IBM Curam Social Program Management
Version 7.0.3

Curam Operations Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
26

Edition

This edition applies to IBM® Clram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

©

Contents

LISt Of TaAlES..c.eiuiirieiririeierinierereerereseacesessasesessssessssesessssesessssesessssessssasessssasessssasasans IV

Chapter 1. Administering operations for a production systemc..ccccvcevivncrncinnnnnna 1

F Ao Y=Y Tod=Te Y=Y (U] o USSR 1
OVEIVIBW...tieeeiieeeeitee sttt e eettee e ette e st eesettee s bteesasteesstaesstaesseeesseeesasteesaseeesaseaessseessseesnseessnseeessseessnsseenns 1
Storing XSL Templates for Use in the AppLiCatioN......ccuiiciieiciiiiciie e e e 1
Creating the Production Database in the AppliCatioN.......cicvieiciieiciieccecce e 1
Data CONVEISION ISSUEBS....uuiiicieeicieeieieesetee sttt e seteesetteessbeeessbeeessbeeesseeesseesssaessssaesssesessseesssseesssesensens 2
Creating Your Organization in the APPLICATION.......ciiciei e s 3

RUNNINg the CUram ONLINE SYSTEM...c.uiiciieiiecciieeie et eete et eseeete et este e teesaeebaesabeebeessseesaesssessseessnesnsannes 3
OVEIVIBW...tieeeiieeeeitee sttt e eettee e ette e st eesettee s bteesasteesstaesstaesseeesseeesasteesaseeesaseaessseessseesnseessnseeessseessnsseenns 3
Y €= LA o=] =TV) =Y g PR PRIPPRR 3
Sy (o] o] o= TSI Yy {1 o o T 4
SYSTEIM LOZS . uuttiiiiiiiiteiieiiitee e sttt e s ettt e s s sttt e e s e ssbeaeesssbaaeesesssaaessssssaaeesssssaaessasssaaessnsssnaessassssneesssnsseees 4

Running Batch Processes in the APPLICAtiON.......cuiieciiiiiieeicee ettt sae e e see e s saee e e 4
OVEIVIBW... tieeitieeeettee ettt e setteeeettee s et e e seatee s bteessteessteeastaesseeesseeesssteessseeesassaessseessseesaseessnseeessseessnssesnns 4
Overview of BatCh ProCess FACIlitiES.....ccuiiiiiiiiiiieeiiiecieeetee ettt ste e sae e s sree e s ae e s saae e e saae e s eneas 5
ThE BatCh LAUNCREiii ettt ettt e te e s ae e et e e s ab e e s sabe e e sbaeessbaeesssaeensseesnnses 5
Running Stand-AloNe BatCh PrOCESSES......cicviiiiiiiiicieeceieecriee et e esee e ssee e see e e ee e e see e s sree e s saeeesneeessnens 8

COrE BatCh PrOCESSES. .. uuiiiciiiicieeeeiteectte et e eete e et e e s te e e s teeesbeeesataeessseeesssaeasssaeasssaeeassaeaassaeaasseeanssaeesnsees 9
OVEIVIBW... tieeiiieeeeitee sttt e ettt e s ette e s et e e seatee s ttee s steeasteesstaesseeesaseeesasseesnseeesstaessseessseesnssessasseessseessnssesnns 9
Batch Parameters and ProCeSSING Date.....cccuiiiciiiriiiieiiieeiieeeieeessieeeseeeeste e s steesseeessaseessaseessnseessaneas 9
CUTAIM PrOCESSING. .. viciieetieeieecite et esttescte e e e s rte e teestesbeeasaessaessaeessaassesssseeseesaseensaesssessseesssessseenseesnsennses 9
BN] oTU L F Y (=T o = ol =Y USRS 21
OULPUL INTBITACES . tteeei ettt et e eerre e eerre e e e e s br e e s eeabraeeeessbaeeeesssaesesssssaeeeensssasesenssseeeesnssns 22

CUram Configuration SEHHINGS. ...c.uiiiieiiecie ettt e e e e e e s te e beesaaeebeestsesabeessaesareenseesanenn 23
B a) o [o3 4T] o RS SRR 23
CUTAIM XML SEIVET ...utiiuieetieeieeiteeete et eeteesteesseesateesstesseessaesase e saessse e saessseasseessseasseasssesnseessaesnsesnseesssenn 23
CUram Server APPLICATION......iccvee ettt ettt e et e erre e e e e esreeeeabeeeeaseeeenbeeessseeeesseeennsesesnseeennnens 23

MONILONING CUMAM PrOCESSES. . ueeiureereeetreeiteesteeireesseesseesseesseesseessseasseesssessseesssesssessssesssessssesssesssessssesssessnes 24
Monitoring WorkflOw proCeSS INSTANCES.....uuiieciiieeiieeeteeecteeeieeete e e e e e see e e seeessaeeessaee e e seeesneeesnes 24
ProCESS INSTANCE EFTOIS...uiiiiiiiiiiiieeiiiiteete e et e e e ettt et e et e e e e seesasnrrreeeeeeeesssessssnsssesensneseessssssnnsnnnnns 25
MoNItOring ProCeSS INSTANCE EITOIS....uuiiiiiiiicieeictieeeieessteessteeesreesssteesssseessseesssseeesssesssssesssssesssseesns 25

(10 1 o7 = -3 -
Privacy POLiICY CONSIABIAtIONS. . .iiiiiiiieeeietieeeeeccreee ettt e e eerrreeeeeetreeeeestseeeeeesssesesesssraseeessssseesessssseeesennnns 27
L= 16 L= g B U TR 27

List of Tables

R S TN (ol A T = U= Y 10 (=1 =] TN

Chapter 1. Administering operations for a production
system

Use this information to complete operational administration tasks for a Ciram runtime production or
production-like system.

Advanced Setup

Overview

This chapter provides advanced setup steps you may wish to perform on your production Clram system.
The following is a list of the main topics covered:

« Storing XSL Templates for use in the application

- Creating the Production Database in the application
- Data Conversion Issues

 Creating your Organization in the application

If you are installing the application for demonstration or investigation purposes, then this chapter can be
skipped.

Storing XSL Templates for Use in the Application

The application uses the Ciram XML Server to format and print pro forma correspondence letters. The
Curam XML Server formats these letters by merging a letter template (stored in XSL format) with any free
text entered by the user and data retrieved from the database.

Sample XSL templates are inserted onto your Database Setup Utility described in the Cliram Runtime
chapter of the Ciram Installation Guide for your platform type. You may create your own XSL
templates using your preferred XSL editing tool for your hardware platform.

Note: The application does not provide any XSL editing tools.
In order to make a template available to the Ciram XML Server, you must follow the steps below:
1. Log on to the System Administration application using your username and password.

Note: "Out of the box", the application provides a default administration username of "sysadmin" with
a password "password".

. The home page is displayed. Click on the System Configurations section.

. Click on the Communications - XSL Templates link in the ShortCuts panel.

. The Templates page is displayed, showing a list of XSL templates stored in the system.
. Click the New button to add a new template.

o 01 WN

. The Create Template page is displayed, requesting details of your template. Click the Browse button
to locate the template on your file system. Enter the details of your template and click Save.

Note: The version of XSL supported is XSL-FO version 1.0 W3C Recommendation.

Creating the Production Database in the Application

The Caram Runtime chapter of the Clram Installation Guide for your platform type describes
how to create a basic database for your installation of the application.

© Copyright IBM Corp. 2012, 2018

However, in a production environment, it is likely that you will need to have far greater involvement in
creating a database in the application that is in line with your established database administration
practices. Below are suggested steps to create a database suitable for use with a production installation
of the application:

1. At acommand prompt, change directory to the root of the runtime installation directory.
2. Run the following command:

build database

3. Review the contents of the build/datamanagexr subdirectory within your installation directory. This
directory contains a number of generated scripts which define the structure and initial data of your
database.

4. Refine or refactor the DDL/SQL commands in line with your requirements, e.g., you may wish to:
- Specify the creation of your physical database, e.g., implement a partitioning strategy
« Share the physical database with other applications you may have
- Specify the physical attributes of tables in the application, e.g., expected growth rate

- Customize the initial data required by the application, e.g., change the function privileges for your
security roles

- Omit foreign key constraints as they are not supported in a production environment

Note: The Curam Reference Application enforces referential integrity (RI) in the application and as
such using database-enforced RI will degrade performance. It is strongly recommended that in a
production environment you do not create foreign key constraints on your database.

« Load data from your existing system(s) (NB see “Data Conversion Issues” on page 2 below)

 Refine the indexing strategy, e.g., implement hashed indexes

5. Use your refined/refactored script(s) (in addition to any established administrative procedures you
may have) to create your production database in the application.

Data Conversion Issues

In a production environment, it is likely that you will need to migrate data from your existing system(s) to
your Clram database.

The specification of such a migration exercise is outside the scope of this document since it requires in-
depth knowledge of the following:

« Curam Reference Model, together with any customizations you may have made
« Structure and integrity of your existing data

« Any requirements you may have for the ongoing synchronization of data between Ciram and your other
systems

« Any existing migration procedures you may have
Notwithstanding the above, the following suggestions are worth making here:

« Sample initial data that is required to start the Ciram online server is provided. This initial data contains
such items as an administrative user (admin). The initial data may be customized before loading into
your database, or may be customized through the application itself (before "going live").

- Demonstration data is provided and it is suggested that you do not load this data into your production
database.

« You may wish to pre-sort your data in line with your data clustering strategy.

« The Curam Reference Model includes database foreign key constraints which help maintain the integrity
of the Cdram data. If these constraints are applied before loading your migrated data, then constraint
violations may occur if your data is not loaded in "parent-child" order

Note: Often in a relational database a "parent" entity is associated with zero, one or more "child"
entities; each of these child entities bears the key of its parent, and as such, the parent must be created

2 IBM Curam Social Program Management: Cram Operations Guide

first so that its key is available (in order to set the parent's key on the child) when the child is
subsequently stored.

; therefore, it is suggested that foreign key constraints are applied after your migrated data has been
loaded

Note: It is recommended that you create foreign key constraints to identify integrity problems in your
converted data, and then (once any problems have been resolved) drop these constraints as they are
not supported for production databases.

Any constraint that is rejected by the database will indicate an integrity problem in your migrated data.

« The Curam Reference Model includes indexes to support all SQL queries used from within the Cdram
Server Application. You may wish to drop some of these indexes in order to improve the performance of
database write operations, at the expense of degrading the performance of some rarely-used queries.
This exercise can only be undertaken once you have an understanding of which transactions in the
application will be used online heavily at your installation and which will be used rarely online or solely
in batch.

Creating Your Organization in the Application

The application database needs to contain information about your Organization and its organization units
and users. Sample Organization data is provided that will allow you to start the Ciram Online Server
Application and logon from a Curam Client. This sample Organization data includes a sample organization
structure. An organization structure consists of a hierarchy of organization units where each unit can have
any number of assigned positions and each position can have any number of assigned users.

The setting up of data pertaining to your Organization is described in the CUram Administration
guide.

Running the Ciram Online System

Overview

This chapter describes how to run and administer the Ciram online system.

Starting the System

This section describes how to start the Ciiram online system. The Curam Server Application should be
started after the Ciram XML Server if your runtime configuration includes the Ciram XML Server.

Curam XML Server

To start the Clram XML Server, run the following command from the XMLServer subdirectory within your
installation directory:

ant -f xmlserver.xml

For Microsoft Windows: On Microsoft ® Windows, you can also start the Ciram XML Server by clicking on
the shortcut Start > Programs > Ciram > XML Server > Start XML Server.

Please refer to the Cdram XML Infrastructure Guide for further information.

Caram Server Application

To start the Clram Server Application, run the following command from your Cliram Runtime installation
directory:

build startserver -Dserver.name=curaml

where curaml is the value of the curam. server. name property.

Administering operations for a production system 3

For Microsoft Windows: The following additional options are available to start the Cliram Server
Application:

« Click on the shortcut Start > Programs > Ciiram > Application Server > Online > Start Server
« From your Clram Runtime installation directory, run the following command:
StartServer.bat

Please refer to the Ciram deployment guide for your chosen application server for further information.

Stopping the System

This section describes how to stop the Clram online system. Note that the Curam Server Application
should be stopped before the Ciram XML Server.

Curam Server Application

To stop the Clram Server Application, run the following command from your Cdram Runtime installation
directory:

build stopserver -Dserver.name=curaml
where curaml is the value of the curam. server. name property.
For Windows: The following additional options are available to stop the Cdram Server Application:

« Click on the shortcut Start > Programs > Curam > Application Server > Online > Stop Server
« From your Clram Runtime installation directory, run the following command:

StopServer.bat

Note: If you intend to stop your Clram Server Application, you should advise any online users to complete
their work before stopping the server.

Curam XML Server
To stop the Ciram XML Server, enter ~C.
For Windows: To stop the Cliram XML Server, you can also click "X" to close the console window.

Please refer to the Cdram XML Infrastructure Guide for further information.

System Logs

IBM WebSphere Application Server

For IBM ° WebSphere ® Application Server, by default, the online logs are stored in the directory
<WebSphere installation directory>\AppServer\profiles\AppServ0l\logs\<Server
name> where <Server Name> is the WebSphere server added for the Ciram EARs.

Oracle WebLogic Server

For Oracle ® WebLogic Server, by default, the online logs are stored in the directory <BEA Install
directory/user_projects/domains/<DomainName>/servers/<ServerName> where <Server
Name> is the name of the server.

Running Batch Processes in the Application

Overview

This chapter describes how to run batch processes in the application. Information is provided on the
following:

4 IBM Curam Social Program Management: Curam Operations Guide

Overview of Batch Process Facilities
The Batch Launcher

Running Stand-Alone Batch Processes
System Logs

Overview of Batch Process Facilities

Batch processes in the application have the following characteristics:

« Each batch process is specified in and generated from the Ciram Rose model. For more details on

modeling batch processes in the application, please see Developing batch processes.
At runtime, each batch process accepts configuration parameters.

Note: The way these parameters are passed to the batch process depends on whether:
— the batch process is started via the Batch Launcher; or
— the batch process is started as a "standalone" process.

For a description of the parameters common to all batch processes, please see the Developing
batch processes.

Each batch process stores a log of its progress (one log is stored per each invocation of a batch
process).

 Each log is automatically emailed to a nominated user.

The Batch Launcher

The Batch Launcher provides a deferred request mechanism whereby:

« Online application users can record requests for batch processes to be run.

« The batch operator can easily run all the batch processes requested by online users.

Note: The Batch Launcher executes the batch processes in the order that requests were received from
users. If you have a requirement for batch processes to run in a particular order (e.g., if there are
functional dependencies between them), then the Batch Launcher may be unsuitable for running these
processes; see instead “Running Stand-Alone Batch Processes” on page 8 below.

Batch Process Requests

To record a request for a batch process to be executed, you must follow the steps below:

1.

N oo A WON

Log on to the application using your username and password.

Note: "Out of the box", the application provides a default administration username of "sysadmin" with
a password "password".

. The home page is displayed. Click on the Administration shortcut.

. The Administration home page is displayed. Click on the System Configurations section.

. Click on the Batch Processes tab.

. The Batch Processes page is displayed, showing a list of available batch processes.

. To execute a Batch Process, click on the processes Execute button.

. The Execute Batch Process page is displayed, showing a list of the parameters accepted by the batch

process. Enter the parameters appropriate to your selected batch process (if any).

8. Click Execute to queue your batch process for execution.

0.

The system records the request to run the batch process.

Running the Batch Launcher

The Batch Launcher is ideally run when the Ciram online application is "down"; however, if there is no
danger that programs run from the Batch Launcher will lock out the application database (e.g., with large

Administering operations for a production system 5

numbers of uncommitted updates) for an extended period, then the Batch Launcher may be run whilst the
Curam online application is "up".

To run the Batch Launcher, run the following command from the root directory of your runtime
installation.

build runbatch

For Microsoft Windows: You can also run the Batch Launcher by clicking on the shortcut Start >
Programs > Curam > Runtime > Run Batch Launcher.

Curam XML Server

To start the Clram XML Server, run the following command from the XMLServer subdirectory within your
installation directory:

ant -f xmlserver.xml

Configuring the Online Interface of Batch Processes
The online Batch Processes list may be customized by:

« Maintaining the batch process list
 Maintaining batch process groups

Maintaining the Batch Process List
Batch processes may be added to or removed from the list displayed to an online application user.
Note: Initially this list contains all the batch processes available in the application.

This may be useful if, for example, there are batch executables which you require to run as stand-alone
programs rather than allowing a user to request that the batch process be run; such programs may be
removed from the list.

Viewing the List of Batch Processes
To view the list of batch processes, navigate as follows:
1. Log on to the application using your username and password.

Note: "Out of the box", the application provides a default administration username of "sysadmin" with
a password "password".

2. The home page is displayed. Click on the System Configurations section.
3. Click on the Batch Processes tab.
4. The Batch Processes page is displayed, showing a list of available batch processes.

Adding a New Batch Process to the List

To add a new program to the list, navigate as follows:

1. Navigate to the list of batch processes as described above.
2. Click the New button.
3. A page appears requesting details of the new batch process. Enter the details and click Save.

Updating a Batch Process Already in the List
To update an existing batch process in the list, navigate as follows:

1. Navigate to the list of batch processes as described above.
2. Click Edit action next to your chosen batch process.
3. A page appears showing details of the new batch process. Change the details and click Save.

6 IBM Curam Social Program Management: Cdram Operations Guide

Removing a Batch Process from the List
To remove a batch process from the list, navigate as follows:

1. Navigate to the list of batch processes as described above.
2. Click Remove action next to your chosen batch process.

Maintaining Batch Process Groups

The application supports grouping batch processes into process groups, to aid categorization and
navigation.

Note: For example, you may wish to create a group containing statistical reports, another containing
financial processing, etc.

Note: Each batch process may belong to zero, one, or more batch groups.

Viewing the List of Batch Process Groups
To view the list of batch process groups, navigate as follows:

1. Click the Batch - Process Groups link in the ShortCuts Panel.
2. A list of Batch Groups is displayed.

Adding a New Batch Group to the List
To add a new group to the list, navigate as follows:

1. Navigate to the list of Process Groups as described above.
2. Click on the New button.
3. A page appears requesting details of the new batch process group. Enter the details and click Save.

Removing a Batch Process Group from the List
To remove a group from the list, navigate as follows:

1. Navigate to the list of batch process groups as described above.
2. Click Remove action next to your chosen batch process group.

Adding a Batch Process to a Group
To add a batch process to a group, navigate as follows:

1. Navigate to the list of batch process groups as described above.

2. Click View next to your chosen batch process group.

3. The details of the batch process group are displayed. Click the Add button.
4. A list of batch process is displayed. Choose a batch process and click Save.

Removing a Batch Process from a Group
To remove a batch process from a group, navigate as follows:

1. Navigate to the list of batch process groups as described above.

2. Click View next to your chosen batch process group.

3. Alist of batch processes in the batch process group is displayed.

4. Click Remove next to the batch process you wish to remove from the batch process group.

Executing a Batch Process from a Group
Once in a group, a batch process may be executed from the group tree as follows:

1. Navigate to the list of batch process groups as described above.
2. Click View next to your chosen batch process group.

Administering operations for a production system 7

3. Alist of batch processes in the batch process group is displayed.
4. Click Execute action next to the batch process you wish to execute.

Running Stand-Alone Batch Processes
Each batch process may be run in a "stand-alone" mode.
Batch processes are typically run as stand-alone programs if:

« A batch process is being used for demonstration or testing purposes.

« There is a functional dependency or order between a suite of batch processes, i.e., one particular batch
process must successfully complete before another particular batch process is allowed to begin.

« A batch process (or suite of programs) is run on a regular basis (e.g., nightly) and it is cumbersome or
inconvenient to use the Batch Launcher to record a request to run the batch process every time it is
needed.

Command Format

Each batch process accepts input parameters passed on the command line. The parameters required vary
between batch processes.

Note: The parameters accepted by a batch process may be viewed in the online Ciram Application prior
to scheduling it for execution.

To execute a batch process in stand-alone mode, run the following (one-line) command from the runtime
directory:

build runbatch

-Dbatch.program=

curam.intf.

<program class name>.<program operation name>
-Dbatch.username=<your Curam batch user>
-Dbatch.parameters=

"<comma-separated list of parameter name=
value pairs>"

An example of this type of command is:

build runbatch

-Dbatch.program=

curam.intf.PersonExtract.extractPersonDetails

-Dbatch.username=superuser

-Dbatch.parameters="extractFilePath=c:\testfile.dat"

Note: If you are repeatedly running only one batch process (e.g., for testing purposes), it may be
convenient to remove the "-D" parameters from the command line and place them in your project
\properties\Bootstrap.properties file within your Ciram Runtime installation directory.

Scheduling of Batch Processes

If you require to schedule a batch process (or suite of batch processes) to run at a particular time, then
you may use your preferred choice of scheduling tool. In order to configure your scheduling tool, batch
processes return a status value as specified in your BatchExrrorCodes codetable.

Note: No scheduling tools are included with the application.

System Logs

The batch logs are stored in buildlogs subdirectory within your Ciram Runtime installation directory
and are named <batch process name><date and timestamp>.log.

A log is created for each invocation of a batch process executable and shows the progress of the batch
process. The contents of the log is automatically emailed to the email address configured in your
project\properties\Bootstrap.properties file or within the Properties Administration area of
the Administration page in the application.

8 IBM Curam Social Program Management: Cdram Operations Guide

Core Batch Processes

Overview
This chapter lists the batch processes which provide core functionality in the application.

Note: Unless specified otherwise, batch processes may be run in any order.

Batch Parameters and Processing Date
Several batch jobs in the application accept processingDate as a parameter.
Unless specified otherwise, the following conditions apply to the batch jobs that accept the parameter:

« The processingDate parameter is optional.

« You can use the processingDate parameter to specify the effective date for which the batch job is run,
which is the date that is returned from the getCurrentDate () API. Otherwise, the
getCurrentDate () API returns the current system date as the effective date.

Some batch programs might use the processingDate parameter in other specific ways that are described
in the batch program documentation.

Curam Processing
Case Management

GenerateCommunications

This batch process generates communications that are part of case management, e.g., case approval
communications. An environment variable can be set such that case management communications are
not processed automatically but go into a pending status. This batch process generates all of these
pending communications.

It is expected that this program be run nightly, but other than a longer run time and the potential for case
management communications to go unprocessed until the program is run again, no problems will result
from running this less frequently. Running this program more than once a day has no effect.

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.GenerateCommunications.generateAllCommunications.

ProductDeliveryFinalClosure

This batch process is provided to close cases in the pending closure state, when the closure grace period
has expired.

It is expected that this program be run nightly, but other than a longer run time and the potential for cases
to have exceeded the closure grace period before they are closed, no problems will result from running
this less frequently. Running this program more than once a day has no effect.

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.CloseCasesPendingClosure.closeCasesPendingClosure.

EvaluateCertificationGracePeriod

This batch process is provided to set cases to pending closure when they have been out of certification for
the certification grace period.

Administering operations for a production system 9

It is expected that this program be run nightly, but other than a longer run time and the potential for cases
to have exceeded the certification grace period before they are set to pending closure, no problems will
result from running this less frequently. Running this program more than once a day has no effect.

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.EvaluateCertificationGracePeriod. run.

DetermineProductDeliveryEligibility

This batch process is provided to process newly approved cases, and record decisions in respect of these
cases. Any ineligible cases will be set to pending closure by this process, and cases that are eligible will
be set to active. If an error occurs processing a case, it will be suspended and the case owner notified by
email or via a task.

It is expected that this program be run nightly, but other than a longer run time and the potential for
approved cases to be unprocessed until the program is run again, no problems will result from running
this less frequently. Running this program more than once a day, will process all approved cases on the
system at that point in time; no problems will result from running the program this way.

This batch process takes the following parameters:
« Product ID - unique identifier used to run this process for cases of a particular product

Where no product ID is specified, all cases are processed.

e Batch Process Instance ID -unique identifier used to allow multiple instances of the same batch
process to run at the same time effectively

For example, this process can run for multiple products. Where no instance ID is specified, only one
instance of the batch process can run.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.DetermineProductDeliveryEligibility.process.

DetermineProductDeliveryEligibilityStream

This batch process is provided to support streaming for the Determine Product Eligibility
process. This batch process can only be run in conjunction with the Determine Product
Eligibility process. Streaming for batch processes is designed to allow for concurrent execution,
possibly on different machines, of batch programs to ensure that the database is used to its full capacity.

This batch process takes the parameter, Batch Process Instance ID.Theinstance ID is a unique
identifier used to allow multiple instances of the same batch process to run at the same time effectively.
Where no instance ID is specified, only one instance of the batch process can run.

Streaming Multiple Instances of Determine Product Delivery Eligibility: Multiple instances of the
Determine Product Delivery Eligibility batch process can be run concurrently, by giving each
instance a different Batch Process Instance ID.To starta stream for a particular instance of the
Determine Product Delivery Eligibility batch process, you must link the Determine
Product Delivery Eligibility Stream batch process (or multiple stream batch processes) to the
particular batch process instance using the Batch Process Instance ID parameter. For example,
where the Batch Process Instance IDis "eligibility_determination_1" for an instance of the
Determine Product Delivery Eligibility batch process, you must also set the Batch
Process Instance ID parameter forthe Determine Product Delivery Eligibility Stream
batch process (or multiple stream batch processes) to be "eligibility_determination_1". Any number of
Determine Product Delivery Eligibility Stream batch processes can be linked to the same
instance of the Determine Product Delivery Eligibility batch process.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.DetermineProductDeliveryEligibilityStream.process.

10 IBM Curam Social Program Management: Cdram Operations Guide

ReassessOutstandingCases

The ReassessOutstandingCases batch process reads all the records on the
ScheduleReassessment entity and reassesses each case in turn. The ScheduleReassessment entity
contains entries for cases that are pending reassessment and should be read only in batch mode. Cases
can also be reassessed in deferred mode but in this mode, ScheduleReassessment is not used.

The batch process accepts one parameter, which is processingDate:

« The processingDate parameter is optional.

« You can use the processingDate parameter to specify the effective date for which the batch job is run,
which is the date that is returned from the getCurrentDate () APIL Otherwise, the
getCurrentDate () API returns the current system date as the effective date.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ReassessOutstandingCases.reassess.

FullPropagationToRuleObjects
This batch process performs full propagation of rate table database data to rule objects.

This process should be run whenever there is reason to believe that stored CER rule objects no longer
accurately reflect their source rate table database data. Discrepancies can occur whenever incremental
propagation of database data has been bypassed, e.g. if rate tables are updated outside of the control of
the application.

Note: In general you should not need to run this program unless you have made large numbers of
changes to rate tables outside of the application's APIs - if you have made a small number of changes
then you can use the "Apply Changes" action in the online administration application.

A summary of discrepancies found is written to the standard application logs. For detailed logging of all
processing, the log level should be set to verbose or ultra-verbose.

The batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.sl.infrastructure.propagator.intf.
FullPropagationToRuleObjects.execute.

RateCreatelnitialRuleObjects

This batch process creates the initial CER rule objects corresponding to rate table entries in an
environment where the rate table data has been populated outside of the application's APIs.

See the Propagating Non Curam Data For Curam Express Rules guide for more information.
This batch process takes the following parameter:
- rateTableType - The rate table to process (or blank to process all rate tables).

Batch Process Class and Method: The class and method for this batch process is
curam.core.sl.infrastructure.rate.intf.RateCreateInitialRuleObjects .propagateR
ateTable.

CREOLEBulkCaseChunkReassessmentByProduct

This batch process is provided to identify and perform full reassessment on a large number of "Active"
CER cases of a given product type. For any cases where the determination changes as a result of this
reassessment, the new determination will be stored and the old one superseded.

Important: As this process will cause reassessment of all cases of the specified type, it may cause a lot of
unnecessary reassessments. Where appropriate, a new batch process should be written in order to more
precisely identify the cases that require reassessment, especially when the cases are spread across a
range of products. For a full explanation of how to write an appropriate batch process see the Inside
Curam Eligibility and Entitlement Using Curam Express Rules guide.

Administering operations for a production system 11

You can run this program when you have made changes to the system that affect a large number of CER
cases, and you want to force the system to reassess cases by product (rather than leaving the
Dependency Manager batch suite to determine the order in which to reassess cases).

Note: See the Inside Curam Eligibility and Entitlement Using Curam Express Rules
guide for full details on how to choose whether to use this batch process in addition to or instead of the
Dependency Manager batch suite.

The type of changes that can affect a large number of CER cases are:

publishing CER Rule Set Changes;
publishing CER Product Configuration changes;

publishing CER Data Configuration changes; and
- applying Rate Table changes.

This batch process takes the following parameters:
« Product 1ID -unique identifier used to run this process for cases of a particular product

Where no product ID is specified, all cases are processed.

- Batch Process Instance ID - unique identifier used to allow multiple instances of the same batch
process to run at the same time effectively.

For example, this process can run for multiple products. Where no instance ID is specified, only one
instance of the batch process can run.

Batch Process Class and Method: The class and method for this batch process is
curam.core.sl.infrastructure.assessment.intf .CREOLEBulkCaseChunkReassessmentBy
Product.process.

CREOLEBulkCaseChunkReassessmentStream

This batch process is provided to support streaming for the CREOLE Bulk Case Chunk
Reassessment By Product process. This batch process can only be run in conjunction with the
CREOLE Bulk Case Chunk Reassessment By Product process. Streaming for batch processes is
designed to allow for concurrent execution, possibly on different machines, of batch programs to ensure
that the database is used to its full capacity.

This batch process takes the parameter, Batch Process Instance ID.Theinstance ID is a unique
identifier used to allow multiple instances of the same batch process to run at the same time effectively.
Where no instance ID is specified, only one instance of the batch process can run.

Streaming Multiple Instances of CREOLE Bulk Case Chunk Reassessment By Product: Multiple
instances of the CREOLE Bulk Case Chunk Reassessment By Product batch process can be run
concurrently, by giving each instance a different Batch Process Instance ID. To starta stream fora
particular instance of the CREOLE Bulk Case Chunk Reassessment By Product batch process,
you must link the CREOLE Bulk Case Chunk Reassessment Stream batch process (or multiple
stream batch processes) to the particular batch process instance using the Batch Process Instance
ID parameter. For example, where the Batch Process Instance IDis "batch_reassessment_1" for
an instance of the CREOLE Bulk Case Chunk Reassessment By Product batch process, you must
also set the Batch Process Instance ID parameterforthe CREOLE Bulk Case Chunk
Reassessment Stream batch process (or multiple stream batch processes) to be
"batch_reassessment_1". Any number of CREOLE Bulk Case Chunk Reassessment Stream batch
processes can be linked to the same instance of the CREOLE Bulk Case Chunk Reassessment By
Product batch process.

Batch Process Class and Method: The class and method for this batch process is
curam.core.sl.infrastructure.assessment .intf.CREOLEBulkCaseChunkReassessmentSt
Tream.process.

12 IBM Curam Social Program Management: Cdram Operations Guide

ApplyProductReassessmentStrategy

Checks each product delivery case for a product to see if the case's support for reassessment (e.g.
support for reassessment when closed) has changed due to the change in the product's reassessment
strategy.

For each product delivery case for the product:

- if the case was not reassessable under the old strategy but becomes reassessable under the new
strategy, then an assessment is performed on the case to build up the dependency records for the
case's determination result;

« if the case was reassessable under the old strategy but is no longer reassessable under the new
strategy, then the dependency records for the determination result are removed;

« otherwise no action is performed on the case.

This batch process takes the following parameter:

« Product 1ID -unique identifier used to run this process for cases of a particular product

See the Inside Curam Eligibility and Entitlement Using Curam Express Rules guide.

Batch Process Class and Method: The class and method for the chunker batch process is
curam.core.sl.infrastructure.assessment .intf.ApplyProductReassessmentStrategy.
process me>.

The class and method for the stream batch process is
curam.core.sl.infrastructure.assessment .intf.ApplyProductReassessmentStrategyS
tream.process.

Redetermine Translator
This batch is used to perform automatic redetermine translator processing when a change to the language
skill of a user is made and the change will affect a large volumes of cases.

RedetermineTranslator initiates the following processing steps:

1. Checks all open cases for which a particular user is assigned as the case owner and compares the
preferred language of each case participant in the case against the language skill of the user.

2. Updates the translator required indicator for the case participant if necessary.

Class and method
RedetermineTranslator.process

RedetermineTranslatorStream.process

Parameters

Table 1: Batch Parameters.

Parameter name Description

Instance Identifier Instance ID. Allows multiple instances of the same
batch process to run at the same time.

Processing Date The date the batch program will be processed.

User Name Used to specify the case owner whose language

skills will be assessed.

Related Information:

The curam.cases.maxnocases.onlineautotranslatordetermination application property controls whether
automatic re-determination of translator requirements will occur in batch mode or singly via online
processing. If the number of open cases that require processing exceeds the value specified in the

Administering operations for a production system 13

application property, re-determination will not occur in online mode, and must be executed in batch
instead.

Related concepts
RedetermineTranslator

Dependency Manager

For full details on the batch processes included with the Dependency Manager, see the Ciram Express
Rules Reference Guide.

SubmitPrecedentChangeSet

This batch process is the starting point for the Dependency Manager batch suite, containing a light-weight
single-stream process that submits the currently-open batch precedent change set, and creates a new
open batch precedent change set, which will be used to capture any subsequent precedent changes
identified and queued for batch processing.

Batch Process Class and Method: The class and method for this batch process is
curam.dependency.intf.SubmitPrecedentChangeSet.process.

PerformBatchRecalculationsFromPrecedentChangeSet

This batch process is the heavyweight multiple-stream process that identifies the dependents which are
potentially affected by the changes in the submitted precedent change set, and recalculates them.

This batch process must be run once for each dependent type registered with the Dependency Manager.

Batch Process Class and Method: The class and method for the chunker batch process is
curam.dependency .intf.PerformBatchRecalculationsFromPrecedentChangeSet.process

The class and method for the stream batch process is
curam.dependency .intf.PerformBatchRecalculationsFromPrecedentChangeSetStream.p
rocess.

CompletePrecedentChangeSet

The end point for the Dependency Manager batch suite, containing a lightweight single-stream process
that completes the currently-submitted batch precedent change set.

Batch Process Class and Method: The class and method for this batch process is
curam.dependency.intf.CompletePrecedentChangeSet.process.

Dependency Manager Batch Tooling

Tooling has been provided in the form of Ant scripts to assist in the running of the Dependency Manager
batch suite. Using the tooling will ensure that the batch jobs are run in the correct order, and will allow the
user to set a property to manage the performance of the batch run. There are two parts to the tool, the
first part produces an ant script specific to the system its being run on, while the second involves invoking
this ant script to run the batch suite.

Prerequisites
The following environment variables must be set as per normal Cliram operation:

« SERVER_DIR
+ CURAMSDEJ

Database drivers should be in the SERVER_DIR/drivers directory. The tool will pickup the Database
connection details from the normal Bootstrap.properties file.

Producing the Specific Ant Script

Overview:

14 IBM Curam Social Program Management: Cdram Operations Guide

In this step, the tool examines the supported dependent types on the system, and then constructs an ant
script to ensure each of these dependent types gets processed during the batch suite run. Additionally,
certain configuration options can be specified in the conf/DependencyManagerBatch.properties file as
follows:

« batch.default.threads=3 - This specifies the default number of threads to use in the generated ant script
(If this property has a value of n, one chunker and n-1 streams are created for processing each
dependent type).

Additionally, for each dependent type, the default can be overridden by specifying a property for that type
as below:

» batch.CADETERRES.recalculation.threads=5 - This example would override the number of threads used
to process the Case Determination Reassessment dependent type.

Running the Step:
To run the step, simply execute the 'ant' command from within the DependencyManagerBatch directory.
Output:

This step produces a file, DependencyManagerBatch.xml within the current directory.

Invoke the Script to run the Batch Suite
Overview:

The second step of the tool uses the generated output from the first. The script performs the following
steps:

« Check if any dependents must be processed, if none then exit.

- If dependents require processing then submit the current batch precedent change set.

« For each dependent type, process the recalculations using the specified number of threads.
- Finally, complete the precedent change set.

Running the Step:

To run this step, simply execute the command 'ant -f DependencyManagerBatchBase.xml'.
Output:

If no dependents required processing, a message will be output stating this and the script will exit.
Otherwise, an individual log file is written to the Logs folder for each batch process / thread executed.

Financial

GeneratelnstructionLineItems

This batch process is provided to create instruction line items for all financial components that are due for
processing. The input parameters for this process identify the Financial Components that are due for
processing.

This batch process performs the following:

« Where one date is specified for "Date From" and "Date To", all Financial Components with a processing
date earlier than this date are retrieved. Where no date is specified, the current system date is used.

« Similarly, where no delivery method is specified, all delivery methods are processed.

 Using the "Date To", this process checks the Financial Calendar to determine if there are subsequent
days that should be included in the current processing of Financial Components.

« This process retrieves all Financial Components due for processing and groups each financial
component by case.

« This process reassesses each case to determine if a change in circumstance may have changed
Financial eligibility.

Administering operations for a production system 15

 For each remaining Financial Component, the amount and cover period is calculated and an instruction
line item is created.

- This process rolls forward the processing date of the financial component and where this causes the
financial component to logically reach the end of its lifetime, the financial component is expired.

This batch process takes the following parameters:

- Batch Process Instance ID -unique identifier used to allow multiple instances of the same batch
process to run at the same time effectively

For example, this process can run for multiple delivery methods. Where no instance ID is specified, only
one instance of the batch process can run.

- Date From - start date for identifying Financial Components to include for processing
- Date To - end date for identifying Financial Components to include for processing

« Delivery Method - method of delivery to be used for identifying Financial Components to include for
processing

Batch Process Class and Method: The class and method for this batch process is
curam.core .intf.GenerateInstructionLineItems.processAllFinancialComponentsDue.

Note: This batch process should run to completion before attempting to run GenerateInstruments.

GeneratelnstructionLineItemsStream

This batch process is provided to support streaming for the Generate Instruction Line Items
process. This batch process can only be run in conjunction with the Generate Instruction Line
Items process. Streaming for batch processes is designed to allow for concurrent execution, possibly on
different machines, of batch programs to ensure that the database is used to its full capacity.

This batch process takes the parameter, Batch Process Instance ID.Theinstance ID is a unique
identifier used to allow multiple instances of the same batch process to run at the same time effectively.
Where no instance ID is specified, only one instance of the batch process can run.

Streaming Multiple Instances of Generate Instruction Line Items: Multiple instances of the Generate
Instruction Line Items batch process can be run concurrently, by giving each instance a different
Batch Process Instance ID.To starta stream for a particularinstance of the Generate
Instruction Line Items batch process, you must link the Generation Instruction Line
Items Stream batch process (or multiple stream batch processes) to the particular batch process
instance using the Batch Process Instance ID parameter. For example, where the Batch Process
Instance IDis"generate_instruction_line_items_1" for an instance of the Generate Instruction
Line Items batch process, you must also set the Batch Process Instance ID parameter forthe
Generate Instruction Line Items Stream batch process (or multiple stream batch processes) to
be "generate_instruction_line_items_1". Any number of Generate Instruction Line Items
Stream batch processes can be linked to the same instance of the Generate Instruction Line
Items batch process.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.GenerateInstructionLineItemsStream.process.

Generatelnstruments
This batch process performs the following:

« Identifies Instruction Line Items that are to be processed
« Rolls up Instruction Line Items into Instructions
« Creates an Instrument (where appropriate)

This batch process takes the parameter, Batch Process Instance ID.Theinstance ID is a unique
identifier used to allow multiple instances of the same batch process to run at the same time effectively.
Where no instance ID is specified, only one instance of the batch process can run.

16 IBM Curam Social Program Management: Cdram Operations Guide

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.GenerateInstruments.processInstructionLineItemsDue.

Note: This process should run after the completion of the GenerateInstructionLineItems and
before the IssueConcernPayments process.

GeneratelnstrumentsStream

This batch process is provided to support streaming for the Generate Instruments process. This
batch process can only be run in conjunction with the Generate Instruments process. Streaming for
batch processes is designed to allow for concurrent execution, possibly on different machines, of batch
programs to ensure that the database is used to its full capacity.

This batch process takes the parameter, Batch Process Instance ID.Theinstance ID is a unique
identifier used to allow multiple instances of the same batch process to run at the same time effectively.
Where no instance ID is specified, only one instance of the batch process can run.

Streaming Multiple Instances of Generate Instruments: Multiple instances of the Generate
Instruments batch process can be run concurrently, by giving each instance a different Batch
Process Instance ID.To starta stream for a particular instance of the Generate Instruments
batch process, you must link the Generation Instruments Stream batch process (or multiple
stream batch processes) to the particular batch process instance using the Batch Process Instance
ID parameter. For example, where the Batch Process Instance IDis "generate_instruments_1" for
an instance of the Generate Instruments batch process, you must also set the Batch Process
Instance ID parameter forthe Generate Instruments Stream batch process (or multiple stream
batch processes) to be "generate_instruments_1". Any number of Generate Instruments Stream
batch processes can be linked to the same instance of the Generate Instruments batch process.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.GenerateInstrumentsStream.process.

IssueConcernPayments
This batch process performs the following:

« Identifies Utility, Service Supplier, or Product Providers concerns that may be due for payment based on
the details specified on input

- Retrieves any outstanding payment instructions for each concern and rolls these into one payment
instrument for issue to the concern

« Updates the next payment date for the concern
This batch process takes the following parameters:

- Date From - start of the date range for which Concern Payments are to be processed
- Date To - end of the date range for which Concern Payments are to be processed

- Method 0f Payment - method of delivery to be used for identifying Financial Components to include
for processing

Where this is not specified, all methods of payments are processed.

- Concern Type - one or either Utility, Service Supplier, or Product Provider, where the batch process is
to be run for one concern type only

Where this is not specified, it is run for the three concern types.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.IssueConcernPayments.issueConcernTypePayment.

Note: This process should run after the completion of the GenerateInstruments and before the
GeneratePayslips process.

GeneratePayslips

This batch process performs the following:

Administering operations for a production system 17

Le

« Finds Payslips that have not yet been issued
- Retrieves the necessary data to output information in a readable format
« Updates the status of the Payslip to "Issued"

This batch process is a sample implementation to demonstrate that Payslips can be generated from
Curam. The output data (which currently generates one output file per recipient type) is not the definitive
implementation for this batch process. For example, a customized implementation may provide one
output file per recipient.

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.GeneratePayslips.generateNewPayslips.

Note: This process should run after the completion of the IssueConcernPayments process.

LoadServiceSupplierReturns

Service supplier returns can be stored in an input file. This batch process loads the service supplier
returns from the input file.

This batch process takes the parameter, File Name . This is the directory where the input file resides.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.LoadServiceSupplierReturns.loadSupplierReturns.

ElectronicEmployerReturn

This batch process transfers the contribution return details received from an employer in electronic
format.

This batch process takes the following parameters:

« File Path - directory where the electronic file resides

- File Name - full name of the electronic file, including extension, that contains the contribution return
details

When run, this batch process looks for the fileName specified in the £ilePath specified.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ElectronicEmployerReturn.capture.

(deprecated) ConsolidationProcess

This batch process consolidates the insurance line items for a person concern. To do this, the batch
process performs the following:

« Locates all of a person concern's insurance line items

« Groups together all of the line items within the same insurance return period, with the same insurance
type, and of the same product type

« Totals up the number of insurance units for all insurance line items grouped together
This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ConsolidationProcess.batchConsolidation.

ProcessPaymentInstrumentTypes
This batch process performs the following:

- Retrieves payments that have not yet been issued

« Gathers the necessary data for payment not yet issued and outputs this to a file used to interface to an
external system

18 IBM Curam Social Program Management: Cdram Operations Guide

« Updates the status of the payment to indicate that it has been issued

This batch process takes the parameter, Delivery Method. This is the method of delivery to be used
for identifying un-issued payments. Where this is not specified, all methods of payment are processed.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ProcessPaymentInstrumentTypes.processPmtInstrumentType.

Note: This batch process is a sample implementation to demonstrate how the application may interface
with payment processing systems. It may be run only for un-issued payments. Where the delivery method
is specified, all un-issued payments for that delivery method are processed; if the delivery method is not
specified, all un-issued payments are processed.

ExpirePayments
This batch process performs the following:

« Retrieves all payment instruments based on the delivery method specified on input, whose effective
date is on or before the current date minus the expiry period

« Sets the status to expired for each of these payment instruments and outputs a record to the log file

This log file may be used to communicate to the appropriate financial institution that the payments are
not to be encashed.

This batch process takes the following parameters:

e Expiry Period - number of days which constitutes the expiry period
« Delivery Method - method of delivery to be used for identifying Payments that are due for expiry

Where this is not specified, all methods of payment are processed.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ExpirePayments.expirePaymentInstrument.

PaymentReconciliation.

This batch process reconciles an account by comparing what was due to be paid with what was actually
paid. Any discrepancies found in this comparison are generated in a report.

This batch process takes the following parameters:

« File Path - directory where the output file resides
- File Name - full name of the output file, including extension, that contains the details of the payments

When run, this batch process looks for the fileName specified in the £ilePath specified.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.PaymentReconciliation.reconcilePayments.

ReconcileCaseAccount
This batch process performs the following:

» Reconciles all liability cases on which an underpayment has been applied
« Reconciles all liability cases on which an overpayment has been applied

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ReconcileCaseAccount.reconcileCaseAccount.

Workflow

Administering operations for a production system 19

ScanTaskDeadlines

The processing performed by this batch process may also be accomplished by that invoked in the
ProcessTaskDeadlines and ProcessTaskDeadlinesStream batch processes. This batch process
performs the following:

» Searches for overdue tasks, i.e., tasks with a due date and time in the past

- If a deadline handler function has been specified in the associated workflow process definition for the
deadline, then this handler is invoked.

« Otherwise, if the complete activity indicator has been set to true, then the workflow engine completes
the activity associated with the deadline and progresses the workflow.

- The deadline that has been processed is removed to ensure it is not processed again.
« The data associated with the Context_Deadline workflow data object attribute is persisted.

- Ifthere is a task associated with the deadline that has expired, a task history record is written detailing
this fact.

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.facade.intf.ScanTaskDeadlines.scanDeadlines.

Note: When executing this batch process from the command line the batch.username command line
parameter must be supplied, and must refer to a valid user with appropriate privileges.

ProcessTaskDeadlines
This batch process performs the following:

« Searches for overdue tasks, i.e., tasks with a due date and time in the past

- If a deadline handler function has been specified in the associated workflow process definition for the
deadline, then this handler is invoked.

« Otherwise, if the complete activity indicator has been set to true, then the workflow engine completes
the activity associated with the deadline and progresses the workflow.

- The deadline that has been processed is removed to ensure it is not processed again.
« The data associated with the Context_Deadline workflow data object attribute is persisted.

- Ifthere is a task associated with the deadline that has expired, a task history record is written detailing
this fact.
This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.facade.intf.ProcessTaskDeadlines.process.

Note: When executing this batch process from the command line the batch.username command line
parameter must be supplied, and must refer to a valid user with appropriate privileges.

ProcessTaskDeadlinesStream
This batch process is provided to support streaming for the ProcessTaskDeadlines process.

This batch process can only be run in conjunction with the ProcessTaskDeadlines process. Streaming
for batch processes is designed to allow for concurrent execution, possibly on different machines, of
batch programs to ensure that the database is used to its full capacity.

This batch process takes the parameter, Batch Process Instance ID.Theinstance ID is a unique
identifier used to allow multiple instances of the same batch process to run at the same time effectively.
Where no instance ID is specified, only one instance of the batch process can run.

Streaming Multiple Instances of Process Task Deadlines: Multiple instances of the Process Task
Deadlines batch process can be run concurrently, by giving each instance a different Batch Process
Instance ID. To startastream for a particular instance of the Process Task Deadlines batch
process, you must link the Process Task Deadlines Stream batch process (or multiple stream

20 IBM Curam Social Program Management: Cdram Operations Guide

batch processes) to the particular batch process instance using the Batch Process Instance ID
parameter. For example, where the Batch Process Instance IDis"process_task_deadlines_1" for
an instance of the Process Task Deadlines batch process, you must also set the Batch Process
Instance ID parameterforthe Process Task Deadlines Stream batch process (or multiple
stream batch processes) to be "process_task_deadlines_1". Any number of Process Task Deadlines
Stream batch processes can be linked to the same instance of the Process Task Deadlines batch
process.

Batch Process Class and Method: The class and method for this batch process is
curam.core.facade.intf.ProcessTaskDeadlinesStream.process.

RestartTask
This batch process performs the following:

- Searches for tasks that have a status of Deferred and whose restart date time has passed the current
date time.

« For each of those tasks, it sets the status to Open . It also sets the restart date time back to the zero
date time.

This batch process takes no parameters.

Batch Process Class and Method: The class and method for this batch process is
curam.core.facade.intf.RestartTask.restart.

ExpireWaitListEntry

When a client is added to a wait list for a resource, an expiry date can be specified. The expiry date could
be entered by the user, or created by the system. This batch process is used to expire a wait list entry if
the client is neither allocated a resource nor removed from the list before the expiry date is reached. The
process expires the Wait List entry if the Wait List expiry date is on or before the batch processing date,
and if the Wait List entry is in the 'Open’ state. If the Wait List requires the renumbering, then the system
renumbers the Wait List by decrementing by 1 the position of all the Wait List entries in an 'Open' state,
and with positions higher than or equal to the position of the expired entry. After the Wait List Entry is
expired, the process raises a workflow event 'WAITLIST. WAITLISTENTRYEXPIRED'. It is expected that
this batch process would be scheduled to run daily.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.ExpireWaitListEntry.expireWaitListEntry.

WaitListReview

This batch process is used to raise a workflow event "WAITLIST. WAITLISTENTRYSELECTEDFORREVIEW'
to generate wait list review tasks for all the eligible wait list entries that are due for review. The eligible
wait list entries are all the wait list entries with review dates on or before the batch processing date. If
there is no review date set, then it is derived by subtracting the configured status review reminder period
from its expiry date. The status review reminder period is configured by the system administrator using
the 'curam.waitlist.statusreviewreminderperiod' property. For example, if the Wait List review date is on
the 30th and the status review reminder period is set as 5, then the batch process 'WaitListReview' raises
the workflow event to generate the wait list review task on the 25th. For successful generation of the
review tasks, the property 'curam.batchlauncher.dbtojms.enabled’ should be set to true and appropriate
values must be defined for 'curam.batchlauncher.dbtojms.notification.host' and
‘curam.batchlauncher.dbtojms.notification.port' properties. These properties are configured by the
system administrator. The batch process would be scheduled to run daily.

Batch Process Class and Method: The class and method for this batch process is
curam.core.sl.intf.WaitlListReview.processWaitlListEntriesDueForReview.

Input Interfaces

Administering operations for a production system 21

LoadPaymentsReceived
This batch process performs the following:

- Validates the data for each record in the input file, PaymentReceivedFile. txt

- Loads the payment received record onto a concern's account where a concern is identified; otherwise,
loads the payment received record into a suspense account

- Maintains a set of control totals and compares these to the control total record at the end of the input
file

« Rolls back all processing if the running totals do not match the data from the input file

This batch process takes the following parameters:

« File Path - directory where the input file resides

« File Name - full name of the input file, including extension, that contains the details of the payments
received.

When run, this batch process looks for the £ileName specified in the £ilePath specified.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.LoadPaymentsReceived.loadPaymentReceivedFile.

Output Interfaces

Calendar Export
This batch process performs the following:

« Uses the parameters to gather calendar activities
« Exports the activities from the application into an output file in vCalendar format.

This output file can then be imported into an external calendar.

Parameter Requirements: In order for this batch process to run, it is required that you enter either the
User Name parameter, the Organization ID parameter, or boththe Start Date and End Date
parameters.

This batch process takes the following parameters:

« Export File Path - directory where the output file resides
« User Name - name of the user whose activities are exported

If this parameter is set, the batch process exports only the activities of the specified user.
- Organization ID -unique identifier for the organization whose activities are exported

If this parameter is set, the batch process exports the activities of the organization.
- Start Date - start date of the date range for activities to be exported to an output file
« End Date - end date of the date range for activities to be exported to an output file

In order for the batch process to export activities for a specified date range, both the Start Date and
End Date parameter must be set.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.CalendarExport.exportActivityDetails.

Generate Ledger Interface

This gathers financial transactions for a specified date, or date range, and exports them from the
application into an output file. The output file contains details of Instruction Line Items for the specified
date or date range. This output file can then be imported into the General Ledger.

This batch process takes the following parameters:

- Date From - start of the date range for financial transactions to be exported to an output file

22 IBM Curam Social Program Management: Cdram Operations Guide

If DateFrom is found to be a null date, i.e., not specified by a user, an error is thrown and the batch
process will not succeed.

- Date To - end date of the date range for financial transactions to be exported to an output file

If DateTo is found to be a null date, i.e., not specified by a user, an error is thrown and the batch process
will not succeed.

« Creation Date Search Indicator - indicates whether the extract is based on creation date or
effective date

If this indicator is set to true, a creation date range search is performed; otherwise, an effective date
range search is performed.

Batch Process Class and Method: The class and method for this batch process is
curam.core.intf.GeneralledgerInterface.exportFinancialDetails.

Curam Configuration Settings

Introduction

This chapter describes the configuration settings for the

« Curam XML Server
« Curam Server Application

The properties listed in this Chapter are the complete set of properties for the entire Ciiram Business
Application Suite. Hence not all properties listed here will be relevant to your application.

Curam XML Server

The XMLSexver subdirectory of your installation directory contains the configuration file
xmlserverconfig.xml.

See the Curam XML Infrastructure Guide for details of the configuration settings in this file.

Curam Server Application

Managing Configuration Settings

When the database is built, the Application.prx file is used to set up the initial configuration settings on
the database. Once the database is built, all settings can be administered online as part of application
administration (see the Ciram System Configuration guide).

Configuration settings can either be dynamic or static. Any changes made to dynamic configuration
settings are automatically applied to the runtime application once these changes are published at
runtime. Any changes made to static configuration settings will require a reboot to the system in order for
these settings to be applied to the runtime application.

Publishing Configuration Settings: New configuration setting information will not take effect until you
publish these changes or reboot. To publish these changes, press Publish on the Properties page.

Changing configuration settings
To change configuration settings for the Cliram Server Application, you must follow these steps:
1. Log on to the application using your username and password.

Note: "Out of the box", the application provides a default administration username of "sysadmin" with
a password "password".

2. The home page is displayed. Click on the System Configurations section.
3. Click on the Application Data - Property Administration link in the ShortCuts panel.

Administering operations for a production system 23

4. The Properties Administration page is displayed with an option to filter the search by locale or
category.

. Select the appropriate filter and Click the Search button.
. On the required property, click on Edit action.

. The Edit Property page for the property is displayed.

. Make the necessary changes to the property.

O 00 g o O

. Press Save to save your changes.
10. The system records the new information.

Note: For more information on the Properties Administration area of the Ciiram Admin Client, see the
Curam System Administration guide.

Available Configuration Settings
The Curam Server Application is made up of these logical components:

« Curam Server Infrastructure
« Core Curam Server Application
« Customized Cldram Server Application

Application.pxx lists the settings used by each of these components.

Curam Server Infrastructure Configuration Settings

The settings for the Cdram Server Infrastructure are described in the Ciram Server Developer's
Guide.

Customized Curam Server Application

Please contact your development team for details of settings required by any customizations of the core
Curam Server Application.

Monitoring Cliram processes

Use the following Cliram views to monitor and troubleshoot problems with process instances and to see
process instance errors.

About this task

Use these views to see workflow processes and see specific errors in workflow and deferred processes.
Plan to monitor the information in the following locations regularly for potential errors or exceptions. You
can troubleshoot problems by steps such as suspending process instances or overriding event waits, or by
retrying or aborting failed workflow process instances.

Monitoring Workflow process instances

Use the Process Instances view to see the status of each workflow process instance. By searching and
filtering, you can see the current process instances and their status. Generally, the complete orin-
progress processes are of most interest.

About this task
For troubleshooting, you have the following options:

« You can suspend a process instance that is in progress. You must resume the process instance before
any further activities can run.

« You can stop a process instance that is in progress. Once aborted, a process instance cannot be
resumed.

24 IBM Curam Social Program Management: Cdram Operations Guide

- All activities that wait for events to be raised have a failure mode where the event they are waiting on is
raised before the activity runs. To progress such process instances, you can override the event wait.

Procedure

1. Log in as the admin user.
2. Select Administration Workspace > Process Monitoring > Process Instances
3. Use the search and filtering options to see the current workflow processes on the system.

Process Instance Errors

The Workflow Engine records information about errors that occur during the lifetime of a workflow
process instance. You can use this information for troubleshooting problems with the process instance.

This troubleshooting includes retrying or aborting failed workflow process instances.

Retrying a failed process instance instructs the Workflow Engine to re-enact the workflow process
instance from where it failed.

Aborting stops the process instance and its activities and closes any tasks that are associated with
manual activities in the process instance. Depending on where the process was aborted, some manual
steps might be required before the process is fully stopped.

Monitoring Process Instance Errors
Use the Process Instance Errors view to find Workflow process or Deferred Process errors.

About this task

Plan to monitor the Process Instance Errors view regularly for potential operational errors or exceptions.
You can abort or retry failed workflow process instances.

Procedure

1. Log in as the admin user.

2. Select Administration Workspace > Process Monitoring > Process Instance Errors
3. Use the search and filtering options to find process instance errors.

4. Click the error details for more information.

Administering operations for a production system 25

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

26 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 27

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

28 IBM Curam Social Program Management: Cdram Operations Guide

Part Number:

(1P) P/N

	Contents
	List of Tables
	Chapter 1. Administering operations for a production system
	Advanced Setup
	Overview
	Storing XSL Templates for Use in the Application
	Creating the Production Database in the Application
	Data Conversion Issues
	Creating Your Organization in the Application

	Running the Cúram Online System
	Overview
	Starting the System
	Cúram XML Server
	Cúram Server Application

	Stopping the System
	Cúram Server Application
	Cúram XML Server

	System Logs
	IBM WebSphere Application Server
	Oracle WebLogic Server

	Running Batch Processes in the Application
	Overview
	Overview of Batch Process Facilities
	The Batch Launcher
	Batch Process Requests
	Running the Batch Launcher
	Cúram XML Server
	Configuring the Online Interface of Batch Processes
	Maintaining the Batch Process List
	Viewing the List of Batch Processes
	Adding a New Batch Process to the List
	Updating a Batch Process Already in the List
	Removing a Batch Process from the List

	Maintaining Batch Process Groups
	Viewing the List of Batch Process Groups
	Adding a New Batch Group to the List
	Removing a Batch Process Group from the List
	Adding a Batch Process to a Group
	Removing a Batch Process from a Group
	Executing a Batch Process from a Group

	Running Stand-Alone Batch Processes
	Command Format
	Scheduling of Batch Processes
	System Logs

	Core Batch Processes
	Overview
	Batch Parameters and Processing Date
	Cúram Processing
	Case Management
	GenerateCommunications
	ProductDeliveryFinalClosure
	EvaluateCertificationGracePeriod
	DetermineProductDeliveryEligibility
	DetermineProductDeliveryEligibilityStream
	ReassessOutstandingCases
	FullPropagationToRuleObjects
	RateCreateInitialRuleObjects
	CREOLEBulkCaseChunkReassessmentByProduct
	CREOLEBulkCaseChunkReassessmentStream
	ApplyProductReassessmentStrategy
	Redetermine Translator

	Dependency Manager
	SubmitPrecedentChangeSet
	PerformBatchRecalculationsFromPrecedentChangeSet
	CompletePrecedentChangeSet
	Dependency Manager Batch Tooling

	Financial
	GenerateInstructionLineItems
	GenerateInstructionLineItemsStream
	GenerateInstruments
	GenerateInstrumentsStream
	IssueConcernPayments
	GeneratePayslips
	LoadServiceSupplierReturns
	ElectronicEmployerReturn
	(deprecated) ConsolidationProcess
	ProcessPaymentInstrumentTypes
	ExpirePayments
	PaymentReconciliation.
	ReconcileCaseAccount

	Workflow
	ScanTaskDeadlines
	ProcessTaskDeadlines
	ProcessTaskDeadlinesStream
	RestartTask
	ExpireWaitListEntry
	WaitListReview

	Input Interfaces
	LoadPaymentsReceived

	Output Interfaces
	Calendar Export
	Generate Ledger Interface

	Cúram Configuration Settings
	Introduction
	Cúram XML Server
	Cúram Server Application
	Managing Configuration Settings
	Changing configuration settings
	Available Configuration Settings
	Cúram Server Infrastructure Configuration Settings
	Customized Cúram Server Application

	Monitoring Cúram processes
	Monitoring Workflow process instances
	Process Instance Errors
	Monitoring Process Instance Errors

	Notices
	Privacy Policy considerations
	Trademarks

