
IBM Cúram Social Program Management
Version 7.0.3

Cúram Security Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
43

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

List of Figures... vi
List of Tables..vii

Chapter 1. Configuring security..1
Authentication Overview..1

Authentication.. 1
Authentication Architecture... 2
Default Authentication... 2
Alternate Login IDs...3
The Login Page..5
Customization of the Login Page..6
Cúram JAAS Login Module... 6
Password Management.. 6
Default Configuration for WebLogic Server..7
Default Configuration for WebSphere.. 7
Customization of the JAAS Login Module.. 9
Verification Process for Authentication... 9

Authorization Overview... 12
Users, Roles and Groups.. 12
Security Identifiers (SIDs)..12
Function Identifiers (FIDs)...13
Field Level Security Identifiers.. 13
User Defined SIDs.. 13
Runtime Authorization... 14
Client Authorization Checks...14
Server Authorization Checks..14

Cryptography in Cúram.. 14
Ciphering...15
Digesting... 15
Cryptography Properties.. 15
Cúram Cipher Settings... 15
Cúram Digest Settings..16
Cipher-Encrypted Passwords...17

Security Data Caching..18
Cúram Security Cache.. 18
Cache Refresh...18
Cache Refresh Failure.. 18
WebSphere Caching Behavior..18

Security for Alternative Clients..19
Mandatory Cúram Users...19
Web Services.. 19
Batch Processing.. 19
JMS Messaging... 20
Deferred Processing... 20

External User Applications.. 20
External User Applications...20
User Scope..21
Deployment of an External Application... 21

Using Single Sign On.. 22
Single Sign On with WebSphere...22
Single Sign On for WebLogic Server...23

 iii

Other Security Considerations...23
SSL Settings for the Application...24
Using Cúram in a Secure Environment.. 24
Client HTML Error Pages.. 24

Customizing Authentication.. 25
Customizing the Login Page... 25
Applying Styling to the Login Page...25
Enabling Usernames With Extended Characters for WebLogic Server...25
Changing the Case-Sensitivity of the Username... 25
Adding Custom Verifications to the Authentication Process.. 25
Configuring the Custom Authenticator.. 26
Configuring Identity Only Authentication.. 26
Adding the Cache Refresh Failure Callback Interface...26
Turning Off SSL Settings for the Application..26
Modifying the web.xml File for the Client Application...26
Modifying the Application Server Configuration..26
Analyzing the AuthenticationLog Database Table... 27

Customizing Authorization...28
Creating Authorization Data Mapping..28
Creating a New Security Role...28
Creating a New Security Group.. 29
Linking the Security Group to the Security Role..29
Creating the Security Identifier (SID).. 29
Linking the Security Group to the SID..29
Linking the Security Role to the User...29
Loading Security Information onto the Database... 29
Creating Function Identifiers (FIDs).. 29
Switching Security off for a Process Method... 30
Security Considerations During Development...30
Controlling the Logging of Authorization Failures for the Client... 30
Authorizing New SID Types..30
Analyzing the AuthorisationLog Database Table... 31

Customizing Cryptography...31
Cipher Customization... 31
Key Management..32
How to Create a New Keystore.. 32
Digest Customization... 33
How to Specify a Digest Salt.. 33
How to Utilize the Superseded Digest Settings for a Period of Migration...34
Modifying Your Crypto Configuration for a Production System...35

Customizing External User Applications... 35
Creating an External User Application...35
Creating an External User Client Login Page... 35
Creating an External User Client Automatic Login Page... 36
Extending the Public Access User Class..37
Authenticating an External User.. 37
Determine External User Details..38
Authorizing an External User..39
Determining the User Type.. 40
Preventing the Deletion of a Security Role: Role Usage Count... 40
Retrieving a Registered Username.. 40
Reading User Preferences..41
Modifying User Preferences... 41
Configuring External Access Security.. 41
Determining if a User is Internal or External using the UserScope Interface.................................... 42
User Type Determination... 42

iv

Notices..43
Privacy Policy considerations.. 44
Programming Interface Information... 44
Trademarks.. 45

 v

List of Figures

1. Authentication architecture.. 2
2. Default authentication...3
3. Default authentication flow for WebSphere... 8
4. Authentication Flow for WebSphere with User Registry Enabled..8
5. Identity Only Authentication...11

vi

List of Tables

1. ExtendedUsersInfo Table Structure... 4
2. Contents of the Authentication Log.. 27
3. Contents of the Authorization Log.. 31
4. Relationship of keytool Command Arguments to Cúram Crypto Properties... 32

 vii

viii

Chapter 1. Configuring security
Authentication and authorization are two key components of application security. The IBM Cúram
webclient is configured to support form-based authentication. Different authentication modes can be
configured with the Cúram JAAS login module. Functional elements in Cúram are secured by security
identifiers. This data is linked to a user and can be configured.

Authentication Overview
In Cúram, authentication is the process of determining if a user is who they say they are. Authentication is
needed where a user must be verified in order to access a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing them to enter username and
password credentials. These credentials are compared against the credentials stored on the system for
this username, if they match the user is considered an authenticated user for the system. For security
reasons the password for authenticating a user is stored on the system in a digested form.

The Cúram web client is configured to support form-based authentication, which means that before a
user can access any of the web client content, they will be redirected to a login form to authenticate.

The authentication process involves the verification of the username and password, and this is performed
by default by a JAAS (Java™ Authentication and Authorization Service) login module. HTTPS/SSL is turned
on by default in the web client ensuring the form-based login authentication mode is secure.

Authentication
Different authentication modes can be configured (depending on authentication requirements) by the
Cúram Java Authentication and Authorization Service (JAAS) login module.

The following are the authentication modes supported:

• Default Authentication
• Identity Only Authentication
• External Access Security Authentication

Each of these modes is described in detail in the sections that follow.

© Copyright IBM Corp. 2012, 2018 1

Authentication Architecture
Use the information in this flow chart to understand the architecture for the authentication process of a
user.

Figure 1: Authentication architecture

The flow chart shown here outlines the architecture for the authentication process of a user. The default
authentication is completed for a user. This behavior can be customized for both internal and external
users, depending on the authentication requirements. The sections in Authentication Overview chapter
that follow describe in detail each of the functional areas that make up the authentication architecture,
indicating where customizations are possible.

Default Authentication
Default authentication for Cúram involves the user who logs in through the login screen, where the user is
prompted for a username and password as credentials. These credentials then are passed to the Cúram
Java Authentication and Authorization Service (JAAS) login module configured in the application server.

The default authentication is run and the username and password entered are checked against the
username and password stored on the Cúram Users database table. The Cúram username is
immutable, but you have the option of configuring your system to use a Cúram login ID instead, which
is changeable. The login ID is a logical extension of the Cúram user and the same verifications that are
checked for the username also are checked for the login ID. For more information about alternate
login IDs, see “Alternate Login IDs” on page 3.

Authentication runs a number of verifications against the login credentials. For more information on the
login verifications, see “Default Authentication” on page 9.

Provided all verifications are successful, the user is considered to be authenticated by the application.

After the user is authenticated, the user then is added to the Cúram Security Cache. The Cúram Security
Cache stores the username and all related authorization data for that user to optimize the authorization
data retrieval for a user. For more information on the Cúram Security Cache, see “Security Data Caching”
on page 18. Figure 2.3 highlights the path taken for default authentication.

2 IBM Cúram Social Program Management: Cúram Security Guide

Figure 2: Default authentication

Alternate Login IDs
By default, Cúram uses the username and digested password that is stored in the Cúram Users table
for authentication. The username cannot be changed after it is created and the lack of flexibility might
not meet requirements for some installations. Therefore, you have the option of configuring an alternate
login ID that can be updated. However, if the default security implementation that is configured during
installation meets your requirements, it is not necessary to configure an alternate login ID.

The login ID functions as a logical extension of the Cúram Users table. When the alternate login ID
is used the username still exists and is used internally by Cúram, but the user logs in to Cúram by using
the login ID.

Things to note when using the alternate login ID:

• The Cúram users can log in with their alternate login IDs if available or user names if not. When the
property alternate login is disabled, users are only allowed to log in with their user names.

• The Cúram ExtendedUsersInfo table, where the login ID is stored, must be populated before the
application turns on the alternate login ID feature, which is explained in more detail in the following
explanation.

• When using login IDs, authentication results are stored in the AuthenticationLog table and the
AltLogin column indicates whether the UserName column represents a username (false) or login
ID (true).

• Login IDs are only applicable to internal Cúram users; that is, users stored on the Cúram Users table.
However, if you are using identity-only with alternate Login IDs then wherever those IDs are stored (for
example, WebSphere registry, Lightweight Directory Access Protocol (LDAP), and so on) must match the
login IDs stored in the Cúram ExtendedUsersInfo table.

• When assigning login IDs, you need to take care with IDs that are used internally or have dependencies
(for example, with property values) outside of the Cúram Users table. These IDs are the user names
that would cause issues if theirlogin ID differed from the username without a corresponding change
as indicated:

– SYSTEM - In WebSphere this user name is associated with Java Message Service (JMS) processing
and is made part of the WebSphere configuration at application deployment time. For more

Configuring security 3

information on changing this ID, see “Mandatory Cúram Users” on page 19 and the appropriate
WebSphere Cúram Deployment Guide.

– DBTOJMS - this value is the default DBtoJMS username used by batch processing and is referenced
by property curam.security.credentials.dbtojms.username. For more information, see
“Mandatory Cúram Users” on page 19, “JMS Messaging” on page 20, and“Deferred Processing” on
page 20 the Cúram Batch Processing Guide.

– WEBSVCS - this value is the default web services username and is referenced by property
curam.security.credentials.ws.username. For more information, see “Mandatory Cúram
Users” on page 19, “Web Services” on page 19, and the Cúram Web Services Guide.

– Unauthenticated - is the principal WebSphere uses for unauthenticated users and this login ID
should not be changed.

To enable the use of the alternate login ID, after you have populated the ExtendedUsersInfo table,
set the curam.security.altlogin.enabled property to true (for more information on Cúram
properties, see the Cúram Server Developer's Guide). This value is a static property and Cúram must be
restarted for it to take effect.

When the curam.security.altlogin.enabled property is set to true, authentications are not
processed directly through the user name column in the Cúram Users table. Instead, authentications
are all processed through the ExtendedUsersInfo login ID, which references the Cúram Users
table.

Along with the introduction of support for an alternate login ID, the administrative pages for adding,
updating, and displaying Curam users have been extended to include the new Login ID field. The Login ID
field is displayed only when the corresponding curam.security.altlogin.enabled property is set to
true.

To populate the ExtendedUsersInfo table (see table that follows for ExtendedUsersInfo you have a
number of options; for instance:

• With a simple SQL statement, you can populate the table by using the user name in the Users table; so,
there is no immediate user impact: INSERT INTO EXTENDEDUSERSINFO (USERNAME, LOGINID,
UPPERLOGINID, VERSIONNO) (SELECT USERNAME, USERNAME, UPPER(USERNAME), 1 FROM
USERS); You can then roll out your modifications to the login IDs in a controlled manner.

• You can implement an SQL application that implements your user name and login ID mapping (for
example, LDAP common names).

Note: You must maintain the user name foreign key relationship between the Users and
ExtendedUsersInfo tables.

Table 1: ExtendedUsersInfo Table Structure

Name Type Size Description

USERNAME VARCHAR 256 Username is an
immutable string. This
field has a foreign key
relationship with
username field in Users
table.

4 IBM Cúram Social Program Management: Cúram Security Guide

Table 1: ExtendedUsersInfo Table Structure (continued)

Name Type Size Description

LOGINID VARCHAR 1280 Login ID is associated
to the user name and
can be updated. The
login ID functions as a
logical extension of the
Cúram Users table.
Users can log in to
Cúram application by
using Login ID.

UPPERLOGINID VARCHAR 1280 Login ID in uppercase.
Uppercase login ID is
used for supporting
case-insensitivity.

Version No VARCHAR 4 Version Number.

Configuring internal and external users

If you have both internal and external users, extra calls might occur to the getRegisteredUserName()
method in the ExternalAccessSecurity class. The security cache calls the
getRegisteredUserName() method if the login ID is not found in the security cache. Therefore, all
internal and external login IDs and user names must be unique, unless the
curam.util.security.UserScope interface is implemented. Otherwise, an external user that
matches a login ID might be found in the security cache and therefore not found as an external user. If a
login ID can't be found either in the cache, or through the External Access Security implementation if it is
provided, then an INFRASTRUCTURE.INFO_LOGIN_ID_DOES_NOT_MAP_TO_USERNAME exception
occurs.

Configuring a custom alternate login implementation

A customer can set the curam.citizenworkspace.alternate.login.implementation property
to point to a custom alternate login implementation, as shown in the following example:

curam.citizenworkspace.alternate.login.implementation=curam.citizenworkspace.security.impl.Sampl
eCitizenWorkspaceAlternateLogin

A customer can use the alternate login implementation to specify custom code that returns the user name
when an alternate login ID is submitted. The alternate login implementation must extend the
CitizenWorkspaceAlternateLogin abstract class and provide an implementation for the
getRegisteredUsername(final String loginId) method.

The Login Page
The default preconfigured login page is represented by the logon.jsp file. This logon.jsp represents
the login page for the user to complete form-based login authentication. By default, the logon.jsp file
contains the username and password fields.

However, the logon.jsp file can be customized to pass an additional parameter by adding the user_type
field. This field determines the type of user who is logging in, that is, internal or external user. The
username, password, and user_type (if present) are all passed to the Cúram Java Authentication and
Authorization Service (JAAS) login module as part of the authentication process.

The default preconfigured logon.jsp file does not have the user_type property set. If this property is
omitted, the user is assumed to be internal. When this property is set, it indicates that an external user is
logging in. This property can be set to any value other than INTERNAL.

Configuring security 5

Customization of the Login Page
The logon.jsp file can be customized; that is, the logon.jsp file can be replaced by a custom
logon.jsp file, for a number of reasons.

The reasons the file can be replaced include the following: reasons.

An external user client application is being developed
If an external user client application is being developed, a new logon.jsp file needs to be created,
as the user type needs to be set to indicate that an external user is logging in. For more information,
see “Creating an External User Client Login Page” on page 35.

Automatic login is needed
Some external user client applications require no user authentication and hence a username and
password need not be requested, that is, if an external public access application. It is not possible to
disable authentication, so the best way to achieve this requirement is to write an automatic login
script. This procedure is done by customizing the logon.jsp file for the external public access
application. For more information, see “Creating an External User Client Automatic Login Page” on
page 36.

Different styling is required
The section on Login Pages in the Cúram Web Client Reference Manual for more information on styling
for the logon.jsp file.

A requirement exists for user names to contain extended characters (valid only for Oracle WebLogic
Server)

Web Logic Server provides a proprietary attribute, j_character_encoding, which must be added to
the logon.jsp file. For more information, see “Enabling Usernames With Extended Characters for
WebLogic Server” on page 25.

Cúram JAAS Login Module
Authentication is performed by a Java Authentication and Authorization Service (JAAS) login module. It is
configured in the application server and is started automatically by the application server as part of the
authentication process for any access to the Cúram application. The advantage to this approach is that
the default authentication mechanism can be used with, or replaced by, a custom approach, without
affecting the Cúram application.

As mentioned earlier, the Cúram JAAS login module can be configured to operate in three modes. For
more information on the configuration of the login modules and any application server-specific behavior,
see the section on Application Server Configuration within the Cúram Server Deployment Guide for the
application server that is being used.

Project specific requirements might mean that more than one login module is needed, for example, a user
might be required to enter more than the username and password for verification purposes. It is
possible to configure multiple login modules in the application server. Each login module is run in the
order as determined by the settings in the application server.

For more information on these settings, see the WebSphere or WebLogic Server documentation.

After the user is authenticated successfully by all login modules that require successful authentication of
the user (this login is configurable in the application server), the user is considered authenticated by the
application.

Password Management
The passwords for all Cúram internal and external users are stored in their digest format on the Cúram
Users and ExternalUsers database tables. When the Cúram Java Authentication and Authorization
Service (JAAS) login module receives the password, it is digested before it is sent to the login bean for
comparison.

Digesting is a one-way process to ensure the security of the password. The password stored for the user
on the database uses the same digest algorithm, subject to your encryption settings, ensuring the
encrypted passwords can be compared successfully to each other, but remain secure.

6 IBM Cúram Social Program Management: Cúram Security Guide

Users who are managed externally, for example, through Lightweight Directory Access Protocol (LDAP)
with Cúram identity-only configured, are not subject to the process described previously. When a user is
being authenticated against a third-party party system (for example, LDAP or a Single sign-on (SSO)
Server), where a need exists for the Cúram application to pass the user-entered credentials to the third-
party system, the custom implementation of curam.util.security.PublicAccessUser can be
used. This process allows access to the credentials with a plain-text password.

Default Configuration for WebLogic Server
The Cúram Java Authentication and Authorization Service (JAAS) login module is configured as an
authentication provider in WebLogic Server. The Cúram authentication provider is the only provider
configured by the configuration scripts provided for WebLogic Server. Since it is the only configured
authentication provider, the Cúram authentication provider is responsible for authenticating and verifying
the user.

As mentioned previously, it is possible there might be more than one authentication provider configured in
WebLogic Server. In this case, the Cúram authentication provider might not be responsible for
authenticating and verifying the user. For more information, see “Single Sign On for WebLogic Server” on
page 23.

Default Configuration for WebSphere
The Cúram Java Authentication and Authorization Service (JAAS) login module is configured as a system
login module in WebSphere. The default, scripted security configuration within WebSphere involves the
default file-based user registry and the Cúram system login module.

The user registry in WebSphere is the default authentication mechanism and can be configured to be:

• A custom user registry
• A Lightweight Directory Access Protocol (LDAP) directory server
• The Local operating system (OS)
• The WebSphere file-based repository

Multiple system login configurations exist for WebSphere. The Cúram system login module is configured
for the DEFAULT, WEB_INBOUND, and RMI_INBOUND configurations. The same login module is used for all
three configurations. WebSphere automatically starts the login modules configured as system login
modules under certain circumstances:

• DEFAULT

The login modules that are specified for the DEFAULT configuration are started for authentication of
web services and JMS invocations. They also are started during the startup phase of WebSphere

• WEB_INBOUND

The login modules that are specified for the WEB_INBOUND configuration are used for authentication of
web requests

• RMI_INBOUND

The login modules that are specified for the RMI_INBOUND configuration are used for authentication of
Java clients.

The Cúram JAAS login module exists as a login module within a chain of login modules that are set up in
WebSphere. It is expected that at least one of these login modules be responsible for adding credentials
for the user. By default, the Cúram login module adds credentials for an authenticated user. As a result of
this process, the configured WebSphere user registry that is handled by a subsequent login module does
not add credentials.

Therefore, it is not necessary to define Cúram users within the WebSphere user registry. This behavior is
configurable by using the curam.security.user.registry.enabled property set in the
AppServer.properties file. For more information on setting this property, see Cúram Deployment
Guide for WebSphere Application Server or Cúram Deployment Guide for WebSphere Application Server on
z/OS.

Configuring security 7

This figure illustrates the default authentication flow for WebSphere.

Figure 3: Default authentication flow for WebSphere

This figure illustrates the authentication flow for WebSphere where its user registry is also queried, that is,
where the curam.security.user.registry.enabled property is set to true.

Figure 4: Authentication Flow for WebSphere with User Registry Enabled

8 IBM Cúram Social Program Management: Cúram Security Guide

As part of the security configuration, certain users exist that are excluded from authentication and for
these users the configured user registry is queried. This list of users is configured automatically to be the
WebSphere security user, as specified by the security.username property in
AppServer.properties and the database user, as specified by the curam.db.username property in
Bootstrap.properties . These two users are classified administrative users and not application users.
It is possible to extend this list of excluded users manually. For more information, see the Cúram
Deployment Guide for WebSphere Application Server and Cúram Deployment Guide for WebSphere
Application Server on z/OS.

Warning: The security.username and curam.db.username users are automatically added to the
WebSphere file-based user repository by the provided configuration scripts. If the configured WebSphere
user registry is not the default, these users must exist in the alternate WebSphere user registry.

Customization of the JAAS Login Module
It is possible that the Cúram Java Authentication and Authorization Service (JAAS) login module might not
support the authentication requirements for a particular custom solution. We strongly recommend that
when users develop a custom login module, that the Cúram JAAS login module needs to be left in place
and used with identity only authentication enabled. However, if deemed necessary, the Cúram JAAS login
module can be removed and replaced by a custom solution. If this is the case, Support must be consulted.

Warning: While it is possible to remove the Cúram JAAS login module completely, it needs to be noted
that users must still exist in the Cúram Users database table for authorization reasons.

The Cúram JAAS login module adds new users to the Cúram Security Cache automatically, and when this
Cúram JAAS login module is replaced by a custom JAAS login module, this function no longer is present.
If a custom JAAS login module is replacing the Cúram JAAS login module completely, it is the
responsibility of the custom JAAS login module to ensure that an update of the Security Cache is triggered
when a new user is added to the database.

Verification Process for Authentication
The type of verifications that are performed depends on the authentication mode that is being used.

Authentication is the process of determining if a user is who they say they are. Authentication is needed
where a user must be verified in order to access a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing them to enter username and
password credentials. These credentials are compared against the credentials stored on the system for
this username, if they match the user is considered an authenticated user for the system. For security
reasons the password for authenticating a user is stored on the system in a digested form.

The Cúram web client is configured to support form-based authentication, which means that before a
user can access any of the web client content, they will be redirected to a login form to authenticate.

The authentication process involves the verification of the username and password, and this is performed
by default by a JAAS (Java™ Authentication and Authorization Service) login module. HTTPS/SSL is turned
on by default in the web client ensuring the form-based login authentication mode is secure.

The following list shows authentication modes and configurations with details on the verifications
completed for each authentication mode.

Default Authentication
Default authentication is part of the initial configuration and this mode of authentication involves verifying
the username and password specified during login against the Cúram Users database table. All login
information in this case is maintained by the Cúram application.

Default Verification Process
Several verifications are required by the Cúram login module during default authentication. These
verifications include queries that include the user name, password, and account information.

The verifications included during the default authentication are:

• username and password.

Configuring security 9

• Account and password expiry
• User name synchronization with security cache
• Break-in detection, for example, upper limit on password entry attempts, incorrect user names,

password change failures
• Day and time access restrictions - day of the week and time range within the day

The authentication and authorization of user names is case sensitive by default. However, it is possible to
disable case-sensitive authentication. If duplicate case insensitive user names exist (for example,
caseworker, CaseWorker), authentication fails due to an ambiguous user name. For more information, see
“Changing the Case-Sensitivity of the Username” on page 25.

Authentication Attempts
Authentication failures are not reported directly to a client as this reporting would provide extra
information to an intruder who is attempting to break into the system. For example, reporting an incorrect
password would indicate that the user name is valid.

All authentication attempts (both success and failure) instead are logged in a database table called the
AuthenticationLog.For more information, see “Analyzing the AuthorisationLog Database Table” on
page 31.

Customization of Default Authentication
The default implementation can be customized to use a mutable login ID instead of the Cúram
username and the ability to add extra verifications is available by implementing the custom
authenticator.

For more information, see “Custom Verifications” on page 11.

Identity Only Authentication
Identity only verification means that the authentication mechanism only ensures that the user name for
the user who is logging in exists on the Cúram Users database table. Full authentication must be
completed by an alternative mechanism to be configured in the application server.

Authentication can be configured to perform identity-only verification, in place of the default verifications
listed in “Default Verification Process” on page 9.

An example of an alternative mechanism is a Lightweight Directory Access Protocol (LDAP) directory
server, which is supported as an authentication mechanism by both the WebSphere and WebLogic Server
application servers. Another alternative is to use a Single Sign-On (SSO) Solution for authentication, or to
implement a custom login module. For custom application server solutions, the IBM or Oracle
documentation needs to be consulted.

With identity-only authentication (as for default authentication), entries are added to the
AuthenticationLog database table at the end of the authentication process.

For a successful login the following status is used:

• AUTHONLY

For a failure scenario, the following status is used:

• BADUSER

This scenario is the only possible failure scenario where a user does not exist.

The loginFailures and lastLogin fields of the AuthenticationLog are not set. This condition is
true even if customized verifications are implemented.

When the password expiry information for a user is set (on the Cúram Users database table), the
password expiry warning is displayed if it is about to expire. With identity-only authentication, this
warning is misleading. It is recommended that any fields that relate to the authentication verifications,
such as password expiry or account enabled, are not used if identity-only authentication is enabled.

When identity-only authentication is enabled, security is not used for authentication but is still used for
authorization purposes. As a result of this requirement, all users who require access to the application

10 IBM Cúram Social Program Management: Cúram Security Guide

needs to still exist in the Cúram Users database table, and in the alternative authentication mechanism,
for example, Lightweight Directory Access Protocol (LDAP).

Note: Two users must exist in both locations, that is, the SYSTEM user and the DBTOJMS user. For more
information, see “Security for Alternative Clients” on page 19.

For more information on how to configure identity only for an application server, see “Configuring Identity
Only Authentication” on page 26.

Figure 5: Identity Only Authentication

Customization of Identity Only Authentication
The identity-only implementation cannot be customized, but extra verifications can be added by
implementing the custom authenticator.

For more information, see “Custom Verifications” on page 11.

External Access Security Authentication
The architecture allows a developer to implement their own custom authentication solution for external
users by providing a hook into the existing authentication and authorization infrastructure.

To hook the custom solution into the application, the curam.util.security.PublicAccessUser
class must be extended, which requires implementing the
curam.util.security.ExternalAccessSecurity interface. This class is used during the
authentication and authorization process to determine required information that is related to the External
User.

For more information, see “Customizing External User Applications” on page 35.

Custom Verifications
Support is provided for adding custom verifications to the authentication process. For example, a user
might be required to answer a security question that must then be verified. The custom code, if
implemented, is started after the relevant Cúram verifications or identity assertion, and only if they were
successful.

After the custom verifications are started, the authentication process will update the relevant fields on the
Users database table.

Configuring security 11

For more information, see “Adding Custom Verifications to the Authentication Process” on page 25.

Authorization Overview
In Cúram, authorization is the process of granting or refusing a user access to functional elements of an
application.

The functional element can be anything to which a unique identifier can be attached, such as:

• a server process call,
• an element of the application that requires security checking, for example, a series of registered welfare

products.

Access to the functional element is controlled by a Security Identifier (SID) that forms part of the Cúram
authorization data. This data is linked to a user and can be configured through the Cúram Administration
screens or through the Data Manager. For more information, see the Cúram Server Developer's Guide.

The security data that is created for authorization is central to the processing performed during every
client-server call, and it is important that access is optimized for performance reasons. The Cúram
Security Cache is responsible for caching authorization data for a user. For more information, see “Cúram
Security Cache” on page 18.

The following topics describe the relationship for these authorization concepts and how authorization
works within Cúram.

Users, Roles and Groups
The security information associated with an application must first be organized into security profiles
before it can be utilized in a runtime environment. A security profile consists of a security role, one or
more security groups and the associations between security identifiers (SIDs) and securable elements of
an application.

Every authorized user is assigned a security role during security configuration and these roles are
associated with a number of security groups. Each security group is associated with a number of security
identifiers. The security identifier represents the securable elements of Cúram, for example., a method or
a field. The role, groups and identifier information is stored on the database in a number of tables and is
configured using the application Data Manager or the Cúram Administration screens.

This data structure makes it possible to authorize every user against any secured element of an
application. This is a powerful and flexible method of providing authorization to Cúram users.

There is a minimum set of SIDs required for a user to operate the Cúram Platform application. These SIDs
are associated to the out-of-the-box BASESECURITYGROUP group. The EJBServer/components/
core/data/initial/handcraftedscripts/Supergroup.sql file should be consulted to identify
the list of these SIDs. This file is responsible for linking the SIDs to the BASESECURITYGROUP out-of-the-
box.

A simple way to ensure that all users have the privileges from this set of SIDs is to create a single security
group for them and then associate that security group with every security role in the system.

Security Identifiers (SIDs)
Every secured element in Cúram is given a security identifier (SID) that is unique across the entire
application.

The authorization process is built into the infrastructure and once the securable elements have been
identified, the rest is handled by code generators, scripts and the Cúram Administration screens. The
analysis of what elements must be securable is a manual process that must be done by the developer or
security administrator. This section outlines the infrastructure available to set up authorization.

The first type of authorization to consider is that of the process method(facade) also known as function-
level security . In the Cúram model, a developer may choose if security is switched on or off at the process

12 IBM Cúram Social Program Management: Cúram Security Guide

method level. The option applies only to Business Process Objects (BPOs) since they encapsulate the
calls exposed to the client. Entity object methods are not included in the authorization process.

There are a number of types of SIDs and these include:

• Function Identifiers (FIDs)
• Field Level Security Identifiers
• User defined SID types.

Function Identifiers (FIDs)
Function identifiers (FIDs) are a specialized type of security identifier (SID) where the type is set to
FUNCTION. When a method is made publicly accessible (by setting the stereotype as facade in the
model), a FID is generated for that method and security is automatically turned on.

It is possible to turn off security for a process method at design time. For more information, see
“Switching Security off for a Process Method” on page 30.

Adding an FID

To add an FID, do the following steps:

1. Log on as the sysadmin user and click System Configurations.
2. In the Shortcuts panel, click Security > Identifiers.
3. In the actions menu, click New Function Identifier and enter the details for the FID.
4. In the actions menu, click Publish.
5. In the Shortcuts panel, click Security > Groups.
6. Click a group to add the FID to, and then click Add Identifiers.
7. From the list of alphabetically ordered identifiers that is displayed, select the identifier that your

created and click Save.
8. Click Publish.

Field Level Security Identifiers
The Field Level SID allows authorization to be applied to specific fields on a publicly accessible method.
At runtime, if a user does not have access rights to view the field to be displayed, the contents of the field
are displayed as a number of asterisks (***). For more information on Field Level SIDs , the Cúram
Modeling Reference Guide should be consulted.

User Defined SIDs
In the previous sections, we have described

FIDs;
An automatically generated SID of type function.

Field Level SID;
Security applied to specific fields on a method.

There is also the concept of a user defined SID. The authorization process is sufficiently flexible to
accommodate any securable element of an Cúram application. The developer can effectively customize
the authorization process by defining new types of SIDs. The new types represent a conceptual element
requiring security. The following server interface method enables authorization to be invoked directly on
these new user defined SID types.

curam.util.security.Authorisation.isSIDAuthorised()

Out-of-the-box, the LOCATION and PRODUCT SIDs are SIDs of this type. Using the above method there is
effectively no limit to the SID types that can be defined. “Authorizing New SID Types” on page 30 should
be consulted for further details.

Configuring security 13

Runtime Authorization
The Cúram infrastructure performs authorization checks from both the web client and server side.

Client Authorization Checks
Before a user can access a method or field, the web client performs authorization checks before the page
is initially loaded. If the user does not have access, the client authorization check fails, and the server is
not invoked. This check is configurable in the curam-config.xml by setting the
SECURITY_CHECK_ON_PAGE_LOAD property. Section 3.12.13 General Configuration in the Cúram Web
Client Reference Manual should be consulted for further details on this.

By default any such web client authorization failures are not recorded. This behavior is configurable.
“Controlling the Logging of Authorization Failures for the Client” on page 30 should be consulted for
further details.

Server Authorization Checks
To cater for other access to Cúram, and where the web client authorization check is disabled, there is a
second level authorization check made by the server. This server side check will always log authorization
failures, and the client property does not affect this logging.

The log of all authorization failures is stored on the database to allow these failures to be audited at a
later stage. The AuthorisationLog table contains the User Name and Security Identifier for the failed
authorization, as well as a timestamp indicating when the failure occurred. “Analyzing the
AuthorisationLog Database Table” on page 31 should be consulted for further details on the
AuthorisationLog table.

Cryptography in Cúram
In Cúram, cryptography refers broadly to ciphers and digests, two types of functionality that are related to
keeping your Cúram systems safe and secure.

You can use ciphers and digests as follows in Cúram:

• ciphers - for two-way encryption of passwords that are used at various processing points
• digests - for one-way hashing (or digesting) of passwords; for example, used at login

You can select the values for configuring cryptographic behavior with the CryptoConfig.properties
property file to provide you with the most control and security possible for your Cúram installation. This
flexibility provides the capability to adjust to changing security standards. For more information about
configuring and customizing cryptography, see “Customizing Cryptography” on page 31.

If you are migrating for the first time to a level of Cúram that has this level of cryptographic support, which
was introduced in version 6.0.5.0, it is recommended that you upgrade system (new cipher) and user
(new digest) passwords from the default values to improve your security.

Supported cryptographic configurations are:

1. AES: 128, 192, 256 (FIPS 140-2 and SP800-131a compliant);
2. Two-key Triple DES - DESede: 112 (FIPS 140-2 compliant);
3. Three-key Triple DES - DESede: 168 (FIPS 140-2 and SP800-131a compliant);
4. No cryptography configuration, which is configured by removing the CryptoConfig.properties

file, in which case Cúram reverts to its previous default crypto settings.

In the environment where Cúram runs, the application server, database, and other software, such as web
server or LDAP software, has its own cryptographic support and you can refer to the relevant vendor's
documentation.

14 IBM Cúram Social Program Management: Cúram Security Guide

Ciphering
Ciphering refers to the process of encrypting passwords, which are listed in “Cipher-Encrypted
Passwords” on page 17. That is, this is a two-way process representing decrypt-able values. There are
about a dozen of these encrypted passwords in various property files in Cúram and encrypting them helps
keep them secure and they are are decrypted at the necessary points for usage; e.g. connecting to your
database system.

Digesting
Digesting refers to the one-way process of handling passwords that do not require decrypting, but is used
for storing passwords for later comparison; e.g. Cúram user logins. That is, this is a one-way process
representing non-decryptable values.

Cryptography Properties
The Cúram CryptoConfig.properties file contains settings for cipher and digest cryptography.
Therefore, this file and all the files it refers to (i.e., keystore and salt) should be considered critical items
to the security of your system and should be provided with adequate access controls (e.g., file
permissions) and specifically modified and segregated when used for production systems. That is, if the
details of these files were to become widely known, while not necessarily a security risk themselves,
would remove a level of protection that might necessitate a disruptive crypto change (see “Cipher
Customization” on page 31 and “Digest Customization” on page 33).

Related topics:

• “Cúram Cipher Settings” on page 15
• “Cúram Digest Settings” on page 16

Cúram Cipher Settings
Various passwords within Cúram property files and configurations are stored in an encrypted format out-
of-the-box (OOTB).

The Cúram crypto configuration will work for you out-of-the box, but it is recommended you modify these
settings with respect to your local security requirements. For instance, the OOTB settings may be
adequate in development, but for production environments it is strongly recommended that you modify
them (e.g. by changing the cipher secret key).

The cipher settings are stored in the CryptoConfig.properties file. The properties and their values
are as follows:

• curam.security.crypto.cipher.algorithm

– Valid values: In JCE documentation, for example: http://docs.oracle.com/javase/6/docs/technotes/
guides/security/StandardNames.html#Cipher. The supported ciphers are AES and the various forms
of Triple DES.

– Default: AES (FIPS 140-2 and SP800-131a compliant)

• curam.security.crypto.superseded.cipher.algorithm

– Valid values: See curam.security.crypto.cipher.algorithm
– Default: None
– Purpose: Provides for flexibility to support an upgrade/migration period for Cúram user passwords

with custom code (e.g. a batch program) via the
curam.util.security.EncryptionUtil.decryptSupersededPassword() API. The use of
an upgrade/migration period is explained in more detail in “How to Utilize the Superseded Digest
Settings for a Period of Migration” on page 34.

• curam.security.crypto.cipher.keystore.location

Configuring security 15

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#Cipher

– Valid values: Path to keystore file containing secret key. This can be an absolute path specification or
relative to the classpath (e.g. CuramSample.keystore).

– Default: None

• curam.security.crypto.cipher.keystore.storepass

– Valid values: As per the JDK keytool command.
– Default: password
– Purpose: Specify the password used to access the keystore.

• curam.security.crypto.cipher.provider.class

– Valid values: Fully-qualified name of a JCE cryptography provider class.
– Default: blank
– Purpose: Optional way to enable the use of an alternate standards-compliant provider.

This ciphering functionality applies to the properties as described in “Cipher-Encrypted Passwords” on
page 17.

These Cúram cryptographic settings are enabled by default OOTB and represents changes that existing
Cúram installations must address as documented in the Cúram Upgrade Guide.

Cúram Digest Settings
Cúram users, internal and external, when not invoked with identity-only, are authenticated using form-
based login and the password entered in the form is digested and compared to the digest value stored in
the database for the user.

Note: This processing does not apply to users authenticated in third party systems like LDAP.

The Cúram crypto configuration will work for you out-of-the box, but it is recommended you modify these
settings with respect to your local security requirements. For instance, the OOTB settings may be
adequate in development, but for production environments it is strongly recommended that you modify
them (e.g. digest salt encrypted value).

The digest settings are stored in the CryptoConfig.properties file. The properties and their values
are as follows:

• curam.security.crypto.digest.algorithm

– Valid values: In JCE documentation, for instance: http://docs.oracle.com/javase/6/docs/technotes/
guides/security/StandardNames.html#MessageDigest. The supported digests are the SHA variants
(1, 256, etc.) and MD5.

– Default: SHA-256 (FIPS 140-2 and SP800-131a compliant)
– Purpose: Specification of the digest algorithm.

• curam.security.crypto.digest.salt.location

– Valid values: A path identifying the file containing the encrypted secret digest salt.
– Default: None
– Purpose: An optional file to specify the salt (encrypted) for digesting.

• curam.security.crypto.digest.iterations

– Valid values: 0 or a positive integer.
– Default: 0
– Purpose: Typically, higher values give better security, but at the cost of processing (e.g. at login time).

16 IBM Cúram Social Program Management: Cúram Security Guide

http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest
http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#MessageDigest

There are a set of corresponding "superseded" properties to allow for flexibility when migrating from one
set of digest settings or standards to another. The following have a similar function to their counterparts
above, but are used by the Cúram encryption functionality to support both old and new settings for a time
of migration:

• curam.security.crypto.superseded.digest.algorithm
• curam.security.crypto.superseded.digest.salt.location
• curam.security.crypto.superseded.digest.iterations

The usage and behavior of the superseded properties are controlled by the
curam.security.convertsupersededpassworddigests.enabled property as managed by the
Properties Administration user interface. See “How to Utilize the Superseded Digest Settings for a Period
of Migration” on page 34 for more information on using the superseded properties.

Cipher-Encrypted Passwords
The following passwords are cipher-encrypted in Cúram:

• Bootstrap.properties:

– curam.db.password - database password
– curam.searchserver.sync.password - see Cúram Generic Search Server for more information

• AppServer.properties: (typically this property file is used for configuring test servers and is not
appropriate for production systems)

– security.password - application server administration console password
– curam.security.credentials.async.password - replacing the runas.password property

• Application.prx - individual property descriptions are as documented with the properties in the
Curam Property Administration user interface:

– curam.security.credentials.dbtojms.password - (in conjunction with
curam.security.credentials.dbtojms.username), which replaces the
curam.omega3.DBtoJMSCredentialsIntf interface APIs previously used to provide custom credentials
for DB-TO-JMS

– curam.security.credentials.ws.password (in conjunction with
curam.security.credentials.ws.username), which replaces the build-time default web
services default credential settings.

– curam.meeting.request.reply.password - (an SMTP password)
– curam.ldap.password
– curam.citizenworkspace.password.protection.key

• BIBootstrap.properties - BIRT users only; see the Cúram Business Intelligence BIRT Developer
Guide:

– curamsource.db.password
– central.db.password
– centraldm.db.password

• Web Services - See the Cúram Web Services Guide:

– ws_inbound.xml - <ws_service_password>
– services.xml - <parameter name="jndiPassword">

• CTM - Cúram Transport Manager:

– The Password column of the TargetSystemService table contains an encrypted password

Configuring security 17

Security Data Caching
An overview of the Cúram Security Cache, which stores all authorization data for a user. Details on the
WebSphere cache and how this affects the authentication of a user at login are also included.

Cúram Security Cache
Security information from the database tables supporting the profiles mentioned in “Users, Roles and
Groups” on page 12 is cached by the infrastructure. This is done to optimize the search and retrieval of
data during the authorization process.

To optimize performance, the cache is loaded on demand as security authorization requests come into the
application and is a shared resource. For application code, the cache is a protected resource and cannot
be accessed directly. It is accessible, for queries only, through the authorization interface
(curam.util.security.Authorisation) which allows a developer to implement a customized
authorization procedure. “Authorizing New SID Types” on page 30 should be referenced for further
details on this.

When the curam.security.casesensitive property is set to false the security cache will store all usernames
in upper case and all queries to the cache will automatically change the specified username into the
upper case equivalent. It is also worth noting that the existence of duplicate case insensitive usernames
will cause a fatal error during the initialization of the security cache. “Changing the Case-Sensitivity of the
Username” on page 25 should be consulted for further details on this.

Cache Refresh
As security data is so important to the operation of Cúram , the cache must be refreshed whenever any
changes have been made to security related database tables. The refreshing of the Cúram Security Cache
is an asynchronous process.

Cache Refresh Failure
The refreshing of the Cúram Security Cache is triggered by either an application reboot, or by the system
administrator (sysadmin) via the Cúram Administration screens, therefore, the administrator receives no
feedback if the cache reload fails. Having to check the system logs or manually verify the application
following a refresh to verify its success can be cumbersome. It is therefore recommended that the
optional callback interface for providing feedback in the event of a cache reload failure be implemented.
“Adding the Cache Refresh Failure Callback Interface” on page 26 should be consulted for further
details.

WebSphere Caching Behavior
WebSphere caches user information and credentials in its own security cache. The Cúram login module
will not be invoked while a user entry is valid in this cache. The default invalidation time for this security
cache is ten minutes, where the user has been inactive for ten minutes.

For example, the first time a user logs into the application from the web client they will be requested for
their username and password. The Cúram login module will be invoked, and will authenticate the
information specified. If the same user opens a second new web browser and attempts to access the
application, they will again be requested for their username and password. When WebSphere receives
this information it will query the security cache to determine if the username and password are already in
the cache. If they are, and the password matches, WebSphere will not query the login modules.

The impact of this behavior is that any modifications to a user's account restrictions or password will not
take effect until the user has been invalidated from the WebSphere security cache.

For more information see the appropriate WebSphere Application Server Information Center.

18 IBM Cúram Social Program Management: Cúram Security Guide

Security for Alternative Clients
Certain processes cannot be associated with a specific logged-in user. These include alternative clients,
for example, non-web processes such as batch processing, web services, and deferred processing. As any
process that interacts with a Cúram application must be authenticated, a valid user must exist for each of
these processes. These topics provide details on the users that must exist on the Cúram Users table and
details on the processes that depend on these users.

Mandatory Cúram Users
A number of users must always exist in the Cúram Users database table. These users are necessary for
application processes such as deferred processing and workflow. If these users do not exist, then
authentication will fail and subsequently these processes will fail.

The usernames and passwords for each of the processed below are the default out-of-the-box credentials
and it is recommended that these credentials be changed for security reasons.

These users include:

• SYSTEM

The SYSTEM user is the user under which JMS messages are executed. This user must exist and the
username is case sensitive. “JMS Messaging” on page 20 should be referenced for further details.

• DBTOJMS

The DBTOJMS user is the default user under which the Database to JMS (DBToJMS) trigger for batch
processing is executed. This user must exist and the username is case sensitive. “Batch Processing” on
page 19 should be referenced for further details.

• WEBSVCS

The WEBSVCS user is the default user under web services are executed. This user must exist and the
username is case sensitive. “Web Services” on page 19 should be referenced for further details.

Web Services
For Apache Axis2 (the recommended implementation for web services) there are default credentials for
authentication. A user has the ability to change these credentials at a global level or per service if
required. To ensure that web services are not vulnerable to a security breach this default user is not
authorized to access web services by default. For authorization, a web service must be associated with a
security group and in turn a security role that is linked to the user (e.g. WEBSVCS) in order to access it.
Ensuring the user is authorized is a manual process. Please see the Customizing Receiver Runtime
Functionality section in the Cúram Web Services Guide for further details on web services and also the
chapter on Authorization in this book.

There are a number of other topics related to the security of web services - for example, encrypting data -
using Rampart. The Cúram Web Services Guide should be consulted for further details on these.

Batch Processing
Since the Batch Launcher does not require the application server to be running, it does not perform any
application level authentication or authorization. It must only authenticate against the database. The
same credentials as used by the application server (located in %SERVER_DIR%/project/properties/
Bootstrap.properties) are used by the Batch Launcher to connect to the database and run batch
programs.

The Batch Launcher or batch programs can optionally trigger the application server to begin a DB-to-JMS
transfer. This involves logging in and invoking a method on the server, which in turn requires a valid
username and password. By default the DB-to-JMS transfer operation uses default credentials; therefore,
the DBTOJMS account must exist on the Cúram Users table and must be enabled and assigned the role
'SYSTEMROLE' to allow authorization. The locale DB-to-JMS transfer is the default locale for this user as
specified in field 'defaultLocale' on the Users table.

Configuring security 19

The Security Considerations section in the Cúram Batch Processing Guide guide should be consulted for
further details on changing the user for the DB-to-JMS transfer.

The property batch.username can be used to specify the user name for the operations run by the Batch
Launcher. This is set using the -D parameter. For example: build runbatch -Dbatch.username=admin

JMS Messaging
JMS messages are used for communication purposes by deferred processes and Workflow. Since JMS
messages are triggered by the application server and need to interact with the Cúram application, valid
Cúram credentials must exist. The SYSTEM user account must exist on the Cúram Users table and must
be enabled and assigned the role 'SYSTEMROLE' to ensure authorization. The locale for JMS messages is
the default locale for this user as specified in field 'defaultLocale' on the Users table.

It is possible to change the SYSTEM username during or after the deployment of the application. For more
information the Cúram Server Deployment Guide for the relevant application server should be consulted.

Deferred Processing
A deferred process in Cúram is a business method that is invoked asynchronously. As deferred processes
interact with the application, valid Cúram credentials must exist. The SYSTEM user account must exist on
the Cúram Users table and must be enabled and assigned the role 'SYSTEMROLE' to ensure authorization.
The locale for deferred processes is the default locale for this user as specified in field 'defaultLocale' on
the Users table. In the case of offline unit-testing of deferred processes, the username is blank and the
effective locale is the default locale for the Cúram server.

External User Applications
Typically, there are users outside the organization with limited access who needs to securely access parts
of the Cúram application. These users are considered external users and authentication for these users is
completely customizable through the use of the External Access Security hook point provided. As external
users are processed differently to internal users, a specific web application is required for external users.

The default Cúram application is enabled for internal users. Internal users are users that exist on the
Cúram Users database table. A typical internal user would be a case worker who creates and manages
claims for participants and has full access to the application. The infrastructure provides functionality for
authenticating and authorizing these internal users.

External User Applications
When developing an application for an external user, the following must be implemented:

• An external user client application, i.e., a separate EAR file containing the web client application.
• A custom logon.jsp , where the external application must pass in a parameter user_type indicating an

external user is logging in.
• A custom class that extends curam.util.security.PublicAccessUser, which requires

implementing the curam.util.security.ExternalAccessSecurity interface, must be provided.
This abstract class contains methods responsible for the authentication and authorization of an external
user.

As well as there being internal and external user types. There can also be different types of external
users. For example, there may be an external user of type 'PUBLIC' who could have limited access to an
external application. There could be another external user of type 'PROVIDER' who is a registered
external user. The ability to have different types of external users provides more flexibility within an
external application, allowing finer grained control over authentication of the external user based on the
external user type.

20 IBM Cúram Social Program Management: Cúram Security Guide

User Scope
There are two different types, or scopes, of users within the Cúram application: internal and external. The
type of a user is determined in one of the following ways:

• By the Cúram Security Cache;

If the user exists in the Cúram Security Cache, the type is assumed to be in internal. If the user does not
exist in the cache, the type is assumed to be external. In this case, (which is the default behavior) all
usernames, internal and external, must be unique.

• By the UserScope custom interface;

If the UserScope custom interface is implemented. This custom interface, takes precedence over the
check for a user in the Cúram Security Cache to determine the user type. Consult “Determining if a User
is Internal or External using the UserScope Interface” on page 42 for further details.

When the type of a user is external the implementation of the
curam.util.security.ExternalAccessSecurity.getSecurityRole() method will be used to
determine the user role instead of the internal security roles. “Authorizing an External User” on page 39
should be consulted for further details on this method.

To support alternative methods for determining if a user is internal or external the custom interface,
UserScope , is available. Consult “Determining if a User is Internal or External using the UserScope
Interface” on page 42 for more details.

Deployment of an External Application
When deploying an application to an application server, the security configuration for the application
server is applicable to all Cúram applications deployed to that application server instance. Therefore, care
must be taken when considering the deployment architecture for more than one application. This is
important when deciding if an internal and external application will be deployed to the same application
server instance.

An example of some considerations to think about are:

• Is identity only being used for internal users?
• Is an alternative authentication mechanism used , e.g., LDAP;
• Will both internal and external users be authenticated by LDAP?

The answers to the considerations above will affect the setting of the application server properties (i.e.
properties specified in the AppServer.properties file), that affect the behavior of the Cúram JAAS
login module. These considerations will also drive the implementation of the
curam.util.security.PublicAccessUser class and
curam.util.security.ExternalAccessSecurity interface for external users.

The application server properties in the Cúram JAAS login module allow for finer grained control over the
authentication of user types. External users and internal users can be authenticated differently, as can
different types of external users, in a situation where the internal and external applications are deployed
to the same application server. These properties include the following:

• curam.security.user.registry.disabled.types ;

Set this property to a comma separated list of user types for which the application server user registry
will not be queried, i.e. the implementation within the PublicAccessUser.authenticate() method
is responsible for authenticating the external user of this type. For example, LDAP could be configured
to be the user registry.

• curam.security.user.registry.enabled.types.

Set this property to a comma separated list of user types for which the user registry will be queried, i.e.,
the implementation within the PublicAccessUser.authenticate() method does not have to fully
authenticate the user. The user registry will be responsible for authenticating this type of external user.
For example, LDAP could be configured as the user registry, and in this case, LDAP could be responsible
for the authentication of these external user types.

Configuring security 21

These properties are dependent on the implementation of the
curam.util.security.PublicAccessUser class and ExternalAccessSecurity interface.

Consider the following example project requirements:

• An internal user must authenticate with LDAP.
• An external user of type 'EXT_PUBLIC' must authenticate with Cúram and not LDAP;
• An external user of type, 'EXTERNAL' must authenticate with LDAP only and not Cúram.
• Both the internal and external applications are deployed to the same application server instance.

The following settings could cater for the example above:

• curam.security.check.identity.only set to true ;
• curam.security.user.registry.disabled.types=EXT_PUBLIC.

As well as the properties being set, the PublicAccessUser extension (and
curam.util.security.ExternalAccessSecurity implementation) must have the logic to cater for
the different types of external users and how they will be authenticated.

Using Single Sign On
Single sign-on (SSO) allows users to access multiple secure applications by authenticating only once.
Single sign-on is supported for the Cúram supported application servers, by allowing alternative
mechanisms to be used alongside the Cúram login module. Cúram application server properties allow use
of an SSO solution.

The number of applications in an enterprise often results in an increase in the number of user names and
passwords in use, resulting in poor user experience and extra maintenance costs. Multiple user names
and passwords also compromise security as users either choose very simple passwords or write down
their passwords in easy to find locations. For the system administrators, additional applications result in
an increased directory maintenance effort and fielding increased help desk calls to reset passwords.
Some of the problems that are caused by multiple applications can be resolved by using single sign-on
(SSO).

Note: Secure refers to applications that require users to be authenticated before they can access the
application.

The implementation of an SSO solution is the responsibility of the custom implementation. It is
recommended that an IBM or third-party tool is used. For example, IBM Tivoli tools or CA SiteMinder.

Single Sign On with WebSphere
When SSO is required with WebSphere, it can be achieved using the WebSphere lightweight third-party
authentication mechanism (LTPA) and additional custom login modules. The LTPA protocol results in a
token being created for an authenticated user. In WebSphere, a token is generated once credentials are
added for an authenticated user. This token is then used to retrieve identity information for an
authenticated user in an SSO environment.

Security is implemented as a Cúram login module within a chain of login modules set up in WebSphere. It
is expected that at least one of these login modules be responsible for adding credentials for the user. By
default, the Cúram login module adds credentials for an authenticated user. As a result of this, the
configured WebSphere user registry handled by a subsequent login module does not add credentials. The
recommended approach to implementing an SSO solution is to add a custom login module somewhere
along the chain of login modules.

The ability to disable the addition of credentials for an unauthenticated user is provided, thus enabling an
SSO solution to be implemented.

The Cúram JAAS login module for WebSphere checks if an LTPA token exists within WebSphere using the
WSCredTokenCallbackImpl callback for WebSphere. If this token exists and is valid, then no
authentication is performed by the Cúram login module.

22 IBM Cúram Social Program Management: Cúram Security Guide

Credentials may be added to the WebSphere user registry. Credentials include authentication information
on the user logging in, including the unique identifier for the user. WebSphere checks that credentials
exist for a user after all configured system login modules have executed, if the credentials exist, then the
WebSphere user registry is not queried. Credentials are not added by the Cúram JAAS login module if the
following settings are in place:

• curam.security.check.identity.only property is set to true.
• curam.security.user.registry.enabled property is set to true.

As mentioned in “Deployment of an External Application” on page 21, there are properties relating to the
type of external user that control if credentials are added to WebSphere for a specific external user type.
These include:

• curam.security.user.registry.enabled.types property.
• curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user types.

In the case where the Cúram JAAS login module does not add credentials, the WebSphere user registry
will be queried to attempt to add credentials for the user.

Single Sign On for WebLogic Server
When SSO is required with WebLogic Server , it can be achieved by using the WebLogic Server
authentication provider or a custom authentication provider. Consult the WebLogic Server documentation
for further information on authentication providers. WebLogic Server expects credentials/principals and
the group the user belongs to, to be added by the configured authentication provider. For an SSO solution
the Cúram JAAS login module does not add credentials to the JAAS subject to allow for an alternative
authentication provider to be responsible for adding credentials.

Credentials are not added if the following settings are in place:

• curam.security.check.identity.only is set to true.
• curam.security.user.registry.enabled is set to true.

As mentioned in “Deployment of an External Application” on page 21 , there are properties relating to the
type of external user that control if credentials are added to WebLogic Server for a specific external user
type. These include:

• curam.security.user.registry.enabled.types property.
• curam.security.user.registry.disabled.types property.

These properties provide fine grained control over authentication for external user types.

The responsibility for adding credentials is left to another authentication provider, i.e., the main
authentication provider for authenticating the user. In an SSO scenario, only one of the authentication
providers needs to add credentials to the JAAS subject during the commit() method of the login module
for a user

Other Security Considerations
Another important security concern is protecting content as it is entered, displayed, and transferred
across the network for the Cúram application. The default configuration uses SSL provided by the
application server to secure content as it is transferred.

In addition to this protection, industry-leading products are used during the development lifecycle to
regularly monitor for security vulnerabilities in the application. Examples of such potential vulnerabilities
include cross-site scripting, and SQL injection. Such threats are resolved within the infrastructure when
discovered.

For the best security, customers must do similar security monitoring of their application.

Configuring security 23

SSL Settings for the Application
SSL is on by default for access to the web application. This ensures a secure SSL connection between the
client and server and also ensures data is encrypted. SSL is turned on for the client through settings in the
web.xml file for the web client application.

SSL is turned on at the application server level by settings in WebLogic Server and WebSphere . These
settings for the application servers are done through the Cúram configuration scripts.

Important: The configuration scripts ensure SSL is turned on by default, however, this is a default
configuration that must be updated and new certificates must be established for the SSL protocol.

It is recommended to leave SSL on for access to the Cúram application, however depending on specific
project configurations, there may be a need to turn SSL off for the application.

It is possible, but not recommended to turn off SSL. “Turning Off SSL Settings for the Application” on page
26 should be consulted for further details.

Using Cúram in a Secure Environment
Cúram can be used in a secure server environment (e.g. FIPS-compliant) and is dependent on the
requirements and capabilities of that environment (e.g. WebSphere FIPS configuration). However there
are a few specific areas where Cúram-specific or related operation or configuration is required:

• When using the DB-to-JMS feature, which is enabled via the
curam.batchlauncher.dbtojms.notification.ssl property, described in the Cúram Batch
Processing Guide

• When using the Word Integration Control, used for the FILE_EDIT widget , documented in the Cúram
Web Client Reference Manual, which has two aspects to consider:

– When needing to use it with a browser in a TLS v1.2 environment, which is discussed in the "User
Machine Configuration" topic of the Cúram Web Client Reference Manual.

– The SP800-131a-compliant version of the supporting jar file can be used as long as your browser
JVM supports SHA2, regardless of whether the server environment supports SP800-131a. To digitally
sign the Word Integration jar for SP800-131a compliance you must build your environment using the
enable-sha-2-signed-jars property (e.g. -Denable-sha-2-signed-jars=true) when
invoking the Cúram build targets (e.g. server, client, websphereEAR).

Client HTML Error Pages
Errors that occur on the client cause HTML error pages to be displayed. For debugging purposes, in the
development environment, you can output a Java exception stack trace of the errors that have occurred in
the HTML error pages. However, the HTML error pages that contain the Java exception stack trace are not
included in the IBM Cúram Social Program Management application malicious code and filtering checks.
Therefore, because the HTML error pages could potentially make the application more susceptible to
injection attacks such as cross-site scripting and link injection, the Java exception stack trace should not
be output in a production environment. You can use the errorpage.stacktrace.output client
property to determine whether the Java exception stack trace is written to the HTML error pages.

The errorpage.stacktrace.output property is set to false by default. In a development
environment,for debugging purposes, you can set the property value to true. For more information about
the errorpage.stacktrace.output property, see Application Configuration Properties.

Related reference
Application Configuration Properties

24 IBM Cúram Social Program Management: Cúram Security Guide

Customizing Authentication
You can use the following customization points and development artifacts to customize Cúram
authentication.

Customizing the Login Page
The default out-of-box login screen is represented by the logon.jsp file located in the lib/
curam/web/jsp directory of the Client Development Environment for Java (CDEJ). The logon.jsp file
can be customized by creating a copy of the out-of-the-box file and placing this in a webclient/
components/<custom>/WebContent folder, where <custom> represents the name of the custom web
client component.

The section on Login Pages in the Cúram Web Client Reference Manual has guidelines on what needs to
remain in place in the logon.jsp file and should be referenced for further details.

Applying Styling to the Login Page
Styling changes can be applied to the logon.jsp in the usual way, i.e., by adding the relevant CSS to
any .css file in the custom component. The Cúram Web Client Reference Manual should be consulted for
details on styling.

Enabling Usernames With Extended Characters for WebLogic Server
If the WebLogic Server application server is not being used, this section can be ignored.

If you have Cúram user names or passwords with extended characters (e.g. "üßer") WebLogic Server
provides a proprietary attribute, j_character_encoding , which must be added to the logon.jsp form-
based login page. The WebLogic Server documentation should be consulted for more information. The
attribute must be added to the table element in the logon.jsp file, as shown.

<input type="hidden" name="j_character_encoding" value="UTF-8"/>

Changing the Case-Sensitivity of the Username
The curam.security.casesensitive property controls the case sensitivity of usernames. By default, this is
set to true in the Application.prx file. When set to false in the Application.prx file, this will
result in the authentication and authorization mechanisms ignoring the case of the username.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide should be consulted for
further details on the Application.prx file.

Adding Custom Verifications to the Authentication Process
To add custom verifications, the curam.util.security.CustomAuthenticator interface must be
implemented. This interface contains one method - authenticateUser() . The
authenticateUser() method is invoked for both default authentication and identity only
authentication. The results of this method are expected to be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case of successful authentication, the
result must be curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures anything, including null, can be returned. It is recommended though that
another code from the curam.util.codetable.SECURITYSTATUS codetable be used. This codetable
can be extended to include custom codes as detailed in the chapter on Code Tables in the Cúram Server
Developer's Guide.

After the custom verifications are invoked, the authentication process will update the relevant fields on
the Users database table. For example, if the result of the customized verifications is not
SECURITYSTATUS.LOGIN the number of login failures is increased by 1, and if the break-in threshold is

Configuring security 25

reached, the account will be disabled. Alternatively, if the result is SECURITYSTATUS.LOGIN , the login
failures are reset to 0 and the last successful login field is updated.

Note: When identity-only authentication is enabled the fields of the Users database table are not
updated, irrespective of the result of the custom verification.

Configuring the Custom Authenticator
To configure the application to use this custom extension, the property
curam.custom.authentication.implementation in the Application.prx must be set to the fully qualified
name of the class implementing the CustomAuthenticator interface.

The Cúram Configuration Settings chapter in the Cúram Server Developer's Guide should be consulted for
further details on the Application.prx file.

Configuring Identity Only Authentication
To configure identity-only authentication the curam.security.check.identity.only property should be set to
true in the AppServer.properties file before running the configure target. It is also possible to set
this property once the application is deployed through the application server console. For more
information on configuring the application server the Cúram Server Deployment Guides for the application
server being used should be consulted.

Adding the Cache Refresh Failure Callback Interface
The new callback class must implement the interface:
curam.util.security.SecurityCacheFailureCallback in a class that has a public default
constructor. The implementation of the callback is registered by setting the application property
curam.security.cache.failure.callback to the name of the implementation class. If the property is not set,
no attempt is made to invoke a callback handler.

Turning Off SSL Settings for the Application
SSL is on by default for access to the Cúram application. This ensures a secure SSL connection between
the client and server and also ensures data is encrypted. SSL can be turned on and off for the client
through settings in the web.xml file for the web client application, and at the application server level by
settings in WebLogic Server and WebSphere . These settings for the application servers are configured via
the configuration scripts. It is recommended to leave SSL on for access to the application, however
depending on specific project configurations, there may be a need to turn SSL off for the application. The
following sections detail how to do this.

Modifying the web.xml File for the Client Application
This can be modified by changing the <transport-guarantee> from CONFIDENTIAL to NONE in the
web.xml file. Note, this does not disable access to the web client over HTTPS, but enables additional
access via HTTP. For further details on modifying the web.xml file, the section on Customizing the Web
Application Descriptor in the Cúram Web Client Reference Manual should be referenced. An example of
setting this property is shown.

<user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>

Modifying the Application Server Configuration
Modifying the configuration for WebSphere can be done in one of two ways. The first approach below
being the recommended approach.

• Use the existing non-secure port, setup by default for Web Services (recommended approach). This
caters for both SSL and non-SSL connections.

1. Navigate to Environment -> Virtual Hosts -> client_host->Host aliases

26 IBM Cúram Social Program Management: Cúram Security Guide

2. Click New and enter * for host name and 9082 for port number, then click OK
3. On the next page click Save to store your new value to the server configuration. Please note that the

port 9082 corresponds to the CuramWebServicesChain configured in the default client application
and this port is now the port that can be used to access the application using HTTP

• Reuse the current SSL port of 9044 :

The current port can be set up as a non-secure port. The steps to do this are described in the Cúram
Deployment Guide for WebSphere Application Server - Section A.2.11 Server Configuration - Set up port
access. Follow Steps 7 to 11 inclusive. The only difference for Step 11, is that the Transport Chain
Template should be set to 'WebContainer' (and not WebContainer Secure).

• Complete the below steps after following any of the above step, to turn of SSL in Global Security
Settings :

1. Navigate to Security -> GlobalSecurity ->
2. Select Web and SIP Security -> Single Sign-On (SSO)
3. UnTick requires SSL , then click OK, save the server configuration.

Analyzing the AuthenticationLog Database Table
All authentication attempts (both successes and failures) are logged in the AuthenticationLog database
table. The following are the rows of interest on this table:

Table 2: Contents of the Authentication Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the login attempt.

altLogin Boolean indication of whether the username represents an
alternate Login ID. When this column equals '1' (true) the value
in the userName column is an alternate login ID as per “Alternate
Login IDs” on page 3; otherwise, the userName column
represents the userName from the Users or ExternalUser table.

loginFailures The number of login failures for this user since their last
successful login.

lastLogin The date and time of the last successful login.

Configuring security 27

Table 2: Contents of the Authentication Log (continued)

Field Meaning

loginStatus The status of the login attempt. This may be one of:

• LOGIN: Successful login.
• ACCDISABLE: The account has been explicitly disabled.
• ACCEXPIRED: The password expiry date has been reached.
• PWDEXPIRED: The number of days which the user was given to

change their password has been exceeded.
• BADUSER: The user does not exist.
• AUTHONLY: This is used in the case of identity only

authentication and indicates that only authorization
verifications will be performed.

• BADPWD: The specified password was incorrect.
• BREAKIN: A specified number of incorrect passwords has been

reached. The account is disabled.
• RESTRICTED: The user is not allowed access the system at this

time.
• LOGEXPR: The number of login attempts which the user was

given to change their password has been exceeded.
• AMBIGUOUS: The specified username is ambiguous as it is a

case insensitive duplicate of another username.

The LogAdmin API can be used to query the AuthenticationLog database table. The Java documentation
for this class should be referenced for further details.

Customizing Authorization
Use this information to set up authorization for Cúram users.

Creating Authorization Data Mapping
The authorization data for a user can be set up through the use of the Data Manager (DMX files) or through
the Cúram Administration screens. The Cúram System Configuration Guide should be consulted for details
on identifying how to group security from a business perspective.

To create a new security role for a user, the security identifiers (SIDs) that the user must have access to,
need to be identified. These SIDs should then be organized into groups of SIDs. The role, groups and
SIDs, once identified, need to be set up on the security tables that these represent.

Security data is considered essential for the set up of a Cúram application. As such, the examples below
describe adding security data to the data/initial directory within the component.

Creating a New Security Role
To create a new security role, a new entry must be added to the SecurityRole database table, setting the
rolename attribute.

To do this, create/add to the SecurityRole.dmx file in the %SERVER_DIR%/components/<custom>/
data/initial , where <custom> is any new directory created under components that conforms to the
same directory structure as components/core.

28 IBM Cúram Social Program Management: Cúram Security Guide

Creating a New Security Group
To create a new security group, a new entry must be added to the SecurityGroup database table setting
the groupname attribute.

To do this, create/add to the SecurityGroup.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Linking the Security Group to the Security Role
The security role must be linked to the security group. To do this, create a new entry in the
SecurityRoleGroup table, setting the rolename and groupname attributes.

To do this, create/add to the SecurityRoleGroup.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Creating the Security Identifier (SID)
The create a new SID, an entry must be added to the SecurityIdentifier table, setting the sidname and
sidtype attributes.

To do this, create/add to the SecurityIdentifier.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Linking the Security Group to the SID
To link the security group with the SID, an entry must be added to the SecurityGroupSID table, setting the
groupname and sidname attributes.

To do this, create/add to the SecurityGroupSID.dmx file in the %SERVER_DIR%/components/
<custom>/data/initial , where <custom> is any new directory created under components that
conforms to the same directory structure as components/core.

Linking the Security Role to the User
To associate authorization data to a user, the security role must be linked to the user.

To do this, update the entry for the specified user in the Users.dmx file located in the %SERVER_DIR%/
components/<custom>/data/initial , where <custom> is any new directory created under
components that conforms to the same directory structure as components/core , setting the rolename
attribute to be the rolename as specified on the SecurityRole table.

Loading Security Information onto the Database
Once all of the information has been entered in the various DMX files, the Data Manager should be used to
load the DMX data onto the database. The Data Manager chapter in the Cúram Server Developer's Guide
should be consulted for further details.

Creating Function Identifiers (FIDs)
When a method is made publicly accessible; by setting the stereotype to be <<facade>>, security is
automatically switched on. This means a SID is automatically generated for that method and the security
enabled flag for the method is set to true . The SID and its fidenabled flag are stored in the database-
independent <ProjectName>_Fids.xml file located in the /build/svr/gen/ddl subdirectory. This
file is used to insert the FID information onto the database via the Data Manager.

A FID follows the naming convention of <classname>.<methodname> , and the maximum length of a
FID is 100 characters. For example, for a BPO called ProductEligibility , with two methods called
insertProduct and testProduct , two FIDs are created: ProductEligibility.insertProduct
and ProductEligibility.testProduct.

Configuring security 29

If security for a process method is switched off at design time in the model, a SID/FID is still generated
but the security enabled flag is set to false . Setting the security enabled flag to false means that no
authorization check is performed for this method.

Switching Security off for a Process Method
Setting the Generate_Security option on the process method to false in the model switches off
security for a process method.

If security for a process method is switched off at design time in the model, a FID is still generated but the
security enabled flag is set to false . Setting the security enabled flag to false means that no
authorization check is performed for this method.

Security Considerations During Development
It is important to consider the effect of these design options when implementing security during the
development of a Cúram application. They are the first and last line of defense against unauthorized
access to application process functionality. Generally speaking, security will be switched on for almost all
process methods. Security may be switched off for a process method that does not need security, e.g., a
login method that gets invoked when a user tries to login to an application. As a user has not yet been
authenticated or authorized, they need access to this method in order to login, therefore switching off
security for this method may be necessary.

During the initial design phase of an application the overhead of keeping the security environment "in
sync" with an evolving application can be tedious. It is possible to disable the authorization check by
setting the curam.security.disable.authorisation property in the Application.prx file.

warning: Warning

The curam.security.disable.authorisation property should only be turned on at design phase. This should
never be set to true in a production environment.

Finally, it should be noted that once the code and scripts have been generated from a working model, the
information associated with a FID cannot be changed. To change this information requires modifying the
model, re-generating and re-building the database.

Controlling the Logging of Authorization Failures for the Client
By default, web client authorization failures are not recorded.

The curam.enable.logging.client.authcheck property controls whether the authorization failures
encountered by the web client are logged or not. This property is false by default, meaning these
failures will not be logged. When set to true a log of these authorization failures is stored on the
database table AuthorisationLog . The Cúram Server Developers Guide , Application.prx - Dynamic
properties section should be consulted for more information on this property.

Authorizing New SID Types
A server interface method is provided to enable authorization to be performed directly. This method may
be added to a class that manipulates data on the conceptual element being secured by the new SID type.

curam.util.security.Authorisation.isSIDAuthorised()

A usage example of the isSIDAuthorised() method is below:

// The SID associated with the conceptual element
 // to be secured.
 String someSID = "someSID";

 // Get the logged in username
 String loggedUser =
 curam.util.transaction.TransactionInfo.getProgramUser();

 // Check if the user has access rights
 if (curam.util.security.Authorisation.isSIDAuthorised(
 someSID, loggedUser)) {

30 IBM Cúram Social Program Management: Cúram Security Guide

 // Do something sensitive that this user has rights to do
 ...
 } else {
 // Throw an exception indicating the user doesn't have
 // access to perform this action
 AppException exception
 = new AppException(MESSAGE.ERR_USER_NO_ACCESS);
 throw exception;
 }

Analyzing the AuthorisationLog Database Table
All authorization failures are logged in a database table called the AuthorisationLog. The following are the
rows of interest on this table:

Table 3: Contents of the Authorization Log

Field Meaning

timeEntered The timestamp of the entry in the log.

userName The username associated with the authorization attempt.

identifierName The security identifier (SID) or functional identifier (FID)
associated with the failure.

The LogAdmin API can be used to query the AuthorisationLog database table. The Java documentation
for this class should be referenced for further details.

Customizing Cryptography
Use this information to configure and customize cryptography for Cúram.

Cipher Customization
Modification of the default cipher settings is a relatively straightforward process, but needs to be
adequately planned and tested. You will require an application restart for the changes to be implemented
and depending on the size and topology of your organization and deployments you need to choose a time
when in-progress changes won't be an impact. Also, consider any data (e.g., properties containing
encrypted passwords) managed by the Cúram Transport Manager (CTM) that will either need to be
updated or managed to prevent systems from being out of sync with one another (see the Cúram
Transport Manager Guide for more information).

Modification of the default cipher settings involves the following steps:

1. Choosing new settings for the CryptoConfig.properties and underlying artifacts - see “Cúram
Cipher Settings” on page 15

2. Depending on the settings, you may need to perform additional steps (e.g. when modifying the
keystore as per “How to Create a New Keystore” on page 32).

3. Modify the CryptoConfig.properties file; note the default location is <SERVER_DIR>/project/
properties.

4. Remove any existing CryptoConfig.jar files (these contain CryptoConfig.properties) that are
found in the <JAVA_HOME>/jre/lib/ext directory ($JAVA_HOME/lib/ext on IBM z/OS®). If any
Cúram clients or servers are running these will need to be terminated in order to be able to deploy an
updated CryptoConfig.jar file with the updated settings.

5. Re-encrypt the passwords in all existing property files as identified in “Cipher-Encrypted Passwords”
on page 17. The Apache Ant configtest, configure, and installapp targets will place an updated
CryptoConfig.jar file in the Java lib/ext directory.

Configuring security 31

6. Test and verify your changes.

Testing of your changes should include verifying any functionality that would be impacted; for example:

• Ensure the Ant configtest target still works.
• Ensure batch programs still work.
• If you utilize the Ant configure target ensure it still works.

Related topics:

• “Cúram Digest Settings” on page 16
• “Cipher-Encrypted Passwords” on page 17

Key Management
The management of the secret key for Cúram encrypted passwords is done via the JDK-provided
keytool command, or equivalent. You will need to make local decisions about placement and isolation of
the secret key for Cúram that are compatible with your local organization and standards.

Keep in mind that some settings passed to the keytool command need to be reflected in the
CryptoConfig.properties settings, which needs to be coordinated for successful deployment as
discussed in “Cipher Customization” on page 31. The following table shows the relationship between
keytool command arguments and the Cúram crypto properties.

Table 4: Relationship of keytool Command Arguments to Cúram Crypto Properties

Keytool argument CryptoConfig.properties property

-keyalg curam.security.crypto.cipher.algorithm

-alias curam.security.crypto.cipher.keystore.seckey.alias

-keystore curam.security.crypto.cipher.keystore.location

-storepass curam.security.crypto.cipher.keystore.storepass

Note: The secret key password defaults to the storepass password and should not be changed.

See the JDK documentation for more information on using the keytool command.

Related topics:

• “Cúram Cipher Settings” on page 15
• “Cryptography Properties” on page 15
• “How to Create a New Keystore” on page 32

How to Create a New Keystore
Creating a new keystore to replace the Cúram default requires running the keytool command provided
with the JDK (or equivalent), modifying the CryptoConfig.properties settings to correspond (necessary,
only if the keystore name and/or location is changed from the default, but changing the name can make
your customizations more obvious), and ensure the Curam Ant targets can find the new keystore
(necessary, only if the default location is changed).

For example:
keytool -genseckey -v -alias MySecretKey -keyalg AES -keysize 128
-keystore MyOrganization.keystore -storepass secretpw -storetype jceks

The section “Key Management” on page 32 identifies the keytool command arguments that relate to the
CryptoConfig.properties settings.

32 IBM Cúram Social Program Management: Cúram Security Guide

The default location of the keystore file is the <SERVER_DIR>/project/properties directory with a
sub-directory structure that reflects the JDK in use: "ibm" for the IBM JDK and "sun" for the Oracle JDK.
So, when creating a keystore file the Curam build scripts expect to find it in the case of the IBM JDK in:
<SERVER_DIR>/project/properties/ibm. If you desire to use a location different from the default
you can do one of two things:

1. Use an absolute location for the keystore file as described in “Cryptography Properties” on page 15. In
this case the Curam default keystore files in CryptoConfig.jar will be ignored in favor of the
absolute setting CryptoConfig.properties.

2. Use the Ant crypto.prop.file.location property when you run any of the targets, described in
“Cipher Customization” on page 31, that create and copy the CryptoConfig.jar to point to your
alternate location. The location specified will have to reflect the structure of your JDK - "ibm" or "sun".
For instance:

• Place the new keystore file in a location like this on Windows for the IBM JDK: C:\Curam\keystore
\ibm\MyOrganization.keystore

• Point to that location when running the build targets: ant configure -
Dcrypto.prop.file.location=C:\Curam\keystore

Note: In the example above the change of keystore file name to MyOrganization.keystore will
require a corresponding change to CryptoConfig.properties as per “Cryptography Properties” on
page 15.

Note: The only supported keystore type for Cúram cryptography is jceks.

Following the keystore creation you need to follow the steps in “Cipher Customization” on page 31.

Related topics:

• “Key Management” on page 32
• “Cipher Customization” on page 31

Digest Customization
Modification of the default digest settings is a relatively straightforward process, but needs to be
adequately planned and tested. You will require an application restart for the changes to be implemented
and depending on the size and topology of your organization and deployments you need to choose a time
when in-progress changes won't be an impact. Also, consider any data (e.g., User passwords) managed by
the Cúram Transport Manager (CTM) that will either need to be updated or managed to prevent systems
from being out of sync with one another (see the Cúram Transport Manager Guide for more information).

The process is covered in detail in “How to Utilize the Superseded Digest Settings for a Period of
Migration” on page 34.

Related topics:

• “Cúram Digest Settings” on page 16
• “How to Specify a Digest Salt” on page 33

How to Specify a Digest Salt
While Cúram doesn't specify one out-of-the-box, specifying a salt for digested passwords provides an
additional level of protection against brute-force attacks.

To specify a salt for your digested passwords:

1. Choose a sufficiently long and random string.
2. Encrypt this string using the Ant encrypt target (as documented in the Cúram Server Developer's

Guide).
3. Place the encrypted string in a file.

Configuring security 33

4. Specify the location of the file containing the encrypted salt string using the
curam.security.crypto.digest.salt.location property in CryptoConfig.properties
and ensure that any deployed CryptoConfig.jar files reflect the updated settings.

For manageability you should make these changes in conjunction with the steps in “How to Utilize the
Superseded Digest Settings for a Period of Migration” on page 34.

How to Utilize the Superseded Digest Settings for a Period of Migration
Utilizing the superseded digest settings means you are migrating your existing digested passwords to a
new crypto configuration (e.g. new salt) and would like Cúram user passwords automatically migrated for
a period of time. This applies to Cúram internal and external users, but does not apply to users managed
by third-party security systems such as LDAP.

The process to do this is:

1. Choose a time when your Cúram system can be down and with the Cúram system not running.
2. Copy the existing digest property names and values in CryptoConfig.properties and rename the

properties to the new superseded property names.
3. Modify the existing digest property names in CryptoConfig.properties.
4. Set the curam.security.convertsupersededpassworddigests.enabled property to 'true'.
5. Set the curam.security.crypto.upgrade.start property to help you track when you introduced

the updated configuration. This value can be used below to help manage unmigrated user passwords.
6. Restart the application server, but note the following.

Note: The Cúram default web services user (WEBSVCS), or any user not processed via the
CuramLoginModule, is not available for automatic password migration. You must reset these users
before restarting the application server. To do this:

1. Obtain the new digest password value via the Ant digest target (e.g. ant digest -
Dpassword=password).

2. Update the password value in the database, which is easily done via SQL (e.g. UPDATE USERS SET
PASSWORD='<new digest value>' WHERE USERNAME='WEBSVCS';).

3. You can now start the application server

After a period of time (e.g. weeks or months) when you consider the migration period to be over set the
curam.security.convertsupersededpassworddigests.enabled property to 'false' and unset
the curam.security.crypto.upgrade.start property.

Users who did not login during the migration period will now see their logins fail due to password
mismatches. You have two approaches for addressing the passwords not updated during the migration
period:

1. Require these users to contact your internal support to have their password reset via the admin user
interface.

2. Manually identify the users in the Cúram USERS table who were not updated during the migration
period and either manually set new default password either via SQL (see the digest target described
in the Cúram Server Developer's Guide to obtain new digest password values) or via the admin user
screens. For example, using the following query: SELECT username FROM users WHERE
lastwritten between timestamp('2013-06-01 15:00:00') AND
timestamp('2013-09-01 00:00:00')

You should not leave curam.security.convertsupersededpassworddigests.enabled set to true
indefinitely because:

1. It's meaningless to have gone to the trouble of upgrading from configuration 'A' to configuration 'B' and
leave the original 'A' configuration active;

2. It leaves potentially weaker crypto settings active in the system; and

34 IBM Cúram Social Program Management: Cúram Security Guide

3. In order to use this functionality for a future upgrade, say from configuration 'B' to 'C', you would have
to have upgraded all the 'A' passwords to at least 'B'.

Note: Any files, e.g. DMX, with stored digests need to be considered with respect to your migration
strategy so they reflect the correct values.

Note: Any use of the Cúram Transport Manager (CTM) during a migration needs to be considered in terms
of ensuring compatible settings and expectations between the source and target systems.

Related topics:

• “Cúram Cipher Settings” on page 15
• “Cúram Digest Settings” on page 16

Modifying Your Crypto Configuration for a Production System
While the out-of-the-box (OOTB) crypto settings are adequate for typical development or test
environments, they should be modified for production environments to protect and provide isolation
between these relatively low-risk environments and high-risk production environments.

Some typical changes to the OOTB crypto configuration, in preparation for production, might include:

• Providing a new secret key.

– Such a key can be generated using the JDK keytool utility; see “How to Create a New Keystore” on
page 32

- This secret key should be stored in a separate keystore.
- The properties for these secret key changes would be as described in “Key Management” on page

32.
• Providing new digest settings

– New digest settings can include a new salt, iteration count, and/or algorithm.

- The properties for these digest changes would be as described in “Cúram Digest Settings” on page
16 and “How to Specify a Digest Salt” on page 33 and the process described in “How to Utilize the
Superseded Digest Settings for a Period of Migration” on page 34.

Remember to keep your configuration files isolated from personnel who do not absolutely have to access;
specifically, keeping development, test, and production configuration information isolated.

Customizing External User Applications
Use this information to customize external user applications. As external users are processed differently
to internal users, a separate Cúram web application is required specifically for external users.

Creating an External User Application
A new web client application must be developed for external users. The Cúram Web Client Reference
Manual should be consulted for details on creating a new web client application.

Creating an External User Client Login Page
A new logon.jsp must be created for an external user application. The Cúram Platform ships with a default
login page, logon.jsp , located in the lib/curam/web/jsp directory of the CDEJ (Client Development
Environment for Java). This file should be copied to a webclient/components/<custom
component>/WebContent folder in the web client application and modified as follows:

The table element should be extended to include a hidden input field user_type:

<input type="hidden" name="user_type"
 value="EXTERNAL"/>

Configuring security 35

Where EXTERNAL indicates the type of external user. This can be set to any value, excluding INTERNAL.

Creating an External User Client Automatic Login Page
Some external user client applications require no user authentication and hence a username and
password should not be requested. It is not possible to disable authentication in Cúram , so the best way
to achieve this requirement is to write an automatic login script.

The automatic login script takes a hard coded username and password and provides that as the
authentication information when requested. This means that all users for such an application will always
execute under the same username. Use of such a script should be limited to true open access
applications.

When implementing applications that have a need for an automatic login, the implications for session
management must be considered. Session management in Cúram maintains a user's session information
to ensure when the user logs back in, the relevant session information, i.e., their tabs and navigation
opens to where they left off for them. In the case of a user that has been automatically logged in, this
information must not be maintained, therefore session management may need to be turned off in this
scenario. The Cúram Web Client Reference Manual should be referenced for further details on how to turn
this off.

The following are examples of automatic login and logout JSP scripts.

Note: Security implementations and configurations differ across application server vendors so these
examples may not work in all cases or for all application server versions.

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:prefix="URI"
 version="2.0">
 <jsp:directive.page buffer="32kb"
 contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" />
 <jsp:text>
 <![CDATA[
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>
 </jsp:text>

 <!-- Automatic redirect to login security check of user
 details specified below -->

 <html>
 <head>
 <script type="text/javascript">
 function autoSubmit() {
 document.getElementById("loginform").submit();
 }
 </script>
 <meta content="text/html; charset=UTF-8"
 http-equiv="Content-Type" />
 </head>
 <body class="logonBody"
 style="visibility: hidden;"
 onload="autoSubmit()">
 <form id="loginform"
 name="loginform"
 action="j_security_check"
 method="post">
 <input type="hidden"
 name="j_username"
 value="generalpublic" />
 <input type="hidden"
 name="j_password"
 value="password" />
 <input type="hidden"
 name="user_type"
 value="EXTERNAL" />
 </form>
 </body>
 </html>
</jsp:root>

36 IBM Cúram Social Program Management: Cúram Security Guide

Automatic Logout JSP

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:prefix="URI"
 version="2.0">
 <jsp:directive.page buffer="32kb"
 contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" />
 <jsp:text>
 <![CDATA[
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>
 </jsp:text>
 <html>
 <head>
 <script type="text/javascript">
 function autoSubmit() {
 document.getElementById("logout").submit();
 }
 </script>
 <meta content="text/html; charset=UTF-8"
 http-equiv="Content-Type" />
 </head>
 <body class="logoutBody"
 style="visibility: hidden;"
 onload="autoSubmit()">
 <form id="logout"
 name="logout"
 action="servlet/ApplicationController"
 method="post">
 <input type="submit"
 name="j_logout"
 value="Log Out" />
 <input type="hidden"
 name="logoutExitPage"
 value="redirect.jsp" />
 </form>
 </body>
 </html>
</jsp:root>

Extending the Public Access User Class
To "hook" the custom solution into the application the curam.util.security.PublicAccessUser
abstract class must be extended, which requires implementing the
curam.util.security.ExternalAccessSecurity interface. That concrete class will be used during
the authentication and authorization process to determine required information relating to the external
user. This class and its methods are described in detail below.

Authenticating an External User
The authenticate() method is responsible for authenticating an external user. It is invoked during the
authentication process if the user is identifier as an external user. In the case of external users this
method is invoked in place of the configured authentication.

Note: If an alternative authentication mechanism, e.g. LDAP, is configured, the external users must be
able to authenticate against this mechanism.

/**
 * The implementation of this method should validate the identifier and
 * password and return the result of the validation. If the information is
 * valid, the codetable code SecurityStatus.LOGIN should be returned.
 *
 * @param identifier The identifier of the external user.
 * @param password The password as array of characters.
 * @param userType The type of external user.
 *
 * @return The status of the authentication in the form of a codetable code.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */

Configuring security 37

 public abstract String authenticate(String identifier,
 char[] password, String userType)
 throws AppException, InformationalException;

The input parameters to the method include an identifier, the digested password as an array of
characters, and the type of the external user to be authenticated.

The userType parameter is intended to allow for support of multiple types of external users that require
different authentication mechanisms. The use of this parameter depends on the custom implementation.

The expected result of this method will be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case of successful authentication the
result must be:

curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures this codetable contains a number of entries, including BADUSER , BADPWD and
PWDEXPIRED . This codetable can be extended to include custom codes as detailed in the Cúram Server
Developer's Guide.

The authentication result returned by this method is automatically logged in the AuthenticationLog
database table. For more information on this table see the Cúram Server Developers Guide.

The abstract class PublicAccessUser also defines the following abstract methods that any concrete
subclass must implement:

• Method upgradeSafePasswordValidation() is required to allow for password comparison and is
defined as follows:

public final boolean upgradeSafePasswordValidation(
final String userName,
final String storedPasswordHash,
final String plaintextPassword)

• Method setPassword() is to allow the implementor to persist the password (e.g. a new password) in
the case of crypto upgrades. So this method gets called when the
upgradeSafePasswordValidation() method is called. Here is the method definition:

public abstract void setPassword(String username, String hashedPassword)
throws AppException, InformationalException;

See the associated Javadoc of the PublicAccessUser class for more details regarding the above
methods.

Determine External User Details
Details for an external user are retrieved by calling the getLoginDetails() method of the
curam.util.security.ExternalAccessSecurity interface. These details are returned directly
after authentication to direct the external user to the correct application homepage.

/**
 * The implementation of this method should retrieve the
 * details of the user required to redirect them to the correct
 * application page. This information includes the name of the
 * application home page for the user, the default locale for
 * the user and a list of warnings/messages for the user.
 *
 * @param identifier The identifier of the external user.
 *
 * @return The user details, including the application
 * home page.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
UserLoginDetails getLoginDetails(String identifier)
 throws AppException, InformationalException;

38 IBM Cúram Social Program Management: Cúram Security Guide

An instance of the curam.util.security.UserLoginDetails class must be created and returned
from this method. The following information should be returned using this class:

• UserLoginDetails . setApplicationCode(String code)

The code corresponding to the application homepage for the external user.

This must be a valid entry in the APPLICATION_CODE codetable.
• UserLoginDetails . setDefaultLocale(String defaultLocale)

The default locale for the external user.

This is the locale the application will be displayed in by default for the external user.
• UserLoginDetails . setFirstName(String firstName)

The first name of the external user.

This will make the user's first name available for display in the user-message for an application banner.
• UserLoginDetails . setSurname(String surname)

The surname of the external user.

This will make the user's surname available for display in the user-message for an application banner.
• UserLoginDetails . addInformationals(InformationalManager informationalManager)

Any informationals that must be displayed to the external user.

The curam.util.exception.InformationalManager class can be used to create a number of
informational or warning messages that will be displayed when the external user logs in. For example, a
warning to let the external user know that their password is due to expire.

Authorizing an External User
The getSecurityRole() method is used during authorization to determine the security role associated
with the external user. The security roles used for external users are configured in the same way as the
security roles for internal users.

/**
 * The implementation of this method should return the security
 * role associated with the external user for authorization
 * purposes. If the user does not exist null should be
 * returned.
 *
 * @param identifier The identifier of the external user.
 *
 * @return The security role for authorization.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
String getSecurityRole(String identifier)
 throws AppException, InformationalException;

The SDEJ will invoke an implementation of this method during the authorization process if the user does
not exist in the security cache. Only internal users can exist in the security cache. This means that the
identifiers used to identify external users must be unique and not conflict with usernames setup for
internal users, unless the custom UserScope interface as described in “User Scope” on page 21 , is
implemented. Otherwise, if any usernames conflict the access rights assigned to the internal user will also
be used for the external user.

If a role cannot be determined for the external user, null must be returned so that the SDEJ can report the
authorization error correctly.

Configuring security 39

Determining the User Type
The getUserType() method is used to determine if a user is an external user.

/**
 * Return the type of the user. This is to allow support for
 * different types of external user. If there is only one
 * type of external user, simply return "EXTERNAL".
 *
 * @param identifier The identifier of the external user.
 *
 * @return The type of the external user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 String getUserType(final String identifier)
 throws AppException, InformationalException;

The getProgramUserType() in curam.util.transaction.TransactionInfo will invoke this
method to return the type of user if the user is not recognized as an internal user. For internal users
"INTERNAL" is always returned.

For external users, there may be multiple types of external users, so this method should return the
specific type of external user.

Preventing the Deletion of a Security Role: Role Usage Count
The getRoleUsageCount() method is used to prevent the deletion of a security role that is currently
referenced by an external user.

/**
 * Return the number of users using a particular role. This
 * method is used to ensure that a role cannot be deleted when
 * it is in use by an external user.
 *
 * @param role The security role name.
 *
 * @return The number of users currently using the
 * specified role.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 int getRoleUsageCount(String role)
 throws AppException, InformationalException;

Security roles that are referenced by any user, internal or external, cannot be removed. This method
should return a number of 1 or more if any external users reference the specified role.

Retrieving a Registered Username
The getRegisteredUserName() method is used retrieve the correct case username, which may be
independent of the username typed during login.

/**
 * Gets the correct casing for this user independent of mixed
 * case which may have been typed in by the logged in user.
 *
 * @param identifier The identifier of the external user,
 * whose casing may not match that of the persisted identifier
 * for the user.
 *
 * @return The actual case for this user, before its case has
 * been modified by external factors.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 public String getRegisteredUserName(final String identifier)
 throws AppException, InformationalException;

40 IBM Cúram Social Program Management: Cúram Security Guide

The default implementation for this method should return the username that has been provided. It is only
if the curam.security.casesensitive has been set to false that this method may need to change the case of
the username returned.

Note: Where the curam.security.casesensitive property has been set to false and is required for external
users, it is the responsibility of all methods in this interface to handle any case specific requirements.

Reading User Preferences
The getUserPreferenceSetID() method is used to retrieve the user preference set ID associated
with an external user. If no user preferences exist for an external user, then the default preferences will be
used for the external user. The User Preferences chapter in the Cúram Server Developer's Guide should be
referenced for further details on user preferences.

/**
 * This method is used to retrieve a set of user preferences
 * associated with an external user. The userPrefSetID is a
 * foreign key to the UserPreferenceInfo table.
 * The UserPreferenceInfo table contains information on
 * the user preferences.
 *
 * @param identifier The identifier of the external user.
 *
 * @return The userPrefSetID for the external user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 String getUserPreferenceSetID(final String identifier)
 throws AppException, InformationalException;

The default implementation for this method should return the user preference set ID for the user
preferences associated with an external user.

Modifying User Preferences
The modifyUserPreferenceSetID() method is used to update the external user details with a new
set of user preferences. Please see User Preferences for further details on user preferences.

/**
 * This method updates the external user details with new user
 * preferences.
 *
 * @param userPreferenceSetID The ID for the user preferences.
 * @param username The identifier of the external user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
 void modifyUserPreferenceSetID(
 final String userPreferenceSetID, final String username)
 throws AppException, InformationalException;

The default implementation for this method should update the user preference set id associated with an
external user.

Configuring External Access Security
The curam.custom.externalaccess.implementation property must be set in the
Application.prx to indicate the fully qualified name of the class which implements the above
interface.

Note: The curam.custom.externalaccess.implementation property is not dynamic, and if changed the
application must be restarted before the change will take effect.

Configuring security 41

Determining if a User is Internal or External using the UserScope Interface
To support alternative methods for determining if a user is internal or external the custom interface
UserScope is available. For example, even though usernames must be unique across the set of internal
and external users, this custom interface can be implemented to allow duplicate usernames across
internal and external applications in a limited way.

To provide a custom implementation for determining the type of user, the
curam.util.security.UserScope interface must be implemented. This interface has one method
isUserExternal() that determines the type of user. This method should return true if the user is
considered external or false indicating the user is internal.

For example, an installation might have application1 deployed with userA, a Cúram internal user, and
application2 deployed with userA being external (e.g. defined to LDAP). The ability for application1 to use
internal userA and application2 to use external userA would be controlled by different properties. That is,
Bootstrap.properties in properties.jar in the application1 EAR would have a different custom
property setting from application2 EAR and the implementation of
curam.util.security.UserScope.isUserExternal() would interrogate this setting to decide if
the user is internal or external.

To specify a custom implementation of the UserScope interface the
curam.custom.userscope.implementation property must be set in Application.prx. This
should be set to the fully qualified name of the class that implements the UserScope interface.

Note: The curam.custom.userscope.implementation property is not dynamic, and if changed the
application must be restarted before the change will take effect.

The isUserExternal() method of the UserScope interface is detailed in “User Type Determination”
on page 42.

User Type Determination
The isUserExternal() method is invoked anywhere in the application where the type of user is to be
determined. This includes when the user logs into the application and when they attempt authorization to
access secured elements of Cúram .

/**
 * The implementation of this method should determine the type of
 * User that is logged into the application. There are 2 types of
 * users: INTERNAL and EXTERNAL. If the user is an EXTERNAL user,
 * then this method should return true. If false is returned,
 * then the user is considered INTERNAL.
 *
 * @param username - The username.
 * @return A boolean value of true indicating an EXTERNAL user,
 * false indicates an INTERNAL user.
 *
 * @throws AppException Generic Exception Signature.
 * @throws InformationalException Generic Exception Signature.
 */
boolean isUserExternal(String username)
 throws AppException, InformationalException;

42 IBM Cúram Social Program Management: Cúram Security Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2018 43

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Programming Interface Information
This publication documents intended programming interfaces that allow the customer to write programs
to obtain the services of IBM Cúram Social Program Management.

44 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 45

http://www.ibm.com/legal/copytrade.shtml

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	List of Tables
	Chapter 1. Configuring security
	Authentication Overview
	Authentication
	Authentication Architecture
	Default Authentication
	Alternate Login IDs
	The Login Page
	Customization of the Login Page
	Cúram JAAS Login Module
	Password Management
	Default Configuration for WebLogic Server
	Default Configuration for WebSphere
	Customization of the JAAS Login Module
	Verification Process for Authentication
	Default Authentication
	Default Verification Process
	Authentication Attempts
	Customization of Default Authentication
	Identity Only Authentication
	Customization of Identity Only Authentication
	External Access Security Authentication
	Custom Verifications

	Authorization Overview
	Users, Roles and Groups
	Security Identifiers (SIDs)
	Function Identifiers (FIDs)
	Field Level Security Identifiers
	User Defined SIDs
	Runtime Authorization
	Client Authorization Checks
	Server Authorization Checks

	Cryptography in Cúram
	Ciphering
	Digesting
	Cryptography Properties
	Cúram Cipher Settings
	Cúram Digest Settings
	Cipher-Encrypted Passwords

	Security Data Caching
	Cúram Security Cache
	Cache Refresh
	Cache Refresh Failure
	WebSphere Caching Behavior

	Security for Alternative Clients
	Mandatory Cúram Users
	Web Services
	Batch Processing
	JMS Messaging
	Deferred Processing

	External User Applications
	External User Applications
	User Scope
	Deployment of an External Application

	Using Single Sign On
	Single Sign On with WebSphere
	Single Sign On for WebLogic Server

	Other Security Considerations
	SSL Settings for the Application
	Using Cúram in a Secure Environment
	Client HTML Error Pages

	Customizing Authentication
	Customizing the Login Page
	Applying Styling to the Login Page
	Enabling Usernames With Extended Characters for WebLogic Server
	Changing the Case-Sensitivity of the Username
	Adding Custom Verifications to the Authentication Process
	Configuring the Custom Authenticator
	Configuring Identity Only Authentication
	Adding the Cache Refresh Failure Callback Interface
	Turning Off SSL Settings for the Application
	Modifying the web.xml File for the Client Application
	Modifying the Application Server Configuration
	Analyzing the AuthenticationLog Database Table

	Customizing Authorization
	Creating Authorization Data Mapping
	Creating a New Security Role
	Creating a New Security Group
	Linking the Security Group to the Security Role
	Creating the Security Identifier (SID)
	Linking the Security Group to the SID
	Linking the Security Role to the User
	Loading Security Information onto the Database
	Creating Function Identifiers (FIDs)
	Switching Security off for a Process Method
	Security Considerations During Development
	Controlling the Logging of Authorization Failures for the Client
	Authorizing New SID Types
	Analyzing the AuthorisationLog Database Table

	Customizing Cryptography
	Cipher Customization
	Key Management
	How to Create a New Keystore
	Digest Customization
	How to Specify a Digest Salt
	How to Utilize the Superseded Digest Settings for a Period of Migration
	Modifying Your Crypto Configuration for a Production System

	Customizing External User Applications
	Creating an External User Application
	Creating an External User Client Login Page
	Creating an External User Client Automatic Login Page
	Extending the Public Access User Class
	Authenticating an External User
	Determine External User Details
	Authorizing an External User
	Determining the User Type
	Preventing the Deletion of a Security Role: Role Usage Count
	Retrieving a Registered Username
	Reading User Preferences
	Modifying User Preferences
	Configuring External Access Security
	Determining if a User is Internal or External using the UserScope Interface
	User Type Determination

	Notices
	Privacy Policy considerations
	Programming Interface Information
	Trademarks

