IBM Curam Social Program Management
Version 7.0.3

Health Care Reform Developer Guide

‘.II!=

Note

Before using this information and the product it supports, read the information in “Notices” on page
112

Edition

This edition applies to IBM® Clram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Chapter 1. Configuring Health Care Reform.......ccccccieuiiniiniiniieiinnieiieiieiienceceecneneene 1
CONfIGUNING APPEAL FEQUESES. . eiiitiieeieeeeiee ettt ettt eetee e e ee e e e e e stee e e bee e s bee e s baeeesaee e saeeesseeessaeesnsseessseesnnees 1
Appeal case types and appeals process CoONfigUration........eeecuveeeiieeeiiieciieeecre e 1
Configuring the resilient option for the process intake application WOrkflow........cccccevevevveeniiinieinieiniennne 1
Configuring rules to determine the coverage period start date......cccoeeevieeicciieicciiccee e 2
Configuring the ELigibDility VIEWEuie ettt ettt e e e e e s vee e s e e e abae e s baeeesbaeesnraeeenseas 2
Configuring a product for the ELigibility VIEWETccuuii ettt et e 2
Configuring look back and look forward Periods........cccuiecciieeciieciiieccie ettt re e e aeeesaae e 3
Configuring primary client display settings for Health Care Reform.......ccccveeeeeeciiiccieccieeceeecee e, 4
Chapter 2. Customizing the Health Care Reform portal........ccccccieieienieniincincinninnanns 7
Customizing the Health Care Reform MotivationS.......c.eecciiiiciiieiiicccee e 7

B R Yol] o) KR Uy (] 1412 o] o OSSR 7
Eligibility Display RULES CUSTOMIZATION.....c.iiiiceiieiciee ettt et e s etre e e etee e e erae e sbaeesreeesraeesans 7
Moving the Log Out button to improve USabilitycccueeeeiiiieie e e e 9
ENADLING the NOTICES 1AD..c..uiiiieiie ettt e e e et e e et e e s ate e s abe e e sbeesnaseesnssaeennsaeans 9
Chapter 3. Integration with external systems.......c.ccccccceuiiniiniiniieiieiiecieiiececnncnenn. 11
Customizing the external system implementations.........ccee e iciie e e 11
Customizing request or response fields for external system calls........cccccveeecieeccieccciecccee e, 12
EXEEINAL SYStEIM PrOCESSOIS. .. viiiiiiiieiieeeitieeeitte e ettt eestreeeiteeeisaeeessaeessseeesssessaseasseesssseessseesseeesseesssseean 12
Configuring the Federal Hub implementation........ccco e iciie ettt 13
Configuring a State systems implemMeNntation........ccic e e et 13
Customizing electroniC VEfICAtiONS.cuii ittt et e e e e e e te e e e ateeesntaeeentaeeenes 13
Default VerifiCation PrOCESSOIS. . ciu it ciieecie et ecte ettt e e e re e e te e e aae e e ate e e abee e asaeesabeeennsaesnnseas 14
Adding custom VerifiCation PrOCESSING....cccuiieiiiiciieeeite et erte e rre e e rte e e sre e e ste e s saeeeesabeeeenseeenssaeeneeas 14
Overriding the default verification ProCeSSING......cccciiiciiiieciie e et ae e e aee s 15
Supported federal hub Verification SEIVICES......cccuiiiiciiieiiieceeecte ettt sre e e are e e ae e e e aaee s 15
Chapter 4. Customizing case Management.......cccccieuieeiiniinniniienieniesiescecencsscssssnnns 16
Dynamic evidence CUSTOMIZAtION.cccuieieiieeeiieecee et e e et eeetee e ete e e e e e e e baeeessaeessbeeeessaeeensaeennseeennseeann 16
ELigibility rules CUSTOMIZAtION.iic ittt e et e et e e e ate e e ate e eeateeeenteeenneeeennees 16
Customizing non-financial rules failure rEaSONS......c..eicieeieciee ettt aeeeeaes 16
Conditional verifications CUSTOMIZATION......cciiiirriiirieiiteee sttt s see e st e e e sateesbeesaeeeneaas 16
Chapter 5. Customizing plan management........c.cccceiieiiniinniniieiieiieiieniececsecsessennes 17
Integration With Plan ManagemeNnt........cccieicciiieciiiieeiieeccte et eee s tre e re e e tae e e saae e s aa e e e saaeessaeesaseeesnnaeean 17
The plan management adapter INtEITACE.cuvi it et e e e te e e e e e e e aeeens 17
Configuring the plan management adapter......ccciiciericiee et ree e s ree e e 18

Plan management web services provided DY CUaM.........coveieiecieeieeeceeeeee e et ereesteesaeereeens 19
Configuration parameters for plan ManageMENt........coccuiieeiiie et e e sree e e sbee e e raeeeaes 19
Callback URLS fOr plan ManagemENt.. ... ueeccieeccreeciiee et e eciteeecteeseteesssteesareesssseeessseesnsseesssesssseesnnseenns 20
Batch processing for plan Management.........c.eeiiiieeiieiciie e e ee e e e e e ree e e re e e e aee e e raeeennes 20
Employer enrollment notification batCh ProCess.......uvii i 20

Plan management wWeb Service APL ref@IrENCE......ci i i ittt e e re e s aee e sraeeeaes 20
Health Care RefOrm WED SEIVICES.....ociiiiiiieiieceeetece ettt e be e st e e e e saaesbeesanesnnes 20
Health Care Reform SChema €lemMENTS.....c.ciiiiciiiiiiicecece et a e st esaae e 22
Chapter 6. Customizing change of circumstances.........ccccceiuiieiieiieieciciciecieianee. 28
Change of CircumstanCes ProCESS FLOW.......ciiuiiieiiiieeiieecciie et et e e re e e stte e e sae e s saae e e rae e seaeeeeateesnaeesnnes 29

Change of CircumstanCes WOTKFLOW.ccuiiiiieiiieiiiee ettt saee s s be e s s aee s s e e e saneas 30

Customizing the default change of circumstances implementation.......cccoceevevieieveeinreeinree e 30
Customizing the change of circumstances IEG SCIPT.....ciicvieiiicieiiriiee it ete e see e 32
Customizing the Change of Circumstances WOrKFLOW........cocveiviiiiiiieiicieeiiee et 33

Configuring the change of circumstance evidence submission WOrkflow........ccoeceeervieiinveeinieeinciee e, 34

Chapter 7. Customizing evidence management wizards.........cccceervincnncnecnecreceecnsc 35

Customizing the 'Add @ MemMDbBEr WIZard........ceecieiiiieiiiieecie ettt ee e s aee e s aee s sbee e s beeesans 35
Customizing wizard eVidenCe MaPPiNgS....cueeeciiiriiieriieeriieeeiieesrreesseeesseeesseeessseeessseeessssessssnesnsens 35
Customizing wizard evidenCe MapPiNg OFAENcucuiiriiieriieeririe et e et e ssteesseeessaeeesseeessseeessseeessnseess 36
Customizing Wizard eVIdeNCE dateS.....cuuiiiiiiiiiierieeeee ettt e s ae e s see e s aeeesnaeeas 37

Chapter 8. Customizing appeal requests.......ccccccreireiieiiniiniincincinciciesiesnesisniacaeee s 38
Setting the appeals requests IEG script and data store schema.......ccccveveeriieinnienicieneeeeeeeen 38
Customizing the appeal request summary PDF dOCUMENT.......cocciiiiiiiiiriiieniteniteeriee s ssvee s e seee s 38

Chapter 9. Customizing the handling of closed cases........cccceeruiruirniininciecnecnecrens 39

Configuring the permanent closure of ClLOSE CASES.....c.uiiiiiiiiiieiiiiee ettt 39
Configuring the reassessment strategy for CloSed CASES......cuvvuiiriiiieiiiiiiniiecee e 39
Customizing the reassessment implementation for closed Cases.......covvivvriieriiierriienniee e 39

Chapter 10. Customizing Trigger POINtS....c..cccccciviiireiienreciniincincincncnecnesnessescacees 40

Chapter 11. Implementing periodic data matching and annual renewalts 41

Storing all existing program group determinationS.......cccocueeiciieiieieeirie et see e see e s ree e e 41
BulkRunProgramGroupELigibility batCh proCess......cucuiivciiiiiiiiiiiiccieceeceiec st 42
Developer overview of periodic data matching and annual renewals.........cccecveieiieiniiennieennieeeeeeeeen 42
POLLING EXTEINAL SYSTEMIS. . eiiieiiiieiiiiciee ettt e st e s s te e s s te e ssateesssteessateesssteessntaesansaesnssaesnseeesns 43
Adding evidence from eXterNal SYSTEMS...c.ciiiiciiiiriee et e s sbee e s be e e ans 43
Creating a batch run configuration for annual renewals or periodic data matching..........ccccoevennee. 43
Implementing case selection for a batCh ... 44
Inserting evidence from external systems with the PDMEvidenceMaintenance APL..........cccccce...... 45
Advising caseworkers about income evidence miSmMatChes........ccccvvcveiicieiicieinee e 45
IMpPLlementing CITIZEN NOTICES. ..ottt ettt s st e s see e s sate e ssateessstaesssteessssaessnsaesnes 46
Implementing Citizen NOTICE BENEIAtION.iii ittt sbe e re e e s be e e s baeens 46
Implementing the calculation of APTC for inclusion in NOTICES......ccvcuiiriieeriiieniieeecie e a7
Configuring XML server load balancing for NOTICES.ccuiiiviiiiriii ittt 50
Overview of the periodic data match batch process floW.........eeivecviiiiiccciee e 50
Running the periodic data matching batCh ProCESSES.....cocviiiriiiiiiiiiee et 52
PDMProjectedELigibility DatCh ProCeSS......uiii ittt s s ssaae s 52
PDMProcessAutoCompletions batCh PrOCESS.........uiii i it e e e e e e 53
Configuring automatic completion intervals for periodic data matching........cccecveveiiiiriiieiniieeniieeeeeen, 54
Configuring and running the annual renewals batCh ProCeSSES......ccvivciiiriiiiiiieiiciee e 54
Configuring automatic completion intervals for annual renewals.........ccccevevieeievieeinieeisieeniieeesieenne 54
Overview of the QHP annual renewal batch process floW.........ceeeceiieiiecciiie e 54
Running the annual renewals for QHP batCh proCesses.......oucviirciiiiiiiiniieiee e 56
Overview of the Medicaid annual renewal batch process floW......cccecccuveeeecciieei e, 58
Running the annual renewals for Medicaid batCh pProCess......ccccveieiicveiicieiicieccecce e 59
Overview of the CHIP annual renewal batch process floW.......cccueeeeeeciiieiiccciiee e 60
Running the CHIP annual renewals batCh ProCeSS.......uiviiiiiiiiiriienieerreesree et 61
Triaging periodic data matching and annual renewal batch process errors......c.ccccvveveeerceeerieensceennnnen. 62
Checking for batch processing errors and reprocessing failed Cases......ccccccvvveerrieeinieeinieeenseennnne 62
Identifying Medicaid or CHIP cases that were not automatically renewed.......ccccccevvvveirieeinceennnnen. 63
Diagnosing PDM and AR batCh run failures.......cocuiiicieiiiiieniieecriecsiee sttt sste e s e ssae e ssaeeeas 64
Extracting rule objects snapshots to SessionDOC Style HTML....cocccuiiiiieiiiieiniieieiecceeeeee e see e 66
Customizing periodic data matching and annual reNEWALSccccveeriiiiiiiieeniieeeee e 66
Customizing the storage of program group determinations.......ccocceevvieeiiiieeiniieeenieeeree e 66

Customizing projected eligibility for periodic data matching and annual renewals.........ccccoevvvernneen. 67

Customizing the citizen account with NeW eVideNnCe tYPEeS....ccucveiicieiriieriiieeree e 78
Customizing the citizen account for periodic data matching and annual renewals........cccccceveveeinveenne 78
Configuring contestable eVIdENCE tYPES.......iiiiiiiiiecteteee e s ee e s bee e saeas 78
Modifying periodic data matching home page MESSAZES......cuvviivriierriiieiriie ettt see e 78
Modifying periodic data matching My Updates page mesSSages....ccccvvvviiriieeriiieniieesseeessneesseneens 79
Modifying annual renewals home Page MESSAZES.ccuiiiiiiiriiiiriiierite et srree s e e s seeesssbeesseeessasees 79
Modifying the annual renewals My Updates page........ccccoevueiiiiiiiiieniiieiccecctec et 80
CUSTOMIZING EVIAENCE CONVEITEIS. . ciiiiieiiiieieiteieite ettt seirteseteesssteeesteeesbaeesbaesssaessssaesssaessseesssseesssseesns 80
EXTErnal @VideNCe CONVEITEIS. . .ottt st e st e b e s se e e b e ne e s s e e sneeenes 80
Implementing a new external eVideNnCe CONVEIMET.....ccuiiiiiieriiierrite sttt sseeesseeessreessareessasee s 81
Customizing an external eVideNnCe CONVEIETc.uiiiiiei ittt sttt e serte e seree e saeeeseseeesreeeseneeesans 83
Disabling an external eVIdENCE CONVEITET.....cciiiiiiiiieiieeerie ettt este et sae e s see e s seeessaaeessaeeessaeeas 83

Chapter 12. Customizing inconsistency period processing.......c.cccceeeveieecnecrecreceess. 85

Creating a custom event handler for inconsistency period ProCesSING.......ccecveerreeerieeeriieeesnieeesseeesnnees 85
INCONSISTENCYPErIOd WOIKFLOW. ...uiieiieiiiee et e e e e e e ree e e s e nbe e e s senbeeeesennseeeens 86
Inconsistency Period WOTrKfLOW APIS... ... ittt eree e e tre e e s e eree e e s e e ate e e s e enbeeeeeenasaeeeaenns 86
Inconsistency Period Evidence Activation batCh proCess........ccvvciiieeeccciiee e 87
Inconsistency Period Evidence Activation Stream batCh process.......ccoevivecviiiiiccciee e, 87

Chapter 13. Configuring Account Transfer with the Federally Facilitated
(25 Cod 1 - Ty = T 1

The FederalEXChange COMPONENT......coiciiiiciie ittt sttt see s s ree e s bee s sbee e sbeessbeessseeesareessanes 88
Configuring Federal EXCRANGE.......civiiiiiiiieiieieiie ettt ettt e ste e st e s s e e s sbe e e svaeesbaessasaessasaeennes 88
ACHIVAtING ACCOUNT TraNSTOI . ciiiiiiiiiiitteeste ettt e s e e s e e s s bee e s bt e e ssbeeessbeeessseessnnens 88
Enabling batch processing of account transfer appliCationS.......ccvevcieeriiieriiieniieenrieeecie e 88
Configuring the sending of Account Transfers t0 CUram........cccuecieeeeiesieneecieceere e e e veeaeas 89
Selecting the source data set for outbound MaAPPING.....c.ccivviiiriiiiiiieeeieeereeee e 89
Setting the identity of the SeNder US State......couciiiiiiiiiiiiiiiicieccecre et saee e 89
Setting the AcCouNt TranSTer A8ENCY TYPE...uiii ittt ettt re e s bee s s bee s saes 90
Setting the federal eXChange COUE.......iiiiiiiiii s re e s bae e 90
Linking the Datastore schema name to the Account Transfer person reference.......cccccevveeeineeennen. 90
Setting the data store schema name for the FFE sChema......ccccovviiiiiiiniiiiiicecceccee e, 90
Configuring Account Transfer date/time formats.......ccvciiiiiiieiiiiceee e 90
Extending Federally Facilitated Exchange data MappingsS.....cccceeievieieriieinrieinieeenieessieesseeesseeessveeens 91
Adding or updating the attributes for a data store entity.....cccccceveciiiniieiniieine e 91
Adding an entity as a child of a mapped data store entity....cccccccevvceeiiiiernieenreeeee e 92
Adding or replacing a top-level data Store entity....ccoceveieinieiiiiececeee e 92
Adding or updating entities for an outbound response to the FFE.........ccociiviiiiiniiiinieecneecee e 93
The WED Service JAVa APL..... .ottt s e e s s r e e be e s s e e seesmreeneeenes 94
Inbound Account Transfer payload ProCESSING.......cucciiirrieiriiiieiieeeiteesrreessreesreeesrreessreeesseeessseeens 94
OUTDOUNG PrOCESSING...eiiuieiieiiieieieeieree sttt sttt eseteesetteessteeserteesasteesasteesaseeesaseaesasteessseaesaseeessnsasssseessne 96
HCRFedExchangeAppStatus code table desCriptionS.......ccicciieieciieiriieiniieeeeeeeee e see e seee e 96
AdAING 8 NEW ENTITY . ccutiiiiiieieiee ettt e st e e s st e e s s teessateessateesssteessstaesssseesnssaessssaesssseesnssaeanns 97
T =3 eI = Y 0 AV E=T o] o 1= SO PSPPSR 97
Updating the Federal Exchange data store SChemMa........civiiiiiiieniiieiieecec et 98
Account tranSTer WOTKILOWS.co it e 99

Chapter 14. Monitoring Health Care Reform........cccccceveirniiiniieiinireccreccnecinennee.... 100

MONITOrING HCR aPPLiCAIONS..c..iiiiiieiiiiee ittt ettt ste st e st e e st e s sbe e s sbee s sbeessabeessabaessasaessseeesaseas 100
HCR application intake ProCESS OVEIVIEW......ccciccviieeieeiiieeeeeciiieeeeecvteeeeesvtreeesesseeessesssseessensssnesssnnns 100
(deprecated) Monitoring HCR iNtake rePOrtS.....ccuiicieceerciircee et ste et e te e e see e sveeseeesaeesneeens 103
Monitoring HCR intake process iNSTANCE EITOIS......iiiiviiiirvieeiriee ittt eeieessteesseeesseeesseeessaeeessaeeessnees 105

MONITOFING CUIAM PIrOCESSES. .ueetierrerteeierreesesseesteseessessessesssessaesessesssesssessesssessesssessesssessesssessesssesssessanns 106
Monitoring WOrkfloOw proCesS INSTANCES......civciiiiiiiiiiiee sttt see e st e s s e s s bee e neas 106
MONItOring ProCess INSTANCE EITOIS.....uiiiciiiiiieiiciee st eeitessite e ssiee s site s steessbeessbaesssbeessaseessaseesnaseas 106

vi

Chapter 15. Running a bulk reassessment of all open integrated cases................108

BULKICREASSESSIMENT...cciiiiiiieieeeeiet ettt e e et e e e e et e e e e e e ettt e e s e es s s b a—————————aaasssssssseeesasaseeseeeeeessesssssssssnnnnns 110
BULKICREASSESSMENTSIIEAM...cciiiiiiiieietitttee et e e et e e e e et e et e et e e et et eeeaaa s b a— s asssessesessaseseeeeesesssssssens 110

[\ 0] (o =Y - TR I 1]

RNV (oY oo oV oo g YT =T =\ [1 113
TrAAEMAIKS ... vt e ettt ettt ettt ettt et e et e e sttt e e bt e e s bt e e s bt e e s beeesbaeesaseeesabaeesseeesasaeessaeesasaeesaseeesnseeesnn 113

Chapter 1. Configuring Health Care Reform

Complete some or all of the following tasks to configure your Health Care Reform implementation.

Configuring appeal requests

If you plan to use IBM Curam Appeals with HCR, you must ensure that application programs of any status
can be appealed.

Procedure

1. Log in to the Curam Administration application as a user with administrator permissions.
2. Select Universal Access > Application Cases.

3. Select the application case name.

4. In the Appeals Processing section, set the Appeal All Programs check box to true.

Appeal case types and appeals process configuration

If you are licensed for the Clram Appeals application module, you can install Ciram Appeals with HCR. By
default in the HCR application, each of the HCR case types are appealable and the appeals process is
configured.

By default, the 'appealable' indicator is set to true on all of the HCR case types. Caseworkers can appeal
any denied application, product delivery case or product delivery determination, regardless of its status.

By default, the Appeals process is set up as follows:
- 1. Stage 1 ="'Any'

— The HCR Evidentiary Hearing, which is normally the first stage in the process, maps to the Cliram
Hearing type. However, it is possible that the HHS Appeal (which maps to a Hearing Review) can
happen first, so to support this, the type for stage 1 should be 'Any".

2. Stage 2 = 'Hearing Review'
— This stage maps to the HHS Appeal as described in the federal rules.
3. Stage 3 = 'Judicial Review'

— This stage maps to the Judicial Review as described in the federal rules.

Configuring the resilient option for the process intake application workflow

After you install version 6.0.5.5 or later, ensure that you set the resilient option for the process intake
application workflow, which enables a more granular workflow with better error handling.

Procedure

1. Log in to the Ciram Administration application as a user with Administrator privileges.
2. Set the curam.intake.use.resilience configuration property to true.

Related concepts
“HCR application intake process overview” on page 100

© Copyright IBM Corp. 2012, 2018 1

Use this information to understand how HCR applications are processed, from the submission of an
application to the creation of product delivery cases.

Configuring rules to determine the coverage period start date

You can configure how the effective date of a change of circumstance is used in determining the coverage
period start date.

The environmental property, curam. hcr.effectivedate indicates whether to use the Evidence
Effective Date to indicate when the reported change takes effect. It determines whether the change of
circumstance takes effect based on the date the change happened (Effective Date) or based on when the
evidence change was reported (Date Received). The property is used for all programs. The default value is
YES.

YES means that the coverage period start date is based on the received date of the applicable change in
evidence, and the effective date of change of the evidence is not used. NO means that the coverage period
start date is based on the effective date of change for the applicable change in evidence, and the received
date is not used.

Example 1, if the case was eligible since 20 January and there was income on the application, then there
is an income change on 19 July. The Received Date is left as 20 January and the caseworker changes
Effective Date of Change to 19 July and updates the income amount. When there is a coverage period
change, the end date is 31 July.

Example 2, if the case was eligible since 20 January and there was income on the application. Then, there
is an income change on 19 June and the client reports it on 2 July. The caseworker changes the Received
Date to 2 July and the Effective Date of Change to 19 June and updates the income amount. When there
is a coverage period change, the end date is 30 June.

To meet project requirements, you can customize the rules of program group logic. For more information
about customizing program group logic, see the Run Program Group Logic and Activate Product Cases if
Required related link.

Configuring the Eligibility Viewer

The Eligibility Viewer is an enhancement to caseworker functionality that gives caseworkers a holistic
view of eligibility for either a person or an integrated case. System administrators can customize the
products that are displayed and the appearance of the eligibility viewer. System administrators can also
configure the key events messages that are displayed by the eligibility viewer.

The product implementations are based on Java and might read the display rules for additional
information to display to the user. If you update the display rules, you might also need to update the
product implementations.

Configuring key events

Key events are changes to an integrated case that might affect eligibility. Key changes can be based on
either evidence-based changes or non-evidence-based changes. An icon is displayed on the Eligibility
Viewer below the month in which the key event occurs. Caseworkers can review key events to quickly

determine what has changed on the case and the reason for a change in eligibility.

For information about configuring key events, see the related link.

Related tasks
Implementing key events for the Eligibility Viewer

Configuring a product for the Eligibility Viewer

The Eligibility Viewer has been configured to display eligibility information for all products that are in the
Insurance Affordability (CT26301) integrated case. You can either configure a new product to be

2 IBM Curam Social Program Management : Health Care Reform Developer Guide

displayed on the Eligibility Viewer, or replace an existing product. You can also change the color that is
displayed for a product on the Eligibility Viewer.

About this task

A data retrieval class has been implemented for each product in the Insurance Affordability
(CT26301) integrated case. The implementation is configured based on a PRODUCTTYPE code table
value, for example, PT26304=Insurance Assistance. Colors in the Eligibility Viewer are configured
based on PRODUCTTYPE.

To add or replace a product implementation, or change the color that is displayed for a product in the
Eligibility Viewer, use the following procedure. For more information, see the related link.

Note: System administrators must maintain the performance and scalability of any custom bindings that
they add.

Procedure

« To either add or replace a product implementation, use the following substeps:
a) Create a class that implements the following:

curam.hcr.eligibilitytimeline.productdataretriever.impl.EligibilityProductDataRetriever

b) Configure Guice to use your implementation for the needed product, as shown in the following
examples:

— To set up a product data retrieval map, which is keyed by product type, use the following sample
code:

final MapBinder<String, EligibilityProductDataRetriever>
eligibilityProductDataRetrieverMap =
MapBinder.newMapBinder(binder (), String.class,
EligibilityProductDataRetriever.class);

— To replace insurance assistance, use the following sample code:

eligibilityProductDataRetrieverMap.addBinding(
PRODUCTTYPE . INSURANCEASSISTANCE) . to(
InsuranceAssistanceProductDataRetriever.class);

- To change the color that is displayed for a product in the Eligibility Viewer, update the application
resource TimelineCalendar.propexrties and specify the hex color code for the product that you
want to change.

Related tasks

Configuring the Eligibility Viewer

Configuring look back and look forward periods

In a default installation, all Health Care Reform data retrieval implementations are configured to look back
and look forward a maximum period of one year from the year that is displayed in the viewer. Limiting the
look back and look forward periods improves the performance when eligibility information is retrieved for
cases that extend over a long period time.

About this task

System administrators can configure the look back and look forward periods that determine the periods
for which data is returned and displayed in the Eligibility Viewer. For more information about configuring
the look back and look forward periods, see the related link.

Note: The look back and forward periods that you configure also affect Income Support products,
including Traditional Medicaid, Food Assistance, and Cash Assistance.

Configuring Health Care Reform 3

Procedure

To configure the look back and forward periods, update the following properties in the
TimelineCalendar.properties application resource.

num.years.to.look.forward
num.years.to.look.back

Related tasks

Configuring the Eligibility Viewer

Configuring primary client display settings for Health Care Reform

Organizations can hide references to primary client on various pages.

Use the following application properties to configure whether references to primary client are removed
from display on various pages.

Customizing the default implementation

Display Case Clients on Case List Pages

Property

primaryclient.display.caselistpages.caseclients

Default value

False

Description

Use the property to hide the Primary Client column and display a Client column in the
following clusters:

» My Recently Assigned Cases results.

My Recently Approved Cases results.

Recently Viewed Cases results.
» My Cases results.

« New Case Query results.

« Case Search Results.

» Saved Case Query results.

When the Clients column is displayed, the following case members are listed:

 All active case members with a role of member or primary client, including those with
an end date, for Insurance Affordability integrated cases and applications.

« All case members that are active members of the member case type, including those
with an end date, for Insurance Affordability product delivery cases.

Note: Case member names are sorted in alphabetical order and the case type
determines the case members displayed. Case member names do not include a
hyperlink.

If the value is set to True, multiple case members are displayed.

Display PD Case Clients on IC Home Pages

Property

primaryclient.display.integratedcasehomepage.caseclients

Default value

False

4 1BM Curam Social Program Management : Health Care Reform Developer Guide

Description

Determines whether:

« Multiple product delivery case members are displayed in lists of product delivery
cases that are displayed on the Insurance Affordability integrated case home pages
OR

« Only the primary client of the child product delivery cases is displayed.
Use the property to perform the following action:

« Remove the Primary Client column and replace it with a Clients column in the cases
cluster.

If the value is set to True, all case members of the product delivery case are displayed.

Display Participant Role on Context Panel

Property

primaryclient.display.contextpanel.displayroles

Default value

True

Description

Determines whether a participant's role, for example, a role of primary client or spouse,
is displayed in the integrated case Context panel in Insurance Affordability integrated
cases.

Use the property to hide the following fields within the context panels, including within
the context panels that are displayed in expanded views of lists of cases:

« The Role in the Context panel of an Insurance Affordability integrated case.

« The Relationship column in the Insurance Affordability integrated case Context panel
when the List view is selected.

If the value is set to True, the integrated case Context panels display the participant's
role.

Display Primary Client Role Type in Case Search Case Participants Modal

Property

primaryclient.display.casesearch.caseparticipantmodal.roletype

Default value

True

Description

Determines whether:

» Arole of primary client is displayed for the primary client of a case when the
caseworker is viewing a list of case participants from the Participants column within
the Case Search results cluster OR

» Arole of member is displayed instead of a role of primary client.
If the value is set to True, a role of primary client is displayed. This property is

associated with all of the pages that are listed in
primaryclient.display.caselistpages.caseclients.

Hide Primary C

lient Name on Insurance Affordability Integrated Case Tab and Tab Header

Property

primaryclient.integratedcase.display.person.name.tab.title.header

Default value

False

Description

Determines whether the name of the primary client is displayed in the tab title and tab
header of the Insurance Affordability integrated case.

If the value set to True, the name of the primary client is not displayed.

Display Primary Client on various Integrated Case pages

Configuring Health Care Reform 5

Property

primaryclient.display.integratedcase

Default value

True

Description

Determines whether references to the role of primary client are displayed on various
Integrated Case pages.

Use the property to perform the following action:

« Change the display of the role of primary client to member on the Case Participants
list page within the Insurance Affordability Integrated Case.

If the value set to True, the role of primary client is displayed on the various Integrated
Case pages.

Display Primary Client on various Person pages

Property

primaryclient.display.person

Default value

True

Description

Determines whether visual references to the role of primary client are displayed on
various Person pages.

Use the property to perform the following action:

« Change the display of the role of primary client to member on the Cases page under
the Care and Protection tab on the Person record.

If the value is set to True, the role of primary client is displayed on various Person
pages.

Enabling hook points

If the system property primaryclient.display.caselistpages.caseclients is set to True, you
can use the hook point curam.core.hook.impl.CaseClientsPopulationHook to customize the list
of clients to display in the following case list pages:

« My Recently Assigned Cases.

« My Recently Approved Cases.

« My Recently Viewed Cases.

« My Cases.

« New Case Query.

« Case Searches.

« Saved Cases.

You can enable the hook point through the standard Guice dependency injection mechanism.

When you implement CaseClientsPopulationHook, you can customize per case type to return:

« The CaseParticipantRoles of type member or primary client OR

« The members of the CaseGroups of type member that are associated with the case.

For Income Support, the following defaults apply:

« CaseParticipantRoles of type member or primary client are returned for integrated case types.

« CaseParticipants of CaseGroups of type member are returned for the product delivery case types.

6 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 2. Customizing the Health Care Reform
portal

You can customize the Health Care Reform portal, which consists of a custom Citizen Portal for Health
Care Reform.
Related tasks

Configuring the number of communications on the Notices tab

Customizing the Health Care Reform Motivations

The Health Care Reform portal uses the IBM Clram Universal Access Motivation infrastructure for the
online application processes required by ACA legislation.

Each Health Care Reform motivation is associated with an IEG script, a data store schema, and a display
rule set. The following Health Care Reform motivations are available by default:

« Find Assistance

« Browse for plans

 Quick Shopping

- Employer Sponsored Coverage
 Apply for an exemption

For more information about motivations, see the IBM Curam Universal Access Customization Guide.

IEG scripts customization
The default Health Care Reform portal IEG scripts are in the HCROnline component. You can customize
the default IEG scripts by creating a custom copy.

For more information about customizing IEG scripts, see the Authoring Scripts Using Intelligent Evidence
Gathering (IEG) guide.

Eligibility Display Rules customization

When an IEG script completes, the eligibility results page is displayed according to the eligibility results
display rules. You can write custom display rules to customize eligibility calculations for the eligibility
results page. In addition, Health Care Reform provides several other mechanisms for customizing rule
sets.

The default display rules reference the default eligibility rule sets to determine eligibility. The
curam.healthcare.eligibility.ruleset.name property points to the name of this rule set. You
must update this property if custom eligibility rules are to be used.

For information about configuring properties, see "Configuring Application Properties" in the Cliram
System Configuration Guide.

For information about customizing rule sets in a compliant manner, see the Curam Express Rules
Reference Manual and the Ciram Development Compliancy Guide.

There are several areas in the script rules where you can provide a custom implementation as follows.

© Copyright IBM Corp. 2012, 2018

Customizing the conditional display of IRS income information
You can customize the eligibility rules that determine the display of retrieved income from the IRS.

About this task

IRS income data that is retrieved for members in a tax household is not displayed if any of the following
conditions are true:

« There is more than one financial household within the overall household.
« There are any American Indians or Alaskan Natives in the household.

« The household income is below the Medicaid or CHIP threshold for any of the applicants in the
household.

These rules are implemented by the IRSIncomeDisplayDeterminatoxr rule class available in the
default HealthCareReformEligibilityRuleset rule set.

Procedure

1. Create a custom rule class that adheres to the default structure provided in the Abstract Eligibility rule
set, AbstractEligibilityRuleset.IRSIncomeDisplayDeterminatoxr

This custom rule class must ultimately extend the
AbstractEligibilityRuleset.DefaultIRSIncomeDisplayDeterminatoxr rule class.

2. Update the curam.healthcare.displayirsincome.invoking.ruleclass.name property to
point to the fully qualified name of the custom rule class.
For example, MyRuleSet.MyRuleClass.

Customizing the conditional display of specific questions for Medicaid, CHIP, or IA
You can override the default eligibility rules that determine which specific questions are asked based on
eligibility for Medicaid, CHIP, or IA.

About this task

Certain eligibility rules are run as the citizen progresses through the script. These rules control the flow of
the script according to the citizen's eligibility for certain programs. When the user enters income
information for the household, these rules run. The results of these rules allow the script to ask intelligent
guestions pertinent to the program for which a household member is considered eligible.

Procedure

1. Create a custom rule class that adheres to the default structure provided in the
AbstractEligibilityRuleset.EligibilityDeterminationCalculatoxz rule class.

This custom rule class must ultimately extend the
AbstractEligibilityRuleset.DefaultEligibilityDetermination rule class.

2. Update the curam.healthcare.eligibility.invoking.ruleclass.name property to point to
the fully qualified name of the custom rule class.
For example, MyRuleSet.MyRuleClass.

Customizing the determination of projected annual income for a citizen
You can override the default eligibility rules that determine the projected annual income for a client.

About this task

Income calculation rules are run after you capture a household member's complete income details,
including any deductions or exclusions. The projected annual income is then calculated by rules that are
based on these details. The citizen can choose to attest to the determined projected annual income or
chose to enter a different value. If the customer enters a different value, the rules take this value into
consideration for calculating final eligibility.

8 IBM Curam Social Program Management : Health Care Reform Developer Guide

Projected annual income is determined by invoking MemberIncomeCalculator available in the default
HealthCareReformEligibilityRuleset. The property is
“curam.healthcare.memberincome.invoking.ruleclass.name” and is set to a default implementation of the
HealthCareReformEligibilityRuleset.MemberIncomeCalculator rule class.

Procedure
1. Create a custom rule class that adheres to the default structure provided in the Abstract Eligibility rule
set AbstractEligibilityRuleset.MemberIncomeCalculator.

This custom rule class must ultimately extend the
AbstractEligibilityRuleset.DefaultMemberIncomeCalculator rule class.

2. Update the curam.healthcare.memberincome.invoking.ruleclass.name property to point to
the fully qualified name of the custom rule class.
For example, MyRuleSet.MyRuleClass.

Moving the Log Out button to improve usability

The Log Out button from the Welcome Person menu is now available in the Universal Access mega-menu
for improved accessibility. For solutions that use a custom Citizen Portal, such as Curam Income Support
for Medical Assistance (Health Care Reform), you can manually implement this improvement.

About this task

For Cdram Income Support for Medical Assistance (Health Care Reform), the Log Out button is in a drop-
down menu next to the welcome text on the mega-menu bar. The text string ‘LogOut’ displayed on the
user interface is specified by the value of the title attribute of the banner-menu element added to the
associated CITWSAPP.properties file.

If you move the Log Out option, you can choose to retain or remove the previous Log Out option from the
welcome person drop-down menu.
Procedure

1. Edit the custom CITWSAPP . app file for the new Log Out button and enter the following code:
<ac:banner-menu type="logout" title="logout.title" />

2. Edit the custom CITWSAPP.properties file for the new Log Out button and enter any required
properties.

Enabling the Notices tab

The Notices tab on the Citizen Portal allows users to view their communications online. The Notices tab is
shown by default in Ciram Universal Access. For solutions that use a custom Citizen Portal, such as
Curam Income Support for Medical Assistance (Health Care Reform), you can manually enable the
Notices tab.

About this task

When enabled, the Notices tab is displayed on the navigation bar in Universal Access. The Notices tab has
a list of all types of communications either sent to the citizen by the agency or sent to the agency by the
citizen.

Customizing the Health Care Reform portal 9

Procedure

1. Edit the custom CitizenAccount. nav file and enter the following code:

<nc:navigation-page id="mycommunications"
page-id="CitizenAccount_communications" title="leaf.title.communications"
icon="CitizenAccount.communications.notices.leftnav.icon"
description="CitizenAccount.desc"/>

2. Edit the custom CitizenAccount.properties file and enter any required properties.

10 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 3. Integration with external systems

The Health Care Reform solution can call external systems at certain points to gather information
necessary for application processing. For example, a call can be made to the Federal Hub to verify SSN

and citizenship status for a citizen.

The customization and configuration options for these integration points are as follows:

Customizing the external system implementations

By default, Health Care Reform provides several interfaces and corresponding implementations for
integrating with external systems. Customers are free to provide their own implementations for these

integration points.

About this task

Note: You might want to customize the default Federal Hub implementation by using the provided

customization points.

The following table lists the default external system interfaces, default implementations, and Federal Hub

implementations.

Interface

Default Implementation

Federal Hub Implementation

curam.hcr.verification.service.impl.
SSACompositeBusinessService

curam.hcr.verification.service.impl.
SSAVerificationServiceImpl

curam.hcr.verification.service.impl.

FederalSSACompositeServiceImpl

curam.hcr.verification.service.impl.
AnnuallncomeDataService

curam.hcr.verification.service.impl.
AnnualIncomeDataServiceImpl

curam.hcr.verification.service.impl.
FederalAnnualIncomeVerificationServiceImpl

curam.hcr.verification.service.impl.
IRSHouseholdDataService

curam.hcr.verification.service.impl.
IRSHouseholdDataServiceImpl

No service available

curam.hcr.verification.service.impl.
LawfulPresenceVerificationService

curam.hcr.verification.service.impl.
LawfulPresenceVerificationServIimpl

curam.hcr.verification.service.impl.
FederalLawfulPresenceVerificationServiceImpl

curam.hcr.verification.service.impl.
MECVerificationService

curam.hcr.verification.service.impl.
MECVerificationServiceImpl

curam.hcr.verification.service.impl.
FederalMECVerificationServiceImpl

curam.hcr.verification.service.impl.
ResidencyVerificationService

curam.hcr.verification.service.impl.
ResidencyVerificationServiceImpl

No service available

curam.hcr.verification.service.impl.
IncomeDataService

curam.hcr.verification.service.impl.
IncomeDataServiceImpl

curam.hcr.verification.service.impl.
FederalCurrentIncomeVerificationServiceImpl

curam.hcr.verification.service.impl.
CloseDHSCaseService

curam.hcr.verification.service.impl.
CloseDHSCaseServiceImpl

curam.hcr.verification.service.impl.

FederalCloseDHSCaseService

curam.hcr.verification.service.impl.
ESIVerificationService

curam.hcr.verification.service.impl.
ESIVerificationServiceImpl

curam.hcr.verification.service.impl.

FederalESIVerificationServiceImpl

curam.hcr.verification.service.ridp.
fars.impl.FARSVerificationService

curam.hcr.verification.service.ridp.
fars.impl.FARSVerificationServiceImpl

curam.hcr.verification.service.ridp.
fars.impl.FederalFARSServiceImpl

curam.hcr.verification.service.ridp.
primary.impl.
RIDPPrimaryRequestVerificationService

curam.hcr.verification.service.ridp.
primary.impl. RIDPPrimaryRequest
VerificationServiceImpl

curam.hcr.verification.service.ridp. primary.impl.
FederalRIDPPrimaryRequestServiceImpl

curam.hcr.verification.service.ridp.
secondary.impl. RIDPSecondaryRequest
VerificationService

curam.hcr.verification.service.ridp.
secondary.impl. RIDPSecondaryRequest
VerificationServiceImpl

curam.hcr.verification.service.ridp. secondary.impl.

FederalRIDPSecondary
RequestServiceImpl

Procedure

1. To create a custom implementation, write a new class that extends one of the external system default

implementations.

© Copyright IBM Corp. 2012, 2018

11

2. Bind the custom implementation to the corresponding interface by using a Guice module.
For example:

public class CustomModule extends AbstractModule %

@Override

protected void configure() %
binder().bind(IncomeDataService.class).to(CustomIncomeDataService.class);

hy

3. Ensure that the module is added to a custom Module Class Name . DMX file.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<table name="MODULECLASSNAME">
<column name="moduleClassName" type="text" />
<row>
<attribute name="moduleClassName">
<value>gov.myorg.CustomModule</value>
</attribute>
</row>
</table>

Customizing request or response fields for external system calls

You can customize the request and response fields that are used by the external system interfaces by
extending the respective request or response classes. You can then use the updated request or response
classes in the custom implementation of the external system interface.

Procedure

1. Extend the request or response classes.
For example:

CustomCitizenshipVerificationRequestDetails
extends CitizenshipVerificationRequestDetails {
//Define custom attributes

é/Define getter and Setter methods

CustomCitizenshipVerificationResponseDetails
extends CitizenshipVerificationResponseDetails {
//Define custom attributes
//Define custom getter and setter methods

¥

2. Use the updated request or response classes in the custom implementation of the external system
interface.
For example:

CustomCitizenshipVerificationServiceImpl
implements CitizenshipVerificationService {

CustomCitizenshipVerificationResponseDetails
verify (CustomCitizenshipVerificationRequestDetails requestDetails)$

¥

External system processors

During the application process, external system Java classes that are called processors callout to external
systems and store the information received in the data store. For example, a call is made to the Federal
Hub to verify SSN and citizenship by using the CombinedSSAServiceViewProcessor processor. The
response is stored in the data store by the processor and can be used later to facilitate the electronic
verification process. By default, the following processors are available:

e curam.hcr.verification.datastore.impl.CombinedSSAServiceViewProcessor

12 IBM Curam Social Program Management : Health Care Reform Developer Guide

« curam.hcr.verification.datastore.impl.AnnualIncomeViewProcessor

e curam.hcr.verification.datastore.impl.CurrentIncomeViewProcessor
e curam.hcr.verification.datastore.impl.LawfulPresenceViewProcessor
« curam.hcr.verification.datastore.impl.MECViewProcessor

e curam.hcr.verification.datastore.impl.RIDPFARSViewProcessor

e curam.hcr.verification.datastore.impl.RIDPPrimaryViewProcessor

« curam.hcr.verification.datastore.impl.RIDPSecondaryViewProcessor

Configuring the Federal Hub implementation

By default, all external system calls are routed to the default (empty) implementations for the external
system interfaces. Complete the following steps to route the external system calls to the Federal Hub
implementations. You must restart the server after you update these values.

About this task

For information about configuring properties, see "Configuring Application Properties" in the Cliram
System Configuration Guide.

Procedure

1. Set the curam.healthcare.test.registerMockExternalSystems property to false.

2. Set the curam. fed.hub.verification.system.name property to the Federal Hub system name.
3. Set the curam.fed.hub.verification.system.registered property to true.

4. Restart the server.

Configuring a State systems implementation

You might want to implement a custom implementation to call State systems as well as calling the
Federal Hub.

About this task

For example, you might want to retrieve Current Income from the State Quarterly Wages system, and to
fall back on the corresponding Federal Hub service only if the information is not available.

Procedure

Create a custom implementation for the service that first calls the State system, and then calls the
Federal Hub implementation.

Customizing electronic verifications

External systems are also used for electronic verification of information that is provided in the application.
Health Care Reform provides support for integrating with external systems such as state systems or third-
party commercial applications that are identified by states as data sources. You can also customize
electronic verification.

By default, Health Care Reform provides processing for Electronic Verification of data such as Citizenship,
Residency, or SSN. The framework for Electronic Verification supports adding implementations for custom
verification processing for data elements that are either not covered by default processing or those data
elements that are added as part of the custom implementation. Also, it is possible to override the default
Verification Processing, if needed.

Integration with external systems 13

Default verification processors
By default, the following verification processors are available.

curam.hcr.verification.online.impl.ResidencyVerificationProcessor - Considers the Residency to be
verified if it was indicated (isStateResident attribute of the Person data store entity or has address with
the state to be configured state) that a Person was a state resident (or) If the Person was indicated to be
a state resident and the information that is retrieved about the person from external system (stored in
the ExternalSystemResidencyInformation data store entity) also indicates that the person is a state
resident. This processing is completed for all the persons who are marked as applicant (isApplicant
attribute of the Person data store entity) on the case.

curam.hcr.verification.online.impl.CitizenshipVerificationProcessor - Considers the Citizenship to be
verified if it was indicated (isUSCitizen or isUSNational or lawfullyPresent attribute of the Person data
store entity) that a Person was a US citizen or US Nation or Lawfully Present alien and the information
that is retrieved about the person from external system (stored in the
ExternalSystemCitizenshipInformation data store entity) also indicates that the person citizenship
verified. This processing is completed for all the persons who are marked as applicant (isApplicant
attribute of the Person data store entity) on the case.

curam.hcr.verification.online.impl. IncarcerationVerificationProcessor - Considers the Incarceration
status to be verified if it was indicated (isIncarcerated attribute of the Person data store entity) that a
Person is incarcerated (or) If the Person was indicated to be not incarcerated or incarcerated pending
disposition and the information that is retrieved about the person from external system (stored in the
RetrievedPersonInformation data store entity) also indicates the same. This processing is completed for
all the persons who are marked as applicant (isApplicant attribute of the Person data store entity) on
the case.

curam.hcr.verification.online.impl.HouseholdSSNVerificationProcessor - Considers the SSN to be
verified if the SSN was provided (ssn attribute of the Person data store entity) and the information that is
retrieved about the person from the external system (stored in the ExternalSystemSSNInformation data
store entity) also indicates that the given SSN was verified. This processing is completed for all the
persons who are marked as applicant (isApplicant attribute of the Person data store entity) on the case.

curam.hcr.verification.online.impl.IncomeVerificationProcessor - Considers the Income data to be
verified if the Income was provided(Incomeltem data store entity has records) and the information that
is retrieved about the person from the external system (store in the IRSAnnualTaxReturn or
ExternalSystemIncome data store entity) are reasonably compatible/E verified. This processing is
completed for all the persons.

curam.hcr.verification.online.impl. MECVerificationProcessor - Considers the MEC to be verified if the
person indicated to not receiving benefits (isReceivingBenefits attribute of the Person data store entity)
and the information that is retrieved about the person from the external system (stored in the
ExternalSystemMECDetails data store entity) also indicates the same. This process is completed for all
the persons.

Adding custom verification processing
Complete the following steps to add custom verification processing.

Procedure

1.
2.

14 IBM

Edit CT_VerificationItemType.ctx to add an entry to the VerificationIltemType code table.

Create an implementation of the curam.hcr.verification.online.impl.VerificationProcessorinterface.
Ensure that the getVerificationType () API returns the code table code you added.

. Install the custom implementation by using a custom Guice module. The custom Verification
Processing implementation can be bound by using a Guice Set MultiBinder.
For example:

public class CustomModule extends AbstractModule §
@Override
protected void configure() {
Multibinder<VerificationProcessor> binder = Multibinder.newSetBindex(
binder(), VerificationProcessor.class);

Curam Social Program Management : Health Care Reform Developer Guide

binder.addBinding() .to(CustomVerificationProcessor.class);

¥
¥

4. Add an entry that contains the custom Guice module name to a . DMX file for ModuleClassName entity.

Overriding the default verification processing
Complete the following steps to override the default verification processing.

About this task

Each entry in the VerificationItemType represents a kind of data item, such as Citizenship.

Procedure

1. Review CT_VerificationItemType.ctx to identify the code for the data item type for which the default
processing must be overridden.

2. Create an implementation of the curam.hcr.verification.online.impl.VerificationProcessorinterface.
Ensure that the getVerificationType () API returns the code table code you identified.

3. Install the custom implementation by using a custom Guice module. The custom Verification
Processing implementation can be bound by using a Guice Set MultiBinder.
For example:

public class CustomModule extends AbstractModule {
@Override
protected void configure() {
Multibinder<VerificationProcessor> binder = Multibinder.newSetBindex (
binder(), VerificationProcessor.class);
. binder.addBinding() .to(CustomVerificationProcessor.class);
3

4. Add an entry that contains the custom Guice module name to a . DMX file for ModuleClassName entity.

Supported federal hub verification services

HCR supports a number of federal hub verification services that are used to verify evidence. Only specific
versions of these services are supported.

Table 1: Supported federal hub verification services

Federal hub verification service Supported version
Remote ID Proofing Sprint 14

SSA Composite Sprint 15

Verify Lawful Presence (VLP) Sprint 15

Verify Employer Sponsored Insurance (ESI) Sprint 14

Verify non-ESI Minimum Essential Coverage Sprint 15

Verify Current Income Sprint 14

Verify Annual Income Sprint 15

Integration with external systems 15

Chapter 4. Customizing case management

You can customize Health Care Reform case management artifacts such as dynamic evidence, eligibility
rule sets, and conditional verifications.

Dynamic evidence customization

Health Care Reform provides a number of dynamic evidence configurations in the HCR component. The
Health Care Reform dynamic evidence configurations model information that is captured and maintained
for the various ACA programs.

For information about customizing dynamic evidence, see the Ctiram Dynamic Evidence Configuration
Guide.

Eligibility rules customization

Health Care Reform provides a default set of eligibility rule sets in the HCR component. You can customize
these eligibility rules for your custom requirements.

For information about customizing eligibility rules, see the Inside Ciram Eligibility and Entitlement Using
Curam Express Rules guide.

For information about compliantly customizing the default rule sets, see the Cliram Development
Compliancy Guide.

Customizing non-financial rules failure reasons

You can customize non-financial rules failure reasons by updating the relevant failure reason in the
CT_HCIneligibleReason.ctx code table file.

About this task
Changing non-financial display rule descriptions does not affect the eligibility rule interface contract, and
thus does not require any changes to the actual display rules. Failure reasons are picked up automatically.

Procedure

1. Open EJBServer\components\HCR\codetable\CT_HCIneligibleReason.ctx
2. Modify the non-financial failure reason description for the failure reason you want to change.

Conditional verifications customization

Health Care Reform application cases and integrated cases are configured to use the verification
framework. You can customize conditional verification rule sets in the same way as other rule sets.

For more information about configuration of verifications and conditional verifications, see the Curam
Verification Guide.

For information about compliantly customizing the default rule sets, see the Cliram Development
Compliancy Guide.

16 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 5. Customizing plan management

Complete the following tasks to customize the default plan management implementation.

Integration with Plan Management

When a citizen applies for insurance affordability assistance through Caram, they must go to a plan
management vendor's website to view and purchase plans. To facilitate this access, you must integrate a
plan management vendor with the Cdram application. You can integrate with the plan management
vendor of your choice.

Important: IBM Curam implements a vendor-agnostic approach to plan management integration and
does not include an implementation of the plan management adapter in the product. Each project is
responsible for implementing their own integration between the Cliram system and the plan management
system of choice.

Plan management integration is accomplished with a combination of both user interface and web services
integration.

A plan management vendor's user interface is shown in an inline frame on a Cliram page.

Information is exchanged between Cdram and the plan management vendor through two categories of
web services:

« Web services that are owned by Ctiram (inbound)
« Web services that are owned by the plan management vendor (outbound)

This approach allows the citizen to enroll on a plan on the plan management vendor's system with the
eligibility information that is determined on the Curam side. In addition, Cdram can query the plan
management vendor's web services to read and store any plans in which a citizen enrolls.

The plan management adapter interface

A plan management interface is provided which customers must implement. The custom implementation
allows customers to communicate with their chosen plan management vendor through web services.

The methods in the interface are called at different points during processing. For example, the
getEnrollmentDetails() method is called to determine the plan details after a citizen successfully enrolls
on a plan in the plan management system.

A default curam.planmanagement.adapter.impl.PlanManagementAdapterDefault
implementation of the plan management adapter interface is provided. To provide some insulation from
future changes, extend this class instead of directly implementing the interface.

curam.planmanagement.adapter.impl.PlanManagementAdapter
« getBenchmarkPlanDetails()

Retrieves the benchmark plan amount and essential health benefit premium amount from a plan
management vendor.

« getEnrollmentDetails()

Retrieves the enrollment details for a completed enrollment. For example, the enrolled plan details.
You can customize the Enrollment evidence mapping by using the following mechanisms:

— Provide a custom implementation of EnrollmentEventProcessor, and optionally EnrollmentSanitizer
— Override the event ENROLLMENT.ENROLLMENT_ADDED
« getAvailableEmployerPlanDetails ()

© Copyright IBM Corp. 2012, 2018 17

Retrieves the available employer insurance plans for an employee.

- getBenchmarkPlanDetailsForBenefitMembers()
Retrieves the benchmark plan amount and essential health benefit premium amount from a plan
management vendor.

« updateEntitlementDetails()

Informs the plan management vendor of a change in entitlement for a specific enrollment.
« getPlanUpdates()

Retrieves any updates to plans for an enrollment, typically called during re-enrollment.
« continueEnrollment ()
Informs the plan management vendor that an existing enrollment on a plan is to be continued, typically
called during the re-enrollment period.
« getPolicyID()
Retrieves the policy identifier for a specific enrollment.
« getEmployerOpenEnrollmentDetails()

Retrieves the open enrollment details for an employer.

Note: For more information about the plan management adapter interface, see the Javadoc in the HCR
component.

For more information, see "Events and Event Handlers" in the IBM Curam Server Developer's Guide.

Configuring the plan management adapter

The custom plan management adapter typically communicates with a plan management vendor over a
web service with stubs generated from the plan management vendor's WSDL file.

Procedure

1. Create a directory that is named axis in a custom component.

2. Add aws_outbound. xml file to this directory. This file must reference the WSDL file that is provided
by a plan management vendor. ,
For example:

<?xml version="1.0" encoding="UTF-8"?>
<services>
<service
location="components/CustomComponent/axis/PlanMgmtWebService/
PlanManagementVendor.wsdl"
name="PlanManagementVendor"
/>

</services>

3. From a command prompt under the EJBServer directory, run build wsconnector?2 to generate the
stubs to the build directory.
These stubs are now available to call in the custom PlanManagementAdapter implementation.

4. Create an implementation of the plan management adapter interface and bind it using a Guice module.
For example:

@Override
protected void configure() %
bind(PlanManagementAdapter.class).to(CustomPlanManagementAdapter.class);

Ey

For more information about bindings in Guice, see the Persistence Cookbook.
5. Code the custom implementation of the plan management adapter by using the generated stubs.

For more information about web services in Cliram, see the Curam Web Services Guide.

18 IBM Curam Social Program Management : Health Care Reform Developer Guide

Plan management web services provided by Curam

A plan management vendor must call Ciram web services to be able to populate their screens and for
plan management processing.

For example, when a household is enrolling on a plan in the plan management vendor's system, the
vendor requires details about the household such as names, date of births, address, and eligibility
information. Ciram provides the retrieveDemographicsAndEligibilityDetails() web service for this purpose.

The following web services are provided:
curam.planmanagement.adapter.intf.HealthCareWebService
« retrieveDemographicsAndEligibilityDetails()

« getHouseholdSummaryDetails ()

getEntitlementDetails()

policyIDAvailable()

updateEmployerEnrollment()

For more information about these web services, see the Javadoc in the HCR component.

Related concepts

Health Care Reform web services
The web services that are available for Health Care Reform.

Configuration parameters for plan management

The following configuration properties exist for plan management integration.

Property Description

curam.healthcare.planManagementVendorUrl The plan management vendor URL for
the main find assistance flow.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendorBrowseForPlansUrl The plan management URL used to
allow a citizen to browse for (but not
purchase) insurance plans.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendor The plan management URL used to

EmployerCoverageUrl allow employees to shop for
insurance plans provided by their
employer.

A unique enrollment identifier is
appended to this URL.

curam.healthcare.planManagementVendorAvailable This property indicates whether a
plan management vendor is available.
By default, it is set to false to enable
testing but must be set to true when
integrated with a plan management
vendor.

Customizing plan management 19

Callback URLs for plan management

Callback URLs are the URLs that a plan management vendor uses to return control to the Clram user
interface. For example, after an enrollment completes, a callback URL is used to redirect back to the

Curam results page.
The default callback URLs are listed in this table.

Callback URL

Description

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_finishEnrollmentPage.do?03ctx=4096

A plan management vendor redirects to this URL upon
successful completion of an enrollment.

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_saveAndExitEnrollmentPage.do?
03ctx=4096

A plan management vendor redirects to this URL if a
user chooses to save and exit from the plan
management vendor's screens. This option would
enable a user to resume the enrollment later.

https://<host>:<port>/CitizenPortal/en_US/
HealthCare_cancelEnrollmentPage.do?03ctx=4096

A plan management vendor redirects to this URL if a
user chooses to cancel/quit from the plan
management vendor's screens.

Batch processing for plan management

The following plan management batch processes are available.

For more information about batch processes, see the Curam Batch Processing Guide.

Employer enrollment notification batch process

The purpose of this batch process is to generate notifications for employees to indicate that the open
enrollment period for their employer is about to begin.

This batch process looks at active EmployerEnrollment records on the database. For each one, it calls out

to the plan management vendor by using the

curam.planmanagement.adapter.impl.PlanManagementAdapter.
getEmployerOpenEnrollmentDetails() API. Using the response from the plan management vendor, a pro-
forma communication is generated and stored against each employee returned.

Plan management web service API reference

The plan management web services that are available for the IBM Curam Solution for Health Care Reform

and the schema that is used for the data.

Health Care Reform web services

The web services that are available for Health Care Reform.

Related concepts

Plan management web services provided by Cliram

A plan management vendor must call Ciram web services to be able to populate their screens and for

plan management processing.

retrieveDemographicsAndEligibilityDetails

A plan management vendor requests eligibility details for an enrollment. The eligibility details and details
for each person in the enrollment are returned from IBM Cldram Health Care Reform.

20 IBM Curam Social Program Management : Health Care Reform Developer Guide

Table 2: Request.

Data Member

Type

Description

EnrollmentDetails

EnrollmentDetails

The health care reform retrieve
eligibility request that contains
the enrollment ID.

Table 3: Response.

Data Member

Type

Description

EligibilityAnd
DemographicDetails

EligibilityAnd
DemographicDetails

Response containing eligibility
details, details about each
person in the enrollment group,
previous enrollments for each
person that is being enrolled and
details about assistors.

getEntitlementDetails

A plan management vendor calls the IBM Curam Health Care Reform solution to get updated entitlement

details for an existing enrollment.

Table 4: Request

Data Member

Type

Description

EnrollmentDetails

EnrollmentDetails

The health care reform retrieve
eligibility request that contains
the enrollment ID.

Table 5: Response

Data Member

Type

Description

EntitlementUpdateDetails

EntitlementUpdateDetails

Response containing the updated
tax credit amount

getHouseholdSummaryDetails

A plan management vendor calls the IBM Curam Health Care Reform solution to notify any change in the
status of an existing enrollment. For example, when a carrier finishes processing the enrollment and made

a policy ID available.

Table 6: Request

Data Member

Type

Description

EnrollmentDetails

EnrollmentDetails

Contains the enrollment ID for
which the request is being made

Customizing plan management 21

Table 7: Response

Data Member

Type

Description

HouseholdSummaryDetails

HouseholdSummaryDetails

Response containing eligibility
details, details about each
person in the enrollment group,
previous enrollments for each
person that is being enrolled and
details about assistors.

policyIDAvailable

A plan management vendor calls the IBM Clram Health Care Reform solution to notify that a carrier has

finished processing the enrollment and made a policy ID available.

Table 8: Request

Data Member

Type

Description

EnrollmentDetails

EnrollmentDetails

Contains the ID of the enrollment
for which a policy ID is available.

updateEmployerEnrollment

A plan management vendor calls this API to notify the agency that the open enrollment period has begun

for a specific employer.

Table 9: Request

Data Member

Type

Description

EmployerEnrollment

EmployerEnrollment

Contains the
employerEnrollmentID for the
employer with an open
enrollment period.

Table 10: Response

Data Member

Type

Description

EmployerEnrollmentReceived

EmployerEnrollmentReceived

An indicator that represents
successful receipt and storage of
the employer identifier.

Health Care Reform schema elements
The schema that is used for Health Care Reform data.

Table 11: EnrollmentDetails

Data Member

Type

Description

enrollmentID

Long

The enrollment key.

Table 12: EligibilityAndDemographicDetails

Data Member

Type

Description

eligibilityDetails

eligibilityDetails

persons

persons

22 IBM Curam Social Program Management : Health Care Reform Developer Guide

Table 12: EligibilityAndDemographicDetails (continued)

Data Member Type Description

previousEnrollments previousEnrollments

assistors assistors

employerDetails employerDetails

Table 13: eligibilityDetails

Data Member Type Description

program String Values are as follows:
EP1 Insurance Assistance
EP2 CHIP
EP3 Medicaid
EP4 State Basic Plan
EP5 None (for when the
household is just shopping for
plans)

maxPremiumTaxCredit Double

maxPremiumTaxCreditAnnual Double The amount of premium tax
credit that remains for the year.

monthsRemaining Int The number of months that
remains in the plan year.

costSharingSubsidy Double

premiumPayment Double

maximumCoPay Double

stateSubsidy Double

enrollmentPeriod String Values are as follows:
EPD1 Open
EPD2 Special

coverageStartDate Date

coverageEndDate Date

Table 14: persons

Data Member Type Description

person List of person

Table 15: person

Data Member Type Description

personID Long Unique identifier for a person

within the exchange

Customizing plan management 23

Table 15: person (continued)

Data Member Type Description

ssn String

firstName String

middleName String

lastName String

dateOfBirth Date

gender String Values are as follows:
SX1 Male
SX2 Female

tobaccoUser Boolean

coverageCategory String Values are as follows:
CC1 Parent/Caretaker
CC2 Pregnant Woman
CC3 Adult
CC4 Child

address Address

phoneNumber PhoneNumber

emailAddress String

nativeAmerican Boolean Indicates whether the person is
an American Indian or Alaskan
Native.

isPrimaryContact Boolean Indicates whether the person is
the primary contact for the group
that is being enrolled

costSharingEliminated Boolean True for AI/NA individual with
household income less than or
equal to 300% of FPL

subscriberID Long Unique identifier of the primary

client that is assigned to each
member.

taxFilerRelationshipList

TaxFilerRelationshipList

Table 16: Address

Data Member Type Description
addressLinel String
addressLine2 String
city String
county String

24 1BM Curam Social Program Management : Health Care Reform Developer Guide

Table 16: Address (continued)

Data Member Type Description

state String

zip String

Table 17: TaxFilerRelationshipList

Data Member Type Description

taxFilerRelationships List of TaxFilerRelationship

Table 18: TaxFilerRelationship

Data Member Type Description

relatedPersonID Long

taxFilerRelationshipType String Values are as follows:
TFRT26001 Dependent
TFRT26002 Spouse
TFRT26003 Tax Filer

Table 19: previousEnrollments

Data Member Type Description

enrollment List of enrollment objects

Table 20: enrollment

Data Member Type Description

enrollmentID Long

planID String

policyID String

coverageEndDate Date

previousPremium Double

previousTaxCredit Double

previousEnrollees previousEnrollees

Table 21: previousEnrollees

Data Member Type Description

enrollee

List of enrollee objects

Customizing plan management 25

Table 22: enrollee

Data Member Type Description
personlD Long

Table 23: assistors

Data Member Type Description
assistor List of assistor objects

Table 24: assistor

Data Member Type Description
firstName String

lastName String

address Address

phoneNumber PhoneNumber

certificationNumber String

assistorType String

assistorID Long

agencyOrganisationID Long

Table 25: PhoneNumber

Data Member Type Description
countryCode String

areaCode String

phoneNumber String

Extension String

Table 26: EmployerDetails

Data Member Type Description
employerID Long

coverageStartDate Date

Table 27: EntitlementUpdateDetails

Data Member Type Description
enrollmentID Long

updatedPremiumTaxCredit Double

26 1BM Curam Social Program Management : Health Care Reform Developer Guide

Table 28: HouseholdSummaryDetails

Data Member Type Description

effectiveDate String

zipCode String

personList PersonList

Table 29: PersonlList

Data Member Type Description

persons List of Person

Table 30: person

Data Member Type Description

dateOfBirth Date

tobaccoUser Boolean

isPrimaryContact Boolean Indicates whether the person is
the primary contact for the group
being enrolled

Table 31: EmployerEnrollment

Data Member Type Description

employerEnrollmentID String The employer enrollment
identifier.

Table 32: EmployerEnrollmentReceived

Data Member Type Description

employerEnrollmentReceived Boolean Indicates that the employer

enrollment identifier was
successfully received and stored.

Customizing plan management 27

Chapter 6. Customizing change of circumstances

To customize change of circumstances for your environment, you must be familiar with the default
implementation. Use this information to understand the process flow, and to identify the steps that you
must complete to customize your system.

Related tasks

Customizing inconsistency period processing

Inconsistency period processing allows a caseworker to give a client a reasonable opportunity period to
provide outstanding verifications for evidence that requires verification. Cases can proceed during that
period as if outstanding verifications were provided. The default inconsistency period processing
infrastructure consists of a batch process, a workflow, and the inconsistency period processing APIs. You
can create a custom event handler to customize the default inconsistency period processing.

28 IBM Curam Social Program Management : Health Care Reform Developer Guide

Change of Circumstances Process Flow

Use this information to understand how the components work together to handle changes in client

circumstances.

Health Care Reform Porial

My Updates

My Information

Datasiore
Build er

|

[ata store
hatance

I
Health Care Reform Portal

2b

IEG Script

Submit

da

Online and optionally
mpecd enrollment rules

Resuks

Life Event
Infrastructure

Life Event

Figure 1: Change of circumstances process flow

3b

Changes of
crcumatances
workflow

A client with an existing application logs in to the Health Care Reform (HCR) portal

They can see a read-only summary of some of their evidence, such as Social Security number (SSN),
Address, Household Members, and Income by clicking the View your information to provide updates
link on the landing page, or the My Information menu option. They also can see the history of their
submitted Life Events in My Updates.

The read-only data that is shown is the most current information for each evidence type, specifically
the most recent active evidence. If the client recently created an in-edit version of evidence by a
previous change of circumstances, that in-edit version is displayed instead.

Customizing change of circumstances 29

H The client decides to update their data

After they review the information, the client can click the Update My Information link to update their
information. This link is available only if no outstanding change of circumstances exist for the client.
Clicking the link starts the following processing:

The change of circumstances Datastore Builder retrieves the evidence from the ongoing
Insurance Affordability integrated case and creates a data store instance for the data retrieved. This
data store instance becomes the data store used for the change of circumstances IEG script.

The change of circumstances intelligent evidence gathering (IEG) script opens with the data pre-
populated for the client to make the required changes. The client can add, update, or remove data.
Remove refers to end-dating particular evidence types. The client continues through the script and
completes their updates.

K The client submits their change of circumstances updates
When the client clicks submit, the following processing starts:

EE) Online and special enrollment rules
HCR Online rules, and optionally special enrollment rules, are run to generate a results page for
the client. Clients can enroll only on Advanced Premium Tax Credit (APTC) plans outside the
configured open enrollment period if they meet the special enrollment criteria. A set of special
enrollment rules are run to determine whether the reported change qualifies an individual for
special enrollment.

A results page with the outcome of those rules is displayed to the client. Depending on the results,
the client can proceed to enrollment.

K3 Life Event Infrastructure

The change of circumstances process uses the Life Event infrastructure as the mechanism for
updating the ongoing Insurance Affordability case with the new or modified data that is supplied
by the client. When the life event associated with the change of circumstances is submitted, the
following processing is triggered:

1. The state of the life event is updated to pending. The Update My Information link is
unavailable to prevent the client from triggering a second change of circumstances while there
is still one in progress.

2. The change of circumstances workflow is started.

Change of Circumstances workflow
View the default Change of Circumstances workflow in the Workflow section of the Administration
Workspace.

The default Change of Circumstances workflow should be viewed in the Process Definition Tool. In the
Administration Workspace, navigate to the workflow from the left hand navigation menu: Workflow >
Released Processes > ChangeOfCircumstances.

Customizing the default change of circumstances implementation

Complete the following steps to customize the default change of circumstances implementation to suit
your custom environment.

Before you begin

You must complete a full analysis of your requirements, and identify the information that you want
citizens to be able to modify.

30 IBM Curam Social Program Management : Health Care Reform Developer Guide

Procedure

1. Customize the default change of circumstances IEG script and data store schema.

/components/HCROnline/data/initial/clob/Change0fCircumstance.xml
/components/HCROnline/data/initial/clob/Change0fCircumstance.xsd

a) In most cases, you are updating the default change of circumstances IEG script to align it with the
existing enrollment and internal caseworker scripts.
For example, you might want to make one of the following changes:
- Create a custom evidence entity for which you want to capture data.
- Customize a default evidence entity, typically by adding one or more attributes.
« Customize the flow of the script. For example, by modifying control questions.

« Customize the script to facilitate adding, updating, or removing evidence for a newly added
evidence type.

b) Depending on the changes to the script, you might need to make parallel changes to the schema
that is associated with the script.

2. Configure the change of circumstances life event to call your custom script by overriding the change of
circumstances entry in the following files:

/components/HCROnline/data/initial/LifeEventContext.dmx
/components/HCROnline/data/initial/LifeEventType.dmx

3. To add a custom evidence entity, you must write new prepopulator and updater implementations.
Customization of Enrolment evidence differs slightly from customization of other evidence types. For
Enrolment evidence, use the prepopulator mechanism that is described here. However, for the
updater/mapper for Enrolment Evidence use the plan management adapter interface. Important:
Customization of Enrolment evidence differs slightly from customization of other evidence types. For
Enrolment evidence use the prepoulator mechanism described here. However for the updater/mapper
for Enrolment Evidence use the plan management adapter interface.

a) A prepopulator takes the data from a dynamic evidence instance and puts that data into data store
format so that it can be read by the script. For information about configuring a new prepopulator,
see the Javadoc of the following class:

curam.healthcare.lifeevents.coc.prepopulators.impl.Recertification

b) An updater, or mapper, takes the data store information after a change of circumstance and
identifies which evidence on the ongoing case must be added, modified, or removed. For
information about configuring a new updater, see the Javadoc of the following class:

curam.healthcare.lifeevents.coc.mappers.impl.LifeEventDefaultEvidenceMapper

4. If you are extending a default entity, you must extend the provided prepopulator and mapper classes
that are associated with this type and add the custom code. For a list of all of the prepopulator and
mapper classes that can be extended, see the following class:

curam.healthcare.lifeevents.impl.Module

5. Configure the online and program group logic rules to reflect your custom changes. The existing portal
and case management rule sets were updated to cater to change of circumstances.

You can find the online rules in the following location:
./EIBServer/components/HCROnline/CREOLE_Rule_Sets/HealthCareReformEligibilityRuleset.xml
You can find the main program group logic rules in the following location:

./EIBServer/HCR/CREOLE_Rule_Sets/HCRProgramGroupRuleSet

Customizing change of circumstances 31

You can find a rule set per program in the following location:
./EJBServer/HCR/CREOLE_Rule_Sets

6. Thoroughly test the custom changes made to the change of circumstances process.
You must ensure the following results:

 The correct online results are been achieved.

« The correct information is being written to the ongoing case.

« The correct program group logic results are being achieved.
7. Customize the change of circumstances workflow.

Related concepts

The plan management adapter interface
A plan management interface is provided which customers must implement. The custom implementation
allows customers to communicate with their chosen plan management vendor through web services.

Customizing the change of circumstances IEG script

You can complete one or more of the following tasks to customize the change of circumstances script for
your custom environment.

About this task

The change of circumstances script starts with a summary page. From this summary page, all of the
necessary change of circumstance actions can be done. For example, add, modify and remove, where
remove refers to the end-dating of evidence.

Adding custom entities through the change of circumstances script
To add custom entities through the change of circumstance script, you must make the following changes
to the script.

Procedure

1. Provide an Add link on the summary page. This link must point at an existing page.
2. Add a new data store entity to reflect the new custom evidence entity.
3. Add an attribute called evidenceCoCStatus to this data store entity.
This attribute is based on the code-table EVIDENCECOCSTATUS, which contains the following values:

- ADDED
- MODIFIED
« REMOVED

The default for this data store schema attribute is a blank value.

4. Set the newly added attribute to ADDED after the IEG page that gathers the data for this new entity is
submitted. This is achieved through invoking the UpdateEvidenceCoCStatus custom function, which
takes the name of the entity as a parameter.

5. This attribute can be used as follows in conditions to display or hide data:
“IsRecordAdded() or <MyEntity>.evidenceCoCStatus=="ADDED""

6. The evidence updater can use the value of this attribute to determine any data store entity that must
be added as evidence. The ADDED status can also be deduced by using the localID for the entity in
question as this is not set for newly added entities. The locallD attribute is used to hold the unique
identifier of evidence on the database.

32 IBM Curam Social Program Management : Health Care Reform Developer Guide

Modifying entities through the change of circumstances script
To modify entities through the change of circumstance script, you must make the following changes to the

script.

Procedure

1. Provide a Change link on the summary page. This link must point at an existing page.

2. Set the evidenceCoCStatus attribute to MODIFIED. This is achieved by comparing the attributes. New
validations are added that call a custom function (HasChanged or HasAttrValueChanged, which always
return true). The parameters are the new value and the fully qualified attribute name. This function can
deduce if the attribute has changed by looking up its original value.

3. An additional Boolean attribute dataSubmitted, which defaults to false, is added to the schema on the
data store entity. It is needed in case other page validations fail. The custom function
SetDataSubmitted is called in the last validation, setting the flag to true. This has the effect of resetting
evidenceCoCStatus to a blank value if this flag is set. The flag is reset to false in the custom function
following the page, UpdateEvidenceCoCStatus.

Removing entities through the change of circumstances script
To remove entities through the change of circumstance script, you must make the following changes to

the script.

Procedure

1. Provide a Change link on the summary page. This link must point at an existing page.

2. Set the evidenceCoCStatus attribute to REMOVED. This is achieved by comparing the attributes. New
validations are added that call a custom function (HasChanged or HasAttrValueChanged, which always
return true). The parameters are the new value and the fully qualified attribute name. This function can
deduce if the attribute has changed by looking up its original value.

3. An extra Boolean attribute dataSubmitted, which defaults to false, is added to the schema on the data
store entity. It is needed in case other page validations fail. The custom function SetDataSubmitted is
called in the last validation, setting the flag to true. This has the effect of resetting evidenceCoCStatus
to a blank value if this flag is set. The flag is reset to false in the custom function following the page,
UpdateEvidenceCoCStatus.

Customizing the Change of Circumstances workflow
You can use the following steps to customize the default Change of Circumstances workflow.

Before you begin
You can find the Change of Circumstances workflow in the following location:

./EIBServer/components/HCROnline/workflow/ChangeOfCircumstances_v3.xml

Procedure
1. If you want to or add or remove steps, or to change the flow structure of the existing workflow, create a
version of the workflow to make your custom changes.

2. Customize the Change of Circumstances workflow in the standard supported fashion of customizing
workflows as follows:

a) Using the Process Definition Tool, view the latest version of the process definition that requires
modification. Create a version of that process definition by using the tool.

b) Make the changes, validate it and release the workflow.

c¢) Export the newly released workflow process definition by using the PDT and place it into the
workflow subdirectory of the . . \EJBServer\components\custom directory.

3. If you are not happy with the structure and the steps in the default workflow, you can implement your
own version of each step.

Customizing change of circumstances 33

4. To customize the automatic steps in the workflow, use the following hook points to implement your
own version of a step. Once those implementations are complete, you can bind them by using Guice to
ensure that those customized versions of the automatic steps are called when the workflow is
enacted. The automatic steps that are available for customization are as follows:

a) curam.healthcare.lifeevents.coc.sl.impl.PreEvidenceProcessing

b) curam.healthcare.lifeevents.coc.sl.impl.CaseAndParticipantProcessing
c) curam.healthcare.lifeevents.coc.sl.impl.EvidenceUpdater

d) curam.healthcare.lifeevents.coc.sl.impl.PostEvidenceUpdater

e) curam.healthcare.lifeevents.coc.sl.impl.EvidenceActivator

f) curam.healthcare.lifeevents.coc.sl.impl.CompleteCoC

5. To change a manual activity step in the Change of Circumstances workflow, update the process
definition metadata with your change.

Configuring the change of circumstance evidence submission workflow

Use curam.healthcare.coc.auto.activate.evidence to configure the submission stage of the change of
circumstance workflow.

About this task

The application property allows the change of circumstance evidence to be automatically activated on the
associated integrated case, provided there are no outstanding verifications. When set to True, if there are
no outstanding verifications, the changes are automatically activated and the product delivery cases are
reassessed. The life event status is then set to complete. If there are outstanding verifications, a task is
generated to the user to indicate the need for manual intervention by a caseworker. When the verification
is actioned by the caseworker and the changes are manually activated, the life event status is set to
complete.

The property can also be configured to allow for change of circumstance evidence to be manually
reviewed by a caseworker. When set to false, the workflow is configured for manual review of submitted
evidence. The reported changes are mapped to the integrated case in an in-edit state, and the life event
status is set to complete. The caseworker must manually activate the evidence to redetermine or
reassess the eligibility for the household on the product delivery cases.

The default value for this property is True.

Procedure

1. Log in to the Curam System Administration application as a user with system administrator
permissions.

2. From the left navigation menu, select Application Data > Property Adminstration

3. Select curam.healthcare.coc.auto.activate.evidence in the Application - Insurance Affordability
Settings category.

4. Change the value to true to have the submission process attempt to automatically activate the
evidence on submission. Change it to false to configure the workflow for manual review and activation
of the submitted evidence.

34 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 7. Customizing evidence management
wizards

To customize an evidence management wizard, you must be familiar with the specific wizard's
customization strategies.

Customizing the 'Add a Member' wizard

You can complete one or more of the following tasks to customize the ‘Add a Member’ implementation for
your custom environment.

Customizing wizard evidence mappings

The creation of evidence upon finishing the 'Add a Member' evidence management wizard can be
customized.

To create more types of evidence via the 'Add a Member' evidence management wizard, an
implementation of an interface is required. This new implementation needs to be bound to the evidence
type in a custom Guice module.

The interface is

curam.healthcare.guidedchanges.sl.impl.HCRAddMemberEvidenceMapper

and it consists of the following four functions

- preMapEvidence - Performs assignments to the struct that represents the evidence.

« shouldCreateEvidence - If this function returns true, call the mapEvidence and postMapEvidence
functions. If false, do not.

- mapEvidence - Create the evidence.

- postMapEvidence - Typically for a parent evidence mapper to call the mappers of any configured child
evidence types.

Sample Customization

/**

* Adding a new custom evidence type.

*/

public class MyCustomTypeEvidenceMapper implements HCRAddMemberEvidenceMapper §
// implementation details

The module binding change to accompany the customization is shown here.

final MapBinder<String, HCRAddMemberEvidenceMapper> mapperStrategy =
MapBinder.newMapBinder (binder (), String.class,
HCRAddMemberEvidenceMapper.class);

mapperStrategy.addBinding (CASEEVIDENCE .MYCUSTOMTYPE) . to(
MyCustomTypeEvidenceMapper.class);

To customize an existing implementation of this mapper interface, customers can extend the out-of-the-
box implementation and use a Guice linked binding to bind the out-of-the-box implementation to the
custom implementation. The custom implementation is injected in place of the out-of-the-box
implementation.

© Copyright IBM Corp. 2012, 2018 35

Sample Customization

/**
* Customizing an out-of-the-box evidence mapping implementation.
*/
public class CustomDemographicsEvidenceMapper extends DemographicsEvidenceMapper §
@Override
public void preMapEvidence(final AddMemberWizardStoredDetails store,
final long caseParticipantRoleID, final Date startDate)
throws AppException, InformationalException {

// re-use the 00TB functionality
super.preMapEvidence (store, caseParticipantRoleID, startDate);

// perform additional, custom assignments

store.personalDetails.demographicDtls.startDate =
store.personalDetails.demographicDtls.startDate.addDays(1);

@Override

public boolean shouldCreateEvidence(
final AddMemberWizardStoredDetails store,
final long caseParticipantRoleID, final Date startDate)
throws AppException, InformationalException {

// override the 00TB logic
return true;

%

The module binding change to accompany the customization is shown here.

bind(DemographicsEvidenceMapper.class) .to(CustomDemographicsEvidenceMapper.class);

Customizing wizard evidence mapping order
The order of the creation of evidence upon finishing the 'Add a Member' wizard can be customized.

Submitting the Add a Member evidence management wizard results in creation of evidence via the
HCRAddMemberEvidenceMapper implementations. The list of evidence types to iterate over is built up
dynamically and includes the evidence types configured via the existing implementation of

curam.healthcare.lifeevents.impl.HealthCareCoCStaticEvidence.getStaticEvidenceTypesForUpdaterToP
rocess

The list of evidence types is then ordered by a call to the following function.

curam.healthcare.guidedchanges.sl.impl.HCREvidenceSelection.selectAndSortEvidenceTypes

The following default implementation can be extended if the default behavior needs to be customized.

curam.healthcare.guidedchanges.sl.impl.HCREvidenceSelectionImpl

To customize the existing implementation of this interface, customers can extend the out-of-the-box
implementation and use a Guice linked binding to bind the out-of-the-box implementation to the custom
implementation. The custom implementation is injected in place of the out-of-the-box implementation.

Sample Customization

bind (HCREvidenceSelectionImpl.class).to(CustomHCREvidenceSelectionImpl.class);

36 IBM Curam Social Program Management : Health Care Reform Developer Guide

Customizing wizard evidence dates
Various dates that are used by the 'Add a Member' wizard can be customized.

The interface

curam.healthcare.guidedchanges.sl.impl.HCRAddMemberWizardStartDate
is used to customize various dates that are manipulated by the evidence management wizard. The
operations on this interface are listed here.

- getDefaultEvidenceStartDate - Gets the default start date for evidence created via the wizard

- getDefaultRelationshipStartDate - Gets the initial value to populate the relationship start dates on the
wizard.

The out-of-the-box implementation of this interface is

curam.healthcare.guidedchanges.sl.impl.HCRAddMemberWizardStartDateDefaultImpl

To customize the existing implementation of this interface, customers can extend the out-of-the-box
implementation and use a Guice linked binding to bind the out-of-the-box implementation to the custom
implementation. The custom implementation is injected in place of the out-of-the-box implementation.

Sample Customization

/**
* Customizing an out-of-the-box evidence dates implementation.
*/
public class CustomWizardStartDateImpl extends HCRAddMemberWizardStartDateDefaultImpl §
@Override
public Date getDefaultEvidenceStartDate(
final AddMemberWizardStoredDetails store) throws AppException,
InformationalException {
// custom implementation
@Override
public Date getDefaultRelationshipStartDate(
final AddMemberWizardStoredDetails store) throws AppException,
InformationalException §

// custom implementation

%
The module binding change to accompany the customization is shown here.

bind (HCRAddMemberWizardStartDateDefaultImpl.class).to(CustomHCRAddMemberWizardStartDateDefaultIm
pl.class);

Customizing evidence management wizards 37

Chapter 8. Customizing appeal requests

After you install the application, complete the following steps to customize the default implementation of
appeal requests to suit your specific requirements.

Procedure
1. If required, update the Citizen Account for your specific requirements.
a) Create a custom appeal request IEG script and data store schema for your specific requirements.
You can copy and modify the default IEG script and schema:
« \EJBServer\components\HCROnline\data\initial\clob
\OnlineAppealsSchema.xsd
« \EJBServer\components\HCROnline\data\initial\clob
\OnlineAppealsSchema.xml
b) Implement curam.citizenworkspace.pageplayer.impl.AppealDatastorePrepopulator to populate the
data store.
c) Confirm that the data store prepopulator returns the appropriate set of potential appellants.
d) Set the application properties to point to the new custom appeal request IEG script and data store

schema.
2. Review the generated PDF to ensure that it meets your specific requirements. If required, create an
XSL template to modify the PDF to your requirements.

Setting the appeals requests IEG script and data store schema

In the administration application, set the appeals requests properties to point to the appropriate appeals
requests IEG script and data store schema.

Procedure

1. Log in to the Ciram System Administration application as a user with system administration
permissions.

2. Click System Configurations > Application Data > Property Administration

3. In the Citizen Portal - Online Appeals Configuration

4. Set the following properties to point to the appeal requests IEG script and data store schema:

curam.citizenworkspace.appeals.datastore.schema
curam.citizenworkspace.appeals.script.id

Customizing the appeal request summary PDF document

By default, a PDF that summarizes the information that is entered by a citizen during an appeal request is
created when a citizen submits an appeal. You can configure the XSL template of this PDF to change the

default PDF document to suit your specific requirements.

About this task
The default XSL template file is CURAM_DIR\EJBServer\components\HCROnline\data\initial

\b1ob\XSLTEMPLATEINSTOO1.xs1.

38 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 9. Customizing the handling of closed cases

Complete the following tasks to configure and customize how closed cases are handled to your specific
requirements.

Configuring the permanent closure of closed cases

Complete the following steps to configure the closed case reason so that a closed case remains closed
permanently. Overriding the default behavior for closed cases ensures that cases that were created in
error, or that you want remain closed are not reopened during the routine processing of case changes.

Procedure

To define the closed reasons that will prevent a case from ever being reopened, set the
curam.miscapp.productDeliveryReactivateClosedReason property to a comma-separated list
of the code table values for the closed reasons.

Results

If the case is closed with a reason that is configured in this property, then the case is not reassessed on
closure and is never reopened. If the case is closed with a reason that is not configured in this property,
then the case is reassessed on closure and can be reopened.

Configuring the reassessment strategy for closed cases

By default, the reassessment strategy is set to 'Do not reassess closed cases' for HCR product delivery
cases. The reassessment strategy for the product delivery cases can be configured with 'Do not reassess
closed cases' or 'Automatically reassess all cases".

Procedure

1. Log in to the Curam Administration application as a user with administrator permissions.
. Click Shortcuts > Case > Product Delivery Cases

. Open the HCR PD Case Home Page.

. Click Rule Sets > Published > Eligibility Determination

. Set the value of Reassessment strategy to Do not reassess closed cases or to Automatically
reassess all cases.

o b~ WN

Customizing the reassessment implementation for closed cases

By default, product delivery cases that are closed as created in error are not reassessed. Complete the
following steps if you want to change the reassessment implementation for closed cases

About this task
For more information, see "Eligibility and Entitlement Engine Hooks" in the IBM Curam Developing with
Eligibility and Entitlement by using Curam Express Rules.

Procedure

To customize the reassessment implementation for closed cases implement the Eligibility and
Entitlement engine hook
curam.core.sl.infrastructure.assessment.impl.ReassessEligiblityHook

© Copyright IBM Corp. 2012, 2018 39

Chapter 10. Customizing Trigger Points

Customize default Outbound Account Transfer trigger decision.

Default decision to trigger an Outbound Account Transfer can be customized. Custom Event listener must
be implemented to customize trigger decision.

curam.hcr.fedexchange.eligibility.impl.EligibilityProcessor.EligibilityEvent.sendOutboundApplica
tion(Boolean currentOutcome, Boolean[] customOutcome, CaseHeader caseHeader, Entity
datastoreRoot)

is an event that allows a custom listener to perform additional checks before an Account Transfer
application is created and sent to the FFM.

Event has following parameters:
currentOutcome - boolean with default outcome. This parameter can not be modified.

customOutcome - boolean array where custom outcome can be set. Only one Boolean will exists in array
and it can be updated by the custom listener.

caseHeader - CaseHeader object of a case that eligibility has been determined against.
datastoreRoot - root of the datastore that will be used to create an Outbound Account Transfer payload.
Customize Application Case denial Outbound Account Transfer trigger.

When state initiated application is denied with denial reason other than procedural denial Account
Transfer must be triggered. FFM originated application will trigger an Account Transfer regardless of
denial reason.

Default denial reasons triggering an Outbound Account Transfer are:

« Client Ineligible value="IPADR1002"
« Already In Receipt Of Program value="IPADR1003"

Both are code table items from the IntakeProgramApplicationDenialReason code table. Custom values
can be used by EligibilityProcessorMap.getDenialReasonList() override. Values form List of
IntakeProgramApplicationDenialReasonEntry objects.

Default denial reasons can be added by calling super class method as per example below:

public List<IntakeProgramApplicationDenialReasonEntry>
getDenialReasonlList() §
final List<IntakeProgramApplicationDenialReasonEntry> denialReasonList =
super.getDenialReasonList();
denialReasonlList
.add (IntakeProgramApplicationDenialReasonEntry.CUSTOMDENYREASON) ;

return denialReasonlList;

40 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 11. Implementing periodic data matching
and annual renewals

From a technical perspective, annual renewals is a specific use case of periodic data matching, with some
specific annual renewal requirements. The shared technical infrastructure that is provided for periodic
data matching and annual renewals contains the required configuration, customization, and extension
points for you to implement your custom solution.

Storing all existing program group determinations

Before version 6.0.5.5 interim fix 2, program group determinations were not saved in the database. If you
upgrade from an earlier version, you must run the BulkRunProgramGroupEligibility batch process on your
system before you run any of the periodic data matching or annual renewals batch processes. The
BulkRunProgramGroupEligibility batch process identifies and stores all of the current program group
determinations in your system. This once-off task for each system captures information that is required
for projected eligibility comparisons.

About this task

Before you run the BulkRunProgramGroupEligibility batch process to store the determinations, you can
run SQL commands to identify how many cases will be processed by the batch process (Count A), and the
number of stored program group determinations (Count B), which should be zero before you run the batch
process. After the batch process is completed, you can run the same SQL to identify the actual number of
program group determinations that were stored (Count C).

After the batch process is run, the batch log file shows the number of cases processed (Count D) and the
number of cases skipped (Count E). To verify the results, you compare the count values.

Procedure

1. Run the following SQL command to identify all cases that are processed by the batch process (Count
A).

SELECT COUNT (%) FROM CASEHEADER WHERE CASETYPECODE= 'CT5' AND
STATUSCODE= 'CS4' AND INTEGRATEDCASETYPE= 'CT26301'

2. Run the following SQL command to show the number of stored program group determinations, which
should be zero before you run the batch process (Count B).

SELECT COUNT(*) FROM PROGRAMGROUPDETERMINATION WHERE
CREOLEPROGGRPDETERMINATIONID IS NOT NULL AND RECORDSTATUS='RST1';

3. Run the BulkRunProgramGroupkEligibility batch process to store determinations for cases.

4. Run the following SQL command to determine the actual number of program group determinations
that were stored (Count C).

SELECT COUNT(*) FROM PROGRAMGROUPDETERMINATION WHERE
CREOLEPROGGRPDETERMINATIONID IS NOT NULL AND RECORDSTATUS='RST1';

5. Review the batch log file for any technical issues.

6. Verify your results by getting the remaining count values from the log files and comparing the different
count values.

The batch log file shows the number of cases processed (Count D) and the number of cases skipped
(Count E).

To verify the results, compare following count values:

© Copyright IBM Corp. 2012, 2018 41

« Count B should equal 0
« Count C should equal Count D
« Count A should equal (Count D + Count E)

If Count E>0 then that indicates that the batch encountered an error, review the batch log for details.

Related tasks

Customizing the storage of program group determinations

From version 6.0.5.5 interim fix 2 onwards, all program group determinations are stored in the database
by default. Over time the number of determinations can become significant and increase the size of the
database table. You can use the provided hook point to suppress the storage of identical program group
determinations to reduce the size of the database table.

BulkRunProgramGroupEligibility batch process

This once-off batch process runs the program group logic with the current evidence and stores the results
in the database.

The determinations are stored in the CreoleProgGrpDetermination and CreoleProgGrpDeterData tables.
For each active determination, a row is added and the batch process updates a new
CREOLEPROGGRPDETERMINATIONID field on the PROGRAMGROUPDETERMINATION table with the
active determination ID.

Class and method

curam.healthcare.sl.intf.BulkRunProgramGroupEligibility.process

Developer overview of periodic data matching and annual renewals

Use this overview diagram to understand the development tasks required to implement a custom periodic
data matching or annuals renewals solution.

A
M0

Fall Add evidence Determine proje cted Autom atically process

Sl S - T T ST = eligibilitby and generate

it completions after intencal

Y

AR Automati cally ren s
hdedicaid/CHIP cases

Figure 2: Developer tasks associated with the respective high-level process steps

Polling external systems
Identify the timing, cases, and clients for which external systems are polled for data and ensure that
client authorization is available for accessing their data. Review the mappings of data to the Cdram
external evidence types. Customize your implementation to poll the external systems and retrieve the
data.

42 1IBM Curam Social Program Management : Health Care Reform Developer Guide

Adding evidence from external systems
Using a run configuration to track each individual run, write the received data for the selected cases to
the Curam application with the provided API.

Determining projected eligibility and generating citizen notices
Implement your custom notices, calculating the APTC values for annual renewals only. Run the
appropriate batch processes for periodic data matching, or annual renewals for QHP, Medicaid, or
CHIP.

Automatically process completions after interval
Run the automatic completion batch process for periodic data matching or annual renewals for QHP at
a defined interval after you run projected eligibility, by default 30 days. External evidence converters
convert external evidence to evidence on the case. You must create a custom implementation for your
organization to process the cases that cannot be automatically processed.

Automatically renewing Medicaid or CHIP cases
Annual renewals for Medicaid or CHIP are automatically completed where possible. You must create a
custom implementation for your organization to process the cases that cannot be automatically
renewed.

For annual renewals, if a client has outstanding verifications against their client-attested evidence,
caseworkers can give them a reasonable opportunity period to provide the verifications, allowing the
case to temporarily proceed as if verifications had been provided.

Polling external systems

The goal of periodic data matching is to ensure that an organization has the most up-to-date client
information so that the system can correctly assess each citizen for eligibility and provide the correct
entitlements. To achieve this goal, an organization can use trusted data source (TDS) services to query
external systems for current data. TDS services provide services such as verifying annual tax return
information, or verifying a citizens birth and death details or current address.

From the Cdram application perspective, TDS services are just another means of adding evidence to a
case, like a caseworker who adds evidence through the caseworker application.

For example, when a client is applying for a program, TDS services are used to verify information that is
provided by the prospective client and that the information is stored on the citizens case.

The method of retrieving information from TDS services during periodic data matching is different from
the initial intake process. During periodic data matching, the TDS services are typically accessed in a bulk
request mode. Information for 10,000's or 100'000's of citizens is acquired through a single request
through a dedicated bulk service. The Ciram application does not provide any explicit functions for
connecting to TDS services. However, bespoke periodic data matching APIs are available to handle the
creation of the large volumes of evidence records that are expected to be returned from TDS bulk
services.

Adding evidence from external systems

Complete the following tasks to write information that was retrieved from external systems to the Clram
system.

Creating a batch run configuration for annual renewals or periodic data matching

A run configuration is mandatory for all annual renewal or periodic data matching batch process runs.
Each run configuration contains a unique run ID that you must use to link all of the individual batch

Implementing periodic data matching and annual renewals 43

process steps for a particular periodic data matching or annual renewals run. You need a new run
configuration for each run.

About this task

To insert evidence for a periodic data matching run, you must create a periodic data matching run
configuration before you call the PDMEvidenceMaintanence API. The ID in the run configuration supports
linking batch jobs that are all part of the same run. For example, to process the volume of renewals that
are needed for annual renewals 2014, you need multiple run iterations over a series of batch windows.

Procedure

1. Log in to the Curam Administrator application as a user with administrator permissions.

. Open the Administration Workplace tab.

. Expand the shortcuts pane and select Health Care Reform > PDM Run Configuration.

. On the PDM Run Configuration page select New. The New PDM Run Configuration window opens.
. Identify the run type.

o b~ WN

« If you are creating a run configuration for an annual renewal, select the Annual Renewal Indicator
check box and select the annual renewal type from the Renewal for menu.

- If you are creating a run configuration for a periodic data match, clear the Annual Renewal
Indicator check box.

6. Enter a unique run ID.
For example,
« QHP_2014
- CHIP_2014
- PDM_2014_01

Note the run ID value as you need this value when you run the batch processes.
7. Enter a short name for the run configuration.
8. Click Save.

Implementing case selection for a batch run

Before you run a periodic data matching or annual renewal, you must ensure that all of the required cases
are selected for processing. The cohort of cases that you select for a run depends on the requirements of
your process. Before you add case to a run, you must ensure that the client has consented to have their
data polled and eligibility checked.

Before you begin

Before you add cases to a periodic data matching or annual renewal run, you must define a run
configuration Attempting to add cases to a non-existent run causes errors.

About this task

For a typical periodic data matching run, you generally need to reassess only those cases for which
updated evidence is received. In this case, adding evidence to the run through the PDM Evidence
Maintenance API is sufficient to ensure that the cases are processed.

For an annual renewal run, you must ensure that all of the mandatory cases are selected for processing.

If you want to reassess cases regardless of whether updated evidence is received, as in the case of a
typical annual renewal run, you must explicitly add cases to the run. You can add cases by first
implementing a custom batch streaming process to select all of the cases of interest. Then, use the
addCase method of the Run Case Control Manager API to add these cases to the run if they are not
present

44 1BM Curam Social Program Management : Health Care Reform Developer Guide

Example code snippet:

public BatchProcessingSkippedRecord processRecord(
final BatchProcessingID batchProcessingID, final YOUR_PROCESS_KEY key)
throws AppException, InformationalException {

final String runID = key.runID;
final long caseID = batchProcessingID.recordID;

if (pdmRunCaseControlManager.getCase(zunID, caseID) == null) {
pdmRunCaseControlManager.addCase (runID, caselD);

¥

For more information about the PDMRunCaseControlManager API, see the Javadoc for the API.

Inserting evidence from external systems with the PDMEvidenceMaintenance API

Use the PDMEvidenceMaintenance API to add evidence that you have retrieved from external systems to
integrated cases as external evidence by using a bulk update of dynamic or static evidence.

Before you begin
Ensure that current client information was retrieved from external systems through a custom TDS service.

About this task

The PDMEvidenceMaintenance API provides an integration point that hooks external evidence into the
annual renewal and periodic data matching processes by creating corresponding periodic data matching
run evidence control records for each piece of external evidence. Evidence that is created or updated
through this API is recorded as In-Edit evidence and associated with the appropriate periodic data
matching run case control record.

If required, you can optionally activate the evidence by using the standard EvidenceControllerInterface.
The EvidenceControllerInterface ignores whether the evidence type is static or dynamic. However,
evidence activation is not required to drive these processes as projected eligibility and notice generation
operates on both In Edit and Active evidence.

For more information, see the Javadoc for the PDMEvidenceMaintenance API.

Procedure

1. Create a periodic data matching run configuration and note the run ID, which you must associate with
each of the process steps in the run.

2. Insert evidence by using the PDMEvidenceMaintanence API and passing in the run ID as a parameter.

Advising caseworkers about income evidence mismatches

Use the sample ARIncomeAdvisorRuleSet Advisor rule set as a example implementation of building
advice for evidence mismatches.

A sample Advisor rule set is provided which can be used to advise a caseworker when client attested
income evidence that is part of an annual renewal that is submitted by the case worker needs to be
reviewed for re-verification.

The Advisor rule set compares client attested income and income evidence that was added as a result of
polling the external system. When evidence items are not reasonably compatible with each other, advice
is displayed on the Integrated Case home page and Evidence Dashboard page. When a case worker
completes an annual renewal, they are asked to confirm that the client attested evidence on the case has
been reviewed and verified as necessary. When the case worker confirms that the evidence is reviewed
and verified, the advice is no longer displayed.

Implementing periodic data matching and annual renewals 45

You can implement advice for other evidence types using Advisor rule sets and including configurations
for where this advice should appear. The advice category for this type of annual renewal Advisor rules
should be set to AREVDMIS in the AdviceCategory code table.

Implementing citizen notices

Complete the following tasks to implement citizen notices and to configure the load balancing of the XML
server.

Implementing citizen notice generation

During the periodic data matching or annual renewals processes, notices must be generated and sent to
citizens to inform them of the process and the implications it has for their eligibility, entitlement, and
coverage. By default no notice is generated. Use the following information to help you implement notice
generation for both periodic data matching and annual renewals.

About this task

To implement citizen notice generation for both periodic data matching and annual renewals, you must
decide on the notices that you want to generate and their contents. You must create a custom XSL
template to present the information. You must then create an implementation that retrieves data to
populate and call the notice generation.

Citizen notices are generated through the periodic data matching and annual renewals batch processes.
These batch processes call the notices infrastructure, which uses the
curam.hcr.pdm.notices.impl.PDMNotificationTemplate interface to get the XSL template to generate the
notice.

For more information about specific APIs, see the Javadoc for the API.

Procedure

1. Complete a business analysis task to identify the information that you need in each notice.
2. Create a custom XSL template that sets up the layout and data placeholders for the notice.
3. Create a custom implementation that retrieves the identifier of the custom XSL template.
a) This implementation should extend curam.hcr.pdm.notices.impl.PDMNotificationTemplateImpl for
future compatibility as new methods are added over time. Each method represents a point in the
business process at which a notice is sent. All methods should return a code table entry from the

TemplateIDCode code table. You must add an entry to this code table for each template identifier
returned.

b) Register the custom implementation by using Guice bindings to bind the implementation to the
PDMNotificationTemplate interface. You must register new Guice modules adding a row to the
ModuleClassName database table.

Example Binding

public class ExampleModule extends AbstractModule {
public void configure() {
bind (PDMNotificationTemplate.class).to(ExampleNoticeTemplateImpl.class);

Example Citizen Notice Template Implementation

public class ExampleNoticeTemplateImpl extends PDMNotificationTemplateImpl {

@Override
public TEMPLATEIDCODEEntry getNotificationTemplate(

final PDMARNotificationWrapperDetails details)
throws AppException, InformationalException {

return TEMPLATEIDCODEEntry.EXAMPLETEMPLATE;

46 1IBM Curam Social Program Management : Health Care Reform Developer Guide

@Override
public TEMPLATEIDCODEEntry getRenewalNotificationTemplate(
final PDMARNotificationWrapperDetails details)
throws AppException, InformationalException {

return TEMPLATEIDCODEEntry.EXAMPLERENEWALTEMPLATE;

4. Create a custom implementation that retrieves the data for the notice.

a) This implementation should implement the curam.healthcare.sl.impl.HCRNotificationGenerator
interface and provide an implementation for the generateNotification method. Use this method to
populate the data for the notice and call the notice generation.

b) You can retrieve the data for the notice by using the
curam.hcr.pdm.notices.impl.PDMNotificationDataRetrieval API. If you want to retrieve extra data
with this API, then you must extend the default implementation
curam.hcr.pdm.notices.impl.PDMNotificationDataRetrievalImpl.

¢) Register the custom implementation by using Guice bindings to bind the implementation to the
HCRNotificationGenerator interface. The binding happens on the ID of the template. You must
register new Guice modules by adding a row to the ModuleClassName database table.

Example Binding

public class SampleModule extends AbstractModule {
public void configure() {
final MapBinder<Long, HCRNotificationGenerator> mapbinder =
MapBinder.newMapBinder(bindexr (), Long.class, HCRNotificationGenerator.class);
mapbinder.addBinding(12345) .to(ExampleNoticeGenerator.class);

Example Citizen Notice Implementation

public class ExampleNoticeGenerator implements HCRNotificationGenerator {

public HCRNotificationDetails generateNotification(
final NotificationGenerationDetails notificationGenerationDetails)
throws AppException, InformationalException {

final HCRProFormaDataGenerator<PDMARNotificationDetails>
documentGenerator =
new HCRProFormaDataGenerator<PDMARNotificationDetails>();

final PDMNotificationDataRetrievalImpl pdmNotificationDataRetrival =
new PDMNotificationDataRetrievalImpl();

final PDMARNotificationDetails notificationDetails =
new PDMARNotificationDetails();

// Example of retrieving data using the PDMNotificationDataRetrievalImpl API
notificationDetails.primaryClient = pdmNotificationDataRetrival
.getPrimaryCorrespondentName (notificationGenerationDetails
.getCaseKey());

// Invoke notice generation
final HCRNotificationDetails hcrNotificationDetails =
documentGenerator.generateHCRNotification(notificationDetails,
notificationGenerationDetails.getXslTemplateInstanceKey(),
“SampleNotice”);

return hcrNotificationDetails;

Implementing the calculation of APTC for inclusion in notices

During annual renewals processes, the Annual Premium Tax Credit (APTC) amount must be calculated for
the coming coverage period and included in the notification sent to customers. Use the following
information to help you implement the calculation.

About this task

To implement the inclusion of the APTC amount, create a new type of evidence that is identical to
BenchmarkPlan. Create an evidence handler that converts that evidence into a BenchmarkPlan
RuleObject to be used in the APTC calculation. You must implement an event that retrieves the

Implementing periodic data matching and annual renewals 47

BenchmarkPlanDetails and creates your new evidence by using these details. Within the event, you must
then run executeProgramGroupProjectedEligibility and from the returned
ProgramGroupProjectedEligibility calculate the APTC amount. The original
ProgramGroupProjectedEligibility must be updated to reflect this change.

The APTC is calculated through the annual renewals batch processes.

Procedure

1. Create a type of evidence that is identical to the BenchmarkPlan evidence. For example,
ProjectedBenchmarkPlan.

2. Create an Evidence handler that converts the new evidence type into an in-memory RuleObject for use
in the APTC calculation.

a) This event implementation implements
curam.healthcare.sl.impl.ProjectedEligibilityEvidencehandler and provides an implementation for
the defineInMemoryRuleClasses and createRuleObjects methods. The
defineInMemoryRuleClasses method returns a list of fully qualified rule classes to be created in
memory by the Evidence Handler. By returning a rule class, the handler prevents rule objects for
this rule class from being loaded from the database. The createRuleObjects method uses the
evidence above to create the specified in memory RuleObject. For example, BenchmarkPlan.

b) Register the evidence to the Evidence Handler by using Guice bindings. Register new Guice
modules by adding a row to the ModuleClassName database table.

Example defineInMemoryRuleClasses method

public Set<String> defineInMemoryRuleClasses(final CaseKey caseKey, final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType) {
return new HashSet<String>() 1

{
add ("BenchmarkPlanDataRuleSet.BenchmarkPlan");
%
Fi
Example Binding

public class SampleModule extends AbstractModule {
protected void configure() %

// final Bind ProjectedBenchmarkPlan evidence to
// the evidence handler
final MapBinder<String, ProjectedEligibilityEvidenceHandler> projectedEligibilityRules =
MapBinder.newMapBinder(binder(), String.class,
ProjectedEligibilityEvidenceHandler.class);

projectedEligibilityRules.addBinding(

CASEEVIDENCE .PROJECTEDBENCHMARKPLAN)
.to(ProjectedBenchmarkPlanEvidencehandlerImpl.class);
i

3. Create an event implementation that retrieves the BenchmarkPlan details, adds the custom
BenchmarkPlan evidence to the case, recalculates the ProgGrpProjectedEligibility and the APTC
amount.

a) This event implementation implements curam.hcr.pdm.sl.impl.PDMBatchEvents and provide an
implementation of postProjectedEligibility method from which the APTC amount is calculated.

b) Read the HCRProgramGroup RuleObject from the ProgGrpProjectedEligibility method parameter.
Example reading RuleObject from ProgGrpProjectedEligibility

// Get the HCRProgramGroup RuleObject from the Snapshot
final RuleObject hcrProgramRuleObject =
programGroupProjectedEligibility.getDetermination()
.getRuleObject();

c) Get the list of Eligible Programs (RuleObjects) from the HCRProgramGroup. Loop through each IA
program.

1) Read the “eligibleProgramsTimeline” for the HCRProgramGroup RuleObject.

48 IBM Curam Social Program Management : Health Care Reform Developer Guide

2) Loop through each interval of the eligible programs timeline.
3) Loop through the programs from each interval.

4) Return a list of programs whose “pdCreationCheckStartDate” & “pdCreationCheckEndDate”
overlap with the interval start and end date.

d) Loop through each program of type Insurance Assistance. Retrieve the coverage start date and
create a list of benefit members.

1) Retrieve the “benefitUnitTimeline” from the program
2) Read the value of this timeline on the program’s coverage start date.

3) Iterate through each of the RuleObjects previously returned in the point and read the
“caseParticipantRoleRecord” RuleObjects.

4) Return a list of “caseParticipantRoleRecord” numbers that are retrieved from each case
participant role records above.

e) Create the list of BenchmarkPlanApplicantDetails with the list of benefit members that you
previously created.

f) Create a web service call to get BenchmarkPlan Details, passing the BenchmarkPlan Applicant
Details that you previously created and the enrollment type, which is Annual Renewals in this case.

Example BenchmarkDetails web service call

@Inject
private PlanManagementAdapter planManagementAdapter;

final BenchmarkPlanDetails benchmarkPlanDetails =
planManagementAdapter.getBenchmarkPlanDetailsForBenefitMembers (
benchmarkPlanApplicantDetailslList, enrollmentType);

g) Create your custom evidence and apply the changes to the case.
For example, ProjectedBenchmarkPlan evidence.

Example getBenchmarkApplicantDetailsList method

@Inject
private PlanManagementAdapter planManagementAdapter;

final BenchmarkPlanDetails benchmarkPlanDetails =
planManagementAdapter.getBenchmarkPlanDetailsForBenefitMembers (
benchmarkPlanApplicantDetailslList, enrollmentType);

h) Add the EvidenceDescriptorDtls related to the ProjectedBenchmarkPlan evidence that you
previously created to the EvidenceDescriptorDtlsList (postProjectedEligibility method parameter).
Run ProgramGroupProjectedEligibilityManager
.executeProgramGroupProjectedEligibility passing in the CaseKey, EvidenceDescriptorDtlsList, and
ProjectedEligiblity Type, which recalculates the ProgramGroupProjectedEligibility.

i) Read back the HCRProgramGroup RuleObject from this new ProgramGroupProjectedEligibility as

done in point 4b. Loop through every eligible program of type IA and Calculate the APTC amount by
call getValue on its RuleObject attribute.

Example Calculating APTC by calling its Rule’s value

final RuleObject eligibilityCalculator =
(RuleObject) program.getAttributeValue(
HCRCaseConst.kEligibilityCalculator).getValue();

final RuleObject financialsCPRCalculator =
(RuleObject) eligibilityCalculator.getAttributeValue(
"financialsCPRCalculator").getValue();

// Calculate APTC

financialsCPRCalculator.getAttributeValue ("maximumPremiumTaxCredit")
.getValue();

i) Update the ProgramGroupProjectedEligibility on the database with the

CREOLEProgramGroupDetermination from the new ProgramGroupProjectedEligibility obtained in
point 4i.

Implementing periodic data matching and annual renewals 49

Example Updating ProgramGroupProjectedEligibility

// Get new creoleProgramGroupDetermination
final CREOLEProgramGroupDetermination creoleProgramGroupDetermination =
programGroupProjectedEligibility2.getDetermination();
// update programGroupProjectedEligibility with new
// creoleProgramGroupDetermination
programGroupProjectedEligibility
.setDetermination(creoleProgramGroupDetermination);

programGroupProjectedEligibility.modify();

k) Register the custom event by using Guice binding to bind the implantation to the PDMBatchEvents
interface.

Example Binding

// PDMBatchEvent binding to PDMBatchEventImpl
final Multibinder<PDMBatchEvents> pdmBatchEventsListener =
Multibinder.newSetBinder(bindexr (), PDMBatchEvents.class);

pdmBatchEventsListener.addBinding() .to(PDMBatchEventsImpl.class);

Configuring XML server load balancing for notices

If you plan to generate large volumes of notices by using the XML Server, ensure that the load is shared
among a number of servers. Set the curam.xmlserver.host and curam.xmlserver.port properties to specify
the appropriate ports and servers for load balancing and failover.

About this task

The curam.xmlserver.host property specifies the names of the computers that host the XML Server as a
forward-slash (/) separated list of host names.

The curam.xmlserver.port property specifies the ports on which the XML Server is running as a forward-
slash (/) separated list of entries.

There is a one-to-one mapping between the servers and ports that are specified.

Procedure

You can specify the XML servers in one of two ways as follows:
a) In the Administration application, set the curam.xmlserver.host and curam.xmlserver.port properties.
For example:

curam.xmlserver.host="hostl/host2"
curam.xmlserver.port="portl/port2"

a) When you run a batch process, specify the -Dcuram.xmlserver.host and -Dcuram.xmlserver.port
parameters:
For example:

-Djava.jvmargs="-Dcuram.xmlserver.host=hostl/host2"
-Djava.extra.jvmargs="-Dcuram.xmlserver.port=portl/port2"

Overview of the periodic data match batch process flow

The periodic data match batch flow consists of a number of discrete but interrelated batch processes.
There are four steps to the complete flow.

To complete the end to end PDM process in batch, you must implement a number of custom batch jobs
that work with the provided PDMProjectedEligibility and PDMProcessAutoCompletions batch jobs. An
overview of the PDM batch flow is shown in the following figure. Steps 1 and 2 are custom batch jobs that
you must implement.

50 IBM Curam Social Program Management : Health Care Reform Developer Guide

Process
Cantrol
Takbles

Figure 3: PDM batch process flow

Custom Case Selection and Custom Polling batch processes

These custom processes should identify cases to be processed for each PDM run. At a minimum, they
should identify the cases to be processed and write this information to the PDMRunCaseControl table.

They should also do the following:

« Poll for information from external systems

« Populate the PDM process control tables

« Populate evidence tables with the retrieved case information
PDM Projected Eligibility batch

The PDMProjectedEligibility batch runs the projected eligibility and notice generation process for a
specified list of cases (stored on the PDMRunCaseControl table).

For each case that is successfully processed, the corresponding record on the process control table is
updated with the following:

- ID of the projected eligibility record

- ID of the generated notice record

- Status is set to 'Notice Generated (RCCS26002)'
PDM Auto Complete batch

The PDMProcessAutoCompletions batch process completes the periodic data match after a
configured period.

Implementing periodic data matching and annual renewals 51

A citizen can contest the updated evidence by the end of the specified period via their citizen account
or in person through a caseworker. If the updated evidence is not contested, the batch process
redetermines eligibility with the evidence in the projected eligibility notice. To run this batch process
at the command line, pass the value of the RunID to the batch process.

For each case that is successfully processed, the corresponding record on the process control table is
updated with the status set to 'Automatically Completed (RCCS26003)".

Running the periodic data matching batch processes

Complete the following tasks to run the periodic data matching batch processes. Periodic data matching
is split between two batch processes that you must schedule independently.

Before you begin

Important: Ensure that the current client information was retrieved from external systems through your
custom TDS service and was written to the integrated cases as external evidence by using the
PDMEvidenceMaintenance API.

Before running a periodic data matching run, ensure that no other period data matching or annual
renewals runs are in process. It is recommended that period data matching or annual renewal runs do not
overlap.

About this task

The first batch process runs projected eligibility and calls the custom generate notices implementation to
send the appropriate citizen notices.

The second batch process picks up cases based on the notice generation date, completes the processing,
and notifies the client of any changes to their coverage.

You must run this batch process approximately 31 days from the date that the notice generation occurred.
The number of days is dependent on the date the notice was sent to the user. If you run the first batch
process late at night, some notices can be generated a day later than others. By default, the batch
process picks up cases where the notification was sent 30+1 days prior.

Procedure

1. Create or identify a run configuration in the Ciram Administration application.

2. Run the PDMProjectedEligibility batch process, passing in the run ID as a parameter. For example, to
run this batch at the command line:ant -f app_batchlauncher.sample.xml -
Dbatch.username=superuser - Dbatch.program=
curam.hcr.pdm.sl.intf.PDMProjectedEligibility.process -
Dbatch.parameters=runID=PDM_Q1_14

3. Run the PDMProcessAutoCompletions batch process, passing in the run ID as a parameter.

PDMProjectedEligibility batch process

This batch process is used to run the projected eligibility and notice generation processes for a specified
list of cases as part of periodic data matching.

For periodic data matching runs, inserting evidence by using the PDMEvidenceMaintanence API
automatically ensures that the case is processed by periodic data matching projected eligibility and notice
generation processes.

Class and method

curam.hcr.pdm.sl.intf.PDMProjectedEligibility.process

52 IBM Curam Social Program Management : Health Care Reform Developer Guide

Parameters

used by the batch infrastructure

to stop or restart a batch process.

Parameter Description Default value
runID Mandatory. The run ID value that | A different value is required for
you specified in the periodic data |each run.
matching run configuration in the
Curam Administration
application.
instancelD Optional. Aninstance ID can be [BPN26007

processingDate

Optional.

The current date.

runInstancelD

Do not set. An internal batch field
for communicating the Run
Instance ID between the batch
main and batch stream
components.

Not applicable

PDMProcessAutoCompletions batch process

This batch process completes periodic data matching processing after a configurable period. If a citizen
has not contested or confirmed the changed information at the end of the specified period, either online
or through a caseworker, this batch process redetermines their eligibility as per the evidence in the

projected eligibility notice.

You must schedule the batch process to run after a period of
curam.citizenaccount.periodicdatamatch.expiry.days +1 days. All cases that are in the "Notice Generated"
state for that period are processed. By default, the value of

curam.citizenaccount.periodicdatamatch.expiry.days is 30 days.

Class and method

curam.hcr.pdm.sl.intf.PDMProcessAutoCompletions.process

Parameters
Parameter Description Default value
runID Mandatory. The run ID value that | A different value is required for
you specified in the periodic data |each run.
matching run configuration in the
Curam Administration
application.
instancelID Optional. Aninstance ID can be [BPN26007

used by the batch infrastructure

to stop or restart a batch process.

processingDate

Optional.

The current date.

runInstancelD

Do not set. An internal batch field
for communicating the Run
Instance ID between the batch
main and batch stream
components.

Not applicable

Implementing periodic data matching and annual renewals 53

Configuring automatic completion intervals for periodic data matching

You can modify the number of days that are allowed for citizens to respond to changes that result from
periodic data matching. Complete the following steps to modify the default expiry intervals for your
requirements.

About this task
The default expiry period for periodic data matching is 30 days.

Procedure

1. Login to the Curam application as a user with administrator permissions.
2. Modify the value of the curam.citizenaccount.periodicdatamatch.expiry.days property.

Configuring and running the annual renewals batch processes

Complete the following tasks to configure and run annual renewals batch processes for Qualified Health
Plans (QHPs), Medicaid, and Children's Health Insurance Plan (CHIP).

Configuring automatic completion intervals for annual renewals

The number of days that are allowed for citizens to respond to changes that result from annual renewals
are set out by legislation and are subject to change. Complete the following steps to modify the default
expiry intervals for your requirements.

About this task
The default expiry period for annual renewals is 30 days.

Procedure

1. Log in to the Ciram application as a user with administrator permissions.
2. Modify the value of the curam.citizenaccount.annualrenewal.expiry.days property.

Overview of the QHP annual renewal batch process flow

The QHP annual renewal batch flow consists of a number of discrete but interrelated batch processes.
There are four steps to the complete flow.

To complete the end to end QHP annual renewal process in batch, you must implement a number of
custom batch jobs that work with the provided QHPProjectedEligibility and QHPProcessAutoCompletions
batch jobs. An overview of the QHP batch flow is shown in the following figure. Steps 1 and 2 are custom
batch jobs that you must implement.

54 IBM Curam Social Program Management : Health Care Reform Developer Guide

Process
Cantrol
Takbles

Figure 4: QHP annual renewal batch process flow

Custom Case Selection and Custom Polling batch

These custom batch processes should identify cases to be processed for each QHP run. At a
minimum, they should identify the cases to be processed and write this information to the
PDMRunCaseControl table. The custom batch processes should also:

« Poll for information from external systems
« Populate the annual renewal process control tables
« Populate evidence tables with the retrieved case information
QHP Project Eligibility batch
The QHPProjectedEligibility batch process performs projected eligibility for every case in the run. If

the projection results in no change in eligibility, then the renewal is completed automatically and the
case is renewed for a further 12 months.

For each case successfully processed, the corresponding record on the process control table is
updated with:

- ID of the projected eligibility record

- ID of the generated notice record

- Status is set to Notice Generated (RCCS26002).
QHP Auto Complete batch

The QHPProcessAutoCompletions batch process completes the QHP annual renewals after a
configured period.

Implementing periodic data matching and annual renewals 55

A citizen can contest the updated evidence by the end of the specified period via their citizen account
or in person through a caseworker. If the updated evidence is not contested, the batch process
redetermines eligibility with the evidence in the projected eligibility notice.

For each case that is successfully processed, the corresponding record on the process control table is
updated with the status set to 'Automatically Completed (RCCS26003)".

Running the annual renewals for QHP batch processes

Complete the following tasks to run the annual renewals for QHP batch processes. The annual renewals
for QHPs process is split between two batch processes that you must schedule independently

Before you begin

Important: Ensure that the current client information was retrieved from external systems through your
custom TDS service and was written to the integrated cases as external evidence by using the
PDMEvidenceMaintenance API.

Before running an annual renewals run, ensure that no other period data matching or annual renewals
runs are in process. It is recommended that period data matching or annual renewal runs do not overlap.

About this task

The first batch process runs projected eligibility and calls the custom generate notices implementation to
send the appropriate citizen notices.

The second batch process picks up cases based on the notice generation date, completes the processing,
and notifies the client of any changes to their coverage.

You must run this batch process approximately 31 days from the date that the notice generation occurred.
The number of days is dependent on the date the notice was sent to the user. If you run the first batch
process late at night, some notices can be generated a day later than others. By default, the batch
process picks up cases where the notification was sent 30+1 days prior.

Procedure

1. Create or identify a run configuration in the Ciram Administration application.

2. Run the QHPProjectdEligibility batch process, passing in the run ID as a parameter. For example, to run
this batch at the command line:ant -f app_batchlauncher.sample.xml -
Dbatch.username=superuser - Dbatch.program=
curam.hcr.pdm.sl.intf.QHPProjectedEligibility.process -
Dbatch.parameters=runID=QHP_Q1_14

3. Run the QHPProcessAutoCompletions batch process, passing in the run ID as a parameter.

QHPProjectedEligibility batch process
This batch process is used to run the projected eligibility and notice generation processes for a specified
list of cases as part of annual renewals for Qualified Health Plans.

Inserting evidence by using the PDMEvidenceMaintanence API automatically ensures that the case is
processed by annual renewal projected eligibility and notice generation processes. There can also be
cases for which no evidence was received, but still must be processed as part of an annual renewal.

Class and method

curam.hcr.pdm.sl.intf.QHPProjectedEligibility.process

56 IBM Curam Social Program Management : Health Care Reform Developer Guide

Parameters

used by the batch infrastructure

to stop or restart a batch process.

Parameter Description Default value
runID Mandatory. The run ID value that | A different value is required for
you specified in the periodic data |each run.
matching run configuration in the
Curam Administration
application.
instancelD Optional. Aninstance ID can be [BPN26008

processingDate

Optional.

The current date.

runInstancelD

Do not set. An internal batch field
for communicating the Run
Instance ID between the batch
main and batch stream
components.

Not applicable

QHPProcessAutoCompletions batch process
This batch process completes annual renewals for QHP after a configurable period. If a citizen has not

submitted an annual renewal at the end of the specified period, either online or through a caseworker, this

batch process redetermines their eligibility as per the evidence in the projected eligibility notice.

You must schedule the batch process to run after a period of
curam.citizenaccount.annualrenewal.expiry.days +1 days. All cases that are in the "Notice Generated"
state for that period are processed. By default, the value of automatic-completion

curam.citizenaccount.annualrenewal.expiry.days is 30 days.

Class and method

curam.hcr.pdm.sl.intf.QHPProcessAutoCompletions.process

Parameters
Parameter Description Default value
runlD Mandatory. The run ID value that | A different value is required for
you specified in the periodic data | each run.
matching run configuration in the
Curam Administration
application.
instancelD Optional. An instance ID can be | BPN26008

used by the batch infrastructure

to stop or restart a batch process.

processingDate

Optional.

The current date.

runInstancelD

Do not set. An internal batch field
for communicating the Run
Instance ID between the batch
main and batch stream
components.

Not applicable

Implementing periodic data matching and annual renewals 57

Overview of the Medicaid annual renewal batch process flow

The Medicaid annual batch flow consists of a number of discrete but interrelated batch processes. There
are three steps to the complete flow.

To complete the end to end Medicaid annual renewal process in batch, you must implement a number of
custom batch jobs that work with the provided MedicaidProcessAnnualRenewals batch job. An overview

of the Medicaid batch flow is shown in the following figure. Steps 1 and 2 are custom batch jobs that you
must implement.

Process
* Cantrol
Takles

—

8

Figure 5: Medicaid annual renewal batch process flow

Custom Case Selection and Custom Polling batch

These custom batch processes should identify cases to be processed for each Medicaid run. At a
minimum, they should identify the cases to be processed and write this information to the
PDMRunCaseControl table. the custom batch processes should also:

« Poll for information from external systems
« Populate the annual renewal process control tables
« Populate evidence tables with the retrieved case information

Medicaid Process AR batch
The MedicaidProcessAnnualRenewals batch process performs projected eligibility for every case in

the run. If the projection results in no change in eligibility, then the renewal is completed
automatically and the case is renewed for a further 12 months.

To summarize, the batch does the following:

» Runs projected eligibility

58 IBM Curam Social Program Management : Health Care Reform Developer Guide

- Calls the custom generate notices implementation to send the appropriate citizen notices
« Automatically renews Medicaid for eligible citizens where eligibility is unchanged

 For each case that is successfully processed, updates the corresponding record on the process
control table to 'Automatically Completed (RCCS26003)".

Running the annual renewals for Medicaid batch process

Complete the following tasks to run the annual renewals for Medicaid batch. This batch process runs
projected eligibility, calls the custom generate notices implementation to send the appropriate citizen
notices, and automatically renews Medicaid for eligible citizens where eligibility is unchanged.

Before you begin

Important: Ensure that the current client information was retrieved from external systems through your
custom TDS service and was written to the integrated cases as external evidence by using the
PDMEvidenceMaintenance API.

Before running an annual renewals run, ensure that no other period data matching or annual renewals
runs are in process. It is recommended that period data matching or annual renewal runs do not overlap.

About this task

This batch process renews Medicaid cases only where the eligibility is unchanged. The batch process
renews Medicaid cases and progresses the run case control record to the Automatically Completed state.
For all other cases, the case run control record is set to failed. As part of your implementation, you must
decide what further custom processing you can apply to these cases.

Procedure

1. Create or identify a run configuration in the Cliram Administration application.

2. Run the MedicaidProcessAnnualRenewals batch process, passing in the run ID as a parameter. For
example, to run this batch at the command line:ant -f app_batchlauncher.sample.xml -
Dbatch.username=superuser - Dbatch.program=
curam.hcr.pdm.sl.intf.MedicaidProcessAnnualRenewals.process -
Dbatch.parameters=runID=MA_2014

MedicaidProcessAnnualRenewals batch process

This batch process runs projected eligibility, calls the custom generate notices implementation to send
the appropriate citizen notices, and automatically renews Medicaid for eligible citizens where eligibility is
unchanged.

Class and method

curam.hcr.pdm.sl.intf.MedicaidProcessAnnualRenewals.process

Parameters
Parameter Description Default value
runlD Mandatory. The run ID value that | A different value is required for
you specified in the periodic data | each run.
matching run configuration in the
Curam Administration
application.
instancelD Optional. An optional instance ID | BPN26008
that used by the batch
infrastructure to stop or restart a
batch process.

Implementing periodic data matching and annual renewals 59

Parameter Description Default value

processingDate Optional. The current date.

runlnstancelD Do not set. An internal batch field [Not applicable
for communicating the Run
Instance ID between the batch
main and batch stream
components.

Overview of the CHIP annual renewal batch process flow

The CHIP annual batch flow consists of a number of discrete but interrelated batch processes. There are
three steps to the complete flow.

To complete the end to end CHIP annual renewal process in batch, you must implement a number of
custom batch jobs that work with the provided CHIPProcessAnnualRenewals batch job. An overview of
the CHIP batch flow is shown in the following figure. Steps 1 and 2 are custom batch jobs that you must
implement.

Process
* cantrol
Takbles

e

Figure 6: CHIP annual renewal batch process flow

Custom Case Selection and Custom Polling batch

These custom batch processes should identify cases to be processed for each CHIP run. At a
minimum, they should identify the cases to be processed and write this information to the
PDMRunCaseControl table. the custom batch processes should also:

« Poll for information from external systems

60 IBM Curam Social Program Management : Health Care Reform Developer Guide

« Populate the annual renewal process control tables
« Populate evidence tables with the retrieved case information
CHIP Process AR batch
The CHIPProcessAnnualRenewals batch process performs projected eligibility for every case in the

run. If the projection results in no change in eligibility, then the renewal is completed automatically
and the case is renewed for a further 12 months.

To summarize, the batch does the following;:

« Runs projected eligibility

- Calls the custom generate notices implementation to send the appropriate citizen notices
« Automatically renews CHIP for eligible citizens where eligibility is unchanged

 For each case that is successfully processed, updates the corresponding record on the process
control table to 'Automatically Completed (RCCS26003)".

Running the CHIP annual renewals batch process

Complete the following steps to run annual renewals for the Children's Health Insurance Program (CHIP)
batch process. This batch process runs projected eligibility, calls the custom generate notices
implementation to send the appropriate citizen notices, and automatically renews CHIP for eligible
citizens.

Before you begin

Important: Ensure that the current client information was retrieved from external systems through your
custom TDS service and was written to the integrated cases as external evidence by using the
PDMEvidenceMaintenance API.

Before running an annual renewals run, ensure that no other period data matching or annual renewals
runs are in process. It is recommended that period data matching or annual renewal runs do not overlap.

About this task

This batch process renews CHIP cases only where the eligibility is unchanged. The batch process renews
CHIP cases and progresses the run case control record to the Automatically Completed state. For all other
cases, the case run control record is set to failed. You can use an API to query this table for the list of non-
renewed cases. As part of your implementation, you must decide what further custom processing you can
apply to these cases.

Procedure

1. Create or identify a run configuration in the Cliram Administration application.

2. Run the CHIPProcessAnnualRenewals batch process, passing in the run ID as a parameter. For
example, ant -f app_batchlauncher.sample.xml -Dbatch.username=superuser -
Dbatch.program= curam.hcr.pdm.sl.intf. ChipProcessAnnualRenewals.process -
Dbatch.parameters=runID=CHIP_2014

CHIPProcessAnnualRenewals batch process

This batch process runs projected eligibility, calls the custom generate notices implementation to send
the appropriate citizen notices, and automatically renews CHIP for eligible citizens where eligibility is
unchanged.

Class and method

curam.hcr.pdm.sl.intf.CHIPProcessAnnualRenewals.process

Implementing periodic data matching and annual renewals 61

Parameters

Parameter Description Default value

runID Mandatory. The run ID value that | A different value is required for
you specified in the periodic data |each run.

matching run configuration in the
Curam Administration
application.

instancelD Optional. An optional instance ID | BPN26008
that used by the batch
infrastructure to stop or restart a
batch process.

processingDate Optional. The current date.

runInstancelD Do not set. An internal batch field [Not applicable
for communicating the Run
Instance ID between the batch
main and batch stream
components.

Triaging periodic data matching and annual renewal batch process errors

There are three main reasons why an error occurs in a PDM and AR batch process. The batch process can
fail completely, an error can occur processing an individual Annual Renewal or PDM record, or an error can
occur in the DB-to-JMS processing.

The batch fails completely
The batch launcher returns an integer value to the operating system when it completes a batch
process. A non-zero return code is returned when an error occurs. Consult the logs for the details of
the batch process error.

Error occurs processing individual Annual Renewal or PDM record
Errors can occur even when the batch process completes successfully. These errors can be caused by
a number of reasons. PDM and AR batch processes write to a PDMRunCaseControlFailure failure table
when a case cannot be processed during a batch job. You can use the PDMRunCaseControlManager
API to build batch process error reports.

Error occurs in DB-to-JMS processing
DB-to-JMS errors can occur after the batch process is finished.

Checking for batch processing errors and reprocessing failed cases

After you run periodic data matching or annual renewal batch processes, you must identify any batch
processing errors and reprocess any failed cases. Reprocessing and following up on failed cases is a
custom development task

About this task

You can use the PDMRunCaseControlManager API to help you with tasks related to the following 4 main
error processing scenarios. Typically, you can complete these tasks by implementing a custom batch or
batch-streaming process.

« Capturing a list of cases that failed to process for reporting purposes.
 Reviewing the reasons for technical case processing failures.

 Resetting cases that failed for technical reasons so they can be reprocessed when the issues are
resolved.

- Listing the cases that failed for a business reason to follow up with a caseworker.

62 IBM Curam Social Program Management : Health Care Reform Developer Guide

For more information about the PDMRunCaseControlManager API, see the Javadoc for the API.
The procedure for implementing a batch-streaming process involves 2 main steps:

1. Determining the list of cases to review.
2. Determining what work you need to do on each case.

Procedure

1. Determine the list of cases to review. You can use the default APIs to determine the list of cases as
follows.

a) The list of all failed cases:

final BatchStreamHelper batchStreamHelper = new BatchStreamHelper(); batchStreamHelper.setStartTime();
batchStreamHelper.runChunkMain(key.instanceID, key, <YourBatchMainWrapper>,

pdmRunCaseControlManager.listCasesByRunIDAndState (key.runID,

PDMRUNCASECONTROLSTATUSEntry.FAILURE, chunkMainParameters, <YourBatchStreamWrapper>);

b) The list of all cases that failed for a technical reason:

final BatchStreamHelper batchStreamHelper = new BatchStreamHelper(); batchStreamHelper.setStartTime();
batchStreamHelper.runChunkMain(key.instanceID, key, <YourBatchMainWrapper>,
pdmRunCaseControlManager.listFailedCasesByRunIDAndFailureType(key.runID, PDMRUNCASEFAILURETYPECODEEntry.TECHNICAL),
chunkMainParameters, <YourBatchStreamWrapper>);

c) The list of all cases that failed for a business reason:

final BatchStreamHelper batchStreamHelper = new BatchStreamHelper(); batchStreamHelper.setStartTime();
batchStreamHelper.runChunkMain(key.instanceID, key, <YourBatchMainWrapper>,
pdmRunCaseControlManager.listFailedCasesByRunIDAndFailureType (key.runID, PDMRUNCASEFAILURETYPECODEEntry.BUSINESS),
chunkMainParameters, <YourBatchStreamWrapper>);

2. Determine the work that you need to do on each case. The PDMRunCaseControlManager APIs helps
you to complete the following tasks:

a) Reviewing the reasons for technical case processing failures.

final PDMRunCaseControlExt pdmRunCaseControlExt = pdmRunCaseControlManager.getCase(key.runID,

batchProcessingID.recordID)

final PDMRunCaseControlFailureExt failureDetails = pdmRunCaseControlExt.getCurrentFailureDetails();
log.logFailedCaseAndFailureDetails (pdmRunCaseControlExt, failureDetails.getDateTime(),

failureDetails.getReasonCode(),

failureDetails.getMessage(), failureDetails.getDetails());

b) Resetting cases that failed for technical reasons so they can be reprocessed when the issues are
resolved.

final PDMRunCaseControlExt pdmRunCaseControlExt = pdmRunCaseControlManager.getCase(key.runID,
batchProcessingID.recordID);
pdmRunCaseControlExt.resetCase();

c) Listing the cases that failed for a business reason to follow up with a caseworker.

final PDMRunCaseControlExt pdmRunCaseControlExt = pdmRunCaseControlManager.getCase(key.runID,
batchProcessingID.recordID);

final PDMRunCaseControlFailureExt failureDetails = pdmRunCaseControlExt.getCurrentFailureDetails();
if (failureDetails.getDateTime().before(<TimeLimitForFollowup>))

i1 log.sendCaseWorkerAndSupervisorFollowupNote (pdmRunCaseControlExt); %

Identifying Medicaid or CHIP cases that were not automatically renewed

After you run annual renewals for Medicaid or CHIP, you must identify each of the cases that were not
automatically renewed and reprocess the cases. Reprocessing and following up on failed cases is a
custom development task

About this task

Medicaid or CHIP cases typically cannot be renewed for one of two reasons:

Implementing periodic data matching and annual renewals 63

- The citizen is ineligible. Someone on the case is not eligible for Medicaid or CHIP for the next 12 months
as determined by their projected eligibility.

« Atechnical problem prevented the determination of projected eligibility, typically if corrupted or bad
data cannot be constructed as evidence.

You can use the PDMRunCaseControlManager API to help you to identify the cases. For more information
about the PDMRunCaseControlManager API, see the Javadoc for the APL.

Diagnosing PDM and AR batch run failures

All PDM and AR batch processes write to a PDMRunCaseControlFailure failure table when a case cannot
be processed during a batch job. You can also see the list of cases that failed by looking at the status of
the PDMRunCaseControl table.

To find all the failed cases for a run, use the following query:

SELECT
caseID, runCaseControlID
FROM
PDMRunCaseControl
WHERE
runID = <the value of the RunID>
AND
status = ‘RCCS26030';

To find the details of a specific failure:

SELECT
reasonCode, message
FROM
PDMRunCaseControlFailure
WHERE
runCaseControlID = <the value returned from the previous selection>

Reason codes provide context to issues entered on the PDMRunCaseControlFailure table. These codes
are listed in the PDMRunCaseFailureReason code table.

Table 33: PDMRunCaseControlFailure codetable

Code Description (en locale) Java Identifier

FRCO01 Projected eligibility failure PROJECTEDELIGIBILTY

FRC002 Projected comparison failure ELIGIBILTYCOMPARISON

FRCO03 Evidence copy failure EVIDENCECOPY

FRCO04 Evidence activation failure EVIDENCEACTIVATION

FRCO05 Outstanding verifications failure [OUTSTANDINGVERIFICATIONS

FRCO06 Notice send failure NOTICESEND

FRCOO7 Primary client or tax filer PRIMARYCLIENTORTAXFILERDE
deceased CEASED

FRCO020 Unexpected exception failure UNKNOWNCAUSE

PDM and AR batch job failure reasons
Describes the PDM and AR batch job failure reasons and codes as listed in the PDMRunCaseControlFailure
code table.

PROJECTEDELIGIBILTY (FRC001)

Raised when corrupted evidence is found. This error occurs when the projected eligibility batch
processes try to construct the required rule objects from external evidence. This error does not occur
if the evidence is validated before it is inserted into the PDM control tables as part of the polling and
retrieval of data.

64 1BM Curam Social Program Management : Health Care Reform Developer Guide

To recover from this error, validate and correct the evidence to make sure that it is well-formed. The
case control record can then be reset by the PDMRunCaseControlManager API. When the error is
corrected, it is picked up by the next projected eligibility batch run.

NOTICESEND (FRC006)
Raised by QHPProjectedEligibility or PDMProjectedEligibility when an error occurs during projected
eligibility processing when the notice is generated. This error can occur when the template for the
notice is not available or some issue exists with the data that is being merged with the template.

When the issue is corrected, the failed case control records can be reset by the
PDMRunCaseControlManager API. You can then run the batches again to pick up the corrections.

UNKNOWNCAUSE (FRC020)

Raised when a general error of a technical nature occurs and the exact cause cannot be determined.
The failure table contains a stack trace of the error to aid troubleshooting. When the cause of the error
is corrected, the records can be reset and processed by the batch that caused the error to occur.

The following batch failures are processed as tasks that are routed to the caseworker to correct the
underlying issues. The caseworker can then manually complete the renewal or PDM process, or the failure
can be reset by a developer and reprocessed again.

ELIGIBILTYCOMPARISON (FRC002)

Raised by the MedicaidProcessAnnualRenewals or CHIPProcessAnnualRenewals batch processes
when the projected eligibility differs from the existing eligibility decision on the case. When this error
occurs, the batch cannot complete the renewal automatically. These failures must be corrected before
further processing can continue.

EVIDENCECOPY (FRC003)

Raised by the QHPProcessAutoCompletions batch process when an error occurs following a renewal
where the caseworker Completeaction or the citizen Sign and submit actions have been used.

This error is usually raised when there is pre-existing in-edit evidence for the same type as that being
copied by the batch process. This error must be resolved by the caseworker before completing the
renewal manually. The caseworker must decide on the correct evidence to use and ensure that it is
correctly recorded.

EVIDENCEACTIVATION (FRC004)

Raised by the QHPProcessAutoCompletions and PDMProcessAutoCompletions batch processes when
external evidence is copied successfully with no raised verifications, but the new internal evidence
activation is unsuccessful.

OUTSTANDINGVERIFICATIONS (FRC005)

Raised by the QHPProcessAutoCompletions and PDMProcessAutoCompletions batch process when
external evidence is copied successfully but there are outstanding verifications for the new internal
evidence. When the caseworker resolves the verifications, the renewal is completed manually by the
caseworker.

PRIMARYCLIENTORTAXFILERDECEASED (FRC007)

Raised by PDMProjectedEligibility during projected eligibility processing if the external evidence
indicates that the primary client or tax filer on the case is deceased. This error stops a projected
eligibility from being carried out and raises a task to the caseworker to select a new primary client.
The caseworker then completes the renewal manually.

Implementing periodic data matching and annual renewals 65

Extracting rule objects snapshots to SessionDoc style HTML

You can extract the rule objects snapshot for a program group determination to SessionDoc style HTML by
running a build target from the runtime directory for the rule objects snapshot of a program group
determination.

About this task

This build target extracts an active or superseded program group determination by referencing the
CREOLEPROGGRPDETERMINATIONID field from the PROGRAMGROUPDETERMINATION table. You can
also extract a projected eligibility program group determination by referencing the
CREOLEPROGGRPDETERMINATIONID field from the PROGGRPPROJECTEDELIGIBILITY table.

The following input parameters are used by the creole.extract.programgroupruleobjects build
target:

« outputDir The folder where the HTML output pages are placed by the tool. Ensure the folder is
writable. This is a mandatory parameter.

e programGroupDeterminationID The unique identifier of the program group determination for which
you are extracting the rule objects snapshot. This is the
CreoleProgGrpDetermination.creoleProgGrpDeterminationld field on the database. This is a mandatory
parameter.

Procedure

Run the following command from the runtime directory: build
creole.extract.programruleobjects -DoutputDir={outputDir value} -
DprogramGroupDeterminationID={programGroupDetermainationID value}

Customizing periodic data matching and annual renewals

Use the following information to help you to customize your periodic data matching or annual renewals
implementation to your requirements.
Related tasks

Customizing inconsistency period processing

Inconsistency period processing allows a caseworker to give a client a reasonable opportunity period to
provide outstanding verifications for evidence that requires verification. Cases can proceed during that
period as if outstanding verifications were provided. The default inconsistency period processing
infrastructure consists of a batch process, a workflow, and the inconsistency period processing APIs. You
can create a custom event handler to customize the default inconsistency period processing.

Customizing the storage of program group determinations

From version 6.0.5.5 interim fix 2 onwards, all program group determinations are stored in the database
by default. Over time the number of determinations can become significant and increase the size of the
database table. You can use the provided hook point to suppress the storage of identical program group
determinations to reduce the size of the database table.

About this task

If you create an implementation that can identify if the new eligibility determination is the same as the
current active eligibility determination, you can use the hook to suppress the storage of the new
determination. Suppressing the storage of the determination means that no information is inserted into
the PROGRAMGROUPDETERMINATION, CREOLEPROGGRPDETERMINATION and
CREOLEPROGGRPDETERDATA entities.

66 1BM Curam Social Program Management : Health Care Reform Developer Guide

Note: You must ensure that your implementation correctly stores a determination when required. For
example, if an updated determination is not stored, then future comparisons for this value can be
affected.

Procedure

1. Create a class that implements curam.healthcare.sl.impl.ProgramGroupDeterminationStorageHook,
which contains the single ProgramGroupDeterminationStorageHook
.storeDetermination(ProgramGroupDeterminationDetails) method with the following options.

« Returns true to indicate to store the program group determination because it is different from the
current active program group determination.

« Returns false to indicate not to store the program group determination because it is considered
equivalent to the current active program group determination.

2. Add a Guice link binding to the existing custom module class, linking the implementation that you
created for curam.healthcare.sl.impl.ProgramGroupDeterminationStorageHook to the
ProgramGroupDeterminationStorageHook interface.

For example:

protected void configure() %
// Existing bindings

// Guice Link binding linking custom implementation of ProgramGroupDeterminationStorageHook

//(e.g. CustomProgramGroupDeterminationStorageHookImpl) to

// the ProgramGroupDeterminationStorageHook interface

bind (ProgramGroupDeterminationStorageHook.class) .to(CustomProgramGroupDeterminationStorageHookImpl.class);

Related tasks

Storing all existing program group determinations

Before version 6.0.5.5 interim fix 2, program group determinations were not saved in the database. If you
upgrade from an earlier version, you must run the BulkRunProgramGroupEligibility batch process on your
system before you run any of the periodic data matching or annual renewals batch processes. The
BulkRunProgramGroupEligibility batch process identifies and stores all of the current program group
determinations in your system. This once-off task for each system captures information that is required
for projected eligibility comparisons.

Customizing projected eligibility for periodic data matching and annual renewals

Complete the following tasks to customize the default projected eligibility implementation to include
extra external evidence types. By default, the Death Status, Minimum Essential Coverage, Income Details,
and Annual Tax Return external evidence types are supported.

Procedure

1. Update your TDS services implementation to handle the new evidence types.

2. Configure dynamic evidence entities for the new external evidence types.

3. Customize the projected eligibility evidence handlers to handle the new evidence types.
4. Where necessary, customize the citizen account to include the new evidence types.

Customizing projected eligibility evidence handlers

Use this information to customize evidence handlers if you want to include an extra external data
evidence type in your eligibility projections. You can also modify or replace the default evidence handler
mapping of external data to internal rule objects.

Before you begin

Important: Implementing a new evidence handler or replacing an existing handler is a non-trivial task. An
incorrectly implemented error handler that encounters errors or incorrectly constructs rule objects can
cause the projected eligibility rules to encounter errors at run time or can cause incorrect eligibility

Implementing periodic data matching and annual renewals 67

determinations. It is important to thoroughly test all custom evidence handlers before deploymentin a
live environment.

Projected eligibility

Projected eligibility is the process where the HCR Program Group Rules are run in a mode that uses the
active data on the case, supplemented by data that is obtained from external sources, to determine and
inform a citizen of the affect that the external data would have if it was applied to their case.

Depending on the projection type, the projection can be for the current period or for an eligibility period in
the future, such as the next enrollment period.

Important: External evidence must not be directly referenced by eligibility and entitlement rule sets as
this will lead to case redeterminations each time external evidence is added to a case. Redetermining
cases as part of evidence polling might lead to performance issues and removes the ability to generate
eligibility projections that use the external data.

Projected eligibility evidence handlers

Projected eligibility evidence handlers enable HCR rules to use external data in eligibility projections.
These evidence handlers convert external data into rule objects that are used when the rules run. Then,
the data that was sourced from external sources and added as evidence to the case can be used to
determine eligibility and entitlement in the case.

You can replace or disable the default evidence handlers. You can also add custom evidence handlers for
external evidence types that not supported by default.

You use the ProjectedEligibilityEvidenceHandler API to implement a projected eligibility evidence handler.
For more information about the ProjectedEligibilityEvidenceHandler API, see the Javadoc for the API.

External evidence

External evidence is evidence that is not provided by the citizen but acquired from trusted data sources,
such as the Social Security Administration, or the Internal Revenue Service. It is applied to the integrated
case to be used only in eligibility projections.

External evidence can be associated with verifications that ensure that the values are compatible with
client-attested values. For example, client-reported yearly income must be reasonably compatible with
the external evidence type of 'Annual Tax Return', otherwise the client must provide proof that the
evidence from the trusted data source is incorrect.

Important: External evidence must not be directly referenced by eligibility and entitlement rule sets as
this causes case redeterminations each time external evidence is added to a case. Redetermining cases
as part of evidence polling might lead to performance issues, and removes the ability to generate
eligibility projections that use the external data.

Implementing a new evidence handler

Use this information to customize evidence handlers if you want to include an extra external data
evidence type in your eligibility projections. You can also modify or replace the default evidence handler
mapping of external data to internal rule objects.

What to do next

Important: Implementing a new evidence handler or replacing an existing handler is a non-trivial task. An
incorrectly implemented error handler that encounters errors or incorrectly constructs rule objects can
cause the projected eligibility rules to encounter errors at run time or can cause incorrect eligibility
determinations. It is important to thoroughly test all custom evidence handlers before deploymentin a
live environment.

68 IBM Curam Social Program Management : Health Care Reform Developer Guide

Identifying rule classes for the evidence handler
Complete the following analysis to identify which rule classes must be returned by the
defineInMemoryRuleObjects() method.

About this task
Typically, but not always, an evidence handler only creates rule objects of a single type.

You must follow the chain from External Evidence to Data Rule. The link between External Evidence and
Rule Class is a multi-step chain as shown:

External Evidence > Evidence > Evidence Propagator > Data Rule Set > Data Rule Class > Rule
Objects of the Rule Class type

The following procedure illustrates how to navigate the chain by using an example. To determine which
rule class must be returned for a new evidence type, you must repeat this procedure for each new handler
that you create.

Procedure

1. Identify the evidence type associated with the external evidence type.

A business analyst should be able to identify the client attested evidence type which is associated with
an external evidence type.

Annual Tax Return data that is obtained from external data sources is stored on the ‘Annual Tax Return’
external evidence type. This external evidence maps to the ‘Income’ evidence on the case that is used
by the HCR eligibility rules. For your custom handler, you must determine to which evidence type the
external evidence is mapped before proceeding to the next step in the chain analysis.

Note: In some instances, multiple external evidence types map to the same evidence type, for
example ‘Income Details’ and ‘Annual Tax Return’ both map to ‘Income’. In this scenario, the same
evidence handler converts the data from both external evidence types into rule objects.

2. Identify the evidence propagator associated with the evidence type.

After you identify the evidence type, there should be only one Active Succession Propagator
Configuration, type “ROPT2005", associated with this evidence type. The ‘Income’ evidence type code
is “DET0026030”. Use this evidence type code to search all of the propagation configuration files to
identify the associated active succession set propagation configuration file. In this example, searching
all of files on the system for the text '<propagator type="ROPT2005">"' and '<evidence
type="DET0026030">" yields the IncomePropagatorConfiguration.xml file with the following
contents:

<?xml version="1.0" encoding="UTF-8"?>
<propagator type="ROPT2005">
<configuration>
<evidence type="DET0026030">
<ruleset name="IncomeDataRuleSet"/>
</evidence>
</configuration>
</propagator>

For your custom handler, you must determine the propagator configuration file to which the evidence
type is mapped before proceeding to the next step in the chain analysis.

Note: If the file search results in multiple active succession set propagator configuration files, then the
evidence may be linked to multiple data rule sets. In this scenario, you must do the next step in the
chain analysis for each propagator configuration that you identified.

3. Identify the data rule set associated with the evidence propagator.

After you identify the Evidence Propagator Configuration file, then this will contain the name of the
data rule set. For example, the IncomePropagatorConfiguration file is associated with the
IncomeDataRuleSet as indicated in the highlighted XML.

<?xml version="1.0" encoding="UTF-8"?>
<propagator type="ROPT2005">

Implementing periodic data matching and annual renewals 69

<configuration>
<evidence type="DET0026030">
<ruleset name="IncomeDataRuleSet"/>
</evidence>
</configuration>
</propagator>

For your custom handler, you must determine the data rule set the evidence propagator is mapped to
before proceeding to the next step in the chain analysis.

4. Identify the data rule class associated with the data rule set.

Once you have identified the Data Rule Set file, then examination of this file should allow you to locate
the associated Data Rule Class. In our example, the IncomeDataRuleSet. xml rule set contains one
rule class ‘Income’ as indicated in the highlighted XML.

<RuleSet name="IncomeDataRuleSet">
<Class
extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet"
name="Income"
>

For your custom handler, you need to determine the rule class the data rule set is mapped to.

5. Determine the fully qualified rule class name.

Finally, the fully qualified rule class name is obtained by concatenating the rule set name with the rule
class name. For example, the fully qualified rule class name is ‘IncomeDataRuleSet.Income’. For your
custom handler, you must determine the fully qualified rule class name.

This fully qualified rule class name is to be returned by the defineInMemoryRuleObjects() method
when you create a custom evidence handler.

What to do next
The initial analysis is complete and you now have enough information to start implementation of the
custom evidence handler.

External evidence to qualified rule class name mappings
The default mappings of external evidence to qualified rule class name.

Table 34:

Default mappings of external evidence to qualified rule class name

External

Mapped Evidence

Evidence Type Type Mapped Data Rule Set Mapped Rule Class Name Fully Qualified Rule Class Name

Death Status Application HCRApplicantDataRuleSet HCRApplicant PDCBirthAndDeath HCRApplicantDataRuleSet.HCRApplicant
Details Birth and PDCBirthAndDeathDataRuleSet PDCBirthAndDeathDataRuleSet.PDCBirthAndDeath
Death Details

Minimum Benefit HCRBenefitDataRuleSet HCRBenefit HCRBenefitDataRuleSet. HCRBenefit

Essential
Coverage

Income Details

Income

IncomeDataRuleSet

Income

IncomeDataRuleSet.Income

Annual Tax

Return

Income

IncomeDataRuleSet

Income

IncomeDataRuleSet.Income

Rule objects in projected eligibility

Rule objects are created before running rules. For active eligibility and entitlement determinations, a rule
object converter reads underlying business tables to obtain the appropriate data and populate rule
objects in memory. For Projected Eligibility, the normal rule object converter is bypassed and instead
responsibility for creating all rule objects is delegated to the projected eligibility evidence handler for the
rule class types that are specified by the defineInMemoryRuleClasses() method. These rule objects are
created by the createRuleObject() method, which is implemented by each evidence handler.

Each evidence handler must replicate the work that is normally done by the rule object converter. Before
you can start creating rule objects, you need to determine which rule object creation strategy the handler
should use. The default evidence handlers use three different rule object creation strategies. However,
you can choose to implement a new strategy.

70 IBM Curam Social Program Management : Health Care Reform Developer Guide

Creating a custom evidence handler
Complete the following steps to create the custom evidence handler implementation.

Before you begin

Use the following naming convention for custom projected eligibility evidence handlers:
iCustom Identifier?{Evidence NameiProjectedEligibilityEvidenceHandlerImpl

For example, you might call a custom version of an Income evidence handler
CustomIncomeProjectedEligibilityEvidenceHandlerImpl.

Procedure

1. Using the identified the rule class for the rule objects that are created by the handler, implement the
defineInMemoryRuleObjects() method.

The default income evidence handler implementation of the defineInMemoryRuleObjects() method is
shown. This method returns a list with containing the one rule class that is created by the handler
‘IncomeDataRuleSet.Income’

public class IncomeProjectedEligibilityEvidenceHandlerImpl implements
ProjectedEligibilityEvidenceHandler {

public class SampleIncomeProjectedEligibilityEvidenceHandlerImpl implements
ProjectedEligibilityEvidenceHandler {

/**

* $@inheritDoc}

*/

@Override

public Set<String> defineInMemoryRuleClasses(final CaseKey caseKey,
final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlslList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType) 1

return new HashSet<String>() {

add ("IncomeDataRuleSet.Income");
%
if;
%
2. To complete the implementation of the custom evidence handler, you must implement the

createRuleObjects() method to create rule objects for projected eligibility. The createRuleObjects()
method is defined as follows:

void createRuleObjects(final CaseKey caseKey, final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,

final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType)

throws AppException, InformationalException;

Adding logging to custom evidence handlers

Logging can be added to custom evidence handlers by invoking the log() method on the
ProgramGroupProjectedEligiblityHelper class. Adding logging to custom evidence handlers can help in the
investigation of unexpected projected eligibility results.

Procedure

Use the following code to add logging to a custom evidence handler:

ProgramGroupProjectedEligibilityHelper helper =
new ProgramGroupProjectedEligibilityHelpex();
helper.log(Level.INFO, message);

Please refer to the ProgramGroupProjectedEligibilityHelper API for more information on the log() method.

Implementing periodic data matching and annual renewals 71

Implementing the creation of rule objects for projected eligibility

Completing the implementation of a custom evidence handler requires implementing the
createRuleObjects() method. This is by far the most complex step in creating a custom evidence handler.
The createRuleObject() method is responsible for creating all rule objects for the rule class types that are
specified by the defineInMemoryRuleClasses() method. Therefore business logic is required by the
createRuleObjects() to determine which data to use when constructing the rule object.

About this task

There are many different sources of data or strategies that this method could use when creating the rule
objects. For example the method could:

- Exclusively use only the active evidence on the case; not necessarily useful as this would result in the
same decision as the current active decision.

 Exclusively use the external evidence on the case; what happens if there are missing fields on the
external evidence that must be specified on the rule object?

« Use all the active evidence on the case and all the external evidence; what happens if this results in
duplicated rule objects resulting in an ineligible decision because for example income was double
counted?

When implementing the default evidence handlers, business analysts defined three different strategies
that were required so that the evidence handlers used the correct data when constructing the rule
objects. These are discussed in detail in the following topic as they may be applicable to custom evidence
handlers. When implementing a new evidence handler, identifying the correct data to use when
constructing the rule object is critical and will probably require business analyst input.

Rule object creation strategies

The default evidence handlers use three different rule object creation strategies in their
createRuleObjects() implementations to correctly construct rule objects that represent the active client
attested evidence and the external evidence. However, you can choose to implement a new strategy if you
prefer.

Load active internal evidence and external evidence as rule objects
The first strategy is to create rule objects that represent all the active internal evidence and to
supplement this evidence by creating additional rule objects for the external data. This strategy can
be used when there is no overlap between evidence that is on the case and evidence that was sourced
externally, in other words the external evidence is orthogonal to the evidence already used in the
determination.

Load active internal evidence as rule objects, clone rule objects and modify attributes
The second strategy is to load rule objects that represent all the active internal evidence, however
rather than creating rule objects for the external evidence, the loaded rule objects are cloned, which
certain rule attribute values being replaced with the external data. Use this strategy if the external
evidence attributes only maps to a subset of attributes on the internal evidence.

Create rule objects by overlaying active evidence with external evidence
This is the most complex rule object creation strategy because for those external evidence records
that are deemed equivalent by a business-defined evidence-matching algorithm, you need to effective
date or overlay the external evidence information with the active evidence. For equivalent evidence
that needs to be effective dated, the rule objects that are created from the active evidence details are
end dated while the external evidence records have a start date, which ensures the rule objects
created are never processed by the rules for a common date. For active and external evidence records
that are not deemed equivalent by the evidence matching algorithm, this strategy follows the 'Load
active internal evidence and external evidence as rule objects' strategy.

An example of this strategy is used in the default Income evidence handler. The income evidence
handler merges active Income evidence with two external evidence types — Annual Tax Return and
Income Details to create rule objects that represent data from the three separate sources. An income
merging rule object algorithm was developed to combine active income evidence with the external
evidence. The algorithm takes the form:

72 1BM Curam Social Program Management : Health Care Reform Developer Guide

« If active income evidence is equivalent to external evidence, based on an income type and participant
match algorithm:

— Load the income rule object, and clone and end-date income rule object.
— Create a rule object by using the external evidence and start date, effectively
« Ifincome is not equivalent to the external income:

— Load the income rule object that represents active income evidence.
— Create new rule objects that represent the external evidence.

Techniques for filtering evidence and creating rule objects
Each of the default rule object creation strategies uses the following techniques to filter evidence and
create rule objects. You can use the same techniques in a custom handler.

Filtering external evidence by evidence type

When each evidence handler’s createRuleObject() method is invoked by the projected eligibility manager,
the method is passed a list of evidence descriptor records associated with the projection
(EvidenceDescriptorDtlsList evidenceDescriptorDtlsList).

Procedure

Each handler should filter this list of evidence by evidence type and before converting the filtered list to
rule objects as per the creation strategy being implemented. To filter the evidence the following code can
be added to a custom handler:

// Filter external MEC evidence details
final EvidenceDescriptorDtlsList filteredEvidenceDescriptorList =
new EvidenceDescriptorDtlsList();

filteredEvidenceDescriptorList.dtls
.addAll(evidenceDescriptorDtlsList.dtls);

// Filter input evidence details list by type
org.apache.commons.collections.CollectionUtils.filter
(filteredEvidenceDescriptorList.dtls,
new org.apache.commons.collections.Predicate() {

@Override
public boolean evaluate(final Object input) {

return ((EvidenceDescriptorDtls) input).evidenceType
.equals (CASEEVIDENCE.MEC) ;
// update to evidence type associated with the custom handler

3
5) 5

Creating rule objects from active evidence
Active internal evidence can be converted into rule objects by invoking the default rule object converter
for the rule class.

About this task

Using the associated Data Rule Set and Data Rule Class identified in the ‘Identifying rule classes for the
evidence handler’ task and specifying the case id in the search criteria, the converter will convert the
active evidence on the case into rule objects. Once the existing rule objects have been loaded, they must
be cloned, creating new rule objects in the current session that are used by the session when the rules
execute.

Procedure

Add a code equivalent to the following example to the custom handler, updating the rule set and rule
class as appropriate.

// Load rule objects based on active internal evidence
final RuleSet ruleSet =
ruleSetManager.readRuleSet ("HCRBenefitDataRuleSet");
final RuleClass ruleClass = ruleSet.findClass("HCRBenefit");

Implementing periodic data matching and annual renewals 73

final SingleAttributeMatch ruleObjectSearchCriteria =
new SingleAttributeMatch(ruleClass, "caseID", caseKey.caseID);

final RuleClass soughtRuleClass = ruleObjectSearchCriteria.ruleClass();

final RuleObjectConverter ruleObjectConverter =
ruleClassConverterMapper.getRuleObjectConverter(soughtRuleClass);

final List<RuleObject> ruleObjectList =
ruleObjectConverter.convert(session, ruleObjectSearchCriteria);

// Clone rule objects, creating new rule objects in the current session
for (final RuleObject ruleObjectItem : ruleObjectlList) $

final RuleObject ruleObject = session.createRuleObject(ruleClass);
for (final RuleAttribute ruleAttribute : ruleClass.allAttributes()) £

ruleObject.getAttributeValue(ruleAttribute.name()) .specifyValue(
ruleObjectItem.getAttributeValue(ruleAttribute.name()).getValue());

Creating rule objects from external evidence
The filtered external evidence descriptor list can be used to create new rule objects in memory
representing the external data using the following technique.

About this task

Modify the rule object attributes and external evidence attributes in the example to match the data rule
class and external evidence that is associated with the custom handler.

// Looping the filtered evidence records,
// create new rule objects for external evidence

for (final EvidenceDescriptorDtls
activeEvidenceDtls : filteredEvidenceDescriptorList.dtls) {

final RuleObject ruleObject = session.createRuleObject(ruleClass);
ruleObject.getAttributeValue("caseID").specifyValue(caseKey.caseID);

final EvidenceTypeKey evType = new EvidenceTypeKey();
evType.evidenceType = activeEvidenceDtls.evidenceType;

final EvidenceCaseKey evidenceCaseKey = new EvidenceCaseKey();
evidenceCaseKey.evidenceKey.evidenceID = activeEvidenceDtls.relatedID;
evidenceCaseKey.evidenceKey.evType = activeEvidenceDtls.evidenceType;

// read external evidence
final DynamicEvidenceObjectInf dynamicEvidenceObject =
dynamicEvidenceMaintenanceExt.readEvidence(evidenceCaseKey);

// set rule object values using external evidence details
final long caseParticipantRoleID =
(Long) dynamicEvidenceObject
.getAttributeValue("caseParticipantRoleID");
ruleObject.getAttributeValue("caseParticipantRoleID").specifyValue(
caseParticipantRoleID);

final Date startDate =

(Date) dynamicEvidenceObject.getAttributeValue("startDate");
ruleObject.getAttributeValue("startDate").specifyValue(startDate);
// set additional fields on rule object as appropriate

ruleObject.getAttributeValue("successionID").specifyValue(
activeEvidenceDtls.successionID);

When creating rule objects, you need to specify the value for all rule object attributes that have
<specified/> derivation.

In the previous example, the HCRBenefit rule class has a number of attributes that have the ‘specified’
derivation. Each of these attribute values is set using the external evidence data. The following snippet of

74 1BM Curam Social Program Management : Health Care Reform Developer Guide

the HCRBenefit rule class shows the ‘specified’ derivation type for the ‘startDate’ rule attribute displayed
in bold.

<Attribute name="startDate">
<Annotations>
<Label
label-id="startDate"
name="The date on which the unearned income commenced."
/>
</Annotations>
<type>
<javaclass name="curam.util.type.Date"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

When implementing a custom evidence handler you need to search the associated rule class for all
attributes with the specified derivation and specify the attribute value on the rule object using data that is
obtained from the external evidence record. For the startDate attribute, the following code reads the
external evidence attribute value and specifies the rule object attribute value with this date.

final Date startDate =
(Date) dynamicEvidenceObject.getAttributeValue("startDate");
ruleObject.getAttributeValue("startDate").specifyValue(startDate);

Cloning and modifying active evidence rule objects

In some scenarios, business logic determines that an active evidence record is actually equivalent or
partially equivalent to an external evidence record. Perhaps, by means of a partial field match. In this
situation, business logic is needed to define an algorithm to create rule objects with attribute values that
are specified either from the active evidence field values, or from external evidence field values.

About this task

For example, business logic might define an algorithm where the external evidence value is used to
populate the rule attribute value unless there is no equivalent field on the external evidence. In that case,
the active evidence value is used to populate the rule attribute value.

You might encounter this scenario if not all of the rule attribute fields that need to be specified map to
fields on the external evidence type. In this situation, data from the active evidence needs to be used to
supplement the rule object being created.

Procedure

1. Load active evidence as rule objects.

2. Loop the rule object list, for each existing rule object.
a) Create a cloned rule object.

b) Loop each attribute on the existing rule object, depending on the attribute name. You can use one
of the following options:

1) Specify a cloned rule object attribute value using the existing rule object value.
2) Specify a cloned rule object attribute value using the external evidence.

The decision per attribute name requires business logic to determine the correct source to be used
when specifying the rule object attribute value.

Implementing periodic data matching and annual renewals 75

Customizing an external evidence handler
Complete the following steps to customize or replace a default projected eligibility evidence handler with
a custom implementation.

Before you begin

Create a new Projected Eligibility Evidence Handler implementation that replaces the default handler. You
can implement an entirely new handler or use the default evidence handler as the starting point for your
customization.

About this task

Assuming that you have successfully created a customized handler implementation, you must modify the
Guice bindings so that the new evidence handler is used by projected eligibility rather than the default
evidence handler.

Procedure

1. Modify the new custom evidence handler to extend the default evidence handler that you are
replacing.
For example, change

public class SampleIncomeProjectedEligibilityEvidenceHandlerImpl implements
ProjectedEligibilityEvidenceHandler {

to

public class SampleIncomeProjectedEligibilityEvidenceHandlerImpl extends
IncomeProjectedEligibilityEvidenceHandlerImpl {

2. Create a module class, which creates a Guice link binding replacing the default evidence handler with
the customized evidence handler or add the new link binding to an existing module class.
For example, see this custom module, which contains a link binding to replace the default income
evidence handler with a binding to a custom income handler.

/%%
* Contains modified projected eligibility evidence handler Guice bindings.

*
@AccessLevel (AccesslLevelType.EXTERNAL)
public class SampleProjectedEligibilityModule extends AbstractModule {

[**
* {@inheritDoc}
*

@Override
protected void configure() %

// Link binding replacing the default income projected evidence

// handler with a custom income projected eligibility handler

bind(IncomeProjectedEligibilityEvidenceHandlerImpl.class)
.to(SampleIncomeProjectedEligibilityEvidenceHandlerImpl.class);

3. If you created a new module class, update the ModuleClassname. dmx file to reference this new
module.

Disabling an evidence handler
Complete the following steps to disable a projected eligibility evidence handler by replacing the default
evidence handler with a custom evidence handler that has an empty implementation.

Procedure

1. Create a custom disabled evidence handler with no implementation that extends the default evidence
handler that you are disabling.

76 1BM Curam Social Program Management : Health Care Reform Developer Guide

For example, see this custom Income Projected Eligibility Evidence Handler that contains no
implementation.

/%%
* {@inheritDoc}

*/
public final class SampleDisabledIncomeProjectedEligibilityEvidenceHandlerImpl extends
IncomeProjectedEligibilityEvidenceHandlerImpl {

@Override

public Set<String> defineInMemoryRuleClasses(final CaseKey caseKey,
final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType) {

// no rule objects will be created in memory by this handler
return new HashSet<String>();

3

@Override

public void createRuleObjects(final CaseKey caseKey, final Session session,
final EvidenceDescriptorDtlsList evidenceDescriptorDtlsList,
final PROJECTEDELIGIBILITYTYPEEntry projectedEligibilityType)
throws AppException, InformationalException {

// create no rule objects

¥
2. Create a module class, which creates a Guice link binding replacing the default evidence handler with
the customized evidence handler or add the new link binding to an existing module class.
For example, see this custom module, which contains a link binding to replace the default income
evidence handler with a custom disabled income handler.
/%%

* Contains disabled projected eligibility evidence handler Guice bindings.

*
@AccessLevel (AccesslLevelType.EXTERNAL)
public class SampleProjectedEligibilityModule extends AbstractModule {

[**
* {@inheritDoc}
*

@Override
protected void configure() {

// Link binding replacing the default income projected evidence handler
// with a custom income projected eligibility handler that does nothing

bind(IncomeProjectedEligibilityEvidenceHandlerImpl.class)
.to(SampleDisabledIncomeProjectedEligibilityEvidenceHandlerImpl.class);

3. If you created a new module class, update the ModuleClassname. dmx file to reference this new
module.

Enabling projected eligibility logging

The default external evidence handlers can output log/trace information while being executed. This log
output can be used to aid in the investigation of unexpected projected eligibility results in conjunction
with other tools like SessionDoc. This log output is disabled by default.

About this task

Add Logging to custom external evidence handlers to aid investigation of projected eligibility issues.

Procedure

1. Login to the Curam application as a user with system administrator permissions.
2. Modify the value of the 'Projected Eligibility Message Logging Level' property to be 'trace_on'.
3. Publish changes.

Implementing periodic data matching and annual renewals 77

Customizing the citizen account with new evidence types

After you add new external evidence types, you might want to update the citizen account to reflect any
new citizen choices. You might also want to change the evidence types that you want customers to be
able to contest.

Customizing the citizen account for periodic data matching and annual
renewals

You can modify the citizen account to change the evidence that citizens can contest, and you can
customize the periodic data matching and annual renewals messages that are displayed to the citizen.

Configuring contestable evidence types

By default, the Death Status and MEC evidence types are contestable for periodic data matching, and the
income evidence type is contestable for annual renewals. A Contest button and a cluster containing the
contestable evidence types are displayed in the citizen account, for each contestable evidence type.
Complete the following steps to configure the contestable evidence types.

About this task

Contestable evidence types are specified in the curam.healthcare.pdm.contestable.evidences property in
the "HEALTHCARE" section.

Procedure

1. Login to the Curam Administration application as a user with administrator permissions

2. Modify the curam.healthcare.pdm.contestable.evidences property to add or remove EvidenceTypes
codes.

Adding contestable evidence types to the citizen account
After you add a contestable evidence type for periodic data matching and annual renewals, you must
complete the following steps to enable citizens to contest the evidence from the citizen account.

About this task
By default, the Death Status and MEC evidence types are contestable for periodic data matching, and the
income evidence type is contestable for annual renewals.

Procedure

1. Modify the webclient\components\HCROnline\CitizenAccount\lifeevents\CitizenAccount_arpdm.vim
file to include clusters for the new evidence types.

2. Override the EIBServer\components\HCROnline\source\curam\healthcare\pdm\sl\impl
\HealthCarePDMProcessingImpl.java Service Layer implementation to incorporate the changes. This
service class implements the HealthCarePDMProcessing interface.

3. Modify the ContestableEvidenceDetailsList struct to capture the data for the new evidence.

Modifying periodic data matching home page messages
Complete the following steps to modify the default set of messages that can be displayed on the periodic

data matching home page.

About this task

Procedure

1. To modify the messages in the DMX files:
a) Modify the messages in the following DMX files:

78 IBM Curam Social Program Management : Health Care Reform Developer Guide

« CITIZENHOMEMENUITEM
« LOCALIZABLETEXT
« TEXTTRANSLATION
b) Override the HealthCarePDMProcessingImpl Java class or create and associate a new Java class.
2. To create messages in the DMX files:
a) Create an entry in the CITIZENHOMEMENUITEM table.

b) Create a Java class containing the implementation of the new business logic to determine on what
condition the menu item message is displayed.

¢) Associate the new Java class file name to respective entry in the CITIZENHOMEMENUITEM table
for the column "CLASSNAME".

3. To modify the messages in the AnnualRenewal.properties file:

a) Modify the messages in the data\initial\blob\pzrop
\CitizenMessagesForPDM.propexrties file.

b) If required, override the PDMMessagesEventListener class.

¢) The messages are inserted into the PARTICIPANTMESSAGECONFIG table. Use the Administration
Application to modify the messages.

Modifying periodic data matching My Updates page messages

Complete the following steps to modify the default set of messages that can be displayed on the default
periodic data matching cluster on the My Updates page messages.

About this task

The messages that can be displayed on My Updates page are read from the EJBServer\components
\HCROnline\message\PDMUpdates.xml. These messages are populated at run time in the Service
layer implementation.

Procedure

1. Modify the messages in the PDMUpdates. xml file.

2. HealthCarePDMProcessingImpl is provided with a default implementation. You can create your own
implementation by providing a new implementation for the HealthCarePDMProcessing interface.

Modifying annual renewals home page messages

Complete the following steps to modify the default set of messages that can be displayed on the annual
renewals home page.

Procedure

1. To modify messages in the DMX files:
a) Modify the messages in the following DMX files:

« CITIZENHOMEMENUITEM
* LOCALIZABLETEXT
« TEXTTRANSLATION

b) Override the AnnualRenewalMenultemProducer Java class or create and associate a new Java
class.

2. To create messages in the DMX files:
a) Create an entry in the CITIZENHOMEMENUITEM table.

b) Create a Java class containing the implementation of the new business logic to determine on what
condition the menu item message is displayed.

Implementing periodic data matching and annual renewals 79

c) Associate the new Java class file name to respective entry in the CITIZENHOMEMENUITEM table
for the column "CLASSNAME".

3. To modify the messages in the AnnualRenewal.properties file:

a) Create a file to extend the AnnualRenewalMessageHelper interface. Extend the
AnnualRenewalMessageHelperImpl and override the required APIs.

The messages are inserted into the PARTICIPANTMESSAGECONFIG table.

b) Modify the CURAM_DIR\EJBServer\components\HCROnline\data\initial\blob\prop
\AnnualRenewal.properties file to add new messages or to modify the existing messages.

Modifying the annual renewals My Updates page

By default, the annual renewals implementation includes the
CASEEVIDENCE.EXTERNALINCOMEDETAILS, CASEEVIDENCE.ANNUALTAXRETURN evidence types.
Complete the following steps to modify the default annual renewal My Updates page to add new evidence
types or to add new columns on the page.

Procedure

1. Implement the AnnualRenewalHelper interface. You can provide a new implementation or extend the
AnnualRenewalHelperImpl. Inject the new implementation class.

2. Model the existing structs to accommodate the new evidence changes:

a) Add a Boolean attribute in EvidenceTypeDetails struct to display a new cluster for the evidence type
and ensure that the cluster is visible only when it contains records.

b) Add a new attribute to hold the details of new evidence type. The data type for this list should be of
type curam.citizenaccount.annualrenewal.facade.struct.EvidenceDetails.

c) Modify the EvidenceDetails struct to add the new attribute for display on the UL.

3. Update the HCROnline\CitizenAccount\lifeevents\CitizenAccount_arpdm.vim file to add
the new columns or a new cluster.

Customizing evidence converters

Complete the following tasks to customize the default evidence mappings by modifying the evidence
converters.

External evidence converters

External evidence converters create or modify the existing evidence on a case according to the external
evidence on the case. Each evidence converter must implement the ExternalEvidenceConverter interface.

Registered external evidence converters are used by the automatic-completion batch processes to create
evidence from polled external evidence. External evidence converters are responsible for converting one
specific type of polled evidence into evidence on the case. An evidence converter cannot convert more
than one polled evidence type. Depending on business requirements, an evidence converter either
creates new evidence on a case, modifies existing evidence on the case or does both. A converter usually
only creates or modifies evidence of one specific type. However, this is not a requirement. It is possible
that a piece of polled evidence can map to several different evidence records on a case. The evidence
converter converts one evidence record per invocation, so in situations where there are several different
items of the same external polled evidence, the converter must be invoked for each polled evidence
record.

80 IBM Curam Social Program Management : Health Care Reform Developer Guide

Implementing a new external evidence converter

Complete the following steps to implement a new evidence converter by using an abstract helper class.
The creation of custom external evidence converters is simplified by the inclusion of the abstract helper
class, CommonExternalEvidenceConverter.

About this task

Several default converters are provided to convert polled evidences of types 'Death Status/,
'‘MinimumEssentialCoverage', 'Annual Tax Return' and 'Income Details'. The
ExternalEvidenceConverterManager invokes all registered converters that match the evidence types that
were polled. You can implement and register additional external evidence converters for other types of
polled evidence. Custom evidence converters can be created for the default polled evidence types or a
new custom dynamic evidence type. All evidence that is created by the default evidence converters has
an evidence change reason specified as 'Reported by External Party".

While evidence converters usually create new evidence on a case, there are instances where they also
need to modify existing evidence on the case. In some situations, the evidence that is created by the
converter needs to replace or end date the evidence on the case. To achieve this an evidence converter
needs to modify the existing evidence record before adding the new evidence. In situations where there
are multiple evidence records to be modified, business logic might need to be incorporated into the
evidence converter to identify the correct evidence records to modify. In some situations, a converter
might only need to modify existing evidence and not insert any new evidence records.

Procedure

1. Create a class that extends CommonExternalEvidenceConverter, specifying the source evidence type
and the target evidence type.

public class SampleEvidenceTypeExternalEvidenceConverterImpl extends
CommonExternalEvidenceConverter<SOURCE_EVIDENCE_TYPE, TARGET_EVIDENCE_TYPE> {

In the example after this procedure, the source evidence type is a Dynamic evidence static evidence
type AnnualTaxReturnDtls while the target is dynamic evidence.

2. The new class must implement all abstract methods that are defined in the
CommonExternalEvidenceConverter class:

protected abstract CASEEVIDENCEEntry getSourceEvidenceType();
protected abstract CASEEVIDENCEEntry getTargetEvidenceType();

protected abstract TT getCreateEvidenceDetails(final ST sourceEvidenceObject,
final EvidenceDescriptorDtls descriptor);

protected abstract void mapModifyEvidenceDetails(

3. The new class must also override the following methods, which are defined in the
CommonExternalEvidenceConverter class:

protected boolean shouldModifyEvidence(final ST sourceEvidenceObject,
final TT targetEvidenceObject)

protected boolean shouldCreateEvidence(final ST sourceEvidenceObject)
Example

The following example code snippet shows a sample evidence converter which converts polled Foreign
Residency (static) evidence into Demographics (dynamic) evidence on the case.

Implementing periodic data matching and annual renewals 81

Note: This example is not a valid source/target evidence conversion mapping.

/%%
* External Foreign Residency evidence converter into Demographics evidence.
*/
public class SampleForeignResidencyExternalEvidenceConverterImpl
extends

CommonExternalEvidenceConverter<ForeignResidencyDtls, DynamicEvidenceObject> {

@0verride
protected CASEEVIDENCEEntry getTargetEvidenceType() 1

return CASEEVIDENCEEntry.FOREIGNRESIDENCY;

@Override
protected CASEEVIDENCEEntry getSourceEvidenceType() i

return CASEEVIDENCEEntry.DEMOGRAPHICS;

@Override

protected DynamicEvidenceObject getCreateEvidenceDetails(
final ForeignResidencyDtls sourceEvidenceObject,
final EvidenceDescriptorDtls descriptor) throws AppException,
InformationalException {

final DynamicEvidenceObject targetEvidenceObject =
new DynamicEvidenceObject(descriptor.caseID, descriptor.receivedDate,
getTargetEvidenceType().getCode());

targetEvidenceObject.setAttributeValue("concernRoleID",
sourceEvidenceObject.concernRoleID);

targetEvidenceObject.setAttributeValue("comments",
sourceEvidenceObject.comments);

// set remaining attributes on target evidence record

return targetEvidenceObject;

3

@Override

protected void mapModifyEvidenceDetails(
final ForeignResidencyDtls sourceEvidenceObject,
final DynamicEvidenceObject targetEvidenceObject) throws AppException,
InformationalException 3

// End date target evidence
targetEvidenceObject.setAttributeValue("endDate",
sourceEvidenceObject.startDate.addDays(-1));
targetEvidenceObject.setAttributeValue("source",
HCINCOMESOURCE .EXTERNALSYSTEM) ;
¥

@Override

protected boolean shouldModifyEvidence (
final ForeignResidencyDtls sourceEvidenceObject,
final DynamicEvidenceObject targetEvidenceObject) throws AppException,
InformationalException

// Add business logic to determine if existing evidence records on case
// need to be modified.

// Simple implementation, don't modify existing records
return false;

3

@Override

protected boolean shouldCreateEvidence(
final ForeignResidencyDtls sourceEvidenceObject) throws AppException,
InformationalException {

// Add business logic to determine if new evidence record is required
// on case.

// Simple implementation, always add new record representing polled source

// evidence.
return true;

82 IBM Curam Social Program Management : Health Care Reform Developer Guide

Customizing an external evidence converter

Complete the following steps to customize or replace a default external evidence converter with a custom
implementation.

Before you begin

Create a new External Evidence Converter implementation that replaces the default converter. You can
implement an entirely new converter or extend the default evidence converter overriding specific
methods as required in your customization.

About this task

Assuming that you have successfully created a customized converter implementation, you must modify
the Guice bindings so that the new evidence converter is used by the external evidence converter
manager rather than the default evidence converter.

Procedure

1. Modify the new custom evidence converter to extend the default evidence converter that you are
replacing. For example, change:

public class SampleAnnualTaxReturnExternalEvidenceConverterImpl extends
CommonExternalEvidenceConverter<AnnualTaxReturnDtls, DynamicEvidenceObject> {

to

public class SampleAnnualTaxReturnExternalEvidenceConverterImpl extends
AnnualTaxReturnExternalEvidenceConverterImpl {

Note: If you are replacing specific methods of an existing evidence converter, then your custom
implementation already extends this default implementation.

2. Create a module class, which creates a Guice link binding replacing the default evidence converter
with the customized evidence converter, or add the new link binding to an existing module class. For
example, see this custom module, which contains a link binding to replace the default Annual Tax
Return external evidence converter with a binding to a custom Annual Tax Return evidence converter.

/%%
* Contains modified external evidence converter Guice bindings.

*/
@AccessLevel (AccesslLevelType.EXTERNAL)
public class SampleExternalEvidenceConverterModule extends AbstractModule {

/%%

* $@inheritDoc?

*/

@Override

protected void configure() {1

// Link binding replacing the default Annual Tax Return external
// external converter with a custom Annual Tax Return evidence converter.

bind(AnnualTaxReturnExternalEvidenceConverterImpl.class)
.to(SampleAnnualTaxReturnExternalEvidenceConverterImpl.class);

3. If you created a new module class, update the ModuleClassname. dmx file to reference this new
module.

Disabling an external evidence converter
Complete the following steps to disable an external evidence converter by replacing the default evidence

converter with a custom evidence converter that performs no evidence conversion.
Procedure

1. Create a custom disabled evidence converter which extends the default evidence converter that you
are disabling. The custom converter needs to override the convert() method so that no evidence is
converted.

Implementing periodic data matching and annual renewals 83

For example, see this custom Annual Tax Return external evidence converter that contains an
implementation which converts no evidence.

[**
* $@inheritDoc?
*/
public class SampleDisabledAnnualTaxReturnExternalEvidenceConverterImpl extends
AnnualTaxReturnExternalEvidenceConverterImpl {

@Override

public Set<EvidenceKey> convert(final CaseKey caseKey,
final EvidenceDescriptorDtls evidenceDescriptorDtls) throws AppException,
InformationalException §

// return empty set indicating no evidence was converted by this evidence converter
final Set<EvidenceKey> evidenceSet = new HashSet<EvidenceKey>();

return evidenceSet;
ks
ks

2. Create a module class, which creates a Guice link binding that replaces the default evidence converter
with the customized evidence converter, or add the new link binding to an existing module class. For
example, see this custom module, which contains a link binding to replace the default Annual Tax
Return external evidence converter with a custom disabled Annual Tax Return external evidence
converter.

/%%
* Contains disabled external evidence converter Guice bindings.

*/
@AccesslLevel (AccessLevelType.EXTERNAL)
public class SampleDisabledExternalEvidenceConverterModule extends AbstractModule §

[**

* {@inheritDoc}

*/

@Override

protected void configure() {1

// Link binding replacing the default Annual Tax Return external evidence

// converter with a custom disabled Annual Tax Return evidence converter.

bind(AnnualTaxReturnExternalEvidenceConverterImpl.class)
.to(SampleDisabledAnnualTaxReturnExternalEvidenceConverterImpl.class);

3

3. If you created a new module class, update the ModuleClassname. dmx file to reference this new
module.

84 IBM Curam Social Program Management : Health Care Reform Developer Guide

Chapter 12. Customizing inconsistency period
processing

Inconsistency period processing allows a caseworker to give a client a reasonable opportunity period to
provide outstanding verifications for evidence that requires verification. Cases can proceed during that
period as if outstanding verifications were provided. The default inconsistency period processing
infrastructure consists of a batch process, a workflow, and the inconsistency period processing APIs. You
can create a custom event handler to customize the default inconsistency period processing.

Related tasks

Customizing change of circumstances

To customize change of circumstances for your environment, you must be familiar with the default
implementation. Use this information to understand the process flow, and to identify the steps that you
must complete to customize your system.

Customizing periodic data matching and annual renewals
Use the following information to help you to customize your periodic data matching or annual renewals
implementation to your requirements.

Creating a custom event handler for inconsistency period processing

By default in HCR, an inconsistency period is created only once for the lifetime of a case. This behavior is
coded in the curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler. You can create a custom event
handler to modify this default behavior.

About this task

By default, the curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler.eventRaised(Event) event
handler is used, where the Event object contains caselD as primary event data and relatedID as
secondary event data. The handler reads a list of milestone configuration details with the
curam.core.sl.entity.intf.MilestoneLink
.searchMilestoneConfigDetailsByCreationEventAndConfigID(CreationEvent) API. The list is then iterated
and MilestoneDelivery is created when caselD and milestone configurationID have no associated
milestones deliveries and when milestone is in "INPROGRESS" or "NONSTARTED" state.

By default, Program Group Manager raises an inconsistency period event when a case contains evidence
with outstanding verifications. The event is raised by
curam.healthcare.sl.impl.ProgramGroupManager.manageProgramGroup(CaseKey). This event is
registered through the /EJBServer/components/HCR/events/handler_config.xml file with event class
identifier of INCONSISTENCYPERIOD. You can find the default event handler at
curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler. MilestoneCreationEventHandler results in
the creation of the inconsistency period milestone if no milestones were previously created for the case.

For more information, see "Merging Event Files" in the IBM Curam Server Developer's Guide.

Procedure

1. Create a handler_config.xml file at /EIJBSexrver/components/%custom_component_namef%/
events/.

2. Disable the existing event handler. You can disable it with the following event-registration. It is
important to provide a removed="true" attribute and point to the correct existing event handler.

<event-registration handler="curam.hcrcase.sl.event.impl.MilestoneCreationEventHandler" removed="true">
<event-classes>
<event-class identifier="INCONSISTENCYPERIOD"/>
</event-classes>
</event-registration>

© Copyright IBM Corp. 2012, 2018 85

3. Create a custom event handler.
For example, curam.custom.event.impl.CustomMilestoneCreationCustomerEventHandler.

4. Register a custom event handler as shown:

<event-registration handler="curam.hcrcase.sl.event.impl.MilestoneCreationCustomerEventHandler">
<event-classes>
<event-class identifier="INCONSISTENCYPERIOD"/>
</event-classes>
</event-registration>

5. Ensure that the new custom component takes precedence in the component order. You must do a
clean server build when you modify component order.

Related concepts
Program Authorization
Related reference

How to merge event files

InconsistencyPeriod workflow

The InconsistencyPeriod workflow processes cases after the inconsistency period finishes.

This workflow takes MilestoneDelivery ID as an input. The workflow first checks whether any outstanding
verifications or issues are pending against the Insurance Affordability integrated case of the milestone
delivery ID. If no verifications exist, the workflow ends and the milestone is set to complete. If
verifications are present, the workflow checks whether the outstanding issues and verifications have
associated evidence that has been retrieved from an external system such as the federal hub. This
external evidence is used to verify the information to which the client has attested.

If all the external evidence is present, then the workflow changes the waiver date to 10 days after the
current date. After the workflow moves the waiver date, the workflow copies the external evidence to the
client-attested evidence, updates the ClntAttestModifiedEvidence entity, and sends the potential
eligibility notification to the primary client. After the notification is sent, the workflow completes the
milestone. If the external evidence is not present against active outstanding issues or verifications, then
the workflow suspends the product delivery cases and completes the milestone.

Inconsistency period workflow APIs

curam.

curam.

curam.

curam.

By default, the following APIs are called by the inconsistency period workflow.
healthcare.sl.intf.HCREvidenceIssueVerifications.checkForOutstandingVerificationsAndIssues

Checks for all the outstanding verifications and issues against a given milestone delivery ID. Returns
Boolean value indicating if there are pending outstanding verifications or issues.

healthcare.sl.intf.HCREvidenceIssueVerifications.checkExtSystemDataForAvailability

Checks if all the active outstanding issues and verifications against given milestone ID have the respective
external system evidence. The external system evidences checked against are INCARCERATION, ESI,
MEC and EXTERNALINCOMEDETAILS.

healthcare.sl.intf.HCREvidenceIssueVerifications.pushWaiversDateForInconsistencyPeriod

Pushes the waivers date by 10 days for the insurance affordability integrated case. The number of days is
configurable and is configured with the help of ENV_INCONSISTENCY_PERIOD_DUE_EXTENSION_DAYS
variable in Environment.xml.

healthcare.sl.intf.HCREvidenceIssueVerifications.overrideClientAttestedEvidence

86 IBM Curam Social Program Management : Health Care Reform Developer Guide

Copies the external evidences to client attested evidence. This method ends the existing client attested
evidence with current date and creates a new evidence with the available external system evidence.
ClntAttestModifiedEvidence entity is used to store the case and evidence details.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.sendPotentialEligiblityNotification

Sends potential eligibility notification to the primary client.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.suspendPDCasesByMileStoneDelivery

Suspends all the product delivery cases with the given milestone delivery ID.

curam.healthcare.sl.intf.HCREvidenceIssueVerifications.endMilestoneForInconsistencyPeriod

Completes the milestone for a given milestone ID related to the inconsistency period.

Inconsistency Period Evidence Activation batch process

This batch process activates the evidence that is created or modified by the InconsistencyPeriod

workflow.

Inconsistency Period Evidence Activation initiates the following processing steps:

1. Reads all the cases from ClntAttestModifiedEvidence, taking the date as input.
2. Activates the created or modified evidence for the case and updates the record status on

ClntAttestModifiedEvidence.

Parameters

Parameter

Description

Default value

processingDate

Current date

Not applicable

Inconsistency Period Evidence Activation Stream batch process

This batch process supports streaming for the inconsistency period Insurance Affordability cases.

Parameters

Parameter

Description

Default value

processingDate

Current date

Not applicable

Customizing inconsistency period processing 87

Chapter 13. Configuring Account Transfer with the
Federally Facilitated Exchange

You can configure how Account Transfer applications are processed and sent and received between
Curam and the Federally Facilitated Exchange.

Account Transfer uses the Cliram data store and the Curam Persistence Infrastructure. Account transfer
functionality is focused on accurately capturing applicant details, their circumstances, and data relevant
to the correct eligibility determination.

The Intake datastore is used to enter account information into the Ciram application. The Intake
datastore is populated by mapping the contents of the Inbound Account Transfer payload onto the
datastore. Only pre-existing datastore evidence entities are supported. Using only pre-existing datastore
evidence entities ensures that cases and evidence that are created from account transfers and the citizen
portal are identical.

The Curam HCR solution is flexible. You can implement your own custom data mappings to support your
particular requirements.

The FederalExchange component

The FederalExchange component helps state agencies to process Account Transfer applications that
originate from the Federally Facilitated Exchange (FFE). In addition, the FederalExchange component
sends applications that originate from the state agency to the FFE for applicants that are not eligible for
Medicaid or CHIP.

Configuring Federal Exchange

Configure Account Transfer to and from the federal exchange by modifying the appropriate properties.

About this task

For information about configuring properties, see "Configuring Application Properties" in the Ciiram
System Configuration Guide.

Activating Account Transfer

Account Transfer is switched off by default. When you activate Account Transfer, eligibility determinations
are processed and prepared to be sent to the FFE by the FederalExchange component.

Procedure
To activate Account Transfer, set the

curam.healthcare.account.transfer.activate.outbound.mapping property to true.

Enabling batch processing of account transfer applications

If you want to process Account Transfer applications by batch processing, you can modify a property to
stop the account transfer application data from being sent to Ctram for inbound applications and to the
FFE for outbound applications.

About this task

Enabling batch processing prevents the mapping of the data and the processing of that mapped data by
Curam or the FFE. The FederalExchangeApplication entity stores the jobs that are pending for each
batch process.

88 IBM Curam Social Program Management : Health Care Reform Developer Guide

Procedure

To process Account Transfer applications by batch processing, change the value of the

curam.healthcare.account.transfer.processing.mode property from the default value of
onlineto batch.

Configuring the sending of Account Transfers to Cliram

You might want to complete the mappings in real time and to stop the processing just before the Account
Transfer is sent to Curam for case processing.

About this task

If you stop processing applications, the applications remain in a PENDING state on the
FederalExchangeApplication entity.

For other possible states for entries on this entity, see the HCRFedExchangeAppStatus code table.

Procedure

To ensure that no Account Transfer applications are sent to Curam, update the
curam.healthcare.account.transfer.auto.submit property from true to false.

Selecting the source data set for outbound mapping

Outbound mapping can be completed from two different sets of source data, intake and case processing.
Different data store schemas are used to store the data in each case.

About this task
The following sets of source data are available:

Intake
The data that is stored in the data store as a result of a case worker completing the internal case
worker intake application for Health Care Reform.

Case processing
The data that is stored in the data store as a result of running an implementation of
HCRDatastoreBuilder to convert case and person evidence for a Health Care Reform application to
data store data.

Procedure

1. Set the curam.healthcare.account.transfer.outbound.mapping.souzxce property to
intakefor the data store data from the intake application for Health Care Reform, or caseprocessingfor
the data that is derived from case and person evidence.

2. Set the curam.healthcare.account.transfer.internal.datastore.schema property to the
correct schema name depending on the source of the data.

Setting the identity of the sender US state

Ensure that the sender is identified correctly by setting the correct US state. The codes that are used to
denote the sender state are stored as properties.

About this task

Procedure

Update the following properties for the US state for which HCR is implemented:

curam.healthcare.account.transfer.sender.state.code
curam.healthcare.account.transfer.sender.county
curam.healthcare.account.transfer.sender.category.code

Configuring Account Transfer with the Federally Facilitated Exchange 89

Setting the Account Transfer agency type
You can configure the Account Transfer Agency type to be Medicaid, CHIP, or both.

Procedure

Update the curam.healthcare.account.transfer.agency.type property with the Account
Transfer agency type. The agency type can be M (Medicaid), C CHIP, or B (Both). The default value is B.

Setting the federal exchange code
You can set the code or name for the federal exchange that is included with inbound and outbound

Account Transfer requests.
Procedure

Update the curam.healthcare.account.transfer.federal.exchange.code property with the
code or name of the federal exchange that is included in with inbound and outbound account transfer
requests.

Linking the Datastore schema name to the Account Transfer person reference
You can configure the Datastore schema name that links the Account Transfer external person reference
to the Cdram person reference. The Datastore schema name is also used for the mapped reference of the
person after data mapping has been performed.
Procedure
Update the curam.healthcare.account.transfer.person.link.schema property with the
Datastore schema name.

Setting the data store schema name for the FFE schema
You can set the schema name for the data store schema representation of the FFE schema.

Procedure
Set the schema name for the data store schema representation of the FFE schema in the
curam.healthcare.fedexchange.version.schema property.

Configuring Account Transfer date/time formats

You can configure the date/time formats for inbound and outbound Account Transfers to ensure
consistency between inbound and outbound payloads and their destinations.

Procedure

1. Set the date/time formats for inbound Account Transfers by configuring the following application

properties.
Application property Description
curam.healthcare.account Date format that is used to create the date in the

.transfer.mapping.curam.date.format Datastore based on the FFM date for inbound
Account Transfers.

curam.healthcare.account Date time format that is used to create the Cliram
.transfer.mapping.curam.datetime.foxrm | date time that is based on the FFM date time for
at inbound Account Transfers.

2. Set the date/time formats for outbound Account Transfers by configuring the following application
properties.

90 IBM Curam Social Program Management : Health Care Reform Developer Guide

Application property Description

curam.healthcare.account Date format that is used to create the FFM date
.transfer.mapping.ffm.date.format that is based on the Ciram date for outbound
Account Transfers.

curam.healthcare.account Date time format that is used to create the FFM
.transfer.mapping.ffm.datetime.foxrmat | date time that is based on the Cliram date time
for outbound Account Transfers.

Extending Federally Facilitated Exchange data mappings

You can modify the default Federally Facilitated Exchange data mappings to add attributes or entities to
the data that is sent or received.

Federally Facilitated Exchange (FFE) mappings are called when data is received from the FFE (inbound) or
sent to the FFE (outbound).

When you receive data from the FFE, you must map data from the FFE data schema to the Clram data
store schema so that Cliram can process that data.

When you send data to the FFE, you must map data from the Clram data store schema to the FFE data
schema so that the FFE can process that data.

Adding or updating the attributes for a data store entity
Modify the properties of the appropriate Persistence Infrastructure event to add or update an attribute.

About this task

After an entity is mapped by the FederalExchange component, a Persistence Infrastructure event is sent
to allow custom listeners of the event to add or update the attributes on the entity.

As with all data-store processing, the attributes that are added to an entity must conform to the data
store schema that is configured for that instance of data store data. For information about the event
signature and more information on usage, see the Javadoc.

Procedure
To add or update an attribute, configure the appropriate event for the custom listeners:

« Inbound

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.customInboundMap

e Outbound
curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.customOutboundMap

Example listener:

/**
* Raised when in-bound mapping (from FFM to Curam) has been completed
* on a given
* data store entity.
*
* @param mappedEntity
* The data store entity that contains mapped data.
* Note that if the entity is a child it will not have
* been added to its parent at this point and will therefore
* not have a unique identifier. The result of this is that
* no children can be added to this entity during the
* processing
* of this method.

Configuring Account Transfer with the Federally Facilitated Exchange 91

@param originalElement
The original data that can act as the source for the
mapped data.

@throws AppException

Generic Exception Signature.
@throws InformationalException

Generic Exception Signature.

* ok K ok ok ok X

*/
public void customInboundMap(Entity mappedEntity,
Element originalElement)
throws AppException, InformationalException{}

Adding an entity as a child of a mapped data store entity

When an entity is mapped and you add child entities to the entity, an event is sent that allows custom
listeners to add extra child entities to the entity.

About this task

Any child entity types that are added must exist in the data store schema for the data store data that is
being processed.

Procedure
To add a child entity, configure the appropriate event for the custom listeners:

« Inbound
curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.

« OQOutbound

curam.hcr.fedexchange.mapper.impl.EntityMapper.MapEvent.
customOutboundMapChildren

Example listener:

[**

* Raised when in-bound mapping (from FFM to Curam) has been completed * on a given
* data store entity and when children can be added to that entity.

Custom processing should check for an existing child before

creating one.

@param mappedEntity
The data store parent entity that contains mapped data.
This entity can be used to create valid child entities
underneath.

@param originalElement
The original data that can act as the source for the
mapped child data. It is possible to traverse up or down
the DOM tree using the originalElement as the starting
point

@throws AppException

Generic Exception Signature.
@throws InformationalException

Generic Exception Signature.

% ok k% ok Sk Ok ok X ok F K ok X oF

*

*/
public void customInboundMapChildren(Entity mappedEntity,
Element originalElement)
throws AppException, InformationalException{}

Adding or replacing a top-level data store entity
An element mapping provider can map implementations for a target entity type. You can use this element

mapping provider to add custom processing to create an entity that is at a top level.
About this task

Typically, a child of the Application root entity or another entity type that can have only a single instance.

92 IBM Curam Social Program Management : Health Care Reform Developer Guide

Procedure
Use the appropriate events to add a custom mapping implementation for the element mapping provider:

« Inbound

curam.hcr.fedexchange.mapper.impl.ElementMapperEvent.
addElementMapperEvent (Map elementMappers)

The elementMappers contains a map of entity types and mapping implementations to which you can
append extra entity types and custom mapping implementations that are called as part of the element
mapping provider processing.

« OQOutbound

curam.hcr.fedexchange.mapper.ffe.impl.FFEElementMapperEvent.
addFFEElementMapperEvent (Map elementMappers)

A custom listener to this event is implemented in much the same way as for the listener for the
inbound provider event. The target entity type that is being added to the map is an entity type in the
Federal Exchange data store schema. The mapping implementation maps data from the Cliram data
store schema to the Federal Exchange data store schema.

Example listener:

/**

* Raised when $@linkplain ElementMapperProvider} is initialized to

* allow

* additional EntityMapper to be included.

*

* @param elementMappers

* The map containing a string that represents the

* element being mapped from and the mapping implementation
* that creates and maps to the corresponding element on the
* target schema.

*

* @throws AppException

* Generic Exception Signature.

* @throws InformationalException

* Generic Exception Signature.

*/

public void addElementMapperEvent(Map<String,
Provider<? extends EntityMapper>> elementMappers)
throws AppException, InformationalException;

Adding or updating entities for an outbound response to the FFE

When the response to be sent to the FFE is built by the FederalExchange component, an event is sent with
all of the response data. Listeners to this event can then update the response data before they send it to
the FFE.

Procedure

To add or update outbound entities, configure the following event:

curam.hcr.fedexchange.mapper.impl.EntityMapper.
MapEvent.customOutboundMapResponse

Example listener:

/**

* Raised when out-bound mapping (from Curam to FFM) has been completed on the
* response being
sent to the FFM.
Custom processing should check for an existing response entity before
creating one.

@param mappedEntity
The data store parent entity that contains mapped data.
This entity for an applicant can be used to create valid response
entities.
@param originalElement

X % X % % % % % %

Configuring Account Transfer with the Federally Facilitated Exchange 93

The original data that can act as the source for the
mapped response data.

@throws AppException

Generic Exception Signature.
@throws InformationalException
* Generic Exception Signature.
*/
public void customOutboundMapResponse (Entity mappedEntity,

Element originalElement)

throws AppException, InformationalExceptioni?

* ok K ok Xk ok

The Web Service Java API

You can use the Federal Exchange component Java API for data that is received from or sent to the
Account Transfer web service, or to send data to the FFE.

Inbound Account Transfer payload processing

You can use the Java API as entry and exit points for data that is sent or received from the Account
Transfer web service.

Use the curam.hcr.fedexchange.ws.impl.AccountTransferWS.initiateAccountTransfer
method to send an account transfer to Ciram from the FFE or to send an account transfer response to
Curam from the FFE.

The inbound webservice passes the payload document to the
curam.hcr.fedexchange.ws.impl.AccountTransferWSImpl.initiateAccountTransfer(Doc
ument) API The data is then persisted to the federalexchangemessagelog database table. Further
processing varies depending on your local configuration. An application case of type 'Account Transfer
COC Application Case' is created when a payload is identified as an inbound COC payload. A program of
type 'Account Transfer COC Program' is associated with this case type. Evidence types that are associated
with the Insurance Affordability application case are also associated with the Account Transfer COC
application case. The Account Transfer COC application case is otherwise the same as the Insurance
Affordability application case.

Verifications are not configured for the default Account Transfer COC application case. The evidence
broker is configured to not automatically accept or activate evidence from the Account Transfer COC
application case to the integrated case. Evidence that is not modified is filtered out and the caseworker is
shown only evidence that is modified. The caseworker can manually accept or reject the evidence on the
integrated case.

If evidence brokering from the Account Transfer COC application case to the integrated case fails, then
the Account Transfer COC application case remains open. If an Account Transfer COC application case is
open and another COC payload is subsequently processed for any of the case members from the original
case, then a task is raised by the system informing the caseworker of the presence of one or more active
COC applications in progress. If multiple integrated cases are found for the Account Transfer COC
application case, then a task is raised by the system informing the caseworker of the presence of multiple
integrated cases.

Inbound payload identification and routing

Use the global application ID of the payload to identify and track inbound COC payloads. Depending on
the signature date of the payload and whether it is a duplicate payload, different processing will be
enacted.

If the global application ID of the payload is the same as one of the payloads which has been processed
and the original signature date is different from the processed payload; then the payload is identified as a
COC payload and will be processed as an Account Transfer COC application.

If multiple payloads with the same application ID and different original signature dates are received,
these payloads are treated as multiple change of circumstances reported by the applicant. Each payload
requires separate processing.

94 1BM Curam Social Program Management : Health Care Reform Developer Guide

If multiple payloads with the same application ID and same original signature date are received, then the
first received payload is processed as the Account Transfer COC. The other payloads are ignored.

If the global application ID and transfer ID of an incoming payload is found to be same as that of a
payloads that has already been processed, then the payload is not processed further. This represents a
duplicate payload received by the account transfer system.

Inbound payload mapping configuration
Use the mapping configuration XML files for the Account Transfer COC application case to customize the
mapping for inbound payloads.

Account transfer data mappings take into account differences in data types between CMS and Curam
schemas and map them accordingly. FFM data is stored in suitable IEG data types. There are no
validations upon storage, except for the documentation definition mandated validations. Validation
mismatches are caught during the mapping process. For example, the number of babies due in a
pregnancy is considered optional in an inbound data element mapping by the FFM. It is mandatory in
Curam. The value is defaulted to 1 by the data mapper. If the inbound payload or a consecutive inbound
change of circumstance contains the correct number of babies due, the number is updated in the FFM.

A similar flexible approach is taken where the FFM can provide date information as Date or DateTime data
types. Mappers are flexible enough to work with either of these inputs. When one data element depends
on another, the data mapper considers both elements to make the correct mapping. Account Transfer
infrastructure allows mappers to traverse the inbound payload in any order. This means that any number
of comparisons and dependencies can be considered by the mapper logic. This mapping flexibility is also
possible for outbound account transfers.

Occasionally, the FFM provides a number of string or numeric values that are converted to a single
boolean data type in Clram. This is the most suitable approach for the existing evidence infrastructure.

The Federal Exchange component relies on enumerators to map FFM data to compatible Ciiram code
table value and vice versa. You must provide custom enumerators where custom code-tables are used
instead of default code-tables. Enumerator naming conventions follow standard Ciram naming
conventions. For example, <Axrea of mapping Reference>FieldMap.class.

In the mapping configuration XML, the initial application date is mapped to the evidence start date.
You can configure the Account Transfer COC mappings using the following files:

- EJBServer\components\FederalExchange\data\initial\clob
\ATCOCEvidenceMappingConfiguration_1_6.xml

« ..\clob\ATCOCEvidenceMappingConfiguration_1_7.xml
e ..\clob\ATCOCEvidenceMappingConfiguration_1_8.xml

Process inbound Account Transfer COC payloads in batch
You can use the Java API to create a batch process that takes Change of Circumstance Account Transfers
in a 'Pending' state and passes them for subsequent processing.

Use the curam.hcr.fedexchange.ws.impl.AccountTransferWS.initiateAccountTransfer
method to implement a batch process for Account Transfer COC payloads. Use the Account Transfer
payload as the argument for the batch process. All inbound payloads on the FederalExchangeApplication
entity with a status of IBD_UPDATE_PENDING should be processed in the batch.

For more information about batch processes, see the IBM Curam Batch Processes Guide.

Related tasks
Enabling batch processing of account transfer applications

Configuring Account Transfer with the Federally Facilitated Exchange 95

If you want to process Account Transfer applications by batch processing, you can modify a property to
stop the account transfer application data from being sent to Cdram for inbound applications and to the
FFE for outbound applications.

Outbound processing
To send data to the FFE, the API includes events that provide the data to be sent.

curam.hcr.fedexchange.ws.impl.AccountTransferlsS.
OutBoundDataEvent.sendOutBoundTransferDataEvent

This property sends an account transfer application from Caram. The listener that receives this event can
alter the data to meet specific custom needs (if not already catered for by the custom mapping
processing) and then send that data to the FFE by a web service. Any mapping updates that must be
made by custom processing must use the events that are sent during data mapping.

curam.hcr.fedexchange.ws.impl.AccountTransferResponselsS.
OutBoundResponseEvent.sendOutBoundResponseEvent

This property sends a response of an account transfer application from Ctram. The listener that receives
this event can alter the data to meet their specific needs and then send the data to the FFE through a web
service. Any mapping updates that must be made by custom processing must use the events that are sent
during outbound response processing.

HCRFedExchangeAppStatus code table descriptions

A list of the possible status states of the FederalExchangeApplication that uses the
HCRFedExchangeAppStatus code table. For clarity, the status states are divided by the direction of the
request. The status states are listed in the same sequence in which the transitions happen.

Table 35: Account Transfer from FFM to State Medicaid Agency

Code Java Identifier Full Description

HCRIFEIP IBD_IN_PROGRESS The initial status on creation of a Federal Exchange Application. On creation, the
record contains the root data store entity ID of the external data store that is
used to store the Account Transfer payload from the Federally-Facilitated
Marketplace (FFM).

HCRIFEUD | IBD_UPDATE_PENDING This state is the other initial state that is possible for an Account Transfer
received by the State. The Federal Exchange Application is created in this state
if there is an existing Account Transfer with the same Global Application ID. In
other words, this transfer is considered to be a change of circumstance.

HCRIRSAK | IBD_ACKNOWLEDGED Set after an inbound request is stored and successfully acknowledged.

HCRIFEER | IBD_ERROR Set when any issues are encountered during the mapping of the FFM payload to
the internal data store, or when the FFM payload is stored in the external data
store.

HCRORSIP | OBD_RESPONSE_IN_PROGRESS Set when the processing for sending a response to the FFM is initiated.

HCRORSAK | OBD_RESPONSE_ACKNOWLEDGED Set after the response sent by the State Medicaid Agency is acknowledged

successfully by the Federally-Facilitated Exchange (FFE).

HCRIFEPD | IBD_PENDING If transfers are configured to happen in batch mode. The Account Transfer
payload is stored in the external data store but no further processing happens
as part of the online processing.

Table 36: Account Transfer from State Medicaid agency to FFM

Code Java Identifier Full Description

HCROFEIP | OBD_IN_PROGRESS Set on a new instance of FederalExchangeApplication that is created for a
transfer from the State to the FFM.

HCROFEPD | OBD_PENDING Set if transfers are configured to happen in batch mode. No further processing is
done for this transfer as part of online processing.

HCROFEAK | OBD_ACKNOWLEDGED Set after a transfer from the State is acknowledged successfully by the FFE.

96 IBM Curam Social Program Management : Health Care Reform Developer Guide

Table 36: Account Transfer from State Medicaid agency to FFM (continued)

Code Java Identifier Full Description

HCROFEER | OBD_ERROR Set if an acknowledgement to an outbound transfer was not received or is not
successful. Also set if there are any issues during mapping from the HCR data
store to the FFM data store. If there were errors during mapping, Federal
Exchange Applications are not transferred.

HCRIRSIP IBD_RESPONSE_IN_PROGRESS Set on receiving the response from the FFM for an Account Transfer from the
State.
HCRIFEAK | IBD_RESPONSE_ACKNOWLEDGED Set when the response from the FFM for an Account Transfer from the State is
successfully acknowledged
HCRIRAER |IBD_RESPONSE_ACKNOWLEDGE Set if any issues were encountered when the response to an outbound account
_ERROR transfer is stored, or if there were issues with the generation of an

acknowledgement.

Adding a new entity

You can add a new entity to replace an existing entity or to create an entity that is not mapped and
created by default. For each new entity, write an entity mapper and add the new entity to the Federal
Exchange data store schema.

Writing an EntityMapper
You must write an EntityMapper for each new entity. An EntityMapper must implement the
curam.hcr.fedexchange.mappexr.impl.EntityMapper interface.

About this task

An implementation of curam.hcr.fedexchange.mapper.impl.ElementMapperUtil is provided in
the map method to facilitate searching for required elements and attributes in the source XML to be used
to populate the entity or entities that are being created.

Procedure

1. Using the provided example, implement an EntityMapper.

2. After you implement the EntityMapper, register it by using the ElementMapperEvent inbound or
outbound event as appropriate. This depends whether the Mapper implementation is being called for
inbound or outbound processing.

Example

This example outlines how Incomeltem entities might be mapped from the FederalExchange external
system into Curam and added to the data store.

/**

* Sample entity mapping implementation that creates a new

* data store entity and appends it to a parent entity.

*/

public class SampleEntityMapperImpl implements EntityMapper §

/** The source element to map from, the source elements of interest can be

* searched for by using this element *x/

private Element source;

/** The FederalExchangeApplication persistence infrastructure implementation
* for the FederalExchangeApplication entity xx/

private FederalExchangeApplication federalExchangeApplication;

@Override
public void setSource(Element source) 1§
this.source = souzrce;

@Override

Configuring Account Transfer with the Federally Facilitated Exchange 97

public void map(Entity parent, ElementMapperUtil elementMapperUtil) 1§
Datastore ds = parent.getDatastore();
//get the element from the source i.e. the element from the FederalExchange
/ /XML
List<Element> incomeltems =
elementMapperUtil.getElements (FFEEntityType.PERSONINCOME.entityType(),
source) ;

for(Element incomeItemSource : incomeItems){
//create the new entity in the target data store
Entity incomeItem = ds.newEntity(EntityType.INCOMEITEM.entityType());
//set the attributes on the new target entity
incomeItem.setTypedAttribute (IncomeItemFieldMap.STARTDATE.hcrField(),
FieldMapperUtil.formatDate(
elementMapperUtil.getAttribute (incomeItemSouzce,
elementMapperUtil.createFindAttributeQuery(
IncomeItemFieldMap.STARTDATE.ffeField()))));
incomeItem.setTypedAttribute (IncomeItemFieldMap.ENDDATE.hcxField(),
FieldMapperUtil.formatDate (
elementMapperUtil.getAttribute (incomeItemSouzrce,
elementMapperUtil.createFindAttributeQuery(
IncomeItemFieldMap.ENDDATE. ffeField()))));

incomeItem.setTypedAttribute (IncomeItemFieldMap.INCOMEAMOUNT.hcxField(),
elementMapperUtil.getAttribute(incomeItemSource,
elementMapperUtil.createFindAttributeQuery(

IncomeItemFieldMap.INCOMEAMOUNT.ffeField())));

//add the new entity as a child of the parent entity

parent.addChildEntity (incomeItem);

b
%

@Override
public void postMap(Entity rootEntity, Entity personEntity) {
//no post map processing required

@Override
public void setFederalExchangeApplication(
FederalExchangeApplication federalExchangeApplication) 1§
this.federalExchangeApplication = federalExchangeApplication;
b
%

Updating the Federal Exchange data store schema

If a new entity is being added by custom processing, then you must update the data store schema that is
used to store the entity for inbound and outbound mapping.

Before you begin

It is important to note the following when you update the Federal Exchange data store schema for
Account Transfer.

- If element text exists in the payload from the Federal Exchange, then this text is converted into an
attribute. This allows the text to be stored in the data store. For example:
<IncomeAmount>1200</IncomeAmount>

You define that Federal Exchange payload XML in the data store schema as follows:

<xsd:element name="IncomeAmount">
<xsd:complexType>
<xsd:attribute name="value" type="d:SVR_STRING"/>
</xsd:complexType>
</xsd:element>

Note the use of the attribute value to store the element text.

« If the element in the Federal Exchange payload contains a name space prefix, then the data store
schema must contain an attribute that defines the name space prefix value as the default value. For
example:

<hix-core:IncomeAmount>1200</hix-core:IncomeAmount>

98 IBM Curam Social Program Management : Health Care Reform Developer Guide

You define that Federal Exchange payload XML in the data store schema as follows:

<xsd:element name="IncomeAmount">
<xsd:complexType>
<xsd:attribute name="value" type="d:SVR_STRING"/>
<xsd:attribute name="nameSpacePrefix" type="d:SVR_STRING"
default="hix-core:"/>
</xsd:complexType>
</xsd:element>

Procedure

1. Identify the relevant data store schema. The name of the data store schema name that stores the
Federal Exchange data for Account Transfer is denoted by the
curam.healthcare.fedexchange.version.schema property.

2. Update the data store schema with the new entity.

Account transfer workflows

View the default Account transfer workflows in the Workflow section of the Administration Workspace.

The default Account Transfer workflows can be viewed in the Process Definition Tool. In the
Administration Workspace, navigate to the workflow from the left navigation menu: Workflow > Released
Processes > Account Transfer Inbound COC or Account Transfer Straight Through Authorise.

The Account Transfer Inbound COC workflow raises tasks for the related integrated case if there is
evidence that requires attention in the inbound change of circumstance. The Account Transfer Inbound
COC workflow can be customized to automate the evidence transfer process.

The Account Transfer Straight Through Authorise workflow is enacted in the following scenarios:

« When no evidence on the inbound change of circumstance requires attention

- When there are only person participants on the change of circumstance application and no open
duplicate account transfer change of circumstance applications exist for those members

Configuring Account Transfer with the Federally Facilitated Exchange 99

Chapter 14. Monitoring Health Care Reform

The extensive and fine-grained customization options that are available in Ciram enable you to fully
reflect the current Federal and State legislation. However, this fine-grained customization means that you
must monitor your installation for the arrival of the unusual or non-routine applications that can arise
when legislation is tested in practice. Use the following monitoring options in Cliram to identify incoming
exceptions to your custom implementation that might require action on your part.

Monitoring HCR applications

Use the following IBM Cdram Health Care Reform (HCR) views to monitor the progress of applications
though the system, and to help you to troubleshoot issues.

HCR application intake process overview

Use this information to understand how HCR applications are processed, from the submission of an
application to the creation of product delivery cases.

For documentation purposes, the process diagram is split into two parts.

Citzen Casemwaker

| Electronic verification T
15l - - External Systerms

Submit

Process|ntak edpplication On Ermror HCR Frocess Instance
W kel Errors wig

Straight-through l

Frocessing Y hanual Processing
C h | Administ ator
StraightThroughAutharis & SSBuoiEr
carre cts cafrrects
N kol . . L
evidence Esues technical izsues

\ i v

Figure 7: Application intake process diagram: Part 1

A citizen or caseworker submits an application
A citizen or caseworker completes the dynamic application questionnaire and submits the application.

100 IBM Curam Social Program Management : Health Care Reform Developer Guide

Qualified citizen data is verified with external systems
Data that is configured to be verified with external systems is compared with the specified external
data sources and the data store is updated where required.

The citizen submits the application and the intake process starts
When the citizen clicks submit, the ProcessIntakeApplication workflow starts. An application case is
created and data from the data store is applied to the application case as evidence. The
ProcessIntakeApplication workflow has a resilient mode of operation to gracefully handle certain
types of error. You can enable this resilient application handling by setting the
curam.intake.use.resilience property to true. When resilient mode is enabled,
ProcessIntakeApplication handles invalid evidence by creating as much evidence as possible and then
assigning the application case to a caseworker for manual processing.

The straight-through processing workflow
If none of the data on the case requires manual processing, the case is routed to the
StraightThroughtProcessing workflow. Straight-through applications are authorized automatically.
On authorization, the deferred transaction EVIDENCE_SHARE_BULK is started and evidence is
shared to the integrated case.

Manual processing
If any of the data on the case requires manual processing, the case is routed to the deferred
transaction process APPLICATIONAUTHORIZATION for manual processing. A caseworker can
correct the evidence issues and authorize the case. On authorization, the deferred transaction
EVIDENCE_SHARE_BULK is started and evidence is shared to the integrated case.

HCR Process Instance Errors view
Some errors can occur because of technical issues in source code or rules. These errors cannot be
corrected by a caseworker and are sent to the Process Instance Error Queue. You can see these
errors in the HCR Intake Process Errors view.

Monitoring Health Care Reform 101

From Straight Through Process=ing
From Manual Processing
 J

AFFPLICATIONALTHOR ISATION

[eferred Transaction Process

L 4 k

EWIDEMNCE_SHARE_BULK
HCR Process Instance - = —
. Ceferred Tran=action Process
Errars wiew

A

On F ailure

Y
Audministr atar EVIDEMCE_SHARE_BULE_AUTO .

carrects
technical issues SREZERT ML
Creferred Trans action Process

Ml anual Processing

Y
Cazamatar
corects EVIDENC E_BROKER_ROLLBACK

evidence Esues ’
Ceferred Transaction Process

L J
Frogram Group Rules run and

| create Product D eliveny cases

Figure 8: Application intake process diagram: Part 2

Where possible, evidence from the application case is brokered directly to the integrated case
On authorization, the EVIDENCE_SHARE_BULK deferred transaction process is started and evidence
is shared to the integrated case. Program group logic processing is triggered automatically.

If brokering fails partially, then evidence from the application case is added as in-edit or incoming

evidence to the integrated case, manual intervention is then needed
The evidence is directed to the EVIDENCE_SHARE_BULK_AUTO_ACCEPT_ONLY deferred transaction
process. A caseworker accepts the in-edit or incoming evidence, corrects any issues, and applies the
changes. Program group logic processing is triggered when the changes are applied.

If brokering fails fully, manual intervention is then needed
If adding the evidence as ‘Incoming’ evidence fails, then the EVIDENCE_BROKER_ROLLBACK
deferred transaction process initiates a number of fallback actions:

« The application case is set to Authorization Failed status to indicate that authorization process
failed.

- Any new integrated cases or product delivery cases that were created are closed.

« The evidence on the application case reverts to in-edit status.

When the cause of the authorization failure is addressed, the caseworker submits the application case

for authorization.

The program group logic runs on the integrated case and creates the required product delivery cases
Program group logic is triggered when evidence changes are applied to the integrated case and
creates the required product delivery cases.

102 IBM Curam Social Program Management : Health Care Reform Developer Guide

Program group logic is triggered automatically by the EVIDENCE_SHARE_BULK deferred transaction
process, and each time a caseworker applies evidence changes on the integrated case.

Note: The Health Care Reform program group logic to determine which potential multiple product delivery
cases are to be created depends on predefined rule sets and therefore bypasses the Common Intake
product delivery creation process. This logic does not configure the product delivery type for the program
and therefore does not use the productDeliveryCaselD field on the programauthorisationdata table. For
the Common Intake process, if a product delivery type is configured against a program, this product
delivery type is created as part of a successful program authorization and recorded in the
ProgramAuthorisationData entity.

Related tasks

“Configuring the resilient option for the process intake application workflow” on page 1

After you install version 6.0.5.5 or later, ensure that you set the resilient option for the process intake
application workflow, which enables a more granular workflow with better error handling.

(deprecated) Monitoring HCR intake reports

Lae

Lae

Use (deprecated) HCR Intake Reports to monitor all HCR applications that are being processed by the
system, from initiation through to an eligibility decision. The reports provide a count of applications in
each state and highlights applications that require intervention to progress.

Before you begin

Warning: Refreshing these reports generates significant load on the system and can prevent
intake applications from being processed. Before you refresh the reports, ensure that no ongoing
intake applications or other system activities are affected.

About this task
If technical issues require investigation, a message is displayed under Intervention Required . To
investigate these issues, open the HCR Intake Process Errors view to get more detailed information.

Procedure

1. Login to the Curam Administration application as a user with administrator permissions.
2. Select Administration Workspace > Process Monitoring > HCR Intake Reports.
A confirmation page opens.

3. Confirm that you want to run the reports by clicking Yes, or close the tab to exit without running the
reports.

(deprecated) HCR Intake Reports

HCR Intake Reports provide a business view of all HCR applications that are being processed by the
system, from initiation through to an eligibility decision. The reports provide a count of applications in
each state and highlights applications that require intervention to progress.

Warning: Refreshing these reports generates significant load on the system and can prevent
intake applications from being processed. Before you refresh the reports, ensure that no ongoing
intake applications or other system activities are affected.

You can choose to view the current status of applications that have been submitted since a specified date.
By default, this date is set to one week in the past from the present date.

HCR Intake Reports display the status of applications and programs as follows:

Incoming Applications
The total number of applications that are started is shown, divided into the number of applications
that are started and pending submission, and the number of applications that were submitted. The
applications are categorized by the source of the application:

Monitoring Health Care Reform 103

Account Transfer
Applications that are submitted from external systems through account transfer.

Caseworker
Applications that are submitted from the Cram application by a caseworker.

Online
Applications that are submitted from an online citizen account by a citizen.

Applications Received
The total number of applications that are received by the agency is shown and this number generally
matches the total number of applications that are submitted as represented in Incoming
Applications.

Note: Occasionally, these two numbers might not match due to the short time interval between the
submission and receipt of an application.

The applications are categorized by their status:

In Progress
Applications that are currently in progress.

Closed
Applications that progressed to the completion of the intake process and for which an eligibility
decision is available.

Withdrawn
Applications that a citizen withdrew after they submitted them.

Intervention Required
The number of in-progress applications that could not be processed automatically and that require
intervention to progress them further. The applications are categorized by the type of intervention that
is needed.

Outstanding Registrations
Applications where person registration is incomplete, that is, which are associated with one or
more prospect persons. All applications with outstanding registrations are assigned to this
category, irrespective of any other interventions that they might require.

Outstanding Verifications
Applications that have evidence that requires verification, excluding applications with outstanding
registrations.

Failed Validations
Applications that are in the Awaiting Resolution state, due to invalid evidence.

Failed to Determine Eligibility
Integrated cases where an eligibility decision could not be made, typically because of incoming or
in-edit evidence.

Failed to Broker Evidence
Application cases in the Authorization Failed state, where evidence could not be brokered from
the application case onto other cases.

If technical errors require investigation, a message is displayed. To investigate technical errors, open
the HCR Intake Process Errors view.

Eligible Programs
The number of currently active HCR programs that were created since the specified date, categorized
by type. The programs can be generated as a result of the HCR Intake process, as well as other
application processes, such as Change of Circumstances.

Table 37: Default Programs and abbreviations

Abbreviation Program

CHIP Children's Health Insurance Program

104 1BM Curam Social Program Management : Health Care Reform Developer Guide

Table 37: Default Programs and abbreviations (continued)

Abbreviation Program

EMA Emergency Medicaid

ESI Employer Sponsored Insurance

Exem Exemption

IA Insurance Assistance

MA Streamlined Medicaid

SBHP State Basic Health Plan

UQHP Unassisted Qualified Health Plan
Note:

Reports depend on the curam.intake.use.resilience application property that was introduced in IBM
Curam 6.0.5.5. Reports are not intended for use with applications that pre-date this release.

The application process is considered complete once an eligibility decision is made on the application.
The report tracks applications up to that point. It does not track subsequent inconsistency period
processing that may arise for some applications.

Customization of these reports is not recommended. These reports rely on underlying functions that have
the potential to change in future releases.

Monitoring HCR intake process instance errors

Use the HCR Intake Process Errors view to monitor technical problems that occur in the intake process.
This view is an intake-oriented summary view of the process instance error queue that identifies the
background workflow and deferred processes that are used in intake, and quantifies any instances of
those processes that require technical intervention.

About this task

Important: While these processes are the only ones used in Intake, some processes identified on the
dashboard are shared processes. That is, they might also be used by other business processes outside
Intake.

The workflow chart tracks all outstanding errors, so an error is presented here if it occurred in the
selected time period and is not yet resolved. In contrast, deferred processing has no distinction between
resolved and outstanding errors, so the deferred processing chart presents all errors that occurred over
the selected time period.

From each process instance error count that is displayed on the dashboard, you can link to a list of
process instance errors for that particular process. You can then do a root cause analysis and take
remedial action.

Procedure

1. Log in to the Curam Administration application as a user with administrator permissions.

2. Select Administration Workspace > Process Monitoring > HCR Process Instance Errors to open the
view.

Monitoring Health Care Reform 105

Monitoring Ciiram processes

Use the following Clram views to monitor and troubleshoot problems with process instances and to see
process instance errors.

About this task

Use these views to see workflow processes and see specific errors in workflow and deferred processes.
Plan to monitor the information in the following locations regularly for potential errors or exceptions. You
can troubleshoot problems by steps such as suspending process instances or overriding event waits, or by
retrying or aborting failed workflow process instances.

Monitoring workflow process instances

Use the Process Instances view to see the status of each workflow process instance. By searching and
filtering, you can see the current process instances and their status. Generally, the complete or in-
progress processes are of most interest.

About this task

For troubleshooting, you have the following options:

 You can suspend a process instance that is in progress. You must resume the process instance before
any further activities can run.

 You can stop a process instance that is in progress. Once aborted, a process instance cannot be
resumed.

« All activities that wait for events to be raised have a failure mode where the event they are waiting on is
raised before the activity runs. To progress such process instances, you can override the event wait.

Procedure

1. Log in to the Curam Administration application as a user with administrator permissions.
2. Select Administration Workspace > Process Monitoring > Process Instances
3. Use the search and filtering options to see the current workflow processes on the system.

Monitoring Process Instance Errors
Use the Process Instance Errors view to find workflow process or deferred process errors.

About this task
Plan to monitor the Process Instance Errors view regularly for potential operational errors or exceptions.
You can abort or retry failed workflow process instances.

Procedure

1. Log in to the Curam Administration application as a user with administrator permissions.
2. Select Administration Workspace > Process Monitoring > Process Instance Errors

3. Use the search and filtering options to find process instance errors.

4. Click the error details for more information.

Process Instance Errors

The Workflow Engine records information about errors that occur during the lifetime of a workflow
process instance. You can use this information for troubleshooting problems with the process instance.

This troubleshooting includes retrying or aborting failed workflow process instances.

Retrying a failed process instance instructs the Workflow Engine to re-enact the workflow process
instance from where it failed.

106 1BM Curam Social Program Management : Health Care Reform Developer Guide

Aborting stops the process instance and its activities and closes any tasks that are associated with
manual activities in the process instance. Depending on where the process was aborted, some manual
steps might be required before the process is fully stopped.

Monitoring Health Care Reform 107

Chapter 15. Running a bulk reassessment of all open
integrated cases

If you change the HCR system so that it affects numerous integrated cases, you can use the
BulkICReassessment batch process to identify and process a full reassessment on all open integrated
cases for HCR. For cases where the determination changes as a result of this reassessment, the new
determination is stored and the old one superseded. A report is generated when the batch process
completes.

Before you begin

Important: By default, this batch process runs on all open integrated cases. Where appropriate, use a
custom case selection strategy to limit the number of cases that are reassessed.

The BulkICReassessmentStream batch process supports batch streaming.

About this task

The following are some of the changes that can affect numerous integrated cases:

Publishing CER rule set changes.

Publishing CER product configuration changes.
Publishing CER data configuration changes.

« Applying rate table changes.

Table 38: Default batch process report

Field Description

Number of integrated cases selected The number of integrated cases that were
selected.

Number of integrated cases processed The number of integrated cases that were

successfully processed.

Number of integrated cases skipped The number of integrated cases that were not
successfully processed. That is, an error occurred
that prevented reassessment.

*Number of products reassessed The number of products that were reassessed.

*Number of products with decision changed The number of products where the decision
changed as a result of the reassessment.

*Number of products created The number of products that were created as a
result the reassessment.

*Number of products skipped The number of products that were skipped during
integrated case reassessment. Products are
skipped if the certification period ends in a
previous year.

* Product level counts are reported separately per product type. For example, the number of Streamlined
Medicaid products that were reassessed.

108 IBM Curam Social Program Management : Health Care Reform Developer Guide

Procedure

1. Choose a custom case selection strategy to limit the cases that are being reassessed, if appropriate for
your environment.

To customize integrated case selection, use the standard Guice dependency injection mechanism to
implement curam.healthcare.sl.impl.BulkICReassessmentCaseSelector. Custom
implementations extend
curam.healthcare.sl.impl.AbstractBulkICReassessmentCaseSelector rather than
directly implement the interface.

2. Optional: Turn notifications on or off for each integrated case that fails to reassess due to an error. Set
the curam.workflow.gendetermineeligibityfailureticket environment property to YES to
generate a notification for each skipped integrated case.

3. Optional: Customize the batch process reports as follows:

a) You can customize the report messages text by updating the /EJBSexrver/components/HCR/
messsage/BPOBatchBulkICReassessment.xml message file. For more information about
customizing messages, Customizing a Message File

b) Configure the batch report to count cases at a product level.

Product level counts are recorded in the default implementation of
curam.healthcare.sl.impl.ProgramGroupManager.

Custom implementations can provide the product level counts by making the following calls at
appropriate points during the reassessment. The productType is the code table string for the
product. The productID is the ID of the product and is used here to prevent duplicate recording.

* Use
curam.healthcare.sl.impl.ICReassessmentCounters.get().incrementReassesse
dCount(productType, productID) toincrement the product reassessment count by 1.

* Use
curam.healthcare.sl.impl.ICReassessmentCounters.get().incrementCreatedCo
unt(productType, productID) toincrement the product created count by 1.

» Use
curam.healthcare.sl.impl.ICReassessmentCounters.get().incrementDecisionC
hangedCount (productType, product Id) toincrementthe product decision changed
count by 1.

» Use
curam.healthcare.sl.impl.ICReassessmentCounters.get().incrementSkippedCo
unt(productType, productID) toincrement the product skipped count by 1.

*Use the
curam.healthcare.sl.impl.ICReassessmentCounters.get().clearCounters() call
before the reassessment of the integrated case.

4. Configure the batch process by setting the following environment variables to the appropriate values
for the environment in which the batch process is running.

Property

Description Default value

curam.batch.bulkicreasse
ssment.chunksize

The number of integrated cases |5
in each chunk.

ssment.chunkkeywaitinter
val

the batch process waits before it
retries to read the chunk key
table.

curam.batch.bulkicreasse |In case the batch process No
ssment.dontrunstream sleeps while it is waiting for

processing to complete.
curam.batch.bulkicreasse | Theinterval in milliseconds that | 1000

Running a bulk reassessment of all open integrated cases 109

Property Description Default value
curam.batch.bulkicreasse | Theinterval in milliseconds that | 1000
ssment.unprocessedchunkw [the batch process waits before it
aitinterval retries to read the chunk table

for unprocessed chunks.
curam.batch.bulkicreasse |In case the batch process No

ssment.processunprocesse
dchunk

attempts to process any
unprocessed chunks that are
found after all streams are
completed.

5. Run the BulkICReassessment batch process.

To ensure that the database is used to its full capacity, you can use the BulkICReassessmentStream
batch process, which supports running in multiple streams to allow for concurrent execution on one or
more computers.

6. Review the report.

BulkICReassessment

This batch process identifies and does a full reassessment on numerous open IBM Clram Health Care
Reform integrated cases. You can run this process when changes affect numerous integrated cases, and
you want to reassess the cases. For cases where the determination changes as a result of this
reassessment, the new determination is stored and the old determination superseded.

Important: By default, this batch process runs on all open Health Care Reform integrated cases. Where
appropriate, use a custom case selection strategy to limit the number of cases that are reassessed.

Class and method

curam.healthcare.sl.impl.BulkICReassessment.process

Parameters

Parameter Description Default value

Batch Process Instance ID |A unique identifier that allows N/A
multiple instances of the same
batch process to run at the same
time effectively. When no
instance ID is specified, only one
instance of the batch process can

run.

BulkICReassessmentStream

This batch process supports batch streaming for bulk integrated case reassessment in HCR and can run
only with the BulkICReassessment batch process.

To start a stream for an instance of the Bulk IC Reassessment process, link the Bulk IC Reassessment
batch process (or multiple stream batch processes) to the particular batch process instance by using the
Batch Process Instance ID parameter. For example, where the Batch Process Instance ID is
batch_reassessment_1 for an instance of the Bulk IC Reassessment batch process, you must also set
the Batch Process Instance ID parameter for the Bulk IC Reassessment Stream batch process (or
multiple stream batch processes) to batch_reassessment_1. Any number of Bulk IC Reassessment
Stream batch processes can be linked to the same instance of the Bulk IC Reassessment batch process.

110 IBM Curam Social Program Management : Health Care Reform Developer Guide

Class and Method

curam.healthcare.sl.intf.BulkICReassessmentStream.process

Parameters

Parameter

Description

Default value

Batch Process Instance ID

A unique identifier that allows
multiple instances of the same
batch process to run at the same
time effectively. When no
instance ID is specified, only one
instance of the batch process can
run.

N/A

Running a bulk reassessment of all open integrated cases 111

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

112 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 113

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

114 1BM Curam Social Program Management : Health Care Reform Developer Guide

Printed in the Republic of Ireland

	Contents
	Chapter 1. Configuring Health Care Reform
	Configuring appeal requests
	Appeal case types and appeals process configuration

	Configuring the resilient option for the process intake application workflow
	Configuring rules to determine the coverage period start date
	Configuring the Eligibility Viewer
	Configuring a product for the Eligibility Viewer
	Configuring look back and look forward periods

	Configuring primary client display settings for Health Care Reform

	Chapter 2. Customizing the Health Care Reform portal
	Customizing the Health Care Reform Motivations
	IEG scripts customization
	Eligibility Display Rules customization
	Customizing the conditional display of IRS income information
	Customizing the conditional display of specific questions for Medicaid, CHIP, or IA
	Customizing the determination of projected annual income for a citizen

	Moving the Log Out button to improve usability
	Enabling the Notices tab

	Chapter 3. Integration with external systems
	Customizing the external system implementations
	Customizing request or response fields for external system calls

	External system processors
	Configuring the Federal Hub implementation
	Configuring a State systems implementation
	Customizing electronic verifications
	Default verification processors
	Adding custom verification processing
	Overriding the default verification processing

	Supported federal hub verification services

	Chapter 4. Customizing case management
	Dynamic evidence customization
	Eligibility rules customization
	Customizing non-financial rules failure reasons

	Conditional verifications customization

	Chapter 5. Customizing plan management
	Integration with Plan Management
	The plan management adapter interface
	Configuring the plan management adapter

	Plan management web services provided by Cúram
	Configuration parameters for plan management
	Callback URLs for plan management
	Batch processing for plan management
	Employer enrollment notification batch process

	Plan management web service API reference
	Health Care Reform web services
	retrieveDemographicsAndEligibilityDetails
	getEntitlementDetails
	getHouseholdSummaryDetails
	policyIDAvailable
	updateEmployerEnrollment

	Health Care Reform schema elements

	Chapter 6. Customizing change of circumstances
	Change of Circumstances Process Flow
	Change of Circumstances workflow

	Customizing the default change of circumstances implementation
	Customizing the change of circumstances IEG script
	Adding custom entities through the change of circumstances script
	Modifying entities through the change of circumstances script
	Removing entities through the change of circumstances script

	Customizing the Change of Circumstances workflow

	Configuring the change of circumstance evidence submission workflow

	Chapter 7. Customizing evidence management wizards
	Customizing the 'Add a Member' wizard
	Customizing wizard evidence mappings
	Customizing wizard evidence mapping order
	Customizing wizard evidence dates

	Chapter 8. Customizing appeal requests
	Setting the appeals requests IEG script and data store schema
	Customizing the appeal request summary PDF document

	Chapter 9. Customizing the handling of closed cases
	Configuring the permanent closure of closed cases
	Configuring the reassessment strategy for closed cases
	Customizing the reassessment implementation for closed cases

	Chapter 10. Customizing Trigger Points
	Chapter 11. Implementing periodic data matching and annual renewals
	Storing all existing program group determinations
	BulkRunProgramGroupEligibility batch process

	Developer overview of periodic data matching and annual renewals
	Polling external systems
	Adding evidence from external systems
	Creating a batch run configuration for annual renewals or periodic data matching
	Implementing case selection for a batch run
	Inserting evidence from external systems with the PDMEvidenceMaintenance API

	Advising caseworkers about income evidence mismatches
	Implementing citizen notices
	Implementing citizen notice generation
	Implementing the calculation of APTC for inclusion in notices
	Configuring XML server load balancing for notices

	Overview of the periodic data match batch process flow
	Running the periodic data matching batch processes
	PDMProjectedEligibility batch process
	PDMProcessAutoCompletions batch process

	Configuring automatic completion intervals for periodic data matching
	Configuring and running the annual renewals batch processes
	Configuring automatic completion intervals for annual renewals
	Overview of the QHP annual renewal batch process flow
	Running the annual renewals for QHP batch processes
	QHPProjectedEligibility batch process
	QHPProcessAutoCompletions batch process

	Overview of the Medicaid annual renewal batch process flow
	Running the annual renewals for Medicaid batch process
	MedicaidProcessAnnualRenewals batch process

	Overview of the CHIP annual renewal batch process flow
	Running the CHIP annual renewals batch process
	CHIPProcessAnnualRenewals batch process

	Triaging periodic data matching and annual renewal batch process errors
	Checking for batch processing errors and reprocessing failed cases
	Identifying Medicaid or CHIP cases that were not automatically renewed
	Diagnosing PDM and AR batch run failures
	PDM and AR batch job failure reasons

	Extracting rule objects snapshots to SessionDoc style HTML
	Customizing periodic data matching and annual renewals
	Customizing the storage of program group determinations
	Customizing projected eligibility for periodic data matching and annual renewals
	Customizing projected eligibility evidence handlers
	Projected eligibility
	Projected eligibility evidence handlers
	External evidence
	Implementing a new evidence handler
	Identifying rule classes for the evidence handler
	External evidence to qualified rule class name mappings
	Rule objects in projected eligibility
	Creating a custom evidence handler
	Adding logging to custom evidence handlers
	Implementing the creation of rule objects for projected eligibility
	Rule object creation strategies
	Techniques for filtering evidence and creating rule objects
	Filtering external evidence by evidence type
	Creating rule objects from active evidence
	Creating rule objects from external evidence
	Cloning and modifying active evidence rule objects

	Customizing an external evidence handler
	Disabling an evidence handler
	Enabling projected eligibility logging

	Customizing the citizen account with new evidence types

	Customizing the citizen account for periodic data matching and annual renewals
	Configuring contestable evidence types
	Adding contestable evidence types to the citizen account

	Modifying periodic data matching home page messages
	Modifying periodic data matching My Updates page messages
	Modifying annual renewals home page messages
	Modifying the annual renewals My Updates page

	Customizing evidence converters
	External evidence converters
	Implementing a new external evidence converter
	Customizing an external evidence converter
	Disabling an external evidence converter

	Chapter 12. Customizing inconsistency period processing
	Creating a custom event handler for inconsistency period processing
	InconsistencyPeriod workflow
	Inconsistency period workflow APIs
	Inconsistency Period Evidence Activation batch process
	Inconsistency Period Evidence Activation Stream batch process

	Chapter 13. Configuring Account Transfer with the Federally Facilitated Exchange
	The FederalExchange component
	Configuring Federal Exchange
	Activating Account Transfer
	Enabling batch processing of account transfer applications
	Configuring the sending of Account Transfers to Cúram
	Selecting the source data set for outbound mapping
	Setting the identity of the sender US state
	Setting the Account Transfer agency type
	Setting the federal exchange code
	Linking the Datastore schema name to the Account Transfer person reference
	Setting the data store schema name for the FFE schema
	Configuring Account Transfer date/time formats

	Extending Federally Facilitated Exchange data mappings
	Adding or updating the attributes for a data store entity
	Adding an entity as a child of a mapped data store entity
	Adding or replacing a top-level data store entity
	Adding or updating entities for an outbound response to the FFE

	The Web Service Java API
	Inbound Account Transfer payload processing
	Inbound payload identification and routing
	Inbound payload mapping configuration
	Process inbound Account Transfer COC payloads in batch

	Outbound processing
	HCRFedExchangeAppStatus code table descriptions

	Adding a new entity
	Writing an EntityMapper
	Updating the Federal Exchange data store schema

	Account transfer workflows

	Chapter 14. Monitoring Health Care Reform
	Monitoring HCR applications
	HCR application intake process overview
	(deprecated) Monitoring HCR intake reports
	(deprecated) HCR Intake Reports

	Monitoring HCR intake process instance errors

	Monitoring Cúram processes
	Monitoring workflow process instances
	Monitoring Process Instance Errors
	Process Instance Errors

	Chapter 15. Running a bulk reassessment of all open integrated cases
	BulkICReassessment
	BulkICReassessmentStream

	Notices
	Privacy Policy considerations
	Trademarks

