
IBM Cúram Social Program Management
Version 7.0.3

Cúram Custom Widget Development
Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
66

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

List of Figures... vi

Chapter 1. Developing Custom Widgets.. 1
Overview...1

Prerequisites...1
What's New?... 1
Customizing Widgets.. 2
Outline of this Guide...2
Conventions of this Guide.. 3
Limitations and Restrictions...3

Approaches to Customization..3
Prerequisites...3
Identifying the Right Approach.. 3
Using Only UIM... 4
Reconfiguring Standard Widgets..4
Developing Simple Custom Widgets.. 5
Developing Complex Custom Widgets... 5
Mixing Simple Custom Widgets with UIM.. 6
Responsibilities of the Widget Developer.. 6

How Widgets Work... 7
Prerequisites...8
Anatomy of a Widget.. 8
How Widgets Work In Depth.. 9

An EMail Address Widget...10
Prerequisites.. 11
Defining the HTML.. 11
Defining the Renderer Class...11
Accessing the Data... 12
Generating the HTML Content... 13
Configuring the Widget...13

The Sample Context Panel Widgets.. 14
Prerequisites.. 14
The Sample Widgets...14

A Photograph Widget... 15
Prerequisites.. 15
Defining the HTML.. 15
Defining Data in XML Form...16
Defining the Renderer Class...17
Accessing Data in XML Form.. 17
Generating the HTML Content... 18
Configuring the Widget...19
Configuring the FileDownload Servlet... 19

A Details Widget Demonstrating Widget Reuse.. 20
Prerequisites.. 20
Defining the HTML.. 20
Defining Data in XML Form...21
Defining the Renderer Class...22
Accessing Data in XML Form.. 22
Generating the HTML Content... 22
Configuring the Widget...23

Tying Widgets Together in a Cascade..24

 iii

Prerequisites.. 25
Defining Data in XML Form...25
Defining the HTML.. 25
Defining the Renderer Classes...25
Generating the HTML Content... 26
Configuring the Widgets... 28

A Text Field Widget with No Auto-completion..29
Prerequisites.. 30
Defining the HTML.. 30
Defining the Renderer Class...30
Handling Form Items..30
Accessing the Data... 31
Generating the HTML Content... 32
Configuring the Widget...33
Limitations on Support for Custom Edit Renderers...33

Internationalization and Localization..34
Prerequisites.. 34
CDEJ Support for Internationalization...34
Widget Internationalization... 35

Accessibility Concerns...36
Prerequisites.. 36
Overview... 36
Labels for Form Input Controls.. 37
Font Sizes..38

Overview of the Renderer Component Model...38
Elements of the Model... 38
Building Components... 39

Design and Implementation Guidelines..40
Guidelines for Writing Renderers...40
Supporting Field-level Security..46
Adding New CSS Rules for Custom Widgets..47

Testing, Troubleshooting and Debugging..48
Testing.. 48
Troubleshooting..49
Debugging...49

Configuring Renderers... 50
Overview... 50
Configuring Domain Renderers.. 51
Configuring Component Renderers... 51

Accessing Data with Paths...52
Overview Diagram.. 53
Creating New Paths.. 54
General Properties Resources... 54
Resource Store Properties Resources... 55
Literal Values.. 56

Extending Paths for XML Data Access...57
Simple XPath Expressions... 57
Evaluating the Paths...59
Automatic Data Conversion... 60

Source Code for the Sample Widgets..61
Source Code for the E-Mail Address Widget..61
Source Code for the Photograph Widget... 62
Source Code for the Details Widget... 63
Source Code for the Person Context Panel Widget... 64
Source Code for the Horizontal Layout Widget..64
Source Code for the Text Field Widget with No Auto-completion.. 65

iv

Notices..66
Privacy Policy considerations.. 67
Trademarks.. 67

 v

List of Figures

1. HTML Output of the Email Address Widget.. 11
2. Custom CSS for the Email Address Widget...11
3. Declaration of the EMailAddressViewRenderer Class..12
4. Getting the Email Address Value.. 12
5. Marking Up the E-Mail Address Value...13
6. Configuring the E-Mail Address Widget.. 13
7. HTML Output of the Photo Widget.. 16
8. Custom CSS for the Photo Widget.. 16
9. An XML Document Describing a Photograph..17
10. The Renderer Class for the Photograph Widget...17
11. Getting the Person Name and ID Values.. 17
12. Marking Up the Photograph Data..18
13. Linking to a UIM Page..18
14. Linking to a Static Image...18
15. Linking to the FileDownload Servlet...19
16. Configuring the E-Mail Address Widget..19
17. Example FileDownload Configuration for a Photograph.. 20
18. Example of the HTML to Show an In-line Image..20
19. HTML Output of the Details Widget.. 21
20. Custom CSS for the Details Widget...21
21. An XML Document Describing a Person... 21
22. The Renderer Class for the Details Widget...22
23. Getting the Person name and Reference Number... 22
24. Starting the Email Address Widget from the Details Widget... 22
25. Configuring the Person Details Widget...24
26. An XML Document Describing a Person... 25
27. HTML Output of the Person Context Panel Widget.. 25
28. The Renderer Class for the Person Context Panel Widget...26
29. The Renderer Class for the Horizontal Layout Widget... 26
30. Building the component model and starting the Horizontal Layout Widget... 27
31. Generating an HTML table and delegating to other widgets... 28
32. Configuring the Person Context Panel Widget... 29
33. Configuring the Horizontal Layout Widget..29
34. HTML Output of the Date Picker Widget...30
35. Declaration of the NoAutoCompleteEditRenderer Class... 30
36. Adding a Form Item to Get a Target ID...31
37. Getting the Initial Value for a Form Item..32
38. Marking Up the Input Control... 32
39. Supporting Other UIM Features..32

vi

40. Configuring the SSN Edit Renderer...33
41. Referencing Localized Image Files... 35
42. An XML Document Describing Contact Details.. 42
43. An XML Document Describing an Address... 42
44. A Revised XML Document Describing Contact Details...43
45. A Plug-in Class with a Concurrency Defect.. 44
46. A Plug-in Class without a Concurrency Defect...45
47. Implementing Field-level Security... 47
48. An Example of a DomainsConfig.xml File...51
49. An Example of a StylesConfig.xml File... 52
50. The Anatomy of a Path..53
51. Accessing General Properties...55
52. Accessing Multiple General Properties.. 55
53. Accessing Resource Store Properties...56
54. Accessing Multiple Resource Store Properties.. 56
55. Encoding Literal Values...56
56. A Sample XML Document..57

 vii

viii

Chapter 1. Developing Custom Widgets
Use this information to develop custom widgets for UIM pages. A comprehensive set of widgets are
provided, which are configured against the application's domain definitions by default. These
configurations can be changed as required.

Overview
The objective of the guide is to explain when it is appropriate to use a custom widget to present the
content of a UIM page and to show how to develop such a widget and integrate it into the application.

The text within the images that are used throughout the guide are intentionally blurred because you are
only concerned with the high-level details of these widgets. Each number in an image maps to a specific
detail in a widget. A list is given below each image to explain its details by referring those numbers.

The objective of the section is to explain briefly what widgets are, what can be achieved through the
customization of widgets and how the rest of the guide is structured to aid the developer in the task of
developing custom widgets.

This is a guide for client application developers who want to customize the presentation of Cúram
application pages in ways that are not possible through UIM or through the reconfiguration of the set of
widgets that are provided in the Cúram Client Development Environment (CDEJ).

Prerequisites
The developer is proficient in Cúram client-side application development in Java™ and UIM. In addition,
knowledge of HTML, JavaScript, CSS, and other web application technologies is required to varying
degrees depending on the nature of the widget that is being developed.

What's New?
UIM provides support for easy development of a consistent application user interface and can meet most
presentation requirements. However, sometimes there is a requirement for richer functionality or a more
sophisticated look than can be achieved with UIM alone.

From Cúram 6.0 onwards, support is introduced for the customization of widgets. Widgets are the
elements of the user interface that is used to present the values of the fields that are defined in UIM, such
as simple text values, editable text fields, date selectors, bar charts, and calendars. The new custom
widget development features make it possible for developers to create their own widgets that
supplement or replace those provided by the CDEJ. Here are just a few examples of the kinds of
customizations that can now be performed:

• The configuration can be changed so that the basic text field widget is used for the input of all date
values, instead of the date selector that is configured by default;

• The presentation of all email address values can be customized so that, instead of being shown as
simple text, they are shown as HTML mailto: links beside an email icon;

• A photograph of a person who is stored in the application database can be displayed as the value of a
field;

• The details of a person can be presented by using a richer and more compact layout than possible with
a UIM CLUSTER;

• Widgets can be reused within other widgets, so that the email address widget can be reused within the
widget that displays the details of a person and that details widget can, in turn, be combined with the
widget that displays a photograph of a person to create a single widget that presents a more engaging
summary of a person in a tab context panel.

© Copyright IBM Corp. 2012, 2018 1

Customizing Widgets
Customizing widgets is a process that involves customizing the HTML that is produced to represent the
value of a field. A client application developer defines a Cúram application page by using UIM, but the
page is displayed in a user's web browser by using HTML.

Behind the scenes, the CDEJ translates the CLUSTER and LIST elements of the UIM page into HTML
elements and then presents or renders the labels and values of the FIELD elements within the structure
that is provided by those HTML elements. Typically, the CDEJ renders a cluster or list by using an HTML
table and then places the labels and values of the fields into the cells of that table. The CDEJ renders the
label of a field the same way for all fields, but renders the HTML for the value of a field in different ways
depending on the type, the domain definition, of that field's value.

The processing of field values in a domain-specific manner has been available since Cúram 4.0. This
support for custom data conversion and sorting is described in detail in the Cúram Web Client Reference
Manual. Using the same configuration mechanism, the CDEJ now extends this domain-specific
customization to the widgets used to produce the HTML for the values of fields. The CDEJ includes a
default configuration that associates the provided Cúram widgets with all of the domain definitions of the
application. The CDEJ now also supports these key features:

• The customization of the default configuration by the application developer, providing the freedom to
change what widget is used to render the value of each type of field;

• The development of new widgets by the application developer and their integration into the application
through the customization of the default configuration. These custom widgets allow full control over the
rendering of values for individual UIM FIELD elements.

Custom widgets are integrated into the application in a manner that preserves all of the time-saving and
simplifying features of UIM development. However, developing custom widgets can be a complex
process. Widget developers take on the responsibility for considerations such as styling,
internationalization, cross-browser support, and other concerns from which they are insulated when using
UIM alone. There is a balance to be achieved between ease of development and maintenance on the one
hand and user interface richness and flexibility on the other.

Cúram widgets and custom widgets differ only in where they are developed and configured, not how.
Therefore, custom widgets are a powerful tool for application developers who need to meet challenging
presentation requirements by complementing or replacing the provided Cúram widgets. The development
and configuration of such custom widgets is the subject of the guide.

Outline of this Guide
The next section, “Approaches to Customization” on page 3 guides the developer on the choice of
approach to achieving the required customization of the user-interface while the development effort is
minimized.

“How Widgets Work” on page 7, presents more detailed information about the components of a widget
and their configuration.

“An EMail Address Widget” on page 10 introduces the fundamental principles of the widget
development process and the subsequent widget configuration. The section shows how to create a simple
widget that presents an email address more appealingly in the context of a typical UIM page.

“The Sample Context Panel Widgets” on page 14 presents some samples of context panels that are
used within the tabbed user interface. These sample context panels are constructed by using several
complex widgets that are supplied with data in XML form. The development and configuration of each of
these widgets is covered in the following sections. Each section introduces new concepts in widget
development that build upon what is gone before until the complete context panels are created and
configured.

All of the widgets that are described to that point are used to present read-only values. “A Text Field
Widget with No Auto-completion” on page 29 introduces a widget for editing values on a form page.
Widgets that are used to edit values have some unique requirements that are not applicable to widgets
that present read-only values. To edit a value, a widget must ensure that, when the user submits a form

2 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

page that contain the widget, the entered field value reaches its destination on the server interface and
that any validation errors are handled correctly.

Often, the deployed Cúram application must comply with local regulatory requirements for the
localization of text and the accessibility of the user-interface. While the details differ between
jurisdictions, the general principles are common to all. “Internationalization and Localization” on page
34 and “Accessibility Concerns” on page 36 outline the main principles.

This is not a comprehensive reference manual for widget development. References to external sources of
information, such as the published Javadoc of the CDEJ, are used to draw the attention of the developer
to additional information when necessary. The developer should also study the primary companion guide,
the Cúram Web Client Reference Manual, before embarking on custom widget development. Several
sections at the end of this guide supplement these other sources where they lack specific information
that is related to widget development. Throughout the guide, the developer's attention is drawn to the
relevant section.

Conventions of this Guide
For clarity, the source code that is presented throughout the guide is abridged. Import statements are
omitted and package names are not shown.

“Source Code for the Sample Widgets” on page 61 provides the full, unabridged source code listings that
show the import statements that identify the package names of the referenced classes and interfaces.

Similarly, the configuration files in the examples show only the domain configuration entry that relates to
the configuration of the widget presented. The real configuration file within an application component
typically contains all of the configuration entries for all of the domain definitions to which customizations
are applied.

Limitations and Restrictions
The focus of the guide is on the development of custom widgets for inclusion into context panels within
the tabbed user interface. Other uses of widgets are covered only briefly or not at all.

warning: No Implied Support

Only the custom widget functionality that is described in this document is supported. No other
functionality, whether inferred by the reader through extrapolation or analysis of the Javadoc or other
sources, is supported. Neither is support that is offered for use of custom widgets in contexts other than
those contexts presented in this document.

Throughout the guide, other limitations or restrictions are highlighted in the relevant contexts.

Approaches to Customization
Use this section to understand when UIM is used to define all of the content of a page, when a custom
widget is required to achieve a presentation requirement and what the scope of the custom widget is.

Prerequisites
A basic knowledge of the capabilities of UIM and the structure of web pages that are rendered from UIM
sources.

Identifying the Right Approach
UIM pages can define the content of an application page in terms of fields, action controls, clusters, lists,
and other elements. UIM provides enough control to present the page content in ways that meet most
presentation requirements. Alternatively, instead of using multiple fields in clusters and lists in a UIM
page, a single field can be used in the UIM to anchor a custom widget that produces most of the HTML
content of the page.

Between these two bounding approaches doing it all with UIM or doing it all with a widget, there are
several intermediate approaches. Where a requirement for customized presentation is identified, the

Developing Custom Widgets 3

developer needs to assess the necessary extent of that customization and how best to meet the
requirement to minimize the complexity and effort required.

While the development of custom widgets provides greater control over the presentation of the content
than UIM, this control comes at the cost of greater complexity. Trying to do everything from one widget by
producing large amounts of HTML content can lead to significant long-term maintenance requirements.
This is so if the appearance of the content needs to be kept consistent with content that is produced from
standard elements of a UIM page or with content from Cúram widgets. For example, if a custom widget
attempts to produce HTML output that looks the same as that produced for a standard UIM CLUSTER, that
can introduce a long-term requirement to repeatedly reverse engineer the potentially changing structure
of that HTML. The HTML structure and CSS produced by the CDEJ is subject to change and it cannot be
guaranteed that customizations that depend on this HTML structure or CSS styling continues to work
when the Cúram application is upgraded. Therefore, while a custom widget might present all of the page
content, it is best to limit what the custom widget produces and to produce as much of the content as
possible using UIM.

Attempt to meet the presentation requirement by selecting the first approach that is listed here capable
of meeting the requirements. These approaches are listed in order of increasing complexity and are
described more fully in the following sections.

• Use only UIM, though perhaps use it more creatively than is typical.
• Reconfigure the standard widgets to change the presentation of the field values.
• Develop and use one or more simple custom widgets and use them in combination with UIM.
• Develop and use one or more complex custom widgets instead of many UIM elements.
• Apply some combination of the approaches here.

Using Only UIM
Before the developer decides to develop a custom widget, the developer first assesses if the required
presentation can be achieved by using the layout and styling capabilities that are supported by UIM. If the
presentation requirement can be achieved by using only UIM, there is no need to develop a custom widget
and time and effort can be saved.

UIM allows CLUSTER and LIST elements to be nested within other CLUSTER elements. The number of
columns in a cluster can be controlled, as can the display of the titles of clusters and lists and of the labels
of their contained FIELD elements. This flexibility can be used to achieve complex page layouts. See the
Cúram Web Client Reference Manual for more details on these UIM elements.

Many UIM elements also support a STYLE attribute that can be used to associate a custom CSS class with
the HTML content that is generated in respect of those elements. The custom CSS class can define styles
that control many aspects of the presentation. Fonts, background images, spacing, borders, colors, and
other aspects of the presentation can be customized easily. See the Cúram Web Client Reference Manual
for more details on the use of the STYLE attribute and on the inclusion of custom CSS resources.

The developer can identify a UIM-only solution to the presentation requirement, but might need to apply
this solution to many pages. Doing this one page at a time might not be desirable, particularly if later
changes would also require that all of the pages be updated again. Using a UIM VIEW in a VIM file and
including this view into many UIM files might meet this requirement.

If the requirement is to change the presentation of a field value in a significant way, rather than to change
the page layout or to make minor styling changes to the content (or both), then this approach of using only
UIM might not be sufficient. If the customization needs to be repeated across many pages in a way that
cannot be accommodated by included views (VIM files), or in a way that imposes significant maintenance
overheads, then this approach might also be insufficient. In those cases, a more advanced approach
might be necessary, such as the reconfiguration of the standard widgets or the development of a new
widget.

Reconfiguring Standard Widgets
Cúram provides a comprehensive set of widgets that are configured against the application's domain
definitions by default. The application developer has the option to change (override) this configuration to

4 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

meet the presentation requirements. Such reconfiguration can change the standard widget that is used
for a particular type of data to be a different standard widget. Where custom widgets are added to the
application already, these custom widgets are also candidates for reuse through reconfiguration.

For example, the date selector widget is used for fields in the SVR_DATE domain (and its descendant
domains). If the requirement is to change the date selector to a simple text field, possibly formulated as,
"Remove the pop-up calendar icon," then a new date selector that acts like a text field is not required.
This requirement can be met simply by associating the same widget that is used for the SVR_STRING
domain (and many numeric domains) with the SVR_DATE domain. This configuration change, made in a
configuration file in the application component, causes all SVR_DATE values on all pages to be presented
for editing with a simple text field.

The elements of a widget that are configured in this way are explained in the next section and the
configuration process is covered in detail in “Configuring Renderers” on page 50. Also described in that
section are the names and locations of the configuration files, including the default configuration file that
shows what is configured as standard in the CDEJ.

If a reconfiguration of the widgets by changing the domain associations, perhaps in combination with the
creative use of UIM, cannot meet the presentation requirement, it might be necessary to develop a new
custom widget and configure it for use.

Developing Simple Custom Widgets
A widget controls how the value of a field is presented by adding the HTML mark-up to the value that is
appropriate for that presentation. Reconfiguring the widgets that are associated with different domain
definitions and restyling the HTML of existing widgets with custom CSS are not always sufficient to meet a
presentation requirement. If the developer decides that the presentation requirement can be satisfied
only by modifying the structure of the HTML produced for the value of a field in a manner that no existing
widget can achieve, then the developer must write a new widget and configure it for use by the
application.

“An EMail Address Widget” on page 10 explains how to develop a simple widget for viewing the value of
a field; “A Text Field Widget with No Auto-completion” on page 29 explains how to develop a simple
widget for editing the value of a field. Both sections describe briefly how to configure these widgets and
more information about the configuration of custom widget can be found in “Configuring Renderers” on
page 50.

In the simple case, a widget replaces the HTML content that is produced for the value of a UIM FIELD
within the context of a normal UIM CLUSTER or LIST. The value of the field is still a single string, number,
or date, only styled more elaborately. The general layout of the page is not affected. Where the
presentation requirement has a wider scope and requires that the layout of significant parts of the page
be changed, or that the value of a field contain many embedded values, such as in an XML document, a
more complex widget are required.

Developing Complex Custom Widgets
There is no clear dividing line between simple widgets and complex widgets. The more control over the
presentation that the developer exerts through a custom widget, the more complex the implementation of
that widget becomes.

Some indicators of increased complexity are:

• The value of the field can be more than a simple string or numeric value. For example, the value can be
an XML document that contains several separate values, such as the data for a bar chart.

• Multiple values can be presented to the user differently from the usual grid layout of a cluster or list. For
example, a photograph of a person can be presented with the person's name below the image and with
no field label to the side.

• A widget can present information by delegating significant parts of the presentation to the renderer
plug-ins of other widgets. For example, in presenting a non-grid layout for the details of a person, the
value of the single UIM field can be an XML document that contains all of those details. A single widget
is started by the CDEJ for that XML document value. That widget can then produce the non-grid layout
in HTML and, in each position within this layout, delegate the rendering of the values within the XML

Developing Custom Widgets 5

document to other widgets. This is similar to the way the CDEJ delegates to widgets when the contents
of the cells in the grid layout that is presented by a UIM cluster are rendered.

While a UIM FIELD is always required to anchor a custom widget, a UIM page can contain little more than
a single FIELD element and leave most of the rendering of the HTML page content to the associated
custom widget. (The page title and other surrounding content are still rendered independently of the
field.) The ability to place a UIM FIELD element directly within a PAGE element without any CLUSTER or
LIST element, is a new feature of the CDEJ. While it allows a widget more control over the layout of the
data, this approach is used only if the presentation requirement is such that it cannot be achieved by
using only UIM, or by using a combination of UIM and one or more simple widgets.

Even if a presentation requirement can be met by using only UIM, the developer can prefer to use a
custom widget to allow the customization to be applied automatically to many application pages, through
the domain definition association, rather than repeat the UIM-only solution on every page that needs it.
Where the use of VIM VIEW elements cannot achieve this, a complex custom widget can be necessary.

This guide presents the development of several complex widgets in later sections. The developer does not
assume that because much of the guide is concerned with the development of complex widgets that
complex widgets are the preferred approach. On the contrary, much of this guide covers complex widgets
because their very complexity requires more explanation. The developer always opts for the simplest
possible approach first and only resort to complex widget development when there are no simple
alternatives.

Mixing Simple Custom Widgets with UIM
The complexity of a widget increases as it assumes more control over the layout of more data. If a
presentation requirement cannot be met by using only UIM, the developer can need to create a custom
widget. However, the complexity can be reduced by developing only the widgets that are necessary and
using UIM as much as possible to achieve the goal. The developer assesses if a combination of UIM with
several simple widgets might achieve the wanted result, or if a full, single custom widget is the only
solution.

The developer can use UIM clusters, lists, and fields in various combinations to produce HTML output that
is close to what is required. The developer can then associate simple custom widgets with individual
fields, replacing the default HTML content for those fields with custom content. Further, the developer can
replace the presentation of a cluster on the page with a presentation produce by a single custom widget,
which still using UIM clusters elsewhere on the same page. The combination of default content for the
main layout of the page with changes to the content for individual fields or individual clusters, is easier to
achieve than using a single custom widget to produce all of the page content.

Constructing pages from several, simpler custom widgets reduces the complexity of the individual
widgets. It also results in a number of simpler widgets that are much easier to reuse in other contexts.
The developer can identify that some widgets might be developed in a way that makes them a component
of the solutions to the differing requirements of several pages. In this case, the alternative approach of a
single custom widget that can satisfy only the requirements of a single page, is likely to be more complex
to develop and result in further development of other complex widgets for other pages with little reuse.

Responsibilities of the Widget Developer
This section presents the approaches to the customization of widgets in increasing order of complexity.
The widget developer, in eliminating a simpler approach and moving on to consider a more complex
approach, takes on more responsibility for the proper operation of the resulting user interface. UIM
insulates client application developers from most of these responsibilities, but this insulation is, to a
significant extent, provided by the widgets that underlie the UIM fields.

Therefore, the widget developer is responsible for ensuring that the custom widget continues to insulate
the UIM developer from concerns such as the following:

• The Cúram user interfaces evolve with each new release. Widgets that attempt to emulate the output
that is produced by standard elements of the Cúram user interface, such as clusters and lists, need to
evolve in step with Cúram to ensure that the consistency of presentation of the user interface is

6 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

preserved. This is a long-term maintenance task that is considered as part of the cost of development of
any such custom widget.

• Rendering HTML to the application page is a low-level process. It offers considerable power and
flexibility to customize the application. However, it also, by its nature, opens up the possibility of
introducing unwanted side-effects that interfere with the presentation of other parts of the application
page, or introducing security defects, such as vectors for cross-site scripting (XSS) attacks. The widget
developer assumes the responsibility for ensuring that such defects are not introduced.

• Complex widgets with ambitious presentation requirements can be an expensive undertaking. Much of
the development effort goes not into developing the widget source code, but into fine-tuning the styling
of the HTML for that widget within the browser. Where there is a requirement for cross-browser support,
either different versions of the same web browser, or different web browsers entirely, the time that is
required to achieve a consistent look across all web browsers is not underestimated.

• The CDEJ provides considerable assistance to the widget developer to aid with the internationalization
of a widget. However, this assistance is only of value if the widget developer takes advantage of it to
ensure that the widget can be properly localized after development.

• The widget developer cannot have a free hand to implement all presentation requirements as specified.
Most jurisdictions implement regulations and guidelines that require that web applications be available
and accessible to as many people as possible and, in particular, be inclusive of those with disabilities.
The technical requirements can differ between jurisdictions and it is the responsibility of the widget
developer to understand and comply with any such requirements.

• The perceived quality of the application can be diminished if a widget does not operate correctly or if it
introduces inconsistencies or unwanted side-effects. As the complexity of a widget increases, so too
does the effort that is required to test it in all of its aspects and to ensure that it enhances, not
degrades, the application and the experience of the users. The widget developer does not
underestimate the effort that is required to test a complex widget properly and the need to test it
repeatedly as the application is further customized or upgraded.

This guide explains these concerns in more detail in the later sections and advises on how they can be
addressed. By choosing the simplest approach to achieve a presentation requirement after evaluating if
the presentation requirement can be modified to permit a simpler approach, the widget developer can
minimize the effort that is required to meet all of these added responsibilities.

How Widgets Work
A developer defines a Cúram application page by using UIM, but the page is displayed in a user's web
browser by using HTML, as described in the previous section,. The label of a field is presented the same
way for all fields, but the HTML that presents the value of each field differs depending on two factors: the
mode of operation of the field and the type, the domain definition, of its value.

There are two modes of operation: the view mode and the edit mode. In the view mode, the user cannot
modify the value of the field. The user can see the value that is presented as just text, or presented more
elaborately as a bar chart or a rate table, depending on the type of the value. In the edit mode, the user
can enter a new value or modify the existing value of a field. The user can see the value that is presented
in a simple text input field, or a date selector or a check-box, again depending on the type of the value.

For each mode of operation and type of data, a specialized component is started by the CDEJ to render
the HTML for a field's value. This HTML is included into the full HTML page and the page is returned for
presentation to the user by the web browser. Often, other resources, such as icons and JavaScript, are
required to complete that presentation. These specialized rendering components together with their
associated resources are called widgets. Thus, there is a date selector widget, a text field widget, a bar
chart widget, and many other widgets. The CDEJ provides a comprehensive set of widgets for all modes of
operation and types of data. These are detailed in the " Domain Specific Controls " section of the Cúram
Web Client Reference Manual and further in this guide in “Configuring Renderers” on page 50.

When a complete UIM page is rendered at runtime, the CDEJ automatically identifies the mode and type
of each UIM FIELD and selects the appropriate widget to render the value. The mode of operation is

Developing Custom Widgets 7

determined by the presence or absence of a TARGET connection on that field. When that connection is
present, the field is in the edit mode; when it is absent, the view mode. The type of a field is determined
by the domain definition of the server interface property to which that field is connected. What widget is
"appropriate" for any combination of mode and type is defined by configuration. A configuration file
associates widgets with named domain definitions. For each domain definition, the widget to be used for
each mode is specified. The CDEJ uses a widget so configured whenever it needs to render the value of a
field with a matching mode and domain definition.

The configuration that is used by the CDEJ to associate widgets with domain definitions is the same
configuration that is used to associate custom converter and comparator plug-ins with domain definition.
The development and configuration of these plug-ins are described in the " Custom Data Conversion and
Sorting " section of the Cúram Web Client Reference Manual. Custom widget development involves the
development and configuration of new types of plug-ins that are configured in the same way. The widget
developer can define a configuration within the application that overrides the default configuration of the
CDEJ to customize the associations between widgets and domain definitions. The widget developer can
also change how the values of fields are presented. To change the field value presentation, the widget
developer must first understand the relationship between widgets and domain-specific plug-ins.

Prerequisites
A basic knowledge of the capabilities of UIM and the basic principles of web application development in
HTML.

Anatomy of a Widget
To a user, a widget is just what is shown in the web browser. To a widget developer, a widget comprises all
the resources that are involved in the generation and presentation of what a user sees. From this
development perspective, a widget can be composed of many artifacts that, together, realize a
presentation requirement for a specific type of data in one mode of operation.

The common artifacts of a widget are as follows:

Renderer Plug-in
The main component of a widget is its renderer plug-in, the Java class that generates the HTML mark-
up around the field value. The renderer plug-in class is the only artifact that is required for every
widget. The CDEJ provides abstract base classes that all custom renderer plug-in classes must
extend. There is a different base class for each mode of operation. Each renderer plug-in class has a
render method that must be implemented to generate the HTML content by using the W3C DOM
Core API.

Custom renderer plug-in classes are placed into the javasource folder of the chosen client
application component. The classes can be added to a Java package subfolder, but the Java package
name must not conflict with the name of the Cúram application packages. Throughout this guide, the
package folder sample is used, but the use of that name is not required or recommended.

The presentation requirement of a widget can sometimes be realized with nothing more than a single
renderer plug-in class. In this case, the terms widget and renderer might be synonymous to a
developer. However, most widgets require more resources, and sometimes more renderer plug-in
classes, so the term widget has a wider scope than renderer.

Domain Configuration
A configuration file associates domain definitions with the renderer plug-ins of widgets. One file that is
named DomainsConfig.xml is permitted in each application component. The same configuration
file is used for other types of plug-ins, such as those used to customize sorting and data validation
that is described in the Cúram Web Client Reference Manual. The change to the domain configuration
required to associate a custom widget's renderer plug-in class with a domain must be added to this
file and the file must be created if it does not exist. The configuration process is covered as required in
the other sections of this guide and in more detail in “Configuring Renderers” on page 50.

JavaScript
JavaScript can be incorporated in two ways by a widget. Both are controlled by the renderer plug-in
class. The renderer plug-in can embed JavaScript code directly into the HTML by using script tags,

8 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

or it can request that the CDEJ add a link to the page to include a separate JavaScript resource. It is
common for a renderer plug-in to do both: include a link to a JavaScript resource and then add scripts
that start the functions that are defined in that resource. External JavaScript resources can be placed
into the application component. They are copied into the correct location during the build.

Images
Images can be included by embedding an HTML img tag with the appropriate value for its src
attribute. For images such as icons, the image files can be placed into the application component. For
images, such as photographs stored on the database, a special source URL is required. Examples of
both approaches are presented in the later sections of this guide.

CSS
CSS can be used to separate the styling of the HTML produced by a renderer plug-in from the
operation of that plug-in. Like JavaScript and image resources, CSS resources are not directly
associated with a widget. They are added to the application component. Unlike JavaScript and image
resources, CSS resources are not requested explicitly by a renderer plug-in. The style rules that are
defined within a CSS resource, and all other CSS resources in the application components, are
automatically combined into a single new CSS resource during the build process. The specific CSS
resource is not referenced anywhere in the HTML, but the rules are applied nonetheless. See the
Cúram Web Client Reference Manual for more details on the incorporation of custom CSS resources.

Localized Text Properties
Any text that is produced by a renderer plug-in other than the actual field value is required to be
internationalized, that is, to support localization into different languages. Standard Java properties
resources, as defined by the Java ResourceBundle API are supported for this purpose. The
techniques for locating these resources and referencing their content are covered in
“Internationalization and Localization” on page 34.

Widgets can use or depend on other artifacts, such as Java libraries, supporting Java classes, XSLT
stylesheets, XML schemas, and many others. The use of such artifacts depends on the nature of the
widget and what it must achieve. This guide does not describe the use of such artifacts or their integration
into an application. A widget developer is not supported in the resolution of any issues that are related to
the use of artifacts, or types of artifact, not explicitly covered in the later sections of this guide.

How Widgets Work In Depth
As explained in previous sections, widgets are selected and started automatically by the system
depending on the type of data and mode of operation of a field. In UIM, each FIELD is associated with
data by using SOURCE and/or TARGET connections. The system identifies the type of the data based on
the domain definition of the server interface property named on those connections. The domain definition
for the TARGET connection is preferred over that of the SOURCE connection. The mode is determined by
the presence or absence of the TARGET connection; if a TARGET connection is present, the edit mode is
used; if only a SOURCE connection is present the view mode is used.

A configuration file associates the widgets' renderer plug-in classes with domain definitions, so that, for
any type of data and mode of operation, the same renderer plug-in class is started on every page to
present that data with the appropriate HTML mark-up. A widget's renderer plug-in class can identify itself
as either a view-renderer for the view mode or an edit-renderer for the edit mode, but not both. So, a
separate renderer plug-in class is required for each mode. The configuration allows one edit-renderer
plug-in class and one view-renderer plug-in class to be associated with each domain definition. If the
developer changes the configuration file so that a custom widget's renderer plug-in class is associated
with a domain definition, then every time a field in that mode with a connection to data in that domain is
presented on any page, the custom renderer plug-in class is used. Thus, the developer can produce any
wanted custom HTML mark-up to present the data of any UIM FIELD and see the mark-up applied
consistently across the application.

The same widget is often used for many different types of data in a mode. For example, the application
presents most of view-only data by using a single widget that inserts the text representation of that data
into the HTML without any HTML element mark-up. Only where the presentation is more specialized are
specialized widgets that are applied.

Developing Custom Widgets 9

The CDEJ starts widgets in the course of transforming a UIM page to HTML. For widgets associated with
UIM FIELD elements, this always happens at runtime. During the rendering of the page, the CDEJ
constructs a Field object from the information that is defined in the UIM. Using this information, it
consults the domain configuration to select the appropriate widget's renderer plug-in and then passes the
Field object to the renderer plug-in along with an empty DOM DocumentFragment object. Using the
information that is provided by the Field object, the renderer plug-in uses the DOM Core API to create
the DOM nodes that represent the required HTML and field value and adds these nodes to the
DocumentFragment object. When the renderer plug-in returns, the CDEJ takes the now populated
DocumentFragment object, serialize it to an HTML text stream, and add this to the stream that is being
returned to the web browser. By this method, any HTML content can be produced by the renderer plug-in
class.

The developer can implement a widget such that multiple renderer classes are used together to achieve a
presentation requirement. The CDEJ first starts a single renderer plug-in class based on its association
with a domain definition. That renderer class can then delegate the rendering of elements of its output to
other renderer classes. The first renderer can create empty DOM DocumentFragment objects of its own
and pass them on to the other renderers. These renderers populate the fragments with HTML nodes and
the first renderer can add the contents of those fragments to its own before control is returned to the
CDEJ. Combining renderer classes together into such a rendering cascade simplifies the individual
renderer classes and maximizes the potential to reuse these classes in other combinations to realize new
custom widgets. Examples of this process are presented in later sections of the guide.

The configuration file, which is identified in the previous section, that associates renderer plug-in classes
with domain definitions is subject to the same type of component-order-based merging as most other
configuration files in the Cúram client application. In simple terms, the CDEJ default domain configuration
is loaded first. Then, the domain configurations defined (if at all) in each of the application's components
are loaded in order from the lowest priority component to the highest priority component. Each
configuration can replace elements of the configuration that is loaded before, so the last configuration is
the one that has the most control. The actual configuration process is a little more complex than this
simplified explanation and is explained in full in “Configuring Renderers” on page 50. Crucially, the
configuration that is defined in the application is given more weight than that defined in the CDEJ, so it is
possible for the developer to customize anything. However, there are limits on what customizations are
supported within the Cúram application and that are described at the relevant points in this guide.

When a custom widget controls most of the page content, often much of the output of the widget relates
to laying out other page content in the correct manner. The view-renderer and edit-renderer plug-in types
that are associated with domain definitions are used to renderer fields that are bound to data. However,
page layout is often unrelated to any data. Another type of plug-in, the component-renderer, can be used
to perform these layout operations. These plug-ins are associated with styles, not domain definitions, and
can be started by the domain-specific renderers when necessary. Styles and component-renderer plug-
ins are covered in “Tying Widgets Together in a Cascade” on page 24.

An EMail Address Widget
The presentation requirements of many pages can be satisfied with simple UIM pages that contain fields
that are laid out using clusters and lists. However, the presentation of the data within a cluster or list
might benefit by presenting it in a more aesthetically pleasing way. The section shows how the email
address can be enhanced instead of presenting it as plain text. A link is added to allow the user to click
the address and open their email software and also an icon is added.

The objective of this section is to learn how to write a simple widget to present some data more
appealingly in the context of a simple UIM page.

10 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Prerequisites
A knowledge of UIM and Java development.

Defining the HTML
By default, string values are presented in the Cúram application, such as email addresses, without any
HTML mark-up. The string value is added to the HTML page in the appropriate location.

The email address widget must produce HTML in the following form for an email address such as
info@example.com:

 info@example.com

Figure 1: HTML Output of the Email Address Widget

The HTML here is formatted for clarity, but it is generated without any indentation or line breaks, as this
punctuation is not necessary for the browser to present the email address properly and increase only the
size of the page.

A span element that specifies a custom CSS class name contains a hyperlink that is defined by the a
(anchor) element. The anchor element's href attribute prefixes the email address with mailto:, as most
browsers react to that value by opening the system's default email application and creating a new
message with that address in the To: field. The anchor element contains an img element for the email
icon and the email address text that is displayed for the user to click.
.email-container img {
 vertical-align: middle;
}

Figure 2: Custom CSS for the Email Address Widget

The CSS vertical-align style applies only to the img element. It ensures that the email address text that is
shown to the user lines up with the centerline of the text, rather than the baseline. This looks more
appealing. The same styling goal might be achieved if the class attribute were placed on the img
element instead of the span element. However, placing the email-container class name on the span
element allows further customization of the other elements by using different CSS selectors without the
need to change the HTML structure that is generated by the widget, which would involve changing and
rebuilding the Java source code.

The Cúram Web Client Reference Manual provides more details on adding custom CSS resources to the
application.

Defining the Renderer Class
The Cúram Renderer API defines the DomainRenderer interface that is used when the renderer plug-in
classes are written, such as for the email address widget. A plug-in class has a render method that is
provided with details of the field to be rendered and the method must retrieve the data that is bound to
that field and add the HTML mark-up to that data.

The developer must not implement the DomainRenderer interface directly. Instead, the OOTB
application provides abstract base classes that the developer must use as the base of any custom
renderer plug-in class. The email address widget produces a read-only value, so it is presented by using a
view-renderer plug-in based on the AbstractViewRenderer class. The developer places the
EMailAddressViewRenderer.java source file in the sample package subfolder of the javasource
folder of the client application component.

Developing Custom Widgets 11

public class EMailAddressViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {
 // Create the HTML here....
 }
}

Figure 3: Declaration of the EMailAddressViewRenderer Class

A renderer plug-in class uses the W3C DOM Level 3 Core API to create the HTML content. This API is a
standard component of the Java Runtime Environment for Java 5 and above. It is in the Javadoc
documentation that is supplied for the corresponding JDK. For further information about this API, refer to
that documentation.

The first argument to the render method is a Field object that represents the details of the UIM FIELD
element to be rendered and the data that is bound to it by its connections.

The second argument is a DOM DocumentFragment node. The goal of the render method is to append
DOM nodes that represent the data and its HTML mark-up to this fragment. The system automatically
serializes these nodes to HTML in string form and include this in the HTML stream for the page that is
returned to the web browser.

The third argument is a RendererContext object. This object provides access to the context in which a
renderer is started. It includes facilities to delegate rendering to other renderers, to resolve the data that
is identified by the paths that are associated with a Field object, to include JavaScript resources in the
page that can be shared with other renderers, and other facilities that are elaborated upon in the API
documentation.

Use of the RendererContract argument to the render method is not supported except in the limited
manner that is described later in the guide.

See the Cúram Javadoc for full details on each of these arguments and their interface types.

Accessing the Data
The Field object has a Binding property that defines the source path and target path that identify the
data that is bound to the field. These paths combine the server interface name and the property name
into a single value.

The context provides a DataAccessor object that can be started to resolve paths to their values. For a
view-renderer, only the source path is provided. The target path is only provided for edit-renderers
(presented in “A Text Field Widget with No Auto-completion” on page 29). Paths can represent values
other than server interface properties. The developer is not concerned about where the data comes from,
only that it can be retrieved when required. More information about the available paths and their forms is
provided in “Accessing Data with Paths” on page 52. The code to retrieve the email address string value
is shown here.
String emailAddress = context.getDataAccessor()
 .get(field.getBinding().getSourcePath());

Figure 4: Getting the Email Address Value

The source path is retrieved from the field's binding and passed to the get method of the data accessor
that is retrieved from the context. The source path never is null for a view-renderer plug-in. The get
method returns the value of the (in this case) server interface property. The value is formatted to a string
representation appropriate for the active user. This formatting is performed by using the format method
of the DomainConverter plug-in that is associated with the domain of the server interface property. The
formatting of an email address value is trivial (the value is returned as is). However, other values, such as
dates and date-times must be formatted by using the active user's locale, time zone, and date format.
Regardless of the type of the underlying data, this is all handled automatically by the converter plug-ins.
The returned string is suitable for inclusion in the HTML response without any further formatting. See the

12 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Cúram Web Client Reference Manual for more information on converter plug-ins and their format
methods.

Generating the HTML Content
With the email address retrieved, it must now be marked up with the required HTML. The DOM API, while
a little verbose, makes this process easy and reduces the chances of producing invalid output. The use of
the DOM API means that opening and closing tags for the elements are created as needed and the
attribute values and body content is escaped automatically.

All content that is created by using the DOM API must be created in the context of the owning DOM
Document. Each node has a property that identifies this Document object, so it can be retrieved from the
document fragment. Elements and other nodes can be created by using the factory methods of the
Document object. The nodes can be appended to each other, and ultimately to the provided document
fragment, to create the correct HTML structure. This is shown here (see “Source Code for the E-Mail
Address Widget” on page 61 for the complete source code of this renderer).
Document doc = fragment.getOwnerDocument();

 Element span = doc.createElement("span");
 span.setAttribute("class", "email-container");
 fragment.appendChild(span);

 Element anchor = doc.createElement("a");
 anchor.setAttribute("href", "mailto:" + emailAddress);
 span.appendChild(anchor);

 Element img = doc.createElement("img");
 img.setAttribute("src", "../Images/email_icon.png");
 anchor.appendChild(img);

 anchor.appendChild(doc.createTextNode(emailAddress));

Figure 5: Marking Up the E-Mail Address Value

The first line gets the owner document that is used throughout the rest of the method to create new
nodes. The span element is then created and added to the document fragment. The other elements and
nodes are created and added in turn. When the render method returns, the system takes the newly
populated document fragment and incorporates its contents into the HTML page in the appropriate
location.

The URI of Cúram application pages includes the locale code as the first part of the resource path, for
example, en/Person_homePage.do. This path is relative to the application's context root, which
corresponds to the WebContent folder in the development environment. When icons or other resources
are referenced, the ../ path prefix is needed for relative URIs so move from the locale-specific folder in
the page's URI, back to the context root folder. More details about the inclusion of custom image
resources can be found in the Cúram Web Client Reference Manual.

Configuring the Widget
To configure the email address widget, the data must be in a domain that is specific to email addresses.
Here, the SAMPLE_EMAIL_ADDR domain is assumed. The DomainsConfig.xml file is added to the
client application component, or the existing file is modified if it exists, to associate the view-renderer
plug-in class with that domain.
<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains

 <dc:domain name="SAMPLE_EMAIL_ADDR">
 <dc:plug-in name="view-renderer"
 class="sample.EMailAddressViewRenderer"/>
 </dc:domain>

</dc:domains>

Figure 6: Configuring the E-Mail Address Widget

Applying the configuration here, the view-renderer of the custom widget is now started anywhere a UIM
FIELD element has a source connection to a server interface property in the SAMPLE_EMAIL_ADDR

Developing Custom Widgets 13

domain. If the UIM FIELD has a target connection, the edit-renderer will be used instead. As no edit
renderer is defined in this configuration, the edit-renderer of the parent or other ancestor domain, is
inherited and used . Typically, this is the associated TextEditRenderer by default with the
SVR_STRING domain.

More information about configuring renderers and other plug-ins is provided in “Configuring Renderers”
on page 50.

The Sample Context Panel Widgets
The previous section presented the main steps that are required to develop a simple custom widget and
the artifacts that are required for its operation. Simple custom widgets, such as the email address widget,
are often sufficient to meet presentation requirements. They can also be used in the context of more
complex widgets. In the section, two such complex widgets is introduced. The following sections develop
these sample widgets in full to demonstrate all of the main concepts in advanced custom widget
development.

The two sample widgets are used to present information in context panels. To avoid overloading the
developer with information, the main parts of these context panel widgets are developed first in isolation.
Each part is a widget in its own right and is configured for use on its own before the next part is
introduced. When the parts are essentially complete, they are combined by using new renderer classes
that delegate the rendering of these parts to form the full sample widgets. Later sections then show how
issues such as text localization, locale-specific data formatting, and accessibility compliance can be
addressed.

Prerequisites
An understanding of the basic process of developing custom widgets, as presented in the previous
sections.

The Sample Widgets
The first sample widget is a context panel that provides details about a person. The widget has two parts.
The first part presents a photograph of the person above their name and an icon provides a hyperlink from
the photograph to the home page of that person. The second part displays details about that person by
using text with elaborate styling and icons.

The development of this context panel shows how these two parts can be created and used
independently and how they can also be combined into a single widget. In the cases of both of these
parts, the content and layout requirements cannot be met by using ordinary UIM pages.

The widget displays the following details:

• Photograph
• Icon links to person's home page
• Name
• ID
• Address
• Gender
• Date of birth
• Telephone number
• Email

The photograph widget introduces XML-based data sources and the use of the FileDownload servlet to
deliver images to the web browser. At first, the details widget, demonstrates a more complex example of
a widget that is backed by XML data. Later, the details widget is used to show how the email address
widget developed in “An EMail Address Widget” on page 10 can be reused through delegation to present

14 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

the email address value. Also how the text can be localized and how locale-specific formatting can be
applied to the date of birth value.

The second sample widget is a person list widget, which is another context panel widget. The widget
displays a list of people by using their photographs and, when each photograph is clicked, some details
about that person are shown in a pop-up box. The photograph widget and details widget that is developed
for the first sample are reused to create this new context panel widget. However, this time the person's
name is presented in a different way in the details panel and the ID number is omitted. This kind of reuse
is more complex than the reuse of a simple email address renderer.

There are two fundamentally different ways to access data: as single values and as lists of values. The
person list widget must handle a list of values that stored in an XML document. Widgets that are
developed to handle a single value can, with a little care, be reused in the context of widgets that present
lists of values. The reuse of the photograph and details widgets in a list context demonstrates further
complex rendering techniques.

A Photograph Widget
The photograph widget displays a photograph of a person in the current context with their name and a link
to an associated details page.

“An EMail Address Widget” on page 10 described how to access a single source value (the email address)
and generate HTML markup to provide a more aesthetically pleasing representation of an email address.
The same principals apply here, except that multiple source values are required for the photo widget. The
person's name is displayed as text and their unique identifier is required to retrieve their photograph as
well as being needed as a parameter to link to the associated details page. The section shows how
multiple source values can be combined and accessed by the widget.

The section also shows how to access a photograph. Photographs are typically stored in the database
along with other details of the person. Photographs, like any other images, can be delivered to the web
browser by using an HTML img element and setting its src attribute to the URI of the resource that can
supply the image data. For images such as icons, the URI points to a static image file within the web client
application. For photographs, the URI points to the Cúram FileDownload servlet and includes the
necessary parameters to instruct that servlet to retrieve the image data from the database and return it to
the web browser.

The objectives of the section are:

• to show how to develop a widget that displays the photograph of a person in a context panel
• to show how to access XML data.

Prerequisites
Familiarity with Java development and with the construction of web page content by using CSS and HTML.

Defining the HTML
As shown by the screen capture, the photograph widget displays a link, a photograph, and the person's
name one under the other. It is recommended that all widgets have a single root node with a specific CSS
class.

This makes the "boundaries" of the widget obvious. It is also the basis of making associated CSS rules as
specific as possible to this widget. The "root" class is then used when CSS rules for all content within the
widget are defined. In this case, the root div element is given the photo-container class name. There
are three child div elements that contain the link, the photo, and the person name. Each of these is also
given a CSS class so that their contents can be individually styled. The img elements show how both a
static and a dynamic image resource can be accessed. The dynamic image resource uses the Cúram
FileDownload servlet. The use of this feature and the value of the img element's src attribute is
described in the section.

Developing Custom Widgets 15

<div class="photo-container">
 <div class="details-link">

 </div>
 <div class="photo">
 <img src="../servlet/FileDownload?
 pageID=Sample_photo&id=101">
 </div>
 <div class="description">
 James Smith
 </div>
</div>

Figure 7: HTML Output of the Photo Widget

The HTML here is formatted for clarity, but it is generated without any indentation or line breaks, as these
are not necessary for the browser to present the email address properly and increase only the size of the
page.

Based on the screen capture, the visual requirements of the widget can be summarized as:

• The widget has a border.
• The link is right-aligned in the widget.
• The photograph and person name are center-aligned in the widget.

The class names that are applied in the HTML allow these requirements to be implemented in CSS as
follows:
.photo-container {
 border: 1px solid #DADADA;
 width: 90px;
 height: 130px;
}

.photo-container .details-link {
 text-align: right;
}

.photo-container .photo {
 text-align: center;
}

.photo-container .description {
 text-align: center;
 font-weight: bold;
}

Figure 8: Custom CSS for the Photo Widget

The class name of the root div element is used when all CSS rules are defined to ensure that they are
specific to this widget. The photo-container class applies a border and fixed width to the widget. The
fixed width means an image with a max size of 88 pixels can be accommodated, allowing for the border. If
the image width is less than this maximum value, ensure it is an even number. Since, the image is
centrally aligned this ensures that there is even spacing on each side of the image. The remaining CSS
classes use of the text-align CSS style to align the contents within each child div element. This is
possible because the contents of each div element are "inline" elements i.e. an anchor element, an
image element, and plain text. Finally, there is an extra style on the description element to set its font.

Defining Data in XML Form
The previous sections described how simple data can be accessed by a renderer and marked up with
HTML for presentation. For complex widgets, simple values like that are not sufficient. It is often
preferable for the value to be an XML document that contains all of the data that is required for the widget
in a structured form.

In the case of this photograph widget, the concern role ID of the person and the name of the person are
required to present the photograph correctly. As the widget is associated with a UIM FIELD element that
can specify only one SOURCE connection to the required data, both the ID and the name must be passed
back in a single-server interface property. The Cúram application provides support classes that make it

16 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

simple to access data expressed as an XML document, so an XML document that contains the values is
the preferred form when data is combined into a single-server interface property.

Here is a sample of an XML document that represents all of the information that is required to present the
photograph of a person. The id element defines the concern role ID value that is passed to the
FileDownload servlet by using the id parameter that is shown in the example in the previous section.
The name element defines the name of the person to be shown below the photograph. To make best use
of the support classes that are provided with the Cúram application, the values are given in the body of
the elements, rather than as attributes of a single element. The XML document is constructed in a server
facade and returned in a single (string-based) property.
<photo>
 <id>101</id>
 <name>James Smith</name>
</photo>

Figure 9: An XML Document Describing a Photograph

Defining the Renderer Class
The skeleton renderer class for the photograph widget is shown here. The class extends the same base
class as the email address widget, as it also is a view renderer. The class is created in the component/
sample/javasource/sample folder.
public class PhotoViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException {
 // Add the HTML to the "fragment" object here....
 }
}

Figure 10: The Renderer Class for the Photograph Widget

Accessing Data in XML Form
For the photograph widget, the source value is no longer a simple string, instead it is an XML document.
The approach that is used for the email address widget needs to be extended to allow values that are
embedded in the XML document to be retrieved individually. Support is provided for accessing data in an
XML by extending the source path. The code to retrieve the person's name and unique identifier from the
XML document is shown here.

“An EMail Address Widget” on page 10 described how to access a single source value by using a Field
object, its Binding property, and a source path.
String personID = context.getDataAccessor()
 .get(component.getBinding()
 .getSourcePath().extendPath("photo/id"));
 String personName = context.getDataAccessor()
 .get(component.getBinding()
 .getSourcePath().extendPath("photo/name"));

Figure 11: Getting the Person Name and ID Values

The source path is retrieved from the field's binding in the same way as the email address widget in the
previous section. However, the source path is not passed directly to the get method of the data accessor
that is retrieved from the context . Doing this would return the entire XML document as a string.
Instead, the source path is first extended by using the extendPath method. The path extensions are
photo/id and photo/name. They correspond directly to the tree structure of the XML document. For
example, the photo/id path means that the data accessor retrieves the body content of the id element,
which is a child of the photo element. In the sample XML above, this is the value "101". Those familiar
with XPATH might recognize the format of these paths. However, while the extended paths used here are
similar, they are not XPATH. Creating simple XML documents where each value is represented in the body
content of an element means that the path formats shown in the section are all that is required to use in a
widget. However, the “Extending Paths for XML Data Access” on page 57 section describes XML data
access through path extension in full detail.

Developing Custom Widgets 17

Generating the HTML Content
With the data for the photograph widget that is retrieved, it must now be marked up with the required
HTML.
Document doc = fragment.getOwnerDocument();

 Element rootDiv = doc.createElement("div");
 rootDiv.setAttribute("class", "photo-container");
 fragment.appendChild(rootDiv);

 Element linkDiv = doc.createElement("div");
 linkDiv.setAttribute("class", "details-link");
 rootDiv.appendChild(linkDiv);

 Element anchor = doc.createElement("a");
 anchor.setAttribute("href", "Person_homePage.do?"
 + "id=" + personID);
 linkDiv.appendChild(anchor);

 Element anchorImg = doc.createElement("img");
 anchorImg.setAttribute("src", "../Images/arrow_icon.png");
 anchor.appendChild(anchorImg);

 Element photoDiv = doc.createElement("div");
 photoDiv.setAttribute("class", "photo");
 rootDiv.appendChild(photoDiv);

 Element photo = doc.createElement("img");
 photo.setAttribute("src",
 "../servlet/FileDownload?"
 + "pageID=Sample_photo"
 + "&id=" + personID);
 photoDiv.appendChild(photo);

 Element descDiv = doc.createElement("div");
 descDiv.setAttribute("class", "description");
 descDiv.appendChild(doc.createTextNode(personName));
 rootDiv.appendChild(descDiv);

Figure 12: Marking Up the Photograph Data

The same techniques that are used to construct the email address widget by using the DOM API in the
previous section, also apply here. The URI used to link to the details page, a static image and the
FileDownload servlet are described here.

Linking to a UIM Page
The URI of Cúram application pages includes the locale code as the first part of the resource path, for
example, en/Person_homePage.do. This path is relative to the application's context root, which
corresponds to the WebContent folder in the development environment.

Therefore, all UIM pages are considered to be in a locale "folder". When one UIM page is linked to
another, it is always in the same locale (or "folder"). Therefore, the locale is not specified in the URI when
a link is generated. For example, in the sample code that is shown here, the href to link to the
Person_home UIM page was generated without the locale-specific folder specified:
anchor.setAttribute("href", "Person_homePage.do?"
 + "id=" + personID);

Figure 13: Linking to a UIM Page

Linking to a Static Image
Linking to a static image was described when the email address widget is created in the previous section,
but is worth repeating here. Static images are stored in the folder Images, which is located directly under
the application's context root. Because a UIM page is in a locale-specific folder, when icons or other
resources are referenced the ../ path prefix is needed for relative URIs.

This path prefix is to move from the locale-specific folder in the page's URI, back to the context root folder
as shown in this excerpt from the sample code:
anchorImg.setAttribute("src", "../Images/arrow-icon.png");

Figure 14: Linking to a Static Image

18 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Linking to the FileDownload Servlet
The FileDownload servlet is used to download an image resource from the Cúram database. The path to
the file download servlet is servlet/FileDownload, which is relative to the application's context root.

The ../ path prefix is also needed to move from the locale-specific folder as shown in this excerpt from
the sample code:
photo.setAttribute("src",
 "../servlet/FileDownload?"
 + "pageID=Sample_photo"
 + "&id=" + personID);

Figure 15: Linking to the FileDownload Servlet

The FileDownload servlet must be configured to use the parameters that are shown in the URI here to
download the correct photograph. This is described in detail in later in the section.

Configuring the Widget
To configure the photograph widget, the data must be in a domain that is specific to photographs. Here,
the SAMPLE_PHOTO_XML domain is assumed. The DomainsConfig.xml file is added to the client
application component, or the existing file is modified if it exists, to associate the view-renderer plug-in
class with that domain.

To access data in XML form and use the path extension feature that is described earlier a "marshal" plug-
in must also be configured exactly as shown here. Failure to do so means that individual values cannot be
retrieved from the XML document as shown earlier.
<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains
 <dc:domain name="SAMPLE_PHOTO_XML">
 <dc:plug-in
 name="view-renderer"
 class="sample.PhotoViewRenderer"
 />
 <dc:plug-in
 name="marshal"
 class="curam.util.client.domain.marshal.SimpleXPathMarshal"
 />
 </dc:domain>

</dc:domains>

Figure 16: Configuring the E-Mail Address Widget

Applying the configuration here, the view-renderer of the custom widget is now started anywhere a UIM
FIELD element has a source connection to a server interface property in the SAMPLE_PHOTO_XML
domain. If the UIM FIELD has a target connection, the edit-renderer is used instead. As no edit renderer
is defined in this configuration, the edit-renderer of the parent or other ancestor domain, is inherited and
used. Typically, this is the associatedTextEditRenderer by default with the SVR_STRING domain.
However, this type of widget is displaying a subset of the information the Cúram application captures
about a person. An editable version of this widget would not be expected. Instead, the information would
be edited through the standard Cúram screens that are associated with a person, for example if the
person's name required updating.

More information about configuring renderers and other plug-ins is provided in “Configuring Renderers”
on page 50.

Configuring the FileDownload Servlet
The Cúram Web Client Reference Manual provides full information on the configuration of the
FileDownload servlet for the use of the FILE_DOWNLOAD WIDGET in a UIM page. For this photograph
widget, the same configuration is used, but instead of letting the UIM WIDGET element generate the HTML
anchor tag that downloads the photograph when clicked, the photograph widget creates an HTML image
tag by using the same URI that displays the image within the page. The example here is representative of
the FileDownload configuration that is required in curam-config.xml:

Developing Custom Widgets 19

<APP_CONFIG>

 <FILE_DOWNLOAD_CONFIG>
 <FILE_DOWNLOAD PAGE_ID="Sample_photo"
 CLASS="sample.interfaces.SamplePkg.Sample_readImage_TH">
 <INPUT PAGE_PARAM="id" PROPERTY="key$concernRoleID"/>
 <FILE_NAME PROPERTY="key$concernRoleID"/>
 <FILE_DATA PROPERTY="result$concernRoleImageBlob"/>
 </FILE_DOWNLOAD>
 </FILE_DOWNLOAD_CONFIG>

</APP_CONFIG>

Figure 17: Example FileDownload Configuration for a Photograph

Each file download configuration is uniquely represented by the PAGE_ID of the FILE_DOWNLOAD
element. The PAGE_ID is used when a file download is initiated directly from a UIM page by using the
FILE_DOWNLOAD WIDGET. However, as the file download link is being generated by a custom widget, the
only requirement is that the PAGE_ID value is unique, it does not have to correspond to an existing UIM
page. The widget uses this value when the URI is generated to the FileDownload servlet. The remaining
configuration elements and attributes define the server facade to start and its inputs and outputs. Consult
the Cúram Web Client Reference Manual for information on the configuration of the FileDownload
servlet

Figure 18: Example of the HTML to Show an In-line Image

The HTML for the image element should look like the example here. The src attribute path is made up of
a number of parts. The fixed path to Cúram's file download servlet is: ../servlet/FileDownload. The
pageID request parameter is mandatory and must correspond to the PAGE_ID of the FILE_DOWNLOAD
configuration element. The id request parameter corresponds to the INPUT configuration element. With
this URI, the FileDownload servlet reads the configuration, sets the input fields of the server facade,
starts the facade, and retrieves its output fields, which contain the file name and binary file data.

A Details Widget Demonstrating Widget Reuse
The presentation requirements of many pages can be satisfied with simple UIM pages that contain fields
that are laid out using clusters and lists.

However, the presentation of this details widget requires more processing such as displaying the person's
name and reference number in a different font, refer to “The Sample Widgets” on page 14. Also, the email
address is presented in the same form as shown in “An EMail Address Widget” on page 10. This widget is
reused within the details widget.

The objectives for the section are:

• show how to develop a widget that presents the details of a Person by using formatting not possible on
a plain UIM page.

• show how to reuse the email address widget described earlier.

Prerequisites
The previous sections in the guide.

Defining the HTML
In the details widget, there are a number of lines of plain text that display the person's address, date of
birth and other details. The person's name, reference number, and contact details have specific
presentation requirements and which means they need to be distinguished in the HTML so that specific
CSS rules can be applied to them.

The following HTML structure for the details widget achieves the application of CSS rules:

20 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

<div class="person-details-container">
 <div class="header-info">James Smith - 24684</div>
 <div>1074, Park Terrace, Fairfield,
 Midway, Utah, 12345</div>
 <div>Male</div>
 <div>Born 9/26/1964, Age 46</div>
 <div class="contact-info">
 1 555 3477455

 info@example.com

 </div>
</div>

Figure 19: HTML Output of the Details Widget

The HTML here is formatted for clarity, but it is generated without any indentation or line breaks, as these
are not necessary for the browser to present the email address properly and increase only the size of the
page.

It is good practice to give a widget a single root node with a specific CSS class. It is the basis of making
CSS rules as specific as possible to this widget. The "root" class is used when CSS rules for all content
within the widget are defined. The root div element is given the person-details-container class
name. Each line of text in the details panel is represented by a div element. Additionally, two div
elements have CSS class names so that specific CSS rules can be applied to them. The HTML representing
the email address is identical to that described in “An EMail Address Widget” on page 10.
.person-details-container .header-info {
 color: #FB7803;
 font-size: 140%;
}
.person-details-container .contact-info img {
 vertical-align: middle;
}

Figure 20: Custom CSS for the Details Widget

The header-info and contact-info classes allow the specific presentation requirements (for
example, changing the font) to be implemented. The CSS rules are made as specific as possible by using
the person-details-container class name in every rule.

Defining Data in XML Form
The photograph widget required an XML document to provide all of the data that is required by the
renderer class. The details widget also requires an XML document for the same reasons. The general
structure of the documents is the same: a root element that contains one child element for each value,
where each value is the body content of the child element.
<details>
 <name>James Smith</name>
 <reference>24684</reference>
 <address>1074, Park Terrace, Fairfield,
 Midway, Utah, 12345</address>
 <gender>Male</gender>
 <dob>9/26/1964</dob>
 <age>46</age>
 <phone>1 555 3477455</phone>
 <e-mail>james@ie.ibm.com</e-mail>
</details>

Figure 21: An XML Document Describing a Person

The XML here is formatted for clarity, the indentation or line breaks are not required.

Developing Custom Widgets 21

Defining the Renderer Class
The skeleton renderer class for the details widget is shown here. The class extends the same base class
as the email address widget and the photograph widget, as it also is a view renderer. The class is created
in the component/sample/javasource/sample folder.
public class PersonDetailsViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException {
 // Add the HTML to the "fragment" object here....
 }
}

Figure 22: The Renderer Class for the Details Widget

Accessing Data in XML Form
Data from the XML document are accessed in the same way as the photograph widget described in the
previous section. The source path is extended to extract an individual value. For example, /details/
name retrieves the person's name.

String name = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/name"));
 String reference = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/reference"));

Figure 23: Getting the Person name and Reference Number

All values in the XML document can be accessed by using the same technique except for the email
address value. The email address widget that is described in “An EMail Address Widget” on page 10 is
reused to output the email address. As shown in that section, the email address widget uses a Field
object, its Binding property, and a source path to access the email address value. The next section will
explain how to start that renderer.

Generating the HTML Content
The same technique, described in previous sections, of using the DOM API to generate HTML content can
be used to output the HTML show earlier in the section. The only new concept comes at the point when
the HTML for the email address is to be output. The email address widget is reused within the details
widget to output the HTML required for an email address.

The render method of a widget is usually started by directly by the Cúram infrastructure. The parameters
that are provided to the render method are set based on what was specified in UIM. For example, the
source path of the Field object's Binding is set based on CONNECT and SOURCE elements used within a
FIELD element. To start one widget from another it becomes the developer's responsibility to ensure that
the appropriate widget is started and the correct parameters are supplied to it. The code that is required
to do this is as follows:
FieldBuilder fb =
 ComponentBuilderFactory.createFieldBuilder();
 fb.setDomain(
 context.getDomain("SAMPLE_EMAIL"));
 fb.setSourcePath(
 field.getBinding().getSourcePath()
 .extendPath("/details/e-mail"));
 DocumentFragment emailFragment = doc.createDocumentFragment();
 context.render(fb.getComponent(), emailFragment,
 contract.createSubcontract());
 div.appendChild(emailFragment);

Figure 24: Starting the Email Address Widget from the Details Widget

The steps to start the email address widget are:

1. Create a Field component.

22 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

A FieldBuilder is required to create a Field. The ComponentBuilderFactory can be used to
create a FieldBuilder as shown here. See “Overview of the Renderer Component Model” on page
38 for full details.

2. Set the domain of the Field.

The underlying domain definition of a Field is used to select the appropriate widget. “An EMail
Address Widget” on page 10 showed how the email address widget was associated with the
SAMPLE_EMAIL domain definition. This domain definition is set on the Field as shown here.

3. Set the source path of the Field.

“An EMail Address Widget” on page 10 section showed how the email address widget used its source
path to access the value of the email address. This is normally set based on the CONNECT in UIM. In
this case, the source path for the widget must be specified "manually". The details widget must tell the
email address widget where to get its data from. As shown earlier the email address is embedded in
the XML document that is supplied to the details widget. The path extension technique to access XML
data, that is described in previous sections, can be used to specify the source path for the email
address widget.

The setSourcePath method of the FieldBuilder is used to set the source path as shown in the
following excerpt from the example here. The source path is the same as used to access other values
from the XML document. The difference is that instead of retrieving the value directly in the details
widget, it is set as the source path of the email address widget.
fb.setSourcePath(
 field.getBinding().getSourcePath()
 .extendPath("/details/e-mail"));

This demonstrates the benefits of the path system to access data. In “An EMail Address Widget” on
page 10, the email address was retrieved directly from a server interface property. In the section the
email address is retrieved from an XML document. However, the email address widget is identical in
both cases. It retrieves its data by using a source path and is abstracted from what source path
resolves to "behind the scenes".

4. Create a DocumentFragment for the widget content

As shown in previous sections, the DOM API is used to create HTML elements and add them to a
DocumentFragment, supplied as the fragment parameter to the render method. The
DocumentFragment is usually supplied by the Cúram infrastructure. In this case, the fragment must
be created by using the createDocumentFragment as shown here.

5. Start the email address widget

The email address widget is started by calling context.render. The first parameter to the method is
a Field. The FieldBuilder was used to set the domain and source path and the Field is retrieved
by calling the getComponent method. The second parameter is the DocumentFragment created
earlier. The widget adds its HTML content to this fragment. The final parameter is reserved and is
always be set to contract.createSubcontract().

6. Append HTML generated from email address widget

After the email address widget is started, the DocumentFragment will contain its HTML content. This
fragment can be added to the appropriate place in the details widget. In the HTML described earlier
the HTML is added as a child of the div element with the contact-info CSS class.

The first three steps here build up a "component model", in this case a single Field. The remaining steps
then render the model as HTML. The “Overview of the Renderer Component Model” on page 38 section
provides more details on the classes and APIs, which can be used to build a "component model".

Configuring the Widget
To configure the details widget, the data must be in a domain that is specific to person details. Here, the
SAMPLE_DTLS_XML domain is assumed. The DomainsConfig.xml file is added to the client application

Developing Custom Widgets 23

component, or the existing file is modified if it exists, to associate the view-renderer plug-in class with
that domain.

To access data in XML form and use the path extension feature that is described earlier a "marshal" plug-
in must also be configured exactly as shown here. Failure to do so means that individual values cannot be
retrieved from the XML document as shown earlier.
<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains
 <dc:domain name="SAMPLE_DTLS_XML">
 <dc:plug-in
 name="view-renderer"
 class="sample.PersonDetailsViewRenderer"
 />
 <dc:plug-in
 name="marshal"
 class="curam.util.client.domain.marshal.SimpleXPathMarshal"
 />
 </dc:domain>

</dc:domains>

Figure 25: Configuring the Person Details Widget

Applying the configuration here, the view-renderer of the custom widget is now started anywhere a UIM
FIELD element has a source connection to a server interface property in the SAMPLE_EMAIL_ADDR
domain. If the UIM FIELD has a target connection, the edit-renderer is used instead. As no edit renderer
is defined in this configuration, the edit-renderer of the parent or other ancestor domain, is inherited and .
Typically, this is the associatedTextEditRenderer by default with the SVR_STRING domain. However,
this type of widget is displaying a subset of the information the application captures about a person. An
editable version of this widget would not be expected. Instead, the information would be edited through
the standard Cúram screens that are associated with a person, for example if the person's name required
updating.

More information about configuring renderers and other plug-ins is provided in “Configuring Renderers”
on page 50.

Tying Widgets Together in a Cascade
This section expands on the reuse of widgets to produce the "Person Context Panel Widget". The "Person
Context Panel Widget" widget is a combination of the photograph widget and details widget that is
positioned side by side. The previous section introduced widget reuse by showing how the details widget
might delegate to the e-mail address widget to generate part of its HTML content.

Using the exact same technique, the "Person Context Panel Widget" might combine the output of the
photograph and details widgets and display them side by side to produce the content that is shown above.
However, there is an opportunity to provide a further layer of abstraction by introducing a generic widget
for displaying content side by side in a horizontal layout. The generic requirement might be phrased as:
"To combine the output of multiple widgets in a horizontal layout".

The previous section introduced the concepts of building a "component model" and delegating to another
widget to render it as HTML. The details widget was responsible for building the component model, which
consisted of a single Field. The model was then passed to the e-mail address widget to generate HTML.
In the same way, the "Person Context Panel Widget" is responsible for building the component model. In
this case, the component model is represented as a collection of Field 's; one for the photograph, the
other for the person's details. The "Person Context Panel Widget" passes the component model to a new
widget, the "Horizontal Layout Widget". This widget in turn delegates to photograph and details widgets
that are introduced in previous sections and combine their output. The advantage of this abstraction is the
"Horizontal Layout Widget" might also be used to fulfill separate requirements such as combine the
display of multiple details widgets or multiple photograph widgets in a horizontal layout. For example,
consider the requirement to display the photographs of a family side by side.

24 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

In summary, by the end of the section the "Person Context Panel Widget" delegates to the "Horizontal
Layout Widget", which in turn delegates to the widgets introduced in earlier sections. This delegation is
known as a "cascade".

Prerequisites
The previous sections in this guide.

Defining Data in XML Form
The XML document for the "Person Context Panel Widget" widget is a combination of the XML documents
that are used by the photograph and details widgets that are described in previous sections, but
combined in a new root element. The root element allows each of those renderers to be reused.
<person>
 <photo>
 <name>James Smith</name>
 <id>24684</id>
 </photo>

 <details>
 <name>James Smith</name>
 <reference>24684</reference>
 <address>1074, Park Terrace, Fairfield,
 Midway, Utah, 12345</address>
 <gender>Male</gender>
 <dob>9/26/1964</dob>
 <age>46</age>
 <phone>1 555 3477455</phone>
 <e-mail>james@ie.ibm.com</e-mail>
 </details>
</person>

Figure 26: An XML Document Describing a Person

Defining the HTML
The HTML of the "Person Context Panel Widget" is the output of the photograph and details widgets that
are combined by placing them in the cells of an HTML table to lay them out horizontally.
<table class="sample-container">
 <tbody>
 <tr>
 <td>
 <!-- HTML of photograph widget goes here -->
 </td>
 <td>
 <!-- HTML of details widget goes here -->
 </td>
 </tr>
 </tbody>
</table>

Figure 27: HTML Output of the Person Context Panel Widget

The CSS class sample-container is unused in this example, but it is still a good practice to always
provide a CSS class on the root element of a widget to allow for customization of the contents within it.
For example, the root element of the photograph widget has a CSS class of photo-container. If
necessary, the photograph widget might be customized specifically when it is contained within the table
that is shown here as follows:
.sample-container .photo-container {
/* customization of photograph widget styles */
}

Defining the Renderer Classes
Two classes are required; one for the "Person Context Panel Widget", the other for the "Horizontal Layout
Widget". The skeleton renderer class for the "Person Context Panel Widget" is shown here. The class

Developing Custom Widgets 25

extends the same base class as the previous widgets, as it also is a view renderer. The class is created in
the component/sample/javasource/sample folder.
public class PersonContextPanelViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException {
 // Add the HTML to the "fragment" object here....
 }
}

Figure 28: The Renderer Class for the "Person Context Panel Widget"

The skeleton renderer class for the generic "Horizontal Layout Widget" is shown here. The widgets
described up to now in the guide are "view renderer's" based on the AbstractViewRenderer class. The
component model that is provided to each widget was a single Field (the first parameter of its render
method). As described in the introduction to this section, "Horizontal Layout Widget" requires a collection
of Field 's. This requires the use of a new base class and in turn, a different signature for the render
method. Instead of a Field, a Component is provided to the render method. With the use of a new base
class, this renderer class is known as a "component renderer" instead of a "view renderer". The class is
created in the component/sample/javasource/sample folder.
public class HorizontalLayoutRenderer
 extends AbstractComponentRenderer {

 public void render(
 Component component, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException {
 // Add the HTML to the "fragment" object here....
 }
}

Figure 29: The Renderer Class for the "Horizontal Layout Widget"

Generating the HTML Content

Person Context Panel Widget
The role of the "Person Context Panel Widget" is to build the component model and delegate to the
"Horizontal Layout Widget" to render the HTML from the model. The component model is a collection of
Field 's.

As described in the previous section, the render method of the "Horizontal Layout Widget" expects a
Component as it's first parameter. The Cúram application that is ready for immediate use provides a
subclass of Component called Container, which is specifically for creating collections of Component 's
or Field 's.

26 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

ContainerBuilder cb
 = ComponentBuilderFactory.createContainerBuilder();
 cb.setStyle(context.getStyle("horizontal-layout"));

 FieldBuilder fb
 = ComponentBuilderFactory.createFieldBuilder();
 fb.copy(component);
 fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
 fb.setSourcePath(
 component.getBinding().getSourcePath()
 .extendPath("person"));
 cb.add(fb.getComponent());

 fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
 fb.setSourcePath(
 component.getBinding().getSourcePath()
 .extendPath("person"));

 cb.add(fb.getComponent());
 DocumentFragment content
 = fragment.getOwnerDocument().createDocumentFragment();
 context.render(cb.getComponent(), content,
 contract.createSubcontract());
 fragment.appendChild(content);

Figure 30: Building the component model and starting the "Horizontal Layout Widget"

The steps to build the model and start the "Horizontal Layout Widget" are:

1. Create a Container component.

A ContainerBuilder is required to create a Container. The ComponentBuilderFactory can be
used to create a ContainerBuilder as shown here. See “Overview of the Renderer Component
Model” on page 38 for full details.

2. Set the "style" of the Container.

The "Horizontal Layout Widget" is a component renderer, which is associated with a "style". The
"Horizontal Layout Widget" is associated with the horizontal-layout style. This must be set by
using the setStyle method as shown here. The style corresponds to a particular renderer
implementation class. Configuration of this "style" is described later in the section and more detail on
the component model and configuring renderers can be found in the appendices (note it is not a CSS
style that is being referred).

3. Create a Field representing the photograph and add it to the container.

As shown in the previous section, a Field is created using a FieldBuilder. Setting the domain
definition to SAMPLE_PHOTO_XML ensures that the photograph widget is started. The next step is to
set its source path. The photograph XML is now embedded in an XML document with a root element
called person which is supplied to the "Person Context Panel Widget". “A Photograph Widget” on
page 15 showed how data for the photo widget was accessed in the XML document by using paths
such as photo/name. The full path to get the same data is now /person/photo/name. The
photograph widget cannot be changed. Instead, the source path is extended as shown here to account
for the root person element. When the photograph widget runs, the paths are combined to ensure the
full path corresponding to the combined document is used. The Field is created by using the
getComponent method and added to the Container

4. Create a Field representing the person details and add it to the container.

In the same way as the previous point, a Field is created. Its domain definition is set to
SAMPLE_DTLS_XML to associate it with the details widget. The source path is extended in the same to
account for the root person element. The Field is created by using the getComponent method and
added to the Container.

5. Create a DocumentFragment for the widget content

As shown in previous sections, the DOM API is used to create HTML elements and add them to a
DocumentFragment, supplied as the fragment parameter to the render method. The
DocumentFragment is supplied by the Cúram infrastructure. In this case, the fragment is created by
using the createDocumentFragment as shown here.

6. Start the horizontal layout widget

Developing Custom Widgets 27

The e-mail address widget is started by calling context.render. The first parameter to the method
is a Field. The FieldBuilder was used to set the domain and source path and the Field is
retrieved by calling the getComponent method. The second parameter is the DocumentFragment
created earlier. The widget adds its HTML content to this fragment. The final parameter is reserved and
is always set to contract.createSubcontract().

7. Append HTML generated from horizontal layout widget

After the e-mail address widget is started, the DocumentFragment will contain its HTML content. This
fragment can be added to the appropriate place in the details widget. In the HTML described earlier
the HTML is added as a child of the div element with the contact-info CSS class.

The next section shows how the "Horizontal Layout Widget" renders the component model has HTML.

Horizontal Layout Widget
The component model that is supplied to the "Horizontal Layout Widget" is a collection of components.
The role of this widget is to iterate over that collection, delegating to the widget associated with each
component and combining the output into the HTML shown in a previous section.
Document doc = fragment.getOwnerDocument();
 Element table = doc.createElement("table");
 table.setAttribute("class", "sample-container");
 fragment.appendChild(table);

 Element tableBody = doc.createElement("tbody");
 table.appendChild(tableBody);

 Element tableRow = doc.createElement("tr");
 tableBody.appendChild(tableRow);

 Container container = (Container) component;
 for (Component child : container.getComponents()) {
 Element tableCell = doc.createElement("td");
 tableRow.appendChild(tableCell);
 DocumentFragment cellContent
 = doc.createDocumentFragment();
 context.render(child, cellContent,
 contract.createSubcontract());
 tableCell.appendChild(cellContent);
 }

Figure 31: Generating an HTML table and delegating to other widgets

As in all previous examples, the DOM API is used to generate HTML elements. As shown in the previous
section, the component model is represented by a Container, the render method signature requires a
Component. As former is a subclass of the latter, a cast is required to a Container. A for loop is used to
iterate over each item in the collection by using the getComponents method. Each iteration of the for
loop will:

1. Create a table cell and add it to the table row.
2. Create a DocumentFragment used when delegating to another widget.
3. Start another widget by calling context.render passing the current component in the collection and

the fragment (the third parameter is unused and must always be set as shown here).
4. Appends the output from the widget to the table cell.

The requirement of this widget was described in the introduction as: "To combine the output of multiple
widgets in a horizontal layout". This widget achieves the horizontal layout requirement by generating an
HTML table. However, it is abstracted from the underlying details of the components it is outputting. It is
iterating over a collection of components and delegating to their associated widgets. In this particular
example, the components represent a photograph and person details panel. However, without any
modification, the widget might display multiple photographs side by side if the component model
supplied to it was constructed accordingly.

Configuring the Widgets

28 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Person Context Panel Widget
The configuration of this widget is identical to all previous examples. It must be associated with a domain
definition, SAMPLE_PERSON_XML is used. To allow access to values that are embedded in XML
documents, a "marshal" plug-in must also be configured exactly as shown here.
<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains
 <dc:domain name="SAMPLE_PERSON_XML">
 <dc:plug-in
 name="view-renderer"
 class="sample.PersonContextPanelViewRenderer"
 />
 <dc:plug-in
 name="marshal"
 class="curam.util.client.domain.marshal.SimpleXPathMarshal"
 />
 </dc:domain>

</dc:domains>

Figure 32: Configuring the Person Context Panel Widget

Horizontal Layout Widget
As described in a previous section, this widget is a component renderer, which is not associated with a
domain definition, instead it is associated with a "style". A separate configuration file is used for
component renderers.

The StylesConfig.xml file is added to the client application component, or the existing file is modified
if it exists, to associate the component-renderer plug-in class with the horizontal-layout style as
shown here.
<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:styles
 <sc:style name="horizontal-layout">
 <sc:plug-in name="component-renderer"
 class="sample.HorizontalLayoutRenderer"/>
 </sc:style>
</sc:styles>

Figure 33: Configuring the Horizontal Layout Widget

The horizontal-layout style is what the "Person Context Panel Widget" used when delegating to the
"Horizontal Layout widget" , for example,
ContainerBuilder cb
 = ComponentBuilderFactory.createContainerBuilder();
 cb.setStyle(context.getStyle("horizontal-layout"));

When the Container component is rendered, the sample.HorizontalLayoutRenderer class is
used. If a new renderer class is developed to achieve the horizontal layout by using a different HTML
technique, the horizontal-layout style can be reconfigured to associate it with another renderer
class. While that class takes the same input (a Container component), other widgets, which use this
style do not require any update.

More information about configuring renderers and other plug-ins is provided in “Configuring Renderers”
on page 50.

A Text Field Widget with No Auto-completion
The section describes edit renderers that are used to mark up read/write values with HTML. It expands on
the details in the previous sections by introducing more advanced concepts that are related to the
creation of input controls on HTML forms.

The sample widget that is presented in the section is a text field widget useful for entering sensitive
information such as social security numbers (SSN). By default, the TextEditRenderer plug-in class is
configured as the edit-renderer for most text and numeric values in the application that is ready for
immediate use. The plug-in displays an HTML text input control. For the input of an SSN, it can be
desirable to prevent the web browser from storing the SSN in its cache of entered form data and later

Developing Custom Widgets 29

providing SSN values by using its form field auto-completion feature. Microsoft Internet Explorer supports
a non-standard HTML attribute to disable auto-completion of the value of an HTML input control. This
autocomplete attribute is likely to have no effect in other web browsers, but can be useful in
environments where Internet Explorer is used. The sample shows how to render the HTML text input
control, integrate it into a form page, and add the new attribute to disable auto-completion in Internet
Explorer.

Prerequisites
A knowledge of the behavior of Cúram form pages and a reading of the first three sections of this guide.

Defining the HTML
The HTML for the sample text field widget requires only one element, but many attributes. The values of
many of the attributes are not defined here and are shown with a question mark.

The values is provided by the renderer, as explained later.
<input type="text" autocomplete="no"
 id="?" name="?"
 value="?" title"?"
 tabindex="?" style="?"/>

Figure 34: HTML Output of the Date Picker Widget

Defining the Renderer Class
The NoAutoCompleteEditRenderer class is defined in much the same way as the
EMailAddressViewRenderer class, except that the base class is AbstractEditRenderer instead of
AbstractViewRenderer. The render method is the same, as it is defined by the DomainRenderer
interface that is shared by both abstract base classes.

public class NoAutoCompleteEditRenderer
 extends AbstractEditRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {
 // Create the HTML here....
 }
}

Figure 35: Declaration of the NoAutoCompleteEditRenderer Class

Handling Form Items
A HTML form page contains HTML input controls, such as text fields and check-boxes. Input controls are
required where a UIM FIELD element contains a TARGET connection, as the user must have somewhere
to enter the value before it is submitted to the targeted server interface property.

An edit-renderer must create the appropriate HTML to present an input control.

To select an edit-renderer, the system identifies the domain definition that is associated with the server
interface property of the target connection. Each domain definition is associated edit-renderer and view-
renderer plug-in classes. As a target connection is present, the system automatically uses the edit-
renderer instead of the view-renderer when the field is rendered.

When a form page is presented to a user, the user sets the values of the input controls in the browser. The
user then submits the form to send these values to the server's client-tier in a new request. The edit-
renderer plug-in type differs from the view-renderer in that the edit-renderer must declare to the system
what input control it adds to a form page, so that the system can process the corresponding values when
it receives the form submission request. A view-renderer does not add input controls, so it has no such
requirement.

The RendererContext provides a method for recording form items as they are added to the form page.
The addFormItem method returns the identifier that should be used as the value of the id and name

30 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

attributes of the HTML element. Before this method is called, the title (or label) of the field must be
determined.
String title = getTitle(field, context.getDataAccessor());
 String targetID = context.addFormItem(field, title, null);

Figure 36: Adding a Form Item to Get a Target ID

The abstract base class provides a getTitle method that can determine the title of the given field. This
renderer passes the field and this title value to the addFormItem method. The third parameter, null,
specifies an optional extended path value. Extended path values for form items are not supported in
custom widgets. The addFormItem method returns a target ID string value that must be used to identify
the input control that is created to correspond to this newly registered form item.

The addFormItem method uses the Field object and the title string to record the target path of the
entered value of that control, the domain definition of the targeted server interface property, and the label
of that field. As the form page is rendered, the system records the form items added by all of the edit
renderers and embeds all of this extra information into the HTML form on the page.

When the user submits the form, the values of all of the input controls are submitted as ID/value pairs.
The ID is the id or name attribute value of the respective HTML input control element (which attribute is
used depends on the browser, so both attributes are added and set to the same value by the edit-renderer
plug-in). The information about the form items that are recorded and embedded in the form by the system
is also submitted now. The system combines the input control's ID and value with the embedded form
item data that records IDs and target paths. The system can thus determine automatically, which
submitted values are assigned to which server interface properties identified by the target paths. The
label is used in if a validation error occurs, so that the error message can report the label of the field in
error.

Accessing the Data
As described in an earlier section, the Field object has a Binding property that defines the source path
and target path that identify the data that is bound to the field. For a view-renderer, only the source path
is set; it can be resolved to get the value to be displayed.

For an edit-renderer, the target path is always set, as it determines where the value goes when the form is
submitted. However, the source path might or might not be set. If the source path is set, then the resolved
value is used as the initial value of the input control. If the source path is not set, then the input control
has no explicit initial value.

When no explicit initial value is defined, an initial value might still be displayed. The UIM FIELD element
supports a USE_DEFAULT attribute. If this attribute is set to false, then no default initial value is
displayed in the absence of a source connection. However, if the attribute is set to true, then the default
value is determined from a default value domain plug-in. The domain of the targeted server interface
property is identified and the associated default value plug-in is started to get the default value to be
displayed in the input control. If not set, the value of the USE_DEFAULT attribute is assumed to be true.

Default value plug-ins are configured for all Cúram domains that are ready for immediate use, but they
can be customized. Typically, the default value of a string domain is an empty string. The default value of a
numeric domain is zero and the default value of a date or date-time domain is the current date and time.
See the Cúram Web Client Reference Manual for more information about default value domain plug-ins
and the user of the USE_DEFAULT attribute.

Catering for explicit or default initial values is still not sufficient to determine the correct initial value.
When a validation error occurs, the system renders the form again and displays error messages that are
detailing what fields are in error. The values that are displayed in the HTML input controls in this case are
the values that are entered by the user before the form is submitted. Regardless of what initial values
were originally shown, the user might have changed any or all of these values. Depending on
circumstances, then, the initial value of the HTML input control might be set from the source path, set
from a default value plug-in or set by the user. To simplify the handling of these conditions, the
RendererContext provides a facility to get the appropriate initial value for a form item.

Developing Custom Widgets 31

boolean useDefault = !"false".equalsIgnoreCase(
 field.getParameters().get(FieldParameters.USE_DEFAULT));
 String value = context.getFormItemInitialValue(
 field, useDefault, null);

Figure 37: Getting the Initial Value for a Form Item

First, the renderer retrieves the parameters of the field argument. The parameters are a map that
associates named parameters with values, all strings. These represent, usually, the attributes set on the
UIM FIELD element. Where attributes are not set in the UIM and default values for those attributes need
to be handled, the renderer must respect this requirement. Above, if the value of the USE_DEFAULT field
parameter is anything other than "false", including if it is not defined, then the useDefault variable is set
to true, which is the correct default value for this UIM attribute and field parameter.

The appropriate initial value for the input control can now be retrieved by calling
getFormItemInitialValue on the context object. The third argument, null, is an optional extended
path value that is not supported in custom renderers.

Generating the HTML Content
As before, the DOM Core API is used to create the HTML content and the content to be rendered is
appended to the DocumentFragment passed to the render method.

Element input = fragment.getOwnerDocument()
 .createElement("input");
 fragment.appendChild(input);

 input.setAttribute("type", "text");
 input.setAttribute("autocomplete", "no");
 input.setAttribute("id", targetID);
 input.setAttribute("name", targetID);

 if (title != null && title.length() > 0) {
 input.setAttribute("title", title);
 }

 if (value != null && value.length() > 0) {
 input.setAttribute("value", value);
 }

Figure 38: Marking Up the Input Control

The first statement creates the HTML input element. The input element is then added to the document
fragment. The required attributes are then set on the element. Both the id and the name attributes are
defined and assigned the same target ID value; this ensures compatibility with most web browsers. The
title and value attributes are only set if they are not null and not empty strings.

There are several other features of fields in UIM that the renderer must support. The code that is required
to implement the basic features is shown here.
if ("true".equals(field.getParameters()
 .get(FieldParameters.INITIAL_FOCUS))) {
 input.setAttribute("tabindex", "1");
 }

 String width
 = field.getParameters().get(FieldParameters.WIDTH);
 if (width != null && width.length() > 0
 && !"0".equals(width)) {
 String units;
 if ("CHARS".equals(field.getParameters()
 .get(FieldParameters.WIDTH_UNITS))) {
 units = "em";
 } else {
 units = "%";
 }
 input.setAttribute("style", "width:" + width + units + ";");
 }

 setScriptAttributes(input, field);

Figure 39: Supporting Other UIM Features

32 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

When a form page is first shown, the input focus is normally given to the first input control on that page.
However, if the INITIAL_FOCUS attribute is set to true on a UIM FIELD element other than the first
one, the input focus is given to that field instead. If not specified, the INITIAL_FOCUS attribute is
assumed to be set to false.

Support for this feature can be achieved by setting the tabindex attribute of the HTML input element to
1 if the field object's INITIAL_FOCUS parameter is set to "true" (as it reflects the value that is defined
for the corresponding attribute in UIM). The parameter value can be null, but calling the equals method
on the literal string value is still safe in that case and yields the wanted result.

The width of an input control is set by combining the WIDTH parameter value with the WIDTH_UNITS
parameter value. Both values are optional and can be null. If the WIDTH parameter is null, is empty, or is
explicitly set to zero, then the width is not set on the input control. If the WIDTH_UNITS parameter is null
or not recognized, then "PERCENT" is assumed. The width is set by using the style attribute of the
input element.

UIM FIELD elements support child SCRIPT elements that define JavaScript handlers to be associated
with the rendered HTML content. The SCRIPT elements are transposed into further parameter values on
the Field object that is passed to the renderer. For example, this UIM SCRIPT element is represented as
a parameter named ONCLICK_ACTION with a value set to the value of the ACTION attribute in the UIM:
<SCRIPT EVENT="ONCLICK" ACTION="doSomething();"/>

There can be many different scripts for different events. A helper method that is provided by the abstract
base class can set all of the appropriate event attributes on an HTML element for these scripts. Simply call
setScriptAttributes passing the HTML element to which to add any required event attributes and
the Field object on which the parameters record the necessary information.

Configuring the Widget
To configure the SSN text field widget in isolation from other text field widgets, the data must be in a
domain that is specific to SSNs.

Here, the SAMPLE_SSN domain is assumed. The DomainsConfig.xml file is added to the client
application component, or the existing file is modified if it exists, to associate the edit-renderer plug-in
class with that domain.
<?xml version="1.0" encoding="ISO-8859-1"?>
<dc:domains
 <dc:domain name="SAMPLE_SSN">
 <dc:plug-in name="edit-renderer"
 class="sample.NoAutoCompleteEditRenderer"/>
 </dc:domain>

</dc:domains>

Figure 40: Configuring the SSN Edit Renderer

Applying the configuration shown here, the edit-renderer of the custom widget is now started anywhere a
UIM FIELD element has a target connection to a server interface property in the SAMPLE_ SSN domain. If
the UIM FIELD has no target connection, the view-renderer is used instead. As no view-renderer is
defined in this configuration, the view-renderer of the parent or other ancestor domain, is inherited and
used. Typically, this is the TextViewRenderer that is associated by default with the SVR_STRING
domain.

More information about configuring renderers and other plug-ins is provided in “Configuring Renderers”
on page 50.

Limitations on Support for Custom Edit Renderers
Only the development of custom edit-renderer plug-ins with these limitations is supported:

• The renderer must not be used within the context of a rendering cascade; it can be used only where
started in direct correspondence to a UIM FIELD element.

• The renderer must not be used in the context of a UIM LIST element.
• The renderer must add no more than one form item to a form page.

Developing Custom Widgets 33

• The renderer must not process code-table items.
• The renderer must not use any features of the Renderer API other than those demonstrated in the

section.

Internationalization and Localization
The guide provides a basic understanding of the internationalization and localization processes and how
they apply to widget development.

Internationalization is the process of enabling a software application to function equally well in any of its
supported locales; to enable it to be localized. Localization is the process of modifying elements of an
application to support the requirements of a particular locale. For any application required to support
more than one locale, the widget developer must internationalize the widget to ensure that it can be
localized with ease.

Note: Internationalization and localization are long words. They are commonly abbreviated as i18n and
L10n for each term. The number in each abbreviation is the number of letters that are removed between
the first and last letters of the original word. A capital "L" is used in L10n to avoid confusion with the "i" in
i18n, which can be capitalized at the start of a sentence. Internationalization is also sometimes referred
to as "international-enabling" or "national language support" (NLS).

Localization is a process that usually takes place after development. The natural language text elements
of the application are typically submitted to an agency that specializes in language translation. The agency
returns the text elements that are translated into a new language and this text is then incorporated back
into the application. This process is only possible if the application makes it easy to package up the text
elements and replace them with text in another language; if the application is properly internationalized.

There are many other aspects to localization. Some of these are handle automatically by the CDEJ and
some remain the concern of the widget developer.

Prerequisites
A knowledge of the concept of a locale and an understanding of the impact of a locale on the operation of
a software application.

CDEJ Support for Internationalization
The CDEJ is internationalized in many ways. Not only are text elements that are separated out to standard
Java properties files, but other elements are also localized automatically:

• All CDEJ plug-in classes of all types expose the locale and time zone of the active user through the
getLocale and getTimeZone methods. The active user is the user who initiated the request for the
HTML page currently being rendered on the web container's request service thread. The widget
developer can access this information and use it as required.

• Locale-aware sort orders are supported by special locale-aware versions of the comparator plug-ins
that are provided with the CDEJ. These use Java's Collator API, but can be overridden to support
custom sorting rules if required.

• Locales can define both the language and the country and the CDEJ uses this information to support
spelling variations of the same language in different countries.

• The converter plug-ins for numeric values automatically apply the rules of the active user's locale when
formatting or parsing numbers, ensuring that decimal points and grouping separators are presented or
handled. Similarly, for date values non-numeric months names are translated.

In general, there is no need to specify the locale when the CDEJ rendering API is accessed, as the locale
is automatically determined and applied when necessary. Some types of plug-ins, particularly the
converter plug-ins that are described in the Cúram Web Client Reference Manual, need to handle the
locale carefully, but this is generally not the case for renderer plug-ins. When renderer plug-ins resolve
paths to their values, the values are provided through the converter plug-ins, or other locale-aware
sources, and the localization happens automatically before the value is returned.

34 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Widget Internationalization
Not all localization is handled automatically by the internationalization features of the CDEJ. Widgets can
have specific localization requirements that are not covered by the CDEJ and the widget developer must
internationalize the widget to accommodate these.

The main internationalization issues of concern to the widget developer are:

• accessing and rendering localized text values;
• referencing localized versions of images or icons;
• providing locale information and localized text elements to JavaScript code used by a widget in the web

browser;
• laying out content on the HTML page in a way that can accommodate the increased length of text when

localized into other languages.

“Accessing Data with Paths” on page 52 provides details on how to construct paths that identify
localized text properties resources on the classpath or in the Application Resource Store and to resolve
these paths to the localized text values. Examples of this process are also provided in that appendix. Once
retrieved, the localized text can be incorporated into the HTML mark-up that is produced by a renderer
plug-in class.

Localized images are often required where the images contain text or other symbols that are specific to
one language or culture. The developer should avoid including text in images where possible. It is harder
and more expensive to localize the application and also affects the accessibility of the application.
“Accessibility Concerns” on page 36 describes how applications are often required to be accessible to as
many people as possible. People with visual impairments can find that text in images is difficult to read or
entirely unreadable. Nevertheless, internationalizing such elements is a simple process. The HTML
produced by the widget's renderer plug-in class includes a img element with a src attribute that
references an image resource on the application server. These image resources can be added to the
WebContent folder of an application component. A simple scheme to support internationalization then
places image files in sub-folders that are named for the locales. For example, create an images folder
within the WebContent folder. Create folders that are named en (English) and es (Spanish) within that
images folder. Now place the localized image files for English and Spanish into their respective locale
folders. Within the renderer, the localized image can be referenced as shown in the example here. The
context of the example is the render method of a renderer plug-in class.
Element img = fragment.getOwnerDocument().createElement("img");
img.setAttribute("src",
 "../images/" + getLocale().toString + "/icon.png");

Figure 41: Referencing Localized Image Files

The getLocale method returns the locale of the active user, so the image source URI might be
generated as, for example, ../images/en/icon.png for a user in the English locale and ../
images/es/icon.png for the Spanish locale. Alternatively, the locale folder might be omitted and the
locale might appear in the image file name.

A problem with this scheme is that a user with a locale en_US does not see any image, as there is no
en_US folder within the images folder. For text properties, a locale fall-back scheme is used, but that
does not apply in the example here. There are a number of ways to accommodate extra locales:

• create one folder for each supported locale and place the localized images in those folders, even if the
image is the same for several locales, such as if en, en_US and en_GB were supported simultaneously
and there were no spelling variations across those locales for the words used in the images;

• for each image, define a property in a localized text properties resource that contain the path to image
appropriate for the locale of that properties resource. Instead of constructing the path in the renderer,
resolve the text property that contains the path and use that. This scheme is similar to the use of the
Images.properties file in UIM development that is described in the Cúram Web Client Reference Manual
and allows the normal locale fallback mechanism to operate. (An overview of this fallback mechanism is
provided in “Accessing Data with Paths” on page 52.)

Developing Custom Widgets 35

There is a separate type of text-based image generation and localization feature in the CDEJ that is
described in the Cúram Web Client Reference Manual. It is not directly related to widget development.

Widgets that depend on JavaScript libraries and scripts can require that the JavaScript be
internationalized. The two main requirements are to supply the JavaScript code with the correct locale to
ensure that localization features of the JavaScript library are used correctly, or to supply localized text
elements to the JavaScript routines. Both requirements may apply. The specific requirements vary
between widgets and are beyond the scope of the guide. However, the basic approach for the widget
developer is to generate JavaScript content that contains the required information from locale information
and localized text values available to the renderer plug-in class. For example, the renderer plug-in can
generate a script that contains a class to a JavaScript function that passes the value of the active user's
locale. The locale value is embedded in the function call in a same way it was embedded in the image URI
in “Widget Internationalization” on page 35, by calling getLocale and converting it to a string. Localized
text elements that are retrieved by the renderer plug-in class can also be embedded into a script, perhaps
into a JavaScript array or object, depending on requirements.

The layout of a page can also be affected by localization requirements. The text of a label in one language
can become much longer when translated into another language. An average of 30% more space should
be added for any English text to accommodate the replacement of that text with text in other languages.
However, depending on the language and the phrase, the text might require twice the amount of space or
even more.

Accessibility Concerns
The section introduces the developer to accessibility concerns in the context of custom widget
development and to provide some guidance on how to address those concerns.

Prerequisites
A basic knowledge of HTML.

Overview
The accessibility of the application determines how usable the application is by people of all abilities and
disabilities. Typically, accessibility concerns focus on the needs of people with disabilities, such as visual
or motor impairments, and the compliance with the regulatory requirements to accommodate their
needs.

Their needs might include:

• higher contrast visual presentation to make the content easier to read;
• color schemes that are suitable for people with deficiencies in their color vision;
• the ability to zoom in to the content on the page or increase font sizes independently of the application's

styling;
• access key support to allow the application to be used with a keyboard only and not require a mouse;
• additional information that is associated with images and form input controls to allow a screen reader

(voice browser) to identify them to the user.

The regulatory requirements differ between jurisdictions. There is no universal solution for all of the
accessibility requirements. However, many local regulations and guidelines draw from those developed by
the W3C Web Accessibility Initiative (WAI) and its Web Content Accessibility Guidelines (WCAG). The WAI
is a good starting point for widget developers who want to learn more about accessibility and its
application to the web. The widget developer can identify what the accessibility regulations and
guidelines are for the jurisdiction in which the application is employed and aim to comply with those. It is
beyond the scope of the guide to cover all of the possible regulations.

36 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Labels for Form Input Controls
The correct labeling of input controls on forms is typically the most important accessibility concern of the
widget developer. A visually impaired user can use a screen reader to access the application. A screen
reader is a software application that converts the text of a web page (or other application) into speech,
allowing the user to hear what is present and respond. When a form is used, the screen reader informs the
user of the input control that currently has the input focus.

For example, the user can use the Tab key to move the focus to the text field with the label Date of Birth
and the screen reader announces "Date of Birth, edit"; adding the word "edit" to notify the user that the
control is editable. This is only possible if the screen reader can associate the label of the field with the
input control for that field.

All of the accessibility standards require that input controls on forms be identified by labels that can be
used by a screen reader. The implementation guidelines for these standards often demonstrate the use of
the HTML label element that allows the label text to be marked up with an element that defines the ID
of the input control for which that text is the label. Some validation tools then enforce this particular
implementation guideline to the exclusion of all others. The CDEJ does not use the HTML label element to
associate label text with form input controls, it uses an alternative method. The HTML of a Cúram
application page can fail an automated accessibility validation check for this reason, but this failure is
erroneous and does not affect the accessible of the form input controls to a screen reader application.

The technique that is used by the CDEJ is the same technique that widget developers use. The visible
label of the input control is rendered separately and automatically by the CDEJ and the title attribute of
the input element is set to the value of the label that are read by the screen reader for that control.
There are several reasons why this approach is used by the CDEJ instead of the often suggested label
element:

• The label element displays its label as the visible label on the page for the form control. It is not
possible to associate a single label element with more than one input control, as it can have only one
ID value in its for attribute. For example, a UIM CONTAINER element is used and it contains two FIELD
elements. One label, that of the container, appears beside two input controls, one for each field. A
search form can have a Surname label that appears beside a text field and a check-box. The user inputs
the surname into the text field and checks the checkbox if the search finds names that sound like that
surname. Using a label element, it is not possible to label these controls without displaying two labels
on the page and that is not wanted. However, it is easily achieved by using the title attribute on the
input elements for the text field and the checkbox. The values of the title attributes are set from the
labels of the UIM FIELD elements, not the CONTAINER element, so the labels can be specific to each
input control while the visual presentation is still uncluttered.

• Most browsers use the title attribute of an input control as the text displayed in a tooltip that is
shown then the use hovers over the control with the mouse pointer. This allows sighted users to identify
controls even if the specific label for the control is not shown on the page. For example, the label of the
Sounds Like check-box in the example here. Therefore, using the title attribute makes the application
more accessible to sighted users, too.

• For mandatory input fields, an icon is displayed beside the label of the field to alert the user to the fact
that a value must be entered. This icon is not apparent to a screen reader application, as it is applied by
using a CSS style rule and is not part of the content of the HTML document. For accessibility, the word
"mandatory" can be appended to the label value used in the title attribute of the input control while it
is omitted from the visible label that already has the visible mandatory icon. It is not possible for the
visible label to differ from the input control label in this way if the label element is used.

• When a page is rendered, the CDEJ renders the field label before the widget's renderer plug-in is started
for the field value (assuming labels of shown to the left of the values). As the CDEJ does dictate what
input control is produced by an edit-renderer plug-in, it cannot know in advance what the ID of the
control is and cannot set an ID in the for attribute of a label element. Therefore, it is not possible to
use the label element while allowing widgets for the field values to be customized. This is not a
problem, as the label element is not desirable for all of the other reasons that are described here.

These are the main reasons why the CDEJ uses and recommends the title attribute in preference to the
label element. The application pages are equally, if not more, accessible to screen reader applications

Developing Custom Widgets 37

and users as a result. Any spurious errors from accessibility validation tools that relate to the non-use of
the label element can be safely ignored after the presence of the title attribute is confirmed.

Font Sizes
It is recommended that the use of, relative font sizes when a widget's HTML output is styled. Relative font
sizes, which are specified as a percentage of the web browser's base font size, allow the user to change
the base font size in their browser to effectively magnify all of the text on the page.

Some modern web browser can scale up the text even if fixed font sizes are specified, but some browsers
do not change fixed font sizes properly when the page is scaled, or scale only the text along with all other
non-text content, which cannot be the user's preference.

Overview of the Renderer Component Model

Elements of the Model
More complete details of the renderer component model are provided in the CDEJ Javadoc. The
information that is presented here is an overview of the main elements in the model and how they relate
to each other.

There are three main categories of elements in the renderer component model:

• Elements that define components of the page. These are the elements of the model that are passed to
renderer plug-in classes for rendering.

• Elements that provide additional information about a component.
• Elements that are used to create components.

The elements of the model are defined by using Java interfaces. All of the interfaces are defined in the
curam.util.client.model package.

The main interfaces that define the component of the page are as follows:

Component
The Component interface defines the common properties of all elements that can be rendered to
HTML by renderer plug-ins. A component can be associated with a style and rendered with a
component-renderer plug-in.

Field
The Field interface extends the Component interface and adds the binding and domain properties.
The binding records the connections that are defined in UIM for the field. The domain records the
domain of the server interface property of the target connection, or that of the source connection if
there is no target connection. A Field, being a Component, can be associated with a style, but it is
more usual to associate a field with a domain. If both a domain and a style are defined, the domain is
used when selecting the appropriate renderer plug-in. A field can also be rendered with a component-
renderer plug-in, but a view-renderer or edit-renderer is used if the domain property is set.

Container
The Container interfaces extends the Component interface and allows the component to contain
other components. The children of a container are recorded in a list; the order in which the children
are added is the iteration order of that list. A container can be associated with a style and rendered
with a component-renderer plug-in.

The main interfaces that provide additional information about a component are as follows:

Binding
A Binding is used exclusively with a Field object to record its source and target path that is defined
by the corresponding connection in UIM. A binding defines other paths, mostly related to the use of
the UIM INITIAL connection element, but their use, or the use of the INITIAL element, in
combination with custom widgets is not supported in the Cúram application.

38 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

ComponentParameters
A component's parameter values, derived from the corresponding UIM attributes, are stored in a
ComponentParameters object that is retrieved by calling Component.getParameters. The
interface extends java.util.Map<String, String>, but the returned map can not be modified.
When building new components at runtime, add more parameters as necessary.

Link
A Link represents a hyperlink to another destination. A link defines a target and an arbitrary
collection of parameters. The target and the parameter values are defined using paths, not literal
values. However, paths can be constructed to represent literal values if required. See “Accessing Data
with Paths” on page 52 for more details.

The main interfaces that are used to create new components are as follows:

ComponentBuilder
A ComponentBuilder is used to build basic components. This interface also defines the properties
common to the other builder interfaces.

FieldBuilder
A FieldBuilder extends a ComponentBuilder to allow the source path, target path, and domain
to be set. Other paths can be set, but their use is not supported in the Cúram application.

ContainerBuilder
A ContainerBuilder extends a ComponentBuilder to allow components, fields or other
containers, to be added to a new container.

Building Components
Components of the model are constructed by using the builder pattern, which is a software design
pattern. Different types of components require the use of different builders. The interfaces for these
builders were listed in the previous section. However, a concrete implementation of a builder is required
to do any real work.

Builder objects can be created by using the ComponentBuilderFactory class that is defined in the
curam.util.client.model package. The factory class provides a number of factory methods to create
builders. Only the use of the following factory methods are supported in the Cúram application:

createComponentBuilder
Creates and returns an object implementing the ComponentBuilder interface. Use this to build
generic components that do not require a binding and that do not contain other components.

createFieldBuilder
Creates and returns an object implementing the FieldBuilder interface. Use this to build fields that
are bound to data sources.

createContainerBuilder
Creates and returns an object implementing the ContainerBuilder interface. Use this to build
components that may contain other components of any kind.

The component builders present a simple, flat API for creating components. They eliminate the need to
understand the internal structure of components. In particular, the properties of the objects that hold
additional information about a component, such as bindings, parameters, and links can be defined
directly through the builder interface; there is no need to create instances of these objects or understand
how they are stored.

To use a builder, instantiate it using the appropriate factory method and then call the appropriate setter
methods to set the properties of the component that is being built. When complete, call getComponent
to get the instance of the newly built component object. When getComponent is called and returns the
new component, the builder object resets all of the properties and can be reused to build another
component. Until getComponent is called, many of the simple properties can be set again to overwrite
their existing values. However, this can not work for properties that represent items in collections, such as
the parameters of the component.

Once built, components are immutable, much like java.lang.String objects, or the Path objects
described in “Accessing Data with Paths” on page 52. The only way to change a property of a component

Developing Custom Widgets 39

is to build a new component with the modified value for that property. Component builders can be used to
create entirely new components, but are commonly used to create new components that are modified
copies of other components to overcome this immutability. The starting point in this process is the
component that will act as the prototype for the new component. Create the builder object and then pass
the prototype component to the builder's copy method. This sets all of the properties of the component
to be built from the properties of the prototype component. Use the setter method of the builder to
overwrite (including with a null value) the properties of the new component that differ from the prototype
component. Finally, call the getComponent method on the builder to get the new component that is the
modified copy of the original, prototype component. A typical use of this copy-and-modify process is
when making multiple copies of a Field object, changing the domain and extending the paths, before
delegating the copy of the field for rendering by another renderer plug-in class.

When copying a prototype Container object by using the builder's copy method, all of the child
components of the container are copied by reference. A reference is sufficient, as the child components
are immutable. Because references are used, any child that is itself a container becomes a child of the
new container complete with its own child components. When it is necessary to change the children of a
Container that must be copied by using a builder, the copyShallow method is called on the
ContainerBuilder instead of the copy method. The copyShallow method does not copy any
references to the child components. Copy these references one-by-one by iterating over the child
components of the prototype container and then calling the add method on the ContainerBuilder.
The child components can be copied and modified, or even selectively omitted, during this process if
required.

Design and Implementation Guidelines
Custom widgets provide the developer with considerable power and flexibility when meeting challenging
presentation requirements. However, widget development can be complex and it raises many design
issues that are not a concern of a client application developer who is used to using only UIM to define the
content of pages. The next section presents some guidelines for writing renderer plug-in classes to assist
the developer in avoiding some of the common pitfalls.

Some renderer plug-ins also need to support the requirements of field-level security. This is explained
and demonstrated in the final section.

Guidelines for Writing Renderers

Do Keep Things Simple
Endeavor to keep the complexity of any new widget as low as possible by selecting the simplest viable
approach. It is always possible to change to a more complex approach later if necessary, but it is much
harder to simplify a widget after first committing to a complex approach.

“Approaches to Customization” on page 3 described the approaches to widget development in order of
increasing complexity.

Pay particular attention to widgets that are used widely. Simplicity and efficiency are important in this
case. A complex widget that is used on many pages by many concurrent users can be difficult to develop
without much prior experience.

Do Divide and Conquer
A complex widget that is implemented as a single, large render method is difficult to maintain and offers
no opportunity to reuse its component parts, as it has none. Where a widget renders more than a single
value, consider dividing it up into a group of cooperating renderer plug-ins. This results in smaller, more
manageable components. These components can be reconfigured or reused in other contexts to meet
future requirements.

Development of a complete renderer can progress toward the final goal in stages. For example, take the
widget that is described in “A Details Widget Demonstrating Widget Reuse” on page 20. This requirement
might not be met by using multiple fields in a UIM CLUSTER element because the layout would not fit into

40 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

the strict grid that is provided by a cluster. However, an alternative approach to its development is this
sequence:

1. Create a UIM page that contains a CLUSTER element and place separate fields for the details within
the cluster.

2. Create widgets to render each of the fields a manner closer to that required in the final details widget.
3. Assess if the solution is "close enough" to be acceptable and release the change if it is.
4. If the cluster layout is still too limiting, develop a widget to lay out the fields in the required manner.

This requires a change to the data to make it a single value, an XML document. Reuse all of the smaller
widgets in a rendering cascade.

All of the widgets that are developed in the second step are reused in the context of the last step. This
allows greater flexibility in planning the work, as the functionality can be released early and refined later,
if it is still necessary. The individual widgets that are developed in the second step can also be reused
when other details panel widgets, or widgets for unrelated purposes are developed.

Do Check for Nulls
Renderer plug-ins can be supplied with null values, so check for null values to avoid errors. The main
values that can be null are the paths of the field's binding, the field's parameters and the values resolved
by using paths.

The CDEJ never supplies null arguments to the render method, but if one renderer starts another, this
cannot be guaranteed. In a view-renderer, the field's source path is never null, but the target path is
always null; these do not need to be checked if this is assumed. In an edit-renderer, the field's target path
is never null, but the source path might or might not be null and is always checked.

The field's parameters might or might not be null. Typically, the parameters reflect the attributes that are
used in the UIM. However, if an attribute was set to the same value as its default value, or was not set at
all, then the parameter value is likely to be null. Always check parameter values for null and, if they are
null, ensure that the renderer treats this value the same as the default value for the corresponding UIM
attribute. The default values for the attributes are described in the Cúram Web Client Reference Manual.

On resolving paths by using the DataAccessor, the values might be null in some cases. If a path to a
server interface property does not resolve to null, the DataAccessor throws an exception instead. Paths
to values within an XML document that are resolved by using a SimpleXPathMarshal can result in a null
value. See “Extending Paths for XML Data Access” on page 57 for details on the conditions that can
result in null values.

Do Take Shortcuts
Renderer plug-in classes must extend the prescribed abstract base classes that are identified earlier in
the guide. However, the extension does not have to be direct. There is no prohibition against creating new
base classes custom renderers or extending other custom renderer plug-in classes as long as the
prescribed abstract base class is an ancestor class of any custom renderer class. This option can be used
to share code between custom renderers more effectively and to develop renderers that are variations on
other renderers without implementing all the code from scratch.

However, note , that the extension of the CDEJ renderer plug-ins for custom widget development, is not
supported in the Cúram application.

Widget development, particularly in the area of creating and manipulating DOM nodes for the HTML
content can be repetitive. Consider writing a simple utility class to wrap up common operations, such as
checking whether a string value is null or empty before setting an attribute on an element, or creating and
appending text nodes.

Do Go with the Flow
Combining several renderer classes into a rendering cascade is a powerful technique for enabling
maximum reuse of widgets in other contexts.

However, this technique requires that the renderers conform to the expectations of the renderer API and
the CDEJ that manages it rather than try to do things another way. Renderer classes should respect the
imperative to render the data that is referenced by the paths in the Field object's binding without trying to

Developing Custom Widgets 41

examine what the paths represent of react differently to different kinds of paths. Any renderer class that
implements special handling of paths or other information is likely to be unusable in all but the context for
which it was first developed.

The key to going with the flow in a rendering cascade is to develop view-renderer and edit-renderer
classes in a manner that makes them suitable for direct use in combination with a UIM FIELD element.
This should be the case even for renderer classes that are never intended to be used directly in this way
and only intended to be used in the context of a complex widget's rendering cascade. Making this the
design goal ensures that the renderer class is context independent and maximizes the possibilities for its
reuse.

When using XML document, it can be necessary to change the structure of the data to suit the rendering
cascade. For example, a contact details widget is required to display the contact details of a person. The
widget is expected, when complete, to provide reusable widgets that display the postal address and e-
mail address of the person in the required form. The developer first conceives that the XML consumed by
the new contact details widget has the form shown here.
<contact>
 <name>James Smith</name>
 <street>Main Street</street>
 <city>Springfield</city>
 <phone>555-555-0101</phone>
 <e-mail>james@example.com</e-mail>
</contact>

Figure 42: An XML Document Describing Contact Details

The initially invoked renderer plug-in for the new widget, the contact renderer, uses the copy-and-modify
technique on the Field object that is described in “Overview of the Renderer Component Model” on page
38 and demonstrated in “Tying Widgets Together in a Cascade” on page 24 and then delegate the
rendering of these copied objects to the other renderers. To the address widget, the contact widget
delegates a Field object whose source path is extended with /contact and the address widget further
extends this path with /street and /city to resolve and present the address values.

This arrangement works, but the reusability of the address widget is compromised by the order in which
the paths is extended. This is a consequence of the structure of the XML document. Were the address
renderer to be used in a stand-alone address widget, its XML data might look like this:
<address>
 <street>Main Street</street>
 <city>Springfield</city>
</address>

Figure 43: An XML Document Describing an Address

The street and city elements are contained within an address element, as the XML document would not
be valid without a single root element. This requires that the address renderer extend the source path (in
this case just the path that identifies the server interface property itself) with /address/street and /
address/city. These path extensions are not the same as those used with the address renderer was
started by the contact renderer, so something is wrong.

This problem could be solved by having the contact renderer set a field parameter on the copy of the field
that is passed to the address renderer instructing the renderer to extend the paths in different ways. This
field parameter would not be set if the address renderer were invoked directly in correspondence with a
UIM FIELD element, so the context could then be determined. However, this complicates both renderers
in several ways. The contact renderer must accommodate the requirements of the address renderer to
extend paths in one of two ways, the address renderer must check a field parameter value, and then
operate differently depending on the result. The XML is different for the address in each case, so any code
that generates this XML would need to accommodate the requirements of the two renderers. Testing also
becomes more difficult, as there are more paths through the code and more edge cases to consider.
Therefore, this is not the right solution to the problem.

The alternative is much simpler: revise the structure of the XML document to the form shown below.

42 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

<contact>
 <address>
 <street>Main Street</street>
 <city>Springfield</city>
 </address>
 <phone>555-555-0101</phone>
 <e-mail>james@example.com</e-mail>
</contact>

Figure 44: A Revised XML Document Describing Contact Details

The address details are now embedded in the contact details XML document in the same form as they
would appear in a stand-alone address XML document. As before, the contact renderer extends the path
with /contact before delegating to the address renderer and then the address renderer extends that
path further with /address/street and /address/city, just as it would do in the stand-alone use
case. There is no need for any conditional processing and the need to deliver an address renderer that
works in the context of a rendering cascade or when directly associated with a UIM FIELD element did
not result in any added complication.

The situation for the e-mail address value is slightly different. In the stand-alone use case, the e-mail
address renderer does not expect an XML document, just a string value containing the e-mail address. To
accommodate this, the contact details renderer should extend the path for the e-mail address by using /
contact/e-mail before the rendering of the value is delegated. Both renderers can now operate
without any additional complication, as the e-mail address renderer blindly resolves its source path to the
e-mail address value and be unaffected by the fact that the path can either directly refer to a server
interface property value or be extended to refer to a value within an XML document. In either case, the
result of calling DataAccessor.get on the source path is the string value of the e-mail address.

To design a rendering cascade that is effective in reusing renderers in a new context, proceed as follows:

• Design the individual renderers first as if they arre to be started directly in association with a UIM FIELD
element and define the format of the data that they consume and the paths that they can extend to
access that data.

• Move on to the design of the delegating renderer that delegates to the above simple renderers.
Determine how it creates new components and extend their paths to accommodate the needs of the
simple renderers.

• Leave any decisions about the form of the aggregate XML document until the end, as it follows from the
design of the renderers in the cascade, not the other way around.

Taking this bottom-up approach to the design ensures that each of the ultimate elements in the rendering
cascade are clearly defined and readily reusable. Taking a top-down approach can seem to work well at
first, but it is almost inevitable that some problem occurs at the final level that results in the need to start
the whole design again, as the design flaw cascades back in the opposite direction to the intended
rendering cascade.

Do Not Introduce Concurrency Issues
The application can service requests from many users at the same time. Even when a single user is active,
the application can still receive concurrent requests for several pages that are presented to that user in
the tabbed user interface.

At runtime, only one instance of each renderer plug-in class is created for each domain or style. The
application can use the same plug-in instance to service concurrent requests from one or more users.
This places some restrictions on the implementation of a renderer plug-in class to avoid concurrency
problems. The restrictions also apply to all other kinds of domain and style plug-ins, as they share the
same lifecycle as renderer plug-ins.

Maintaining state information within a plug-in instance causes concurrency problems. A developer can
introduce a dependency on state information when factoring a large render method into smaller, more
manageable, private methods. If, instead of passing all information between methods by using method
arguments, the developer passes information through fields of the plug-in class, concurrency defects
arise. “Do Not Introduce Concurrency Issues” on page 43 shows such a defect.

Developing Custom Widgets 43

 public class DefectiveEMailAddressViewRenderer
 extends AbstractViewRenderer {
 private String emailAddress;
 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {

 emailAddress = context.getDataAccessor()
 .get(field.getBinding().getSourcePath());

 Document doc = fragment.getOwnerDocument();

 Element span = doc.createElement("span");
 span.setAttribute("class", "email-container");
 span.appendChild(createAnchor(doc));
 fragment.appendChild(span);
 }

 private Element createAnchor(Document doc) {
 Element anchor = doc.createElement("a");
 anchor.setAttribute("href", "mailto:" + emailAddress);

 Element img = doc.createElement("img");
 img.setAttribute("src", "../Images/email_icon.png");
 anchor.appendChild(img);

 anchor.appendChild(doc.createTextNode(emailAddress));
 return anchor;
 }
}

Figure 45: A Plug-in Class with a Concurrency Defect

The DefectiveEMailAddressViewRenderer class is similar to the EMailAddressViewRenderer
class developed in “An EMail Address Widget” on page 10. The defective class has a createAnchor
method to organize the code for improved readability. However, rather than pass the e-mail address value
as a method argument, the e-mail address is defined as a field of the class that is set by the render
method and read by the createAnchor method. At runtime, there may be concurrent requests for pages
that contain e-mail addresses, so the render method of a single instance of the renderer plug-in for e-
mail addresses can be started from more than one thread. This can lead to a defect where the shared field
value becomes corrupted.

For example, thread T1 services a request from user U1 and thread T2 services a request from user U2.
T1 calls the render methodon the same plug-in instancejust before T2 does. T1 sets the emailAddress
field value to e-mail address E1and then T2 immediately sets the field to E2. Now, when T1 starts
createAnchor, e-mail address E2 is rendered and shown to user U1. This can not be a serious problem
for e-mail addresses, but the same defect might lead to unwanted leaking of more sensitive information.
In the case of edit-renderer plug-in initializing form field values when modifying entities, the problem
might also result in incorrect values being written to the database.

It is also important to note that concurrency problems do not necessarily arise because there are two or
more users active; they arise because there are two or more requests active. With the tabbed user
interface, it is likely that a single user can trigger concurrent requests for pages. Do not dismiss potential
concurrency problems on the mistaken assumption that data that is local to a user, such as data stored in
Java EE session attributes, is immune from such problems.

The remedy for this problem is simple: do not use fields of a class to pass information between methods;
use the methods' arguments instead. “Do Not Introduce Concurrency Issues” on page 43 shows the
alternative implementation that has no concurrency defect because the e-mail address value is passed as
an argument to the createAnchor method.

44 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

public class DefectiveEMailAddressViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {

 String emailAddress = context.getDataAccessor()
 .get(field.getBinding().getSourcePath());

 Document doc = fragment.getOwnerDocument();

 Element span = doc.createElement("span");
 span.setAttribute("class", "email-container");
 span.appendChild(createAnchor(doc, emailAddress));
 fragment.appendChild(span);
 }

 private Element createAnchor(
 Document doc, String emailAddress) {
 Element anchor = doc.createElement("a");
 anchor.setAttribute("href", "mailto:" + emailAddress);

 Element img = doc.createElement("img");
 img.setAttribute("src", "../Images/email_icon.png");
 anchor.appendChild(img);

 anchor.appendChild(doc.createTextNode(emailAddress));
 return anchor;
 }
}

Figure 46: A Plug-in Class without a Concurrency Defect

In general, avoid fields of a plug-in class unless they are constants declared static and final. Carefully
consider the potential for concurrency defects before considering the introduction of any non-constant
fields and must never introduce fields to shorten the argument lists of private methods.

The fields of a plug-in class are the most obvious place to store state information during rendering.
However, a developer might store state information in other places, such as in attributes of the Java EE
session or application, in ad hoc data caches and in helper classes. In introducing any such state storage,
consider concurrency issues with the same care given to fields of a plug-in class.

Do Not Convert Data in a Renderer
Renderer plug-ins are responsible for marking up field values with HTML for presentation. Converter plug-
ins are responsible for converting the server interface property values from their Java object
representations to strings formatted for the active user. Endeavor to maintain this separation of concerns
and avoid converting data within a renderer plug-in.

The format method of converter plug-ins, described in the Cúram Web Client Reference Manual, is called
by the CDEJ when servicing the get method calls on the DataAccessor within the renderer. The format
method is responsible for converting the Java object representation of a server interface property value to
a string. The method applies the active user's locale, time zone, date format, and other preferences.
Implementing this processing in a renderer is redundant, complicated, and prone to error. It can also
introduce inconsistencies with the presentation of the same type of data in other places in the
application. Where the data is not available in a suitable format, consider developing a new converter
plug-in to produce the required string representation before the renderer plug-in is developed.

Where the data to be converted is retrieved from an XML document, configure and use the
SimpleXPathADCMarshal class as the domain marshal. When the XML has a suitable form, this domain
marshal automatically starts the correct converter class for the data, parse it from its generic string
representation to a Java object representation and then format it to a string representation appropriate
for the active user. This domain marshal is introduced in “A Photograph Widget” on page 15 and
described in detail in “Extending Paths for XML Data Access” on page 57.

Do Not Do Too Much
The client-tier of the application produces a HTML response for each page request. This CDEJ sends this
HTML response to the web browser before the full HTML content of the page is complete. The CDEJ starts

Developing Custom Widgets 45

a renderer for each field, serializes the DocumentFragment populated by the renderer to a HTML string,
and then writes this HTML string to the response before the next renderer is started.

This way, little of the response is held in memory at any one time and resource usage is minimized. This is
important for pages that can contain much content or when the application is under heavy load.

A renderer plug-in class is free to produce any HTML content for a field, but bear in mind that the contents
of the DocumentFragment is held in memory until the render method returns. Only now is the fragment
serialized and its allocated memory freed. The memory use of widgets that produce a large volume of
HTML content can or cannot pose a problem. If such a widget is used on many pages and by many
concurrent users, assess the potential impact of its high memory use. For widgets that are used rarely or
by only a limited number of users, memory use can not be a significant problem.

Using a lot of memory when producing the HTML is not the only resource use issue that can be caused by
a renderer plug-in. Renderer plug-ins can also consume a lot of processing resources. Technologies such
as Extensible Stylesheet Language Transformations (XSLT) can be employed by renderers to manage the
generation of the HTML content. Such processing can require significant processing resources (in addition
to memory). Determine if such processing is necessary and plan from the beginning to reduce the impact
this can have on the application as a whole.

XSLT processing, for example, is both memory and processor intensive. However, this can be mitigated to
some degree by taking care to avoid unnecessary processing. XSLT stylesheets can be loaded from
resource on the classpath, but this only needs to be performed once. An instance of a
javax.xml.transform.Templates object can maintain a copy of the stylesheet in memory and can
be used multiple times in a thread-safe manner to eliminate the overhead of loading the XSLT stylesheet
each time it is required.

Not only can single, large processing operations pose a problem, so can an excessive number of smaller
operations. A renderer is started every time the value of a field is rendered on a page, both in clusters and
in lists. Minor inefficiencies in renderers that are used to present field values in clusters can go unnoticed,
but the same inefficiencies can pose a serious problem in the context of long lists of data. The same view
renderer plug-in is used to present read-only fields values in a cluster or in a list where the type of the
data is the same. If one or two values are presented in a cluster, the resource use can be acceptable.
However, if hundreds of values are presented in a long list, the resource use increases dramatically.

Renderers that depend on receiving their data in the form of XML documents are a particular common
concern. While XML is suitable and convenient in many cases, it is inadvisable to use it for values that can
be presented in lists. For each field in a list column, the CDEJ creates an XML parser, parse the XML
document, store the result, allow the renderer to query the result, and then, at the end of the request, free
all of the used resources. This may appear to perform adequately in a development environment with a
single user, but is unlikely to perform well with concurrent users on a heavily loaded application server.
Pagination in its current implementation does not change this. All of the data in a paginated list is still
rendered up front. It is just presented as if it were being rendered piecemeal.

To avoid serious resource use issues, a developer can decide to present values that are used in clusters in
one way and values that are used in lists, another. This is only possible if the values have different domain
definitions, as it is not possible to configure renderer plug-ins based on the context (cluster or list) in
which they are used. Using two different domain definitions for the same data can require considerable
changes to the application UML model.

Supporting Field-level Security
The Cúram client application enforces security at two levels: the page and the field. Page-level security
depends on securing the server interfaces that represent the functions of the server application. Any UIM
page that declares a server interface is not displayed if the authenticated user is not authorized to access
all of the server interfaces started from that page. Field-level security is enforced when a property of a
server interface is accessed.

It is permitted for a user to access a page even though the page contains some fields that are connected
to server interface properties that the user is not authorized to view. In this case, the values of those
secured fields should not be shown to the user. For example, a user can be able to view the details of a
person, but can not be authorized to view the salary of a person. The salary field can be presented on the

46 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

person entity home page for all users, but if a user is not authorized to view the salary, the value of that
field can be presented as a sequence of asterisks, **** instead of a monetary amount.

In the case of page-level security, the page is never rendered, so the renderers plug-ins is never started.
Therefore, page-level security is not a concern for the widget developer. In the case of field-level security,
the renderer is invoked, so it is the responsibility of the widget developer to ensure that the renderer plug-
in handles a field-level security violation. In the example that is given above, it is the renderer plug-in that
produces the **** value instead of the monetary amount.

The field-level security violation is triggered when the renderer uses the DataAccessor to resolve a path
to a server interface property that the active user is not authorized to access. The started method on the
DataAccessor throws a DataAccessSecurityException instead of returning a value. If the renderer
plug-in does not detect this exception and handle it, the rendering of the page fails and an error message
is displayed. Where the required behavior is to display, say, **** instead of the secure value, the renderer
must detect the exception and produce that value instead. The example here demonstrates this; the
context is the render method and the DataAccessSecurityException class can be imported from
the curam.util.common.path package.
String value;

try {
 value = context.getDataAccessor.get(
 field.getBinding().getSourcePath());
} catch (DataAccessSecurityException e) {
 value = "****";
}

Figure 47: Implementing Field-level Security

After the try... catch block, the value variable holds either the real value of the server interface property
that is indicated by the field's source path, or ****, depending on whether the current user is authorized
to access that server interface property. In either case, the value can be appended to the renderer's
DocumentFragment to include it in the HTML response. The system is fail-safe. If the developer neglects
to detect the security exception, then the page is not rendered. If the developer detects the security
exception, the secure value is never made available to the renderer class, so it is not possible for the
developer to write code that would display the value accidentally.

The application security design should not expect to enforce field-level security on form pages. For
example, a user can attempt to modify a person entity, but the user is not authorized to access the salary
field. The user can see the salary text field on the person modification form that is initialized with the
**** value. If the user submits the form, this literal value overwrites the real salary value on the
database. More likely, the user sees a validation error stating that **** is not a number. In that case, the
user could enter any valid number and save it as the new salary value. Therefore, in an edit-renderer plug-
in, the developer should not detect the DataAccessSecurityException and allow the rendering of the
page to fail. No secure information is revealed in this case and the page can be secured at the page-level
instead, preventing the user from viewing the page at all. If the user must be allowed to modify some of
the details of the person, then the option to modify the secured salary field can be presented on a
different from the one that provides the option to modify the unsecured fields. Field-level security, then, is
a concern for view-renderer plug-ins, not edit-renderer plug-ins.

Related concepts
Configuring security

Adding New CSS Rules for Custom Widgets
When custom widgets are developed, the developer is in complete control of the HTML that is generated
for their custom widget and what CSS classes it references. The developer might ensure the CSS is as
specific as possible to their widget.

The developer must also be aware of how their widget can inherit styling from the Cúram application's
default CSS without adding any custom CSS for the widget. The developer has two choices:

• Inherit - Without writing any custom CSS for the widget, default styling (for example, color) is applied
due to the cascading and inheritance rules of CSS. Choosing this option means the widget is subject to
changes from any future release of the Cúram application.

Developing Custom Widgets 47

• Specific - If the widget has specific styling requirements then ensure that they are explicitly defined in
custom CSS for the widget. This helps to insulate the widget from changes to the default styling within
the application. The recommended approach is to use the features that are provided by the Custom
Widget Development Framework to generate a unique identifier for your widget and apply that to id
attribute of the root element. All CSS rules for the custom widget can then be based off this identifier.
Consult the Cúram Widget Development Guide for more details.

Every visual aspect (color, font size, borders, margin padding and so forth.) for a custom widget can be
analyzed and the developer can decide on whether it can be inherited or specific. Also, it is impossible to
guarantee there will never be impact on custom CSS, even if it is as specific as possible. As a guideline, it
would be expected that with minor service pack releases of the Cúram application, the underlying HTML
and CSS do not change drastically. However, a major release of the Cúram application can bring a new
user interface and with it major changes to HTML structure and CSS. Even if a custom widget has specific
CSS, it can need to be updated to adhere to the Cúram application's new look and feel.

Testing, Troubleshooting and Debugging
Writing a widget's renderer plug-in class (or classes) is only half the battle. For many widgets, particularly
those that depend a lot on JavaScript and custom CSS styling, the battle has only started. The following
sections provide some guidance on what to do next.

Testing
There are several aspects to the testing of widgets that pose different challenges to the developer or
tester.

The developer must:

• Test that the HTML produced by the renderer has the correct structure for all potential inputs.
• Test that the widget is presented correctly within the browser when the CSS styling is applied.
• Test that any associated JavaScript operates correctly on the widget in the browser.
• Test the CSS and JavaScript across all supported browsers.

The best way to get started is to create a UIM page to host the widget. Sometimes, several test pages are
required for the different use cases of the widget, though sometimes these can be combined in to a single
UIM page. On building and running the application, open the page to check that the widget is presented
correctly.

There are several testing tools available that can automate the process of checking the structure of the
HTML produced by the widget. Tools such as Canoo WebTest can be run from Apache Ant build scripts and
can be integrated into the build and test process. Alternatively, the structure can be checked manually by
viewing the source of the HTML page.

Manual testing is required when checking that the HTML is presented correctly after the CSS styles are
applied. This also has to be repeated in all browsers and versions of browsers that are supported, as each
browser has its own way of interpreting and implementing the CSS standards.

Similarly, javaScript can behave differently in different browsers. Testing tools exist for testing both the
JavaScript code directly and testing the behavior of the JavaScript with the browser environment. The
performance of JavaScript code can also vary dramatically between different browsers. It is important to
establish early on if any of the supported browsers can exhibit performance problems and to change the
approach early in the development cycle if necessary.

Cross-browser support is often the most difficult aspect of renderer development to get right. When
problems arise, search Internet forums and web sites for others who may have the same problem.
Sometimes there is an easy solution to the problem that would take a long time to figure out alone.
However, sometimes there is no such magic bullet and compromises in the quality of the rendering on
some browsers must be accepted.

48 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Troubleshooting
There are a number of common problems that arise during renderer development. The first place to start
is with the error messages that are reported.

When an error occurs in a renderer, the rendering of the page fails and an error page is displayed. During
development, it is useful to enable the option to display the stack trace of the exceptions in a HTML
comment within the error page. This option is normally turned off in production, but can be enabled by
setting the errorpage.stacktrace.output property to true in the
ApplicationConfiguration.properties file (described in the Cúram Web Client Reference Manual).
Then, when an error occurs, view the source of the HTML page to see the embedded stack trace.

The exceptions reported in the stack trace are often deeply nested. The top of the stack trace usually
shows a series of nested exception messages before the first trace is displayed. This first series of error
messages is often sufficient to diagnose the problem. Each error message is reported with an error
number. Look up the error number in the Cúram Web Client Error Message Guide to find out what the error
means and what the possible causes can be. Do not ignore these errors or dismiss them or fail to follow
the resolution steps in the documentation. These errors are rarely ever misleading.

The domain and style configurations are a common source of issues. Naming clashes or incorrect
assumptions about the component order can cause problems. If a renderer does not seem to be started
at all, check that it is correctly configured, that the configuration has the highest priority in the component
order and that the application is built after these changes are made. Make sure, also, that the names of
custom styles do not clash with existing style names.

A renderer plug-in class populates a DOM document fragment with the nodes that represent the HTML
mark-up. Now, the CDEJ serializes the document fragment to XML text. This is compatible with the W3C
XHTML 1.0 recommendation. However, some browsers are not fully compatible with XHTML and do not
properly parse empty element tags, requiring instead separate opening and closing element tags with no
body content. When an element node in the document fragment is serialized to XML text, an empty
element tag is used when the element has no body content. To avoid parsing problems in the browser, it
can be necessary to add some content to the body of the element to cause the serializer to generate
separate opening and closing element tags. The simplest way to do this without affecting the presentation
of that content is to add a comment node to the body of the element. The elements that cause the most
problems are empty div elements and empty script elements. The browser can parse the page
incorrectly, treating the empty element tag as an opening tag and nesting the following content incorrectly
within that element. An indication that this is happening is when the view of the source for the HTML page
in the browser does not match the view of the browser's DOM document (the parsed version of that
source). The DOM document can be viewed with the web development tools available for most browsers.
Adding a comment node to the empty element resolves this issue.

Debugging
During the development of a Cúram client application, Apache Tomcat can be used within the Eclipse IDE
to start and test the application. Renderer plug-in classes that are run in the context of the client
application server and debugger breakpoints that are placed into the renderer plug-in class can be used
to inspect the operation of the plug-in at runtime.

When a breakpoint is not reached as expected, the problem can be with the debugging configuration of
the IDE or with the configuration of the renderer. Add tracing code to the renderer to determine which
problem exists. If the trace messages are displayed in the log, then the configuration is correct and the
problem is with the configuration of the debugger. The configuration of the debugger is beyond the scope
of the guide.

Trace messages that can be written to the client application log easily from a renderer plug-in class.
Simply print the messages to standard output or standard error by using, for example,
System.out.println. When Tomcat from within the Eclipse IDE is run, the messages appear in the
console view of Tomcat process. Once the trace messages are used to successfully diagnose and resolve
a problem, they can be removed or commented out.

Much of the debugging effort of a complex widget lies not in the Java code of the renderer plug-in class,
but in the JavaScript code or the CSS stylesheets. Issues in these areas can only be debugged within the

Developing Custom Widgets 49

browser. One effective approach to investigate such problems is to use the Mozilla Firefox1web browser
with the Firebug2add-on. Firebug provides a host of tools for analyzing styling and layout, debugging
JavaScript code, inspecting the DOM document, monitoring network activity and more. Firebug also
allows changes to be made to the HTML page and the CSS style rules in real time, reducing the time that it
takes to test experimental changes. However, beware that Firefox can not render the content in the same
manner as other browsers, such as Microsoft Internet Explorer. If Internet Explorer is the browser for
which support is required, check regularly that changes that correct the presentation and operation of the
widget in Firefox also work in Internet Explorer.

Configuring Renderers
The customization of the configuration that associates edit-renderer and view-renderer plug-ins with
named domain definitions, is supported in the Cúram application.

Overview
Component renderers are associated with styles, not domains, so these are configured separately. Styles
support only a single plug-in, a component-renderer, so their configuration, which is similar to the domain
configuration, is simpler. Styles are not defined in the UML model like domain definitions; they are defined
by naming them in the configuration file. The creation of custom configuration file for styles and the
syntax for defining custom style configurations are described in this section.

This feature is merely an extension of the existing customization features, presented in the Cúram Web
Client Reference Manual, where it describes how plug-ins can be developed for custom data conversion
and sorting. That manual also describes the configuration process in detail. The two kinds of renderer
plug-in are just to more kinds to add to the existing kinds of domain plug-in. They are configured in the
same way and in the same configuration file. Examples are provided in this section, but the Cúram Web
Client Reference Manual is consulted for more details.

The configuration process is one of customization, rather than full replacement. The CDEJ provides the
default configuration. The developer adds custom configuration files to one or more application
components. These custom configurations can override the CDEJ default configuration. As there can be
many custom configurations in the application, one per component, these must be merged before they are
used to customize the default configuration. Where specific domains or styles in the default configuration
are not customized fully or at all, the default configuration is inherited for those domains and styles. The
details of this merging and inheritance behavior for domains are described in the Cúram Web Client
Reference Manual. This section provides additional information about the style configurations.

warning: Purpose -based Configuration

The developer can see domain and style configurations in the default CDEJ configurations that configure
domains or styles by using a purpose attribute instead of a class attribute. Configuration that uses
purposes is more complex then configuration that uses named classes and custom configuration that
uses purposes is not supported within the Cúram application; only class-based configuration can be used.

warning: Limitations on Kinds of Plug-ins

The CDEJ domain configuration specifies a kind of plug-in called a select-renderer. The development of
custom select-renderer plug-ins is not supported in the Cúram application currently. No further mention
of them is made in this guide.

The configuration of marshal plug-ins for domains is also unsupported outside of the specific cases of the
two marshal plug-ins for accessing XML data that is described in the samples of the guide and in more
specific detail in “Extending Paths for XML Data Access” on page 57.

Any references to select-renderer or marshal plug-ins in the Javadoc for CDEJ, or information that is
provided in the Javadoc about their development or configuration, does not constitute an authorization or
offer of support for their use.

1 See the Mozilla web site for details.
2 See the Firebug web site for details.

50 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

http://www.mozilla.com/
http://getfirebug.com/

Several of the CDEJ renderers are defined in classes whose names include the word "Legacy". These are
deprecated, transitional renderer classes, and the referencing of these legacy renderer classes in custom
configurations is not supported in the Cúram application. Note, also, that a rendering cascade will fail if it
delegates the rendering of a field whose domain is associated with a legacy renderer. Developers must
avoid rendering cascades that can result in the invocation of a legacy renderer.

Configuring Domain Renderers
The view-renderer and edit-renderer plug-ins are configured in the same file and in the same way as other
domain plug-ins. The only difference is that the specific plug-in names view-renderer or edit-
renderer are used in the plug-in elements of the configuration.

The Cúram Web Client Reference Manual provides detailed information about the customization of the
domain configuration in the DomainsConfig.xml file of an application component. That information is
not repeated here. An example is shown here.

What are the basic principles? Configuration inheritance for domain renderers, no inheritance for
component renderers (styles). What is the default configuration? Only configure what you need to change;
do not copy complete configurations, otherwise expected inheritance can be compromised in the future.
<?xml version="1.0" encoding="ISO-8859-1"?>
 <dc:domain name="SAMPLE_DOMAIN">
 <dc:plug-in name="view-renderer"
 class="sample.SampleViewRenderer"/>
 <dc:plug-in name="edit-renderer"
 class="sample.SampleEditRenderer"/>
 </dc:domain>

</dc:domains>

Figure 48: An Example of a DomainsConfig.xml File

It is possible to override all of the plug-ins that are associated with a domain (subject to some support
limitations described in the previous section). However, it is important that the developer specify only the
plug-ins that need to be customized and not repeat the configuration of existing plug-ins without changing
them. When the developer partially customizes a domain, any unspecified plug-ins are resolved by using
the CDEJ default configuration or inherited from an ancestor domain of the configured domain. This
behavior is preferred .

Defining unnecessary custom configurations for plug-ins can have unwanted effects that can be hard to
diagnose. For example, the developer might copy the CDEJ default configuration of a domain from the
CDEJ default configuration file together with the configurations of all of that domain's plug-ins and use
this as a template of sorts in the custom configuration file. The developer might now change only one
plug-in element to customize the view-renderer class that is used for the domain and leave all of the
other plug-in elements copied from the CDEJ intact and unchanged. All of these unchanged plug-in
configurations are unnecessary, as the developer is not customizing them. If the CDEJ is now upgraded,
any changes to the CDEJ default configuration of that domain is not reflected in the application, as the
developer has, in the custom configuration, effectively customized all of the plug-ins for that domain.
While using the older version of the CDEJ, this went unnoticed, as the customization was the same as the
default. However, on upgrading the CDEJ, the old CDEJ configuration that the developer copied to the
custom configuration file continues to be given priority and any new CDEJ default configuration of any
plug-in is not reflected in the application. Therefore, it is very important that the developer customize only
the plug-ins that must change and omit all references to other plug-ins.

Configuring Component Renderers
Configuring styles with component-renderer plug-ins is similar to configuring domains with view-renderer
and edit-renderer plug-ins.

To configure styles, create a StylesConfig.xml file in the application component. An example styles
configuration is shown here.

Developing Custom Widgets 51

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:styles
 <sc:style name="sample-style">
 <sc:plug-in name="component-renderer"
 class="sample.SampleComponentRenderer"/>
 </sc:style>

</sc:styles>

Figure 49: An Example of a StylesConfig.xml File

While the namespace and element names are different, the styles configuration file is similar in form to
DomainsConfig.xml, but there is only one plug-in per style configuration.

There can be any number of style elements within the styles root element. Styles are defined by
naming them in the configuration file; there is no need to model them or declare them anywhere else.
Unlike a domain definition, the name of a style does not have to be a valid Java identifier; any non-empty
string value that is not entirely composed of whitespace characters is acceptable.

On the plug-in element, the name is always component-renderer and the class is the fully qualified
name of the Java class for the widget's component-renderer plug-in.

Where more than one StylesConfig.xml file exists in the application (there can be one in each
component) and where the same style is defined more than once, the configuration for that named style
from the highest priority component is used. As styles do not form a hierarchy like domains, there is no
inheritance behavior in the configuration.

Using the name of a style that is defined in the CDEJ default style configuration overrides the
configuration. However, the overriding of the CDEJ default styles is not supported in the Cúram
application. Take care not to use the name of an existing CDEJ style, as the results can be unpredictable.
To avoid accidental overrides, particularly if using generic style names like label, or panel, use a custom
naming convention. For example, prefix style names with a string that represents an ad hoc, private
namespace: sample::label and sample::panel. The prefix sample:: is not used by the CDEJ, so it
can act like a namespace. The double colon has no special meaning in a style name and any separator
character(s) can be used. If this approach is used, it is best to choose a separator that is different from
any separator that is used for words in the style name to avoid accidental name clashes.

Accessing Data with Paths
Paths are references to sources of data. They are similar in concept to file system paths that are used to
access files or XPath expressions that are used to access data in a structured document. All access to
data of any kind from a renderer is performed through paths. Paths can be used to access the values of
server interface properties, text in localized properties files, localized properties resources in the
database, and other values.

52 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Overview Diagram
The terminology that is used to describe the parts of a path is shown in the figure below.

Figure 50: The Anatomy of a Path

1. Prefix Path
2. Selector
3. Predicate
4. Step
5. Extended Path

The path shown here can be read as follows:

• The prefix path identifies the type of the data source. Here, /data/si indicates that it is a reference to
the data of a server interface property.

• The following two path steps identify the name of the server interface (as declared in the UIM) and the
full name of the property. Here, the dtls$list$address property of the DISPLAY server interface is
referenced.

• A path step can have a selector or a selector followed by one or more predicates. The predicate is used
to qualify the data that is identified by the path up to that point. Here, the predicate [1] is used to
select the first address from the list of addresses in the property. Where predicates are used as numeric
indexes, the index of the first value is one, as in XPath.

• An individual value of a server interface list property is selected by the first four steps of the path. The
fifth step, ADD1, is the beginning of an extended path that is resolved, not by the DataAccessor, but by
the domain marshal plug-in associated with the domain of the identified server interface property. Here,
ADD1 may, if the marshal is the SimpleXPathMarshal described in “Extending Paths for XML Data
Access” on page 57, select the value of an ADD1 element in an XML document that is the value of the
server interface property.

For more information about the general structure of paths and their manipulation in code, refer to the
Javadoc for the Path and Step interfaces in the curam.util.common.path package.

The Field object that is passed to a render method contains a Binding object that specifies a source
path or a target path, or both. Renderer plug-ins do not need to be concerned about the form of these
paths, or what type of data sources they reference; renderer plug-ins need to resolve these paths to their
values and do so without inspecting the paths or depending on them being in any particular form. It is this
unquestioning processing of any path that allows renderer plug-ins to be reused easily in many different
contexts and in rendering cascades.

Renderer plug-ins resolve paths that the DataAccessor object available from the RendererContext
object that is passed to the render method. There are a number of DataAccessor methods that can be
called. They all take a single path argument:

Developing Custom Widgets 53

get(Path)
Gets the formatted text value of the data. For domain-specific data, this is the value that is returned by
the format method of the converter plug-in for that domains.

getRaw(Path)
Gets the raw value of the data. For domain-specific data, this is the value that is passed to the format
method of the converter plug-in. The type of the value is also the same as the type returned by the
parse method of the converter plug-in.

getList(Path)
Gets the list of formatted text values of the data.

getRawList(Path)
Gets the list of raw values of the data.

count(Path)
Gets a count of the number of values that is returned by getList or getRawList.

Where the data is not domain-specific, such as the contents of a properties file, the getRaw method
usually returns the same string value as the get method. Some data sources can only support a subset of
these methods. The get method is always supported, but the getList, getRawList and count
methods cannot be supported for all data sources. There are other methods on the DataAccessor, but
their use is not supported in the Cúram application.

Creating New Paths
Usually, a renderer plug-in just resolves the values of the paths that are given to it in the Binding of its
Field object. However, in some cases, the renderer requires data other than that referenced by the
paths.

For example, a renderer can require a localized text value to use as a label within the HTML that it
produces. In this case, the renderer must create a new path that references the required data and then
resolve it to the required value.

New paths are created by extending one of the supported prefix paths. These prefix paths are defined by
the ClientPaths class in the curam.util.client.path.util package. Each prefix refers to a
different type of data source. Only a limited set of data sources for use in custom renderers are supported
in the application. The supported prefix paths for those data sources are defined by these constants on
the ClientPaths class:

GENERAL_RESOURCES_PATH
A reference to a localized text property within a Java properties file available on the classpath.

APP_PROP_RESOURCE_PATH
A reference to a localized text property within a Java properties file stored in the Application Resource
Store in the database.

LITERAL_VALUE_PATH
A path that encodes a literal value that can be resolved without reference to any external data source.

The prefix path is extended with further path steps to identify the required data. The forms of the paths
that are required for each of the supported data sources are described in the following sections. The use
of constants in ClientPaths, or their corresponding prefix path values, other than those that are listed
here, are not supported in the Cúram application.

General Properties Resources
The general properties path refers to a localized text property stored in a Java properties file on the
classpath. The prefix path is extended with two further steps: the first step is the resource identifier for
the properties file; the second step is the property key. Java properties files can be added to any package
within the javasource folder of an application component, the same location used for the renderer plug-
in classes.

The resource identifier to use to locate the properties should correspond to the location of the properties
resource on the classpath. For example, if the properties file X.properties is placed in a Java package
sample.resources, after the application is built, it is stored in a JAR file on the classpath as the file /

54 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

sample/resources/X.properties. Then the resource name becomes sample.resources.X. See
the Javadoc documentation for the standard java.util.ResourceBundle API for more information on
the naming convention and mechanism used to locate the properties for properties files in more than one
locale.

The example here shows how a renderer plug-in can retrieve the value of the age property from the
PersonDetails.properties file in the sample Java package. The code is defined in the context of the
render method. The localized text value is stored in the ageLabel variable ready to be added to the
appropriate point of the HTML document.
Path agePath = ClientPaths.GENERAL_RESOURCES_PATH
 .extendPath("sample.PersonDetails", "age");
String ageLabel = context.getDataAccessor().get(agePath);

Figure 51: Accessing General Properties

Only the get method is supported when general properties resources are accessed. If no such property
can be found, the get method throws a DataAccessException.

Path objects are immutable; they are similar to java.lang.String objects in that respect, or to the
component objects described in “Overview of the Renderer Component Model” on page 38. Operations
such as extendPath, do not modify the path, they return a new path (see the Javadoc for details).
Therefore, if several properties are required from the same resource, a path can be created that includes
the resource identifier step and then that path can be extended again and again to retrieve individual
property values. This is shown in the example here, where the value of the dtlsPath variable is never
changed by calls to extendPath after it is initialized.
Path dtlsPath = ClientPaths.GENERAL_RESOURCES_PATH
 .extendPath("sample.PersonDetails");

DataAccessor da = context.getDataAccessor();

String ageLabel = da.get(dtlsPath.extendPath("age"));
String dobLabel = da.get(dtlsPath.extendPath("date.of.birth"));
String nameLabel = da.get(dtlsPath.extendPath("name"));
String addressLabel = da.get(dtlsPath.extendPath("address"));

Figure 52: Accessing Multiple General Properties

Where properties files are supplied for several locales, the properties file name differs, but the path that is
used to reference the property does not include the locale. For example, if the properties files
PersonDetails_en_US.properties and PersonDetails_es.properties are defined in the
sample package folder, the code here does not change; the resource identifier remains
sample.PersonDetails. The DataAccessor automatically determines the locale of the active user
and select the correct properties resource. The usual locale fall-back sequence, described by the
java.util.ResourceBundle API, is followed.

Resource Store Properties Resources
Files of any kind are allowed to be uploaded and stored in the database of the application, for later
retrieval. This service is called the Application Resource Store. When a file is uploaded, it no longer exists
as a file, but as the value of a field in a database record. This database record is referred to as a resource.
By constructing and resolving the appropriate path, a renderer plug-in can access property values from
Java properties resources that are uploaded to this store.

The path form is a little different from the paths that are used for general properties files resources on the
classpath, as it accommodates other path forms that are not supported in the custom renderers within
the Cúram application. Also, as these are no longer properties files, there are differences in the way the
resources are identified. Properties resources are loaded to a local cache when they are requested. The
cache stores the properties in a form that optimizes locale fall-back operations and reduces memory
usage through de-duplication, so the individuality of the original resources is lost. However, this results in
an efficient system that is a good alternative to classpath-based properties resources, particularly where
resources can need to be modified at runtime.

The path is created by extending the prefix path that is defined by
ClientPaths.APP_PROP_RESOURCE_PATH. The extension adds a single step. The selector of the step

Developing Custom Widgets 55

is the name of the resource and a single predicate contains the name of the property key. The resource is
identified by using the name that is assigned to the resource when it was uploaded to the resource store.
For example, if an administrator uploads the file PersonDetails.properties to the resource store
and names the resource PersonDetails.properties, then that is the identifier that must be used.
The .properties name suffix (which is not a file extension, as a resource is not a file) is not added or
removed by the system and must be used as the identifier of the resource. The name could be set to just
PersonDetails, without any suffix, but adding the suffix can help to make the type of the resource more
readily identifiable from its name when the resource store is administered. Either way, the resource
identified in the path should match the resource name in the resource store exactly. An example of the
construction of a path to request the age property from the resource store resource that is named
PersonDetails.properties is shown here.
Path agePath = ClientPaths.APP_PROP_RESOURCE_PATH
 .extendPath("PersonDetails.properties[age]");
String ageLabel = context.getDataAccessor().get(agePath);

Figure 53: Accessing Resource Store Properties

As with general properties resources, only the get method is supported when general properties
resources are accessed. If no such property can be found, the get method throws a
DataAccessException.

Where multiple properties resource values are required, the path to the resource can first be created with
an empty predicate and then the value of the predicate can be set again and again by using the
applyIndex method of the Path interface. This method returns a new path each time, it does not modify
the existing path. The index value is used to set the value of the first empty predicate that is encountered
in the path. This is shown here.
Path dtlsPath = ClientPaths.APP_PROP_RESOURCE_PATH
 .extendPath("PersonDetails.properties[]");

DataAccessor da = context.getDataAccessor();

String ageLabel = da.get(dtlsPath.applyIndex("age"));
String dobLabel = da.get(dtlsPath.applyIndex("date.of.birth"));
String nameLabel = da.get(dtlsPath.applyIndex("name"));
String addressLabel = da.get(dtlsPath.applyIndex("address"));

Figure 54: Accessing Multiple Resource Store Properties

The locale fall-back operation depends on all the resources in the sequence having the same name. When
resolving properties using the local fall-back mechanism, the CDEJ does not modify the name of the
requested resource, it changes only the value for the separate locale field in the resource store record.
This differs from the way the java.util.ResourceBundle API creates new file names when searching
for locale fall-back resources. When a resource is uploaded to the store, both the name and the locale are
specified separately through the administration interface. If the files
PersonDetails_en_US.properties and PersonDetails_es.properties are uploaded, the
administrator can assign the same name PersonDetails.properties (or just PersonDetails, if
preferred) to both resources, but set the separate locale field value to en_US and es, as appropriate. If no
locale is specified, then the resource is treated as the ultimate locale fall-back resource, just as the
ResourceBundle API would treat a properties file with no locale code that is appended to its name.

Literal Values
Occasionally, the developer can need to represent a literal value by using a path, as the widget API usually
only supports paths to represent data. For this purpose, the developer can encode a literal value within a
path, so that when the DataAccessor resolves the path, the literal value is returned.

An example is shown here.
Path literalPath = ClientPaths.LITERAL_VALUE_PATH
 .extendPath(PathUtils.escape("a //literal// value"));

Figure 55: Encoding Literal Values

The literal value can contain characters that might be confused with the path syntax, so the value must be
escaped when the path is constructed. The PathUtils class in the curam.util.common.path

56 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

package provides an escape method for this purpose. In the example, the method escapes the forward
slash characters in the literal value and prevents them from being interpreted as separating path steps by
the extendPath method. When the path is resolved by using DataAccessor.get, the escaping is
reversed automatically, so there is no requirement on the consumer of the path to treat it differently to
any other.

Extending Paths for XML Data Access
A special domain marshal plug-in was used in many of the examples in the guide to access data from XML
document by using paths that resemble XPath expressions. The section describes the supported path
forms in more detail and provides additional information about the automatic data conversion
capabilities.

The section refers to the structure of path values. See the Javadoc for the Path and Step interfaces in
the curam.util.common.path package for an explanation of the terminology that is used here.

When the path from the Binding of a Field object is resolved, and where that path identifies a server
interface property, the value that is returned is the value of the server interface property. If the path is
extended with extra path steps, then the domain marshal plug-in class that is associated with the domain
definition of that server interface property is started to evaluate the extra path steps regarding the value
of the server interface property. The examples in the guide show how this can be used to extract data
from XML documents that are returned in server interface properties. Two domain marshal plug-in classes
are provided with the Cúram application that are ready to use for this purpose.

The SimpleXPathMarshal class supports the resolution of XPath-like expressions against data that is
returned in a server interface property value. All values are returned as strings, just as they appear in the
XML document. The SimpleXPathADCMarshal class adds the ability to apply automatic data conversion
and formatting to the resolved string values. This class can be used without automatic data conversion,
but it is a little more efficient to use the former class if data conversion is not required. Both classes are
defined in the curam.util.client.domain.marshal package.

Simple XPath Expressions
The "simple" XPath expressions that are supported by these marshal plug-ins are not true XPath
expressions, though they aim to be as similar as possible to a small and simple subset of the location
paths that are defined by the W3C XPath 1.0 recommendation.

The paths operate on a DOM document that is created by parsing the XML string that is returned as the
value of a server interface property. Each step in the path selects one or more nodes in the document and
subsequent steps are evaluated within the context of each of those selected nodes. The context starts
with the document node, so the first step identifies the root element of the document.

The selector of a step (that part of the step before the predicate) defines the name of the element or
attribute to be selected. The prefix @ is used to indicate an attribute name; an element name requires no
prefix. An element name can be followed by a single, optional predicate with an integer index value
(starting from one) or an attribute selection expression.
<values id="a1" locale="en">
 <value domain="SVR_INT32">1234</value>
 <value domain="SVR_DATE">20080131</value>
 <value domain="ADDRESS_DATA">
 <address>Apt. 86</address>
 <address>1000 Main St.</address>
 <city>Hometown</city>
 </value>
</values>

Figure 56: A Sample XML Document

For example, if the XML document has the form shown in “Simple XPath Expressions” on page 57, then
the path /values selects the values root element; /values/value[3] selects the third value
element within the values root element; /values/value[@domain='SVR_DATE'] selects the value
element with the domain attribute value SVR_DATE within the values root element; /values/

Developing Custom Widgets 57

value[2]/@domain selects the domain attribute of the second value element within the values root
element; /values/value selects all three value elements within the values root element; /values/
value/@domain selects the three domain attributes from the three value elements within the values
root element; and the paths /values/value[3]/address and /values/value/address both select
the two address elements of the third value element within the values root element. When more than
one node is selected, the selected nodes are returned in the order in which they appear in the document.

An attribute value expression can be used to select elements that have an attribute with a particular
value. An example was given here. The expression is limited to a single attribute name, prefixed with @
followed by an equals sign and a quoted string value. The attribute name must be on the left side of the
equals sign only. The string can be quoted with single quotation marks or double quotation marks. If
single quotation marks are used, then the string can contain double quotation marks and vice versa. The
string cannot contain any /, [or] characters; it is intended to be used only for matching ID values or
other simple identifiers.

The selector * selects any element and the selector @* selects any attribute. For example, the path /
values/value[3]/* selects the two address elements and the city element of the third value
element within the values root element; the path /values/@* selects the id and locale attributes of
the values root element; the path /values/*/@* selects all of the attributes of all of the child elements
of the values root element; the path /values/value[3]/*[3] selects the third child element of any
name of the third value element within the values root element, the city element in the case of the
document here.

There are a number of restrictions on the steps that can be used and on their positions in a path. Where
an element or attribute name appears below, a * can replace it. The allowed forms are as follows (the
examples refer to the sample document here):

element-name
An element name identifying the elements to be selected within the context that is provided by the
previous path step. For example, /values selects the values root node, while /values/value
selects all three value elements within the values root element.

element-name [index]
An element name and an integer index value that identifies one of several elements with that name in
the context that is provided by the previous path step. For example, /values[1] selects the first
values element, which, as it is the root element and the only values element, selects the same
element as the simpler path /values; /values/value[2] selects the second value element that
is a child of the values root element.

element-name [@ attribute-name = quoted-string]
An element name and an attribute selection expression that identifies elements with that name and
with that value for the named attribute in the context that is provided by the previous path step. See
the example here for more details.

@ attribute-name
An attribute name that identifies an attribute of the element or elements that are selected by the
previous steps in the path. An attribute selection step is only allowed as the last step in a path unless
it is followed by a single function step (described here).

For convenience, the following step form can also be used in leading steps or the terminal step:

element-name []
An element name followed by an empty predicate. This is treated in the same way as a simple
element name. This is not a true XPath expression, but it is convenient for situations when a path has
an empty predicate to which an index is later applied. A common scenario if all that is required is a
count of the nodes.

A valid path can select zero or more nodes. The values that are returned for these nodes depend on which
method of the DataAccessor was called from the renderer class. The details are provided in the next
section.

The Path interface does not support the representation of full XPath expression. Notably, XPath function
calls that accept location paths as arguments cannot be represented, so a non-standard notation is used
to provide some basic functionality. Instead of an expression of the form function-name (location-

58 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

path) , the form location-path / function-name () is used instead. For example, to the get the
qualified name of the third child element of the third value element in the sample document above, the
path would be /values/value[3]/*[3]/name(); this is treated as if it were the expression name(/
values/value[3]/*[3]).

A function can only appear as the last step in a path. The supported functions are as follows:

name()
Gets the qualified name of the first node that is selected by the path. This is the element or attribute
name that includes any namespace prefix.

local-name()
Gets the name of the first node that is selected by the path. This is the element or attribute name not
including any namespace prefix.

Evaluating the Paths
Paths are evaluated by using the DataAccessor object available from the RendererContext that is
passed to all render methods. When a path is extended into a server interface property value, the
method that is called on the DataAccessor determine the method that is called on the marshal plug-in.

For the SimpleXPathMarshal plug-in class data is converted generally as follows:

• The value of an attribute node is the string value of the attribute.
• The value of an element node is the concatenation of the values of all of the child text nodes of that

element.
• If the are no selected nodes or a path evaluates to null, the result depends on which DataAccessor

method was called. See here for details.
• The value of the result of a function call, is the string value of that result.

This behavior is consistent with use of the standard XPath string() function on the selected nodes or
value, except, if an element node, where only direct child text nodes of an element are concatenated, not
all descendant text nodes as would be normal for XPath.

The DataAccessor methods refine the general behavior that is described here. For the
SimpleXPathMarshal plug-in class, there is little difference between the formatted and raw variants,
except for their handling of null values.

get
Gets the string value of the first node (in document order) selected by the simple XPath expression
that is given by the path, or, if a function call, the string value of the result of that call. If no nodes are
selected, the result is an empty string. To distinguish between an attribute or element that is present
but has an empty string value and an attribute or element that is not present at all, use the getRaw
method and test if the result is an empty string or a null value.

getRaw
Gets the first raw value of the first node (in document order) selected by the path, or, if a function call,
the resulting value of that call. If no nodes are selected, the result is null.

getList
Gets the list that contains the string values of the nodes (in document order) selected by the path. For
non-function-call paths, the values in the list represent the result of calling the get method on each
selected node. If the path represents a function call, then the list contains the single result of calling
the function ones on all of the selected nodes, not a list of the results of the function call on each
node. The functions operate only on the first node when presented with a list of several nodes.

For example, /values/value[3]/* selects all of the child elements of the third value element
within the values root element. The resulting list contains the three string objects, one each for the
body text of each element. However, evaluating the path /values/value[3]/*/name() returns a
list that contains a single string that is the name of the first selected element (addr), not one string for
the name of each selected element.

Developing Custom Widgets 59

getRawList
Gets the list that contains the values of the nodes (in document order) selected by the path. The
conversion behavior of this method is the same as the getRaw method and the list handling is the
same as the getList method.

count
Counts the number of nodes that are selected by the path. If the path represents a function call, then
the count is the number of results from the function call (usually one).

Automatic Data Conversion
The SimpleXPathMarshal class is useful when simple string values from XML documents are extracted.

However, much of the time, the values are merely the string representation of other data types, such as
dates, numbers, and code-table items. The SimpleXPathADCMarshal extends the capabilities of the
SimpleXPathMarshal by enabling automatic data conversion (ADC) using the domain converter plug-
ins. The same XPath location paths that are supported by the SimpleXPathMarshal are supported by
this ADC class.

This SimpleXPathADCMarshal plug-in performs automatic data conversion (ADC) on the values in the
XML content. This requires that the XML content represents values in a particular form: the value must be
the body content of an element and the element must have a domain attribute identifying the name of
the domain definition to apply to the value. The values must use the generic string form of the data, to be
compatible with the parseGeneric method of the domain converter plug-in associated with the
identified domain. In general, the generic string value is the same as the result of calling Java's toString
method on the corresponding Java object, except for date and data-time values, where the ISO 8601
basic format is used. ADC cannot be applied to the values of attributes or the results of XPath function
calls, only to the body text of elements; however, attributes can still be used for values if ADC is not
required.

Generic String Values: The generic string value of a server interface property is used to represent
numbers, dates, date-times, and other values unambiguously in string form when it is not possible to
represent them using a more suitable Java object representation. The generic string value in some of the
domain definition options in the application UML model and when data in XML documents is transported.
The format avoids problems that can arise if values were formatted according to the rules or conventions
of different locales, as these would add unnecessary complication and need to be communicated.

For numbers, the generic string representation must omit grouping separator characters (such as
thousands separators), use only a period character (Unicode "FULL STOP" U+002E) as a decimal
separator and, if the number is negative, place the minus sign character (Unicode "HYPHEN-MINUS" U
+002D) on the left. The CDEJ is lenient when parsing numeric values that use a comma as a thousands
separator, but these are best avoided. Using the toString method of class used for the Java object
representation of numeric domain definitions produce the wanted result. The classes that are used for the
Java object representations for all of the base domain definitions are listed in the Cúram Web Client
Reference Manual.

Date and date-time values must be formatted by using ISO 8601 basic format. ISO 8601 basic format
represents date and date-time values as fixed-length character strings. The format for date values is
YYYYMMDD , two-digit years are not allowed. The format for date-time values is YYYYMMDD T hhmmss ,
the T is a literal character that denotes the start of the time value and the time uses the 24-hour clock.
The parseGeneric method assumes the date-time values are in the UTC time zone. The active user's
time zone is applied when formatting the value for display.

Without ADC, the formatted values and raw values that are returned by the getter methods are both the
literal string values that are retrieved from the XML document (with only a difference in the handling of
null values). With ADC, the formatted values are the values that are formatted according to the locale of
the active user and the raw values are the Java object representations of those values appropriate for the
indicated domain.

For example, regarding the document in “Simple XPath Expressions” on page 57, if the path /values/
value[1] is passed to the get method, then the result will be the string string 1,234 if the user's locale
is, say, en, where a comma is used as a thousands separator. Similarly, if the path is /values/value[2],

60 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

then the result will be 31-Jan-2008 if the user's locale is en and if that particular date format is set. For
raw values, the effect is similar, but the corresponding Java object is returned instead of a formatted
string. For example, it will be a java.lang.Integer for the SVR_INT32 domain, or a
curam.util.type.Date for the SVR_DATE domain. Date and date-time values are in the UTC time
zone. They are converted to the user's time zone when formatted.

Source Code for the Sample Widgets

Source Code for the E-Mail Address Widget
public class EMailAddressViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {

 String emailAddress = context.getDataAccessor()
 .get(field.getBinding().getSourcePath());

 Document doc = fragment.getOwnerDocument();

 Element span = doc.createElement("span");
 span.setAttribute("class", "email-container");
 fragment.appendChild(span);

 Element anchor = doc.createElement("a");
 anchor.setAttribute("href", "mailto:" + emailAddress);
 span.appendChild(anchor);

 Element img = doc.createElement("img");
 img.setAttribute("src", "../Images/email_icon.png");
 anchor.appendChild(img);

 anchor.appendChild(doc.createTextNode(emailAddress));
 }
}

Developing Custom Widgets 61

Source Code for the Photograph Widget
public class PhotoViewRenderer extends AbstractViewRenderer {

 public void render(final Field component,
 final DocumentFragment fragment,
 final RendererContext context,
 final RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {
 String personID
 = context.getDataAccessor().get(component.getBinding()
 .getSourcePath().extendPath("photo/id"));
 String personName = context.getDataAccessor()
 .get(component.getBinding()
 .getSourcePath().extendPath("photo/name"));

 Document doc = fragment.getOwnerDocument();

 Element rootDiv = doc.createElement("div");
 rootDiv.setAttribute("class", "photo-container");
 fragment.appendChild(rootDiv);

 Element linkDiv = doc.createElement("div");
 linkDiv.setAttribute("class", "details-link");
 rootDiv.appendChild(linkDiv);

 Element anchor = doc.createElement("a");
 anchor.setAttribute("href", "Person_homePage.do?"
 + "id=" + personID);
 linkDiv.appendChild(anchor);

 Element anchorImg = doc.createElement("img");
 anchorImg.setAttribute("src", "../Images/arrow_icon.png");
 anchor.appendChild(anchorImg);

 Element photoDiv = doc.createElement("div");
 photoDiv.setAttribute("class", "photo");
 rootDiv.appendChild(photoDiv);

 Element photo = doc.createElement("img");
 photo.setAttribute("src",
 "../servlet/FileDownload?"
 + "pageID=Sample_photo"
 + "&id=" + personID);
 photoDiv.appendChild(photo);

 Element descDiv = doc.createElement("div");
 descDiv.setAttribute("class", "description");
 descDiv.appendChild(doc.createTextNode(personName));
 rootDiv.appendChild(descDiv);
 }
}

62 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Source Code for the Details Widget
public class PersonDetailsViewRenderer
 extends AbstractViewRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException, PlugInException {

 String name = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/name"));
 String reference = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/reference"));
 String address = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/address"));
 String gender = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/gender"));
 String dateOfBirth = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/dob"));
 String age = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/age"));
 String phone = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/phone"));
 String email = context.getDataAccessor().get(
 field.getBinding().getSourcePath()
 .extendPath("/details/e-mail"));

 Document doc = fragment.getOwnerDocument();

 Element detailsPanelDiv = doc.createElement("div");
 detailsPanelDiv.setAttribute("class",
 "person-details-container");
 fragment.appendChild(detailsPanelDiv);

 Element div;
 Element image;

 div = doc.createElement("div");
 div.setAttribute("class", "header-info");
 div.appendChild(doc.createTextNode(name));
 div.appendChild(doc.createTextNode(" - "));
 div.appendChild(doc.createTextNode(reference));
 detailsPanelDiv.appendChild(div);

 div = doc.createElement("div");
 div.appendChild(doc.createTextNode(address));
 detailsPanelDiv.appendChild(div);

 div = doc.createElement("div");
 div.appendChild(doc.createTextNode(gender));
 detailsPanelDiv.appendChild(div);

 div = doc.createElement("div");
 div.appendChild(doc.createTextNode("Born "));
 div.appendChild(doc.createTextNode(dateOfBirth));
 div.appendChild(doc.createTextNode(", Age "));
 div.appendChild(doc.createTextNode(age));
 detailsPanelDiv.appendChild(div);

 div = doc.createElement("div");
 div.setAttribute("class", "contact-info");
 detailsPanelDiv.appendChild(div);
 image = doc.createElement("img");
 image.setAttribute("src", "../Images/phone_icon.png");
 div.appendChild(image);
 div.appendChild(doc.createTextNode(phone));

 FieldBuilder fb =
 ComponentBuilderFactory.createFieldBuilder();
 fb.setDomain(
 context.getDomain("SAMPLE_EMAIL"));
 fb.setSourcePath(
 field.getBinding().getSourcePath()
 .extendPath("/details/e-mail"));
 DocumentFragment emailFragment = doc.createDocumentFragment();
 context.render(fb.getComponent(), emailFragment,
 contract.createSubcontract());
 div.appendChild(emailFragment);
 }
}

Developing Custom Widgets 63

Source Code for the Person Context Panel Widget
public class PersonContextPanelViewRenderer
 extends AbstractViewRenderer {

 public void render(final Field component,
 final DocumentFragment fragment,
 final RendererContext context,
 final RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {
 ContainerBuilder cb
 = ComponentBuilderFactory.createContainerBuilder();
 cb.setStyle(context.getStyle("horizontal-layout"));

 FieldBuilder fb
 = ComponentBuilderFactory.createFieldBuilder();
 fb.copy(component);
 fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
 fb.setSourcePath(
 component.getBinding().getSourcePath()
 .extendPath("person"));
 cb.add(fb.getComponent());

 fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
 fb.setSourcePath(
 component.getBinding().getSourcePath()
 .extendPath("person"));

 cb.add(fb.getComponent());
 DocumentFragment content
 = fragment.getOwnerDocument().createDocumentFragment();
 context.render(cb.getComponent(), content,
 contract.createSubcontract());
 fragment.appendChild(content);
 }
}

Source Code for the Horizontal Layout Widget
public class PersonContextPanelViewRenderer
 extends AbstractViewRenderer {

 public void render(final Field component,
 final DocumentFragment fragment,
 final RendererContext context,
 final RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {
 ContainerBuilder cb
 = ComponentBuilderFactory.createContainerBuilder();
 cb.setStyle(context.getStyle("horizontal-layout"));

 FieldBuilder fb
 = ComponentBuilderFactory.createFieldBuilder();
 fb.copy(component);
 fb.setDomain(context.getDomain("SAMPLE_PHOTO_XML"));
 fb.setSourcePath(
 component.getBinding().getSourcePath()
 .extendPath("person"));
 cb.add(fb.getComponent());

 fb.setDomain(context.getDomain("SAMPLE_DTLS_XML"));
 fb.setSourcePath(
 component.getBinding().getSourcePath()
 .extendPath("person"));

 cb.add(fb.getComponent());
 DocumentFragment content
 = fragment.getOwnerDocument().createDocumentFragment();
 context.render(cb.getComponent(), content,
 contract.createSubcontract());
 fragment.appendChild(content);
 }
}

64 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

Source Code for the Text Field Widget with No Auto-completion
public class NoAutoCompleteEditRenderer
 extends AbstractEditRenderer {

 public void render(
 Field field, DocumentFragment fragment,
 RendererContext context, RendererContract contract)
 throws ClientException, DataAccessException,
 PlugInException {

 String title = getTitle(field, context.getDataAccessor());
 String targetID = context.addFormItem(field, title, null);

 boolean useDefault = !"false".equalsIgnoreCase(
 field.getParameters().get(FieldParameters.USE_DEFAULT));
 String value = context.getFormItemInitialValue(
 field, useDefault, null);

 Element input = fragment.getOwnerDocument()
 .createElement("input");
 fragment.appendChild(input);

 input.setAttribute("type", "text");
 input.setAttribute("autocomplete", "no");
 input.setAttribute("id", targetID);
 input.setAttribute("name", targetID);

 if (title != null && title.length() > 0) {
 input.setAttribute("title", title);
 }

 if (value != null && value.length() > 0) {
 input.setAttribute("value", value);
 }

 if ("true".equals(field.getParameters()
 .get(FieldParameters.INITIAL_FOCUS))) {
 input.setAttribute("tabindex", "1");
 }

 String width
 = field.getParameters().get(FieldParameters.WIDTH);
 if (width != null && width.length() > 0
 && !"0".equals(width)) {
 String units;
 if ("CHARS".equals(field.getParameters()
 .get(FieldParameters.WIDTH_UNITS))) {
 units = "em";
 } else {
 units = "%";
 }
 input.setAttribute("style", "width:" + width + units + ";");
 }

 setScriptAttributes(input, field);
 }
}

Developing Custom Widgets 65

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

66 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 67

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

68 IBM Cúram Social Program Management: Cúram Custom Widget Development Guide

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	Chapter 1. Developing Custom Widgets
	Overview
	Prerequisites
	What's New?
	Customizing Widgets
	Outline of this Guide
	Conventions of this Guide
	Limitations and Restrictions

	Approaches to Customization
	Prerequisites
	Identifying the Right Approach
	Using Only UIM
	Reconfiguring Standard Widgets
	Developing Simple Custom Widgets
	Developing Complex Custom Widgets
	Mixing Simple Custom Widgets with UIM
	Responsibilities of the Widget Developer

	How Widgets Work
	Prerequisites
	Anatomy of a Widget
	How Widgets Work In Depth

	An EMail Address Widget
	Prerequisites
	Defining the HTML
	Defining the Renderer Class
	Accessing the Data
	Generating the HTML Content
	Configuring the Widget

	The Sample Context Panel Widgets
	Prerequisites
	The Sample Widgets

	A Photograph Widget
	Prerequisites
	Defining the HTML
	Defining Data in XML Form
	Defining the Renderer Class
	Accessing Data in XML Form
	Generating the HTML Content
	Linking to a UIM Page
	Linking to a Static Image
	Linking to the FileDownload Servlet

	Configuring the Widget
	Configuring the FileDownload Servlet

	A Details Widget Demonstrating Widget Reuse
	Prerequisites
	Defining the HTML
	Defining Data in XML Form
	Defining the Renderer Class
	Accessing Data in XML Form
	Generating the HTML Content
	Configuring the Widget

	Tying Widgets Together in a Cascade
	Prerequisites
	Defining Data in XML Form
	Defining the HTML
	Defining the Renderer Classes
	Generating the HTML Content
	Person Context Panel Widget
	Horizontal Layout Widget

	Configuring the Widgets
	Person Context Panel Widget
	Horizontal Layout Widget

	A Text Field Widget with No Auto-completion
	Prerequisites
	Defining the HTML
	Defining the Renderer Class
	Handling Form Items
	Accessing the Data
	Generating the HTML Content
	Configuring the Widget
	Limitations on Support for Custom Edit Renderers

	Internationalization and Localization
	Prerequisites
	CDEJ Support for Internationalization
	Widget Internationalization

	Accessibility Concerns
	Prerequisites
	Overview
	Labels for Form Input Controls
	Font Sizes

	Overview of the Renderer Component Model
	Elements of the Model
	Building Components

	Design and Implementation Guidelines
	Guidelines for Writing Renderers
	Do Keep Things Simple
	Do Divide and Conquer
	Do Check for Nulls
	Do Take Shortcuts
	Do Go with the Flow
	Do Not Introduce Concurrency Issues
	Do Not Convert Data in a Renderer
	Do Not Do Too Much

	Supporting Field-level Security
	Adding New CSS Rules for Custom Widgets

	Testing, Troubleshooting and Debugging
	Testing
	Troubleshooting
	Debugging

	Configuring Renderers
	Overview
	Configuring Domain Renderers
	Configuring Component Renderers

	Accessing Data with Paths
	Overview Diagram
	Creating New Paths
	General Properties Resources
	Resource Store Properties Resources
	Literal Values

	Extending Paths for XML Data Access
	Simple XPath Expressions
	Evaluating the Paths
	Automatic Data Conversion

	Source Code for the Sample Widgets
	Source Code for the E-Mail Address Widget
	Source Code for the Photograph Widget
	Source Code for the Details Widget
	Source Code for the Person Context Panel Widget
	Source Code for the Horizontal Layout Widget
	Source Code for the Text Field Widget with No Auto-completion

	Notices
	Privacy Policy considerations
	Trademarks

