
IBM Cúram Social Program Management
Version 7.0.3

Cúram XML Infrastructure Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
35

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

List of Figures... iv
List of Tables... v

Chapter 1. Developing with the Cúram XML Infrastructure......................................1
Representing Cúram data as XML..1
Developing for XML.. 1

The XMLDocument class.. 1
The XML Print Stream...6
Sample Usage...10
Load balancing and failover... 14

The XML server.. 14
The XML server architecture.. 15
Configuring the XML server.. 15
Starting the XML server..27
Overriding the default port...28
Overriding the default configuration..28
Overriding the Java thread stack size..28
Disable configuration file schema validation...29
Shutting down the XML server... 29
Statistics... 29

XML and XSL templates... 29
Cúram DTD..30
Examples.. 30
Job types and template types..31
XSL template example... 32
Generating templates from RTF documents... 33
Globalization considerations..33

Notices..35
Privacy Policy considerations.. 36
Trademarks.. 36

 iii

List of Figures

1. XML Processing Architecture.. 15

iv

List of Tables

1. XML Character Encoding Constants..3
2. The application prx settings for XMLPrintStream...6
3. Right-to-Left Supported Languages and Locale Codes..8
4. XMLPrintStream Job Types... 8
5. Configuration Options... 16
6. XML Server Command Tokens.. 19

 v

vi

Chapter 1. Developing with the Cúram XML
Infrastructure

Learn how to develop applications that use XML with the IBM Cúram Server Development Environment.
The XML Server can be used to convert XML data into various formatted document types and then
manipulate these documents for printing, e-mailing, and so on.
Related concepts
Cúram Server Developer
Cúram modeling reference

Representing Cúram data as XML
In IBM Cúram Social Program Management, a specific set of tags represents data that is generated from
the struct classes of an application at run time. These tags are contained in a supplied Document Type
Definition.

The IBM Cúram Social Program Management XML infrastructure is based on the Apache XML Project's
suite of Java XML libraries. The XML parser is Apache Xerces. Apache Xalan is used for XSL processing
and Apache Formatting Objects Processor (FOP) is used for PDF rendering. The Apache RTFLib (JFOR)
library is used for rendering documents in RTF format.

All XML is from struct classes that are defined in the application model. The IBM Cúram Social Program
Management XML definition uses tags to generically identify the parts of these model entities. So, the XML
includes tags for structs, fields, values, types, lists, and so on. These tags are described in an IBM Cúram
Social Program Management specific Document Type Definition (DTD).

Developers require knowledge of the XML format for XSL template development, although there can be
some cases in which developers might want to manipulate the XML directly.

Related reference
Cúram DTD
The following markup declaration is the DTD for Cúram XML. The DTD can be found in the /lib directory
of the SDEJ. The comments within the declaration describe each element.
Related information
Apache Software Foundation

Developing for XML
The two most important classes you need when adding XML functionality to your applications are
curam.util.xml.impl.XMLDocument and curam.util.xml.impl.XMLPrintStream. The classes
can be used together to generate XML and print documents.

The XMLDocument class
IBM Cúram Social Program Management XML data is generated according to the rules of a simple DTD.
The XMLDocument class is used to hold the generated XML and wraps the data in the necessary root
element. The XMLDocument class allows well-formed XML documents to be generated using struct
classes or lists of struct classes. Instances of XMLDocument can be created, saved, loaded, and written to
arbitrary output streams.

This class is central to all XML operations that you can perform in IBM Cúram Social Program
Management. Its interface can be found in the curam.util.xml.impl package within the supplied
SDEJ JavaDoc. In the rest of this section, you will learn how to use this interface to create XML documents
from your application data.

© Copyright IBM Corp. 2012, 2018 1

http://www.apache.org/

The use of the XMLDocument class follows the following broad pattern:

1. Create a new instance of the XMLDocument class.
2. Open the XML document to create the root element and provide a context for the XML data that you

want to create.
3. Add a struct class (or struct classes) to the open XML document to create the XML data.
4. Close the XML document to complete the root element.

XML documents
A number of operations can be performed on XML documents.

• A document can be created and stored in memory. This document can then be stored in the database,
or written to a stream, or both.

• A document can be created and written to a stream directly to reduce storage requirements. This is
particularly useful for very large documents that do not require an archived copy.

• A previously archived document can be retrieved from the database and written to a stream.

As streams are flexible, there are many things you can do with them.

• You can use a stream to save the XML data to a file.
• You can use the XMLPrintStream class to request that a document should be printed.
• You can use a stream to transfer information over a network via a socket connection.
• You can use a java.io.BufferedOutputStream to buffer all the XML data.
• You can create your own stream classes (or use any of the standard stream classes) to do just about

anything you want with the XML data!

Encoding
You must ensure that the character encoding scheme used for your data is specified for the XML
document.

All XML data are represented in plain-text. A small number of characters have a particular meaning to XML
("<", ">", "'", "", "&") and if these occur in your data they are automatically converted to their
corresponding XML character entities to avoid problems. However, if you use characters outside the
normal US-ASCII range (characters 0-127), even plain-text becomes ambiguous. For example, in Western
Europe, you might typically store your data using the ISO-8859-1 character set also known as "Latin 1".
In this character set, the character "ë" (e-umlaut) is character number 235. However if you sent this XML
data to a person in Greece who would typically use the ISO-8859-7 (Greek) character set, the same
character 235 would appear as the lower-case Greek letter lambda.

To avoid this problem, XML allows the character encoding used for a document to be stated in the XML
processing instruction found at the top of all XML documents. Now, when you create your document you
can explicitly state that you want to use ISO-8859-1 for your data because that is the form in which it is
stored in your database. When you send the file to Greece, the person there knows not to use the
ISO-8859-7 character set to interpret the data but ISO-8859-1 instead. In general, this will be handled
by their XML parsing software which will read the encoding information from the document.

By default, XML uses an encoding scheme known as UTF-8. This modified Unicode scheme creates a
document that uses two bytes to represent characters greater than 127. However, you will need to set the
encoding explicitly if the data stored in your database uses a different encoding scheme.

IBM Cúram Social Program Management XML provides a range of constants for the common encoding
schemes. The available schemes are shown in “Encoding” on page 2 below.

2 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 1: XML Character Encoding Constants

Constant Alternative Constant Encoding Scheme

kEncodeUTF8 UTF-8

kEncodeISO10646UCS2 ISO-10646-UCS-2

kEncodeISO10646UCS4 ISO-10646-UCS-4

kEncodeISO88591 kEncodeISOLATIN1 ISO-8859-1

kEncodeISO88592 kEncodeISOLATIN2 ISO-8859-2

kEncodeISO88593 kEncodeISOLATIN3 ISO-8859-3

kEncodeISO88594 kEncodeISOLATIN4 ISO-8859-4

kEncodeISO88595 kEncodeISOCYRILLIC ISO-8859-5

kEncodeISO88596 kEncodeISOARABIC ISO-8859-6

kEncodeISO88597 kEncodeISOGREEK ISO-8859-7

kEncodeISO88598 kEncodeISOHEBREW ISO-8859-8

kEncodeISO88599 kEncodeISOLATIN5 ISO-8859-9

kEncodeISO885910 kEncodeISOLATIN6 ISO-8859-10

kEncodeISO885913 kEncodeISOLATIN7 ISO-8859-13

kEncodeISO885914 kEncodeISOLATIN8 ISO-8859-14

kEncodeISO885915 kEncodeISOLATIN9 ISO-8859-15

kEncodeISO2022JP ISO-2022-JP

kEncodeSHIFTJIS Shift_JIS

kEncodeEUCJP EUC-JP

The relevant constant should be specified when constructing a new XMLDocument in order to set the
encoding scheme as appropriate for the XML document. This encoding will be used for the XML document
declaration as well as for the XML document itself. If loading an XML document from the database, the
encoding of that document should match the encoding used to construct the XMLDocument class. If you
supply no value, no encoding scheme will be specified in the XML and XML parsers will thus assume
UTF-8 according to the XML standard. If the encoding scheme you wish to use is not among those listed,
you may supply a string containing the encoding value you wish to use.

All of the encoding constants are within the XMLEncodingConstants interface. To use, for example, the
Latin 1 set, you would use XMLEncodingConstants. kEncodeISOLATIN1 or
XMLEncodingConstants. kEncodeISO88591.

Developing with the Cúram XML Infrastructure 3

Creating an XMLDocument
As XML data is created, it is written to a stream. By default, an instance of the XMLDocument class
maintains an internal stream that holds the XML data.

By allowing the document to store the data in this stream, you can then save the document to the
database or write it to another stream, if you require. If you do not want to save the document, you can
specify an alternative stream where the XML data can be written as it is created. This can help to reduce
memory overhead if the data stream is large. For example, data for a large report may not need to be
stored in the database. This data can be generated and processed on-the-fly without any intermediate
storage. The following code is the XMLDocument Constructor:

XMLDocument(String encoding);
XMLDocument(OutputStream stream, String encoding);

Both constructors take a parameter to set the character encoding. You can set the encoding value using
one of the encoding constants or an encoding string of your own choosing.

The first constructor is used when you want the XML document to use its internal string buffer to store the
XML data. This allows you to save the document to the database later or to write to another stream once it
is complete. If you intend to load an XML document from the database, you should also use this
constructor. In that event, the encoding string is irrelevant.

The second constructor allows you to specify an output stream that the document should be written to as
it is created. This precludes the possibility of storing the document in the database once it is complete.
However, for large documents that do not need to be stored but rather printed, saved to a file, or
transferred over a network, this is a more efficient method that the first. For streams such as file and print
streams that are required to be explicitly opened, it is important that the stream passed to this
constructor is already open as the document will expect to be able to write to it immediately.

Opening an XMLDocument object
Once you have instantiated an XMLDocument object, you need to open it in one of two ways.

open(String generatedBy, String generatedDate, String version,
 String comment);
openForList(String generatedBy, String generatedDate,
 String version, String comment);

If you want to write the details of a single struct class to the XML document, you must open the document
with the open() method. If you want to write the details of several different struct classes of the same
type to the document, you must open the document with the openForList() method. This latter
method allows you to create a document that contains a list of struct classes where each one is added in
turn. All the struct classes must be of the same type. The former method allows you to add only a single
struct class to the document before closing it. This single struct class can, however, contain fields that are
lists of struct classes.

Both of the open methods take several parameters that can be used to set meta-data for the document.
You can include the name of the entity that generated the document, the date and time on which it was
generated, the version of the document, and any other comments you wish to associate with the
document. Each parameter is a string and you can use any length of data formatted in any way you wish.
You must, however, respect the requirement of XML that certain characters be converted to character
entities. If your strings contain any of the following characters: "'", "", "<", ">", or "&", you must convert
them to their character entity values. This can be done by calling the XMLDocument. escape() method.
The method takes a string parameter and returns a new string with the character entity conversions done
for you.

Once opened, you can begin adding struct classes to your XML document.

4 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Adding data to an XMLDocument object
The add() method of the XMLDocument class can be used to produce XML data from an instance of a
struct class.

add(Object value);
addFromXML(String xmlFragment);

For documents opened with the open() method, you may only issue a single call to add() before closing
your document. For documents opened with openForList(), you may use several calls to add() but
should ensure that you only add instances of the same struct class type.

addFromXML() is a convenience method allowing an XML fragment to be directly added to the document,
rather than using the struct class. It is the responsibility of the caller to ensure this fragment respects the
DTD.

Closing an XMLDocument object
Once you have finished adding data to an XML document, you need to close it.

close();

The close method of the XMLDocument class takes no parameters. Calling the close method will not
close the output stream you specified as a parameter to the XML document. You must close this stream
separately.

Once closed, a document will write all remaining XML information to the stream to complete a well
formed XML document. If the document object is using an internal string stream buffer, you may save the
document to the database or write it to another stream.

Saving an XMLDocument object
Once closed, any XML document you created to write to the default internal string stream buffer can be
saved to the database.

save(String name, XSLTemplateInstanceKey templateKey);

Saving to the database is useful if you want to print information yet keep a record of what was printed. As
information in the database may change, it will not always be possible to simply print out the same form,
letter, etc., and expect it to contain the same data as before. Using the XML document archive, however,
you are guaranteed that the data will be identical as it represents a snapshot of the values at a particular
point in time.

Each document can be saved along with the details of an associated template. This allows any print job,
for example, to be rerun in the future with the same data and the same version of the template. The save
method takes two input parameters and has one return value. The input parameters allow you to specify a
name for this saved document. This can be any string-type information that you want. The maximum
length is 100 characters. The second parameter is the template instance (version of a template) that you
want to associate with this document.

The return value is the key value of the new archived document record that will be created to hold the
XML data. This key value can be stored elsewhere to keep track of what documents are available. For
example, if you print a letter to send to a client, you could associate this key with a diary entry recording
the sending of the letter. The letter could then be reprinted at any time in the future by accessing the key
stored with the diary entry.

Loading an XMLDocument object
To load an XML document from the document archive, you should first create a default XMLDocument
object.

load(XMLArchiveDocumentID key);

Developing with the Cúram XML Infrastructure 5

The load method takes one parameter which is the key to the archive document. The details returned
include the template information that you saved with the document such as its version and locale, and the
XML representation of the data in the document.

Once loaded, the XML document object can be treated like any other document object that was created,
opened, had data added and was closed.

The XML Print Stream
The XMLPrintStream class is a type of output stream that allows jobs to be submitted to the XML Server
for processing. Used in combination with the XMLDocument class and XSL templates, it allows XML data
to be formatted and printed. The XMLPrintStream can be configured on a per-server or per-job basis for
maximum flexibility. The XMLPrintStream class includes features for previewing documents that are
generated by the server.

For developers, the interface to the XML server that is included in the SDEJ is the XMLPrintStream
class. Using this class, you can to send print job requests to the IBM Cúram Social Program Management
XML Server.

Related concepts
The XML server
The product XML server is a Java application that processes jobs submitted by a client to produce a
formatted document. Each job requires an XML document generated by a IBM Cúram Social Program
Management server application and an XSL template. XSL template is applied to the XML to render it to
PDF, RTF, HTML, or plain text.

The XMLPrintStream class
The public interface to the XMLPrintStream class can be found in the curam.util.xml.impl package
within the SDEJ JavaDoc.

In use the following basic pattern will be followed:

1. Create a new instance of the XMLPrintStream class.
2. Set the various printing options.
3. Open the connection to the XML Server.
4. Write to the print stream object. (This will usually be done by an XMLDocument object).
5. Close the print stream object to initiate the print job.

The following subsections will look at these steps in detail, but first there are steps you can take to
configure default values for your print streams.

Default configuration for XMLPrintStream
When you submit a print job, you can use the XMLPrintStream class to set a number of options. The
options include the printer name, the paper tray name, the server host name, and the server port number.

Each of the options can be set in your project's properties. The values that are required are shown in the
following table. All values are entered as strings and are not converted to any other data type. You must
convert any special characters with a meaning in XML to character entities.

Table 2: The application prx settings for XMLPrintStream

Variable Name Description

curam.xmlserver.printer The name of the default printer to use for jobs that are submitted by
this application. On Microsoft Windows, this property might be, for
example, \\\\myhost\\printer1, or lpt1:.

curam.xmlserver.tray The name of the paper tray to use for jobs that are submitted by this
application.

6 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 2: The application prx settings for XMLPrintStream (continued)

Variable Name Description

curam.xmlserver.host The host on which the XML Print Server resides. To use multiple XML
Servers, you can specify this property as a '/' separated list of host
names.

curam.xmlserver.port The port on which the XML Print Server is listening. To use multiple
XML Servers, you can specify this property as a '/' separated list of
host names.

curam.xmlserver.fileenco
ding

The default encoding that is used for the encoding of files that are
provided to the XMLServer. You can override this value for individual
instances of XMLPrintStream by using the setEncoding method.
The default value for this property is UTF-8.

curam.xmlserver.
serializelocaleneutral

Specify that XML Server data is serialized in a locale-neutral way
instead of being based on the locale properties on the server.

When your application submits a print job, these values are used as the defaults for the job. You can use
the individual setter methods to override these defaults.

Creating an XMLPrintStream object
An XMLPrintStream object can be instantiated by providing the name of the host on which the XML
Server resides and the port on which the XML Server is listening. However, as documented in the Java
documentation, these properties are not used and it is recommended to use the empty constructor.

XMLPrintStream(String host, int port)
XMLPrintStream(final XMLServerEndPoint[] endpoints)
XMLPrintStream()

Configuring an XMLPrintStream object
Once instantiated, an XMLPrintStream object can be configured

setPrinterName(String name);
setPaperTray(String tray);
setUserName(String user);
setEmailAddress(String email);
setEncoding(String encoding);
setJobType(String job);

In “Default configuration for XMLPrintStream” on page 6 the default configuration was covered. You can
override the printer name and paper tray values using the setPrinterName and setPaperTray
methods respectively. In addition, you can also set a user name and an e-mail address for the print job.
The user name might be that of the user who initiated the print job, or any other user name you prefer to
use. The e-mail address, similarly, can be any e-mail address you want to associate with the job.

The encoding can also be set here. This encoding is used within the XMLServer for such purposes as
printing documents in the specific encoding. If the encoding is not explicitly set through the
setEncoding method, then the value will be taken from the curam.xmlserver.fileencoding
configuration property. If this property is not set, then the default encoding of UTF-8 will be used.

Note: It is important to set the encoding correctly when using XMLDocument and XMLPrintStream
classes together. For example, if you create an XMLDocument class with an encoding of UTF-8 and you
create the XMLPrintStream class setting the encoding to be US-ASCII, there may be some issues with
the document being printed. As US-ASCII contains a smaller character code set than UTF-8, some
characters may not be supported and therefore when printing the document, the resulting document may
contain unrecognizable characters. Therefore, if you wish to have the UTF-8 document printed correctly,

Developing with the Cúram XML Infrastructure 7

you should set the encoding of the XMLPrintStream instance to use UTF-8 encoding. Please see
“Encoding” on page 2 for further information on encoding.

All the parameters are strings and you must respect the requirement of XML that certain characters must
be replaced with character entities. You can use the XMLDocument. escape(String value) method
for this conversion.

Overriding the default values allows you, for example, to print a document to a printer nearest the current
user, rather than to a default printer.

By default, the XML Server will combine your XML data with an XSL template and attempt to render the
resulting document as a PDF document. The XML is transformed based on the template locale and for
Right-to-Left languages. These are the supported languages, which are specified by locale code:

Table 3: Right-to-Left Supported Languages and Locale Codes

Language Locale Code

Arabic ar

Farsi fa

Hebrew he

Hebrew iw

Yiddish ji

Yiddish yi

Pashto/Pushto ps

Urdu ur

Due to the limitations of FOP, you must have a supporting Right-to-Left implementation in the XML Server
configuration (e.g., see “RenderX configuration” on page 21). For this rendering step to work, the
combination of the XML data and XSL template should produce a document marked up using XSL
Formatting Objects. As an alternative to PDF output, you can specify RTF, HTML or plain text output using
the setJobType() method. This method can be used to specify any of the supported output formats
using the appropriate constant as shown in “Configuring an XMLPrintStream object” on page 7. All the
constants are within the XMLPrintStreamConstants class and should be prefixed with
XMLPrintStreamConstants in your code unless you have implemented this class as an interface.

Table 4: XMLPrintStream Job Types

Job Type Description

kJobTypePDF This is the default job type. The XML data will be combined with
the XSL template and the resulting document will be rendered as
a PDF document. The template should be developed to produce
a document marked up with XSL Formatting Objects. Temporary
files will be given the extension ".pdf".

8 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 4: XMLPrintStream Job Types (continued)

Job Type Description

kJobTypeRTF The XML data will be combined with the XSL template and the
resulting document will be rendered as an RTF document. The
template should be developed to produce a document marked
up with XSL Formatting Objects. Temporary files will be given the
extension ".rtf".

kJobTypeHtml The XML data will be combined with the XSL template and the
resulting document is assumed to be HTML. Appropriate
indentation will be applied automatically. The <xml> declaration
at the top of the file will be omitted. The template should be
developed to produce a document marked up with HTML.
Temporary files will be given the extension ".html".

kJobTypeText The XML data will be combined with the XSL template and the
resulting document is assumed to be plain text. The <xml>
declaration at the top of the file will be omitted. Temporary files
will be given the extension ".txt".

In addition to the predefined job types it is possible to define a custom job type. If a custom job type is to
be used the setJobType() method should be passed a string matching the new job type, where the job
type is defined in the XML Server configuration file. For more information on defining and implementing
custom job types consult “Custom configuration” on page 21.

Opening an XMLPrintStream object
Opening an XMLPrintStream object, establishes a connection with the chosen XML Server, sends the
job configuration information, and the XSL template. Once open, the XML data can be written to the
connection. In general, you will let an XMLDocument object write the data to the stream. All XML
documents must be accompanied with an XSL template to allow the data to be formatted.

open(XSLTemplateInstanceKey key);
open(String xslTemplate);
open(XSLTemplateInstanceKey key,
 String host,
 int port);
open(String xslTemplate,
 String host,
 int port);
open(XSLTemplateInstanceKey key,
 XMLServerEndPoint[] endpoints)
open(String xslTemplate,
 XMLServerEndPoint[] endpoints)

There are a number of open() methods. The main difference between these is that you can specify a key
to an XSL template in the database or provide the XSL template document directly in a string. Also, you
can provide the connection information for the XML Server (host and port) or alternatively leave these
values to be picked up from the curam.xmlserver.host and curam.xmlserver.port properties.

Once opened, you should immediately begin writing data to the connection. A long delay will cause a
time-out to occur and the connection will be lost.

Closing an XMLPrintStream object
Closing an XMLPrintStream object causes the print job to be started. Before closing the object, a well-
formed XML document must have been written to it. The close method takes no parameters.

close();

Developing with the Cúram XML Infrastructure 9

Print preview
You can preview your document before printing it.

setPreviewStream(OutputStream preview);

The XML Server takes an XML document and an XSL template and processes the two to produce another
document which could be in PDF, RTF, HTML, or plain text format. Normally, the XML Server will run a
further command to print, or otherwise process, the document. However, you can instead direct the XML
Server to return the document to your application server rather than process it further. This allows you to
preview the document before printing it or just store the document in the database for later retrieval.

To preview a document, you must specify a preview stream when configuring the print stream object.
After the XML Server has generated the PDF it will return it to the print stream object which will in turn
write it to the stream specified as a parameter to the setPreviewStream method. This stream could be
a simple string stream buffer or a file stream, whatever is required. If no stream is specified, the XML
Server will assume that a preview is not required.

Once the print stream object is closed, the preview stream will contain the document and the application
server can manipulate it in any way required. For example, it could be returned to the client application
and displayed in an appropriate viewer of some kind.

Note: If a preview stream has been specified, the XML Server will not print anything, nor will it create a
temporary file containing the document.

Sample Usage
This section presents some samples of the way the XMLDocument and XMLPrintStream objects can be
used together.

The samples included cover the following scenarios:

• Saving XML data to a file.
• Printing a simple XML document.
• Saving and loading XML documents using the archive.
• Previewing an XML print job's output.
• Building a document from a list.

Along with the code samples are suggestions of how they can be further developed and used.

All the methods are developed as methods of process stereotyped classes in the application model.

Saving XML Data to a file
This sample demonstrates how XML data can be created and written to a stream, in this case a file
stream. The function assumes that a file name and an instance of a struct class are passed as parameters.

This method demonstrates how to save XML data to a file using FileWriter.

import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import java.io.FileWriter;

public class XMLSample {

 void saveToFile1(String fname, MyStruct myStruct) {
 FileWriter myFile = new FileWriter(fname);

 XMLDocument myDoc =
 new XMLDocument(XMLEncodingConstants.kEncodeISOLATIN1);

 myDoc.open(A User, 31-Dec-2002, 1.0, Sample 1);
 myDoc.add(myStruct);
 myDoc.close();

 myFile.write(myDoc.toString());
 myFile.close();
 }
}

10 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Printing an XML document
This sample shows how the struct class used in the previous sample can be written to an
XMLPrintStream object to print the data. It is assumed that a template instance key is supplied to the
function and that the default configuration values will be used.

import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import
 curam.util.administration.struct.XSLTemplateInstanceKey;

public class XMLSample {

 void printDoc1(XSLTemplateInstanceKey tempKey,
 MyStruct myStruct) {

 XMLPrintStream myPrintStream = new XMLPrintStream();
 myPrintStream.open(tempKey, MyPC, 1234);
 myPrintStream.setEncoding(
 XMLEncodingConstants.kEncodeISOLATIN1);
 XMLDocument myDoc =
 new XMLDocument(myPrintStream.getStream(),
 XMLEncodingConstants.kEncodeISOLATIN1);

 myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
 myDoc.add(myStruct);
 myDoc.close();

 myPrintStream.close();
 }
}

Saving and loading XML documents
In this sample, two functions are presented. The first sample, which is based on the previous sample,
saves a document to the archive. The second sample retrieves the document and prints it again. The
direct streaming method cannot be used to create the document if it is to be saved.

import curam.util.administration.struct.XSLTemplateInstanceKey;
import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import curam.util.xml.struct.XMLArchiveDocumentID;
import curam.util.xml.struct.XMLArchiveDocDetails;

public class XMLSample {

 /*
 * Creates an XMLDocument and saves it to the database.
 */
 XMLArchiveDocumentID saveDoc(
 XSLTemplateInstanceKey tempKey, MyStruct myStruct) {

 XMLDocument myDoc = new XMLDocument(
 XMLEncodingConstants.kEncodeISOLATIN1);

 myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
 myDoc.add(myStruct);
 myDoc.close();

 // Save the document to the database.
 final XMLArchiveDocumentID docKey =
 myDoc.save("Sample Saved Document 1", tempKey);
 return docKey;
 }

 /*
 * Loads an XMLDocument from the database and prints it.
 */
 void loadDoc(XMLArchiveDocumentID docKey) {

 // First load the archived data for the document and get
 // its template details and data content.
 final XMLDocument docForLoading = new XMLDocument(
 XMLEncodingConstants.kEncodeISOLATIN1);
 final XMLArchiveDocDetails docDetails =
 docForLoading.load(docKey);

Developing with the Cúram XML Infrastructure 11

 final XSLTemplateInstanceKey tempKey =
 new XSLTemplateInstanceKey();
 tempKey.templateID = docDetails.templateID;
 tempKey.templateVersion = docDetails.templateVersion;
 tempKey.locale = docDetails.locale;

 final String xmlContent = docDetails.document;

 docForLoading.close();

 // Now use this information to reconstruct a new
 // XMLDocument and print it.
 final XMLPrintStream myPrintStream =
 new XMLPrintStream();
 myPrintStream.open(tempKey, MyPC, 1234);
 myPrintStream.setEncoding(
 XMLEncodingConstants.kEncodeISOLATIN1);
 XMLDocument docForPrinting = new XMLDocument(
 myPrintStream.getStream(),
 XMLEncodingConstants.kEncodeISOLATIN1);
 docForPrinting.addFromXML(xmlContent);
 myPrintStream.close();
 }

}

Previewing an XML print job
This sample demonstrates how you can process an XML print job and receive a preview of the data that
would have been printed for that XML document and XSL template.

import curam.util.administration.struct.XSLTemplateInstanceKey;
import curam.util.exception.AppException;
import curam.util.exception.DatabaseException;
import curam.util.exception.InformationalException;
import curam.util.internal.xml.impl.XMLPrintStreamConstants;
import curam.util.type.Blob;
import curam.util.xml.impl.XMLDocument;
import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLPrintStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class XMLServerTest {

 MyResult previewJob(
 final XSLTemplateInstanceKey tempKey,
 final MyStruct myStruct)
 throws DatabaseException, AppException,
 InformationalException, IOException {

 final XMLPrintStream myPrintStream =
 new XMLPrintStream();
 final ByteArrayOutputStream previewBuffer =
 new ByteArrayOutputStream();
 myPrintStream.setPreviewStream(previewBuffer);

 // Explicitly specify that a PDF document be created:
 myPrintStream.setJobType(
 XMLPrintStreamConstants.kJobTypePDF);

 myPrintStream.open(tempKey, MyPC, 1234);
 final XMLDocument myDoc =
 new XMLDocument(
 myPrintStream.getStream(),
 XMLEncodingConstants.kEncodeISOLATIN1);
 myDoc.open("A User", "31-Dec-1999", "1.0", "Sample 1");
 myDoc.add(myStruct);
 myDoc.close();
 myPrintStream.close();

 // Now that we have created the PDF document the
 // following code illustrates three things that
 // can be done with it.

 // (1) Save the document to disk.
 final FileOutputStream previewFile =
 new FileOutputStream("/preview.pdf");

12 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

 previewBuffer.writeTo(previewFile);
 previewFile.close();

 // This class contains both a String and
 // a Blob for demonstration purposes.
 final MyResult result = new MyResult();

 // (2) Store the PDF preview in a String:
 result.previewDocString = previewBuffer.toString();

 // (3) Store the PDF document in a Blob:
 result.previewDocBlob =
 new curam.util.type.Blob(previewBuffer.toByteArray());

 return result;
 }

}

Having received the PDF preview of the data, this sample illustrates three ways in which the preview can
be used:

1. Save it to disk.
2. Store it in a String variable.
3. Store it in a Blob. This is recommended if the document is to be stored on the database.

This example used an java.io.ByteArrayOutputStream as a buffer to hold the generated PDF
document because this class was most suited to the three examples above. However any sub-class of
java.io.OutputStream can be used, depending on your needs. For example, a
java.io.FileOutputStream could be used if you wish to write the data to a file.

Building a document from a list
In the following samples, the use of list documents is demonstrated. Once an XML document built from a
list has been closed, it may be manipulated in the same manner as any other XML document.

The first sample shows how a vector of struct classes can be added to an XML document.

import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLDocument;

public class XMLSample {
 void listDoc1(MyStructList myStructList) {
 XMLDocument myDoc =
 new XMLDocument(XMLEncodingConstants.kEncodeISOLATIN1);

 myDoc.openForList("A User",
 "31-Dec-1999",
 "1.0",
 "Sample 1");

 myDoc.add(myStructList);
 myDoc.close();

 // The document may now be manipulated as before.
 }
}

In the second sample below, the list of struct classes is iterated over and only those elements whose
value field is greater than 100 are added to the document. You can, of course, apply any condition you like
to this basic pattern. In IBM Cúram Social Program Management, the list of a type called MyStruct is
called MyStructList, and the dtls field of the list is a java.util.Vector of the basic struct class type,
this is assumed below.

import curam.util.xml.impl.XMLEncodingConstants;
import curam.util.xml.impl.XMLDocument;

public class XMLSample {
 void listDoc2(MyStructList myStructList) {

 XMLDocument myDoc = new XMLDocument(
 XMLEncodingConstants.kEncodeISOLATIN1);

Developing with the Cúram XML Infrastructure 13

 myDoc.openForList("A User",
 "31-Dec-1999",
 "1.0",
 "Sample 1");

 for (int i = 0; i < myStructList.dtls.size(); i++) {
 if (myStructList.dtls.item(i).value > 100) {
 myDoc.add(myStructList.dtls.item(i));
 }
 }
 myDoc.close();

 // The document may now be manipulated as before.
}

Load balancing and failover
The XMLPrintStream supports load balancing and failover. Load balancing increases the capacity of the
XML Server by sharing the load among a number of replicated XML Servers and making them appear as
one large virtual server. Failover provides the capability to switch over automatically to a redundant XML
Server upon the failure or abnormal termination of the previously active XML Server.

Load balancing and failover are implemented in the XMLPrintStream, and XMLServerEndPoint
classes. An instance of the XMLServerEndPoint class contains the endpoint details such as server
name, port number, and a weight which dictates the percentage of requests that are directed to this
server. The open() method of the XMLPrintStream class can optionally take a list of
XMLServerEndPoints as parameter. The connection is performed to one of these endpoints based on
the weight that is attached to it as well as its availability.

Load balancing and failover can also be configured using the curam.xmlserver.host and
curam.xmlserver.port properties. The curam.xmlserver.host property specifies the names of the servers
that host the XML Server as a '/' separated list of host names. For example:

curam.xmlserver.host="server1/server2/server3"

The curam.xmlserver.port property specifies the ports the XML Server is running on as a '/' separated list
of entries in the following format: port[#weight], where the part in square brackets is optional and weight
is a number between 0 - 1. The weight dictates the percentage of requests that are directed to the
particular server and port. For example:

curam.xmlserver.port="1801#0.6/1802#0.2/1803#0.3"

There is a one to one mapping between the servers and ports specified. For example, server1 is running
the XML Server on port 1801 and server3 is running the XML Server on port 1803.

The XML server
The product XML server is a Java application that processes jobs submitted by a client to produce a
formatted document. Each job requires an XML document generated by a IBM Cúram Social Program
Management server application and an XSL template. XSL template is applied to the XML to render it to
PDF, RTF, HTML, or plain text.

TheIBM Cúram Social Program Management server application and the XML Server can be hosted on
different machines. Multiple XML servers can be run on the same host by specifying different port
numbers for each server. Each server can perform a different operation, but can only perform one
operation.

You can configure the server, for example, you can define default values for a printer name, printer tray, e-
mail address, and user name. The XML Server was primarily designed to support printing of XML
documents, however, you can also configure it to perform any required operation on the output document
including printing, e-mailing or displaying by specifying a command that should be run against the
document data. You can also customize the server , for example you can define implementations that
overwrite the default job types, or to define new job types. To improve performance you can use the

14 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

template cache for templates that are used regularly. In addition, there are debugging features available
to assist you in solving problems with templates or XML data.

(which are described in more detail in “IBM Cúram Social Program Management XML and XSL templates”
on page 29)

The XML server architecture
An application can read application data from a database and using
curam.util.xml.impl.XMLDocument and curam.util.xml.impl.XMLPrintStream can transmit
XML data to the XML Server. The XML Server processes the data and renders a document in any of a
number of formats. This document is then submitted to the system allowing arbitrary commands to be
executed on the document so that it can be printed, e-mailed, transferred, stored, etc. in any system-
specific way.

The following diagram shows how the XML Server fits into the architecture of a IBM Cúram Social Program
Management application:

Figure 1: XML Processing Architecture

The connection from XMLPrintStream to the XML Server is over a TCP/IP socket allowing the XML
Server to be located remotely. The XML Server is configured, at startup, to run a command on its host to
process the document.

The XML Server is fully threaded, allowing it to process multiple jobs simultaneously.

Configuring the XML server
The XML Server has a number of configuration options used to specify how it should work. All the options
are set in a configuration file written using XML notation. This file is picked up when the XML Server is
started and as such the configuration cannot be changed without stopping and starting the server.

There are a number of areas of the operation of the server that can be configured:

• Network
• Default Values
• Server Command
• Template Cache
• Debugging
• Apache log4j Logging
• RenderX Configuration
• Custom

Developing with the Cúram XML Infrastructure 15

Configuration options
The XML Server has a number of configuration options used to specify how it should work. All the options
are set in a configuration file written using XML notation.

. This file is picked up when the XML Server is started and as such the configuration cannot be changed
without stopping and starting the server. There are a number of areas of the operation of the server that
can be configured:

. All the configuration options are enclosed in an XML root element <XML_SERVER_CONFIG>. As with all
XML documents, you must ensure that the characters,, <, >, and & used in the values of your options in
the configuration file are replaced with their respective character entities: ', ", <, >, and
&.

Table 5: Configuration Options

Option Category Description

<SERVER_PORT> Network The TCP/IP port number that the XML Server
will use to listen for client connections.

<SO_TIMEOUT> Network A positive integer value specifying the timeout
(in milliseconds) on socket operations. If zero
value is specified then it will be interpreted as
an infinite timeout. If this option is not specified
a default value of 60000 milliseconds will be
used.

<DEFAULT_PRINTER> Default Values The name of the default printer. The format
used should be that required by the server
command.

<DEFAULT_TRAY> Default Values The name of the default printer tray. The format
used should be that required by the server
command.

<DEFAULT_USERNAME> Default Values The name of the default user. The format used
should be that required by the server command.

<DEFAULT_EMAIL> Default Values The default e-mail address. The format used
should be that required by the server command.

<SERVER_COMMAND> Server
Command

The command string to use to process the
document. If the command string is empty, no
processing will be attempted.

<USE_PIPE> Server
Command

Indicate that the output document from the
XML Server should be piped to the standard
input of the server command when it is
executed. One of USE_PIPE or USE_TMP_FILE
is required to betrue.

<USE_TMP_FILE> Server
Command

Indicate that the output document from the
XML Server should be written to a temporary
file before the server command is executed.
One of USE_PIPE or USE_TMP_FILE is
required to betrue.

16 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Table 5: Configuration Options (continued)

Option Category Description

<USE_STDOUT_SINK> Server
Command

Start a thread to read and discard any data
written to standard output by the server
command.

<USE_STDERR_SINK> Server
Command

Start a thread to read and discard any data
written to standard error by the server
command.

<TMP_DIRECTORY> Server
Command

Specifies the directory into which temporary
files containing the document data should be
written. Required only if USE_TMP_FILE
wastrue.

<TMP_FILE_ROOT> Server
Command

Specifies the root part of the file name to use to
create the temporary file. A sequence number
and the appropriate extension will be appended
to create the full file name. Required only if
USE_TMP_FILE wastrue.

<FOP_CONFIG_FILE> Server
Command

The name and location of a FOP configuration
file. This can be used to add additional fonts for
use when processing PDF files. Consult the
Apache FOP documentation for more
information.

<RENDERX_CONFIG_FILE> RenderX
Configuration

The name and location of a RenderX
configuration file. This is required to initiate the
RenderX rendering engine. RenderX can be
used as an alternative to Apache FOP. Consult
the RenderX documentation for more
information.

<RENDERX_LOGGING> RenderX
Configuration

Specifies how RenderX 's internal logging
should be configured. Consult the RenderX
documentation for more information.

<USE_TEMPLATE_CACHE> Template

Cache

Indicates that the template cache should be
used to avoid having to read templates each
time a job is submitted.

<TEMPLATE_CACHE_DIR> Template

Cache

The name of the directory in which to store the
cached template files. Required only if
USE_TEMPLATE_CACHE wastrue.

<CLEAR_TEMPLATE_CACHE> Template

Cache

When the server is started, this option will force
all files in the template cache directory to be
deleted.

<TRACE_TRAFFIC> Debug A debug option to echo all data received by the
server to the servers standard output.

Developing with the Cúram XML Infrastructure 17

Table 5: Configuration Options (continued)

Option Category Description

<STATISTICS_FOLDER> Debug This option will output statistics for the XML
Server in the folder specified by the option.

<THREAD_POOL_SIZE> Sizing The amount of threads in the pool.

<THREAD_POOL_QUEUE_SIZE> Sizing This can be tuned if needed so that requests are
held inside the XMLServer rather than out in the
TCP backlog queue. The process memory space
required for an accepted TCP/IP connection
should be taken into consideration when setting
this configuration parameter.

<JOBS> Custom The parent element of <JOB> children elements
which specify a job type for the XML Server.

<JOB> Custom Specifies a job type for the XML Server. Multiple
<JOB> elements can be defined, each detailing
a new job type and the implementing class.

Network configuration
There are two network settings that can be set on all XML Servers.

The TCP/IP port number on which to listen for connections. Clients of the XML Server connect to the host
on which the server is running and must specify which port should be used for communications. The
<SERVER_PORT> element is used to specify the port number. The number should be that of an available
port on the system. Generally, this means a port number between about 1000 and 32767. If the server is
started with a port that is already in use, this will be reported and you can select a different port.

A timeout value can be specified for network socket operations to ensure that the job threads are not
blocked indefinitely, while reading template files across the network and in the event of any network
problems. The <SO_TIMEOUT> element is used to specify the timeout value (in milliseconds). This option
allows a network socket operation to block for the time specified. If the timeout expires, a
java.net.SocketTimeoutException is raised, although the socket is still valid. A timeout value of zero is
interpreted as an infinite timeout. If this option is not specified, a default value of 60000 (i.e. one minute)
is used.

Default value configuration
There are a number of default values that can be specified for the server. These are the default printer
name, the default paper tray, the default e-mail address, and the default user name.

They are specified using the elements <DEFAULT_PRINTER>, <DEFAULT_TRAY>, <DEFAULT_EMAIL>,
<DEFAULT_USERNAME> respectively. The values can be anything you wish.

If a job submitted to the XML Server via an instance of the XMLPrintStream class includes these values,
the defaults will be overridden for that job.

Server command configuration
Once a job has been processed by the XML Server and providing the client did not request a preview, the
server will run its server command.

Note: The server command cannot be set per invocation, if multiple commands are required multiple XML
Server s must be used

The server command is a command that is sent to the system to manipulate the output document. Usually
this will involve printing or e-mailing the document, but there are no restrictions on what the command

18 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

can do other than those imposed by your system. No built in server commands are provided. The
command is free-form and is specified using the <SERVER_COMMAND> element.

The server command uses token substitution to pass parameters to the system. The tokens consist of a %
character followed by a letter (it is case-insensitive). Tokens that appear in the server command string are
substituted with the relevant value of the token just before the server command is executed for each job.
The tokens are listed in “Server command configuration” on page 18 below.

Table 6: XML Server Command Tokens

Token Meaning

%p The name of the printer is being set to either the default printer ID attribute on the
Users table (i.e. the user trying to print the document) or the default printer name as
specified in the XML server configuration.

%t The name of the paper tray as specified in the job configuration received from the
client, or the default paper tray as specified in the server configuration.

%u The name of the connecting user, or the default username specified in the server
configuration. This could be the application username that the user logged in as.

%e The e-mail address of the connecting user, or the default e-mail address specified in
the server configuration. This can be used if you want to e-mail the result of the XML
job back to the user. For example, you could configure a server to e-mail PDF to a
user as well as print the PostScript output. You could even use this to configure two
servers where one supplies e-mailed copies and the other generates hard-copies.

%f The name of the file where the document was saved. This will be a generated
temporary file name and will not include that path to the file. The file extension will
depend on the specified job type and will default to.pdf.

%d The directory where the temporary file is located. You may use a trailing directory
separator character and then specify %d%f or you can leave out the character and
use, for example, %d/%f. The XML Server will not insert one for you. Care should be
taken to use the correct separator character for your system.

%% If you want to use a % character in a command but not as a token, use %% instead.
The first % will be removed before invoking the command.

For example, if the server command is specified as:

mail -s 'Your Print Job' %e

the %e token will be replaced with the e-mail address specified for the job (or the default e-mail address if
none was supplied).

For more complex server commands it may be necessary to wrap the actual commands in a batch/script
files. This batch file is then executed via a server command such as:

<SomeLocation>/MyBatch.bat 'Your Print Job' %e

The server command tokens are not available in the batch file but are only replaced in the server
command specified in the server configuration file and must be passed into the batch program as normal
parameters.

The main consideration when writing a server command is to identify whether you want the output
document of the XML Server piped to your command or stored in a temporary file for your command to

Developing with the Cúram XML Infrastructure 19

process. This can be chosen by setting one of the mutually exclusive <USE_TMP_FILE> or <USE_PIPE>
elements in your configuration.

If you opt to use a temporary file. The document data will be written to the temporary file and then the
server command will be executed. The XML Server will not delete the temporary file for you. You should
have your server command do that if that is what you wish. The temporary file will be named using the
value of the TMP_FILE_ROOT element with a sequence number and the appropriate extension appended
according to the job type. For example, if the value was temp, and the job type was
XMLPrintStreamConstants. kJobTypePDF the first file generated by the XML Server would be
temp0.pdf, the next file temp1.pdf, etc. This is useful if you start several XML Server s that all share the
same temporary directory to avoid servers over-writing each others temporary files. The file will be
created in the directory specified by the <TMP_DIRECTORY> element in the configuration. This element
should contain an absolute path or a path relative to the directory in which the XML Server was started.
The directory name and the generated file name are made available to your command using the %d and
%f tokens respectively.

If you opt to use a pipe, your command will be executed and the XML Server will begin to write document
data to the standard input of the command. No temporary file will be created. There is, however, an issue
that must be resolved when using pipes: if the command write buffered data to standard error or standard
output that is not read by any process, once the buffer is full, the command may block. As no process will
ever read from the streams, the command will remain blocked indefinitely; in other words, it hangs. There
are two methods that can be employed to avoid this. The first is to ensure that all unused output from
your command is redirected to a device that will read all the output and ensure the process does not
block. The second is to have the XML Server do this for you using the <USE_STDOUT_SINK> and
<USE_STDERR_SINK> elements. While the former method is recommended where possible, the use of
the XML Server sinks can help in situations or on systems where it is not possible. Both elements cause
threads to be created in the XML Server to read and discard data output by the server command.

More details on how to write server commands are provided in the section including samples below.

Template cache configuration
Each job submitted to the XML Server requires an XSL template to be applied to an XML document. Both
the template and the document must be supplied by the client. As it is likely that a template may be used
more than once, the server can be instructed to store copies of the templates in local files rather than
request that the client send a new copy of a template each time it is used.

The cache is enabled using the element <USE_TEMPLATE_CACHE>. The templates are then stored in the
directory specified using the TEMPLATE_CACHE_DIR element. Only templates that are supplied to the
XMLPrintStream with a template ID and template version number will be cached.

The files in the template cache are not deleted when the XML Server is shut down. They will be reused the
next time the server is started. If this behavior is not desired, the <CLEAR_TEMPLATE_CACHE> element
will ensure that all files in the template cache directory are deleted on server start up.

Debug configuration
You can enable tracing on all network traffic received by the server.

If the server complains that your XSL template or XML document contain errors, you can take a look at
what the server sees by tracing all network traffic received by the server. Use the element
<TRACE_TRAFFIC> to enable this debugging feature. The output will be written to the servers standard
output. For server communications, lines in the template that start with a period or full-stop character.
have an extra period character inserted, this is because input fields that contain a period (".") on a line by
itself (i.e., "." surrounded by "\n" or "\r") cause the XML Server, when the data is processed, to throw an
error. The XML Server uses this particular character sequence to mark the end of client transmission; but,
in the particular context of data entered from a web client this is undesirable behavior. The end of the
client transmission is marked by a line containing only a single period. You can ignore these extra periods.

20 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Log4j logging
You can improve logging performance by using log4j.

Logging with log4j is used to improve the performance of logging. This can be configured via the
log4j.properties file in the XML Server directory. Further information on how to configure log4j can
be found on the Apache website, http://logging.apache.org/log4j.

RenderX configuration
The XML Server provides support for RenderX as an alternative to the Apache FOP document rendering
engine.

It must be installed on the server on which XML Server is running before it can be used within the XML
Server.

<RENDERX_CONFIG_FILE> is used to locate the configuration file that is required by RenderX engine to
start.

<RENDERX_LOGGING> is used to configure internal logging for RenderX. The following options are
available:

• default - the RenderX DEFAULT_LOGGER is used to log information.
• null - the RenderX NULL_LOGGER is used to log information.
• File Path - the RenderX DEFAULT_LOGGER is used, but the logging stream is redirected to the file
specified.

The default value for this property is default. Further information on DEFAULT_LOGGER and
NULL_LOGGER can be found on the RenderX website.

Related information
RenderX website

Custom configuration
The XML Server provides support for defining custom rendering implementations, which allows the use of
third party rendering tools. A custom rendering implementation can be added in the form of a new job
type; alternatively the default implementation can be replaced.

By default, the XML Server provides four <JOB> definitions catering for processing four types of
documents: HTML, RTF, TEXT, PDF. The following list contains the default rendering implementations
for each document type:

• HTML - curam.util.xmlserver.HTMLDocumentGenerator
• RTF - curam.util.xmlserver.RTFDocumentGenerator
• TEXT - curam.util.xmlserver.TEXTDocumentGenerator
• PDF - curam.util.xmlserver.PDFDocumentGenerator

The default document formatting solution uses Apache Formatting Objects Processor (FOP) to define
processing for the document types HTML, PDF, RTF, TEXT. This default implementation can be replaced
with a custom implementation by implementing the curam.util.xmlserver.DocumentGenerator
interface.

Due to FOP 's limited capabilities on processing Right-To-Left (RTL) documents, a second pdf rendering
tool can be used to specifically handle RTL documents. This can be done using the direction attribute
when defining a <JOB>. This attribute is optional, and only applicable for pdf job type. The possible
values it may contain are: rtl and ltr. The default value is ltr.

Custom job type
A new job type is specified using a <JOB> element which must be created with the <JOBS> element.

The new job type should be specified using the type attribute. This attribute is not case sensitive, and
may not contain spaces. Attribute class should be used to specify the fully qualified name of the class
implementing the curam.util.xmlserver.DocumentGenerator interface.

Developing with the Cúram XML Infrastructure 21

http://logging.apache.org/log4j
http://www.renderx.com

For example:

<JOB type="CUSTOM_JOB_TYPE" class="custom.JobImpl" />

The configuration file supports the definition of any number of <JOB> elements.

The curam.util.xmlserver.DocumentGenerator interface requires the following two methods to
be implemented.

/**
 * This method should be implemented to generate the document
 * for the custom job type. The method is provided with the
 * xml template and xml data to be merged to create the
 * document. The document result should be sent to the
 * output stream provided.
 *
 * @param xslTemplate The XSL template transformer.
 * @param xmlDataStream The input stream from which to read
 * the XML data.
 * @param docOutput The output stream for the generated
 * document.
 *
 * @throws XMLJobException Generic exception to be thrown on
 * error. Exception handing should be handled within the
 * implemented method.
 */
 void generateDocument(final Transformer xslTemplate,
 final InputStreamReader xmlDataStream,
 final OutputStream docOutput)
 throws XMLJobException;

/**
 * This method should return a String containing the file
 * extension for the file to be generated. For example if
 * generating a HTML file the method should return the
 * String ".html".
 *
 * @return The extension of the file to be generated.
 */
String getFileExtension();

Font configuration
By default, the XML Server uses FOP (Formatting Objects Processor) for rendering documents in various
formats. FOP supports a default set of fonts, including Helvetica, Times and Courier, and it is possible
using a FOP configuration file to include support for additional fonts, for example a simplified Chinese
font.

The <FOP_CONFIG_FILE> configuration option allows you to specify the name and location of a FOP
configuration file. The path specified for the configuration file can be absolute, for example, c:/
directory/fop-config-file.xml, or relative to the xmlserver directory, for example, (./fop-
config-file.xml . Any references to files within the FOP configuration file can also be absolute or
relative to the xmlserver directory.

The following is a sample FOP configuration file:

<fop>
 <renderers>
 <renderer mime="application/pdf">
 <fonts>
 <font metrics-url=".\chinese\pmingliu.xml" kerning="yes"
 embed-url=".\chinese\mingliu.ttc">
 <font-triplet name="PMingLiu" style="normal"
 weight="normal"/>

 </fonts>
 </renderer>
 </renderers>
</fop>

The example FOP configuration file references a font metrics file called pmingliu.xml, and an embed
file called mingliu.ttc. The embed file is the true type collection font file. True type collection font files
can be found on a Windows machine in the installed fonts directory, for example c:/Windows/Fonts.

22 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Apache provides utilities to generate the necessary font metrics file from a true type collection font file
and also from other formats. The Apache FOP documentation should be consulted for more information
on font configuration.

Sample configuration files
In this section a number of samples are presented to illustrate ways the XML Server can be configured

The configurations are dependent on the platform or operating system used, and include the following:

• Printing a document (Windows);
• Displaying a document for testing purposes (Windows);
• Printing a document (UNIX and IBM z/OS®).

Where path names are specified (e.g. to commands) your customizations may need to be changed if you
base your configurations on any of these samples.

The server command (and all other options) should be entered on a single line in the configuration file. In
this document they may display with line wrapping for formatting purposes, however,, in your
implementation they will need to be specified on a single line to be valid.

Printing a document on Windows

On Microsoft Windows servers, the server command (specified in the <SERVER_COMMAND> element) is
not executed in a command shell unless explicitly invoked via the Windows command interpreter
(cmd.exe) and this is necessary in order to use such facilities as pipes and redirection. The configuration
described here is representative for Windows platforms.

Depending on the file type, your printing requirements, and the target printer there are a number of
possible options and configurations for printing on Windows. For instance, your particular version of
Adobe Reader may allow for direct printing or your printer may support direct PDF printing.

A convenient way to implement print functionality is to write a batch file for the Windows command
interpreter to invoke and perform any necessary operations and to get the server to execute this batch
file. A sample batch file is shown in “Printing a document on Windows” on page 23 below. Let us assume
that the batch file is saved as c:\xmlsrv\xmlserverprint.bat1. The server command can pass
parameters to the batch file through the command line and the batch file accesses these as %1 for the
first parameter, %2 for the second, etc. These parameters are provided to the batch file via the server
command tokens specified in the batch file invocation in the server configuration file and replaced when it
is invoked. (See “Server command configuration” on page 18 and “Printing a document on Windows” on
page 23 for more information on command tokens.)

While Windows applications sometimes allow the use of either forward-slash (/) or back-slash (\)
characters interchangeably as a path separator, the Windows command interpreter only allows the \
character. Care must be taken to ensure that all paths that may be visible to the command interpreter use
back-slash characters (\) as separators. As path information will not be available in the context of your
batch file, commands must have fully specified paths. The interpreters built-in commands do not require
a path.

The following example illustrates the use of the sample SimplePrintService class, which is
implemented using the Java Print Service API. You could utilize this API for your own custom solution; for
instance, to utilize specific printer features in your environment. To print a PDF file using this sample class
would require the printer to have direct PDF print support.

The following sample is a sample batch file for printing a document in Microsoft Windows:

@ECHO OFF

echo -- ^
 >> XMLServer.log
REM log output
echo File: %1 ^

1 Note that you should choose a target destination for setting up your XML Server and its customizations to
avoid being overwritten by subsequent service pack updates.

Developing with the Cúram XML Infrastructure 23

 >> XMLServer.log
echo Print Server: %2 ^
 >> XMLServer.log

REM Call the system print command
echo Starting Print ^
 >> XMLServer.log
echo %JAVA_HOME%\bin\java ^
 -cp xmlserver.jar;xmlservercommon.jar ^
 curam.util.xmlserver.SimplePrintService ^
 %2 "%1" >> XMLServer.log 2>&1
%JAVA_HOME%\bin\java ^
 -cp xmlserver.jar;xmlservercommon.jar ^
 curam.util.xmlserver.SimplePrintService ^
 %2 "%1" >> XMLServer.log 2>&1
echo Printing Completed ^
 >> XMLServer.log
echo -- ^
 >> XMLServer.log

Instead of the sample Java program above any appropriate processing could be specified or additional
processing prior to printing or cleanup after printing can also be implemented as needed. If you use any
command that may send output to the console, make sure that you add null redirection. This output
needs to be redirected to the null device or it will cause the command to block and the batch file will
hang. Therefore, redirection must be added to the command pointing to the null device; e.g.: > nul:,
which avoids the problem of blocking the XML Server.

Note: Setting the <USE_STDOUT_SINK> and <USE_STDERR_SINK> elements in the configuration will not
work on Windows.

The following is a sample configuration file used to launch the batch file . Note how the printer name and
the details of the temporary file are passed to the batch file using the command tokens.

<XML_SERVER_CONFIG>
 <SERVER_PORT>6789</SERVER_PORT>
 <SERVER_COMMAND>
 c:\Windows\System32\CMD.EXE
 /C c:\xmlsrv\xmlserverprint.bat %d\%f %p
 </SERVER_COMMAND>
 <USE_TMP_FILE>true</USE_TMP_FILE>
 <TMP_FILE_ROOT>temp</TMP_FILE_ROOT>
 <TMP_DIRECTORY>c:\xmlsrv\tmp</TMP_DIRECTORY>
 <DEFAULT_PRINTER>\\MyPC\ps1</DEFAULT_PRINTER>
 ...
</XML_SERVER_CONFIG>

The command interpreter (cmd.exe) uses the/C option to specify a batch file to execute. The batch file is
passed two parameters. The first parameter is the name of the temporary PDF file created by
concatenating the expanded %d token for the temporary directory name, a back-slash separator, and the
expanded %f token for the name of the temporary PDF file. The second parameter is the expanded %p
token for the name of the printer. The configuration file also includes a default printer name. But this may
be overridden by the client. See “Server command configuration” on page 18 for a more detailed
description of these tokens.

Displaying a document for testing on Windows

When testing a new XSL template against XML data, it is useful to see the PDF output without printing it
each time. If the code you are writing does not use the preview facilities of the XMLPrintStream class,
you will need to look at the PDF output of the XML Server manually.

A simple solution is to run an XML Server on your development machine and configure it to open Adobe
Reader to display the PDF data each time you submit a job. This will save you from running to a printer or
manually opening PDF files. The configuration is shown in the following sample:

<XML_SERVER_CONFIG>
 <SERVER_PORT>6789</SERVER_PORT>
 <SERVER_COMMAND>c:/PROGRA~1/Adobe/AcrobatReader/AcroRd32.exe
%d/%f</SERVER_COMMAND>
 <USE_TMP_FILE>true</USE_TMP_FILE>
 <TMP_FILE_ROOT>temp</TMP_FILE_ROOT>
 <TMP_DIRECTORY>c:/xmlsrv/tmp</TMP_DIRECTORY>

24 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

 ...
</XML_SERVER_CONFIG>

You cannot include space characters in the path to the server command as Java will interpret these as the
end of the command file name and there is no way of escaping them. To avoid the problem, the above
configuration file shows how the DOS short name of the directory containing the space character is used:
PROGRA~1 instead of Program Files. As the command was not passed to a command interpreter, the
choice of / or \ as a path separator character is arbitrary.

Installing RenderX for Right-To-Left PDF document processing on Windows
As Right-To-Left (RTL) writing languages are not supported in Apache FOP, the XML Server also provides
the functionality to use alternative rendering tools.

RenderX is a third party document rendering engines that supports RTL writing languages. If RenderX is
installed, and the XML Server is configured to use RenderX, the XML Server will automatically use RenderX
to generate all RTL PDF documents. In order to use the default RenderX implementation in IBM Cúram
Social Program Management the following steps should be completed:

• Install RenderX according to the RenderX installation guide.
• Set a system environment variable RENDERX_HOME to point to the directory in which you have installed

RenderX.
• Customize xmlserver_config.xml to use curam.util.xmlserver.RenderXDocumentGenerator to

process Right To Left PDF documents. The following sample is a example of how to set up RenderX for
RTL Document processing

<XML_SERVER_CONFIG>
 ...
 <RENDERX_CONFIG_FILE>C:/RENDERX/xep.xml</RENDERX_CONFIG_FILE>
 <RENDERX_LOGGING>off</RENDERX_LOGGING>
 ...
 <JOBS>
 ...
 <JOB type="pdf" direction="RTL"
 class="curam.util.xmlserver.RenderXDocumentGenerator"/>
 </JOBS>
</XML_SERVER_CONFIG>

The customizations in this example assume RenderX is installed to c:/RenderX directory

Note: In order to use a relative path with a default installation of RenderX, the images should be stored
relative to the RenderX location. For example, if the RENDERX_HOME is C:\projects\RenderX\, and
the images are stored in C:\projects\RenderX\images, then the relative path to an image would be
"./images/curam/curam.jpg" which is the equivalent of C:\projects\RenderX\images\curam
\curam.jpg.

Printing a document on UNIX and z/OS

Printing a document on UNIX and z/OS can be done similarly to Windows in that an invoked shell script
can execute commands or other necessary processing. That is, you write a shell script that is invoked by
the XML Server as per your configuration and the shell script performs the processing specific to the
platform. For example, see “Printing a document on UNIX and z/OS” on page 25 below. Let us assume
that the shell script is saved as /usr/local/xmlsrv/xmlserver.sh2. The server command can pass
arguments to the shell script, which are accessed in a typical way: $1 for the first parameter, $2 for the
second, etc. These arguments are provided to the shell script via the server command tokens specified in
the script invocation in the server configuration file and replaced when the script is invoked. (See “Server
command configuration” on page 18 and “Printing a document on UNIX and z/OS” on page 25 for more
information on command tokens.)

2 Note that you should choose a target destination for setting up your XML Server and its customizations to
avoid being overwritten by subsequent service pack updates.

Developing with the Cúram XML Infrastructure 25

In general, printing capabilities vary widely by OS distribution, version, installed software, physical printer
capabilities, etc. Review your local environment for requirements and how to best implement printing
support. For instance, a z/OS implementation might use the IBM InfoPrint Server3.

The following example illustrates how printing might be done on various UNIX platforms. For instance, as
on z/OS, if the software and printer hardware supports it direct printing via the the system print command
(lp or lpr) may be possible. On IBM AIX® you would require third-party software to convert the input PDF
to PostScript for printing. For ease of monitoring the script contains echo commands to provide progress
during its execution and appends the output to a file named XMLServer.log.

Note: On the z/OS platform you will have to covert the encoding of the xmlserverprint.sh script from
ASCII to EBCDIC. For example:

tr -d '\15\32' < xmlserverprint.sh > xmlserverprint.sh-ASCII
iconv -t IBM-1047 -f ISO8859-1 xmlserverprint.sh-ASCII \
> xmlserverprint.sh
chmod a+rx xmlserverprint.sh

The following is a sample shell script for printing a document on UNIX and z/OS systems:

#!/bin/sh

Sample UNIX script for XMLServer printing.

echo -- \
 >> XMLServer.log
log output
echo File: $1 >> XMLServer.log
echo Print Server: $2 >> XMLServer.log
Platform=`/bin/uname`
echo Platform: $Platform >> XMLServer.log

The following illustrates some possible print solutions
for various platforms:

case $Platform in
 # z/OS:
 OS/390)
 # On OS/390 (z/OS) use of the lop command as
 # illustrated would be dependent on the InfoPrint
 # Server installation and configuration, related
 # software, and a printer with direct PDF support
 # and sufficient memory.
 echo Starting print... >> XMLServer.log
 lp -d $2 $1
 echo Printing Completed >> XMLServer.log
 ;;

 AIX)
 # AIX has no native print support for PDF files,
 # so you would need to implement functionality such as
 # pdf2ps to convert the generated PDF file to
 # PostScript for printing with lpr; e.g.:
 # see the IBM Redbook SG24-6018-00
 # pdf2ps $1 $1.ps
 # lpr -P $2 $1.ps
 echo $Platform printing implementation is TBD. \
 >> XMLServer.log
 ;;

 # Other platforms:
 *)
 # Your local print functionality to be implemented here ...
 echo $Platform printing implementation is TBD. \
 >> XMLServer.log
 ;;
esac

echo -- \
 >> XMLServer.log

3 The installation and configuration of the InfoPrint Server is beyond the scope of this document.

26 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

The configuration file used to launch this shell script is shown in “Printing a document on UNIX and z/OS”
on page 25 below. Note how the printer name (%p) and the details of the temporary file (%d and %f) are
passed to the shell script using the command tokens. These are interpreted by the shell as two arguments
inside the script: 1) The temporary directory and file name are concatenated with a forward-slash
separator; and 2) name of the printer, which may be overridden by the client. See “Server command
configuration” on page 18 for a more detailed description of these tokens.

The following sample is an example configuration for printing a document on UNIX and z/OS systems:

<XML_SERVER_CONFIG>
 ...
 <SERVER_COMMAND>
 ./xmlserverprint.sh %d/%f %p
 </SERVER_COMMAND>
 <USE_TMP_FILE>true</USE_TMP_FILE>
 <TMP_DIRECTORY>./tmp</TMP_DIRECTORY>
 <TMP_FILE_ROOT>doc</TMP_FILE_ROOT>
 <DEFAULT_PRINTER>printer1</DEFAULT_PRINTER>
 ...
</XML_SERVER_CONFIG>

Starting the XML server
The XML Server application is delivered as a separate component in IBM Cúram Social Program
Management. The XML Server is started from the XML Server installation directory using Apache Ant.

The following is an of example the ant command to start the server:

ant -file xmlserver.xml

A default xmlserver_config.xml is provided when you install the product which contains the default
configuration file for the server. You can apply changes to this file as required.

When the server starts, it displays the configuration information it has read from the configuration file and
displays the status of each job it receives.

Note: In addition to running as a command line application, the XML server can also be run in the
background as a Windows service as discussed in “Running the XML server as a Windows service or UNIX
daemon” on page 27.

Running the XML server as a Windows service or UNIX daemon
For a production environment, it can be more effective, for purposes of ensuring availability at restart,
avoiding accidental shutdowns via an open shell prompt, and so on, to run the XML Server as a Windows
service or UNIX daemon.

To run a program as a Windows service requires specific Windows infrastructure, that is, batch files and
programs cannot be run this way out-of-the-box. However, there are third-party tools available to enable
this function, for example, the Java Service Wrapper from Tanuki Software.

With Tanuki Java Service Wrapper, after installation, you can integrate the XML Server using the
WrapperStartStopApp class by setting wrapper.java.mainclass to
org.tanukisoftware.wrapper.WrapperStartStopApp, and you must do the following:

• Set the class path to include the necessary Ant libraries
• Pass the Ant home into the environment
• Ensure adequate memory, for example, 768 MB
• Pass in the necessary parameters to start the XML Server Ant script.

Specifically, for the Java Service Wrapper the properties would look like:

wrapper.java.classpath.<n>=<ANT_HOME>/lib/ant.jar
wrapper.java.classpath.<n>=<ANT_HOME>/lib/ant-launcher.jar
wrapper.java.additional.<n>=-Dant.home=<ANT_HOME>
wrapper.java.maxmemory=768
wrapper.app.parameter.1=org.apache.tools.ant.launch.Launcher
wrapper.app.parameter.2=2
wrapper.app.parameter.3=-f

Developing with the Cúram XML Infrastructure 27

wrapper.app.parameter.4=<CURAMSDEJ>/xmlserver/xmlserver.xml
wrapper.app.parameter.5=org.apache.tools.ant.launch.Launcher
wrapper.app.parameter.6=true
wrapper.app.parameter.7=3
wrapper.app.parameter.8=-f
wrapper.app.parameter.9=<CURAMSDEJ>/xmlserver/xmlserver.xml
wrapper.app.parameter.10=stop

Note: The values in angle brackets must be substituted with the appropriate values for your installation.
See the Java Service Wrapper documentation for more details on installation, configuration, and running.

Running the XML Server as a UNIX daemon is something that can typically be done with shell scripting
and system facilities, for example, cron, but, UNIX compatible versions of Java Service Wrapper are
available.

Related information
Tanuki Software

Overriding the default port
The Cúram XML Server application comes and runs with a default configuration file which is generated
each time the application is started.

To override the default port the -Dxmlserver.port option can be specified, overriding the Ant script. For
example:

ant -file xmlserver.xml -Dxmlserver.port=1805

Overriding the default configuration
The XML server application has a default configuration file which is generated each time the application
starts.

To override this default version, take a copy of the xmlserverconfig.xml and place in a custom
location. The xmlserverconfig.xml is created from the xmlserverconfig.xml.template file the
first time the XML Server is run. This file contains all the configuration elements for the XML Server.

To start the server using this custom configuration use the following Ant command:

ant -f xmlserver.xml -Dxmlserver.config.file=C:\Custom\xmlserverconfig.xml

Overriding the Java thread stack size
If large XML or XSL files are passed to the XML server for processing, a stack overflow exception might
occur. To prevent stack overflow exceptions from occurring, you can increase the Java thread stack size to
enable the XML server to process larger XML or XSL files.

About this task

The Java thread stack size is determined by the value of the java.thread.stack.size property. The
java.thread.stack.size property is specified in the xmlserver.xml Ant script that starts the XML Server.
The default value of the property, which is -Xss4m, sets the Java thread stack size to 4 Mb.

Procedure

To override the default value of the java.thread.stack.size property, when you start the XML server, use the
-Djava.thread.stack.size build command syntax.
The command in the following example sets the value of the java.thread.stack.size property to -Xss8m,
and therefore sets the Java thread stack size to 8 Mb:

ant -Djava.thread.stack.size="-Xss8m" -f xmlserver.xml

28 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

http://wrapper.tanukisoftware.com

Disable configuration file schema validation
To disable validation, you can specify the novalidation option as an extra argument to the Ant script
invocation.

For example:

ant -file xmlserver.xml -Dadditional.args=-novalidation

Shutting down the XML server
You can use the XMLServerShutdown command to shutdown the XML server.

In an environment where few jobs are printed or you can be sure the XMLServer is idle, you can safely
shut down the XML Server with a simple Control-C key combination without causing any problems.
However, the recommended and safer method is to use the XMLServerShutdown command. This will
shut down any XML Server in an orderly fashion: the server will refuse any new jobs and allow all
outstanding jobs to complete before exiting. This is done through the following Ant command:

ant -file xmlserver.xml stop

The server will be switched into shut down mode and all outstanding jobs will be completed before the
server exits and the XMLServerShutdown command informs you that the server has been shut down.
Depending on the number of jobs being processed, this may take some time to complete.

Statistics
Statistics for the XML server are available in the statistics folder that you specified in the configuration.

Once you shutdown the XMLServer various statistics data for the XML Server are collected in the statistics
folder, specified in xmlserverconfig.xml.

The statistics log includes the below columns:-

• Success - Whether or not the job was successful(true, false).
• Job preview type - The job preview type (PDF,HTML,TEXT,RTF).
• Elapsed connection - the time elapsed (in milliseconds) since processing of a connection started until

the connection was closed.
• Elapsed job - The time (in milliseconds) it takes to run the job.
• Elapsed job preview send - The time (in milliseconds) it takes to send the preview data to the client.
• Job preview data length - The length of the preview data (in bytes) sent to the client.
• Timestamp - The timestamp (Java time stamp value) when the connection entered the system.
• Template ID - The ID for the template being processed.
• Template version - The version number of the template being processed.
• Template locale - The locale of the template being processed.

IBM Cúram Social Program Management XML and XSL templates
In this chapter, you will learn about the IBM Cúram Social Program Management XML format used for all
XML documents generated by your application server. You will need to know this format if you wish to
write XSL templates for formatting and printing the XML documents.

Every XML document generated by the XML infrastructure uses a fixed format regardless of the struct
classes being converted. This makes the development of XSL templates easier, as the format of the XML
does not change. The following sections present that format and show what IBM Cúram Social Program
Management XML documents look like. This will help you when you are developing XSL templates.

Developing with the Cúram XML Infrastructure 29

Cúram DTD
The following markup declaration is the DTD for Cúram XML. The DTD can be found in the /lib directory
of the SDEJ. The comments within the declaration describe each element.

<!--A DOCUMENT element has an optional META element
 followed by a mandatory DATA element.-->
<!ELEMENT DOCUMENT (META?, DATA)>

<!--A META element has a number of optional elements that
 it can contain in no particular order.-->
<!ELEMENT META (GENERATED_DATE | GENERATED_BY |
 VERSION | COMMENT)*>

<!--A DATA element contains a single mandatory STRUCT_LIST
 or STRUCT element.-->
<!ELEMENT DATA ((STRUCT_LIST | STRUCT))>

<!--A STRUCT_LIST element has one or more STRUCT
 elements.-->
<!ELEMENT STRUCT_LIST (STRUCT+)>

<!--A STRUCT element has an optional SNAME element and one
 or more FIELD elements.-->
<!ELEMENT STRUCT (SNAME?, FIELD+)>

<!--A FIELD element has an FNAME and either a TYPE
 element and a VALUE element, or a STRUCT_LIST element,
 or a STRUCT element (in that order).-->
<!ELEMENT FIELD (FNAME, ((TYPE, VALUE) | STRUCT_LIST | STRUCT))>

<!--All these elements contain parsed character data only
 and do not contain sub-elements. Use ISO-8601 when
 formatting date values.-->
<!ELEMENT GENERATED_DATE (#PCDATA)>
<!ELEMENT GENERATED_BY (#PCDATA)>
<!ELEMENT VERSION (#PCDATA)>
<!ELEMENT COMMENT (#PCDATA)>
<!ELEMENT SNAME (#PCDATA)>
<!ELEMENT FNAME (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>

<!--A TYPE element can have a SIZE attribute. If not
 supplied, the attribute will not be set by default
 and will have a null value. This is normally used
 for SVR_STRING types.-->
<!ATTLIST TYPE SIZE CDATA #IMPLIED>

Examples
Examples of simple XML documents generated for a struct, and for a list of structs.

The following example shows a simple XML document generated for a struct that contains two fields.
Note that the field types will always be the basic types and not the domain definitions derived from those
basic types.

<DOCUMENT>
 <META>
 <GENERATED_BY>My Server</GENERATED_BY>
 </META>
 <DATA>
 <STRUCT>
 <SNAME>DPTicketDtls</SNAME>
 <FIELD>
 <FNAME>ticketID</FNAME>
 <TYPE>SVR_INT64</TYPE>
 <VALUE>12796</VALUE>
 </FIELD>
 <FIELD>
 <FNAME>subject</FNAME>
 <TYPE SIZE="100">SVR_STRING</TYPE>
 <VALUE>This is the subject.</VALUE>
 </FIELD>
 </STRUCT>
 </DATA>
</DOCUMENT>

30 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

In the next example, the format of an XML document describing a list of structs is presented. Note that
the <STRUCT> elements are the same as previously, but multiple <STRUCT> elements are contained
within a <STRUCT_LIST> element.

<DOCUMENT>
 <META>
 <GENERATED_BY>My Server</GENERATED_BY>
 </META>
 <DATA>
 <STRUCT_LIST>
 <STRUCT>
 <SNAME>DPTicketDtls</SNAME>
 <FIELD>
 <FNAME>ticketID</FNAME>
 <TYPE>SVR_INT64</TYPE>
 <VALUE>12796</VALUE>
 </FIELD>
 <FIELD>
 <FNAME>subject</FNAME>
 <TYPE SIZE="100">SVR_STRING</TYPE>
 <VALUE>This is the subject.</VALUE>
 </FIELD>
 </STRUCT>
 <STRUCT>
 <SNAME>DPTicketDtls</SNAME>
 <FIELD>
 <FNAME>ticketID</FNAME>
 <TYPE>SVR_INT64</TYPE>
 <VALUE>35667</VALUE>
 </FIELD>
 <FIELD>
 <FNAME>subject</FNAME>
 <TYPE SIZE="100">SVR_STRING</TYPE>
 <VALUE>This is another subject.</VALUE>
 </FIELD>
 </STRUCT>
 </STRUCT_LIST>
 </DATA>
</DOCUMENT>

If a field of a struct is itself a struct, then instead of a <TYPE> and <VALUE> element, the <FIELD>
element will contain a whole <STRUCT> element. Fields can also contain <STRUCT_LIST> elements in
the same manner.

Job types and template types
Different job types can be specified when using the XMLPrintStream class to communicate with the
XML Server. These job types require different types of templates in order to be successful. While all the
templates use XSL for formatting, there are two parts of that standard that are used in specific situations.

• XSL Transformations (XSLT)

XSLT is a standard that defines a language for transforming XML documents in other XML documents.
Elements of the XSLT language allow data from one XML document to be combined with static elements
of a template (or stylesheet).

• XSL Formatting Objects (XSL-FO)

XSL-FO defines a set of elements for describing the physical layout of a document: paper size, fonts,
spacing, image locations, etc. The layout model used is based on that used for PDF documents. A
formatting objects processor can convert data marked up with formatting objects into other
representations such as PDF or RTF.

The following subsections outline how these standards can be used to develop templates for each of the
supported job types.

XSL and XSL-FO are extensive standards and it is beyond the scope of this document to describe them in
detail.

Related concepts
Developing for XML

Developing with the Cúram XML Infrastructure 31

The two most important classes you need when adding XML functionality to your applications are
curam.util.xml.impl.XMLDocument and curam.util.xml.impl.XMLPrintStream. The classes
can be used together to generate XML and print documents.

Templates for PDF documents
Generating PDF documents is a two stage process.

It is easiest to describe the process in reverse order.

PDF documents are generated from documents marked up with XSL-FO in a process called rendering. The
document contains the data that will appear in the document (text, figures, and so on) and the XSL-FO
mark-up that is needed to define how this data will be laid out (margins, paper-size, fonts, line-spacing,
location of paragraphs, and so on) This rendering stage is handled by the Apache FOP library.

To prepare an XSL-FO document for rendering, the raw data is supplied in an XML document and a
template uses XSLT to combine the raw data with the XSL-FO mark-up and the other static elements of
the document. In essence, the XSLT inserts the raw data into the template to create the XSL-FO
document. This transformation stage is handled by the Apache Xalan library.

Thus, templates for rendering documents as PDF are largely XSL-FO documents with elements of XSLT
used to insert values from the XML document at the appropriate point. An example of such a template is
given in the next section.

Templates for RTF documents
RTF templates are identical to PDF templates. The same template can be used to produce output in either
format.

The template is mostly XSL-FO with XSLT used to insert values from the XML document in the appropriate
locations.

The JFOR library is used to render RTF documents from XSL-FO documents, however, not all XSL-FO
elements are supported. Unless you need to edit the documents in a word processor after they have been
generated, you should use the better supported PDF generator.

Templates for HTML documents
Templates for HTML documents consist of HTML mark-up and XSLT elements that insert values from the
XML document in the appropriate locations to create an HTML document.

Templates for HTML documents are simpler than the templates for PDF or RTF. XSL-FO mark-up is not
used as the HTML mark-up is used to define the formatting. As such, there is no rendering step when you
generate HTML documents. The templates consists of HTML mark-up and XSLT elements that insert
values from the XML document in the appropriate locations to create an HTML document.

As XSLT converts only one XML document into another, the output includes some XML elements. These
elements are automatically removed for this job type so that the output is a pure HTML document. The
HTML is automatically indented during the processing.

Templates for plain text documents
Templates for plain text documents contain no XSL-FO mark-up and there is no rendering step.

The templates comprise plain text with embedded XSLT elements to insert values from the XML
document in the appropriate locations.

Again, XML elements in the output document are stripped. As XML and XSL generally do not preserve
white-space, use of the <text> element around white-space that is to be preserved is advised (for
example, line breaks, indentation, etc.).

XSL template example
The following example shows the basic method of identifying and extracting data from an XML document
containing a single struct.

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

32 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="1.0">

 <xsl:template match="DOCUMENT">
 <xsl:apply-templates select="DATA"/>
 </xsl:template>

 <xsl:template match="DATA">
 <xsl:apply-templates select="STRUCT[SNAME='DPTicketDtls']"/>
 </xsl:template>

 <xsl:template match="STRUCT">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master page-master-name="only"
 page-height="297mm" page-width="210mm"
 margin-top="30mm" margin-bottom="30mm"
 margin-left="30mm" margin-right="30mm">
 <fo:region-body/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence>
 <fo:sequence-specification>
 <fo:sequence-specifier-single
 page-master-reference="only"/>
 </fo:sequence-specification>

 <fo:flow>
 <fo:block font-size="12pt" font-family="serif"
 line-height="20mm">
 Ticket ID: <xsl:apply-templates
 select="FIELD[FNAME='ticketID']"/>
 </fo:block>

 <fo:block font-size="12pt" font-family="serif"
 line-height="20mm">
 Subject: <xsl:apply-templates
 select="FIELD[FNAME='subject']"/>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
 </xsl:template>

 <xsl:template match="FIELD">
 <xsl:value-of select="VALUE"/>
 </xsl:template>

</xsl:stylesheet>

The output is formatted for A4 paper (210x297mm) with 30mm margins and should appear like this, if the
earlier sample XML document is used:

Ticket ID: 12796

Subject: This is the subject.

Generating templates from RTF documents
While templates cannot be generated directly from RTF documents, software is available to convert an
RTF document created by a word processor into the corresponding XSL-FO document.

Once the XSL-FO document has been generated, you can insert the appropriate XSLT mark-up to convert
it into a usable template.

Globalization considerations
Data that is transmitted to the XML server for printing can be sensitive to locale differences.

Structs are transmitted to the XML Server for printing by calling method
curam.util.xml.impl.XMLDocument .add(your-struct).

Structs are serialized into an XML representation that is then transformed via XSLT into a human-readable
document. By default the following data types are serialized by calling their toString() method:

Developing with the Cúram XML Infrastructure 33

• curam.util.type.Date
• curam.util.type.DateTime
• curam.util.type.Money

The toString() method of Date and DateTime returns a string dependent on the value of property
curam.environment.default.dateformat and the toString() method of Money returns a value
dependent on the value of property curam.environment.default.locale .

For example, if the property curam.environment.default.locale is set to en_GB, a Money amount
would be formatted as 12,345.67 whereas for es_ES' it would be formatted to 12.345,67, that is the
commas and dots are reversed. This formatting prevents the XSLT from de-serializing the data in a locale-
neutral way. So if the server locale was set to English, then the XSL template for a Spanish letter must
parse an English formatted numeric string instead of a numeric value.

Locale-related problems can be avoided in the following two ways:

• Use string fields to transfer all data to the XML Server, and ensure that these string fields are correctly
formatted for the appropriate locale on the server beforehand.

• Transfer fields to the XML Server in a locale-neutral way by setting the property
curam.xmlserver.serializelocaleneutral to true. For Date the format is yyyyMMdd and for
DateTime the format is yyyyMMddTHHmmss. For the field Money it is the same as for floating point
decimals.

34 IBM Cúram Social Program Management: Cúram XML Infrastructure Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2018 35

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

36 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 37

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	List of Tables
	Chapter 1. Developing with the Cúram XML Infrastructure
	Representing Cúram data as XML
	Developing for XML
	The XMLDocument class
	XML documents
	Encoding
	Creating an XMLDocument
	Opening an XMLDocument object
	Adding data to an XMLDocument object
	Closing an XMLDocument object
	Saving an XMLDocument object
	Loading an XMLDocument object

	The XML Print Stream
	The XMLPrintStream class
	Default configuration for XMLPrintStream
	Creating an XMLPrintStream object
	Configuring an XMLPrintStream object
	Opening an XMLPrintStream object
	Closing an XMLPrintStream object
	Print preview

	Sample Usage
	Saving XML Data to a file
	Printing an XML document
	Saving and loading XML documents
	Previewing an XML print job
	Building a document from a list

	Load balancing and failover

	The XML server
	The XML server architecture
	Configuring the XML server
	Configuration options
	Network configuration
	Default value configuration
	Server command configuration
	Template cache configuration
	Debug configuration
	Log4j logging
	RenderX configuration
	Custom configuration
	Custom job type

	Font configuration
	Sample configuration files
	Windows printing
	Displaying a document for testing on Windows
	Installing RenderX for RTL PDF processing on Windows
	UNIX and z/OS printing

	Starting the XML server
	Running the XML server as a Windows service or UNIX daemon

	Overriding the default port
	Overriding the default configuration
	Overriding the Java thread stack size
	Disable configuration file schema validation
	Shutting down the XML server
	Statistics

	XML and XSL templates
	Cúram DTD
	Examples
	Job types and template types
	Templates for PDF documents
	Templates for RTF documents
	Templates for HTML documents
	Templates for plain text documents

	XSL template example
	Generating templates from RTF documents
	Globalization considerations

	Notices
	Privacy Policy considerations
	Trademarks

