
IBM Cúram Social Program Management
Version 7.0.3

Cúram Evidence Developers Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
38

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

List of Figures... iv
List of Tables... v

Chapter 1. Developing with Evidence... 1
Introduction... 1

Purpose...1
Prerequisites...1
Audience... 1

Server / Client Evidence Components...1
Server Side Artifacts...1
Client Side Artifacts.. 7

Developing an Evidence Solution.. 7
Administration.. 7
Common Evidence Maintenance Operations...8
(deprecated) Evidence Dashboard and EvidenceFlow..17
Validations.. 17
More On Validations... 17
Evidence Attribution...19
Evidence Relationship..19
Registering Evidence Implementations...20
Customizing Evidence Maintenance.. 21
Customization of Multiple Participant Evidence ...23
Evidence End Dating Feature Implementation... 29

Participant Evidence Integration...30
Overview... 30
Integration of Participant Data as Evidence.. 31
Administration.. 31
Integrating new Participant entities as Evidence..31
Sequence Diagrams for Participant evidence..33

Implementing Conditional Verifications... 35
Conditional Verification.. 35
Rule Artifacts supplied by Verification framework..36
Rule Sets...36
Rule Classes... 36
Verification Determinator...36
Verification Determinator Result... 37
Verification Determinator Params... 37
New Propagator..37

Notices..38
Privacy Policy considerations.. 39
Trademarks.. 39

 iii

List of Figures

1. Sequence Diagram for Creating Evidence...8
2. Sequence Diagram for Modifying Evidence.. 11
3. Sequence Diagram for Viewing Evidence... 14
4. Sequence Diagram for Listing Evidence... 16
5. Participant Evidence Sequence.. 33
6. Evidence Sequence Diagram.. 34
7. Modify participant... 35

iv

List of Tables

1. Evidence Relationship Link Entity...20
2. Commonly used case types.. 22

 v

vi

Chapter 1. Developing with Evidence
Custom evidence solutions can be developed with Cúram Evidence. All of the evidence server-side
infrastructure artifacts are available in the curam.core.sl.infrastructure.impl package. The evidence
metadata entity contains metadata about each evidence type. This entity must be populated before
evidence maintenance can proceed. Evidence maintenance functions are available in the administration
application.

Introduction

Purpose
The purpose of this document is to provide assistance to developers intending to implement evidence
solutions using Cúram's Evidence solution. It outlines common pieces of evidence maintenance
functionality and describes how a developer can design / implement such functionality.

Prerequisites
The readers should be familiar with the evidence capturing aspect of case management as well as its use
in determining eligibility and entitlement on a case. They should also have read "The Evidence Pattern" in
the Designing Cúram Evidence Solutions guide.

Audience
This document is targeted at a technical audience, both developers and architects, intending to
implement evidence solutions using Cúram's Evidence framework.

Server / Client Evidence Components

Server Side Artifacts
All of the Evidence server side infrastructure artifacts are shipped in the
"curam.core.sl.infrastructure.impl" package. The key elements found here include the Evidence
Controller / Evidence Controller Hook (see section 3.8) classes and the Evidence Interfaces. The
Interfaces form part of the Interface Hierarchy. The Participant Evidence Interface and Evidence Interface
both extend the parent Interface, Standard Evidence Interface. These Evidence Interfaces will be the
artifacts of most interest to designers / developers as each evidence entity will need to implement this
interface.

Standard Evidence Interface
The Standard Evidence Interface defines the following methods, which are common to both inheriting
interfaces. The interface and its associated methods are shown with the appropriate Javadoc comments.

/*
 * Copyright 2005-2006,2011 Curam Software Ltd.
 * All rights reserved.
 *
 * This software is the confidential and proprietary information
 * of Curam Software, Ltd. ("Confidential Information"). You
 * shall not disclose such Confidential Information and shall use
 * it only in accordance with the terms of the license agreement
 * you entered into with Curam Software.
 */
package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.entity.struct

© Copyright IBM Corp. 2012, 2018 1

 .AttributedDateDetails;
import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import
 curam.core.sl.infrastructure.struct.EIFieldsForListDisplayDtls;
import curam.core.sl.infrastructure.struct.ValidateMode;
import curam.core.struct.CaseKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.type.Date;

/**
 * This interface is a key component of the Curam
 * Evidence Solution. Implementations hoping to manage evidence
 * via the Evidence Solution must ensure that the
 * evidence entities contained within the solution implement the
 * Evidence Interface. By doing this, the evidence is utilizing
 * the Evidence Controller pattern whereby a lot of the common
 * business functions for maintaining evidence are contained
 * within the out-of-the-box evidence infrastructure.
 *
 * This interface is the super interface that will be
 * extended by other evidence interfaces that wish to provide
 * custom functionality for that type of evidence. The methods
 * defined on this evidence are common to any interface that
 * extends it.
 */
public interface StandardEvidenceInterface {

 // __
 /**
 * Method for calculating case attribution dates. The
 * calculation of evidence attribution is an integral part of a
 * evidence solution as it determines the period of
 * time for which a piece of evidence is effective. The
 * implementation of this function will contain the logic that
 * derives the appropriate effective period for the evidence of
 * a particular type.
 *
 * @param caseKey
 * Contains a case identifier
 * @param evKey
 * Contains the evidenceID / evidenceType pairing of
 * the evidence to be attributed
 *
 * @return Case attribution details
 */
 AttributedDateDetails calcAttributionDatesForCase(
 CaseKey caseKey, EIEvidenceKey evKey)
 throws AppException, InformationalException;

 // __
 /**
 * Retrieves a summary of evidence details which are used to
 * populate the 'Details' column on the following evidence
 * pages:
 *
 * - All evidence workspace pages
 * - Apply changes page
 * - Apply user changes page
 * - Approve page
 * - Reject page
 *
 * @param key
 * Contains an evidenceID / evidenceType pairing
 *
 * @return A summary of the evidence details to be displayed
 */
 EIFieldsForListDisplayDtls getDetailsForListDisplay(
 EIEvidenceKey key)
 throws AppException, InformationalException;

 // __
 /**
 * Method to get the business end date for this evidence
 * record.
 *
 * @param key
 * Contains an evidenceID / evidenceType pairing
 *
 * @return The end date for this evidence
 */

2 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

 Date getEndDate(EIEvidenceKey evKey) throws AppException,
 InformationalException;

 // __
 /**
 * Method to get the business start date for this evidence
 * record.
 *
 * @param key
 * Contains an evidenceID / evidenceType pairing
 *
 * @return The start date for this evidence
 */
 Date getStartDate(EIEvidenceKey evKey) throws AppException,
 InformationalException;

 // __
 /**
 * Method for inserting case evidence.
 *
 * @param dtls
 * Custom evidence details to be inserted
 * @param parentKey
 * Contains the evidence type of the evidence being
 * inserted
 *
 * @return Contains the evidenceID / evidenceType of the
 * evidence inserted
 */
 EIEvidenceKey insertEvidence(
 Object dtls, EIEvidenceKey parentKey)
 throws AppException, InformationalException;

 // __
 /**
 * Method for inserting case evidence on modification. An
 * insert on modification takes place when the record being
 * modified is 'Active'.
 *
 * @param dtls
 * Evidence details to be inserted
 * @param origKey
 * Contains the evidenceID / evidenceType pairing of
 * the evidence being modified
 * @param parentKey
 * Contains the evidence type of the evidence to be
 * inserted
 *
 * @return Contains the evidenceID / evidenceType of the
 * evidence inserted
 */
 EIEvidenceKey insertEvidenceOnModify(Object dtls,
 EIEvidenceKey origKey, EIEvidenceKey parentKey)
 throws AppException, InformationalException;

 // __
 /**
 * Method for modifying case evidence. This function is called
 * when 'In Edit' evidence is being modified in place.
 *
 * @param key
 * Contains the evidenceID / evidenceType pairing of
 * the evidence to be modified
 * @param dtls
 * Modified evidence details
 */
 void modifyEvidence(EIEvidenceKey key, Object dtls)
 throws AppException, InformationalException;

 // __
 /**
 * Method for retrieving all child evidence for a specified
 * parent
 *
 * @param key
 * Contains a parent evidenceID / evidenceType pairing
 *
 * @return List of all child evidence (evidenceID /
 * evidenceType pairings) for the specified parent
 */
 EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)
 throws AppException, InformationalException;

Developing with Evidence 3

 // __
 /**
 * Method for reading case evidence.
 *
 * @param key
 * Contains the evidenceID / evidenceType pairing of
 * the evidence to be read
 *
 * @return Custom evidence details
 */
 Object readEvidence(EIEvidenceKey key)
 throws AppException, InformationalException;

 // __
 /**
 * Method for retrieving the list of evidence to be used in
 * the validation procedure. This is based on the evidenceID /
 * evidenceType pairing passed into this function.
 *
 * If the input evidence key was that of parent evidence, then
 * this function should return the parent and its associated
 * 'Active' and 'In Edit' child evidence records, if they
 * exist.
 *
 * @param evKey
 * Contains the evidenceID / evidenceType pairing of
 * the evidence being "acted upon".
 *
 * @return List of evidenceID / evidenceType pairings to be
 * used in the validation procedure
 */
 EIEvidenceKeyList selectForValidation(EIEvidenceKey evKey)
 throws AppException, InformationalException;

 // __
 /**
 * Method for validating evidences based on the validate mode
 * setting.
 *
 * @param evKey
 * The evidenceID / evidenceType pairing of the
 * evidence being "acted upon"
 * @param evKeyList
 * The evidence hierarchy structure for the evKey
 * parameter. If the evKey identified the parent
 * evidence, the evKeyList may contain this parent and
 * its relevant children for validation purposes
 *
 * @param mode
 * The validation mode (insert, modify,
 * validateChanges,applyChanges)
 */
 void validate(EIEvidenceKey evKey, EIEvidenceKeyList evKeyList,
 ValidateMode mode)
 throws AppException, InformationalException;
}

Evidence Interface
The Evidence Interface and its associated methods are shown with the appropriate Javadoc comments.

/*
 * Copyright 2005-2007 Curam Software Ltd.
 * All rights reserved.
 *
 * This software is the confidential and proprietary
 * information of Curam Software, Ltd. ("Confidential
 * Information"). You shall not disclose such Confidential
 * Information and shall use it only in accordance with the
 * terms of the license agreement you entered into with
 * Curam Software.
 */

 package curam.core.sl.infrastructure.impl;

 import curam.core.sl.infrastructure.struct
 .AttributedDateDetails;
 import curam.core.struct.CaseHeaderKey;
 import curam.util.exception.AppException;

4 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

 import curam.util.exception.InformationalException;

 /**
 * This interface extends the StandardEvidenceInterface,
 * therefore any class that implements EvidenceInterface
 * must provide its own implementations of the methods
 * defined in the standard interface. Any methods specific
 * to "classic" (i.e. not participant) evidence are to be
 * defined in this interface.
 */
 public interface EvidenceInterface
 extends StandardEvidenceInterface {

 // __
 /**
 * Transfers evidence from one case to another.
 *
 * @param details
 * Contains the evidenceID / evidenceType pairings of
 * the evidence to be transferred and the transferred
 * @param fromCaseKey
 * The case from which the evidence is being
 * transferred
 * @param toCaseKey
 * The case to which the evidence is being
 * transferred
 */
 void transferEvidence(EvidenceTransferDetails details,
 CaseHeaderKey fromCaseKey, CaseHeaderKey toCaseKey)
 throws AppException, InformationalException;

}

Participant Evidence Interface

The Participant Evidence Interface and its associated methods are shown with the appropriate Javadoc
comments.

/*
 * Copyright 2007 Curam Software Ltd.
 * All rights reserved.
 *
 * This software is the confidential and proprietary information
 * of Curam Software, Ltd. ("Confidential Information"). You
 * shall not disclose such Confidential Information and shall use
 * it only in accordance with the terms of the license agreement
 * you entered into with Curam Software.
 */
package curam.core.sl.infrastructure.impl;

import java.util.ArrayList;

import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import curam.core.sl.struct.ConcernRoleIDKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

/**
 * This interface extends the StandardEvidenceInterface therefore
 * any class that implements ParticipantEvidenceInterface must
 * provide its own implementations of the methods defined in the
 * standard interface. Any methods specific to participant
 * evidence be defined in this interface.
 */
public interface ParticipantEvidenceInterface
 extends StandardEvidenceInterface {

 // __
 /**
 * Method to check if the attributes that changed during a
 * modify require reassessment to be run when they are applied.
 *
 * @param attributesChanged
 * - A list of Strings. Each represents the name of an
 * attribute that changed
 *
 * @return true if Reassessment required
 */

Developing with Evidence 5

 boolean checkForReassessment(ArrayList attributesChanged)
 throws AppException, InformationalException;

 // __
 /**
 * Method for creating the snapshot record related to a
 * participant evidence record.
 *
 * @param key
 * Contains an evidenceID / evidenceType pairing
 *
 * @return The uniqueID and the evidence type of the Snapshot
 * record.
 */
 EIEvidenceKey createSnapshot(EIEvidenceKey key)
 throws AppException, InformationalException;

 // __
 /**
 * Method to compare attributes on two records of the same
 * entity type. It then returns an ArrayList of strings with
 * the names of each attribute that was different between them.
 *
 * @param key
 * - Contains an evidenceID / evidenceType pairing
 * @param dtls
 * - a struct of the same type as the key containing
 * the attributes to be compared against
 *
 * @return A list of Strings. Each represents an attribute name
 * that differed.
 */
 ArrayList getChangedAttributeList(
 EIEvidenceKey key, Object dtls)
 throws AppException, InformationalException;

 // __
 /**
 * Method to search for records on a participant entity by
 * concernRoleID and status.
 *
 * @param key
 * - The unique concernRoleID of the participant.
 *
 * @return A list of EIEvidenceKey objects each containing an
 * evidenceID/evidenceType pair.
 */
 EIEvidenceKeyList readAllByConcernRoleID(ConcernRoleIDKey key)
 throws AppException, InformationalException;

 // __
 /**
 * Method removing participant evidence. This method is called
 * when participant evidence is being canceled
 *
 * @param key
 * - Contains an evidenceID / evidenceType pairing
 * @param dtls
 * - Modified evidence details
 */
 void removeEvidence(EIEvidenceKey key, Object dtls)
 throws AppException, InformationalException;

}

Adopting an interface approach enforces a pattern upon entity design and development as each entity
must implement the same interface. This approach allows the IBM Cúram Social Program Management
Platform to provide as much common functionality as possible so that custom implementations can
concentrate more on business aspects of evidence maintenance, such as validations. Each evidence
entity must implement the Evidence Interface to have access to the Evidence Controller class. This class
implements the common business logic across all evidence entities and the custom business logic
specific to each evidence entity.

Accessing Non-modeled Functions

When the Evidence Interfaces are implemented by evidence entities, the methods defined by these
interfaces will be implemented by those entities. These methods will of course be non-modeled so will

6 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

only exist on the evidence entity impl classes. In order to access the non-modeled functions, it's
necessary to cast from the impl class. Examples of this can be seen in the entity program listings later in
section 3.2 of this document. This casting mechanism will not work though unless the factory class is
extending the impl class as opposed to the base class. The only way that this can be achieved, if no non-
stereotyped functions are being added to the class, is to add a non-stereotyped dummy function. If this is
not done, it will result in a runtime error when the casting is executed.

Client Side Artifacts
The client side infrastructure artifacts are located inside the..\webclient\components\core\Evidence
Infrastructure directory. This folder primarily contains uim and vim client pages. The vim files will typically
be included inside solution specific uim pages to manage generic evidence details whereas the uim pages
contain complete out-of-the-box evidence maintenance functionality.

The key benefit of the.im files is that they can be changed in line with any enhancements made to the
evidence maintenance solution without any impact on specific implementations, i.e. the upgrade is
seamless.

Examples of infrastructural.vim files are as follows:

• Evidence_createHeader.vim
• Evidence_modifyHeader.vim
• Evidence_viewHeader.vim
• Evidence_viewHeaderForModal.vim

These artifacts manage the infrastructural attributes of evidence maintenance and should be included in
create, modify and view evidence pages. This will be highlighted later when a sample implementation of
the Evidence solution is discussed. Some further examples of vim files include:

• Evidence_typeWorkspace.vim
• Evidence_workspaceInEditHighLevelView.vim
• Evidence_workspaceActiveHighLevelView.vim

These artifacts are used to populate evidence workspaces. An evidence workspace is a central location
for managing evidence. The above vim files will be included by workspace.uim pages.

Some examples of infrastructural uim pages which provide entire evidence maintenance functions are:

• Evidence_applyChanges1.uim
• Evidence_addNewEvidence.uim
• Evidence_dashboard.uim

Evidence_applyChanges1 lists all work-in-progress evidence, i.e. all new and updated evidence or
evidence that is pending removal. The display and action bean on this page live on the Evidence facade
which is part of the centralized evidence maintenance functionality.

Evidence_addNewEvidence lists all possible evidence types, filtered by category, and launches an
appropriate create page for each.

Evidence_dashboard lists all evidence types on the given case broken into categories. It highlights which
types have In Edit evidence recorded and which have verifications or issues outstanding.

Note: It is important to note that in some cases.vim files found in the client infrastructure package are
actually included in infrastructure pages. For instance, Evidence_dashboardView.vim is included inside
the Evidence_dashboard page and Evidence_flowView.vim is included inside the Evidence_flow page.

Developing an Evidence Solution

Administration

Developing with Evidence 7

Evidence Metadata

The Evidence Metadata entity contains metadata information relating to each evidence type. This entity
must be populated before evidence maintenance can proceed. A number of evidence page names,
including the view and modify page names, are included in the metadata. These page names are retrieved
at runtime via evidence infrastructure resolve scripts and via implementations of the Evidence Type
interface on the server. The records on the Evidence Metadata entity are effective dated to facilitate pages
changing over time, due to legislation for example.

Product Evidence Link

The Product Evidence Link entity links evidence to a product. In some circumstances, evidence may be
stored at the Integrated Case level but only some of this evidence may apply to a given product on the
Integrated Case. To know which evidence should be attributed to a given product, a lookup of this entity is
performed as part of the attribution processing and only evidence linked to the product is attributed.

Common Evidence Maintenance Operations
In this section, some common evidence maintenance operations are outlined. This is done using
sequence diagrams, client screenshots and server code snippets from the a sample product
implementation. This product is used for demonstration purposes only.

Create Evidence

The development, both client and server, of a create evidence operation is outlined here.

Create Evidence Sequence Diagram

Figure 1: Sequence Diagram for Creating Evidence

Client - Screen to Be Developed

The client page to be developed must include the evidence infrastructure page
Evidence_createHeader.vim. This included.vim page facilitates the management of infrastructure
attributes. For example, the Evidence Descriptor's receivedDate attribute is currently managed through
this infrastructure page. If, at some point in the future, additional attributes which need to be managed
through the create function were added to the Evidence Descriptor entity, then these attributes could be
mapped through this infrastructure page. Hence, this requires just a once-off infrastructure change rather
than many changes to custom artifacts.

8 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Server - Methods to Be Implemented

The SEGEvidenceMaintainenance.createAssetEvidence facade operation calls the evidence service layer
implementation.

// __
/**
 * Creates an Asset evidence record.
 *
 * @param dtls Details of the new evidence record to be created.
 *
 * @return The details of the created record.
 */
 public ReturnEvidenceDetails createAssetEvidence(
 AssetEvidenceDetails dtls)
 throws AppException, InformationalException {

 // set the informational manager for the transaction
 TransactionInfo.setInformationalManager();

 // Asset evidence manipulation object
 Asset evidenceObj = AssetFactory.newInstance();

 // return object
 ReturnEvidenceDetails createdEvidenceDetails =
 new ReturnEvidenceDetails();

 // create the Asset record and populate the return details
 createdEvidenceDetails =
 evidenceObj.createAssetEvidence(dtls);

 createdEvidenceDetails.warnings =
 EvidenceControllerFactory.newInstance().getWarnings();

 return createdEvidenceDetails;
}

These overloaded Asset.createAssetEvidence service layer operations call the Evidence Controller
infrastructure function for inserting evidence.

// __
/**
 * Creates an Asset record.
 *
 * @param dtls Contains Asset evidence record creation details.
 *
 * @return the new evidence ID and warnings.
 */
public ReturnEvidenceDetails createAssetEvidence(
 AssetEvidenceDetails dtls)
 throws AppException,InformationalException {

 return createAssetEvidence(dtls, null, null, false);
}

// __
/**
 * Creates a Asset record.
 *
 * @param dtls Contains Asset evidence record creation details.
 *
 * @param sourceEvidenceDescriptorDtls If this function is called
 * during evidence sharing, this parameter will be non-null and
 * it represents the header of the evidence record being shared
 * (i.e. the source evidence record)
 *
 * @param targetCase If this function is called during evidence
 * sharing, this parameter will be non-null and it represents the
 * case the evidence is being shared with.
 *
 * @param sharingInd A flag to determine if the function is
 * called in evidence sharing mode. If false, the function is
 * being called as part of a regular create.
 *
 * @return the new evidence ID and warnings.
 */
public ReturnEvidenceDetails createAssetEvidence(
 AssetEvidenceDetails dtls,

Developing with Evidence 9

 EvidenceDescriptorDtls sourceEvidenceDescriptorDtls,
 CaseHeaderDtls targetCase, boolean sharingInd)
 throws AppException,InformationalException {

 // validate the mandatory fields
 validateMandatoryDetails(dtls);

 EvidenceControllerInterface evidenceControllerObj =
 (EvidenceControllerInterface)
 EvidenceControllerFactory.newInstance();
 EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =
 new EvidenceDescriptorInsertDtls();

 ReturnEvidenceDetails createdEvidence =
 new ReturnEvidenceDetails();

 if (sharingInd) {

 EvidenceDescriptorDtls sharedDescriptorDtls =
 evidenceControllerObj.shareEvidence(
 sourceEvidenceDescriptorDtls,
 targetCase);

 // Return the evidence ID and warnings
 createdEvidence.evidenceKey.evidenceID =
 sharedDescriptorDtls.relatedID;
 createdEvidence.evidenceKey.evType =
 sharedDescriptorDtls.evidenceType;

 } else {

 // As there is no participant associated with this evidence
 // we must retrieve the case participant to set the evidence
 // descriptor participant.
 CaseHeaderKey caseHeaderKey = new CaseHeaderKey();
 caseHeaderKey.caseID = dtls.caseIDKey.caseID;
 evidenceDescriptorInsertDtls.participantID =
 CaseHeaderFactory.newInstance().readCaseParticipantDetails(
 caseHeaderKey).concernRoleID;

 // Evidence descriptor details
 evidenceDescriptorInsertDtls.caseID = dtls.caseIDKey.caseID;
 evidenceDescriptorInsertDtls.evidenceType =
 CASEEVIDENCE.ASSET;
 evidenceDescriptorInsertDtls.receivedDate =
 dtls.descriptor.receivedDate;

 // Upon creation, the change reason should be Initial
 evidenceDescriptorInsertDtls.changeReason =
 EVIDENCECHANGEREASON.INITIAL;

 // Evidence Interface details
 EIEvidenceInsertDtls eiEvidenceInsertDtls =
 new EIEvidenceInsertDtls();
 eiEvidenceInsertDtls.descriptor.assign(
 evidenceDescriptorInsertDtls);
 eiEvidenceInsertDtls.evidenceObject = dtls.dtls;

 // Insert the evidence
 EIEvidenceKey eiEvidenceKey =
 evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

 // Return the evidence ID and warnings
 createdEvidence.evidenceKey.evidenceID =
 eiEvidenceKey.evidenceID;
 createdEvidence.evidenceKey.evType =
 eiEvidenceKey.evidenceType;
 createdEvidence.warnings =
 evidenceControllerObj.getWarnings();
 }

 return createdEvidence;
}

Modify Evidence

The development, both client and server, of a modify evidence operation is outlined here.

10 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Modify Evidence Sequence Diagram

Figure 2: Sequence Diagram for Modifying Evidence

Client - Screen to Be Developed

The client page to be developed must include the evidence infrastructure page
Evidence_modifyHeader1.vim. This included.vim page facilitates the viewing / modification of some
infrastructure attributes. For example, received date can be viewed or modified via this.vim. Also, change
reason and effective date of change can be set on the edited record. If, at some point in the future,
additional attributes which need to be managed through the modify function were added to the Evidence
Descriptor entity, then these attributes could be mapped through this infrastructure page. Hence, this
requires just a once-off infrastructure change rather than many changes to custom artifacts.

The inclusion of Evidence_modifyHeader1.vim facilitates the following three types of evidence
modification:

• Editing Evidence In Place

This refers to the modification of incorrect data on a piece of evidence which has not yet been activated.
In this scenario, if the effective date is modified an error will be thrown informing the user that the date
can only be modified when updating an active record.

Developing with Evidence 11

• Evidence Correction

An evidence correction occurs when a piece of data on an active evidence record is modified resulting in
the current active record being superseded. In this scenario, the effective date field must not be
modified as this will result in a new record in the succession being created - see evidence succession.

• Evidence Succession

If the user modifies the effective date when updating a piece of active evidence, they are specifying a
new record in the succession set, i.e. the new record will have the same successionID as the active
record. Therefore, the active record will essentially be copied and made effective from the effective date
specified by the user and the update applied to this record.

Note: Activation of newly created records in a succession will cause reattribution of records in that
succession set.

Server - Methods to Be Implemented

The SEGEvidenceMaintenance.modifyAssetEvidence facade operation calls the evidence service layer
implementation.

// __
/**
 * Modifies an Asset evidence record.
 *
 * @param details The modified evidence details.
 *
 * @return The details of the modified evidence record.
 */
public ReturnEvidenceDetails modifyAssetEvidence(
 AssetEvidenceDetails dtls)
 throws AppException, InformationalException {

 // set the informational manager for the transaction
 TransactionInfo.setInformationalManager();

 // Asset evidence manipulation object
 Asset evidenceObj = AssetFactory.newInstance();

 // return object
 ReturnEvidenceDetails modifiedEvidenceDetails =
 new ReturnEvidenceDetails();

 // modify the Asset record and populate the return details
 modifiedEvidenceDetails =
 evidenceObj.modifyAssetEvidence(dtls);

 modifiedEvidenceDetails.warnings =
 EvidenceControllerFactory.newInstance().getWarnings();

 return modifiedEvidenceDetails;
}

The Asset.modifyAssetEvidence service layer operation calls the Evidence Controller infrastructure
function for modifying evidence.

// __
/**
 * Modifies an Asset record.
 *
 * @param dtls Contains Asset evidence record modification
 * details.
 *
 * @return The modified evidence ID and warnings.
 */
public ReturnEvidenceDetails modifyAssetEvidence
 (AssetEvidenceDetails details)
 throws AppException, InformationalException {

 // validate the mandatory fields
 validateMandatoryDetails(details);

 // EvidenceController business object
 EvidenceControllerInterface evidenceControllerObj =
 (EvidenceControllerInterface)

12 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

 EvidenceControllerFactory.newInstance();

 EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

 //
 // Call the EvidenceController to modify the evidence
 //

 eiEvidenceKey.evidenceID = details.dtls.evidenceID;
 eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

 // Create the evidence interface modification struct and assign
 // the details
 EIEvidenceModifyDtls eiEvidenceModifyDtls =
 new EIEvidenceModifyDtls();
 eiEvidenceModifyDtls.descriptor.receivedDate =
 details.descriptor.receivedDate;
 eiEvidenceModifyDtls.descriptor.versionNo =
 details.descriptor.versionNo;
 eiEvidenceModifyDtls.descriptor.effectiveFrom =
 details.descriptor.effectiveFrom;
 eiEvidenceModifyDtls.descriptor.changeReceivedDate =
 details.descriptor.changeReceivedDate;
 eiEvidenceModifyDtls.descriptor.changeReason =
 details.descriptor.changeReason;
 eiEvidenceModifyDtls.evidenceObject = details.dtls;

 evidenceControllerObj.modifyEvidence(
 eiEvidenceKey, eiEvidenceModifyDtls);

 //
 // Return details from the modify operation
 //

 ReturnEvidenceDetails returnEvidenceDetails =
 new ReturnEvidenceDetails();
 returnEvidenceDetails.evidenceKey.evidenceID =
 eiEvidenceKey.evidenceID;
 returnEvidenceDetails.evidenceKey.evType =
 eiEvidenceKey.evidenceType;
 returnEvidenceDetails.warnings =
 evidenceControllerObj.getWarnings();

 return returnEvidenceDetails;
}

Read Evidence

The development, both client and server, of a read evidence operation is outlined here.

Developing with Evidence 13

View Evidence Sequence Diagram

Figure 3: Sequence Diagram for Viewing Evidence

Client - Screen to Be Developed

The client page includes the evidence infrastructure page Evidence_viewHeaderForModal.vim. This
included.vim facilitates the viewing of some infrastructure attributes.

Server - Methods to Be Implemented

The SEGEvidenceMaintenance.readAssetEvidence façade operation calls the evidence service layer
implementation.

// __
/**
 * Reads an Asset evidence record.
 *
 * @param key Identifies the evidence record to read.
 *
 * @return The details of the evidence record.
 */
public ReadAssetEvidenceDetails readAssetEvidence(
 EvidenceCaseKey key)
 throws AppException, InformationalException {

 // Asset evidence manipulation object
 Asset evidenceObj = AssetFactory.newInstance();

 // return object
 ReadAssetEvidenceDetails readEvidenceDetails =
 new ReadAssetEvidenceDetails();

 // read the Asset record and populate the return details
 readEvidenceDetails = evidenceObj.readAssetEvidence(key);

 return readEvidenceDetails;

}

14 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

This service layer operation calls the Evidence Controller infrastructure function for reading evidence.

// __
/**
 * Reads an Asset record.
 *
 * @param key contains ID of record to read.
 *
 * @return Asset evidence details read.
 */
public ReadAssetEvidenceDetails readAssetEvidence(
 EvidenceCaseKey key)
 throws AppException, InformationalException {

 // EvidenceController business object
 EvidenceControllerInterface evidenceControllerObj =
 (EvidenceControllerInterface)
 EvidenceControllerFactory.newInstance();

 EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
 eiEvidenceKey.evidenceID = key.evidenceKey.evidenceID;
 eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

 // Retrieve the evidence details
 EIEvidenceReadDtls eiEvidenceReadDtls =
 evidenceControllerObj.readEvidence(eiEvidenceKey);

 // Retrieve the evidence descriptor details
 EvidenceDescriptor evidenceDescriptorObj =
 EvidenceDescriptorFactory.newInstance();

 EvidenceDescriptorKey evidenceDescriptorKey =
 new EvidenceDescriptorKey();
 evidenceDescriptorKey.evidenceDescriptorID =
 eiEvidenceReadDtls.descriptor.evidenceDescriptorID;

 EvidenceDescriptorDtls evidenceDescriptorDtls =
 evidenceDescriptorObj.read(evidenceDescriptorKey);

 //
 // Return the evidence
 //

 ReadAssetEvidenceDetails readEvidenceDetails =
 new ReadAssetEvidenceDetails();
 readEvidenceDetails.descriptor
 .assign(evidenceDescriptorDtls);

 readEvidenceDetails.descriptor.approvalRequestStatus =
 eiEvidenceReadDtls.descriptor.approvalRequestStatus;
 readEvidenceDetails.descriptor.updatedBy =
 eiEvidenceReadDtls.descriptor.updatedBy;
 readEvidenceDetails.descriptor.updatedDateTime =
 eiEvidenceReadDtls.descriptor.updatedDateTime;

 // assign the evidence to the return object
 readEvidenceDetails.dtls.assign(
 (AssetDtls)(eiEvidenceReadDtls.evidenceObject));

 return readEvidenceDetails;
}

List Evidence

The development, both client and server, of a list evidence operation is outlined here. The list operation is
used to populate an evidence workspace page.

Developing with Evidence 15

List Evidence Sequence Diagram

Figure 4: Sequence Diagram for Listing Evidence

Server - Methods to Be Developed

Much of the data displayed on the workspace page is retrieved via the Evidence Descriptor entity. The
description and period are retrieved via Evidence Interface methods which must be implemented for each
evidence type.

• Asset.getDetailsForListDisplay entity operation

The description, or summary details, is retrieved via the getDetailsForListDisplay Evidence Interface
method which is implemented by the evidence entities. The implementation of the
getDetailsForListDisplay method for the Asset is shown below. This interface function is also used to
retrieve summary data when applying, approving, rejecting evidence as well as in evidence sharing,
verifications and issues screens.
// __
/**
 * Gets evidence details for the list display
 *
 * @param key Evidence key containing the evidenceID and
 * evidenceType
 *
 * @return Evidence details to be displayed on the list page
 */
public EIFieldsForListDisplayDtls getDetailsForListDisplay(
 EIEvidenceKey key)
 throws AppException, InformationalException {

 // Return object
 EIFieldsForListDisplayDtls eiFieldsForListDisplayDtls =
 new EIFieldsForListDisplayDtls();

 // Asset entity key
 final AssetKey assetKey = new AssetKey();
 assetKey.evidenceID = key.evidenceID;

 // Read the Asset entity to get display details
 final AssetDtls assetDtls =
 AssetFactory.newInstance().read(assetKey);

 // Set the start / end dates
 eiFieldsForListDisplayDtls.startDate = assetDtls.startDate;
 eiFieldsForListDisplayDtls.endDate = assetDtls.endDate;

16 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

 LocalisableString summary = new LocalisableString(
 BIZOBJDESCRIPTIONS.BIZ_OBJ_DESC_ASSET);

 summary.arg(
 CodeTable.getOneItem(SAMPLEASSETTYPE.TABLENAME,
 assetDtls.assetType));

 // Format the amount for display
 TabDetailFormatter formatterObj =
 TabDetailFormatterFactory.newInstance();
 AmountDetail amount = new AmountDetail();
 amount.amount = assetDtls.value;
 summary.arg(formatterObj.formatCurrencyAmount(amount).amount);

 eiFieldsForListDisplayDtls.summary =
 summary.toClientFormattedText();

 return eiFieldsForListDisplayDtls;
}

(deprecated) Evidence Dashboard and EvidenceFlow

The Evidence Dashboard and EvidenceFlow are user interface constructs introduced to assist user
navigation to all evidence on a case. No custom code is required in order to configure these for a custom
case as these are infrastructural.

From these pages, a user can select a particular evidence type which should open the respective evidence
workspace for that type of evidence. In the case of the Dashboard, this will open in a new tab, whereas
the EvidenceFlow will redirect the bottom portion of the page.

The existence of 'In Edit' evidence records, outstanding verifications and outstanding issues are all
highlighted graphically.

The list of evidence types on the case may be split into categories on these pages, by defining the
category on the AdminICEvidenceLink table for Integrated Cases, or on the ProductEvidenceLink table for
Product Deliveries.

Validations
The infrastructure facilitates the validation of work-in-progress changes. The validate page can be used
either at a case level or on an individual evidence type.

The purpose of the case level validate page is to provide a means to test validations in advance of
applying the changes. For some products, the full evidence set may be quite sizeable resulting in the
apply changes listing containing a considerable number of evidence changes of varying evidence types. In
that scenario, the individual evidence type validate page may make it easier to associate a validation
message with the correct evidence record. The validate page allows a user to pre-test the evidence
changes. The user can see which validations will fail and fix them before applying the changes.

More On Validations
Two of the Evidence Interface functions which form part of the infrastructure support for evidence
validation are selectForValidations and validate.

The selectForValidations function will typically be used to select all evidences which are related to or are
dependant on the piece of evidence being validated. An example of this would be the modification of an
amount on a parent evidence record. As part of the validation of the parent evidence, a check might need
to be performed to ensure the sum of the child evidence records does not exceed the modified parent
amount.

When a user applies changes to evidence records, the Evidence Controller calls out to the
selectForValidations interface function on the entities for each evidence record. The logic within this
method retrieves all related 'Active' and 'In Edit' evidences within the hierarchy for validation. For
instance, if we are validating a child evidence record within a parent-child-grandchild relationship
structure, both parent evidence and grandchild evidence are retrieved for the validation processing.

Developing with Evidence 17

Once processing returns to the Evidence Controller, a filter is applied to the list of evidence. This filters the
input list and leaves only 'Active' records, or 'In Edit' records as appropriate depending on whether the
function must validate against work-in-progress or active only evidence. This filtered list is then passed to
the validate function where custom validation is applied.

The program listing below shows a selectForValidations implementation used in the Asset demo.
// __
 /**
 * Selects all the records for validations
 *
 * @param evKey Contains an evidenceID / evidenceType pairing
 *
 * @return List of evidenceID / evidenceType pairings
 */
 public EIEvidenceKeyList selectForValidation(
 EIEvidenceKey evKey)
 throws AppException, InformationalException {

 // Return object
 EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

 // Casting to impl due to calling non-modeled interface
 curam.seg.evidence.entity.intf.AssetOwnership
 assetOwnershipObj =
 (curam.seg.evidence.entity.impl.AssetOwnership)
 AssetOwnershipFactory.newInstance();

 eiEvidenceKey.evidenceID = evKey.evidenceID;
 eiEvidenceKey.evidenceType =
 CASEEVIDENCE.ASSET;

 EIEvidenceKeyList eiEvidenceKeyList =
 assetOwnershipObj.readAllByParentID(eiEvidenceKey);

 eiEvidenceKeyList.dtls.add(0, evKey);

 return eiEvidenceKeyList;
 }

The code here, on the Asset parent entity, makes a call to the readAllByParentID interface method
implementation on the child entity, Asset Ownership. The implementation of the readAllByParentID
function on the Asset Ownership is shown in the program listing below.
// __
/**
 * Read all Asset Ownership records
 *
 * @param key Contains the evidenceID and evidenceType
 *
 * @return A list of evidenceID and evidenceType pairs
 */
public EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)
 throws AppException, InformationalException {

 // Return object
 EIEvidenceKeyList eiEvidenceKeyList = new EIEvidenceKeyList();

 // Create the link entity object
 EvidenceRelationship evidenceRelationshipObj =
 EvidenceRelationshipFactory.newInstance();

 // parent entity key
 ParentKey parentKey = new ParentKey();
 parentKey.parentID = key.evidenceID;
 parentKey.parentType = key.evidenceType;

 // Reads all relationship details for the specified parent
 ChildKeyList childKeyList =
 evidenceRelationshipObj.searchByParent(parentKey);

 // Iterate through the link details list
 for (int i = 0; i < childKeyList.dtls.size(); i++) {

 if (childKeyList.dtls.item(i).childType.equals(
 CASEEVIDENCE.ASSETOWNERSHIP)) {

 EIEvidenceKey listEvidenceKey = new EIEvidenceKey();

18 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

 listEvidenceKey.evidenceID =
 childKeyList.dtls.item(i).childID;
 listEvidenceKey.evidenceType =
 childKeyList.dtls.item(i).childType;

 eiEvidenceKeyList.dtls.addRef(listEvidenceKey);
 }
 }

 return eiEvidenceKeyList;

}

The function above retrieves all child evidence keys for the specified parent. The childID and childType
pairings are returned to the calling mechanism.

Evidence Attribution
Evidence attribution refers to the assignment of a period of time to a given piece of evidence during which
that piece of evidence will be used for entitlement calculations. The attribution period may range from a
basic one to one mapping from the business start and end dates through to a more sophisticated
algorithm considering any number of factors. This custom logic calculates the attribution period and the
evidence controller takes care of synchronizing these with the specified effective dates – see example(s)
below. It should also be noted that the attribution from and to dates can be null in which case the piece of
evidence is assumed effective from the case start date to the expected end date.

One of the Evidence Interface functions is calcAttributionDatesForCase and the implementation of this
function on an entity class is where the attribution from and to dates are determined for evidence on that
entity.

Re-attribution

When evidence is modified as part of a succession and subsequently activated, re-attribution of the
evidence records in the succession set occurs. A basic example of how this works is shown below:

Business Start Date: 3rd May 2006 (=attribution from date)

Business End Date: 30th July 2006 (=attribution to date)

A succession record is created effective from 5th June 2006. On activation of this record, the evidence is
re-attributed and the following attribution records created:

3rd May 2006 to 4th June 2006

5th June 2006 to 30th July 2006

Re-attribution also occurs if evidence in a succession set is removed. For example, if the following three
attribution records exist for records in the same succession set

3rd May 2006 to 4th June 2006

5th June 2006 to 30th July 2006

31st July 2006 to 29th Sept 2006

and the evidence record associated with the middle one is removed, applying changes will cause the
following re-attribution

3rd May 2006 to 30th July 2006

31st July 2006 to 29th Sept 2006

The attribution record from 5th June 2006 to 30th July 2006 remains on the database but won't be
picked up by eligibility processing as the associated evidence is removed, i.e. has a status of 'Canceled'.

Evidence Relationship
By default, the Evidence infrastructure facilitates the linking of parent-child evidence via the
EvidenceRelationship link entity. The structure of the EvidenceRelationship link entity is as follows:

Developing with Evidence 19

Table 1: Evidence Relationship Link Entity

Evidence Relationship

evidenceRelationshipID

parentID

parentType

childID

childType

This supports the relationship between any parent-child evidence and does away with the necessity for
customers to model their own link entities for managing such relationships. When evidence is being
inserted, the generic EvidenceController.insertEvidence function makes a call to the business process
EvidenceRelationship.createLink. If a parent type has been specified, i.e. passed in from the client as part
of the insert, then a record will be written to the EvidenceRelationship entity linking the child evidence to
its parent. Also, a call is made to the business process EvidenceRelationship.cloneLinks directly after the
call to the interface operation insertEvidenceOnModify. From cloneLinks, two further calls are made to
cloneLinksForParent and cloneLinksForChild.

If customers are using their own link entities to manage relationships, they will need to override the
Evidence Relationship business processes for creating and cloning links. The evidence type is available in
the input keys of both these functions which means that responsibility can be delegated to the
appropriate custom relationship processing based on the evidence type in the key.

Registering Evidence Implementations
The evidence maintenance pattern requires the set of evidence entities to be registered before they can
be used. This is so that the controller can access these evidence entities at runtime.

The Core Cúram Framework does not know in advance which evidence entities will be used for the given
evidence maintenance facility associated with a particular product implementation. The evidence types
and their implementation must be paired at runtime.

Evidence Registrar Module

Google Guice dependency injection should be used in order to register the different evidence types and
their implementations. This can be done by writing a new module class, or adding to a pre existing one.
Once this is added to the ModuleCalssName table, then at runtime it will be loaded and the evidence
types registered.

Google Guice dependency injection example:

/*
 * Copyright 2011 Cúram Software Ltd.
 * All rights reserved.
 *
 * This software is the confidential and proprietary information
 * of Cúram Software, Ltd. ("Confidential Information"). You
 * shall not disclose such Confidential Information and shall use
 * it only in accordance with the terms of the license agreement
 * you entered into with Cúram Software.
 */

package curam.seg.evidence.service.impl;

import curam.codetable.CASEEVIDENCE;
import com.google.inject.AbstractModule;
import curam.core.impl.FactoryMethodHelper;
import java.lang.reflect.Method;
import com.google.inject.multibindings.MapBinder;
import curam.core.impl.RegistrarImpl;
import curam.core.impl.Registrar.RegistrarType;

20 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

/**
 * A module class which provides registration for all of the
 * evidence hook implementations.
 */
public class SEGRegistrarModule extends AbstractModule {

 @Override
 public void configure() {

 // Register all hook implementations which implement the
 // interface EvidenceInterface.
 MapBinder<String, Method> evidenceInterfaceMapBinder =
 MapBinder.newMapBinder(binder(), String.class,
 Method.class, new RegistrarImpl(RegistrarType.EVIDENCE));

 evidenceInterfaceMapBinder
 .addBinding(CASEEVIDENCE.ASSET)
 .toInstance(FactoryMethodHelper.getNewInstanceMethod(
 curam.seg.evidence.entity.fact.AssetFactory.class));
 }
}

Legacy Evidence Registrar

The legacy mechanism for registration of evidence entities is still supported. i.e. using the Application
Properties to specify the factories to populate a hashmap of the hook classes. The factory code will not
change in order to maintain backward compatibility but all out of the box, legacy implementations have
been deprecated.

Customizing Evidence Maintenance
As the Evidence Controller functionality is generic to all evidence solutions, the only way to facilitate an
organization's unique requirements is by the provision of hooks where custom logic can be located to
extend the core solution. Callouts to these hooks, or extension points, are made within the Evidence
Controller maintenance functions.

The Cúram infrastructure handles the maintenance of evidence, such as adding, modifying, removing, and
applying changes. The infrastructure is independent of the evidence type, that is, by default all evidence
types are treated the same.

Customers might experience a need to customize the processing available for immediate use to meet
project-specific needs. To facilitate this, the EvidenceControllerHook interface provides a set of extension
points that allow custom code to be run at points in the evidence maintenance process.

In addition to adding custom code to these extension points, customers can specify 'case type' specific
logic. This allows multiple implementations of the EvidenceControllerHook to be provided. Each
implementation can be mapped to a 'case type' to give case type-specific customization. For example, the
postRemoveEvidence for evidence on a Product Delivery case might be different than the
postRemoveEvidence that is run on an Integrated Case.

Evidence Controller Hook
Evidence Controller Hook is the evidence infrastructure class which contains the extension points for the
evidence maintenance pattern. An example of a hook in this class is postRemoveEvidence. A call is made
to this function inside the Evidence Controller removeEvidence operation. Customers must override the
hook with their custom version if they want to perform post remove evidence processing.

Providing a custom implementation of the EvidenceControllerHook
To inject a custom implementation at the provided extension points, the abstract base class
curam.core.sl.infrastructure.impl.EvidenceControllerHook can be extended and the wanted methods can
be overridden.

For most methods of the base abstract class, the implementation does nothing, but some default
implementations are provided such as for the PreRemoveEvidence method. The Javadocs of the class can
be referenced to understand what the default implementation does. The super().methodname() notation

Developing with Evidence 21

can be used to start the default implementation from an overridden method to retain the base
functionality, if required.

To create a new custom EvidenceController hook, the following steps are taken:

• A new process class is modeled in, for example, CustomHook. This process must have a 'Generalization'
relationship with EvidenceControllerHook class (extends EvidenceControllerHook)

• An implementation of the newly created process is created, in which any wanted methods are
overridden:

public class CustomHook extends curam.sample.sl.base.CustomHook {

 @Override
 public void postInsertEvidence(CaseKey caseKey,
 EIEvidence eiEvidenceKey){

 }
 }

• A new Module class is created, where the wanted product type is bound to the custom hook
implementation. This class must extend AbstractModule and a configuration for this module class must
be added to MODULECLASSNAME.dmx:

public class TestRegistrarModule extends AbstractModule{

 @Override
 protected void configure() {
 MapBinder<String, Method> evidenceControllerMapBinder =
 MapBinder.newMapBinder(binder(), String.class, Method.class,
 new RegistrarImpl(RegistrarType.EVIDENCE_CONTROLLER_HOOK));

 evidenceControllerMapBinder
 .addBinding(PRODUCTTYPE.CUSTOMPRODUCTTYPE)
 .toInstance(FactoryMethodHelper.getNewInstanceMethod(
 CustomHookFactory.class));
 }
}

This adds a binding of CustomHook implementation to PRODUCTTYPE.CUSTOMPRODUCTTYPE product
type string. Product type is used as a key during the EvidenceControllerHook implementation look-up. The
infrastructure compares this key to the value returned by the implementation of
CaseTypeEvidence.getCaseTypeCode() that is specific to the evidence type that is being processed.
CaseTypeEvidence has many implementations, and they return different case type codes. Refer to the
Javadoc to determine the run type of any particular implementation. The key that is used in the binding
Module must match the value that is returned by getCaseTypeCode(), otherwise the custom hook is not
picked up. For example, evidence on a Product Delivery case uses a "productType" code that is defined in
the PRODUCTDELIVERY database table. Commonly used case type codes are listed in Table 2 on page
22.

Table 2: Commonly used case types

Case Name Case Type Code database location

Default CASHEADER.caseTypeCode

Integrated Case CASHEADER.integratedCaseType

Product Delivery PRODUCTDELIVERY.productType

Screening Case SCREENINGCONFIGURATION.name

Assessment Delivery ASSESSMENTCONFIGURATION.assessmentType

Investigation Delivery INVESTIGATIONDELIVERY.investigationType

22 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

The Evidence Controller Hook Manager class manages the static initialization of the Evidence Controller
Hook mapping and the retrieval of the subclass of the Evidence Controller Hook. If no subclass is found,
the version of the Evidence Controller Hook class that is available for immediate use is returned.

Evidence Controller Hook Registrar & Manager
Following on from the Evidence Registrar and the underlying Dependency Injection pattern, a similar
approach has been taken for the registration of the Evidence Controller Hook class. An Evidence
Controller Hook Registrar interface is shipped as part of the evidence infrastructure.

As before, at runtime, the Evidence Controller invokes the Registrar's register method which performs the
dependency injection of the associated custom Evidence Controller Hook. This is the class which will have
extended the out-of-the-box Evidence Controller Hook and overridden the methods being customized.
This "injector" class is located through runtime configuration where the injector class itself is referred to
as the "Evidence Controller Hook Registrar".

The dependency injection involves two steps. First, a custom Evidence Controller Hook Registrar, which
implements the Evidence Controller Hook Registrar interface, must be located and the Registrar then
invoked to register the customized hook class. For example, the product type and custom Evidence
Controller Hook class pairing will be entered into a hashmap and then the class looked up via the product
type when it's required. In order to locate the Evidence Controller Hook Registrar, its class name must be
configured using the environment variable "curam.case.evidencecontrollerhook.registrars". Note:
additional entries need to be added to this environment variable in a comma delimited format.

The implementation of the Registrar's register method must reference the customized Evidence
Controller Hook class. Doing this in code, rather than as configuration, provides a compile time check that
the referenced class exists. The existence of the Registrar, though, is only ascertained from the provided
configuration, and may result in a runtime failure if the application is mis-configured.

The Evidence Controller Hook Manager class manages the static initialization of the Evidence Controller
Hook mapping as well as the retrieval of the subclass of the Evidence Controller Hook. If no subclass is
found, the out-of-the-box version of the Evidence Controller Hook class is returned.

Customization of Multiple Participant Evidence
This section describes the customization options for multiple participant evidence.

Multiple participant evidence is a feature that allows users to insert multiple records, modify multiple
records or discard multiple records in a single action. This can save time and effort when caseworkers are
managing multiple clients on a case, such as adding the same address for all family members in a single
operation.

The following sections describe the customization options and extension points available to developers
for multiple participant evidence.

Multiple Participant Evidence Extension Points
The following section describes the multiple participant evidence extension points.

A number of extension points have been provided to allow for customization. The following hook points
have been provided.

• Pre create multiple participant evidence.
• Post create multiple participant evidence.
• Pre modify multiple participant evidence.
• Post modify multiple participant evidence.
• Pre discard multiple participant evidence.
• Post discard multiple participant evidence

Example Implementation

To enact custom functionality, do the following;

Developing with Evidence 23

1. Create a new class in your custom package that implements the
curam.core.sl.infrastructure.impl.MultiEvidenceHook.

2. Implement each method of the interface.

It is worth noting, the arguments supplied to the customization hook points are clones of the original.
Modification of the values will not be reflected in the default flow.

class CustomMultiEvidenceHookImpl implements curam.core.sl.infrastructure.impl.MultiEvidenceHook
 {
 /**
 * Include your custom processing in this function
 * and it will
 * be invoked before the multiple create operation.
 */
 public void preCreateMultiEvidence(final List<CaseParticipantRoleKey>
participantList)throws AppException, InformationalException
 {
 for (final CaseParticipantRoleKey item : participantList) {
 // Custom participant processing for pre create
 // multiple participant evidence
 …
 }
 }
 // Implement all other interface methods, even if they do nothing.
 …
 }

Example Configuration

Once you have create a MultiEvidenceHook implementation you must configure it for use.

1. In your custom package create a new class that extends com.google.guice.AbstractModule.
2. Bind the custom implementation to interface using Guice binding.

public class HookModule extends AbstractModule {
 @Override public void configure()
 {
 // Bind custom multi evidence hook
 bind(MultiEvidenceHook.class).to(CustomMultiEvidenceHookImpl .class);
 }
}

Multiple Participant Evidence Customization
The following section describes how to configure custom filters.

Customization of the Multiple Participant Evidence feature provides the ability to configure custom filters.
The multiple participant evidence maintenance filters provide control over the list of options presented to
the user during multiple participant operations, namely;

1. The list of participants that are presented to the user during create operations.
2. The list of evidence that is presented to the user during modify operations.
3. The list of evidence presented to the user during a discard operations.

There are two types of filter, Global filter and Evidence type filters.

1. Global filters allow a general filter to be applied to all evidence, removing the need to apply for every
evidence type, and also ensuring the filter is applied to newly created evidence types that support
Multiple Participant Evidence.

2. Evidence type filters allow specific filters to be applied at the evidence type level giving a more fine
grained control over how filters are applied.

24 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Global Filters Configuration
The following sections describe how to implement a global filter.

Global filters are applied to all evidence types. These filters can be used to provide general rules that are
applied across all evidence types. This removes the need to replicate filtering rules across multiple types
and removes the need to create new filters for each newly created evidence type.

Default Global Filters

When displaying a multiple participant create, update or discard page the list of items that is presented to
the user is constructed from the case participants or case evidence. For more information on how these
lists are constructed, refer to the Javadoc information of the
curam.evidence.impl.DynamicEvidenceMultiEvidenceOperations class.

After the unfiltered list is constructed a global filter is applied for each operation type. For more
information on how each default global filter works, refer to the Javadoc information of the
curam.core.sl.infrastructure.impl.MultiEvidenceFiltersImpl.

Replacing Global Filters

If the default global filter is not suitable for your business scenario, it can be replaced with a custom
version by configuring a new global filter.

The following sections present examples of how to implement a global filter;

• Global Filter for Multiple Create,
• Global Filter for Multiple Modify,
• Global Filter for Multiple Discard.

Global Filter for Multiple Create

The following example shows how a global create filter can be applied to all evidence types that use
multiple participant evidence maintenance. The class must extend the AbstractMultiEvidenceFiltersImpl
and implement the evaluateParticipantForMultiCreate operation.

The filter in this example has the following criteria.

1. Participant exists on the case for the given received date.
2. Participant is of type PRIMARY or MEMBER.
3. Participant is active.

 public class CustomMultiEvidenceFiltersImpl extends AbstractMultiEvidenceFiltersImpl
 {
 /**
 * Removes the given participant from the list presented during multiple participant
create
 * operation.
 * The participant will be removed if they are not active, current and have a
participant
 * type of PRIMARY OR MEMBER.
 *
 * @param participant
 * a case participant who is currently included in the multiple create list.
 * @return
 * true if the participant should be excluded from the list.
 *
 */
 protected boolean excludeParticipantFromMultiCreate(final MultiParticipantDtls
participant)
 {
 return participant.recordStatus.equals(RECORDSTATUS.NORMAL) &&

Developing with Evidence 25

 (participant.typeCode.equals(CASEPARTICIPANTROLETYPE.PRIMARY) ||
 participant.typeCode.equals(CASEPARTICIPANTROLETYPE.MEMBER)) && new
 DateRange(participant.startDate,
participant.endDate).contains(getCurrentReceivedDate());
 }
 }

Global Filter for Multiple Modify

The following example shows how a global modify filter can be applied to all evidence types that use
multiple participant evidence maintenance. The class must extend the AbstractMultiEvidenceFiltersImpl
and implement the evaluateParticipantForMultiModify operation.

The filter in this example has the following criteria.

1. For the participant whose evidence the modify operation was initiated from, filter out all other
evidence records belonging to this participant.

2. Filter evidence that does not exist on the case for the given received date.

 /**
 * Custom class to redefine the global filter for the multiple participant
maintenance
 * evidence lists.
 */
 public class CustomMultiEvidenceFiltersImpl extends AbstractMultiEvidenceFiltersImpl
 {
 /**
 * Return true if you want to filter this item from the list of evidence that can be
 * modified.
 *
 * @param evidence
 * an evidence record that is currently included in the multiple participant
update list.
 *
 * @return true if the evidence should be excluded from the multiple participant
update
 * list.
 */
 protected boolean excludeEvidenceFromMultiModify(final MultiEvidenceDtls evidence)
{
 // Do not exclude by default
 boolean shouldExclude = false;
 try {
 shouldExclude = evidence.participantID !=
getCurrentEvidenceDescriptorDtls().participantID
 && !new DateRange(evidence.startDate,
evidence.endDate).contains(
 getCurrentDynamicEvidenceObject().getReceivedDate());
 } catch (AppException e) {
 // Do not exclude
 } catch (InformationalException e){
 // Do not exclude
 }
 return shouldExclude;
 }
 }

Global Filter for Multiple Discard

The following example shows how a global discard filter can be applied to all evidence types that use
multiple participant evidence maintenance. The class must extend the AbstractMultiEvidenceFiltersImpl
and implement the evaluateParticipantForMultiDiscard operation.

The filter in this example has the following criteria.

26 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

1. For the participant whose evidence the discard operation was initiated from, filter out all other
evidence records belonging to this participant.

 /**
 * Custom class to redefine the global filter for the multiple participant
maintenance
 * evidence lists.
 */
 public class CustomMultiEvidenceFiltersImpl extends AbstractMultiEvidenceFiltersImpl
implements MultiEvidenceFilters {

 /**
 * Return true if you want to filter this given item from the list of evidence that
can be
 * discarded.
 *
 * @param evidence
 * an evidence record that is currently included in the multiple participant
update list.
 *
 * @return true if the evidence should be excluded from the multiple participant
update
 * list.
 */
 protected boolean excludeEvidenceFromMultiDiscard(final MultiEvidenceDtls evidence)
{
 boolean shouldFilter = false;
 try {
 shouldFilter = evidence.participantID !=
getCurrentEvidenceDescriptorDtls().participantID;
 } catch (AppException e) {
 // Do not filter
 } catch (InformationalException e){
 // Do not filter
 }
 return shouldFilter;
 }
 }

Global Filters Configuration

The following example shows how to configure your custom filter for use. In this example, the
CustomMultiEvidenceFiltersImpl class is bound to the default MultiEvidenceFiltersImpl class which will
result in the custom class overriding the default class.

1. In your custom package create a new class that extends com.google.guice.AbstractModule.
2. Bind the custom implementation to interface using Guice binding.

 /**
 * Configure Filters for Multiple Participant Evidence Maintenance.
 */
 public class FilterModule extends AbstractModule {
 @Override
 public void configure() {
 // Bind custom evidence filter
 bind(MultiEvidenceFiltersImpl.class).to(CustomMultiEvidenceFiltersImpl.class);
 }
 }

Evidence Type Filters
The following sections describe how to implement an evidence filter.

Evidence type filters provide the mechanism to customize specific evidence types for multiple participant
update operations. A custom filter can be configured to be applied to 1 or more evidence types..

Note: An evidence type filter will replace the global filter. The type specific filter will receive the full set of
records that can be legitimately displayed for the operation. E.g. all case participants including canceled

Developing with Evidence 27

ones or all evidence of the same type, regardless of whether it is canceled or end dated. While this gives
the developer full control over how records will be filtered, it is likely they will need to re-apply some of
the global rules..

Evidence type filters are configured by mapping the evidence type code of an evidence to a custom filter..

Multiple Participant Evidence Filter Implementation

A multiple participant evidence filter can be implemented by extending
curam.core.sl.infrastructure.impl.AbstractMultiEvidenceFiltersImpl abstract class. Filter customization is
done in two steps.

1. Implement a custom filter by extending the AbstractMultiEvidenceFiltersImpl.
2. Add a binding for the custom filter implementation using Guice binder.

Implementing New Multiple Participant Evidence Specific Filter

The following example demonstrates how to create an evidence type specific filter. The example excludes
email addresses, from the multiple update list of an email address modify or discard operation, if they are
not of the same type as the email address record selected for update..

1. Create a custom class that extends AbstractMultiEvidenceFiltersImpl and implements the exclude
methods for modify and discard operations.

 public class MyCustomEmailAddressMultiEvidenceFiltersImpl extends
AbstractMultiEvidenceFiltersImpl {

 @Override protected boolean excludeEvidenceFromMultiModify(final MultiEvidenceDtls
evidence){
 return excludeEmailAddressEvidence(evidence);
 }

 @Override protected boolean excludeEvidenceFromMultiDiscard(final
MultiEvidenceDtls evidence){
 return excludeEmailAddressEvidence(evidence);

 }

 /**
 * Exclude evidence from email address multiple evidence update.
 */
 protected boolean excludeEmailAddressEvidence(final MultiEvidenceDtls evidence) {
 boolean shouldExclude = false;
 // Include by default.

 final EvidenceDescriptorKey evidenceDescriptorKey = new EvidenceDescriptorKey();
 evidenceDescriptorKey.evidenceDescriptorID = evidence.evidenceDescriptorID;
 try {
 // Re-apply the global filter rules because we have disabled them by
 // adding this type specific filter.
 boolean evidenceShouldBeConsidered = evidence.participantID !=
getCurrentEvidenceDescriptorDtls().participantID
 && !new DateRange(evidence.startDate,
evidence.endDate).contains(getCurrentDynamicEvidenceObject().getReceivedDate());

 if (evidenceShouldBeConsidered) {
 boolean shouldExclude =

((String)readDynamicEvidenceObject(evidenceDescriptorKey).getAttributeValue(PDCEmailAddress.
emailAddressTypeAttr)).equals((String)

getCurrentDynamicEvidenceObject().getAttributeValue(PDCEmailAddress.emailAddressTypeAttr));
 }
 catch (AppException e) {
 // Default to include
 }catch (InformationalException e){
 // Default to include
 }
 return shouldExclude;

28 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

 }
 }

2. Create a Guice Module to bind the implementation. If you are not familiar with the use of Guice
Modules with Curam you can read more here. Use the evidence type code to bind the implementation
using the standard Guice map binder strategy. In this case the evidence type code needed for the
binding is PDC0000260, which maps to the ‘Email Addresses’ evidence type. The evidence type code
value can be looked up on the EvidenceType code table.

 public class EvidenceFilterModule extends AbstractModule {

 @Override public void configure() {
 final MapBinder<String, MultiEvidenceFilters>
 pdcMultiEvidenceFiltersMapBinder = MapBinder.newMapBinder(binder(),
String.class, MultiEvidenceFilters.class);
 pdcMultiEvidenceFiltersMapBinder.addBinding(“PDC0000260”).to(
 MyCustomEmailAddressMultiEvidenceFiltersImpl.class);
 }
 }

Evidence End Dating Feature Implementation
Caseworkers create an evidence record by recording the evidence in the first page of the evidence wizard.
If an administrator has enabled the end dating feature for the evidence type and if the end dating criteria
are met, a second page is displayed in the evidence wizard where caseworkers can end date previous
evidence records. Administrators need to be aware of some implementation details and behavior in
relation to the end dating of evidence records through the evidence wizard.

The following information supplements the configuration information that is described in the Enabling the
End Dating of Previous Evidence When Creating Evidence topic, and also the procedural information that is
described in the Applying End Dating in the Creation of New Evidence Records topic. For more information,
see the related links.

Navigating to the end dating evidence option in the evidence wizard

In the evidence wizard, to navigate from the first page where an evidence record is created to the second
page where evidence records can be end dated, caseworkers must click Save and Next. Note the
following points:

• If the create evidence transaction fails, the transaction is rolled back, no record is committed to the
database, and the appropriate validation error is displayed to the caseworker on the same evidence
record creation page. The caseworker is not redirected to the next wizard page.

• If the create evidence transaction is successful, the evidence is created and committed to the database,
and the caseworker is directed to the second page of the wizard. Therefore, as the create and end date
processes are separated as end-to-end transactions, the caseworker cannot navigate back to the
previous evidence record creation page.

Completing the evidence wizard

In the evidence wizard, when the caseworker clicks Finish in the evidence end dating page, the end date
evidence transaction is triggered. Note the following points:

1. If the end date evidence transaction fails, the transaction is rolled back, no record is committed to the
database and the appropriate validation errors are displayed to the caseworker in the same evidence
end dating page. For dynamic evidence records, the end dating validation errors are aggregated, so
that all validation errors are displayed to the caseworker. To enable aggregated validation error
messages for non-dynamic evidence records, in the customized non-dynamic evidence validation
classes, replace the InformationalManager.failOperation() method call with the
MultiFailOperation.failOperationWithMPO() method call. If you do not replace the method,
when the first validation error occurs, the application might display the validation error message in the
user interface instead of in the aggregated validation error messages.

Developing with Evidence 29

Note: The end date of all selected evidence records is aggregated in one single transaction. Therefore,
if the end dating of one evidence record fails, the whole transaction is rolled back and no evidence
records are end dated.

2. If the end date evidence transaction is successful, all selected evidence records are end dated and the
data is committed to the database.

Customizing the default implementation

You can customize the default implementation in the
curam.core.sl.infrastructure.impl.ListAutoEndDateEvidenceImpl.listEvidenceForAu
toEndDating() method. The method lists the evidences to be end dated that are displayed in the
evidence record end dating page of the evidence wizard. To customize the method, create a custom
implementation class that extends the
curam.core.sl.infrastructure.impl.ListAutoEndDateEvidenceImpl default implementation
class.

The custom class must never directly implement the interface class because compilation exceptions
might occur during an upgrade if you add new methods to the interface. To ensure that the application
executes the new custom class rather than the default implementation, you must use the standard Guice
dependency injection mechanism to implement a new module class that extends the
com.google.inject.AbstractModule module. You must insert the fully qualified module class name
into the MODULECLASSNAME database table.

Enabling hook points

You can enable the hook points through the standard Guice dependency injection mechanism. Hook
points are provided to the evidence end dating feature through the following interface methods:

• The
curam.core.sl.infrastructure.impl.AutoEndDateEvidenceHook.preAutoEndDateEvide
nce(curam.core.facade.infrastructure.struct.AutoEndDateEvidenceDetails)
interface method is invoked before the end dating of evidence records.

• The
curam.core.sl.infrastructure.impl.AutoEndDateEvidenceHook.postAutoEndDateEvid
ence(curam.core.facade.infrastructure.struct.AutoEndDateEvidenceDetails
interface method is invoked after the end dating of all evidence records.

The hook points are invoked only through the end dating process that is triggered when a caseworker
clicks Finish in the evidence wizard evidence end dating page.

Participant Evidence Integration

Overview
Evidence is the term used for data in the calculation of eligibility and entitlement. Participant data is also
regarded as evidence, a concern's date of birth for example, but in the past it wasn't always treated as
classic evidence. It is obviously correct for a concern's date of birth to be maintained within the
Participant Manager rather than being stored on a separate evidence entity, i.e. one that is interfaced to
the Evidence API, but it must also be propagated across all cases belonging to the concern and any
changes in such evidence must trigger reassessment.

• A modification applied to Participant data will automatically apply to all cases using this data
• Modifying such data will trigger reassessment of all cases using this data

The following Core Participant entities have been integrated with Evidence:

• Address
• AlternateID

30 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

• AlternateName
• BankAccount
• Citizenship
• ConcernRole
• ConcernRoleRelationship
• Education
• Employer
• Employment
• EmploymentWorkHour
• Foreign Residency
• Person
• ProspectEmployer
• ProspectPerson

Integration of Participant Data as Evidence
Participant Evidence Integration is available out of the box but, like evidence, it requires a certain amount
of configuration. If the configuration is not carried out, then all newly integrated Participant evidence will
not integrate with the Evidence API. It will, however, continue to function as it always has. Once
configured, the Participant evidence will be linked to one or more cases via an Evidence Descriptor. As in
the case of classic evidence, the Evidence Descriptor can be associated with either an Integrated Case or
a Product Delivery.

The required configuration links the Participant evidence types to the Integrated Case(s) or Product(s)
that will use them. Such data is stored on the AdminICEvidenceLink and ProductEvidenceLink
respectively. Participant data that will be stored at the Integrated Case level needs to be configured on
the AdminICEvidenceLink entity whereas Participant evidence that will be used by a Product needs to be
configured on the ProductEvidenceLink entity.

Administration

AdminICEvidenceLink

Every integrated case type that wants to integrate the available 15 entities as evidence will need to insert
an entry into the AdminICEvidenceLink table. This table must link evidenceMetadataID (from
EvidenceMetadata table) and adminIntegratedCaseID (from AdminIntegratedCase table) for each
participant entity required as evidence and for each integrated case type.

ProductEvidenceLink

Every product delivery case type that wants to integrate the available 15 entities as evidence will need to
insert an entry into the ProductEvidenceLink table. This table must link evidenceMetadataID (from
EvidenceMetadata table) and productID (from Product table) for each participant entity required as
evidence and for each product type.

Integrating new Participant entities as Evidence
Integrating new, or existing, Participant entities with Evidence requires a number of steps. As mentioned
above, meta-data needs to be configured for Integrated Case types and Product types. As well as this,
other infrastructural support needs to be implemented by a developer in order for the integration to work.

Implementing the ParticipantEvidenceInterface

A Participant entity being integrated into the Evidence solution must implement the
ParticipantEvidenceInterface. This means that the entity will need to implement the following functions:

Developing with Evidence 31

• calcAttributionDatesForCase
• getDetailsForListDisplay
• getEndDate
• getStartDate
• insertEvidence
• insertEvidenceOnModify
• modifyEvidence
• readAllByParentID
• readEvidence
• selectForValidation
• validate
• checkForReassessment
• createSnapshot
• getChangedAttributeList
• readAllByConcernRoleID
• removeEvidence

Register entity in a Registrar Module

Participant entities being integrated to Evidence need to be registered via a Registrar Module as outlined
in “Evidence Registrar Module” on page 20. The out of the box participant evidence types has been
configured in CoreRegistrarModule. This binds the evidence type to it's entity. These map bindings are
loaded at runtime and are used by the Evidence Controller when looking up the appropriate evidence
entity for a given type, i.e. the entity that has implemented the ParticipantEvidenceInterface.

Applying Participant Evidence to all Cases

A new hook class ApplyChangesForEvidence has been added.

The new ApplyChangesForEvidence class represents a hook which can be overridden by custom code.
The ApplyChangesForEvidence.isApplyChangesAutomatedForEvidence method is called from Evidence
Controller to decide whether reassessment needs to be triggered when evidence is applied. The default
implementation defaults to false and therefore the user will have to manually apply the changes on the
associated cases. If the solutions wish to customize, the implementers should use
ProductHookRegistrar.registerApplyChangesHooks method to add details of the hooks to use for applying
changes. The static map attribute, applyChangesHookMap present in ProductHookManager class is used
to store pairs of product type and the name of the class that implements the hook for that product type.
The method ProductHookManager.getApplyChangesHook gets the implementation subclass of the
ApplyChangesForEvidence class for the specified product type. The method
EvidenceController.applyParticipantEvodence has been updated to obtain product delivery and product
details for the case and then call ProducHookManager.getApplyChangesHook to obtain correct instance of
the ApplyChangesForEvidence class for the given product.

Modifications required to existing business processes

In all places where there are existing calls to insert, modify, and less frequently, remove methods, the
code needs to be updated to invoke the EvidenceController as well as the insert, modify and remove
methods as appropriate. An example of how an insert works with Evidence is shown:

Before

// insert new citizenship entry
citizenshipObj.insert(citizenshipDtls);

32 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

After

//
// Call the EvidenceController object and insert evidence
// Evidence descriptor details
EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =
 new EvidenceDescriptorInsertDtls();
evidenceDescriptorInsertDtls.participantID =
 details.concernRoleID;
evidenceDescriptorInsertDtls.evidenceType =
 CASEEVIDENCE.CITIZENSHIP;
evidenceDescriptorInsertDtls.receivedDate =
Date.getCurrentDate();

// Evidence Interface details
EIEvidenceInsertDtls eiEvidenceInsertDtls =
 new EIEvidenceInsertDtls();
eiEvidenceInsertDtls.descriptor.assign(
 evidenceDescriptorInsertDtls);
eiEvidenceInsertDtls.descriptor.participantID =
 citizenshipDtls.concernRoleID;
eiEvidenceInsertDtls.evidenceObject =
 citizenshipDtls;

// EvidenceController business object
curam.core.sl.infrastructure.impl.EvidenceControllerInterface
 evidenceControllerObj =
 (curam.core.sl.infrastructure.impl.EvidenceControllerInterface)
 curam.core.sl.infrastructure.fact.EvidenceControllerFactory
 .newInstance();

// Insert the evidence
EIEvidenceKey eiEvidenceKey =
 evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

Sequence Diagrams for Participant evidence
The development, both client and server, of creating and modifying evidence operations are outlined here:

Create Participant Evidence Sequence Diagram

Figure 5: Participant Evidence Sequence

Developing with Evidence 33

Specific Processing For Participant Data when Creating Evidence

Figure 6: Evidence Sequence Diagram

34 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Modify Participant Evidence Sequence Diagram

Figure 7: Modify participant

Implementing Conditional Verifications

Conditional Verification
Conditional Verifications is a feature, wherein, the flexibility is provided to determine if verification is
applicable for evidence through programmatic support as opposed to manually means. The programmatic

Developing with Evidence 35

support is encompassed through rule-class implementations and verification for a piece of evidence is
determined based on a set of conditions. The Verification Engine will check the conditions specified, at
the time of adding or modifying evidence but will create an outstanding verification only when a condition
that has been defined is met and not every time a verifiable data item is added or modified. The
conditions can range from conditions against the value of the verifiable data item to more complex
conditions where the values of a set of dependent evidences determine whether or not verification is
required.

Rule Artifacts supplied by Verification framework
To facilitate integration between Verification framework and the rule implementations supplied by other
components, the framework supplies core Rule Artifacts. These artifacts contain abstract rule classes
that other components rule implementations must adhere to. This section identifies and details such low
level Rule Artifacts which will be supplied as part of Verification framework.

Rule Sets
The rule set 'VerificationRuleSet' is available as part of Verification framework. This rule set holds all the
framework's artifacts such as the rule classes and the data container classes.

Rule Classes
The following rule classes are available as part of VerificationRuleSet. The purpose of these rule classes
are explained in the corresponding sections.

• VerificationDeterminator
• VerificationDeterminatorResult
• VerificationDeterminatorParams

Verification Determinator
The business logic that determines whether conditional verification is required for particular evidence
type goes in this rule class. Components creating rule implementations must adhere to the specification
by directly/indirectly extending this class. The following attributes are available in this rule class.

S.N
o

Rule attribute name Type Purpose

1 determine “Verification Determinator Result” on page 37 The implementation will
contain the business logic
that determines the
output of conditional
verification. A value of
'TRUE' indicates to the
evidence framework that
verifications are not
applicable for the
evidence, whereas 'FALSE'
denotes that verifications
need to be explicitly
added.

2 verificationDeterminatorPar
ams

“Verification Determinator Params” on page
37

This attribute is populated
by the Conditional
verifications framework
and contains the values
for all the input
parameters for a
particular instance.

36 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

Verification Determinator Result
This rule class is a data container whose purpose is to store the results of business logic in the
“Verification Determinator” on page 36. Currently this class has two attributes,

result - a boolean that states whether verification is required or not for a given evidence

reason - a codetable value from VerificationSkippedReason, which contains the values of reason for which
the conditional verification is not applicable

It is the responsibility of the rule implementations to create/populate these attribute so that the
verification framework, after examining the state of the attribute, can take appropriate business decisions.

Verification Determinator Params
While determining whether conditional verification is required or not, the framework will supply various
input parameters to the rule implementation classes for various calculation purposes such as the
evidence that is getting currently edited, the associated case identifier for the evidence etc. Please refer
the following table for complete details of the input parameters.

S.No Property Name Data Type Description

1 verifiableDataItemNam
e

String Represents the name of the 'Verifiable Data
Item' such as 'Person Income', 'Date Of Birth'
etc. The value comes from the code table
'VerifiableItemName'

2 evidenceDescriptorID Number The unique identifier of the evidence record in
question

3 caseID Number The unique identifier of the case with which the
evidence is associated

New Propagator
Verifications are applicable to active evidences as well as to evidences which are in 'in-edit' state. A new
propagator – ActiveInEditEvidenceRowRuleObjectPropagator is provided for this very purpose, which
will propagate both these evidence type. It is recommended to use this new propagator to propagate the
evidences to the rule data objects that are used in the conditional verification implementation classes.

Developing with Evidence 37

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

38 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 39

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

40 IBM Cúram Social Program Management: Cúram Evidence Developers Guide

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	List of Tables
	Chapter 1. Developing with Evidence
	Introduction
	Purpose
	Prerequisites
	Audience

	Server / Client Evidence Components
	Server Side Artifacts
	Standard Evidence Interface
	Evidence Interface
	Participant Evidence Interface
	Accessing Non-modeled Functions

	Client Side Artifacts

	Developing an Evidence Solution
	Administration
	Evidence Metadata
	Product Evidence Link

	Common Evidence Maintenance Operations
	Create Evidence
	Create Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	Modify Evidence
	Modify Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	Read Evidence
	View Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	List Evidence
	List Evidence Sequence Diagram
	Server - Methods to Be Developed

	(deprecated) Evidence Dashboard and EvidenceFlow
	Validations
	More On Validations
	Evidence Attribution
	Re-attribution

	Evidence Relationship
	Registering Evidence Implementations
	Evidence Registrar Module
	Legacy Evidence Registrar

	Customizing Evidence Maintenance
	Evidence Controller Hook
	Providing a custom implementation of the EvidenceControllerHook
	Evidence Controller Hook Registrar & Manager

	Customization of Multiple Participant Evidence
	Multiple Participant Evidence Extension Points
	Multiple Participant Evidence Customization
	Global Filters Configuration
	Evidence Type Filters

	Evidence End Dating Feature Implementation

	Participant Evidence Integration
	Overview
	Integration of Participant Data as Evidence
	Administration
	AdminICEvidenceLink
	ProductEvidenceLink

	Integrating new Participant entities as Evidence
	Implementing the ParticipantEvidenceInterface
	Register entity in a Registrar Module
	Applying Participant Evidence to all Cases
	Modifications required to existing business processes

	Sequence Diagrams for Participant evidence
	Create Participant Evidence Sequence Diagram
	Specific Processing For Participant Data when Creating Evidence
	Modify Participant Evidence Sequence Diagram

	Implementing Conditional Verifications
	Conditional Verification
	Rule Artifacts supplied by Verification framework
	Rule Sets
	Rule Classes
	Verification Determinator
	Verification Determinator Result
	Verification Determinator Params
	New Propagator

	Notices
	Privacy Policy considerations
	Trademarks

