Event Handler is supplied with Cúram and is automatically registered to listen for events
raised in the application. Multiple event waits can be registered for a particular activity instance in a
workflow process. If the waitOnAllEvents flag is set to false for the specified event wait data, only one of
these event waits is required to be matched to complete that activity instance.

The Workflow Event Handler will process that event by completing the specified activity instance and
driving the process forward by starting the next set of activities in the process. All of the other event wait
records that were registered for the completed activity instance are then removed. If output mappings
(see “Output Mappings” on page 42) is specified for the event wait, they is persisted by the workflow
engine and can be used in subsequent activities and transitions in the process.

When the waitOnAllEvents is set to true, all of the event waits specified for the activity instance must be
matched by raised events to complete the activity and progress the workflow. For each raised event that
matches an associated event wait for the activity instance, the Workflow Event Handler processes the
event by deleting the associated event wait record and persisting any output mappings (see “Output

38  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Mappings” on page 42) that are specified for the event wait. This processing continues until all of the
associated event waits are matched by raised events. It is only then that the Workflow Event Handler will
complete the specified activity instance and drive the process forward by starting the next set of activities
in the process.

Runtime Information
An event that is raised in the application can cause only a process instance to continue if the event
matches that being waited on and the event match attribute that is specified for the event wait matches
the primary event data of the event.

Deadline
An event wait pauses a workflow process in lieu of some event to be raised. However, in many cases it is
not desirable for a process to wait indefinitely. It is possible for a chain of events to occur that means the
event that the process is waiting on can never be raised.

For example, by chance the event might be raised before the process reaches the event wait activity. To
mitigate against this risk, it is possible to optionally specify a deadline for an event to be raised after
which a deadline handler is invoked.

Prerequisites

Deadline handler methods that are specified for an event wait deadline are Cúram business process
object methods. The input mappings for the formal parameters of these methods and their associated
metadata are described in “Automatic” on page 25. Therefore, this section is referenced for a description
of these mappings.

Cúram Workflow Reference  39



Metadata
<event-wait-activity id="1" category="AC1">
  
    ...
    
    <deadline complete-activity="true">
      <duration>
        <mapped-duration>
          <wdo-attribute wdo-name="TaskCreateDetails" 
            name="deadlineDuration" />
        </mapped-duration>
      </duration>
      <deadline-handler interface-name=
        "curam.core.sl.intf.WorkflowDeadlineFunction"
        method-name="defaultDeadlineHandler">
        <formal-parameters>
          <formal-parameter index="0">
            <struct type="curam.core.struct.TaskKey">
              <field name="taskID">
                <base-type type="INT64">
                  <wdo-attribute wdo-name="Context_Task"
                    name="taskID" />
                </base-type>
              </field>
            </struct>
          </formal-parameter>
          <formal-parameter index="1">
            <struct type="curam.core.struct.ChildKey">
              <field name="identifier">
                <base-type type="INT64">
                  <wdo-attribute wdo-name=
                    "ClaimantDependents[Context_Loop.loopCount]"
                    name="identifier" />
                </base-type>
              </field>
            </struct>
          </formal-parameter>          
        </formal-parameters>
      </deadline-handler>
      <deadline-output-mappings>
        <duration-expired wdo-name="TaskDeadlineDetails" 
          name="booleanValue" />
        <deadline-expiry-time wdo-name="TaskDeadlineDetails" 
          name="dateTimeValue" />
      </deadline-output-mappings>
    </deadline>
  
    ...
    
  
  </event-wait-activity>

complete-activity
This represents a boolean flag, which indicates whether the activity can complete if the deadline
duration expires. The default for this flag is false.

duration
This represents the duration of time that can elapse before the deadline handler method is invoked.
The duration can be represented in either of the formats below which is then be to calculate the
deadline date time for the event wait:
seconds

The number of seconds that can elapse before the deadline handler is started
mapped-duration

The attribute of a workflow data object that can be mapped as representing the number of
seconds that can elapse before the deadline handler is started.

deadline-handler
This represents the method that is to be started once the deadline duration is expired. The following
metadata must be specified for a deadline handler:
interface-name

This represents the fully qualified name of the deadline handler interface class name.

40  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



method-name
This represents the required method in the deadline handler interface that is required to be
started when the deadline expires.

formal-parameters
This contains a list of the deadline handler method parameters and associated workflow data
object attributes that are mapped to those parameters when the deadline handler is started. For
details on method parameter mappings see “Input Mappings” on page 27.

deadline-output-mappings
This contains the deadline output data, which can be optionally mapped to workflow data object
attributes. This data indicates whether the deadline duration expired and the date and time the
deadline duration expired.

Validations

• If a deadline handler is specified, it must reference a valid Cúram business method that exists on the
application's classpath.

• The workflow data object attributes specified in the input mappings must be valid. The criteria that
defines a valid workflow data object attribute can be seen in “Validations” on page 16

• The type of the formal parameter being mapped to and the type of the workflow data object attribute
being used in that input mapping must be compatible. For example, if the input mapping being created
is a struct field that has a type of STRING, then the workflow data object attribute being used for that
mapping must also be of type STRING.

• If the indexed item from a list workflow data object (that is,
ClaimantDependent[Context_Loop.loopCount]) is being used in an input mapping, then the
associated workflow data object must be a list workflow data object and the activity that contains the
input mappings must be contained within a loop.

• If the Context_Parallel workflow data object is being used in an input mapping, then the activity
that contains the input mappings must be a Parallel activity.

• If an indexed item from the Parallel List Workflow Data Object is being used in an input mapping, then
the activity contains the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• The deadline duration can be specified by using a deadline duration in seconds or a workflow data
object attribute mapping, but not both.

• If the deadline duration is specified by using a workflow data object attribute, the attribute must be
valid and be of type INTEGER.

• If a deadline is specified for an activity, then a deadline handler function must be specified or the
complete activity flag must be set to true (or both). If not the workflow would not do anything when the
deadline is reached.

• If the duration expired value of the deadline output mappings is mapped to a workflow data object
attribute, then the attribute must be valid and of type BOOLEAN.

• If the deadline expiry time value of the deadline output mappings is mapped to a workflow data object
attribute, then the attribute must be valid and of type DATETIME.

• The complete activity flag cannot be set to true if the activity that contains the deadline is a parallel
activity. This is because parallel activities do not support modeled deadlines.

Code

• Any return parameters that are associated with the deadline handler method are not used in the
workflow engine and are therefore irrelevant.

• The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines() is provided to
allow the scanning of event wait deadlines that exceed their specified duration. Any such event waits
are processed and their associated handler function started or the associated activity completed.

Cúram Workflow Reference  41



Runtime Information
When the workflow engine runs an activity that contains deadline metadata, it creates the deadline date
time as follows:

• If the duration is specified in seconds, then the calculation is the current date time + seconds defined in
metadata = deadline date time.

• If the duration is specified as a workflow data object attribute, then the calculation is the current date
time + the value as defined in workflow data object attribute = deadline date time

Deadlines that expire are processed by starting the ScanTaskDeadlines batch job. This batch job in
turn starts the Workflow Deadline Scanner API described above which retrieves a list of all of the
deadlines that are expired and processes them. If a deadline handler method is specified for the deadline,
the values of the workflow data object attributes defined in the parameter mappings are provided as input
parameters to the deadline handler method and it is started. If the complete activity flag is set to true,
then the associated activity is completed. Any deadline output mappings (duration that is expired and
deadline expiry time) that might be specified are persisted here. The attributes of the
Context_Deadline workflow data object are also persisted during this processing to allow them to be
used in transitions that emanate from the activity that contains the deadline.

Description of Context WDOs
The Context_Deadline workflow data object is available for use in a data item or function condition.

Refer to “Conditions” on page 85 for a transition from an activity with an event wait that has a deadline.
The Context_Deadline workflow data object attributes available are:

Context_Deadline.durationExpired
Represents a boolean indicating whether the deadline duration that is associated with the activity is
expired.

Context_Deadline.expiryTime
An attribute that contains the date and time at which the deadline duration expires.

Output Mappings
The event that is raised has some information in it that can be worth mapping back into the workflow
engine. The event has both primary and secondary event data. The primary event data is what was used
to match the event in the first place so there is little point in mapping this back into the process. However,
the secondary event data can be unknown to the workflow engine and so can be mapped in.

Also, since an event wait activity can wait on any number of events, the actual event that was raise can be
of interest and so can also be mapped into the workflow engine. Finally, the Cúram user that raises the
event might be of interest and so this can also be mapped into the workflow engine.

If an activity instance waits for all of its associated event waits to be matched, any event output mappings
that exist for the activity instance are processed each time that an event is raised that matches one of the
event waits.

Metadata
<event-wait-activity id="1" category="AC1">
  
    ...

    <event-output-mappings>
      <event-type wdo-name="CaseEventResult" 
        name="eventType" />
      <output-data wdo-name="TaskCreateDetails" 
        name="concernRoleID" />
      <raised-by wdo-name="CaseEventResult" 
        name="eventRaisedBy" />
      <time-raised wdo-name="CaseEventResult"
        name="timeRaised" />        
    </event-output-mappings>

    ...

  </event-wait-activity>

42  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



event-output-mappings
This tag contains the data that can be optionally mapped to the workflow engine from the event that
was raised.

event-type
This tag contains the business event that was raised which the activity instance was waiting on.

output-data
This tag contains the secondary event data that is to be mapped into the workflow engine.

raised-by
This tag contains the username of the Cúram user that caused the event to be raised.

time-raised
This tag contains the date and time that the event was raised.

Validations

• The event type event output mapping, if specified, must be a valid workflow data object attribute and
must be of type STRING.

• The raised by user name event output mapping, if specified, must be a valid workflow data object
attribute and must be of type STRING.

• The output data event output mapping, if specified, must be a valid workflow data object attribute and
must be of type LONG.

• The time raised output mapping, if specified, must be a valid workflow data object attribute and must be
of type DATETIME.

Runtime Information
When an event is raised in the application that an activity instance is waiting on, any workflow data object
attributes contained in event output mappings that are defined for the event wait are populated and
persisted with the relevant data from the event.

Description of Context WDOs
The Context_Event workflow data object is available for use in a data item or function condition.

Refer to “Conditions” on page 85 for a transition from an activity with an event wait. The Context_Event
workflow data object attributes available are:

Context_Event.raisedByUserName
The username of the Cúram user who raised the event.

Context_Event.timeRaised
The time at which the event was raised.

Context_Event.fullyQualifiedEventType
The fully qualified (both event class and event type) name of the business event that was raised.

Context_Event.outputData
The secondary event data that is associated with the raised event.

Reminders
A reminder can be set on any deadline that is associated with a manual, decision, event wait, parallel
manual, or parallel decision activity. An arbitrary number of reminders can be specified.

Reminders use the notification metadata that is described in the activity notification (see “Activity
Notifications” on page 76) section. This means that the typical notification subject, body, allocation
strategy, and actions can be specified for a reminder.

Cúram Workflow Reference  43



Metadata
<reminders>
 
            <reminder id="1" delivery-offset="DO1">
           <delivery-time>
             <seconds>93660</seconds>
           </delivery-time>
            
      or...
      
           <delivery-time>
             <mapped-delivery-time>
               <wdo-attribute  wdo-name="CaseWDO" 
                               name="caseID"/>
             </mapped-delivery-time>
           </delivery-time>
      ...
           <notification delivery-mechanism="DM1">
              ...standard notification metadata
           </notification>
         </reminder>

       </reminders>

reminders
This tag is optional and encapsulates all reminder tags for the deadline.

reminder
This tag contains all reminder metadata for the deadline including the associated notification
metadata.

delivery-offset
This tag refers to a value from the codetable ReminderDeliveryOffset indicating what the
seconds or mapped-delivery-time are offset from. For a deadline, it is offset from the deadline expiry
time. This is currently the only offset supported.

delivery-time
This tag contains either the seconds or mapped-delivery-time tag depending on which is specified.

seconds
This tag represents the seconds before the deadline expiry time that the reminder is sent.

mapped-delivery-time
This tag represents a workflow data object containing the seconds before the deadline expiry time
that the reminder is sent.

Validations

• A reminder cannot be created if a deadline is not associated with the relevant activity. In addition, if a
deadline does exist, but the deadline handler is not set, or the complete activity indicator is set to false,
a reminder cannot be created.

• Each reminder has an identifier. This must be unique to the deadline upon which it is associated.
• Either a mapped-delivery-time or seconds must be specified for a reminder.
• If a second is specified, it must be before the deadline expiry time.
• The workflow data object attribute that is referenced by the mapped-delivery-time must be of type

INTEGER.
• All existing validations for activity notifications (see “Activity Notifications” on page 76) are applicable

to the notification metadata associated with reminders.

Code
The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines() includes a call to
the function deliverReminders(), which processes and delivers any reminders that reach their
delivery time.

44  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Runtime Information
When an activity that contains reminders is run, the reminders are persisted onto the Reminders entity.
The time that a reminder is due to be sent on is calculated as follows:

• The delivery duration for the reminder is retrieved in seconds. This may be specified directly in seconds
or in a workflow data object attribute.

• The duration for the deadline that is associated with the reminder is retrieved in seconds. This may be
specified directly in seconds or in a workflow data object attribute.

• If the delivery duration for the reminder is a positive number and this number is less than the deadline
duration (reminder deliveries cannot be specified for times that are greater than the deadline date time
for obvious reasons), then the time to deliver the reminder notification is calculated as the deadline
duration - the reminder delivery duration. This duration in seconds is then converted into a date time
and added to the date time the reminder is being created on. This is then stored on the reminder record
as the date time that the reminder notification is due to be sent on.

Reminders that are configured for deadlines are processed and sent by starting the
ScanTaskDeadlines batch job. This batch job starts the DeadlineScanner. scanDeadlines()
function, which scans for reminders that are due and sends the associated reminder notifications (by
using the reminder notification allocation strategy to determine the users to send the notifications to). The
reminders that are sent are removed from the Reminders entity to ensure that they are not sent again.
When the activity completes any reminders that were configured for that activity but that were not sent
are removed.

Manual
In any automated business process there is a need to interact with human agents to make decisions,
supply more data or to perform tasks in the real world such as telephoning a client. In Cúram workflow,
such steps in a process are modeled by using manual activities. A manual activity specifies where in the
business process human intervention is required. It also specifies the information that the user receives
when notified that they must perform a task and also the selection of the agents to which the work is
assigned.

Prerequisites
The base details common to all the activity types that are supported by Cúram workflow are described in
“Base Activity” on page 23 and are applicable to the manual activity described here.

Task details
To notify a user that they are required to do some work as part of some automated business process, a
task is assigned to them. A task is a message that appears in the users inbox. This inbox specifies the
work that the user is expected to do. The task can also have a list of actions that are associated with it.
Actions are links to Cúram application pages where the work required to complete the task can be
performed.

Cúram Workflow Reference  45



Metadata
<manual-activity id="1">
      ...
      <task>
        <message>
          <message-text>      
            <localized-text>
              <locale language="en">The following 
                case %1n for %1s must be approved</locale>
            </localized-text>
          </message-text>        
          <message-parameters>
            <wdo-attribute wdo-name="TaskCreateDetails" 
                           name="caseID"/>
            <wdo-attribute wdo-name=
                           "Claimant[Context_Loop.loopCount]"
                           name="caseID"/>
          </message-parameters>
        </message>
        <actions>
          <action page-id="Case_viewHome" principal-action="false"
           open-modal="false">
            <message>
              <message-text>          
                <localized-text>
                  <locale language="en">
                    Case Home Page for case: %1n</locale>
                </localized-text>
              </message-text>            
              <message-parameters>
                <wdo-attribute wdo-name="TaskCreateDetails" 
                               name="caseID"/>
              </message-parameters>
            </message>
            <link-parameter name="childID">
              <wdo-attribute wdo-name="ChildDependents" 
                             name="identifier"/>
            </link-parameter>
            <link-parameter name="fullName">
              <wdo-attribute wdo-name="ChildDependents" 
                             name="fullName"/>
            </link-parameter>
            <multiple-occurring-action>
              <list-wdo-name>ChildDependentList</list-wdo-name>
            </multiple-occurring-action>
          </action>
          <action page-id="Person_confirmPersonDetails" 
                           principal-action="true"
                           open-modal="true">
            <message>
              <message-text>          
                <localized-text>
                  <locale language="en">
                    Confirm Person Details for 
                      person: %1s</locale>
                </localized-text>
              </message-text>            
              <message-parameters>
                <wdo-attribute wdo-name=
                  "PersonDetailsList[Context_Loop.loopCount]"
                               name="fullName"/>
              </message-parameters>
            </message>
            <link-parameter name="identifier">
              <wdo-attribute wdo-name="
                PersonDetailsList[Context_Loop.loopCount]" 
                             name="identifier"/>
            </link-parameter>
          </action>          
        </actions>
        <task-priority>
         <priority>TP1</priority>
        </task-priority>
        <allow-deadline-override>false
          </allow-deadline-override>
        <allow-task-forwarding>true
          </allow-task-forwarding>
        <administration-sid>MaintainCase.closeCase
          </administration-sid>  
        <initial-comment>
          <wdo-attribute wdo-name="TaskCreateDetails" 
                         name="subject"/>    
        </initial-comment>
      </task>
      ...
    </manual-activity>

46  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



task
This contains all of the details of a task including the message and details of the associated actions.
The various metadata that is associated with a task are described here.

message
This contains the details of the parameterized message. When a manual activity is run, a task is
created. When a user views their tasks in the inbox, this message represents the subject of that task.

message-text
This contains the details of the message text. The text of the subject can contain replaceable strings
(%k), which is replaced with the associated text parameters. A text parameter is a mapping to a
workflow data object attribute. Parameter k in the list replaces %k in the text string, where k is the
order of the parameter in the list. %k can be repeated within the string and thus each workflow data
object attribute must be mapped only once. A format for the replaceable strings can optionally be
specified by placing another letter after the replaceable string, for example, %1d, where d will format
the value as a date. 

Table 3: Subject Text Data Conversion

Formatting Letter Format As

s string

n numeric

d date

z date/time

t time

localized-text
This contains details of the localizable task message text. For more details of the localized text and
associated metadata, see “Localized Text” on page 24.

message-parameters
A task message can have parameters that are associated with it. This contains the details of the
workflow data object attribute parameters that are used to replace the placeholders in the associated
text. For details on workflow data objects and workflow data object attributes see “Workflow Data
Objects” on page 12.

actions
This contains the details of all of the actions that are associated with the manual activity task. These
actions are links to Cúram application pages where the work required to perform the task can be
performed.

action
This contains the definition of a hyperlink to a Cúram page on which a task can be performed. The
following fields that are associated with the task action are described here:
page-id

This represents the identifier of the target Cúram page on which a user can perform the required
action.

principal-action
Actions can be defined as primary or secondary actions. Principal actions usually contain the links
to the Cúram pages on which a user can perform the actual required work. Secondary actions
usually contain links to supporting information that the user who is assigned to do the work can
refer to while the assigned task is carried out.

Cúram Workflow Reference  47



open-modal
The pages that are linked from a task action can be specified to open in a modal dialog. If this
indicator is set to true, then the page that is specified by the action link is opened in a modal
dialog. If set to false (the default) then the client infrastructure decides how to open the link in the
same fashion as it does with any other link in the application (that is, if the page is part of a tab
configuration, then it opens the appropriate tab - if not then it replaces just the action link home
page in the content area of the current tab).

message
This contains the details of the parameterized message that is associated with the action to be
performed, including the message text and the optional parameters that can be associated with the
text.

link-parameter
The links to the Cúram pages where the actual work for the task is performed must contain a page
identifier (described here) and optional page parameters. These page parameters are described by
this metadata and they represent a name/value pair where the name attribute is the name of a link
parameter (the page parameter name in the associated Cúram client page) and the value is provided
by a workflow data object attribute. The following field that is associated with the link parameter is
described here:
name

The name of the link parameter.
multiple-occurring-action

This signifies that this action represents a multiple occurring action. This means that if this metadata
is specified for an action, the workflow engine creates one action record for each item in the list
workflow data object specified as the multiple occurring action, when that activity is run.

When the multiple occurring action is specified for an action, then an attribute from the associated list
workflow data object must be used as a link parameter for the action.

list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

wdo-attribute
The value used in the action link parameter is provided by the workflow data object attribute mapping
that is specified in this piece of metadata.

task-priority
A task can optionally contain a priority and this metadata contains those details. The priority of a task
is represented in either of the formats here:
priority

In this instance, the priority is selected in the Process Definition Tool and is taken from the
TaskPriority code-table.

mapped-priority
The priority of a manual task can be mapped by using a workflow data object attribute. The
following metadata snippet provides an example of how this can be achieved:

48  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



<manual-activity id="1">
      ...
      <task>
        <message>
          ......
        </message>
        <actions>
          <action page-id="Case_viewHome" principal-action="true">
            .....
          </action>
        </actions>
        <task-priority>
          <mapped-priority>
            <wdo-attribute wdo-name="WorkflowTestWDO" 
                           name="taskPriority"/>
          </mapped-priority>
        </task-priority>
        .....
      </task>
      ...
    </manual-activity>

initial-comment
This allows an initial comment mapping to be specified for the manual task. The value of the workflow
data object attribute that is used in this mapping is used to place a record in the TaskHistory table
when the associated manual activity is run.

Validations

• A subject must be defined for the manual activity task. This is a localizable string.
• All of the workflow data objects that are used as subject text parameters in the manual activity task

subject message must be valid workflow data object attributes in the context of the containing workflow
process definition.

• If an indexed item from a list workflow data object (that is, PersonDetailsList[Context_Loop.loopCount])
is used as a subject text parameter, then the workflow data object must be a list workflow data object
and the activity that contains the mapping must be contained within a loop.

• If the Context_Parallel workflow data object is used as a subject text parameter, then the activity
that contains the mapping must be a Parallel manual activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a subject text parameter, then
the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• If actions are specified for the manual activity task, any workflow data object attributes used as
mappings for action text parameters must be valid in the context of the containing workflow process
definition.

• If actions are specified for the manual activity task, any workflow data object attributes used in the
action link parameter mappings of a manual activity action must be valid in the context of the containing
workflow process definition.

• If an indexed item from a list workflow data object (that is, PersonDetailsList[Context_Loop.loopCount])
is used in the action text or action link parameter mappings, then the workflow data object must be a
list workflow data object and the activity that contains the mapping must be contained within a loop.

• If the Context_Parallel workflow data object is used in the action text or action link parameter
mappings, then the activity that contains the mapping must be a Parallel manual activity.

• If an indexed item from the Parallel List Workflow Data Object is used in the action text or action link
parameter mappings, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• The number of placeholders that are used in the subject text and action text of the manual activity task
must equal the number of mapped workflow data object attributes for all the locales defined.

• The priority of a manual task can be specified by using a codetable code value or a workflow data object
attribute mapping, but not both.

Cúram Workflow Reference  49



• If a mapped priority is specified for the manual activity task, the workflow data object attribute that is
specified for it must be valid in the context of the containing workflow process definition. It must also be
of type STRING.

• If an initial comment mapping is specified for the manual activity task, the workflow data object
attribute that is specified for it must be valid in the context of the containing workflow process
definition. It must also be of type STRING.

• The workflow data object specified for use in the multiple occurring action must be a valid workflow
data object in the context of the containing workflow process definition. It must also be a list workflow
data object.

• At least one attribute from the multiple occurring action list workflow data object must be used in the
link parameters that are specified for a multiple occurring action.

Code
Action Pages and Action Page Parameters

The actions that are specified for the manual activity task are links to Cúram application pages where
the work required to complete the task can be performed. The pages that are specified in the task
actions must be valid Cúram pages and must be available in the Cúram application. The parameters in
these pages must match the parameters that are specified as action link parameters in the associated
task actions.

LocalizableStringResolver TaskStringResolver API
The task subject and associated task action messages are displayed in the user's inbox to inform
them of the work that is required to be completed for the associated task. The
LocalizableStringResolver.TaskStringResolver API contains the functions to resolve both
the task subjects and action messages for the correct user locale. The replacement of the
placeholders with the associated workflow data object attribute values that are specified in the
associated mappings is also carried out as part of these functions.

Task Admin API
A number of functions are provided on the TaskAdmin class to allow the manipulation of tasks. For
further details of the functions available, see the associated Javadoc specification for the TaskAdmin
class.

Task History Admin API
Various lifecycle events for a task (that is, when a task is created; when a task is allocated; when a
task is closed) are written to the TaskHistory table during the lifetime of a task. A number of search
functions are provided on this API class to allow these entries to be examined. For further details of
the functions available, see the associated Javadoc specification for the TaskHistoryAdmin entity.

Workflow Deadline Admin API
A number of functions are provided on the WorkflowDeadlineAdmin class to allow the
manipulation of workflow deadlines. For further details of the functions available, see the associated
Javadoc specification for the WorkflowDeadlineAdmin class.

Runtime Information

When a manual activity is run by the workflow engine, a task is created and is allocated to an agent to
perform that work (see “Allocation strategy” on page 51).

Description of Context WDOs
The Context_Task workflow data object allows the unique identifier of the task that is created as part of
the execution of the associated manual activity to be available for use in the various metadata mappings
that are associated with a manual activity.

Examples of some of these mappings include event match data mappings (see “List of events” on page
36) and deadline function input mappings (see “Deadline” on page 39). The one attribute available on this
workflow data object is:

50  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Context_Task.taskID
The taskID attribute represents the unique identifier of the task that is created when the associated
manual activity is run.

Allocation strategy
An organization typically has many human agents at various levels of responsibility that can perform work
for a process definition. To select a specific agent or group of agents that can do the work for a specific
manual activity, an allocation strategy is assigned to the activity. There are four types of allocation
strategies that are currently supported by Cúram workflow: function, Classic rules, Cúram Express rules
(CER), and target.

When an allocation strategy of type target is selected, the agent or group of agents to assign the work to
are named directly. Selecting a function allocation strategy results in the invocation of the specified
allocation function when the associated activity is run by the workflow engine. Finally, if a classic or
Cúram Express rules (CER) allocation strategy is selected, the specified ruleset is run when the associated
activity is run.

Prerequisites
If the allocation strategy that is associated with a manual activity is of type Function, these allocation
functions are Cúram business methods with a specific signature.

The input mappings for the formal parameters of these methods and their associated metadata are
described in “Automatic” on page 25. Therefore, this is referenced for a description of these mappings.

Metadata
As described previously, there are four types of allocation strategies. The required metadata for each of
these types is described in the following sections.
allocation-strategy

This contains the details of the allocation strategy that is defined for the manual task. The following
fields that are associated with an allocation strategy are described here:
type

This contains the type of the allocation strategy. The four types of allocation strategies that are
currently supported by Cúram workflow are function, classic rules, CER rules, and target.

identifier
This represents the identifier of the allocation strategy. For an allocation strategy of type function,
this identifier represents the fully qualified name of the allocation function that is used. For an
allocation strategy of type rule or curam express rule, this identifier represents the identifier of the
ruleset that is used. Finally, when an allocation strategy of type target is selected, this identifier
represents the identifier of the allocation target that is used.

Cúram Workflow Reference  51



Function Allocation Strategy
<manual-activity id="1" category="AC1">
      ...
      <task>
        ...       
      </task>
      <allocation-strategy  
        identifier="curam.core.sl.intf.
          WorkflowAllocationFunction.manualAllocationStrategy"
        type="function">
        <function-mappings>
          <formal-parameters>
            <formal-parameter index="0">
              <base-type type="INT32">
                <wdo-attribute wdo-name="Context_Task" 
                               name="taskID"/>
              </base-type>
            </formal-parameter>
            <formal-parameter index="1">
              <base-type type="INT64">
                <wdo-attribute 
                  wdo-name="Context_RuntimeInformation" 
                  name="processInstanceID"/>
              </base-type>
            </formal-parameter>          
            <formal-parameter index="2">
              <struct type="curam.struct.TaskDetails">
                <field name="taskID">
                  <base-type type="INT64">
                    <wdo-attribute wdo-name="Context_Task" 
                                   name="taskID"/>
                  </base-type>
                </field>
                <field name="category">
                  <base-type type="STRING">
                    <wdo-attribute wdo-name="TaskCreateDetails" 
                                   name="category"/>
                  </base-type>
                </field>
              </struct>
            </formal-parameter>
            <formal-parameter index="3">
              <struct type="curam.struct.PersonDetails">
                <field name="identifier">
                  <base-type type="INT64">
                    <wdo-attribute wdo-name=
                      "PersonDetailsList[Context_Loop.loopCount]" 
                                   name="identifier"/>
                  </base-type>
                </field>
                <field name="fullName">
                  <base-type type="STRING">
                    <wdo-attribute wdo-name=
                      "PersonDetailsList[Context_Loop.loopCount]" 
                                   name="fullName"/>
                  </base-type>
                </field>
              </struct>
            </formal-parameter>            
          </formal-parameters>
        </function-mappings>
      </allocation-strategy>
      <event-wait>
        ...
      </event-wait>
    </manual-activity>

function-mappings
This contains the details of the input mappings for the formal parameters of the specified allocation
function. Allocation functions are Cúram business methods (similar to those that are specified for
automatic activities) that have a distinct return signature (allocation functions must have a return type
of curam.util.workflow.struct.AllocationTargetList). Therefore, the metadata that is
used for these mappings are the same as those used for the input mappings for the business process
object methods that are associated with automatic activities. The reader can refer to the “Input
Mappings” on page 27 section of the automatic activity chapter for further details of this metadata
and it's meaning.

52  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Classic Rules Allocation
<manual-activity id="1" category="AC1">
      ...
      <task>
        ...       
      </task>
      <allocation-strategy type="rule" 
                           identifier="PRODUCT_1">
        <ruleset-mappings>
          <rdo-mapping>
            <source-attribute wdo-name="TaskCreateDetails" 
                              name="caseID" />
            <target-attribute rdo-name="TaskDetails" 
                              name="caseID" />
          </rdo-mapping>
          <rdo-mapping>
            <source-attribute wdo-name="TaskCreateDetails" 
                              name="concernRoleID" />
            <target-attribute rdo-name="TaskDetails" 
                              name="concernRoleID" />
          </rdo-mapping>
        </ruleset-mappings>
      </allocation-strategy>
      <event-wait>
        ...
      </event-wait>
      ...
    </manual-activity>

ruleset-mappings
This contains the details of all the mappings for the ruleset specified in the allocation identifier. It is
not required to map all of the rules data object attributes specified in the ruleset (mappings for a
subset of them may be created).

rdo-mapping
This contains the details of one mapping between a rules data object attribute that is specified in the
allocation ruleset and its associated workflow data object attribute. The following metadata constitute
a valid mapping:
source-attribute

This contains the details of the source attribute in the mapping (that is, where the data is provided
from at runtime). A source attribute consists of a workflow data object name and its associated
attribute name (see “Workflow Data Objects” on page 12).

target-attribute
This contains the details of the target attribute in the mapping (that is, where the data is mapped
into at runtime). A target attribute consists of a rules data object name and its associated attribute
name.

Cúram Workflow Reference  53



CER Rules Allocation
<manual-activity id="1" category="AC1">
      ...
      <task>
        ...       
      </task>
      <allocation-strategy type="curam express rule" 
                           identifier="Sample Allocation Rules">
        <cer-set-mappings primary-class="SampleAllocationClass">
          <cer-class-mapping>
            <source-attribute wdo-name="TaskCreateDetails" 
                              name="caseID" />
            <target-attribute cer-class-name="SampleAllocationClass" 
                              name="caseID" />
          </cer-class-mapping>
          <cer-class-mapping>
            <source-attribute wdo-name="TaskCreateDetails" 
                              name="subject" />
            <target-attribute cer-class-name="RuleClassA" 
                              name="subject" />
          </cer-class-mapping>
          <cer-class-mapping>
            <source-attribute wdo-name="ListTaskDetails" 
                              name="employerIDs" />
            <target-attribute cer-class-name="RuleClassA" 
                              name="listOfEmployerIDs" />
          </cer-class-mapping>          
          <cer-class-mapping>
            <source-attribute wdo-name="ListTaskDetails" 
                              name="concernRoleID" />
            <target-attribute cer-class-name="SampleAllocationClass" 
                              name="listConcernRoleIDs" />
          </cer-class-mapping>
          <cer-class-mapping>
            <source-attribute wdo-name="ListTaskDetails" 
                              name="participantIDs" />
            <target-attribute cer-class-name="SampleAllocationClass.listRuleClassB.RuleClassB" 
                              name="participantIDs" />
          </cer-class-mapping>          
        </cer-set-mappings>
      </allocation-strategy>
      <event-wait>
        ...
      </event-wait>
      ...
    </manual-activity>

cer-set-mappings
This contains the details of all the mappings for the CER rule set specified in the allocation identifier.
The primary-class metadata tag must point to a CER rule class that contains an attribute called
targets. This is required as the workflow engine uses an attribute of this name to determine the list of
allocation targets for the specified allocation strategy. Mappings must be created for all of the
attributes that are marked as specified in all of the CER rule classes that are used for the allocation
strategy.

cer-class-mapping
This contains the details of one mapping between a rule class attribute that is specified in the CER
rule set and its associated workflow data object attribute. One of these mappings must exist for each
CER rule class attribute that is marked as specified being used in the allocation strategy. The following
metadata constitutes a valid mapping:
source-attribute

This contains the details of the source attribute in the mapping (that is, where the data is provided
from at runtime). A source attribute consists of a workflow data object name and its associated
attribute name (see “Workflow Data Objects” on page 12). Attributes of list workflow data objects
can also be used here if the mapping that is created is related to a CER rule class attribute list
type.

target-attribute
This contains the details of the target attribute in the mapping (that is, where the data is mapped
into at runtime). A target attribute consists of a CER class name and its associated attribute name.
Some but not all CER rule class attribute types are supported for use in allocation strategy

54  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



mappings. The supported types include String, Boolean, Number, Date and DateTime. A list of rule
classes can also be specified as well as lists of the base types that are outlined previously.

Target Allocation Strategy
<manual-activity id="1" category="AC1">
      ...
      <task>
      ...
      </task>      
      <allocation-strategy type="target" 
                           identifier="HEARINGSCHEDULER"/>
      <event-wait>
      ...
      </event-wait>
      ...
    </manual-activity>

No further metadata is required to describe an allocation strategy of type target. As stated previously, the
identifier in this case is the identifier of the allocation target that contains the agent or group of agents
that the task is assigned to.

Validations

• An allocation strategy must be defined for a manual task.
• If the allocation strategy is of type function, the function that is specified must be a valid and must exist

on the Cúram application classpath.
• If the allocation strategy is of type function, the return type of the function must be
curam.util.workflow.struct.AllocationTargetList.

• If the allocation strategy is of type function, any of the input parameters of the specified function that
are mapped must be to valid workflow data object attributes and the type of the workflow data object
attribute must match the type of the input parameter field.

• If the allocation strategy is of type function and an indexed item from a list workflow data object is used
in an input mapping, then the workflow data object must be a list workflow data object and the activity
that contains the mapping must be contained within a loop.

• If the allocation strategy is of type classic or CER rule, the specified ruleset must be valid.
• If the allocation strategy is of type CER rule, a primary CER rule class name must be specified.
• If the allocation strategy is of type CER rule, the specified primary CER rule class must exist in the
specified CER ruleset.

• If the allocation strategy is of type CER rule, the specified primary CER rule class must extend the
required abstract Workflow Allocation CER rule class.

• If the allocation strategy is of type CER rule, the specified primary CER rule class must contain an
attribute that is named targets.

• If the allocation strategy is of type CER rule, if CER rule classes other than the primary CER rule classes
are specified in the input mappings, then the CER primary class must contain attributes that refer to
those classes, one for each class.

• If the allocation strategy is of type CER rule, all of the source attributes specified in the mappings must
be valid workflow data object attributes in the context of the containing workflow process definition. All
of the target attributes must be valid CER class attributes in the context of the specified ruleset. The
type of the workflow data object attribute that is specified as the source attribute must match the type
of the CER class attribute that is specified as the target attribute in the mapping.

• If the allocation strategy is of type CER rule, no duplicate target attribute mappings are allowed. In
other words, a CER rule class attribute can be specified only once in any list of CER class mappings.

• If the allocation strategy is of type CER rule, all of the attributes that are marked as specified for all of
the CER rules classes that are used for the allocation strategy must contain an input mapping. CER class
attributes that are not marked as specified must not contain an input mapping.

• If the allocation strategy is of type classic rule, all of the source attributes specified in the mappings
must be valid workflow data object attributes in the context of the containing workflow process

Cúram Workflow Reference  55



definition. All of the target attributes must be valid rules data object attributes in the context of the
specified ruleset. The type of the workflow data object attribute that is specified as the source attribute
must match the type of the rules data object attribute that is specified as the target attribute in the
mapping.

• If the allocation strategy is of type classic rule, no duplicate target attribute mappings are allowed. In
other words, a rules data object attribute can be specified only once in any list of ruleset mappings.

• If an indexed item from a list workflow data object (i.e. PersonDetailsList[Context_Loop.loopCount]) is
used in the function, classic rule, or CER rule allocation strategy mappings, then the workflow data
object must be a list workflow data object and the activity that contains the mapping must be contained
within a loop.

• If the Context_Parallel workflow data object is used in the function, classic or CER rule allocation
strategy mappings, then the activity that contains the mapping must be a Parallel activity.

• If an indexed item from the Parallel List Workflow Data Object is used in the function, classic or CER rule
allocation strategy mappings, then the activity that contains the mapping must be a Parallel Activity
(that is, ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed
by the Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

Code
As stated previously, any business process object method that is specified as an allocation function must
return a structure of type curam.util.workflow.struct.AllocationTargetList.

As is the case with business methods that are associated with automatic activities, a failure of the
allocation function when a manual activity is run causes the Workflow Error Handling strategy to be
started. This can cause, for example, the activity that is associated with the failed method to be retried a
number of times. Based on this fact the allocation functions associated with the allocation strategies of
manual or decision activities should in general not throw exceptions unless an unrecoverable situation
occurs.

The application must implement the curam.util.workflow.impl.WorkResolver callback interface
to determine how tasks are allocated in the application. The application property
curam.custom.workflow.workresolver must refer to the curam.util.workflow.impl.WorkResolver
implementation class in the application as the workflow engine uses this property to determine the
correct function to allocate the task.

The curam.util.workflow.impl.WorkResolver class has an overloaded method resolveWork
because the various allocation strategy types return the allocation targets in different formats. However,
this is an implementation detail that developers of custom work resolver classes must not deal with
especially since the business processing for all versions of the method should be the same.
package curam.util.workflow.impl;
      
      ...
      
      public interface WorkResolver {
      
        void resolveWork(
          final TaskDetails taskDetails,
          final Object allocationTargets,
          final boolean previouslyAllocated);
      
        void resolveWork(
            final TaskDetails taskDetails,
            final Map allocationTargets,
            final boolean previouslyAllocated);
      
        void resolveWork(
            final TaskDetails taskDetails,
            final String allocationTargetID,
            final boolean previouslyAllocated);
            
            ...
      }

To mitigate this issue the curam.core.sl.impl.DefaultWorkResolverAdapter provides a more
convenient mechanism for implementing a work resolver. This class implements the different methods
and converts their input parameters into allocation target lists allowing developers of custom work

56  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



resolution logic to extend this class and implement one method that is called regardless of the source of
the allocation targets.
package curam.core.sl.impl;
      
      ...
      
      public abstract class DefaultWorkResolverAdapter
        implements curam.util.workflow.impl.WorkResolver {
      
        public abstract void resolveWork(
          final TaskDetails taskDetails,
          final AllocationTargetList allocationTargets,
          final boolean previouslyAllocated);
            
            ...
      }

In addition to this adapter class, the application comes with a work resolver implementation that is used
immediately after first use. This class is called curam.core.sl.impl.DefaultWorkResolver and it
also serves as an example of how to extend the adapter.

Runtime Information
When a manual activity is run, the workflow engine processes the allocation strategy that is defined in the
metadata to retrieve the list of allocation targets for that task.

If the allocation strategy is of type function, the workflow engine processes the input mappings that are
defined for the associated allocation function and starts it to retrieve the list of allocation targets.

If the allocation strategy is of type classic rule, the workflow engine processes the mappings for the
specified ruleset and calls the rules engine to run the ruleset to retrieve the list of allocation targets.

If the allocation strategy is of type CER rule, the workflow engine processes the CER class mappings that
are specified for the allocation strategy. The data from the workflow data object attributes is mapped into
the corresponding CER class rule attributes. The primary class is then retrieved and the targets attribute is
queried to retrieve the list of allocation targets.

If the allocation strategy is of type target, the allocation target is the one specified in the metadata and no
further processing is required.

As described in the metadata for a workflow process (see “Process Definition Metadata” on page 10), a
failure allocation strategy can be specified for a process. This strategy is processed and used if the
invocation of the allocation strategy that is associated with the task results in no allocation targets being
returned.

The workflow engine then uses the curam.custom.workflow.workresolver property to determine the
implementation of the function that is used to allocate tasks in the application. This function is then called
by the workflow engine passing to it the list of allocation targets as determined by the allocation strategy
and also details of the task to be allocated.

After the work resolver is called for the task, the workflow engine makes a call to the method
checkTaskAssignment in the curam.core.sl.impl.TaskAssignmentChecker class. This function
checks the assignment status of the task (that is, to ensure that it is assigned to at least one user or
organizational object (organization unit, position, or job) or to a work queue). If the task is not assigned,
the application property curam.workflow.defaultworkqueue is examined to see what is specified as the
default work queue for workflow. The task is then assigned to that work queue.

If the task is assigned to one user and only one user after the work is resolved, the system checks the
value of the application property curam.workflow.automaticallyaddtasktousertasks. This flag controls
whether the system automatically adds the specified task being processed to the list of that user's tasks
to allow them to work on it. The default value for the property is NO but if it is specified as YES, then the
system automatically adds that task to the user's My Tasks list in their Inbox to allow them to work on it.

Cúram Workflow Reference  57



Description of Context WDOs
The Context_Task workflow data object is available for both allocation function, classic and CER ruleset
mappings. This context workflow data object and its attribute are already described here.

See “Description of Context WDOs” on page 50.

Business Object Associations
Manual activities, and indeed workflow in general, perform operations on entities that exist in the
application. For this reason, it can be useful to associate a task with the entities that are related to it for
that process. Business object associations essentially provide links between a task and any application
entities of interest for that process. The quintessential examples in Cúram include the Case and Concern
entities.

Metadata
<manual-activity id="1" category="AC1">
      ...
      <task>
        ...
      </task>      
      <allocation-strategy type="target" 
                           identifier="1"/>
      <event-wait>
        ...
      </event-wait>
      <biz-object-associations>
        <biz-object-association biz-object-type="BOT1">
          <wdo-attribute wdo-name="TaskCreateDetails" 
                         name="caseID"/>
        </biz-object-association>
        <biz-object-association biz-object-type="BOT2">
          <wdo-attribute wdo-name=
            "PersonDetailsList[Context_Loop.loopCount]" 
                         name="identifier"/>
        </biz-object-association>
      </biz-object-associations>
    </manual-activity>

biz-object-associations
This tag contains the details of all the business object associations that are specified for the manual
activity.

biz-object-association
This tag contains the details of one business object association that are specified for that manual
activity. This includes the business object type and the workflow data object attribute mapping that is
associated with that type. This workflow data object attribute mapping represents the unique
identifier of the business object in the association (that is, for a business object association of type
Case, this would represent the unique identifier of the case that is linked to the task).
biz-object-type

This tag details the actual business object type for the business object association for the manual
activity. The business object type must be selected in the Process Definition Tool and is taken from
the BusinessObjectType code-table.

Validations

• The business object type that is specified must be a valid codetable code that is contained within the
BusinessObjectType codetable.

• The workflow data object attribute mapped to the business object type of a manual activity business
object association must be valid. This attribute type must be assignable to a type LONG as this attribute
represents a mapping to a unique identifier (for example, a case identifier or participant identifier).

• If an indexed item from a list workflow data object (that is, PersonDetailsList[Context_Loop.loopCount])
is used in a business object association mapping, then the workflow data object must be a list workflow
data object and the activity that contain the mapping must be contained within a loop.

• If the Context_Parallel workflow data object is used in a business object association mapping, then
the activity that contains the mapping must be a Parallel manual activity.

58  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



• If an indexed item from the Parallel List Workflow Data Object is used in a business object association
mapping, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

Code
Business Object Association Admin API

A number of functions are provided on the BusinessObjectAssociationAdmin class to allow the
manipulation of business object associations. For further details of the functions available, see the
associated Javadoc specification for the BusinessObjectAssociationAdmin class.

Runtime Information
Business object associations have no functional impact on the execution of a manual activity. The
workflow engine examines the metadata and places a record on the BizObjAssociation entity for each
business object association specified. The business object type, the value of the workflow data object
attribute mapping and the identifier of the newly created task that is associated with the manual activity
are all used in this record creation.

Event Wait
Since a manual activity requires some action to be taken by a user before it can be completed and the
process can continue, there must be some way to notify the workflow engine when the work required is
performed. Since this semantic is similar to that of the event wait activity the event wait mechanism is
reused for manual activities.

Prerequisites

The details of an event wait and its associated metadata (which are also applicable to a manual activity)
can be found in “Event Wait” on page 36.

Description of Context WDOs
The Context_Task workflow data object is available for use in the input mappings for deadline functions
that are associated with the event wait of a manual activity. It is available for the input mappings that are
associated with allocation function, classic, or CER rule input mappings. It is also available to use as a
mapping for the event match data of a specified event wait associated with a manual activity.

This context workflow data object and its attribute are already described here (see “Description of
Context WDOs” on page 50).

Decision
A typical requirement in business processes is to have a human agent make decisions that have simple
answers. An example of such a decision is to approve or reject a case or to supply some simple
information such as the age of the claimant. Using manual activities to solicit such information would
require that a different user interface screen for each question be available in the application. This is
cumbersome and since process definitions can change over time, such user interface screens would be
somewhat temporary.

The Decision activity is a specialization of a Manual activity that drives a metadata driven user interface
for asking simple questions. The questions and possible answers are in the activity metadata thus
allowing a single user interface to be used for a wide range of questions. Two types of questions are
currently supported. These are multiple choice type questions and questions that require an answer that
can be supplied in one field on the user interface.

Prerequisites
• The base details common to all the activity types that are supported by Cúram workflow are described

in “Base Activity” on page 23 and are applicable to the decision activity described here.

Cúram Workflow Reference  59



• The workflow metadata constructs are common between manual activities and decision activities (that
is, allocation strategy, task subject, task deadline, and so on). The details of these can be found in
“Manual” on page 45.

Task Details
Decision activities notify users that they are required to do some work, and assign a task to them based
on the allocation strategy defined.

This activity is similar to a “Manual” on page 45. The task automatically links to a user interface page in
the application that assembles the decision question from the decision activity question metadata and
moves the workflow forward after the decision answer is provided. Therefore, a decision activity can have
only one associated task action and requires no action page to be defined for that action.

In addition to the task action, a decision activity can have zero or more secondary actions that are
associated with it. Secondary actions contain a link to a page, which can provide supplementary
information to help the user answer the decision question.

60  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Metadata
<decision-activity id="1">

    ...

      <allocation-strategy type="target" identifier="1" />
      <message>
        <message-text>
          <localized-text>
            <locale language="en">
            Decide the age of the user %1s for Case %2n.</locale>
          </localized-text>
        </message-text>
        <message-parameters>
          <wdo-attribute wdo-name="TaskCreateDetails" 
            name="userName" />
          <wdo-attribute wdo-name=
            "CaseList[Context_Loop.loopCount]" 
            name="identifier" />            
        </message-parameters>
      </message>
      <decision-action>
        <message>
          <message-text>
            <localized-text>
              <locale language="en">
              Participant Home Page %1n for Case %2n.
              </locale>
            </localized-text>
          </message-text>
          <message-parameters>
            <wdo-attribute wdo-name="TaskCreateDetails" 
              name="concernRoleID" />
            <wdo-attribute wdo-name=
              "CaseList[Context_Loop.loopCount]" 
              name="identifier" />              
          </message-parameters>
        </message>
      </decision-action>
      <secondary-actions>
        <secondary-action page-id="Case_viewDetails">
          <message>
            <message-text>
              <localized-text>
                <locale language="en">View case details.</locale>
              </localized-text>
            </message-text>
          </message>
        </secondary-action>
        <secondary-action page-id="Case_viewUserDetails">
          <message>
            <message-text>
              <localized-text>
                <locale language="en">View details for user %1s.
                </locale>
              </localized-text>
            </message-text>
            <message-parameters>
              <wdo-attribute wdo-name=
                "ChildDependents[Context_Loop.loopCount]" 
                name="userName" />
            </message-parameters>
          </message>
          <link-parameter name="userName">
            <wdo-attribute wdo-name="ChildDependents" 
              name="childName" />
          </link-parameter>
          <multiple-occurring-action>
        <list-wdo-name>ChildDependents</list-wdo-name>
          </multiple-occurring-action>
        </secondary-action>
      </secondary-actions>
      <deadline>

    ...
    
      </deadline>
    </decision-activity>

Cúram Workflow Reference  61



allocation-strategy
This tag describes the allocation strategy that is used to determine the user who is assigned to the
associated task. For details on allocation strategies, see “Allocation strategy” on page 51.

message
This tag represents the parameterized subject message of the task created. For full details on
parameterized messages, see “Manual” on page 45.

decision-action
This tag represents the parameterized action text message that is associated with the task. The user
clicks this action text to open the auto-generated user interface decision screen with the relevant
question.

deadline
This tag describes the deadline details for the decision activity. If an answer is not provided for the
decision activity within the deadline duration that is specified, the associated deadline handler
method is started. For more details on deadlines, see “Deadline” on page 39.

secondary-actions
This tag describes any optional secondary actions, which can be included with the decision activity.
secondary-action

A secondary action contains a parameterized message and a parameterized link to supporting
information to help the user answer the decision question. For details of parameterized messages
and parameterized links within actions, see “Metadata” on page 46
page-id

This tag represents the identifier of the target Cúram page, which contains the supplementary
information that is linked to by the secondary action.

multiple-occurring-action
This tag signifies that this secondary action represents a multiple occurring action. This means
that if this metadata is specified for a secondary action, the workflow engine creates one
secondary action record for each item in the list workflow data object specified as the multiple
occurring action, when that activity is run.

If the multiple occurring action is specified for a secondary action, then an attribute from the
associated list workflow data object must be used as a link parameter for the secondary
action.

list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

Validations

• An activity subject must be defined.
• Every workflow data object attribute mapped to the decision activity subject must be a valid workflow

data object attribute.
• If an indexed item from a list workflow data object (that is, CaseList[Context_Loop.loopCount]) is used

as a decision subject text parameter, then the workflow data object must be a list workflow data object
and the activity that contains the mapping must be contained within a loop.

• If the Context_Parallel workflow data object is used as a decision subject text parameter, then the
activity that contains the mapping must be a Parallel decision activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a decision subject text
parameter, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• The number of placeholders that are used in the subject text and action text must equal the number of
mapped workflow data object attributes (for all locales).

• If an indexed item from a list workflow data object (that is, CaseList[Context_Loop.loopCount]) is used
as a decision task action text parameter, then the workflow data object must be a list workflow data
object and the activity that contains the mapping must be contained within a loop.

62  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



• If the Context_Parallel workflow data object is used as a decision action text parameter, then the
activity that contains the mapping must be a Parallel decision activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a decision action text
parameter, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• An allocation strategy must be defined.
• The allocation target, function, classic, or CER rule set specified as an allocation strategy must be valid.

If the allocation type is function, it must be a valid Cúram business method and must exist on the
application classpath. If the allocation type is classic or CER rule, it must be a valid ruleset.

• The optional deadline handler, if specified, must be a valid Cúram business method.
• All deadline handler input mappings must be valid. This means that all the input parameter fields that

are required by the specified method are mapped to valid workflow data object attributes of the correct
type.

• Each secondary action must have a page link that is specified, which cannot contain white spaces.
• Each secondary action must have a message that is specified.
• Secondary action message text must contain a number of placeholders equal to the number of message

parameters specified.
• Secondary action message parameters must be mapped to valid workflow data object attributes of the

correct type.
• Secondary action page link parameters must be mapped to valid workflow data object attributes.
• If an indexed item from a list workflow data object (that is, ChildDependents[Context_Loop.loopCount])

is used in the secondary action text or secondary action link parameter mappings, then the workflow
data object must be a list workflow data object and the activity that contains the mapping must be
contained within a loop.

• If the Context_Parallel workflow data object is used in the secondary action text or secondary
action link parameter mappings, then the activity that contains the mapping must be a Parallel
decision activity.

• If an indexed item from the Parallel List Workflow Data Object is used in the secondary action text or
secondary action link parameter mappings, then the activity that contains the mappings must be a
Parallel Activity (that is, ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow
Data Object.

• The workflow data object specified for use in the multiple occurring action must be a valid workflow
data object in the context of the containing workflow process definition. It must also be of type List.

• At least one attribute from the multiple occurring action list workflow data object must be used in the
link parameters that are specified for a multiple occurring action.

Runtime Information
When a decision activity is run, the workflow engine creates the associated task. A snapshot of the
workflow data object data that is required for the decision activity subject and action text parameters, and
any secondary action message text and link parameters, is taken and stored. The allocation strategy that
is associated with the decision activity is started to determine the users who are assigned the decision
task.

The workflow engine also creates an event wait for the DECISION.MADE event with the associated task
identifier as the event match data. The workflow is then paused, awaiting the raising of this event, which
indicates the result of the decision made.

Question Details
The decision activity currently supports both multiple choice and free text questions as question formats.
The auto-generated decision page examines the question format that is required and generates the

Cúram Workflow Reference  63



relevant question from the question metadata when the user clicks the action that is associated with the
task.

Metadata

Multiple Choice
<decision-activity id="1">

    ...

      <question>
        <message>
          <message-text>
            <localized-text>
              <locale language="en">
              Is the claimant, %1s, for Case %2n, over 18?
              </locale>
            </localized-text>
          </message-text>
          <message-parameters>
            <wdo-attribute wdo-name="Participant" 
              name="userName" />
            <wdo-attribute wdo-name=
              "CaseList[Context_Loop.loopCount]" 
              name="identifier" />              
          </message-parameters>
        </message>
        <answers multiple-selection="false">
          <answer name="yesAnswer">
            <answer-text>
              <localized-text>
                <locale language="en">Yes</locale>
              </localized-text>
            </answer-text>
            <choice-output-mapping>
              <wdo-attribute wdo-name="DecisionResult"
                             name="ageBracket" />
              <selected-value>18-65/selected-value>
              <not-selected-value>0-17</not-selected-value>
            </choice-output-mapping>
          </answer>
          <answer name="noAnswer">
            <answer-text>
              <localized-text>
                <locale language="en">No</locale>
              </localized-text>
            </answer-text>
            <choice-output-mapping>
              <wdo-attribute wdo-name="DecisionResult"
                             name="ageBracket" />
              <selected-value>0-17</selected-value>
              <not-selected-value>18-65</not-selected-value>
            </choice-output-mapping>
          </answer>
        </answers>
      </question>

    ...

    </decision-activity>

question
This tag represents the question that is associated with the decision activity, which for a multiple
choice question contains the metadata that is outlined here.

message
This tag represents the parameterized text of the question to be asked for all locales.

answers
This tag represents a list of answers the user can choose from for the multiple choice question.
multiple-selection

This tag represents a flag that indicates if the user can select multiple answers from those
supplied, or whether only one can be selected.

64  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



answer
This tag represents an answer that the user can select. There must be at least one answer that is
supplied for a multiple choice question.

name
This tag represents the name of the answer. After the user selects an answer or answers, the names of
the selected answers are passed to the workflow engine and the process is progressed. As the engine
treats these answers similar to workflow data object attributes, answer names must be valid Java
identifiers.

answer-text
This tag represents the answer text that the user can select for all locales.

choice-output-mapping
This tag encloses the metadata that describes how the output from a multiple choice answer is
persisted.
wdo-attribute

The name of the workflow data object attribute used to store the value of the multiple choice
answer.

selected-value
If specified, the value in this element is persisted to the workflow data object attribute if that
answer is selected by the user. If the workflow data object attribute is a Boolean type this value
need not be specified, it gets a default value of true.

not-selected-value
If specified, the value in this element is persisted to the workflow data object attribute if that
answer is not selected by the user. If the workflow data object attribute is a Boolean type this
value need not be specified, it gets a default value of false.

Free Text
<decision-activity id="1">

    ...

      <question>
        <message>
          <message-text>
            <localized-text>;
              <locale language="en">
              What is the age of the claimant, %1s?
              </locale>
            </localized-text>
          </message-text>
          <message-parameters>
            <wdo-attribute wdo-name="Participant" 
              name="userName" />
          </message-parameters>
        </message>
        <free-text type="INT32">
          <wdo-attribute wdo-name="DecisionResult" 
            name="ageOfClaimant" />
        </free-text>
      </question>

    ...

    </decision-activity>

question
This tag represents the question that is associated with this decision activity, which for a free text
question contains the metadata that is outlined here.

message
This tag represents the parameterized text of the question to be asked for all locales.

free-text
This tag contains the details of the free text answer that the user must supply.

type
This tag represents the required data type of the free text answer that must be supplied.

Cúram Workflow Reference  65



wdo-attribute
This tag represents the workflow data object attribute that maps the free text answer back into the
workflow engine.

Validations

• The answer format and question text must be specified for a decision activity.
• The number of placeholders that are used in question text must equal the number of mapped workflow

data object attributes (for all locales).
• If an indexed item from a list workflow data object (that is, CaseList[Context_Loop.loopCount]) is used

as a question text parameter, then the workflow data object must be a list workflow data object and the
activity that contains the mapping must be contained within a loop.

• If the Context_Parallel workflow data object is used as a question text parameter, then the activity
that contains the mapping must be a Parallel decision activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a question text parameter, then
the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• For a question with a Free Form Text answer format, the answer data type must be specified and the
workflow data object attribute that is mapped must be valid and match the answer data type. The
workflow data object attribute that is mapped cannot be a constant workflow data object attribute.

• For a question with a List answer format, at least one answer option must be listed. All answer names
must be valid Java attribute names.

Runtime Information
When an answer for a decision activity question is supplied, the DECISION.MADE event is raised with the
task identifier of the decision activity task that is used as the event match data. The workflow event
handler processes this event and this causes the workflow process to be progressed.

If the answer supplied is a free text answer, it is mapped to the specified workflow data object attribute
for use later in the process where required.

Description of Context WDOs
The Context_Decision workflow data object is available for use in a data item or function condition.

See “Conditions” on page 85 for a transition from a decision activity. The attributes available depend on
the answer format that is defined for the activity.

Free Text Answer
If the answer format is a free text, answer the attribute available is:
Context_Decision.value

The value of the free text answer supplied. This can be used in transition conditions and can be
mapped to a specified workflow data object attribute.

Multiple Choice Answer
In this instance, the Context_Decision workflow data object is populated with attributes for each of
the answers available, each being of type Boolean. This indicates whether that answer is selected or
not. In the multiple choice answer metadata snippet here, (“Multiple Choice” on page 64, if the user
selected the first answer (Yes), this would be reflected with the following Context_Decision workflow
data object attribute that is set to true:
Context_Decision.yesAnswer

This represents a Boolean that indicates whether the yes answer for the question is selected. This
can be used only in transition conditions from the decision activity.

Alternatively, if the user selected the second answer (No), this would be reflected with the following
Context_Decision workflow data object attribute that is set to true:

66  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Context_Decision.noAnswer
This represents a Boolean that indicates whether the no answer for the question is selected. This
also can be used only in transition conditions from the decision activity.

Subflow
When a complex business process is designed, it might become too large to manage as one monolithic
process definition. A subflow activity allows another process definition to be enacted as part of another
process.

It can be a prudent decision to design process definitions as a set of subflows regardless of whether there
are concerns over size. This would allow sections of the business process to change without affecting
others. Also, the subflow processes might act as reusable components that customers can reuse in
building their own higher-order process definitions.

Prerequisites
• The base details common to all the activity types that are supported by Cúram workflow are described

in “Base Activity” on page 23 and are applicable to the subflow activity described here.

Subflow Process
To enact a process as a subflow, the subflow activity must identify the process that is enacted by name.
As with the other process enactment mechanisms, the released version of the process is the one that is
enacted.

Subflows can be enacted synchronously. This means that the branch of the parent workflow that contains
the subflow activity that started the subflow process waits for that subflow process to finish before
continuing.

Alternatively, a subflow can be enacted asynchronously. This means that after the subflow activity starts
the subflow process, the branch that contains that subflow activity continues immediately with the
outcome of the subflow process that has no effect on the parent process.

Metadata
<subflow-activity id="1">
    ...

    <subflow workflow-process="ApproveCase" synchronous="true"/>
      
    ...
  </subflow-activity>

subflow
workflow-process

The name of the workflow process to start when the activity is run. Process names are case-
sensitive and the process name that is specified here must exactly match that of the process to
start as a subflow.

synchronous
A flag to indicate whether the subflow is run synchronously or not (see: “Subflow Process” on
page 67) relative to its parent process.

Validations

• A workflow process for the subflow activity must be specified.
• The workflow process that is specified as the subflow must have at least one released version.

Cúram Workflow Reference  67



Input Mappings
Data is supplied to the subflow when it is enacted from the parent process workflow data objects. The
subflow activity defines the mapping between the parent process's workflow data objects and the
subflows enactment data.

Metadata
<subflow-activity id="1">      
    ...

    <input-mappings>
      <mapping>
        <source-attribute wdo-name="ManintainCase"
                          name="caseID" />
        <target-attribute wdo-name="ApproveCase"
                          name="caseID" />
      </mapping>
      <mapping>
        <source-attribute wdo-name="MaintainCase"
                          name="concernRoleID" />
        <target-attribute wdo-name="ApproveCase"
                          name="concernRoleID" />
      </mapping>
      <mapping>
        <source-attribute wdo-name=
                     "PersonDetailsList[Context_Loop.loopCount]"
                          name="identifier" />
        <target-attribute wdo-name="PersonDetails"
                          name="identifier" />
      </mapping>      
      <mapping>
        <source-attribute wdo-name="ChildDetailsList"
                          name="identifier" />
        <target-attribute wdo-name="ClaimantDependentList"
                          name="identifier" />
      </mapping>      
    </input-mappings>
  </subflow-activity>

input-mappings
This tag specifies how data is mapped from the currently running process to a subprocess as
enactment data when the subprocess is started. The process that is specified as a subflow cannot
have any workflow data object attributes that are marked as required at enactment in which case no
input mappings are required.

mapping
A mapping represents the data that is pushed from a workflow data object attribute to an attribute in
the process that is enacted as a subflow. If a list of data is required to enact the subflow process,
attributes from list workflow data objects can be used for this purpose. The number of mappings that
are specified is governed by how many attributes are marked as required at enactment in the subflow
process, since all such attributes must be populated when the process starts.

source-attribute
This tag represents a workflow data object attribute from the parent process to use to populate the
associated attribute in the subflow when it is enacted.

target-attribute
This tag represents a workflow data object attribute from the subflow to be populated with data from
the associated attribute in the parent process at enactment time.

source/target-attribute
wdo-name

This tag represents the name of a Cúram workflow data object as described in “Workflow Data
Objects” on page 12).

name
This tag represents the name of a Cúram workflow data object attribute as described in “Workflow
Data Objects” on page 12).

68  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Validations

• Every workflow data object attribute that is marked as required for enactment in the subflow must be
specified in the input mappings. If no workflow data object attributes are marked as required for
enactment in the subflow process, then no input mappings are specified.

• The data type of the workflow data object attribute that is specified by the target-attribute tag
must match or be assignable from the attribute that is specified by the source-attribute tag.

• If an indexed item from a list workflow data object (that is, PersonDetailsList[Context_Loop.loopCount])
is specified in the source-attribute tag of the subflow input mapping, then that workflow data
object must be a list workflow data object and the subflow activity that contains the input mapping must
be contained within a loop. The data type of the workflow data object attribute that is specified by the
target-attribute tag must match or be assignable from the attribute that is specified by the
source-attribute tag.

• If the specified subflow input mapping uses a list workflow data object, then the workflow data object
attributes for both the parent source-attribute and subflow process target-attribute must be
list workflow data objects.

Output Mappings
Output Mappings are only applicable to synchronous subflow activities as asynchronous subflows can
continue without completing the activity. Data is supplied to the parent process from the subflow activity
after it completed. The subflow activity defines the mapping between a subflow workflow data object
attribute and the parent process's workflow data object attribute.

Metadata
<subflow-activity id="1">      
  ...
    
    <output-mappings>
      <mapping>
        <source-attribute wdo-name="SubflowCaseWDO"
                              name="participantName" />
        <target-attribute wdo-name="CaseWDO"
                              name="participantName" />
      </mapping>
      <mapping>
        <source-attribute wdo-name="SubflowChildDetailsList"
                          name="identifier" />
        <target-attribute wdo-name="ChildDetailsList"
                          name="identifier" />
      </mapping>      
    </output-mappings>
        
  ...
  </subflow-activity>

output-mappings
This tag specifies how data is mapped from the started subprocess to the parent process when the
subprocess is completed. The process that is specified as a subflow cannot have any output mappings
that are defined, in which case the subflow completes as normal.

mapping
This tag represents the data that is pushed from a subflow workflow data object attribute to an
attribute in the parent process. If a list of data is being pushed from the subflow process to the parent
process, attributes from list workflow data objects can be used for this purpose. The number of
mappings that are specified is governed by the number of output mappings specified.

source-attribute
This tag represents a workflow data object attribute from the subflow process, which is used to
populate the associated attribute in the parent process upon completion.

target-attribute
This tag represents a workflow data object attribute from the parent to be populated with data from
the associated attribute in the subflow process when completed.

Cúram Workflow Reference  69



source/target-attribute
wdo-name

This tag represents the name of a Cúram workflow data object (as described in “Workflow Data
Objects” on page 12).

name
This tag represents the name of a Cúram workflow data object attribute (as described in
“Workflow Data Objects” on page 12).

Validations

• The parent target-attribute and subflow source-attribute workflow data object attributes
used in the subflow output mapping must be valid within the context of the containing process
definition.

• The data type of the workflow data object attribute that is specified by the parent target-attribute
tag must match or be assignable from the attribute that is specified by the subflow source-
attribute tag.

• If the specified subflow output mapping uses a list workflow data object, then the mapped workflow
data object attributes for both the parent target-attribute and subflow process source-
attribute must be of type list.

Loop Begin and Loop End
Many business processes are required to repeat until some condition is met. In Cúram, this is
implemented by using the loop-begin and loop-end activities. All activities that are between a loop-begin
and its associated loop-end activity are repeated until the loop completes.

Prerequisites
• The base details common to all the activity types that are supported by Cúram workflow are described

in “Base Activity” on page 23 and are applicable to the loop begin/loop end activities described here.

Overview
In a process definition, loop begin and loop end activities come in pairs, and the metadata allows each
loop-begin to know its associated loop-end and vice versa. To add a sequence of activities to a loop, a
transition is created from the loop-begin activity to the first activity to be repeated. Subsequent activities
in the sequence are linked by using transitions as would normally be done outside a loop; however, the
last activity in the sequence has a transition to the loop-end activity. A common impulse is to also add a
transition from the loop-end activity to the start to create the cycle; however, this is incorrect and results
in an invalid process definition.

A loop must also specify the criteria that the loop uses to determine whether to terminate. To support
this, a loop in Cúram workflow has a loop-exit condition.

Loops can contain other loops when they are fully nested and do not interleave each other. Therefore, this
ensures that the loops and the process definition remain a valid block structure as required by the Cúram
workflow engine (see “Workflow Structure” on page 90).

Loop Type
In addition to the loop-exit condition, a loop also specifies whether the condition should be tested before
the loop runs (a while loop) or at the end of a loop execution (a do-while loop). A while loop can never run
the activities in the loop and jump to the activity that follows the loop if the exit condition is met at the
start of the loop, whereas a do-while loop runs the activities in the loop at least once.

Metadata

70  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Loop Begin Activity
<loop-begin-activity id="1">
    ...

    <loop-type name="do-while"/>

    ...

    <condition>
      <expression id="1" data-item-lhs="Context_Loop.loopCount" 
        operation="&lt;" data-item-rhs="UserAccountWDO.size()"/>
    </condition>

    <block-endpoint-ref activity-id="5"/>

  </loop-begin-activity>

loop-type
The loop-type specifies how the loop is executed as detailed in “Loop Type” on page 70. The only
two valid values for the name attribute are while and do-while.

condition
The condition tag specifies the condition that is evaluated based on Workflow Data Object values
(see: “Workflow Data Objects” on page 12). When list workflow data objects are present in the
workflow, two attributes that are not part of that workflow data object metadata are made available
when creating a loop condition expression by using a list workflow data object. These are as follows:

• size() : This evaluates to a number (of type INTEGER) to indicate the number of items in the list.
• isEmpty() : This evaluates to a BOOLEAN flag to indicate if the list contains any elements or not.

The actual condition metadata is used in other places in the process definition metadata and is thus
described in the dedicated chapter, “Conditions” on page 85.

block-endpoint-ref
The block-endpoint-ref in this context allows the loop-begin-activity to recognize its
associated loop-end-activity. This information is useful to the workflow engine when the loop is
run. For example, when a while loop's exit condition evaluates to true before the loop runs, the
block-endpoint-ref tells the workflow engine which activity to jump to and continue the
execution of the process.

Loop End Activity
<loop-end-activity id="3">
    ...
    
    <block-endpoint-ref activity-id="1"/>

  </loop-end-activity>

block-endpoint-ref
The block-endpoint-ref in this context allows the loop-end-activity to recognize its
associated loop-begin-activity. This information is useful to the workflow engine when the loop
is run. For example, if after the execution of a loop the exit condition evaluates to false, the block-
endpoint-ref tells the workflow engine which activity to jump to in order to begin another iteration
of the loop.

Runtime Information
It is expected that any activity within a loop is run more than once during the execution of a process
instance. To prevent the process instance data for the activity that is becoming corrupted by subsequent
iterations, each activity instance is associated with a specific iteration and so is uniquely identifiable by
the workflow engine regardless of the number of times the loop is run.

Description of Context WDOs
The Context_Loop workflow data object is available on the following occasions:

• When creating the loop condition associated with a loop-begin activity.

Cúram Workflow Reference  71



• When creating the outgoing transition conditions from a loop-begin activity, or from any activity that is
contained within a loop (see “Conditions” on page 85).

• When creating the input mappings for any automatic activity or subflow activity within a loop.

• When creating the input mappings for any allocation strategy function or deadline handler function
present in an activity within a loop.

• When specifying a subject text parameter for a Manual or Decision Activity that is contained within a
loop, or for a notification that is attached to an activity that is contained within a loop.

• When specifying action text parameters and action link parameters for a Manual or Decision Activity
that is contained within a loop, or for a notification that is attached to an activity that is contained within
a loop.

• When specifying the identifier for a business object association for a Manual Activity that is contained
within a loop.

• When specifying a question text parameter for both a free-form or multiple choice question for a
Decision Activity that is contained within a loop.

• When specifying a body text parameter for a notification that is attached to an activity that is contained
within a loop.

The Context_Loop workflow data object attributes available are:

Context_Loop.loopCount
The number of times that a loop is iterated over.

Parallel
In business processes, it can be required to send multiple tasks to different human agents at the same
time to expedite the progress of the overall process. When the number of parallel paths are known at
development time, this can easily be achieved by using a split. However, in some cases the number of
paths is not known until runtime. Such situations can be modeled by using parallel activities.

A parallel activity acts as a wrapper around existing activities. The effect of using one of these new
activities at runtime is that multiple instances of the wrapped activity are run in parallel. To date, the only
supported types of wrapped activity are Manual (“Manual” on page 45) and Decision (“Decision” on page
59) activities. Therefore, running a parallel activity currently equates to the creation and allocation of
multiple tasks in parallel.

Prerequisites
• The base details common to all the activity types that are supported by Cúram workflow are described

in “Base Activity” on page 23 and are applicable to the parallel activity described here.
• As parallel activities wrap existing activities in a workflow process definition, the metadata that is

described in “Manual” on page 45 and “Decision” on page 59 is also relevant to the parallel activity
described here.

Metadata
A parallel activity must specify the type of activity it wraps. A list workflow data object must also be
associated with the parallel activity. The number of items in this list workflow data object then determines
the number of instances of that wrapped activity that is created by the workflow engine at runtime.

72  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Generic Metadata for a Parallel Activity
<parallel-activity id="1" category="AC1">
      <list-wdo-name>EmployerDetailsListWDO</list-wdo-name>
      <manual-activity>
        <name>
          <localized-text>
            <locale language="en">
            CheckEmployerDetailsTasks</locale>
          </localized-text>
        </name>
        ..........
      </manual-activity>
    </parallel-activity>
    
    
    or ........
    
    <parallel-activity id="1" category="AC1">
      <list-wdo-name>ChildDetailsListWDO</list-wdo-name>
      <decision-activity>
        <name>
          <localized-text>
            <locale language="en">ValidateChildDetails</locale>
          </localized-text>
        </name>
        ..........
      </decision-activity>
    </parallel-activity>

manual-activity/decision-activity
This reflects the type of activity that is wrapped by the parallel activity. Currently, two types of
wrapped activities are supported, “Manual” on page 45 and “Decision” on page 59 activities. The
types of activity that can be wrapped by a parallel activity can be seen in the
ParallelActivityType codetable.

list-wdo-name
Each parallel activity must have a list workflow data object associated with it. The number of
instances of the wrapped activity that are created at runtime is determined by the number of items in
this list workflow data object.

Metadata for a Parallel Manual Activity
This example illustrates the metadata that is associated with the wrapped activity of type Manual.

This metadata is exactly the same that as that seen for a manual activity that is described in “Manual” on
page 45 and hence is not described here again. Any validations that pertain to the parallel manual activity
mappings are also described in “Manual” on page 45. The Context_Parallel Workflow Data Object
and an indexed item from the Parallel Activity List WDO can be used in all the available mappings for a
Parallel Manual Activity. Examples of such usage can be seen here:

Cúram Workflow Reference  73



<parallel-activity id="1" category="AC1">
      <list-wdo-name>EmployerDetailsListWDO</list-wdo-name>
      <manual-activity>
        ...
        <task>
          <message>
            <message-text>
              <localized-text>
                <locale language="en">Check employer 
                details for %1s. This is employer number: %1n.
                </locale>
              </localized-text>
            </message-text>
            <message-parameters>
              <wdo-attribute 
                wdo-name=
     "EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
                name="fullName" />
              <wdo-attribute 
                wdo-name=
                "Context_Parallel" name="occurrenceCount" />
            </message-parameters>
          </message>
          ...         
        </task>        
        ...        
        <event-wait wait-on-all-events="false">
          <events>
            <event identifier="1" event-class="EMPLOYER" 
                                  event-type="DETAILSCHECKED">
              <event-match-attribute wdo-name=
       "EmployerDetailsListWDO[Context_Parallel.occurrenceCount]"
                                     name="identifier" />
            </event>
          </events>
        </event-wait>
        <biz-object-associations>
          <biz-object-association biz-object-type="BOT2">
            <wdo-attribute 
            wdo-name=
       "EmployerDetailsListWDO[Context_Parallel.occurrenceCount]" 
            name="identifier" />
          </biz-object-association>
        </biz-object-associations>
      </manual-activity>
    </parallel-activity>

Metadata for a Parallel Decision Activity
This example illustrates the metadata that is associated with the wrapped activity of type Decision.

This metadata is exactly the same as that seen for a decision activity that is described in “Decision” on
page 59 and hence is not described here again. Any validations that pertain to the parallel decision
activity mappings are also described in “Decision” on page 59. The Context_Parallel Workflow Data
Object and an indexed item from the Parallel Activity List WDO can be used in all the available mappings
for a Parallel Decision Activity. Examples of such usage can be seen here:

74  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



<parallel-activity id="1" category="AC1">
      <list-wdo-name>ChildDetailsListWDO</list-wdo-name>
      <decision-activity>
        ...
        <message>
          <message-text>
            <localized-text>
              <locale language="en">In this task the details 
              for child %1s must be validated. This is child 
              number: %1n.
              </locale>
            </localized-text>
          </message-text>
          <message-parameters>
            <wdo-attribute 
              wdo-name=
     "ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
              name="fullName" />
            <wdo-attribute 
              wdo-name=
              "Context_Parallel" name="occurrenceCount" />
          </message-parameters>
        </message>
        <decision-action>
          <message>
            <message-text>
              <localized-text>
                <locale language="en">Validate the child details
                for %1s associated with this case %2n.</locale>
              </localized-text>
            </message-text>
            <message-parameters>
              <wdo-attribute 
                wdo-name=
       "ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
              name="fullName" />
              <wdo-attribute wdo-name="CaseDetails" 
                             name="identifier" />
            </message-parameters>
          </message>
        </decision-action>
        ...
        <question>
          <message>
            <message-text>
              <localized-text>
                <locale language="en">Are the details for this
                child whose first name is %1s and second name 
                %2s correct?</locale>
              </localized-text>
            </message-text>
            <message-parameters>
              <wdo-attribute 
                wdo-name=
       "ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
              name="firstName" />
              <wdo-attribute 
                wdo-name=
       "ChildDetailsListWDO[Context_Parallel.occurrenceCount]"
              name="surname" />              
            </message-parameters>
          </message>
          <answers multiple-selection="false">
            <answer name="answerYes">
              <answer-text>
                <localized-text>
                  <locale language="en">Yes</locale>
                </localized-text>
              </answer-text>
            </answer>
            <answer name="answerNo">
              <answer-text>
                <localized-text>
                  <locale language="en">No</locale>
                </localized-text>
              </answer-text>
            </answer>
          </answers>
        </question>
        ...
      </decision-activity>
    </parallel-activity>

Cúram Workflow Reference  75



Validations

• A workflow data object must be specified for a parallel activity. This must be a list workflow data object
and it must be valid in the context of the containing workflow process definition.

• All of the other validations that pertain to parallel activities are described in the sections that describe
the activities that a parallel activity can wrap (that is, “Manual” on page 45 and “Decision” on page 59).

Runtime Information
The workflow engine loads the instance data for the list workflow data object associated with the parallel
activity. For each item in the list workflow data object, a new instance of the wrapped activity is created
and run.

The details of what occurs when these instances of the wrapped activity are run can be found in the
relevant sections that describe the activities that a parallel activity can wrap (“Manual” on page 45 and
“Decision” on page 59).

At runtime, the Workflow Engine treats a Parallel Activity as if it were multiple activities, contained within
a Parallel (AND) Split/Join block. One Activity Instance is created per item in the Parallel Activity List WDO
(for example, if that list contains three items, then three Activity Instances is created). This ensures that
all of the activity instances that are associated with the parallel activity must be completed before the
actual parallel activity is deemed to be complete and the workflow can progress.

To resolve the mappings that are associated with a Parallel Activity, each instance of the wrapped activity
is associated with one item from the Parallel Activity List WDO. The item is indexed by using the
Context_Parallel Workflow Data Object (for example,
ChildDetailsListWDO[Context_Parallel.occurrenceCount]).

Description of Context WDOs
Each Parallel Activity Instance is associated with one item from the Parallel Activity List WDO. This item is
accessed by using the Context_Parallel Workflow Data Object to index the Parallel Activity List WDO (for
example, ChildDetailsListWDO[Context_Parallel.occurrenceCount]). Indexed items can then be used to
map data in the usual way.

Examples of such mappings can be seen in the metadata examples that are shown here (see “Metadata
for a Parallel Manual Activity” on page 73 and “Metadata for a Parallel Decision Activity” on page 74. The
one attribute available on this workflow data object is:

Context_Parallel.occurrenceCount
Each Parallel Activity Instance is associated with one item from the Parallel Activity List WDO. The
occurrenceCount attribute is the index of that item within the Parallel Activity List WDO. It is of type
INTEGER and is a zero-based index.

Activity Notifications
The workflow engine is able to notify interested users about the progress of a workflow process instance.
Essentially the workflow engine can raise a notification when an activity runs if the notification is specified
in the associated process definition metadata. A notification is specified for an activity as more metadata
that can be attached to any activity type.

When the workflow engine runs an activity it checks whether a notification is configured for that activity. If
one exists, a notification is created by the workflow engine that details that a particular step in the
workflow process is performed. The delivery of these notifications to the user is determined by the
notification delivery mechanism that is configured in the Cúram application. Notifications can be delivered
by using emails, as alerts sent to a user's inbox, or by using both emails and alerts.

76  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Notification Details
A notification is simply information that is sent to a human agent when a step in the process executes.
Notifications manifest themselves as alerts in a user's inbox or as emails.

The agents to which the notification must be sent are determined by the allocation strategy (see
“Notification Allocation Strategy” on page 81) specified for the notification. The details that are
displayed to the user in the alert or email are specified as part of the notification metadata.

Cúram Workflow Reference  77



Metadata
<manual-activity id="1" category="AC1">
  
  ...
  
    <notification delivery-mechanism="DM1">
      <subject>
       <message>
          <message-text>
           <localized-text>
              <locale language="en">
              The case number %1n for Claimant %2s has 
              been closed.
              </locale>
            </localized-text>
          </message-text>
          <message-parameters>
            <wdo-attribute wdo-name=
              "CaseList[Context_Loop.loopCount]" 
              name="identifier" />
            <wdo-attribute wdo-name="PersonDetails" 
              name="userName" />              
          </message-parameters>
        </message>
      </subject>
      <body>
        <message>
          <message-text>
            <localized-text>
              <locale language="en">
              This case concerned %1n and claimant %2s.
              </locale>
            </localized-text>
          </message-text>
          <message-parameters>
            <wdo-attribute wdo-name=
              "CaseList[Context_Loop.loopCount]" 
              name="identifier" />          
            <wdo-attribute wdo-name="PersonDetails" 
              name="fullName" />
          </message-parameters>
        </message>
      </body>
      <allocation-strategy type="target" identifier="1" />
      <actions>
        <action page-id="viewTaskHome" principal-action="false">
          <message>
            <message-text>
              <localized-text>
                <locale language="en">
                View the task associated with the %1n case.
                </locale>
              </localized-text>
            </message-text>
            <message-parameters>
              <wdo-attribute wdo-name="TaskCreateDetails" 
                name="caseID" />
            </message-parameters>
          </message>
          <link-parameter name="childID">
            <wdo-attribute wdo-name="ChildDependents" 
              name="childID" />
          </link-parameter>
          <multiple-occurring-action>
         <list-wdo-name>ChildDependents</list-wdo-name>
          </multiple-occurring-action>
        </action>
        <action page-id="viewCaseHome" principal-action="false">
          <message>
            <message-text>
              <localized-text>
                <locale language="en">
                View the case details for %1n.
                </locale>
              </localized-text>
            </message-text>
            <message-parameters>
              <wdo-attribute wdo-name=
                "CaseList[Context_Loop.loopCount]" 
                name="identifier" /> 
            </message-parameters>
          </message>
          <link-parameter name="caseID">
            <wdo-attribute wdo-name=
              "CaseList[Context_Loop.loopCount]" 
              name="identifier" />
          </link-parameter>
        </action>        
      </actions>
    </notification>
    
    ...
  </manual-activity>

78  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



delivery-mechanism
This tag describes the mechanism that is used to deliver the notification. The delivery mechanisms
available are specified in the application codetable DeliveryMechanism. Both the Cúram
application and customers can extend this codetable and add further delivery mechanisms if required.
The delivery mechanism that is specified plays no functional role in the workflow engine as it calls the
delivery mechanism that is configured in the application to deliver the newly created notification.

subject
This tag represents a parameterized text message that details the subject of the notification for all
locales. This subject is displayed in the user's inbox for the notification alert. For details on
parameterized messages, see “Manual” on page 45.

body
This tag represents a parameterized text message that represents the body of the text that is
associated with this notification for all locales. When the user clicks the notification subject in the
inbox, this body text is displayed as the full text of the notification.

allocation-strategy
This tag represents the allocation strategy that is used to determine the agents to which this
notification is sent to (see “Notification Allocation Strategy” on page 81).

actions
In the same way a “Manual” on page 45 can have actions that are associated with its task, a
notification can associate actions that the notified user can take. This piece of metadata represents
the details of these notification actions and the metadata details for actions is detailed in “Task
details” on page 45.

multiple-occurring-action
This tag signifies that this notification action represents a multiple occurring action. This means that if
this metadata is specified for a notification action, the workflow engine creates one action record for
each item in the list workflow data object specified as the multiple occurring action, when that activity
is run.

If the multiple occurring action is specified for a notification action, then an attribute from the
associated list workflow data object must be used as a link parameter for the notification action.

list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

Validations

• A subject must be defined for the notification.
• Every workflow data object attribute mapped to a notification subject must exist in the containing

process definition and be a valid workflow data object.
• If an indexed item from a list workflow data object (that is, CaseList[Context_Loop.loopCount]) is used

as a notification subject text parameter, then the workflow data object must be a list workflow data
object and the activity containing the mapping must be contained within a loop.

• If the Context_Parallel workflow data object is used as a notification subject text parameter, then
the activity that contains the notification must be a Parallel activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a notification subject text
parameter, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• A notification body must be defined.
• Every workflow data object attribute mapped to a notification body must exist in the containing process
definition and be a valid workflow data object.

• If an indexed item from a list workflow data object (that is, CaseList[Context_Loop.loopCount]) is used
as a notification body text parameter, then the workflow data object must be a list workflow data object
and the activity that contains the mapping must be contained within a loop.

Cúram Workflow Reference  79



• If the Context_Parallel workflow data object is used as a notification body text parameter, then the
activity that contains the notification must be a Parallel activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a notification body text
parameter, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being indexed by the
Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow Data Object.

• An allocation strategy must be defined for an activity notification.
• If a function is specified as the notification allocation strategy, it must be a valid Cúram business

method that returns an AllocationTargetList object.
• If the allocation type is classic or CER rule, then the specified ruleset must be valid.
• A delivery mechanism must be defined for an activity notification.
• The workflow data object attributes mapped to the notification action text and notification action link

parameters for a notification action must exist in the containing process definition.
• If an indexed item from a list workflow data object (that is, PersonDetailsList[Context_Loop.loopCount])

is used as a notification action text or notification action link parameter mapping, then the workflow
data object must be a list workflow data object and the activity that contains the mapping must be
contained within a loop.

• If the Context_Parallel workflow data object is used as a notification action text or notification
action link parameter mapping, then the activity that contains the notification must be a Parallel
activity.

• If an indexed item from the Parallel List Workflow Data Object is used as a notification action text or
notification action link parameter mapping, then the activity that contains the mapping must be a
Parallel Activity (i.e. ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object
being indexed by the Context_Parallel Workflow Data Object must be the Parallel Activity List Workflow
Data Object.

• The number of placeholders that are used in the notification subject text, notification action text and
notification body text must equal the number of mapped workflow data object attributes (for all
locales).

• The workflow data object specified for use in the multiple occurring action must be a valid workflow
data object in the context of the containing workflow process definition. It must also be of type List

• At least one attribute from the multiple occurring action list workflow data object must be used in the
link parameters that are specified for a multiple occurring action.

Code
For each action defined, the action page must refer to a valid Cúram page in the application whose page
parameters are fully populated by the action link parameters that are contained in the notification
metadata.

A LocalizableStringResolver API is provided to the application, which allows for parameterized
message strings to be resolved. The methods in this API resolve and return the specified message for the
required locale. Along with this, any workflow data objects to be used in the message placeholders is
resolved and included as part of the string returned.

As part of the LocalizableStringResolver API, a NotificationStringResolver interface is
provided for resolving the parameterized messages that are associated with notifications. The notification
subject, body, and action text can be resolved for use in the application by using the methods that are
contained in this API. The application should use these methods to process the notification when the
workflow engine starts the associated notification delivery method in the application.

Runtime Information
After the workflow engine is completed running an activity, it checks whether an associated notification is
defined for that activity. If one is defined, the engine determines the users to be notified from the

80  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



allocation strategy that is employed and calls the notification delivery method in the application with the
notification details.

Notification Allocation Strategy

Prerequisites
The notification allocation strategy determines the user or users to be notified when the associated
activity occurs.

Defining the notification allocation strategy to be used is the same as that used for manual activity tasks
(see “Allocation strategy” on page 51).

Code
The application must implement the NotificationDelivery callback interface to determine how
notifications are handled in the application.

The workflow engine calls the deliverNotification method in the
curam.util.workflow.impl.NotificationDelivery implementation class to process the
notification. The engine passes both the list of allocation targets that are determined by the allocation
strategy and the details of the required notification to this application method.

The application property curam.custom.notifications.notificationdelivery defines what implementation of
the NotificationDelivery interface is used by the workflow engine to process the notification.

The deliverNotification method in this default implementation class is overloaded. This is because
the various allocation strategy types return the allocation targets in different formats. However, this is an
implementation detail that developers of custom notification delivery classes should not have to deal with
especially since the business processing for all versions of the method should be the same.
package curam.util.workflow.impl;

      ...

      public interface NotificationDelivery {

        boolean deliverNotification(
          final NotificationDetails notificationDetails,
          final Object allocationTargets);

        boolean deliverNotification(
            final NotificationDetails notificationDetails,
            final Map allocationTargets);

        boolean deliverNotification(
            final NotificationDetails notificationDetails,
            final String allocationTargetID);

            ...
      }

To mitigate against this issue the curam.core.sl.impl.DefaultNotificationDeliveryAdapter
provides a more convenient mechanism for implementing a work resolver. This class implements the
different methods and converts their input parameters into allocation target lists allowing developers of
custom notification delivery logic to extend this class and implement one method that is called regardless
of the source of the allocation targets.
package curam.core.sl.impl;

      ...

      public abstract class DefaultNotificationDeliveryAdapter
        implements curam.util.workflow.impl.NotificationDelivery {

        public abstract boolean deliverNotification(
          final NotificationDetails notificationDetails,
          final AllocationTargetList allocationTargets);

            ...
      }

Cúram Workflow Reference  81



In addition to this adapter class the application includes with a notification delivery implementation that
is ready for immediate use. This class is called
curam.core.sl.impl.DefaultNotificationDelivery and it also serves as an example of how to
extend the adapter.

The notification delivery strategies are listed in the DELIVERYMECHANISM code table. Adding a new
strategy is a matter of extending this code table with a new strategy (for example SMS) and implementing
a delivery strategy that recognizes this code and performs the appropriate logic. However, since the
notification delivery class is set by using a single application property, replacing the
curam.core.sl.impl.DefaultNotificationDelivery class would disable the immediately
available delivery mechanisms. If the goal is to extend rather replacing the immediately available delivery
mechanisms, custom classes should extend the
curam.core.sl.impl.DefaultNotificationDelivery in a way that preserves the original
functionality. The curam.core.sl.impl.DefaultNotificationDelivery class is implemented
with this in mind.
package curam.core.sl.impl;

 public class DefaultNotificationDelivery
     extends DefaultNotificationDeliveryAdapter {

   public boolean deliverNotification(
       NotificationDetails notificationDetails,
       AllocationTargetList allocationTargetList) {
     return selectDeliveryMechanism(
       notificationDetails, allocationTargetList);
   }

   protected boolean selectDeliveryMechanism(
     NotificationDetails notificationDetails,
      AllocationTargetList allocationTargetList) {

     boolean notificationDelivered = false;
     if (notificationDetails.deliveryMechanism.equals(
         curam.codetable.DELIVERYMECHANISM.STANDARD)) {
       notificationDelivered = standardDeliverNotification(
         notificationDetails, allocationTargetList);
     } else if (
     ...
     return notificationDelivered;
   }

   ...

 }

The curam.core.sl.impl.DefaultNotificationDelivery class implements the
deliverNotification method from the abstract adapter but immediately delegates the identification
of the mechanism to use to a protected method. The protected selectDeliveryMechanism method
can be overridden by subclasses to identify any custom delivery mechanisms and perform the appropriate
operations as shown in the example here:
public class CustomNotificationDeliveryStrategy
     extends DefaultNotificationDelivery {

   protected boolean selectDeliveryMechanism(
     NotificationDetails notificationDetails,
      AllocationTargetList allocationTargetList) {

     boolean notificationDelivered = false;
     boolean superNotificationDelivered = false;
     superNotificationDelivered = super.selectDeliveryMechanism(
       notificationDetails, allocationTargetList);
     if (notificationDetails.deliveryMechanism.equals(
       curam.codetable.DELIVERYMECHANISM.CUSTOM)) {
       notificationDelivered = customDeliverNotification(
         notificationDetails, allocationTargetList);
     }
     return (superNotificationDelivered || notificationDelivered);
   }
 }

Notice that the selectDeliveryMechanism method in the custom class first delegates to its super
class before running any of its own logic. Extending the functionality in this was allows custom classes to

82  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



start the immediately available delivery mechanism without having to know the specific codes the parent
class recognizes. This approach is also upgrade-friendly as if a future version of Cúram supports more
delivery mechanisms immediately available a custom class that is implemented as shown here does not
need to change to avail of the new functionality.

The Boolean flag that is returned from the notification delivery function here is used to indicate to the
Workflow Engine if the notification was delivered to at least one user on the system. If it was not, then the
engine writes a workflow audit record that details this fact.

Transitions
Transitions provide the links between activities. They are the primary flow control construct and dictate
the order in which activities are run. Transitions are unidirectional and an activity can have multiple
outgoing and incoming transitions that form branch and synchronization points in each case.

Since every process definition must have one start and one end activity, a process definition can be
thought of informally as a directed graph in which activities are the vertices, transitions are the arcs and
every path from the start activity eventually leads to the end activity. See “Base Activity” on page 23.

Metadata
<workflow-process id="32456" ..... >
    <name>WorkflowTestProcess</name>
    ...
    <wdos>
    ...  
    </wdos>
    <activities>
      <start-process-activity id="512">
        ...
      </start-process-activity>
      <route-activity id="513" category="AC1">
        ...      
      </route-activity>
      <route-activity id="514" category="AC1">
        ...      
      </route-activity>
      <end-process-activity id="515">
        ...
      </end-process-activity>
    </activities>
    <transitions>
      <transition id="1" from-activity-idref="512" 
                         to-activity-idref="513" />
      <transition id="2" from-activity-idref="513" 
                         to-activity-idref="514">
        <condition>
          <expression id="5" 
                 data-item-lhs="TaskCreateDetails.reservedByInd"
                 operation="==" data-item-rhs="true" 
                 opening-brackets="2"/>
          <expression id="6"  
                 data-item-lhs="TaskCreateDetails.subject"
                 operation="&amp;gt;" 
                 data-item-rhs="&amp;quot;MANUAL&amp;quot;" 
                 conjunction="and" closing-brackets="1"/>
          <expression id="7" 
                 data-item-lhs="TaskCreateDetails.status"
                 operation="!=" 
                 data-item-rhs="&amp;quot;OPEN&amp;quot;"
                 conjunction="or"/>
          <expression id="8" 
                 data-item-lhs="TaskCreateDetails.status"
                 operation="&amp;lt;=" 
                 data-item-rhs="&amp;quot;INPROGRESS&amp;quot;"
                 conjunction="or" closing-brackets="1"/>
        </condition>
      </transition>
      <transition id="3" from-activity-idref="514" 
                         to-activity-idref="515">
    </transitions>
  </workflow-process>

Cúram Workflow Reference  83



transitions
A workflow process definition must contain at least one transition. This tag contains the details of all
of the transitions between the activities in the specified workflow process definition.

transition
This tag contains the details of one transition between two activities in the specified workflow process
definition. The following mandatory fields that constitute a transition are described here:
id

This attribute is a 64-bit identifier that is supplied by the Cúram key server when transitions are
created in the Process Definition Tool (PDT). The transition identifier is required to be unique
within a process definition but global uniqueness within all of the process definitions on the
system is not required.

from-activity-idref
This attribute is the 64-bit identifier of the source activity of the transition.

to-activity-idref
This attribute is the 64-bit identifier of the target activity of the transition.

condition
Transitions can optionally have a condition to decide whether the transition is followed. A condition is
a list of expressions that perform logical operations on workflow data objects attributes. Conditions
are described in more detail in “Conditions” on page 85.

Validations
• The source activity that is defined for the transition must be a valid activity within the containing

workflow process definition.
• The target activity that is defined for the transition must be a valid activity within the containing

workflow process definition.
• The source and target activities that are defined for a transition cannot be the same activity.
• The start process activity in a workflow process definition must not contain any incoming transitions.
• The end process activity in a workflow process definition must not contain any outgoing transitions.
• All activities that are defined in the workflow process definition, except for the end process activity,

must contain at least one inbound transition.
• All activities that are defined in the workflow process definition, except for the start process activity,

must contain at least one outbound transition.

Runtime Information
Activities that perform some application-related work (as opposed to workflow engine work only such as
route and end process activities) require a clear transactional boundary between the engine and
application code. It is also useful to have asynchronous invocations between the workflow engine and the
application (for example, a user should not have to wait while workflow transitions to the next activity
before control is returned to them in the user interface).

To this end, there are three distinct functions present in a workflow activity, start(), execute() and
complete(). After the completion of an activity in the workflow process instance, the workflow engine
calls the function to continue the process. This function evaluates the outgoing transitions from that
activity to determine which one(s) are followed.

For each activity to be followed, the corresponding start() function is called. The appropriate activity
instance data is then set up for that activity. If the activity is to be run directly with no JMS (Java Message
Service (JMS) API is a part of Java EE) messaging required (that is, a route activity is always run directly as
there is no application-related work that is involved), the execute() method is called here. Otherwise, a
JMS message is sent to run the specified activity (that is, an automatic activity). The workflow message
handler resolves the process and activity that is specified in the message and calls the execute()
function on the activity.

84  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



After the application code is called to complete the work that is specified by the activity, another message
is sent to complete the activity. Again, the workflow message handler resolves the process and activity
that is specified in the message and calls the complete function for the activity. After the activity is
marked as complete, the function to continue the process is called again to resolve the set of transitions
to be followed from the completed activity and the process begins again.

Conditions
The flow control constructs require or support the evaluation of conditions to determine how the
workflow proceeds. The Loop Begin activities must have some metadata that specifies the loop exit
conditions, while transitions can optionally have a condition to decide if the transition is followed.

See “Transitions” on page 83 and “Loop Begin and Loop End” on page 70.

This section describes the process definition metadata construct that represents a condition. A condition
is a list of expressions that perform logical operations on workflow data objects attributes. The condition
itself is a compound whose value is conjunction or disjunction of its constituent expressions. The parent
constructs (loops and transitions) are responsible for taking appropriate actions as a result of the
evaluation of conditions.

Cúram Workflow Reference  85



Metadata
<workflow-process id="32456" ..... >
    ...
    <activities>
    ... 
    </activities>
    <transitions>
      <transition id="1" from-activity-idref="512" 
                         to-activity-idref="513">
        <condition>
          <expression id="5" 
               data-item-lhs="TaskCreateDetails.reserveToMeInd" 
               operation="==" data-item-rhs="true" 
               opening-brackets="2"/>
          <expression id="6"  
               data-item-lhs="TaskCreateDetails.caseID" 
               operation="&amp;amp;gt;" 
               data-item-rhs="2" conjunction="and" 
               closing-brackets="1"/>
          <expression id="7" 
               data-item-lhs="TaskCreateDetails.status"
               operation="!=" 
               data-item-rhs="&quot;Completed&quot;"
               conjunction="or"/>
          <expression id="8" 
               data-item-lhs="TaskCreateDetails.status"
               operation="&amp;amp;lt;=" 
               data-item-rhs="&quot;Closed&quot;"
               conjunction="or" closing-brackets="1"/>
        </condition>
      </transition>
      <transition id="2" from-activity-idref="512" 
                         to-activity-idref="513">
        <condition>
          <expression id="9" function="isNothing" 
               data-item-rhs="TaskCreateDetails.subject"/>
        </condition>
      </transition>
      <transition id="3" from-activity-idref="513" 
                         to-activity-idref="514">
        <condition>
          <expression id="10" 
                data-item-rhs="TaskCreateDetails.reserveToMeInd"
                conjunction="and" function="not" />       
        </condition>
      </transition>
      <transition id="4" from-activity-idref="514" 
                         to-activity-idref="515">
        <condition>
          <expression id="6"  
               data-item-lhs
               ="ClaimantDependents[Context_Loop.loopCount]" 
               operation="&amp;amp;gt;" 
               data-item-rhs="20" 
               conjunction="and" 
               closing-brackets="1"/>       
        </condition>
      </transition>      
    </transitions>
  </workflow-process>

condition
This metadata is mandatory for a loop begin activity (as a loop must have an exit condition that is
specified for it) but optional for a transition (a transition cannot have a condition that is specified for
it). It contains the details of all the expressions that are defined for the condition.

expression
This metadata tag contains the details of one expression that is contained in a condition. There may
be one or many expressions that are specified for an associated condition. Two types of expression
can be defined in a condition. These are function expressions (using one of two predefined functions,
not() and isNothing()) and data item expressions (where the condition expression created
applies the chosen operator to either two workflow data object attributes, or a workflow data object
attribute and a constant). A transition expression consists of the following attributes:

86  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



id
This attribute represents a 64-bit identifier that is supplied by the Cúram key server when
transition expressions are created in the PDT. The expression identifier is required to be unique
within a process definition but global uniqueness within all of the process definitions on the
system is not required.

data-item-rhs
This metadata tag represents the name of the data item to use on the right side of the condition
expression. For a data item condition expression, it can represent a workflow data object attribute
(see “Workflow Data Objects” on page 12 or a constant value that the chosen operator is applied
to. For function condition expressions, this represents a workflow data object attribute that either
of the two predefined functions are used against to evaluate the condition.

data-item-lhs
This metadata tag is optional as it is not required for a function condition expression. For a data
item condition expression, it represents the name of the data item to use on the left side of the
condition (that is, a workflow data object attribute).

operation
This metadata tag is optional as it is not required for a function condition expression. For a data
item condition expression, it represents an identifier for the logical operation that is applied to
either two workflow data object attributes or a workflow data object attribute and a constant
value. The following is the list of valid operators that can be used in a data item condition
expression: 

Table 4: Condition Expression Operators

Operator Explanation

== equal to

!= not equal to

<= less than or equal to

>= greater than or equal to

< less than

> greater than

conjunction
This metadata tag represents an identifier for a logical conjunction that can be used in either a
function or data item condition expression. There are two possible values for this attribute, and
(the default) and or. When a condition consists of multiple expressions, the logical conjunction is
used in the evaluation of the complete condition.

function
This metadata tag is optional as it is only used when a function condition expression is specified.
As stated previously, there are two predefined functions, Not() and isNothing(). The Not()
function acts as a logical inversion operator. In normal cases, this is applied to a Boolean value.
The isNothing() function is applied to any workflow data object attribute type other than a
Boolean value. It is used to test the scenarios where required data does not exist or is not
provided. The function returns a Boolean value of True if the workflow data object attribute being
examined does not contain any data.

opening-brackets
This metadata tag is optional (the default is 0) as it cannot be specified for either type of condition
expression. It represents the number of opening brackets to insert at the start of the expression.

Cúram Workflow Reference  87



closing-brackets
This metadata tag is optional (the default is 0) as it cannot be specified for either type of condition
expression. It represents the number of closing brackets to insert at the end of the expression.

The number of opening and closing brackets that are specified for an individual expression do not
have to match (unless there is only one expression in the condition). The overall number of
opening and closing brackets in the condition as a whole (with all of the expressions included)
must be the same. Therefore, care should be taken when the number and position of opening and
closing brackets are specified within an individual expression, and the condition as a whole, as
these brackets help determine how the condition and the individual expressions within that
condition are evaluated. The same care should be taken when the conjunction of an expression is
specified as failure to do so can lead to unexpected results.

Validations
• The workflow data object attribute that is specified as the right side data item of the condition

expression must be a valid workflow data object attribute in the context of the containing workflow
process definition.

• The workflow data object attribute that is specified as the left side data item of the condition expression
must be a valid workflow data object attribute in the context of the containing workflow process
definition.

• The operator that is specified in a data item condition expression must be a valid and supported
operator.

• The function that is specified in a function condition expression must be a valid and supported function.
• The conjunction that is specified in a condition expression must be valid and supported conjunction.
• The number of opening brackets and the number of closing brackets must be equal in the context of the

overall condition.
• If the function Not() is specified for a function condition expression, then the type of the workflow data

object attribute that is specified as the right side data item of the expression must be of type BOOLEAN.
• If the function isNothing() is specified for a function condition expression, then the type of the

workflow data object attribute that is specified as the right side data item of the expression must not be
of type BOOLEAN.

• If the right side data item of a data item condition expression is a workflow data object attribute, the
type of this attribute must be compatible with the corresponding left side data item workflow data
object attribute. Likewise, if the right side data item is specified as a constant value, it must be
compatible with the type of the corresponding left side data item workflow data object attribute.

• If either the right side or left side of a transition condition expression contains an indexed item from a
list workflow data object (that is, ChildDependents[Context_Loop.loopCount].age), then the associated
workflow data object must be a list workflow data object and the activities that are involved in the
transition must be contained within a loop.

• For a loop condition expression, if either the right side or left side of the expression specifies the size()
attribute for a workflow data object, then that workflow data object must be a list workflow data object.

• For a loop condition expression, if either the right side or left side of the expression specifies the size()
attribute for a workflow data object, then the item on the other side of the expression must be
assignable to the type INTEGER.

• For a loop condition expression, if either the right side or left side of the expression specifies the
isEmpty() attribute for a workflow data object, then that workflow data object must be a list workflow
data object.

• For a loop condition expression, if either the right side or left side of the expression specifies the
isEmpty() attribute for a workflow data object, then the item on the other side of the expression must be
assignable to the type BOOLEAN.

88  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Split/Join
Transitions link activities in a process definition. In the most basic configuration of activities and
transitions, each activity has only one incoming and one outgoing transition. However it is often useful to
follow more than one path out of an activity that result in a split (that is, multiple transitions that emanate
from an activity).

To support a valid block structure in a process definition (see “Workflow Structure” on page 90), each
split must be matched by a join (that is, multiple transitions meeting at one activity). In general, a split
allows multiple threads of work to be done at the same time while a join is the reciprocal synchronization
point for those threads.

There are two reasons for an activity to have a split (and by extension some other activity down the line to
have a join). The first is to allow work that does not have dependencies to be done in parallel while the
second is to allow a choice to be made between a number of different paths in the workflow.

At the metadata level, each activity has a split and a join type. When the activity has only one outgoing or
incoming transition, a type of none is assigned to the split or join in each case. The other two split and join
types, choice (also known as XOR) and parallel (also known as AND), are self-explanatory and are the
primary subject of this section.

Choice XOR Split

Metadata
<manual-activity id="1" category="AC1">
    ...
    <join type="and"/>      
    <split type="xor">
        <transition-id idref="1"/>
        <transition-id idref="2"/>
        <transition-id idref="3"/>
        <transition-id idref="4"/>
    </split>
    <task>
      ...
    </task>
    <allocation-strategy type="target" 
                         identifier="HEARINGSCHEDULE"/>
    <event-wait>
      ...
    </event-wait>
  </manual-activity>

split
This tag is present for each activity and it contains the details of the split from the activity. This
includes a list of the transitions from the specified activity that is resolved by the workflow engine
when the associated activity is completed to examine if they can be followed or not.

The order of the transitions in this list is important for a split type of XOR as it is the first transition that
is eligible in the ordered list of transitions that are followed by the workflow engine. In the metadata
example here, if the transition conditions for transition identifiers 2, 3 and 4 are satisfied, it is the
transition with the identifier of 2 that is followed as this is the first eligible transition in the list of
ordered transitions.

type
This attribute represents the type of the split. As described here, there are three possible split
types. A split type of none indicates that there is only one outgoing transition from the specified
activity. A split type of xor indicates a choice and this means that the first eligible transition from
the list of ordered transitions is followed. A split type of and indicates a parallel path of execution,
which ensures that all of the eligible transitions listed in the ordered list of transitions are followed
in parallel.

Cúram Workflow Reference  89



transition-id
This tag contains a reference to the specified transition. There are multiple entries of this metadata
tag when the split type is xor or and.
idref

This attribute contains a reference to a transition in the workflow process definition.

Parallel AND split

Metadata
<manual-activity id="1" category="AC1">
      ...    
    <join type="none"/>
    <split type="and">
      <transition-id idref="1"/>
      <transition-id idref="2"/>
      <transition-id idref="3"/>
      <transition-id idref="4"/>
    </split>
    <task>
      ...       
    </task>
    <allocation-strategy type="target" 
                         identifier="HEARINGSCHEDULE"/>
    <event-wait>
      ...
    </event-wait>
  </manual-activity>

The metadata for the split type of and is similar to the split type of xor (see “Choice XOR Split” on page
89). The difference is that the type of split is specified as and. This ensures that when the workflow
engine is determining the list of transitions to follow from a specified activity, the order of the transitions
in this list is not important as all eligible transitions in an and split is followed. The ordered list of
transitions is maintained in this instance for this split type to facilitate the changing of the split type from
and to an xor, in which case the order of the transitions becomes important again.

Workflow Structure
The structure of a workflow process is determined by the activities in the process and the transitions
between them. Hence a workflow forms a Graph in which the activities are vertices. The transitions are
arcs (the graph that is formed by a workflow can be viewed by using the Visualize Workflow Process
feature in the Process Definition Tool).

In order for the workflow engine to successfully interpret and run a process, the graph that is formed by
that process must meet certain criteria. The section presents those criteria under two main headings:
Graph Structure and Block Structure.

Graph Structure
Since a set of activities and transitions in a process form a Graph, Graph Theory can be applied to detect
several well-known structural problems before a process is ever run.

Graph Theory: Graph Theory is a branch of mathematics. Fortunately, those parts of graph theory that are
relevant to workflow are simple. Hence, the section does not require any prior knowledge of graph theory
(a degree in mathematics is definitely not required!). There is a wealth of information about graph theory
on the Internet, where further discussion on many of the topics that are discussed in the section can be
easily found.

For example: consider a process in which an activity has a transition to another activity, which in turn has
a transition back to the first activity. This forms a cycle in the process graph.

If there were no conditions on the transitions, the process would be guaranteed to end up in an infinite
loop. These loops are known as informal loops (or 'ad hoc' loops) and their presence renders several
useful structural validations impossible. For this reason (among others), Cúram workflow provides formal

90  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



constructs for delimiting iterative sections of a process (the loop-begin and loop-end activities). This
allows it to detect the presence of ad hoc loops in processes and prevents such processes from being
released.

Code Analogies: Many developers are familiar with the programming-language GOTO statement and the
curly braces that are commonly used to delimit the start ({) and end (}) of a formal loop.

GOTO is analogous to ad hoc loops in a workflow. The curly braces are analogous to the formal loop-begin
and loop-end activities in a workflow.

Block Structure
There are several workflow elements, which can affect the choice of flow path (or paths) through a
workflow at run time.

These include:

• “Choice XOR Split” on page 89
• “Parallel AND split” on page 90
• “Loop Begin and Loop End” on page 70

These elements always come in pairs. This is because they demarcate areas where the process should
exhibit a specific behavior (one related to the flow of control). These areas are normally referred to as
'blocks', because they have a specific start-point that must have a corresponding end point.

Consider a process with a structure where all paths that are emerging from a Choice Split (guaranteed to
follow only one outbound path) all converge at a Parallel Join (which waits until all inbound paths
complete before the next activity is run). In this case, the process is guaranteed to stall at the Parallel
Join. This is an example of a problem with the block-structure that can be detected by validations before
a process is even run.

An Analogy for Blocks
A common analogy for how "blocks" work in a workflow is the way that brackets (like this!) work in a
sentence. Brackets have an explicit start point '(', which is always matched by a specific end point ')'. They
demarcate an area of the sentence that has a specific meaning.

The way that brackets work in a mathematical expression is a closer analogy. In addition to matching
opening and closing brackets, a mathematical expression can use several types of brackets. The
bracketed expressions can be nested inside one another, but cannot be interleaved. Blocks work similarly
in a workflow.

Block Types Supported by Workflow
The following sections describe the different types of blocks in Cúram workflow, how they begin/end and
what their purpose is.

'Choice' (XOR) Block
A Choice Block is started at a Choice (XOR) Split and ended at a Choice (XOR) Join (the 'brackets'). It
indicates that, of the possible paths within the block, no more than one can be followed.

The split has several transitions outbound from it, indicating the possible paths that a process instance
might follow. Since this is a Choice block, the paths are mutually exclusive - only one is followed by a
process instance.

The Choice Split must be matched by a corresponding Choice Join. This indicates the point at which the
process ceases to be distinct for each path, so the paths are merged back together (that is, the remaining
process is common).

Cúram Workflow Reference  91



'Parallel' (AND) Block
A Parallel Block is started at a Parallel (AND) Split and ended at a Parallel (AND) Join (the 'brackets'). It
indicates that, of the possible paths within the block, many or all can be followed.

The split has several transitions outbound from it, indicating the possible paths that a process instance
might follow. Since this is a Parallel block, any number of the paths can be followed in parallel (assuming
their transition conditions are met).

The Parallel Split must be matched by a corresponding Parallel Join. This indicates the point at which all
the parallel paths must be synchronized before the workflow can continue.

'Loop' Block
A Loop Block is started at a loop-begin activity and ended at a loop-end activity (the 'brackets'). It
indicates that the section of the workflow that is delimited by the loop-begin and loop-end activities
should be repeated when the loop condition is met.

The loop-begin activity marks the point to which execution should return if the loop condition is met (that
is, the place to return to if the engine determines that the loop should iterate). The loop-end activity
marks the point to which execution should jump if the loop condition is not met.

Structural Rules
There are certain structural rules that workflow designers should be aware of when process definitions
are constructed. When a Cúram workflow process is validated, the validations assess whether the
structure of the process conforms to these rules. Like all validations, the aim is to ensure that the process
can be run by the workflow engine.

Graph Structure Rules
A Cúram process must form a graph that has the following properties: directed, connected, and acyclic.
This might sound complicated, but these are just the technical terms for some simple graph properties.

• A "directed" graph is one in which each edge goes only one way (it is usually referred to as a digraph). In
workflow terms, this means that a transition from activity A to activity B cannot be used to get from B
back to A. This is a given in Cúram workflow. It is mentioned here only because the 'acyclic' property
(see here) is defined differently for graphs and digraphs.

• A "connected" graph is one in which every vertex can be reached. In workflow terms, this means that
every Activity in the process must be reachable on at least one path from the start activity to the end
activity.

This prevents workflows from having a structure such that one or more activities might never be run.
• Finally, an "acyclic" digraph is one in which there are no directed cycles. In workflow terms, this means

that there can be no ad hoc loops (that is, loops constructed by using transitions instead of loop-begin
and loop-end activities).

Ad hoc loops might seem convenient, but (like GOTO statements in programming languages) they can
make a process difficult to read and understand. Using explicit loop constructs leads to clearer, more
understandable process definitions.

In addition, it allows the engine to know where looping can occur, so it can track how many times a loop
iterates at run time.

Block Structure Rules
As mentioned earlier, the way that brackets work in a mathematical expression is a close analogy for how
"blocks" work in a workflow. Recall - there are several types of blocks: Choice, Parallel, and Loop.

In Cúram workflow:

• Any block-starting constructs (Choice Split, Parallel Split, or Loop- Begin Activity) must be terminated by
a corresponding block-ending construct (Choice Join, Parallel Join, or Loop- End Activity in each case).

In the case of Splits and Joins - all paths outbound from a split must converge at the corresponding
Join.

92  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Rationale: Requiring Splits and Joins (for example) to be matched improves readability. In a section
that contains multiple paths, it makes it clear whether a single path (or many) can be followed. This in
turn makes it clear whether synchronization is required at the point where the paths merge.

If they were not required to match, it would be possible (easy!) to model processes that would be
guaranteed to stall, or ones in which the end of the process could be reached before some activities
were finished running.

• Blocks can be nested within each other (that is, a Choice Split inside a Loop), but they cannot be
interleaved (for example, none of the transitions from the choice split can go to an activity outside the
loop).

This helps avoid situations that are difficult for the engine to process and are unintuitive for workflow
developers.

Consider a Loop that contains a Join, where the Join has two inbound transitions: one from an activity
inside the loop, the other from an activity outside the loop.

It is difficult in this situation to decide how the join synchronization should work. One inbound transition
can fire only once, the other can fire multiple times. Any rules for handling such a situation would be
arbitrary and hence unintuitive.

Workflows that are defined by using Choice, Parallel, and Loop blocks have a clear, simple structure
whose meaning can be understood at a glance.

Validations
A valid Cúram workflow must form a directed, connected, acyclic graph that is block-structured. Usually
these properties (directed, connected, acyclic) are discrete and so they can be checked independently by
the Process Definition Tool (PDT) before a process is released.

The structural validations that are performed on a process definition are done in a distinct order and these
are outlined here.

Simple Syntactic Checks
The first set of structural validations that are carried out are simple syntactic checks.

These checks ensure that the activity joins and splits (see “Split/Join” on page 89) in the process
definition are set up correctly. These validations include:

• All activities except the start and end activities must have at least one inbound and one outbound
transition.

• Any activity with more than one inbound transition must have a join type specified (that is, a join type
not equal to NONE).

• Any activity with more than one outbound transition must have a split type (that is, a split type not equal
to NONE).

• Any activity with exactly one inbound transition must have a join type of NONE.
• Any activity with exactly one outbound transition must have a split type NONE.
• The split type for a Parallel activity must be NONE.
• The join type for a Parallel activity must be NONE.
• A Parallel activity must have exactly one inbound transition.
• A Parallel activity must have exactly one outbound transition.
• The split type of the activity on the far side of the incoming transition to a Parallel activity must be

NONE.
• The join type of the activity on the far side of the outgoing transition from a Parallel activity must be

NONE.

Cúram Workflow Reference  93



Graph Checks
The second set of structural validations carried out are graph checks. These ensure that the flow graph is
a directed, connected acyclic graph.

These validations include:

• The workflow must form a 'connected' graph. This means that each activity must appear on at least one
path from the start activity to the end activity.

• The workflow must form an acyclic digraph. This means that there can be no path through the workflow
that completes the same activity twice. This validation checks for cycles that are created by transitions
only - cycles that are created with loop-begin and loop-end activities are perfectly valid.

• Every instance subgraph within the workflow graph must correctly stop. This means that starting at the
start activity, every possible path through the workflow must end up at the end activity.

Block Checks
The third set of structural validations carried out are block checks. These ensure that the flow graph is
correctly block-structured.

The block-start constructs are: Start Process Activity, Loop Begin Activity, Parallel (AND) Split and Choice
(XOR) Split. Their corresponding block-end constructs are: End Process Activity, Loop End Activity,
Parallel (AND) Join and Choice (XOR) Join.

Based on these, the following block-structure validations are run:

• For every block start, there must be a corresponding block end (that is, if there is a Loop Begin activity in
the workflow, then there must be a corresponding Loop End activity).

• The block start/end types must match (that is, if there is a Parallel (AND) Split present in the workflow
graph, then this must be matched by a corresponding Parallel (AND) Join).

• Blocks can be nested but not interleaved.

Workflow Web Services
Cúram workflows can inter-operate with other workflow systems through support for specific aspects of
the Oasis group's Business Process Execution Language (BPEL) standard. BPEL processes can enact
Cúram workflow processes and be notified when the process completes.

The Cúram workflow engine is not intended to be a fully fledged BPEL orchestration engine. Instead, the
Cúram workflows participate in BPEL orchestrated processes. This is done by providing functionality to
expose Cúram workflow processes as web services that can be started from BPEL process partner links.

Exposing a workflow web service
Workflow web services build over the existing Cúram web services support.

The workflow engine requires a Business Process Object (BPO) modeled as a Document Oriented Web
Service (see the Cúram Inbound Web Services chapter of the Cúram Web Services Guide for details).

The web service BPO is just a front end to the workflow enactment API
(curam.util.workflow.impl.EnactmentService). This being the case only one such BPO is
required per application. An appropriate BPO is already provided in the Cúram application: Logical
View::MetaModel::Curam::Facades::Workflow::WebService::WorkflowProcessEnactment
WS2.

Cúram web services can be customized in other ways, for example, making them secure by using WS-
Security as described in the Secure Web Services section of the Cúram Web Services Guide. All
customizations for workflow web services must be made to this BPO.

Note: Since all workflow web services are handled by the same BPO, any customizations affect all
process definitions that are exposed as web services.

94  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Process Enactment
Exposing a Cúram workflow process definition as a web service requires marking it as such in the Process
Definition Tool (PDT).

Or directly in the metadata as described in “Process Definition Metadata” on page 10. After the process
definitions are marked as web services the server, the server EAR and the web services EAR file must be
rebuilt.

Like other Cúram web services, the WSDL for the service can be accessed only when the web services
EAR is deployed. The name of workflow web service is the same as the process name. Thus the WSDL can
be accessed at a URL similar to the following URL:

http://testserver:9082/CuramWS2/services/<ProcessName>?wsdl

The content of the WSDL is determined in part by the input to the process (the WDO attributes that are
marked as required for enactment) and the process output (the WDO attributes marked as process
output. For More information, see “Metadata” on page 14. The WSDL port type is the process name and
the operation to enact a process is always startProcess.

<wsdl:portType name="SomeCuramWorkflow">
    <wsdl:operation name="startProcess">
      <wsdl:input message="intf:startProcessRequest"
                  name="startProcessRequest"/>
      <wsdl:output message="intf:startProcessResponse"
                   name="startProcessResponse"/>
      <wsdl:fault message="intf:InformationalException"
                  name="InformationalException"/>
      <wsdl:fault message="intf:AppException"
                  name="AppException"/>
    </wsdl:operation>
  </wsdl:portType>

Figure 2: Process Enactment Port Type

Process completion callback
An external system (probably but not necessarily a BPEL process) that enacts a Cúram workflow through
web services often requires notification that the process that is completed and possibly some output data
from the process definition. Doing this requires a web service that is started when the process completes
to be specified for each process definition.

The callback web service is specified in the process definition metadata by using the PDT or directly in the
metadata as described in “Process Definition Metadata” on page 10.

Note: Before use in a workflow process definition the callback web service must be registered as a Cúram
outbound web service connector as described in the Cúram Outbound Web Service Connectors chapter of
the Cúram Web Services Guide.

The callback web service must be implemented by an external system but it must conform to a port type
definition specified by the Cúram workflow web service, “Invocation from BPEL processes” on page 95
has further details.

Invocation from BPEL processes
The creation of BPEL processes that enact Cúram workflow processes is out of the scope of this
document. However, the WSDL for each workflow process web service contains information that can be
used by BPEL processes.
Callback Port Type

There is a port type in WSDL for a Cúram workflow web service that is not implemented by the service
itself. The name of this port type is the name of the process with the word "Complete" appended to it
(<ProcessName>Complete).

The purpose of this unimplemented port type is to define the web service interface that a Cúram
workflow web service expects to be implemented by the BPEL process that enacted it. This port type

Cúram Workflow Reference  95



that must be implemented by the callback web service that is configured in the process definition (see
“Process completion callback” on page 95).
<!--Implemented by the BPEL process-->
  <wsdl:portType name="SomeCuramWorkflowComplete">
    <wsdl:operation name="processCompleted">
      <wsdl:input message="intf:processCompletedRequest"
                  name="processCompletedRequest"/>
    </wsdl:operation>
  </wsdl:portType>

Figure 3: Callback Port Type

Partner Link Type
Technically the only thing necessary to allow a Cúram workflow process to participate in a BPEL
orchestrated process is to expose the process as a web service. However it is possible to add some
metadata to assist the BPEL process developer by defining the port types that are involved in the
partner link and the roles they play.

The BPEL specification allows partner link types to be defined in the WSDL for the service to be
started in the partner link by using the WSDL extension mechanism. The WSDL generated for a Cúram
workflow web service defines the partner link type that it expects to participate in and specifies the
port types that play each role.
<!--Partner link type-->
  <partnerLinkType name="CuramWorkflowPartnerLink"
    xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">
    <role name="curamService">
      <portType name="tns1:SomeCuramWorkflow"/>
    </role>
    <role name="partnerService">
      <portType name="tns1:SomeCuramWorkflowComplete"/>
    </role>
  </partnerLinkType>

Figure 4: WSDL extensions for BPEL

File Locations
While there are utilities like the Process Definition Tool PDT and other administration user interfaces, the
outputs of such tools often need to be exported and version controlled. Of course these externalized files
need to be put back into the runtime system when Cúram is built or installed.

The pattern in Cúram is to place such files into a predefined source folder from which they are loaded
onto the database (perhaps after some pre-processing). This section describes the location of workflow-
related source files.

Workflow Process Definition Files
Workflow process definitions (both released and unreleased) can be imported onto the relevant database
table by using the standard build database target.

These workflow process definitions must be stored in XML files in a workflow subdirectory under the
relevant Cúram server component directory (for example, ...\EJBServer\components\core
\workflow for the core component or ...\EJBServer\components\Appeal\workflow for the
Appeal component and so on).

Each component in the Cúram application can have a workflow directory that contains the process
definition XML files relevant to it. Any process definition files that are stored in these workflow directories
are automatically imported when the build database target is run. If the process definition files are
not valid or if the name and version of the definitions do not match those used in the filenames, the import
fails.

The workflow process definition XML files on the file system must follow a strict naming convention. This
is as follows: Process Name_vProcess Version.xml where:

• Process Name is the name of the workflow process.

96  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



• Process Version is the version of the workflow process.

The same version of a process definition can exist in multiple components in the Cúram application. The
version that is imported is always taken from the component with the highest component order
precedence. Component order precedence is configured by using the
COMPONENT_ORDER_PRECEDENCE environment variable.

Each process definition when imported is assigned a new process definition identifier that is unique for
the database it is imported onto. Different versions of the same process definition are assigned the same
unique identifier and only one unreleased version of a process definition can be imported. To handle
invalid workflow process definitions that are loaded during the build database target, strict validations are
in place in the workflow engine. These ensure that a workflow process definition cannot be loaded into
the process definition cache and run unless it passes all of the process validations first. These validations
are described in the earlier chapters of this document.

Customizing Workflow Process Definition Files

Creating New Workflow Process Definition Files
All new workflow process definition files must be created in the workflow subdirectory of
the ...\EJBServer\components\custom directory. To create a new process definition file, the PDT
can be used to create the required definition and enter all the details. The definition can then be exported
to a file by the tool and placed in the location that is specified here.

Changing An Existing Workflow Process Definition File
Using the PDT, view the latest version of the process definition that requires modification. Create a version
of that process definition by using the tool. Make the changes, validate it and release the workflow.

Export the newly released workflow process definition by using the PDT and place it into the workflow
subdirectory of the ...\EJBServer\components\custom directory.

Event Definition Files
Events provide a mechanism for loosely-coupled parts of the Cúram application to communicate
information about state changes in the system. When one module in the application raises an event, one
or more other modules receive notification of that event occurring provided that they are registered as
listeners for that event.

To use this functionality, some events must be defined, some application code must raise these events,
and some event handlers must be defined and registered as listeners to such events.

Events are defined in Cúram in XML files, that specify both the event classes and the event types. These
files are created with a .evx extension and are placed in the events of a Curam component (for
example, ...EJBServer\components\core\events) from where they are picked up and processed
by the build scripts.

There are two types of output that is generated by the evgen command; .java files (for code constants
that use events less error prone) and .dmx files (Cúram database scripts for loading event definitions onto
the database). The Java artifacts that are produced from a merged event file are placed in the /
build/svr/events/gen/[package] directory, where [package] is the package attribute that is
specified in the event definition file. The database scripts that are produced from a merged event file are
placed in the /build/svr/events/gen/dmx directory.

The Cúram Server Developer's Guide provides a comprehensive description of events and how they can be
used in the Cúram application.

Configuration
Usually, configuration options are not global across all workflow process definitions. Rather they are
specific to each definition and hence are held within the actual process definition itself. That said, there

Cúram Workflow Reference  97



are a few application properties that affect the Cúram Workflow Management System as a whole. This
section describes those properties.

Application Properties
The following application properties can be set in the Application.prx file:

Property Name Description

curam.custom.
workflow.workresolver

Purpose: The fully-qualified name of the application class that implements the
WorkResolver callback interface. See “Allocation strategy” on page 51 for further
information.

Type: String

Default Value: curam.core.sl.impl.DefaultWorkResolver

curam.workflow.
automaticallyaddtasktousertasks

Purpose: After the resolution of the allocation targets for a task, if that task is
assigned to one user and one user only and the value of this property is set to yes/
true, the system will automatically add this task to a user's My Tasks list in their
Inbox to allow them to work on it.

Type: String

Default Value: NO

curam.custom.notifications.
notificationdelivery

Purpose: The fully-qualified name of the application class that implements the
NotificationDelivery callback interface. See “Notification Allocation Strategy”
on page 81 for further information.

Type: String

Default Value: curam.core.sl.impl.NotificationDeliveryStrategy

curam.workflow.disable.audit.
wdovalueshistory.before.activity

Purpose: The process instance WDO data auditing table, 'WDOValuesHistory' is
populated by the workflow engine at three distinct points during the execution of a
workflow process instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an activity). When
specified to true, this property ensures that no data is written to the WDO data
auditing table before an activity is run.

Type: BOOLEAN

Default Value: FALSE

curam.workflow.disable.audit.
wdovalueshistory.after.activity

Purpose: The process instance WDO data auditing table, 'WDOValuesHistory' is
populated by the workflow engine at three distinct points during the execution of a
workflow process instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an activity). When
specified to true, this property will ensure that no data is written to the WDO data
auditing table after an activity is been run.

Type: BOOLEAN

Default Value: FALSE

curam.workflow.disable.audit.wdovalueshistory
.transition.evaluation

Purpose: The process instance WDO data auditing table, 'WDOValuesHistory' is
populated by the workflow engine at three distinct points during the execution of a
workflow process instance (before the execution of an activity, after the execution of
an activity and before the evaluation of the transitions from an activity). When
specified to true, this property ensures that no data is written to the WDO data
auditing table before the transitions from an activity are evaluated..

Type: BOOLEAN

Default Value: FALSE

curam.custom.workflow.processcachesize Purpose: The workflow engine caches released versions of process definitions in
memory (to minimize processing when looking up metadata). This property controls
the maximum number of process versions stored in the cache. When this number is
reached, the engine begins ejecting process versions from the cache, by using a
least-recently-used ejection policy. Runtime modifications to the value of this
property will take effect the next time the workflow engine attempts to insert a
process version in the cache.

Type: Integer

Default Value: 250

curam.batchlauncher.dbtojms.
notification.batchlaunchermode

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
notification.encoding

See Cúram Batch Processing Guide, Section 5.3 for further information.

98  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Property Name Description

curam.batchlauncher.dbtojms.
notification.host

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
messagespertransaction

See Cúram Batch Processing Guide, Section 5.3 for further information.

curam.batchlauncher.dbtojms.
notification.port

See Cúram Batch Processing Guide, Section 5.3 for further information.

JMSLite
JMSLite is a Cúram-developed lightweight Java Message Service (JMS) server that runs alongside the
RMI-based test environment. Hence it can run inside supported Integrated Development Environments
(IDEs).

This allows process definitions to be tested inside an Integrated Development Environment, that is,
without requiring the application to be deployed to an EJB server. When used along with the Process
Definition Tool, JMSLite allows developers to define, deploy, and enact workflows - all within their
Integrated Development Environment.

What JMSLite Does
JMSLite is a JMS server that implements only those sections of the JMS specification necessary to
support Integrated Development Environment based testing of Cúram workflows: namely transactional,
point-to-point messaging. This means that JMSLite supports ACID transactions that involve the
application database and the infrastructure-defined workflow queue destinations.

It does not support custom (application-defined) queues or the publish-subscribe domain (that is, topics).

So, JMSLite allows the workflow enactment service and workflow engine to send JMS messages
asynchronously. This means that application calls to workflow-related infrastructure APIs (such as the
enactment service and event service) are non-blocking. The APIs pass messages to the workflow engine,
which drives process instances asynchronously (for example, runs automatic activities, creates and
allocates Tasks, and so forth).

Why JMSLite?
The purpose of JMSLite is to make the workflow engine behave in an Integrated Development
Environment in the closest possible way to how it behaves when deployed on an application server. This
increases the likelihood of detecting problems early (while testing in the Integrated Development
Environment) rather than late (when testing on an application server). Both risk and cost are consequently
are reduced.

For example, consider the following situation: Suppose the WMS (running in an Integrated Development
Environment) were to enact workflows synchronously.

Reminder: In production, workflows are enacted asynchronously because they are assumed to be long-
lived (on the order of hours, days or weeks) relative to normal user operations (order of seconds or
milliseconds).

Suppose also that a developer were to write a method that enacted an automated case-approval
workflow and then (immediately after the call to the enactment service) tried to do something with the
result (for example, check if the case was automatically approved). Since the test environment operates in
a different manner (synchronously) from the production environment - the code would work fine in test,
but would fail in production (this is an example of a 'temporal coupling' bug).

However, since JMSLite runs asynchronously - this problem would show up in the Integrated
Development Environment in the same way as it would on an application server, consequently allowing
the developer to detect it early.

Cúram Workflow Reference  99



Using JMSLite
The JMSLite server polls queues and unpacks any messages that it finds on them. These messages result
in calls from the JMSLite server to the RMI server that is required for Integrated Development
Environment -based testing of Cúram methods (commonly referred to as StartServer). The JMSLite
server is launched as a thread when the (StartServer) process is started.

Since the JMSLite server dispatches messages to the workflow engine that runs on the RMI server, it is
necessary to start the StartServer in debug mode when workflow methods are debugged.

Debugging workflows
Normally, Cúram infrastructure methods are started by the application. However, in workflow the call is
often made the other way around, that is, the workflow engine (infrastructure) calls an application method
(for example, a Work Allocation method).

In these cases, it is not possible for an application developer to step from the call to the
curam.util.workflow.impl.EnactmentService.startProcess() method into their application
(Work Allocation) method. In this case, the developer must set breakpoints within the method they want
to debug and then run the method that enacts the workflow. The workflow engine will then
(asynchronously) start the application method, therefore causing the breakpoint to be reached. The
debugger then suspends execution at the specified breakpoint, so allowing normal debugging.

Application methods that fall into the above category are:

• Automatic Activity methods
• Work Allocation Functions
• The application Notification Delivery Method
• The application Work Resolver Method

Inbox and Task Management
The following sections describe the configuration and customization options that are available for the
Inbox and Task Management areas of the Cúram WMS.

Tasks are used to assign and track the work of system users and are generated when “Manual” on page
45, “Decision” on page 59 or “Parallel” on page 72 activities are run by the Workflow Engine. The Inbox
and the associated task management functions are used by the users of the Cúram application to manage
these tasks.

Inbox Configuration

Inbox List Sizes Configuration Settings
There are a number of task list views available in the Inbox.

These include the following:

• My Open Tasks : A list of tasks that the user is working on.
• My Deferred Tasks : A list of tasks that the user is working on but is deferred to a later date.
• Available Tasks : A list of tasks that are available to the user to work on.
• Task Query Search Results : A list of tasks that are the result of running a task query.
• Work Queue Tasks : A list of tasks that are assigned to a work queue.

There is also a list in the Inbox that displays the notifications that are delivered to a user.

• My Notifications : A list of notifications that are delivered to the user.

The Inbox list views can be configured to limit the number of records that are returned to the user. The
following application properties can be set in the Application.prx file to effect this change.

100  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Table 5: Inbox List Sizes Configuration Settings

Property Name Description

curam.inbox.max.task.list.size Purpose: The value of the property controls the number of
tasks that are displayed in the various Inbox task list
views. The Inbox task lists pages that are affected by the
value of this property include the following: My Open
Tasks; My Deferred Tasks; Available Tasks; Task Query
Search; Work Queue Tasks. If the number of tasks to be
displayed exceeds the specified value, then a message is
displayed informing the user that not all the records that
match the search criteria of the page are being displayed.
This message displays both the number of tasks that are
being displayed and also the total number of tasks that
match the search criteria.

Type: Integer

Default Value: 100

curam.notification.max.list.size Purpose: The value of the property controls the number of
notifications that are displayed in the Inbox My
Notifications list view. If the number of notifications to be
displayed exceeds the specified value, then a message is
displayed informing the user that not all the records that
match the search criteria of the page are being displayed.
This message displays both the number of notifications
that are displayed and also the total number of
notifications that match the search criteria.

Type: Integer

Default Value: 100

Get Next Task Configuration Settings
There are a number of shortcut functions available in the Inbox to retrieve the next task to work on.

These functions include the following:

• Get Next Task - retrieves the next task from the tasks available to the user.
• Get Next Task From Preferred Org Unit - retrieves the next task assigned to the user's preferred

organization unit.
• Get Next Task From Preferred Queue- retrieves the next task assigned to the user's preferred work

queue.
• Get Next Task From Queue- retrieves the next task assigned to a work queue that the user selects.

The algorithm that is used by these shortcut functions to retrieve the next task can be configured by using
the following application properties in the Application.prx file:

Cúram Workflow Reference  101



Table 6: Get Next Task Configuration Settings

Property Name Description

curam.workflow.
reservenexttaskwithpriorityfilter

Purpose: The value of the property controls whether the get next task algorithm
uses the priority of a task to determine the next task to retrieve. If set to YES, the
default, the priority of the task is used for this purpose (the priorities as specified in
the curam.workflow.taskpriorityorder) property. Otherwise, the task to be retrieved
is based on tasks that are assigned to the user for the longest period of time.

Type: String

Default Value: Yes

curam.workflow.taskpriorityorder Purpose: There are three task priorities that are specified in the Workflow
Management System, namely High, Medium and Low (which correspond to the
codetable codes TP1, TP2 and TP3 in the TaskPriority codetable). In some
cases, customers can have a requirement to add a task priority (for example, Critical
with a codetable code value of TP4). Retrieving tasks by using the task priority that
contains this value would therefore ensure that critical tasks would appear after
those that have a low priority (when the intention would be that tasks with this
priority should be retrieved first). This property allows the task priorities to be
specified in whatever order is required to satisfy the customer's requirements.

Type: String

Default Value: TP1,TP2,TP3

Task Redirection and Allocation Blocking Settings
Task redirection enables the user to redirect tasks to another user, organizational object (organization
unit, position or job), or work queue for a specified period of time. Task allocation blocking enables the
user to ensure that no tasks are assigned to them for a specified period of time. This functionality is
available to the user in the Task Preferences area of the Inbox.

However, all users on the system cannot require access to set up task redirection or task allocation
blocking periods for themselves. To facilitate this requirement, these areas of functionality in the Inbox
can be disabled for specific users by using security identifiers. The following table details the security
identifiers that a user must have to avail of this functionality.

Table 7: Security Identifiers and Associated Actions

Security Identifier Name Action Allowed

UserTaskRedirection.
listTaskRedirectionHistoryForUser

Allows a user to view all of the task redirection periods
that are specified for them.

UserTaskRedirection.
redirectTasksForUser

Allows a user to create a task redirection period for
themselves.

UserTaskRedirection.
clearTaskRedirectionForUser

Allows a user to clear one of their task redirection periods.

UserTaskAllocationBlocking.list.
TaskAllocationBlockingHistoryForUser

Allows a user to view all of the task allocation blocking
periods that are specified for them.

UserTaskAllocationBlocking.
blockTaskAllocationForUser

Allows a user to create a task allocation blocking period for
themselves.

UserTaskAllocationBlocking.
clearTaskAllocationBlockForUser

Allows a user to clear one of their task allocation blocking
periods.

102  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Inbox Customization
The default behavior of the Inbox Actions, Task Actions, and Task Search functionalities can be changed
by using Guice to call custom code, which overrides the default behavior.

Note: Guice is a framework that is developed by Google and is beyond the scope of this document. For
more information on Guice please refer to the Guice user's guide.

The Cúram Workflow Management System contains the following customization points and their
corresponding default implementations:

Table 8: Customization Points

Customization Point Interface Class Default Implementation Class

Inbox Actions curam.core.hook.
task.impl.InboxActions

curam.core.hook.
task.impl.InboxActionsImp
l

Task Actions curam.core.hook.
task.impl.TaskActions

curam.core.hook.
task.impl.TaskActionsImpl

Task Search and Available Task
Search

curam.core.hook.
task.impl.SearchTask

curam.core.hook.
task.impl.SearchTaskImpl

Task Query curam.core.hook.
task.impl.TaskQuery

curam.core.hook.
task.impl.TaskQueryImpl

Task Search SQL generation curam.core.hook.
task.impl.SearchTaskSQL

curam.core.hook.
task.impl.SearchTaskSQLIm
pl

The following Inbox Actions can be customized:

• Get Next Task
• Get Next Task From Preferred Organization Unit
• Get Next Task From Preferred Queue
• Get Next Task From Work Queue
• Subscribe User To Work Queue
• Unsubscribe User From Work Queue

The following Task Actions may be customized:

• Add Comment
• Close
• Create
• Defer
• Restart
• Forward
• Modify Time Worked
• Modify Priority
• Modify Deadline
• Reallocate
• Add To My Tasks

Cúram Workflow Reference  103



The following Task Search and Available Task Search methods can be customized:

• countAvailableTasks
• countTasks
• searchAvailableTasks
• searchTask
• validateSearchTask

The following Task Query methods can be customized:

• createTaskQuery
• modifyTaskQuery
• runTaskQuery
• validateTaskQuery

The following Task Search SQL generation methods can be customized. These methods are used to
generate the SQL for all of the task search functionalities shown here.

• getBusinessObjectTypeSQL
• getCategorySQL
• getCountSQLStatement
• getCreationDateSQL
• getDeadlineSQL
• getFromClause
• getOrderBySQL
• getOrgObjectSQL
• getPrioritySQL
• getReservedBySQL
• getRestartDateSQL
• getSelectClause
• getSQLStatement
• getStatusSQL
• getTaskIDSQL
• getWhereClause

How to customize the Inbox
The following is a description of how to customize the Inbox action
curam.core.hook.task.impl.InboxActionsImpl.getNextTask. The same process can be
followed to customize any of the other customization points.

A custom hook point class must be created. This class must extend the default implementation class:
CustomTaskActionsImpl class

The CustomTaskActionsImpl class implements the getNextTask method and it implements the
TaskActionsImpl class.
TaskActionsImpl class

The TaskActionsImpl class implements the following methods:

• getNextTask
• getNextTaskFromWorkQueue
• getNextTaskFromPreferredWorkQueue
• getNextTaskFromPreferredOrgUnit
• subscribeUserToWorkQueue

104  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



• unsubscribeUserFromWorkQueue

The TaskActionsImpl class implements the TaskActions interface class:
TaskActions interface class

The TaskActions interface class implements the following methods:

• getNextTask
• getNextTaskFromWorkQueue
• getNextTaskFromPreferredWorkQueue
• getNextTaskFromPreferredOrgUnit
• subscribeUserToWorkQueue
• unsubscribeUserFromWorkQueue

Note: The custom class must never directly implement the interface class, as this might lead to compile
time exceptions during an upgrade if new methods were added to the interface. In this case, the custom
class would not implement the new methods and hence the contract between the interface class and the
implementation class would be broken leading to compile-time exceptions.

Customizing the default implementation
The signature of the getNextTask function on the curam.core.hook.task.impl.InboxActions
interface is as follows:
package curam.core.hook.task.impl;  

@ImplementedBy(InboxActionsImpl.class)
public interface InboxActions {

  public long getNextTask(String userName);
   
   .
   .
   .
   .
}

The default implementation for the function is specified in the
curam.core.hook.task.impl.InboxActionsImpl class
package curam.core.hook.task.impl;  

public class InboxActionsImpl implements InboxActions {

  public long getNextTask(String userName) { 
    // Default implementation code is here....
  }

  . 
  .
  .
  .
}

To customize getNextTask, the method must be implemented in the new custom class created earlier,
which extends the default curam.core.hook.task.impl.InboxActionsImpl implementation class.
package custom.hook.task.impl;  

public class CustomInboxActionsImpl extends InboxActionsImpl {

  public long getNextTask(final String userName) { 
    // Custom implementation code goes here
  }
  
}

To ensure that the application runs the new custom class rather than the default implementation a new
class custom.hook.task.impl.Module.java, which extends
com.google.inject.AbstractModule must be written with the configure method implemented as
the following example shows:

Cúram Workflow Reference  105



package custom.hook.task.impl; 
 
public class Module extends com.google.inject.AbstractModule {
  protected void configure() {
    bind(
      curam.core.hook.task.impl.InboxActions.class).to(
        custom.hook.task.impl.CustomInboxActionsImpl.class);
    }
}

Finally, the custom.hook.task.impl.Module class name must be inserted into the ModuleClassName
column of the ModuleClassName database table. This can be inserted by adding an extra row to the
ModuleClassName.DMX file or directly into the database table if required.

Using this approach, when the application is redeployed, the system now starts the customized version of
the getNextTask function rather than the default implementation.

106  IBM Cúram Social Program Management: Cúram Workflow Reference Guide



Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2018 107



Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

108  Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml


Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices  109



IBM®

Part Number: 

(1
P)
 P

/N
: 


	Contents
	List of Figures
	List of Tables
	Chapter 1.  Cúram Workflow Reference
	Overview
	Prerequisites
	How to use the guide
	Structure of this Document
	Workflow Processes
	Data Flow
	Activities
	Flow Control
	Development and Runtime
	Inbox Configuration and Customization


	Creating a Workflow Process
	Process definition lifecycle
	Process creation
	Process visualization
	Releasing a process
	Process versions (process editing)
	Process import, export, and copy
	Validations

	Localization

	Process execution
	Basic engine behavior
	Executing multiple versions
	Process Instance Administration

	Method Reference Library
	Referencing Cúram methods
	Method types

	WDO templates
	Metadata
	Import and syncing
	Validations


	Process Definition Metadata
	Metadata
	Validations
	Description of Context WDOs

	Workflow Data Objects
	Metadata
	Validations
	List of Context WDOs
	Runtime Information

	Process Enactment
	Code enactment (enactment service API)
	Metadata
	Validations
	Code

	Event enactment
	Configuration data
	Validations


	Base Activity
	Metadata
	Localized Text

	Validations
	Basic Activity Types
	Route Activity
	Start/End Process Activity


	Automatic
	Prerequisites
	Cúram Business Methods
	Metadata
	Validations
	Code

	Input Mappings
	Metadata
	Input mappings for base type parameters
	Input mappings for struct parameters
	Input mappings for aggregated struct parameters
	Input mappings for list struct parameters
	Input mappings and indexed items from list workflow data objects

	Validations
	Runtime Information

	Output Mappings
	Metadata
	Primitive return type
	Struct return type
	Aggregated struct return type
	List struct return type

	Validations
	Runtime information

	Description of Context WDOs

	Event Wait
	Prerequisites
	List of events
	Metadata
	Validations
	Code
	Runtime Information

	Deadline
	Prerequisites
	Metadata
	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Output Mappings
	Metadata
	Validations
	Runtime Information
	Description of Context WDOs

	Reminders
	Metadata
	Validations
	Code
	Runtime Information


	Manual
	Prerequisites
	Task details
	Metadata
	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Allocation strategy
	Prerequisites
	Metadata
	Function Allocation Strategy
	Classic Rules Allocation
	CER Rules Allocation
	Target Allocation Strategy

	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Business Object Associations
	Metadata
	Validations
	Code
	Runtime Information

	Event Wait
	Prerequisites
	Description of Context WDOs


	Decision
	Prerequisites
	Task Details
	Metadata
	Validations
	Runtime Information

	Question Details
	Metadata
	Multiple Choice
	Free Text

	Validations
	Runtime Information
	Description of Context WDOs


	Subflow
	Prerequisites
	Subflow Process
	Metadata
	Validations

	Input Mappings
	Metadata
	Validations

	Output Mappings
	Metadata
	Validations


	Loop Begin and Loop End
	Prerequisites
	Overview
	Loop Type

	Metadata
	Loop Begin Activity
	Loop End Activity

	Runtime Information
	Description of Context WDOs

	Parallel
	Prerequisites
	Metadata
	Generic Metadata for a Parallel Activity
	Metadata for a Parallel Manual Activity
	Metadata for a Parallel Decision Activity
	Validations
	Runtime Information
	Description of Context WDOs


	Activity Notifications
	Notification Details
	Metadata
	Validations
	Code
	Runtime Information

	Notification Allocation Strategy
	Prerequisites
	Code


	Transitions
	Metadata
	Validations
	Runtime Information

	Conditions
	Metadata
	Validations

	Split/Join
	Choice XOR Split
	Metadata

	Parallel AND split
	Metadata


	Workflow Structure
	Graph Structure
	Block Structure
	An Analogy for Blocks
	Block Types Supported by Workflow
	'Choice' (XOR) Block
	'Parallel' (AND) Block
	'Loop' Block


	Structural Rules
	Graph Structure Rules
	Block Structure Rules

	Validations
	Simple Syntactic Checks
	Graph Checks
	Block Checks


	Workflow Web Services
	Exposing a workflow web service
	Process Enactment
	Process completion callback

	Invocation from BPEL processes

	File Locations
	Workflow Process Definition Files
	Customizing Workflow Process Definition Files
	Creating New Workflow Process Definition Files
	Changing An Existing Workflow Process Definition File


	Event Definition Files

	Configuration
	Application Properties

	JMSLite
	What JMSLite Does
	Why JMSLite?
	Using JMSLite
	Debugging workflows

	Inbox and Task Management
	Inbox Configuration
	Inbox List Sizes Configuration Settings
	Get Next Task Configuration Settings
	Task Redirection and Allocation Blocking Settings

	Inbox Customization
	How to customize the Inbox
	Customizing the default implementation




	Notices
	Privacy Policy considerations
	Trademarks


