IBM Curam Social Program Management
Version 7.0.3

Working with Intelligent Evidence
Gathering (IEG)

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
53

Edition

This edition applies to IBM® Clram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

©

Contents

LiSt Of FigUIeS....cuiiuiiuiieiieiiniieiieiieieieecietiestentasiesiostecescascsscsssssssnssassassassassascascascanes V

[ES3 oY = 1 =3 < | |

Chapter 1. Working with Intelligent Evidence Gathering......c..cccceecvreireirniinninnnnnnn 1

OVBIVIBW . etieieiite ettt ettt s et e s et e s e te e s eateeseateesasteesaseeesastee s staesaseeesastae s staesasteesasteesansaesansaesnssaesasseesanseessnseesnnes 1
FA¥e Lo ThaTo] o= 1 2 =Y Ta 11 Y =S SRS UP PRSP 1
LCT= AL g P =Y (=T PO OO OSSPSR 1
ADOUT TEG. ... iiiiiiiiieeiciee ettt ettt e st e s eate e s te e s sate e s ateesstee s stee s staesstaesantaesseeesastaesaseaesassessnneeesnns 1
Evaluating the USE OFf TEGu......c.uiiiiiiiiiieicieecee ettt sttt e st e s s te e s s e e s sabe e s sabeessbeessnbaesnasaas 3
T E BaSICS.uttiuiitieittieiteisite e ettt e ettt e ettt e sttt e st e e s bt e e s beeesasbeesbeeeeaseeesbaeeebtee e bbaesanee e e nae e e neae e neaeenneaesaras 3
Capturing ClieNt INFOrMIAtiON.....ii ittt sttt e s eate e s saee e s sate e s steesstaessseeessneaesassaesnns 9
o L g LTI TaTo I o To TU Y=Y o o] Fo [T PP 9
(Lo TUEY=T ato] Lol =T F= Y Ao =] a1 o 1= 12
SumMmMarizing Client INfOrMatioN.....occuii ittt st re e s s re e s sareesseeessssaesnnee 13
Capturing RELATEA Data....cciccueiieieiiiieeiiiee ettt e sete e sete e s see e s ste e s stee e ssaee s sbeeesbeeesbeessseessaseesssseesssenssnsens 14
Capturing CoOMPOSITE DAta...ccuiiiicieiiiieiiieeeiiee ettt esee st e s ete e ssbee e sbae e sbe e e sbaeesbaeesbaeesseesssaessnss 14
Displaying Composite Data 0N @ SUMMAIY......ccuciiiiiieeiiieeiiieeseieesseeesseeeseseeessseeessseeessseesssssesseseessane 15
Capturing ASSOCIAtEA DAla...ccuiiiiiieiiieeiiiee ettt sttt e s te e s ete e st e e sesteesestaesssteesssteessntaessneaenans 15
Displaying Associated Data 0N @ SUMMATY.......ciecuiiiriiteniieeniieeerteesseeesssreessseeesssseesssseesssseesssssesssseess 16
Deleting ASSOCIAtEA DaAla...icuiiiriieiciieicieeecie ettt ste e st see e st e e st e e s sbee s ssaeeesbeeesbeeesabeeesabeeesnnens 17
Efficient Ways of Capturing Data......ccccueeeiiiiniiieeiieesiieessiee st sste e st e s be e s sae e s ssbe e s be e s sabeessaseesssseessanens 18
LISt QUESTIONS . ceeiiiiiiiieieeccttteee et e eeeeeetbr e e et et e e eee e e s be b aeaeeeeeeeeeseasssssssbaesereseeeeesenasnssssasnesreeesseeenanns 18
(00eTe (<] =1 o] (SN O IUT 1] 1o] o [T RSO PP U TUUURRRRRURRRIOt 19
CONAItIONAL ELEMENTS...iiiiiiiiiieiciee ettt e s sate e s ste e seate e s staessteessnteessntaesnnsaessnsaesane 20
QUESTION MATIICES.ceiii it ittt e e e et e e e e e barb e e e e e eeeeeesessssssssaasaeseeeeeseessassssssaessaeeeseeesannnes 22
FaST Path NAVIBatiON....ciiiiiiiiiiiiiiieeciee ettt ettt ettt s te e s te e ssate e ssateessateesssteessssaessssaesnssaesnnee 23
B0 0] oY LT B LY 1= -SSR 26
THree FIield Date PiCKe . i ittt sttt ettt s st e s s be e s s be e s s beeesabaesssbaessaseeesasaess 26
Other Script Development CoONSIAEIAtiONS.cccuiiie et e e et e e eeree e e e s sbee e e s eerseeeeeesseeaeean 27
Displaying Data @S REAA-ONLY.....cccciiiiiiiiiiieiiiie sttt ettt sste e s sate e s te e s aeessssaesssseessnseesanseess 27
Invoking External Functionality USINg EXPreSSIONS......cuuieiiieeiiiteriieessieessieessieesseeesssseessnseessnseesas 28
YU I = Tol T o €T PPI 31
SoUrCe CONtrol aNd VEISIONING. ...cccuuiiriieiriiieeiteeeiteeesite e sttt e sireessreeesssteesbeeesssseessseesssaessseesnsenesssenenn 32
Rendering Custom HTML 0N @ SUMMATY PABE.....cccveiiiieiiiiieiiiee et site s ssiee e siee s ssvee s siee s sveessnees 33
Integrating IEG into @ CUram APPLCAtION.....ccuiiieiiceeieceese ettt re e te e s te e et e e e s reestesreensessnens 39
Creating @ SCIHPT EXECULION...c.ciiiiieeciee ettt ettt e s te e s be e s s beessabaesssbeesanbeesnasaess 39
Specifying @ REAIFECTION URL....coccuiiiiiiiiiieiieeeeite sttt e s te e st e s s te e s s eeessabeessstaessssaessssaesnns 39
RUNNINg the TEG Player iN @ Tab.. ..ttt et e s e s be e e be e s 40
Running the IEG Player in @ Modal DIalog.......cocciiiiiieiiiieiniieeeiieesteseitessveesssvee s seeesseeessveesssnessnns 42
Cleaning Up APPLICATION Data......cciiiiiieriiieriiieerieeseitessieessree st e ssateessbeessseessasaessssaesssseesssseesssseesas 44
RESUMING EXECULEA SCIIPLS..iiiiiiiieiieieiiieeiteeeitese et e sttt site e bte e s stee e s bae e s bee e s aaeesssaeesseeessneeesnssassnnees 45
T aEY=d] o= 0=V o) (U= Ta [B - | - PP PPPPR 45
RetrieViNg Captured Data....cciicceeieeie ittt sttt ettt s e s te e s ate e s sate e s s ataessneeessaeaesnneeas 45
Pre-Populating Scripts with Captured Data.......ccceceeirieeiniieiriie ettt sae e s see e s seeessaeeas 45
USING The RESOUITE STOTE...uuiiieiiiieiieieiie ettt ettt s et ssite e s te e e s bee e s bee e s bee e s baeessaeeesseeesnseesnsseesnnseesnees a7
LISTING Qll RESOUICES...ciiiiiiieiieieite ettt ettt et e st e s ste e s s beessabe e ssstaessateessseeessneeesnseeessenesnsens a7
UPLOading @ NEW RESOUICE...ccuiiiiciiieiiieeeciiee st e sttt e st e ssteessieeessateessseeessbeesasseesassaesssseesssseesssseessnseens a7
REMOVING AN EXISTING RESOUITE....ciicuiiiiiieiiiieeeiieseite e scite e siee e st e e s ite s sbee s sbee s sabaesssbeessaseesssseessaseessanes 48
Updating an EXiSTING RESOUICE.....ciiciiiiiieiicieeeite sttt scite e s stte e sstee s s tee s s bee s s bee s sbeessabeessabaessasaessasaesnnses 48
Downloading an EXiStING RESOUICE......ccuiiiiiiieiieieiteeiieessie e st e s sreessae e s saeeesseeessateesssseessssaesnssaesnsseas 48
AAING IMAEES.ceiitieieiitieitiee et ettt e ettt s ettt e srtteesbeeesbeeesbeessbaeesbaeessaeesseeessaeessaesssseessseeesssaeesssanennes 48

ChanGINg STAtiC TEXL.uuiiiiciiieiieieite ettt eetee st e st e st e s s te e s st e e s sabeessabeessateessstaessateesnseeesnnsaesnseaessseesnnens 48

Changing the Default File ENCOTING.....c.uiiiiiiiiiiiiiieeiieesie ettt ettt e s s e s be e s bee s s 49
Using IBM Rational AppScan t0 SCAN IEGu......ccuiiiiiiiiiiieiiiieeieescteeeste sttt et e ssiae e s saae e ssseeessaeee s 49
oY o - U= o 1 USRS 49
] Ao a1 a1 o J o= Y= (T TP PRSPPI 49
SYor- Yo W00 ol =10 =\ A o] s PO PR PP PPPTR 49
B TS 0 o oY 2 USSR 50
D q 0] (o T =T o) 4o {78 USSR 50
ComMMUNICALIONS AN PrOXY....uuiiieiieciiieeieciieee s eccire e e eecreeesssstreeeeeesteeesesnseeessesnseseseessseeessassseeessssnseens 50
BT A o) 40 3 -SSR 50
T AR (=T o W O] 01T =\ o o [T USSR 50
EXCLUAE Paths @nd FIlES...ciiiiiiiiiiiiiiee ettt sttt see e st s s ee e s bee e s bee e saee e sbee e sneessaseessnneas 50
L070] pa¥ 01 L=Y (SR SUROE 51
RUNNING The SCAN...ciiiiiiiiiieccte ettt ettt e e st e e s bt e e s bt e e sbeeesbeeesbeeesasteesseeesseessan 51
RUNEIME ProCESSING IN IEG.....iiiiciiiiiiieieiieeeitee ettt e ettt e st e e seee e stte e sbe e e sbeeesbaeesseessasaesssaessnsaeesssaeesssanennes 51
Loss of network connectivity during an IEG SESSION.....ccccuiiviieeiiiieriieeriieessieessreesseeessseeessseeessnseesas 51

1 0 4o - RS - X |
RNz (oYl o] oA ot o] g FY T =T = o RSPt 54
LI 16 2 10 T U &SR 54

List of Figures

Y = L A T Yol a =3 - VTR 4
W T Yo o T =l Y2 SR 4
I 2T Y ol Tod 1T o o - VOO TPPSPR 5
L N =TTl 1 o) SR PO SPR 5
D NBW SECTION. ..ttt ettt e st st e st e st e e st e sabaesaaesabe e baesabesabaesabesabeesaaesabeebaesaseenbaenasesaseenses 6
6. Clusters, QUEStIONS aNd DiSPLay TEXL....uuiiiiiiiiieeieiiiieeeeiree e ceectee e e eeerre e e e eetreeeeessteeeesearaseseessssseseesssasesnsnnns 7
T SUMIMATY PAZ. . ittt ercctteee e et e e e e s e s s s ta e e e e e e eeeseesss s ss b et aaaeaeaeeesasssnsssssrneanaeeeessesessssssssnnneneeesens 8
8. ObtaiNING hOUSENOLA SIZE..eiiieiiieiiectee ettt e s e e s e sbee e s be e e s be e e s bee e s baessabaeesnseesnaees 10
9. Using 'for' loop to collect household MemMbBErS. ... s 10
10. Using 'while' loop to collect household MEMbBErS.......c.uuviii i e 11
11. Using while loop to collect household MEMDErS.........iiciiiieiiiiceeeceee e e 12
12. Relationship Entity in Datastore SChEMA........uiiicciiiieeecciiee ettt e e e e rrre e e e ra e e e e e arraee s 13
RGN T E= Y o a 1] 1T o I 2= V= (TSRS 13
14. For loop to collect household member information.........cocciiieciie e 13
ST 1] o) o To T o] (TSRS 14
16. RelationShip SUMMATY LIST.....uiiiiiiiiiieeecciees ettt et e et e e e seitr e e s seateee s sesasaeeesesabaeesesnsanaessnsseneennns 14
A e Y =10 N 7001 a 11 (o IS el a =] 1 = VSRS 14
18, Creating NESTEA ENTITIES. . iiiiiiciieicieeeeiee ettt e st e s ete e st e e s sateessseeesssteesssteeesstessssseesnssessnnes 15
19. Displaying Nested Entities 0N SUMMANY PageS........uuiiiiiiiiiiiiiiiiieecceciiee e e ecrteee s sevteee s s snvaeessesnssneesssnssens 15
20. AssOCIated ENtity SCREMA...c.uiiiciieecie ettt e e e e st e e et e e s eaeeesaeeesaeesnsaeesnsaeesnsneean 16
21. Creating AssocCiation RelatioNShiPS.....cicuiiiciiiiiiieiciee ettt ere e s ste e s ste e s seeessseeessneaeenns 16
22. Entity ASSOCIAtioN SUMMAIY PAZE....cccciiiiiiiiiiiieeeeiiteeeeecitree s sesteeeessstteesesssseeeessenssseessessssnessesssnsesesnssnees 17
23. Cascading DEleteS SCHEMA....ccuiii ettt re e e ste e e abe e e abe e e sbaessntae e nbesesnseeasnseeennens 17
24. Has INCOME PEIrSON SCHEMA....ciiciiiiiiiiieiie ettt ettt e et e st e e s e e e s te e e sbeeesbaeessbaeesasaeesssaeesnsanans 18
02 T I EY o [8 =1] £ o] o PSSR 18
26. Primary Care Giver PErSON SCHEMA....ccccuiiicieiiiee ettt cte e ete e etee e s stee e s stee e s bee e s beeesbeessbeesssbeessnseesnnnes 19
27. SIiNGle-SeleCt LiSt QUESTION..c.uii ittt ettt eciee ettt e ettt e sttt e et eestee e ssbeeesbeeesbeeesbeeesabeeessseeesseeesseeesseeesnseeesnns 19
28. State Codetable and ATtriDULE. ... it e e s e e e s e e s ba e e raeens 19
P RES] = (=) 0o Yo =) k=1 o] [O TUT=Yy 4 o] o VOO 19
OS] =Y (3 =1) {25 UPR USSR 20
3 I V] R ST =Y (=Yos s @0 Yo [=] = | o] (=N @ U T=Y] A o] n N 20
32. Visible AttribUute Of @ SECTION....ccciiiiiiiecttcte ettt sttt e st e e be e sabesbeesasesbeees 21
IS IC T 60T a o 11 (To] g = 1B =Tox AT] o PRSPPI 21
34, Additional Person ATIrIDULE.....c.iiieieeeteeee ettt et e e st e st e s a e s naba e e eans 21
35, Static CONAITIONAL CLUSTEN c..ciiiiiiieeiiiee ettt ettt et sb e st e st e sbe e s bt e sabeesbaesaseesbaesasessaesssesnseenns 22
36. Dynamically ConditioNal CLUSTEI.....uiiiccieeee ettt et e e e etree e e e e eree e e s eabae e e e e bbeeeeeenssaaeesennsnnens 22
37. SUDSTANCE ADUSE ATTIDULE..cci ittt st s e e s sbe e s sbee s sabaessabaesnaeeas 23
38. Question MatriX CoAe EXAMPLE......iii ittt e e et e e st e e et e e e atee e sbeeesseessseesnssaesnenenn 23
39. Fast Path List Question driving a LOOP Code EXaMPLE...cccviiiiiieieiieiiieesiieeeieeseieeseiee e vee e sveeesvee e v 24

vi

40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

Fast Path List Question with Eligibility Criteria driving a Loop Code Example.......cccccvveereierrceensceennnnen. 24
Fast Path Conditions Code EXAMPLE.....ccuuiiiiieciiieec ettt sttt eecttre e e ette e e s s saree e s s e saveee s s esabaaeesenassenessnnnnns 25
Condition in Fast Path loop Code EXamPLle......ccuii ettt st ste e s ve e s e e s vae e naeenn 26
Setting the read-only flag on @ SCriPt EXECULION......iiiiiiieiieceeececce e e e 28
Additional Person attributes in the DS SChemMa......ccoviiiiiiiiiieniecitecteeee e 28
State and zipCode questions in the script definitioN........ccieiciie e e 29
Custom Function to validate the ZIP COUE.....uiiiiiiiiiictee ettt sree e saee e sreeesneeesans 29
CuStOM FUNCEION METAUATA.eteieiieieiieecteee ettt ettt e s e s saae e s bbe e ssabe e sataessaeaesneaas 29
ZIP code validation in the sCript definitioN........ccueiiciii i s eaeee e 30
Alternate validation EXPrESSION........uii i i ciiee e ettt e e ecreee e eecrree e eeerae e e e e streeeeesesseeeeseassseeeessnssaseessssseseennnnsns 30
Custom Function to populate the STate......cuiei i e e e e e areeeeen 31
CUStOM FUNCTION METAAATA.eiiiirieeieeieee ettt sttt sbe e bt e sabeesbeesabessbeesasesbaesasesnseenns 31
Callout to populate the sate in the script definitioN.......ccccccciiii e 31
SUDSCIIPT CONTAINING PAGES....uiiiiiieciiieee ettt estre e e e s rre e s s esbte e e s esbtaee s s s stteessessstaeessassaeessensseneeanns 32
Inclusion of @ SUDSCIIPE iN @ SCHIPL.ueeiuiieiciieeiiieeite et e e s bee e e e e e s bee e e beeesbaeesaseeesnneas 32
Creation Of @ SCHPt EXECULION.....ciiiiciieie e cieee ettt e et e e e et e e e e srre e e e e rbaeeeessbeeeesenseeeeeesnssaeeeesssseeanans 39
Script with finish-page and quit-page defined........uvieii e 40
RESOLVE UIM t0 OPEN IEG PLAYBI.uuiiiiiiieiiiectiecctee ettt ete e et e e ste e s seteessateesat e e s naaesaseesssae s ssaessseesnnseeans 41
Deleting the ROOT ENTitY....uiiiiiiiiiiieicieecciee ettt ettt e e st e st e e s s e e ssseeessaaeesnseessseesssaesnnsaesan 45
(0] £=Y a1 aT=S doTo) =T 0] {1 47/ ST 45
Code Snippet that POPULAtES the DS......ceiiieieecteeceeete ettt ae e e saee e e ae e e saae e e snseeeneeas 46
Creation Of @ SCIPt EXECULION. ... ittt cceee et e e eeectree e e eeerte e e e e breee e s tsaeesessssseeesessasessesssseeeennnsnes 46
LAUNCHING the TEG PLaY Bl eeieiii ettt eectee e s esre e s et e e s seeavae e e s s saaaeeesesssaeeessanstaeessnnseanesensssenessnnnne 46

List of Tables

L. CLIENT DAta 10 CAPIUIE. e cuiiecciiie ettt et eet e ettt e et e e et eeeetteeeeateeeabee s saeessseeesseaasseesssaeenssaesssaeasseesnnseenn 3
2. Data types and associated API localization Methods........cueevciiieciieiccieeceece e 35

vii

Chapter 1. Working with Intelligent Evidence
Gathering

Use this information to learn how to define and maintain IEG scripts and the associated data store
schemas for use in internal or external applications. Intelligent Evidence Gathering is a technology that
enables data to be collected in many different ways with dynamic question scripts.

Overview

This guide is targeted at script authors who are new to Intelligent Evidence Gathering (IEG) and want to
utilize its features to capture data intelligently as part of an internal or external application.

Technically, this can be any data you like and can be used for whatever purpose, but typically the data in
question is client related data and is required as part of an application for a program or to determine
potential eligibility. All such information comes under the general heading of evidence in Curam. Given its
instructional style, this guide refers to you, the script designer directly.

The purpose of this guide is to provide script authors with essential information on how to define and
maintain IEG scripts and the associated Datastore (DS) schemas for use in either internal or external
applications.

IEG is a technology provided as part of the Cliram Application Suite which allows customers create
dynamic scripts for collecting data in many different ways. There are however some considerations when
creating an IEG script and DS schema. This guide will outline some of those considerations as well as
information relating to the maintenance of scripts.

Additional Reading

There are some other documents that should be read before creating and releasing an IEG script.

Firstly, the Ciram Development Compliancy Guide outlines the restrictions that apply when
developing applications using IEG that need to be understood before starting any implementation. The
other document worth reading is the Authoring Scripts using Intelligent Evidence
Gathering (IEG). This document can be used as a reference guide and contains detailed information
on all the features available in IEG and instructions on how to use these features. The guide Creating
Datastore Schemas explains how DS schemas are created and maintained for use with IEG.

Getting Started

This section explains the basic principles if IEG and its dependency on the Datastore (DS) and the
Resource Store (RS). The section guides you through creating a simple IEG script to gather information
about a client.

About IEG

IEG is an efficient alternative to traditional information gathering processes. With IEG, information is
gathered interactively by displaying a script of questions that a user can provide answers to.

Questions are only displayed if they are consistent with the user's previous answers so that the user is
only required to provide answers relevant to his or her needs and situation. This creates a user-friendly
environment that can be effectively implemented for a range of processes including client information
intake, benefit assessment triage, online eligibility assessment, and so forth.

© Copyright IBM Corp. 2012, 2018 1

In contrast to traditional information gathering processes, IEG cuts down on the organization's
administrative work by creating the potential for several routes through the same question script. This
eliminates the necessity to develop many scripts for gathering information from different types of users.

A further advantage of IEG is the flexibility of its implementation and the range of its potential users. The
IEG runtime environment can be set up for access from any UIM page. This means that IEG can be
accessed directly from an organization application or remotely by an online user.

The two main components of IEG are the Engine and the Player. IEG scripts are defined in XML and the
Engine interprets the script definitions at runtime and evaluates the answers supplied by the user to
determine the flow of execution. The Engine determines which pages should be displayed to the user and
how many times they should be displayed. The Player presents the pages, questions and other controls to
the user. IEG also builds on other elements of the Clram Application Suite such as the Datastore (DS) and
the Resource Store (RS).

Datastore (DS)
The data supplied by a user during script execution is not directly persisted by IEG itself. This task is
delegated to the Datastore (DS). The DS is a configurable database.

Just as the questions and question pages that are to be displayed to the user are determined by an IEG
script, the data that can be stored in the DS is dynamically determined by an XML schema. The schema
describes the structure of the information you want to store and any relationships between the data. Data
is stored in the DS in XML format and conforms to the W3C XML Schema Definition Language. More details
on the DS and how it works can be found in the Creating Datastore Schemas guide.

An IEG script and a DS schema are very closely linked. An IEG script is defined with references to the
elements contained in a schema and for that reason a schema must be supplied when editing a script.
The same schema is also required when executing a script. Schemas may by reused to edit and execute
multiple scripts so the same data structures can be used in different circumstances.

Resource Store (RS)

An IEG script can contain references to images that will be displayed to the user when a script is
executed, for example icons representing sections and question pages. The images are stored in the
Resource Store (RS).

An IEG script also contains a number of different textual elements, for example page headings, question
labels and help text. IEG allows you to enter all the text for your script for the default locale directly into
the script definition.

When an IEG script is uploaded into the system via the IEG admin screens, all the text contained within it
is automatically extracted into an appropriately named properties files for the script. These properties
files are also stored in the RS. The properties files are stored with no locale associated with them (so that
they act as the fall-back properties if no properties exist for the locale in which you are running). The RS
allows properties files for multiple locales to be uploaded making the localization of scripts a
straightforward task. At runtime, the properties files are retrieved for the appropriate locale and
presented to the user in the IEG Player.

Script Structure

In its simplest form, an IEG script consists of pages which include questions to be posed to users of IEG.
The structure of the IEG script is a logical grouping of these pages so that answers to the questions can be
captured effectively.

Sequences of pages can be grouped into logical sections. The purpose of these sections is to give users a
higher level view of the kind of information captured by the IEG script.

In addition to including a variable number of pages, each section should contain one summary page. This
page is used to give feedback to the user on the information entered on the pages in a section. Summary
pages typically contain clusters and lists displaying read-only versions of the answers to questions asked.
The summary page will always be the last page displayed within a section and will also be displayed
whenever a user clicks on the link for that section in the sidebar of the IEG Player.

To summarize, IEG scripts consist of a hierarchy of elements structured something like this:

2 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

« Script
— Section
- Page
« Cluster

— Question
- Summary Page

Evaluating the Use of IEG

There are some key questions to ask when evaluating the use of IEG in any application:

- What information is being captured?

« What is the source of that information?

- How is this information to be used?

« How long will this information live in the application?

Many of the current uses of IEG stem from the need to support an application for products and services
offered by agencies either externally or internally. The information captured is generally client related
information, such as client personal details, their family or household details and details of their needs.

Often agencies already have data about a client; therefore they can source the information from another
system using some key pieces of information like a social security number. This allows them to verify the
client information being entered or retrieve to assist with the application.

Some applications are complex and require information from many sources. Clients may have to enter
information that is not close to hand. For example, the required information may be held by their
employer. They may need the ability to store what they have entered and return to the application at a
later time once they have all the required data.

Clients may be exposed to simple screening applications that inform them of their entitlements under
current or new legislation. This information is often unreliable and temporary data must be removed from
the system after the client logs out or within a set period of time.

These requirements drive the use of IEG and provide important information on the use of the data over its
lifetime.

So, let's start with the basics: we want to capture and store information about a client.

The Basics

Create a Schema
The first step in capturing data about a client is to create a DS schema. This section provides an example
of how to create a basic schema that defines the capture of some general client data.

The DS stores data collected from users during online screening and intake of applications. The contents
of the DS are dynamically definable by way of a schema definition. The requirements for capturing and
storing any data about a client can be complex but with appropriate schema design, this data can be
efficiently managed over its lifetime.

For the purposes of this example, the requirement is to capture the following:

Table 1: Client Data to Capture

Attributes Type
First name String
Middle name String

Working with Intelligent Evidence Gathering 3

Table 1: Client Data to Capture (continued)

Attributes Type

Last name/Family name String
Gender Male/Female
Date of Birth Date

There is a minimum set of definitions required in a schema. For a schema to be used in IEG, the following
is required:

« Inclusion of Base Domains
« Inclusion of IEG Domains
« Aroot entity

For more information on the minimum set of definitions required, see the Creating Datastozre
Schemas guide.

The schema would look something like this before adding new content such as the Person entity
described above:

<xsd:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:d="http://www.curamsoftware.com/BaseDomains">
<xsd:import namespace="http://www.curamsoftware.com/BaseDomains"/>
<xsd:include schemalLocation="IEGDomains"/>
<xsd:element name="Application">
<xsd:complexType>
<xsd:sequence minOccurs="0">
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 1: Starting Schema

The content of the schema indicates that it is an XMLSchema that imports BaseDomains schema and
includes the IEGDomains schema. The first element called Application is the root entity for the
schema. IEG requires that the root entity is always called Application.

The IEGDomains schema contains the domains required to define the attributes of entities to be used
with IEG. The types of the attributes must be derived from the IEG Domains rather than the base
domains. A Person entity can be defined to represent a client as follows:
<xsd:element name="Person">
<xsd:complexType>
<xsd:attribute name="firstName" type="IEG_STRING"/>
<xsd:attribute name="middleName" type="IEG_STRING"/>
<xsd:attribute name="lastName" type="IEG_STRING"/>
<xsd:attribute name="gender" type="IEG_GENDER"/>
<xsd:attribute name="dateOfBirth" type="IEG_DATE"/>
</xsd:complexType>
</xsd:element>

Figure 2: Person Entity
There are a couple of things to note about the above addition for an entity like person:

« Like relational database tables, an ID field is required and a key is defined for this table using this
unique ID.

« The person entity is added as a child entity of the root entity.

The schema to capture basic information about a person can be defined as follows:

4 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<xsd:element name="Application">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="Person" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Person">
<xsd:complexType>
<xsd:attribute name="personID" type="d:SVR_KEY"/>
<xsd:attribute name="firstName" type="IEG_STRING"/>
<xsd:attribute name="middleName" type="IEG_STRING"/>
<xsd:attribute name="lastName" type="IEG_STRING"/>
<xsd:attribute name="gender" type="IEG_GENDER"/>
<xsd:attribute name="dateOfBirth" type="IEG_DATE"/>
</xsd:complexType>
<xsd:key name="Person_Key">
<xsd:selector xpath="./Person"/>
<xsd:field xpath="@personID"/>
</xsd:key>
</xsd:element>

Figure 3: Basic Schema
Once the schema has been defined you can then create a script to use the schema.

Create a Script

IEG allows you to create dynamic scripts for collecting data. IEG scripts can contain sections, question
pages, questions and conditional logic which allows you to decide what information to capture, what
pages to display and how many times they are displayed.

Please read the Authoring Scripts using Intelligent Evidence Gathering (IEG) guide for
details on how to define each element of an IEG script.

For the requirements above, where there is a need to capture information about a person, you must define
the script and decide how the pages are arranged to capture the information.

A new script can be created in the admin application and the editor can be used to add elements to this
script. The content of a newly created script will be similar to the following:
<?xml version="1.0" encoding="UTF-8"?>
<ieg-script xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="ieg-schema.xsd">
<identifier id="WorkingWithIEG" scriptversionnumber="V1"
type="Intake" />
</ieg-script>

Figure 4: New Script

The ID, Type and Version supplied when creating the script are combined to create a script identifier to
uniquely identify the script definition.

Once a new script is created, elements such as sections, question pages and summary pages can be
added to the script. The examples in the next two sections will show you how to add a section and a
question page to a script as well as how to add a summary page that displays information back to the
user. Summary pages allow the user to confirm that the data they entered is correct before proceeding
and they can also provide the user with the ability to modify the data.

Adding a Section and a Question Page to an IEG Script
A section and a question page need to be added. A section can be used to group related pages together to
allow the user to flow through the screens in a logical manner.

Sections can also help to convey to the user their progress through a script. Both the section and the
question page can have a title and the question page can optionally have a description.

The following code sample shows a section containing a question page, added to a script:

Working with Intelligent Evidence Gathering 5

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-in stance"
xsi:noNamespaceSchemalocation="ieg-schema.xsd">
<identifier id="WorkingWithIEG" scriptversionnumber="V1"
type="Intake" />
<section>
<title id="AboutYouSection.Title">
<! [CDATA[About You]]l>
</title>
<question-page id="AboutYouPage" entity="Person">
<title id="PrimaryPersonPage.Title">
<! [CDATA[About Youl]l>
</title>
<description id="PrimaryPersonPage.Description">
<![CDATA[Please enter some information about yourself]]>
</description>
</question-page>
</section>
</ieg-script>

Figure 5: New Section

The question page requires the appropriate questions to capture the data. Any data to be stored in the DS
has to be associated with an attribute of an entity in the DS schema to be used with this script. If all the
questions on a page relate to the same entity, the page can be mapped to that entity type. In the above
example the page is mapped to the Person entity.

To add questions to a page, a cluster is required. Clusters help control the layout of the questions on the
page. A page can contain many clusters to allow you to logically group questions on the page. Clusters
may also contain a title and a description.

In our example below, there are two clusters, one just to display some informational text to the user and
another to contain the questions for personal details. Questions and display text can be added to each
cluster. Questions must be given an ID which must correspond to one of the attributes of the entity type
the page is mapped to. If an answer must be supplied to a question the mandatory indicator of the
question can be set to true. The script snippet below contains the questions to capture the required data
outlined in our example.

6 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<question-page ...
<cluster>
<display-text id="RequiredFields.Text">
<![CDATA[
* indicates a required field]]>
</display-text>
</cluster>
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Personal Details]]>
</title>
<description id="DetailsCluster.Description">
<![CDATA[Enter your details here]]>
</description>
<question id="firstName" mandatory="true">
<label id="FirstName.Label">
<! [CDATA[First Name:]]>
</label>
</question>
<question id="middleName">
<label id="MiddleName.Label">
<! [CDATA[Middle Name:]]1>
</label>
</question>
<question id="lastName">
<label id="lastName.lLabel">
<![CDATA[Last Name:]]>
</label>
</question>
<question id="gender" mandatory="true">
<label id="Gender.lLabel">
<! [CDATA[Gender:]1]>
</label>
</question>
<question id="dateOfBirth" mandatory="true">
<label id="DateOfBirth.Label">
<![CDATA[Date 0f Birth:]]>
</label>
</question>
</cluster>
</question-page>

Figure 6: Clusters, Questions and Display Text

Please note there are more properties of scripts, sections, question pages, clusters, questions and display
texts than are covered here. These properties are covered in the Authoring Scripts using
Intelligent Evidence Gathering (IEG) guide some of which will be discussed later in this guide.

Adding a Summary Page to an IEG Script
The final step of this basic example is to display a summary of the information captured. Generally each
section will have a summary page.

A summary page is used to display the most important data back to the user in order for them to verify
data was captured or calculated correctly. A summary page can display data captured on multiple
question pages. A summary page does not have to contain all the information captured in the section as
this could be very large making it less useful.

Obviously if the data displayed on a summary page is incorrect the user will more than likely want to
modify it. Users may navigate backwards in the script execution by pressing the Back button in the IEG
Player until they reach the page where the data was entered, update the data, then proceed forward
through the script again. Alternatively you can add edit links to the clusters on the summary page. When
the user clicks on an edit link on a summary page the question page specified in the edit link is displayed
to the user in the IEG Player. The user can then change the data and depending on whether the changed
data is referenced elsewhere in the script, the summary page will be displayed again when the user
presses the Next button in the IEG Player.

The summary page in this case will be very simple and similar to the question page previously added. And
similar to a question page, if all the attributes referred to on the page relate to the same entity the
summary page can be mapped to that entity type, as follows:

Working with Intelligent Evidence Gathering 7

<section>

<summary-page id="AboutYouSummary" entity="Person">
<title id="AboutYouSummary.Title">
<![CDATA[Information about you]]>
</title>
<description id="AboutYouSummary.Description">
<! [CDATA
[Here's the information you've entered about yourself]]>
</description>
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Person Details]]>
</title>
<description id="DetailsCluster.Description">
<![CDATA[Enter the details for this person here]]>
</description>
<edit-link start-page="AboutYouPage" />
<question id="firstName">
<label id="FirstName.lLabel">
<![CDATA[First Name:]]>
</label>
</question>
<question id="middleName">
<label id="MiddleName.Label">
<! [CDATA[Middle Name:]1]1>
</label>
</question>
<question id="lastName">
<label id="lastName.lLabel">
<! [CDATA[Last Name:]1]1>
</label>
</question>
<question id="gender">
<label id="Gender.Label">
<![CDATA[Gender:]]>
</label>
</question>
<question id="dateOfBirth">
<label id="DateOfBirth.Label">
<! [CDATA[Date 0f Birth:]]>
</label>
</question>
</cluster>
</summary-page>
</section>

Figure 7: Summary Page

This basic script and schema to capture information about a person and display a summary page is now
complete and can be run.

Run a Script
In order to run an IEG script the script definition and the associated schema definition must be uploaded
into the system. There are a number of ways this can be done which will be covered later in this guide.

The most straightforward way to upload the definitions is via the administration screens in the Intelligent
Evidence Gathering section of the Administration Workspace.

To gain access to the IEG administration screens, you will need to log in as an admin user. Once logged in,
you will see a section in your shortcuts panel called Intelligent Evidence Gathering and when you click on
it you will see a menu for 'IEG' which contains a link called 'Scripts'. If you click on this, you will see a page
that contains a list of the IEG scripts currently in the system and various links to allow you to perform
activities on these scripts.

At the top of the 'Scripts' page is an 'Import' link which lets you upload, or import, a new IEG script
definition.

Similarly, if you click on the 'Datastore Schemas' link of the menu for 'IEG' you will see a page that
contains a list of the DS schemas currently in the system. At the top of the 'Datastore Schemas' page,
there is also an 'Import' link which lets you upload, or import, a new schema definition.

For convenience, IEG provides a type of test harness that allows IEG scripts to be tested without having to
integrate them into the Clram application. The test harness does have some limitations but it allows most

8 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

scripts to be tested as soon as they are uploaded into the system. IEG scripts may be run either in a tab or
in @ modal window via the admin screens.

A script can be run using either the 'Run’ or 'Run in Modal' options for the script from the 'Scripts' page. As
there is no explicit association between an IEG script and a DS schema, when you select the option to run
a script you will then be asked to select a schema from a dropdown with which to execute the script.
Clicking on the 'Run Script' button will cause the IEG Player to launch and you will be presented with the
first page of the script.

Validating a Script
When a script is executed via the admin screens in this way, the script is validated before it is executed.

You may also choose the 'Validate' option for the script from the 'Scripts' page. All scripts should be
validated before they are executed. If the script fails validation, a list of validation errors will be displayed.
The validation errors must be addressed before the script can be run from the 'Scripts' page.

Fill in some sample data on the first page of the script and select the Next button. Now this same sample
data should be displayed on the summary page. The answers are not modifiable but an edit link is
provided to jump back to the page where that data was entered.

Please note, pressing the Next button in the IEG Player on the summary page of the script that has been
implemented in this example will cause an error to be displayed. This is because not all the properties of
the script have been defined. The required properties will be covered later in this guide.

Capturing Client Information

The previous section outlined a basic example of how IEG can be used to capture data for a client. Some
application forms for benefits and services can be complex and the information required about applicants
can be very detailed. We build on the initial example covered in the previous section by considering a
household, where we captured some initial data about a primary member and now want to add details for
the other household members.

Families and Households

We currently have a straightforward script, relating to one person. Often applications need more
information about the client's circumstance, starting with their living situation.

In general, information is requested about the primary person and this is followed by a simple question
that will allow the client to skip to another area of the application. For example, after entering personal
details, the client is asked 'Do you live alone?". If the answer is yes then the person can be treated as
single individual who is not living within a household of family or other individuals. Most clients want to
get through the application process as quickly as possible, therefore questions such as these provide a
good way to move to more relevant parts of the application.

If the client is living with other people, then questions about each person may need to be asked. Loops
are used to capture information from each person and depending on how the script author wants to
present these questions, they have a choice of loop types: for, while and for-each loop.

IEG also features a Person Tab that allows the client to see who these questions relate to while entering
the data. This will appear automatically for a Person entity in the Datastore. Each Person will be
represented by an icon (based on the gender and age) and a name. The current Person will be highlighted.

Let's take a scenario for handling family/household data as an extension of the requirements in the basic
sample. Here the client is asked if how many people are in the household including the client. Some new
question pages need to be added to capture this information.

The first question page will ask about the living situation. For this example there is only one question to
ask, as follows: How many people are in the family (excluding yourself)?

Working with Intelligent Evidence Gathering 9

<question-page id="HouseholdPage" progress="10">
<title id="LoopControlPage.Title">
<! [CDATA[Household Details]]>
</title>
<description id="LoopControlPage.Description">
<![CDATA[Please tell us some information about your
household]]>
</description>
<icon image="sample_title_household" />
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Details]]>
</title>
<question id="numPeople" control-question="true"
control-question-type="IEG_INT32"
mandatory="true">
<label id="NumPeople.lLabel">
<![CDATA[How many other people are in your
household?]]>
</label>
</question>
</cluster>
</question-page>

Figure 8: Obtaining household size

This question is a control question, i.e. a question used to control the size of a loop and not for data
collection purposes. Control questions are not stored in the Datastore schema. It will used in the loop
expression of the 'for' loop in the next question page.

The family members question page is within a 'for' loop that will iterate over the number of family
members.

<loop loop-type="for" loop-expression="numPeople"
entity="Person" criteria="isPrimary==false">
<question-page id="PersonDetailsPage"
show-person-tabs="true"
progress="20">
<title id="PersonDetailsPage.Title">
<! [CDATA[Household Member Details]]>
</title>
<description id="PersonDetailsPage.Description">
<! [CDATA[Please enter the details for the
next person in your household]]>
</description>
<icon image="sample_title_household" />
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Person Details]]>
</title>
<description id="DetailsCluster.Description">
<![CDATA[Enter the details for this person
below]]>
</description>
<question id="firstName" mandatory="true">
<label id="FirstName.lLabel">
<![CDATA[First Name:]]>
</label>
</question>
<question id="lastName">
<label id="lastName.lLabel">
<![CDATA[Last Name:]1]>
</label>
</question>
<question id="gender" mandatory="true">
<label id="Gender.Label">
<! [CDATA[Gender:]]>
</label>
</question>
</cluster>
</question-page>
</loop>

Figure 9: Using 'for' loop to collect household members

The above is an example of how the client enters the number of family members. But the question could
have been asked a different way, for example: 'Do you live with your family?' In this case a condition
element in the script can be used to check the value of that question. This would display the family

10 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

member page if they do live with their family. On this question page, a control question is asked to
determine if they would like to capture another family member's details.

This control question would be used in a 'while' loop around the family member question page, as follows:

<question-page id="HouseholdPage" progress="10">
<title id="LoopControlPage.Title">
<! [CDATA[Household Details]]>
</title>
<description id="LoopControlPage.Description">
<![CDATA[Please tell us some information about your
household]]>
</description>
<icon image="sample_title_household" />
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Details]]>
</title>
<question id="livesWithFamily" control-question="tzrue'
control-question-type="IEG_BOOLEAN"
mandatory="true">
<label id="NumPeople.lLabel">
<![CDATA[Do you live with your family?]]>
</label>
</question>
</cluster>
</question-page>

Figure 10: Using 'while' loop to collect household members

Using this approach, the control question is a boolean type, as it is used in a condition expression that
indicates whether or not the while loop should be entered. The loop, once entered, is iterated over until
details of all the household members have been gathered, as follows:

Working with Intelligent Evidence Gathering 11

<condition expression="livesWithFamily==true">
<loop loop-type="while" loop-expression="
anotherMember==true"
entity="Person">
<question-page id="PersonDetailsPage"
show-person-tabs="true"
progress="20">
<title id="PersonDetailsPage.Title">
<![CDATA[Household Member Details]]>
</title>
<description id="PersonDetailsPage.Description">
<![CDATA[Please enter the details for
the next person in your household]]>
</description>
<icon image="sample_title_household" />
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Person Details]]>
</title>
<description id="DetailsCluster.Description">
<![CDATA[Enter the details for this
person below]]>
</description>
<question id="firstName" mandatory="true">
<label id="FirstName.Label">
<! [CDATA[First Name:]]>
</label>
</question>
<question id="lastName">
<label id="lastName.lLabel">
<! [CDATA[Last Name:]1]1>
</label>
</question>
<question id="gender" mandatory="true">
<label id="Gender.Label">
<![CDATA[Gender:]]>
</label>
</question>
</cluster>
<cluster>
<question id="anotherMember"
control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="AnotherMember.Label">
<![CDATA[Is there another
household member?]]>
</label>
</question>
</cluster>
</question-page>
</loop>
</condition>

Figure 11: Using while loop to collect household members

Household Relationships

When gathering information about a group of people in a household, it might be necessary to ascertain
how those people are related to each other.

IEG provides a mechanism for capturing relationships through the use of relationship pages and a specific
Datastore schema structure.

A Relationship entity should be defined in the Datastore schema, taking the following form:

12 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<xsd:element name="Person">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="Relationship" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

</xsd:element>
<xsd:element name="Relationship">
<xsd:complexType>
<xsd:attribute name="relationshipType"
type="IEG_STRING"/>
<xsd:attribute name="isNonParentPrimaryCaretaker"
type="IEG_BOOLEAN" default="false"/>
<xsd:attribute name="personID" type="D:SVR_KEY"/>
</xsd:complexType>
</xsd:element>

Figure 12: Relationship Entity in Datastore Schema

A relationship page for the household can be defined as follows, provided that the Relationship entity is a
child of the Person entity:
<relationship-page id="RelationshipPage" show-person-tabs="true"
progress="40">
<title id="RelationshipPage.Title">
<![CDATA[Household Relationships]]>
</title>
<description id="RelationshipPage.Description">
<![CDATA[Please enter the relationships for %1s below]]>
<argument id="Person.firstName" />
</description>
<icon image="sample_title_household" />
<question id="caretakerInd">
<label id="CaretakerInd.Label">
<![CDATA[Is this a non-parent caretaker
relationship?]]>
</label>
</question>
</relationship-page>

Figure 13: Relationship Page

It is only necessary to define the relationship page once. IEG will then display the page as many times as
is necessary to gather Relationships one person at a time. This equates to one less times than the number
of people in the household, as the last person's Relationships will have been collected in their entirety
through the process.

By default, the Relationship Type field is presented as a dropdown, populated from a codetable
(configurable through the relationship.type.domain.name property):

The relationship page will display a Person Tab at the top containing the list of household members and
the current Person will be highlighted. Then each relationship between the current Person and the other
members will be displayed.

The caretaker indicator is the only question that can be added directly to the relationship page. Questions
regarding other attributes of a Relationship entity must be added to clusters that have been added to the
relationship page.

Summarizing Client Information

Lists are used on summary pages to display information gathered in loops. The structure of the list should
reflect the structure of the loop or hierarchy of loops that collected the data.

This means that the entity and criteria on the list should match the entity and criteria on the loop. For
example, to record the members of the family described in “Families and Households” on page 9, a for
loop was used:

<loop loop-type="for" loop-expression="numPeople"
entity="Person" criteria="isPrimary==false">

</i66p>

Figure 14: For loop to collect household member information

Working with Intelligent Evidence Gathering 13

In the section summary page, the information gathered in this loop is displayed in a list. The list, like the
loop, has 'Person' as its entity and 'isPrimary==false' as its criteria:

<list entity="Person" criteria="isPrimary==false">
</iiét>
Figure 15: List of people

Relationship information gathered using a relationship page can be displayed on summary pages in
relationship summary lists:

<relationship-summary-list>
<title id="RelationshipSummarylList.Title">
<![CDATA[Person Relationships Summary]]>
</title>
<description id="PersonRelationshipSummarylList.Description">
<![CDATA[Person Relationship Summary Details]]>
</description>
<column id="caretakerInd">
<title id="CaretakerInd.Title">
<! [CDATA[NPCR]]>
</title>
</column>
<edit-link start-page="RelationshipPage" />
</relationship-summary-list>

Figure 16: Relationship Summary List

Capturing Related Data

Once we have captured information about the household members such as their personal details and
their relationships, we might want to capture related data. This can be achieved through composition (the
use of nested DS entities) or association (the use of related, non-nested DS entities).

Capturing Composite Data

We have seen that it is possible to capture relationships in IEG. The combination of the Relationship entity
and the RelationshipPage provide a convenient mechanism to capture the relationships between the
people in a household.

The relationship between people in a household is only one form of relationship. IEG supports other types
of relationships. IEG and the DS allow entities to be nested creating a parent child relationship. This can
be seen in the example where there is a requirement to capture the incomes for the people in a
household. The Income entity is defined as any other entity is defined. It is nested in the Person entity by
referencing it in a sequence, as the following sample code snippet shows:

<xsd:element name="Person">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="Income" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

;kéd:attribute name="hasIncome" type="IEG_BOOLEAN"
default="false"/>
</xsd:complexType>

</xsd:element>
<xsd:element name="Income">
<xsd:complexType>
<xsd:attribute name="type" type="IEG_STRING" />
<xsd:attribute name="amount" type="IEG_MONEY" />
</xsd:complexType>
</xsd:element>

Figure 17: Parent/Child Schema

Income information can then be gathered for people in a household by looping over every person that has
income. The loop criteria will use a "hasIncome" boolean question that will be asked while gathering the

14 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

details for each person. A page within the loop can be mapped to the Income entity thus creating the
nested relationship, as shown below:

<loop loop-type="for-each" entity="Person"
criteria="hasIncome==true">
<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">
<question-page id="IncomePage" entity="Income"

Figure 18: Creating Nested Entities

Displaying Composite Data on a Summary

The information gathered for nested entities can be displayed on a summary page using a nested list.
Similarly to regular lists, nested lists must match the entities and criteria used in the nested loops that
captured the data.

<list entity="Person" show-icons="true" criteria="hasIncome==true">
<title id="Incomelist.Title">
<! [CDATA[Income]]l>
</title>
<description id="IncomelList.Description">
<![CDATA[Here's the income details you've entered for all the
people in your household]]>
</description>
<column id="firstName">
<title id="FirstName.Title">
<! [CDATA[First Name]l]l>
</title>
</column>
<list entity="Income">
<column id="type">
<title id="IncomeType.Title">
<![CDATA[Income Type]]l>
</title>
</column>
<column id="amount">
<title id="IncomeAmount.Title">
<! [CDATA[Income Amount]]>
</title>
</column>
</list>
</list>

Figure 19: Displaying Nested Entities on Summary Pages

The sample code snippet above of an income summary list will be displayed in the IEG Player as a regular
list with incomes grouped per Person. It will also contain Edit and Delete links for each income and an
Add link with a dropdown listing all the people.

Capturing Associated Data

IEG allows association relationships to be created between entities. This is useful because a restriction
applies to nested entities and nested lists that they can only be nested to two levels. The use of
associated relationships provides an effective alternative to nesting entities to three levels.

For example, suppose there is a requirement to record employment information for the people in a
household. Employment information may be gathered independently of Income information as there may
be multiple incomes for a given employment.

Once the Income and Employment information is gathered and the entities have been created, the
association between the entities can be made. The association is made by creating a "relationship" entity.
The relationship entity is normally "owned" by one of the entities participating in the relationship and is
represented as a sequence as with other relationship types.

Defining a relationship entity requires being able to identify the related entity therefore a key must be
defined in the related entity. To apply this to the Income/Employment example, the Employment entity
type will have a key, an EmploymentRelationship entity type will be defined and the Income entity will
own a sequence of EmploymentRelationships, as follows:

Working with Intelligent Evidence Gathering 15

<xsd:element name="Employment">
<xsd:complexType>
<xsd:attribute name="employmentID" type="d:SVR_KEY" />
<xsd:attribute name="employer" type="IEG_STRING" />
<xsd:attribute name="employmentType" type="IEG_STRING" />
</xsd:complexType>
<xsd:key name="Employment_Key">
<xsd:selector xpath="./Employment" />
<xsd:field xpath="@employmentID" />
</xsd:key>
</xsd:element>
<xsd:element name="Income">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="EmploymentRelationship" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="type" type="IEG_STRING" />
<xsd:attribute name="amount" type="IEG_MONEY" />
</xsd:complexType>
</xsd:element>
<xsd:element name="EmploymentRelationship">
<xsd:complexType>
<xsd:attribute name="employmentID" type="d:SVR_KEY" />
</xsd:complexType>
</xsd:element>

Figure 20: Associated Entity Schema

The association can then be captured in the script by defining a list-question and specifying a link-entity
attribute which refers to the key of the related entity. Continuing our example, on a page mapped to the
Income entity a list-question can be defined specifying the key from the EmploymentRelationship used to
identify the Employment entity.

List questions are constructs that allow the user to choose from a list of entities. For more details, see
“List Questions” on page 18.

<question-page id="IncomePage" entity="Income"
<cluster>
<layout>
<label-width>0</label-width>
</layout>
<list-question link-entity="EmploymentRelationship.employmentID"
entity="Employment" single-select="true">
<label id="SelectEmployer.Label">
<! [CDATA[Select Employer]]>
</label>
<item-label>
<label-element attribute-id="employer" />
</item-label>
</list-question>
</cluster>
</question-page>

Figure 21: Creating Association Relationships

Displaying Associated Data on a Summary

The association between entities can be displayed on a summary page by adding a column to the list of
entities of one type, in order to display details of the related entity. A link-entity attribute needs to be
specified on this column to identify the related entity.

The following example shows how, while listing the Incomes for a Person on a summary page, the
associated Employer name can be displayed for each Income:

16 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<summary-page id="IncomeSummary"

<list entity="Person" criteria="hasIncome==true"
show-icons="true">
<title id="IncomelList.Title">Income</title>
<description id="IncomelList.Description">Here's the income
details you've entered for all the people in your
household</description>
<column id="firstName">
<title id="FirstName.Title">First Name</title>
</column>
<list entity="Income" show-icons="false">
<column id="type">
<title id="IncomeType.Title">Income Type</title>
</column>
<column id="amount">
<title id="IncomeAmount.Title">Income Amount</title>
</column>
<column id="employer"
link-entity="EmploymentRelationship.employmentID"
entity="Employment">
<title id="Employer.Title">Employer</title>
</column>
</list>
</list>
</summary-page>

Figure 22: Entity Association Summary Page

Deleting Associated Data

When entities form parent-child relationships, if the parent entity is deleted, all its child entities are also
deleted. When an entity that participates in a relationship is deleted, by default, the relationships for that
entity are deleted but the related entities are not.

For example, suppose the details of all the people in a household have been collected and Person entities
created and the relationships between the people in the household have also been captured and
Relationship entities created. If the user chooses to remove a person, the relationships that person
participates in will also be removed but none of the other people in the household will be removed.

This default behavior also applies to the income/employment example. If the user chooses to remove an
income, any EmploymentRelationships for the income will be removed but none of the Employment
entities will be removed.

It is possible to change the default behavior when deleting associated entities so that any entities related
to the entity being removed will also be removed.

To change the default behavior, an annotation containing a documentation element may be added to the
definition of a relationship entity in the DS schema. A documentation element containing the text
"@curam.ieg.cascading.delete=true" indicates that related entities should be deleted when the
relationship is deleted.
<xsd:element name="EmploymentRelationship">
<xsd:annotation>
<xsd:documentation>@curam.ieg.cascading.delete=true
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="employmentID" type="d:SVR_KEY" />

</xsd:complexType>
</xsd:element>

Figure 23: Cascading Deletes Schema
In the Income/Employment example, if curam.ieg.cascading.delete is set to true for the
EmploymentRelationship when an Income entity is removed any associated Employment entity will also

be removed. Removing the Employment entities in this way does not cause other Income entities to the
removed.

Working with Intelligent Evidence Gathering 17

Efficient Ways of Capturing Data

This section highlights some of the features of IEG that allow information to be gathered more effectively
and more intuitively.

List Questions

IEG provides an alternative to asking the same boolean question for a number of entities. A list question
can be used to gather all the answers at the same time.

In an earlier example, we saw a requirement to gather income information for the people in a household.
In order to only gather income information for the people who actually have income, a question was
added to the 'Household Members Details' page to indicate if the person has income or not.

Continuing the previous example where information has been collected about the people in the
household, the attribute hasIncome has been added to the Person entity to indicate if income
information should be collected for the person, as follows:

<xs:element name="Person">
<xs:complexType>

<xs:attribute name="hasIncome" type="IEG_BOOLEAN"/>
Figure 24: Has Income Person Schema

Like questions, list questions must be added to a cluster. Where list questions differ is that you must
specify the type of the entities that will be displayed in the list. The ID of the list question corresponds to
the name of the boolean attribute that should be set if the user selects an item in the list. As with
questions, a list question should have a label to indicate the purpose of the question. List questions
should also have an item label element. The item label specifies which attribute from the entities should
be used to identify the entities in the list. In the following example, the first name of the household
members is displayed to identify them.

<question-page id="AnyoneHaveIncome">

<cluster>
<list-question id="hasIncome" entity="Person">
<label id="HasIncome.lLabel">
<! [CDATA[Which people have income?]]>
</label>
<item-label>
<label-element attribute-id="firstName"/>
</item-label>
</list-question>
</cluster>
</question-page>

Figure 25: List question

So rather than adding a question in the loop where the household member details are gathered, once the
household member details have been captured a list containing the household members can be
displayed. The user can then select the members that have income.

List questions are particularly useful when used in conjunction with a for-each loop, referencing the
question that was set in the list-question in the criteria expression of the loop. List questions can also be
used with entity types other than Person.

Single-select
List questions can also be used when the selection should be mutually exclusive. When the single-
select attribute of a list question is set to true, only one of the items in the list can be selected.

If for example, the requirement is to indicate which household member is the primary care giver, an
attribute can be added to the Person entity and a single-select list question can be added to the script:

18 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<xsd:element name="Person">
<xsd:complexType>

<xsd:attribute name="primaryCareGiver" type="IEG_BOOLEAN"/>
Figure 26: Primary Care Giver Person Schema

<question-page id="PrimaryCareGiver" ...>

<cluster>
<list-question id="primaryCareGiver" entity="Person"
single-select="true" criteria="age > 14">
<label id="PrimaryCareGiver.Label">
<![CDATA[Which person is the primary care giver?]]>
</label>
<item-label>
<label-element attribute-id="firstName" />
</item-label>
</list-question>
</cluster>

Figure 27: Single-select List Question

The above list question will cause list of the household members that are over 14 years old to be
displayed with a radio button next to each Person, thus allowing only one to be selected.

Codetable Questions

If an attribute is defined in a DS schema as a codetable, when the corresponding question is displayed the
default behavior is to display the question as a drop-down. Only one answer can be selected in the drop-
down list.

For example, if these is a requirement to capture a household member's home state, a new a new domain
definition can be added to represent the AddressState codetable and an attribute to store the home
state can be added to the Person entity as follows:

<xsd:simpleType name="IEG_STATE_ADDRESS">
<xsd:annotation>
<xsd:appinfo>
<D:options>
<D:option name="code-table-name">AddressState</D:option>
</D:options>
</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="IEG_CODETABLE_CODE" />
</xsd:simpleType>

<xsd:element name="Person">

"“<xsd:attribute name="homeState" type="IEG_STATE_ADDRESS" />
Figure 28: State Codetable and Attribute

A question to capture the hone state information can then be added to the script as follows:

<question-page id="AboutYouPage" entity="Person">

<cluster>
<question id="homeState">
<label id="State.Label">
<![CDATA[Please select your home state:]]>
</label>
</question>
</cluster>

Figure 29: State Codetable Question

When the script is executed the question is displayed to the user as a dropdown.
IEG also supports defining codetable questions in such a way that the user can make multiple selections.

When a codetable question is single-select the answer to the question can be stored in a single attribute
of an entity. Because there are multiple possible answers in a multi-select codetable question, a

Working with Intelligent Evidence Gathering 19

sequence must be added to store all the answers and a new entity type must be defined to represent the
answers in the sequence.

<xsd:element name="Person">

<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="State" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

"é/xsd:complexType>
</xsd:element>

<xsd:element name="State">
<xsd:complexType>
<xsd:attribute name="stateCode" type="IEG_STATE_ADDRESS" />
</xsd:complexType>
</xsd:element>

Figure 30: State Entity

Making a codetable question multi-select is done by setting the multi-select attribute of the question
to true. When adding a multi-select codetable question, the cluster that the question is being added to
must be mapped to the new entity type representing the answers to the question. In our example the
cluster must be mapped to the State entity. The page that contains the multi-select question must be
mapped to the entity that contains the sequence. In this example the page should be mapped to the
Person entity. Finally, in order for a number of options in a multi-select codetable question to be visible a
layout should be added to the question. The layout should specify the number of visible rows for the
question. If the number of options available for the question exceeds the number of rows specified in the
layout a scroll bar will be added to the question.

<question-page id="AboutYouPage" entity="Person">

<cluster entity="State">
<question id="stateCode" multi-select="true">
<label id="State.Label">
<![CDATA[Please select the states you lived in:]]>
</label>
<layout>
<num-rows>4</num-rows>
</layout>
</question>
</cluster>

Figure 31: Multi-Select Codetable Question

When the script is executed the question is displayed to the user as a list of codetable descriptions with
one checkbox for each item.

Conditional Elements

IEG scripts can have multiple different conditional elements: sections, pages or clusters. Conditional
elements can be shown or hidden based on answers from previous pages or on data pre-populated in the
DS.

Conditional Sections

It is possible to remove sections from a script execution by evaluating an expression at the start of the
execution: if the section is not visible, it will not be listed in the sections panel and the expression will not
be re-evaluated during the script execution.

Using a pre-populated DS as described in “Pre-Populating Scripts with Captured Data” on page 45, we
can set a flag on an entity depending on circumstances external to the script. Let's say we have an entity
called IntakeInformation that has a boolean attribute "collectIncomelnformation”. We can specify an
Income section in our script:

20 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

;ééction visible="IntakeInformation.collectIncomeInformation==true">

</séé£ion>
Figure 32: Visible Attribute of a Section

This will hide the Income section if the "collectIncomelnformation" attribute is false, as if the section was
not present in the script definition.

If a section needs to be enabled or disabled depending on answers from previous sections, it is possible
to wrap all the pages of a section in a single condition. Unlike the visible attribute, this condition will be
evaluated whenever the section is encountered, which means it is possible to go back and change an
answer that affects the navigability of a section. The section will still appear in the sections panel but will
be grayed out so the user cannot click on it.

The preceding example can be modified so that the "collectIncomelInformation" question is asked at the
start of the script. The Income section can then be modified as follows:
éééction>
<condition
expression="IntakeInformation.collectIncomeInformation">
</condition>
</section>

Figure 33: Conditional Section

Conditional Pages
Pages can be displayed or not based on the value of a condition expression. Loops can be also wrapped in
these conditions.

The conditional section previously mentioned where one condition wraps all the section's content is an
example of conditional pages.

Conditional Clusters

Clusters can also be wrapped in a condition element. If the expression of the condition element does not
refer to any of the questions on the same page the cluster is a static conditional cluster. That is because it
can be determined before the pages is displayed whether to display the cluster or not.

For example, if information about household members has been gathered you may wish to add another
page to ask further personal details including whether the person is pregnant. A new isPregnant
attribute should be added to the Person entity to store this information:

<xsd:element name="Person">
<xsd:complexType>

<xsd:attribute name="isPregnant" type="IEG_BOOLEAN"/>
Figure 34: Additional Person Attribute
Of course, this question is only applicable if the gender is female. Therefore the cluster can be wrapped in

a condition and it will only be displayed if the condition expression evaluates to true. The new extra
Person Details page can be defined as follows:

Working with Intelligent Evidence Gathering 21

<question-page id="AboutTheClientContinued" entity="Person" ...>
<condition expression="Person.gender=="SX2"">
<cluster>
<question id="isPregnant" mandatory="true">
<label id="IsPregnant.lLabel">
Are you pregnant?
</label>
<help-text id="IsPregnant.HelpText">
Are you pregnant?
</help-text>
</question>
</cluster>
</condition>
</question-page>

Figure 35: Static Conditional Cluster

Alternatively, if any of the questions referenced in the condition expression are on the same page, the
cluster is then a dynamically conditional cluster. The means that the cluster will be displayed and hidden
as the user changes answers to questions on the page. This dynamic feature of IEG requires that
JavaScript is enabled in the browser. The expressions of dynamically conditional cluster may not refer to
custom functions, as the expressions are evaluated without making a server call.

Without changing the DS schema, if the example above is changed so that the conditional cluster is
defined on the same page as the gender question the cluster will be a dynamically conditional cluster.

<question-page id="AboutTheClient" entity="Person" ...>

<cluster>
<title id="DetailsCluster.Title">
<![CDATA[Personal Details]]>
</title>

<question id="gender" mandatory="true">
<label id="Gender.Label">
<! [CDATA[Gender:]]>
</label>
</question>

<condition expression="Person.gender=="SX2"">
<cluster>
<question id="isPregnant" mandatory="true">
<label id="IsPregnant.Label">
<! [CDATA[Are you pregnant?]]>
</label>
</question>
</cluster>
</condition>
</question-page>

Figure 36: Dynamically Conditional Cluster

The pregnancy question will dynamically appear or disappear when the value selected for the gender
changes. Dynamic behavior on a page can be triggered by text fields, date fields, checkboxes, radio
buttons, select elements. Dynamic behavior cannot be triggered by the answer to a multi-select question
or a question matrix, due to the restrictions of the expression syntax.

It should be noted that only one level of condition is allowed around a cluster, i.e. conditional clusters
cannot be nested in other conditions. The condition expression for a dynamically condition cluster may
refer to questions on the same page that are themselves defined in dynamically conditional cluster. This
creates a cascading dependency between clusters.

Question Matrices
A question matrix will display a list of questions based on a codetable and for each of these codetable

values and each entity, a checkbox will be displayed to allow the user to select all the values that apply to
a particular entity.

The list questions presented in “List Questions” on page 18 ask the same boolean question about a group
of entities. It is possible to ask the same codetable question for a group of entities using question
matrices.

22 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

For example, suppose there is a requirement to capture possible levels of substance abuse for each
household member, a new domain definition can be added to represent the SubstanceAbuse codetable
and an attribute to store the level of substance abuse can be added to the Person entity as follows:
<xsd:simpleType name="IEG_SUBSTANCEABUSE">
<xsd:annotation>
<xsd:appinfo>
<D:options>
<D:option name="code-table-name">SubstanceAbuse</D:option>
</D:options>
</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="IEG_CODETABLE_CODE" />
</xsd:simpleType>

<xsd:element name="Person">
<xsd:complexType>

éiéd:attribute name="substanceAbuse"
type="IEG_SUBSTANCEABUSE" />

Figure 37: Substance Abuse Attribute

The question matrix is then defined as a regular list question, only the fact that it is based on a codetable
instead of a boolean will cause it to be displayed differently.

<list-question entity="Person" id="substanceAbuse"
criteria="age > 14">
<label id="SubstanceAbuse.lLabel">
<![CDATA[Substance Abuse:]]>
</label>
<item-label>
<label-element attribute-id="firstName" />
</item-label>
</list-question>

Figure 38: Question Matrix Code Example

The example above, of a question matrix that collects substance abuse information about multiple
household members, will be displayed in the IEG Player as a matrix with each row corresponding to a
codetable description and each column to a Person.

Fast Path Navigation

By default, when a user reiterates through a script all the pages are re-displayed which can become
arduous especially in large households. Fast Path navigation enables end users to go through IEG scripts
more quickly by automatically skipping loop or conditional pages that have already been answered.

This functionality is optional and switched off by default. It can be activated on loops and conditions (to
activate Fast Path navigation, see the Authoring Scripts using Intelligent Evidence
Gathering (IEG)) guide.

The first time a fast path element is encountered, it behaves as normal. When the user navigates through
the script subsequently only the new pages within these fast path elements will be displayed. The pages
that were previously displayed will now be skipped. This functionality doesn't prevent from editing the
data via the edit links on a summary page if necessary.

Fast Path can be used in the following scenarios:
- List Question driving a Loop

- Eligibility Criteria

- Fast Path Conditions

« Condition in Fast Path Loop

List Question driving a Loop

Using the same List Question as described in “List Questions” on page 18, we want to gather income
information for the people in a household. We will use a nested fast path loop as described in the
following example:

Working with Intelligent Evidence Gathering 23

<loop loop-type="for-each" entity="Person"
criteria="hasIncome==true" fast-path="true">
<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">
<question-page id="IncomePage" entity="Income"
show-person-tabs="true">
<title id="IncomePage.Title">
<! [CDATA[Income Details]]>
</title>
<cluster>
<title id="IncomeDetails.Title">
<! [CDATA[Income Details]]>
</title>
<question id="type">
<label id="Type.Label">
<![CDATA[Type:]1]>
</label>
</question>
<question id="amount">
<label id="Amount.Label">
<! [CDATA[Amount:]]>
</label>
</question>
<question id="hasMoreIncome"
control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="ContinueQuestion.Label">
<![CDATA[Does %1s have any more income?]]>
<argument id="Person.firstName" />
</label>
</question>
</cluster>
</question-page>
</loop>
</loop>

Figure 39: Fast Path List Question driving a Loop Code Example

The first time the list question is encountered, the pages following the loop will gather income for the
people that have been selected. Then when re-visiting the page containing the list question, the following
can occur:

« If the checkboxes are not modified, clicking Next will jump over the income loop and display the page
after the loop.

- If some of the checkboxes are unselected, clicking Next will delete the incomes corresponding to the
people that were unselected, jump over the income loop and display the page after the loop.

« If new checkboxes are checked, clicking Next will jump over the existing income pages, show new
income pages for the newly selected people and then display the page after the loop.

« If new checkboxes are checked and others are unselected, clicking Next will delete the incomes
corresponding to the people that were unselected,jump over the existing income pages, show new
income pages for the newly selected people and then display the page after the loop.

Eligibility Criteria

Building on the previous scenario, we can filter the people that will be displayed in the list question (the
loop does not need to be modified). Only the people over 18 will be eligible to enter income so a criteria is
added to the list question. When reiterating through the script people may no longer match the criteria
and therefore not appear in the list.

<list-question id="hasIncome" entity="Person" criteria="age > 18">
<label id="HasIncome.Label">
<![CDATA[Which people have income?]]>
</label>
<item-label>
<label-element attribute-id="firstName" />
</item-label>
</list-question>

Figure 40: Fast Path List Question with Eligibility Criteria driving a Loop Code Example

24 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

This will behave as mentioned in the previous scenario, but if the date of birth of a person is modified, the
following will happen:

« If the person becomes ineligible (under 18) and income had been entered, the corresponding income
will get automatically deleted as soon as the new date of birth is submitted.

- If the person becomes eligible (over 18), it will be displayed in the list question (but not selected) the
next time the list question page is displayed.

Fast Path Conditions

We can ask pregnancy details for female household members using a conditional page. If the condition is
defined as fast path, the pregnancy details will be hidden when re-iterating over household members as
the pages in the condition will only be displayed when reiterating through the script if the condition
previously evaluated to false and something has changed so the condition now evaluates to true.

<question-page id="AboutYouPage" entity="Person">
<title id="PrimaryPersonPage.Title">
<! [CDATA[About You]]>
</title>
<cluster>
<title id="DetailsCluster.Title">
<! [CDATA[Personal Details]]>
</title>
<question id="firstName" mandatory="true">
<label id="FirstName.lLabel">
<! [CDATA[First Name:]]>
</label>
</question>
<question id="middleName">
<label id="MiddleName.lLabel">
<! [CDATA[Middle Name:11>
</label>
</question>
<question id="lastName">
<label id="lastName.lLabel">
<! [CDATA[Last Name:]]>
</label>
</question>
<question id="gender" mandatory="true">
<label id="Gender.Label">
<! [CDATA[Gender:]]>
</label>
</question>
<question id="dateOfBirth" mandatory="true">
<label id="DateOfBirth.Label">
<![CDATA[Date Of Birth:]1]>
</label>
</question>
</cluster>
</question-page>
<condition expression="Person.gender=="SX2""
fast-path="true">
<question-page id="PregnancyPage" entity="Person">
<title id="PregnancyPage.Title">
<! [CDATA[About You: pregnancyl]l>
</title>
<cluster>
<title id="DetailsCluster.Title">
<![CDATA[Personal Details About Your Pregnancy]]>
</title>
<question id="isPregnant" >
<label id="IsPregnant.Label">
<![CDATA[Are you pregnant?]]>
</label>
</question>
</cluster>
</question-page>
</condition>

Figure 41: Fast Path Conditions Code Example

When editing the personal details, the following can occur:

« If no change was made to the gender, clicking on Next will jump over the condition, whether it was
displayed the first time or not.

Working with Intelligent Evidence Gathering 25

- If the gender has changed from Male to Female, clicking on Next will display the conditional page to
enter pregnancy details.

« If the gender has changed from Female to Male, clicking on Next will delete the pregnancy details and
display the page after the condition.

Condition in Fast Path Loop

When a condition is defined inside a Fast Path loop, this will behave the same as when a criteria is used on
the loop instead of nesting a condition, with the following exception: if the condition becomes true, the
page contained within the condition cannot be displayed as the loop doesn't have a new iteration to show
and therefore will be skipped. If the condition becomes false, the page and associated data will not be
deleted as the condition is not re-evaluated.

It is therefore recommended to use a criteria on the loop instead of a condition.

<loop loop-type="for-each" entity="Person"
fast-path="true">
<condition expression="Person.hasIncome==true">
<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">
<question-page id="IncomePage" entity="Income"
show-person-tabs="true">
<title id="IncomePage.Title">
<! [CDATA[Income Details]]>
</title>
<cluster>
<title id="IncomeDetails.Title">
<! [CDATA[Income Details]]>
</title>
<question id="type">
<label id="Type.Label">
<![CDATA[Type:]1]>
</label>
</question>
<question id="amount">
<label id="Amount.Label">
<! [CDATA[Amount:]1]>
</label>
</question>
<question id="hasMoreIncome"
control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="ContinueQuestion.LlLabel">
<![CDATA[Does %1s have any more income?]]>
<argument id="Person.firstName" />
</label>
</question>
</cluster>
</question-page>
</loop>
</condition>
</loop>

Figure 42: Condition in Fast Path loop Code Example

Implicit Delete
Wherever possible, the IEG engine tries to delete data as soon it finds out that it is no longer relevant.

If an answer is explicitly modified by the user (through a regular question, a list-question or a set-
attribute, but not through a custom function call), the engine detects if this answer is used in a condition
expression, a list-question criteria or a loop criteria. If that is the case, the expression or criteria is re-
evaluated and if it becomes false, the corresponding pages are removed and the associated data gets
deleted without the need to go through the script to encounter the expressions or criterion.

Three Field Date Picker

Whenever a date needs to be entered by a user, the default input field shows a plain text field and a date
picker. The user is free to either enter the date manually (for example, '5/6/2010') or to click on the
relevant date in the calendar widget. The former can be effective for power users and the latter is quite
handy for dates that are not too far in the past or in the future. But for non-power users that need to enter

26 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

dates well in the past (the obvious example is a date of birth), the default date picker can require a lot of
clicks to get to the relevant date.

Another date picker exists in the form of three fields displayed side by side, each representing the three
date parts (day, month, year). This lets users select dates in a much faster way and prevents invalid dates
being typed.

To switch from the default date picker to the three-field one, the date attribute being captured should be
defined in the data store schema using the 'TEG_THREE_FIELD DATE'type or a domain that extends it:

<xs:element name="Person">
<xs:complexType>

<xs:attribute name="dateOfBirth" type="IEG_THREE_FIELD_DATE"/>

The order of the drop-down elements and the display values of the month element reflect the date
format, as configured by the date format property in the ApplicationConfiguration.properties file. The day
drop-down is populated with numbers ranging from 1 to 31. Validation at infrastructure level prevents
users from selecting an invalid date, for example, February 31, 2015. The year drop-down element is
populated with values starting 100 years in the past to 30 years in the future. The range and order of the
options are not configurable.

Other Script Development Considerations

The various constructs that have been presented so far cater for a lot of different evidence gathering
needs, but there can be situations that require additional functionality such as the ability to display data
in a read-only mode or to invoke external functionality. The section details these items and also covers
some things that should be considered when maintaining IEG scripts, placing scripts under source control
and loading scripts into the database.

Displaying Data as Read-Only

Sometimes the answers to some questions need to be displayed to the user in such a way that they
cannot be modified. This is already the case on summary pages where users can review the answers and
use the back button or edit links to modify them.

On a question page, a "read-only" boolean attribute can be set to true indicating that all the questions
displayed on the page will not be editable.

A more sophisticated mechanism exists: "read-only-expression" attributes can be used on different script
elements (sections, all types of pages, clusters, questions and list questions). If the expression evaluates
to true, this will apply to all the questions contained in the element. At its simplest, the expression will be
"true" if the element needs to be unconditionally read-only. On a summary page, the result is that add,
edit and delete links are not displayed.

In the case of read-only-expression defined for cluster, question and list question script elements, if any
of the questions referenced in the expression are on the same page as the script element the script
element is then dynamically enabled or disabled as opposed to just being read-only. This means that
questions will be enabled and disabled as the user changes answers to other questions on the page.
Where the read-only-expression of a cluster references a question on the same page all the questions
contained in the cluster will be enabled and disabled. This dynamic feature of IEG requires that JavaScript
is enabled in the browser. The expressions to dynamically enable and disable questions may not refer to
custom functions, as the expressions are evaluated without making a server call.

Dynamic read-only-expressions may also refer to questions on the same page that are themselves
dynamically enabled and disabled. This creates a cascading dependency between questions. Care should
be taken when defining expressions with cascading dependencies as IEG does not take into account
whether the questions referred to in the read-only-expression is enabled or not, just the value of the
question. This may be confusing for the user as it may not be apparent what is controlling the enabling
and disabling of a question.

Working with Intelligent Evidence Gathering 27

When a question is displayed if the corresponding Datastore attribute has a value it will be displayed even
if the question is initially disabled. The question may then be enabled by the user and the user may
change the answer. If the question is disabled its value will set back to the value it had when initially
displayed. When a page is submitted the Datastore attribute will not be updated unless the question is
enabled. Therefore if the page is redisplayed the original value of the Datastore attribute will be displayed
again.

It is not possible to mark a question as mandatory if it also has a dynamic read-only-expression on the
question itself or one of its parent elements.

Dynamically enabling and disabling script elements is not supported on Relationship Pages.

The information gathered in loops can be displayed on summary pages using lists, but it is also possible to
use this list construct on regular pages without the need to specify a read-only-expression in one of the
elements wrapping the list. The only difference with summary lists is that links are not allowed.

Another possibility is to make a whole script read-only. This is useful, for example, if a case-worker needs
to review a script without being able to change any of the answers. The script is set to read-only through
the IEGRuntimeAPI by setting a read-only flag on the script execution, as shown below:

//Set read only flag.

IEGRuntime runtimeAPI = new IEGRuntime();

IEGScriptExecutionID runtimeExecID = new IEGScriptExecutionID();
runtimeExecID.executionID = execution.getExecutionID();
IEGReadOnlyFlag readOnlyFlag = new IEGReadOnlyFlag();
readOnlyFlag.readOnlyFlag = true;
runtimeAPI.setReadOnlyFlag(runtimeExecID, readOnlyFlag);

Figure 43: Setting the read-only flag on a script execution

Invoking External Functionality Using Expressions
Expressions can be found in multiple places in a script to define behavior for loops, conditions and so on.

See the Expression Syntax appendix in the Authoring Scripts using Intelligent Evidence
Gathering (IEG) guide for reference.

These expressions can refer to answers and can combine them using various operators, and they can
even call functions (except when used on dynamic conditional clusters as these expressions are
evaluated in the browser).

The functions described above are referred to as Custom Functions and are defined using Java™ code.
Depending on their usage, they can be of two types:

« Custom functions which can take parameters (possibly making a call to an external functionality) and
will return a value. They will not alter the content of the DS. They are used in most expressions.

« When the aim is to update the content of the DS, the custom function can be used in a standalone
element: callout. The returned value is irrelevant (but it must be a boolean). The custom function
should not update values that have been answered prior to the callout. This is because the IEG Engine is
not aware of the updates made outside the context of the script, and is therefore not be able take any
actions required by the updates.

Real-world examples that might necessitate the invocation of external functionality are the validation of a
US ZIP code that a user has supplied and the population of a state field based on a supplied ZIP code. We
will now demonstrate those 2 different usage.

The DS schema will need to be expanded to add the following 2 attributes to the Person entity, as follows:

<xsd:attribute name="state" type="IEG_STRING"/>
<xsd:attribute name="zipCode" type="IEG_STRING"/>

Figure 44: Additional Person attributes in the DS schema

First let's try to validate a ZIP code against a state (this is a naive implementation): a ZIP code must be
five digits long and the first 3 digits will indicate the state.

28 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

The personal details page mentioned earlier and the corresponding summary page can be modified with 2
extra mandatory questions: state and zipCode:

<question id="state" mandatory="true">
<label id="State.Label">
State:
</label>
<help-text id="State.HelpText">
The state you live in
</help-text>
</question>
<question id="zipCode" mandatory="true">
<label id="ZipCode.Label">
ZIP Code:
</label>
<help-text id="ZipCode.HelpText">
Your ZIP code
</help-text>
</question>

Figure 45: State and zipCode questions in the script definition

Then the custom function that will perform the validation must be created as a Java class in the package
curam.rules.functions:

bﬁBlic class CustomFunctionValidateZipCode extends CustomFunctor {

public Adaptor getAdaptorValue(final RulesParameters rp)
throws AppException, InformationalException {

final List<Adaptor> parameters = getParameters();
final String zipCode =

((StringAdaptor) parameters.get(0)).getStringValue(zp);
final String state =

((StringAdaptor) parameters.get(l)).getStringValue(zp);
boolean valid = false;

if (zipCode.length() == 5) {
final String prefix = zipCode.substring(@, 3);
//lookup the state prefixes
if (prefix.equals("100")
&& state.equalsIgnoreCase("New York")) {
valid = true;

t

if (prefix.equals("900")
&& state.equalsIgnoreCase("California")) 1
valid = true;

%
return AdaptorFactory.getBooleanAdaptor(Boolean.valueOf(valid));

3
Figure 46: Custom Function to validate the ZIP code

The following metadata for the custom function must be inserted in <yourcomponent>/rulesets/
functions/CustomFunctionMetaData.xml:

<CustomFunctor name="CustomFunctionValidateZipCode">
<parameters>
<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor
</parameter>
<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor
</parameter>
</parameters>
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>
</CustomFunctor>

Figure 47: Custom Function Metadata

See the Clram Rules Codification Guide for more details on the definition of custom functions.

Working with Intelligent Evidence Gathering 29

In our example, the custom function ValidateZipCode doesn't access an external database to look-up the
corresponding state. Ideally, it should do that look-up and then check the state returned against the state
that was entered. For simplification purposes, only two zip code prefixes are hard-coded above.

The validation will then be inserted in the personal details page:

<validation
expression="ValidateZipCode(Person.zipCode, Person.state)">
<message id="InvalidZipCode">
The ZIP code is invalid.
</message>
</validation>

Figure 48: ZIP code validation in the script definition

When the user clicks Next, the answers to the zipCode and state questions are passed to the custom
function, which will return true if the answers are valid. The next page will then be displayed.

If the custom function returns false, the message specified in the validation is displayed at the top of the
Person details page, blocking the access to the Next page until valid answers are submitted.

The custom function has no side effect as it doesn't alter anything. It only performs an operation based on
the parameters and returns a result.

It would also be possible to remove the mandatory flag on the two new questions and to validate the
answers only if they have both been supplied. The validation expression would then need to be changed
to the following using the out-of-the-box custom function isNotNull that checks if the given parameter is
null:

"not(isNotNull (Person.zipCode) and isNotNull(Person.state))
or ValidateZipCode(Person.zipCode, Person.state)"

Figure 49: Alternate validation expression

Alternatively, it is possible to populate the state question given the zipCode. To do so, the Person details
page will only ask for the zipCode (with the mandatory flag), and the summary page will display both state
and zipCode.

The following custom function should be defined:

30 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

bﬂﬁlic class CustomFunctionpopulateState extends CustomFunctor §

public Adaptor getAdaptorValue(final RulesParameters zrp)
throws AppException, InformationalException {

final TIEG2Context ieg2Context = (IEG2Context) rp;
final long rootEntityID = ieg2Context.getRootEntityID();
String schemaName;
//schemaName has to be hard-coded or retrieved outside of IEG
Datastore ds = null;
try {

ds =

DatastoreFactory.newInstance().openDatastore(
schemaName) ;

t catch (NoSuchSchemaException e) {

throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);

Entity applicationEntity = ds.readEntity(rootEntityID);

Entity personEntity =
applicationEntity.getChildEntities(
ds.getEntityType("Person"))[0];
String zipCode = personEntity.getAttribute("zipCode");
String state = "Unknown";
final String prefix = zipCode.substring(0, 3);
//lookup the state prefixes
if (prefix.equals("100")) 1
state = "New York";

3

if (prefix.equals("900")) 1
state = "California";

3

personEntity.setAttribute("state", state);

personEntity.update();
return AdaptorFactory.getBooleanAdaptor(new Boolean(true));

?
Figure 50: Custom Function to populate the state

And its metadata:

<CustomFunctor name="CustomFunctionpopulateState">
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>

</CustomFunctor>

Figure 51: Custom Function metadata

Between the Person details page and the summary page, a callout element must be inserted to call this
custom function, as follows:

<callout id="populateAddress" expression="populateState()"/>

Figure 52: Callout to populate the sate in the script definition

This time, the custom function will alter the DS by populating the state on the Person entity. The context
contains the root entity ID and executionID, making it easier to update the DS. If the callout is in a loop,
the context also contains the current entity ID.

Reusing Scripts
It is possible to break down a script definition into multiple files thus providing a re-use mechanism.

In order to achieve this, a script definition will have to reference subscripts. Each of these subscripts will
be a standalone script that can be run independently.

Here is an example of a script that can be used as a subscript:

Working with Intelligent Evidence Gathering 31

<?xml version="1.0" encoding="UTF-8"?>

<ieg-script ...>
<identifier id="Subscript" scriptversionnumber="V1" type="Test" />
<question-page ...>

</dﬁéstion-page>
</ié§-script>

Figure 53: Subscript Containing Pages

The script in the above example code snippet can be included in another script as a subscript, as follows:

<?xml version="1.0" encoding="UTF-8"?>

<ieg-script ...>
<identifier id="Script" scriptversionnumber="V1" type="Test" />
<section>

<ieg-sub-script>
<identifier id="Subscript"
scriptversionnumber="V1" type="Test" />
</ieg-sub-script>
</section>
<section>
</ééétion>
</iéé-script>

Figure 54: Inclusion of a Subscript in a Script

The possible point of insertion of a subscript in a script can be as follows:

« If the script contains sections and the subscript also contains sections, the subscript will have to be
inserted at the top level, under the parent ieg-script element.

« If the script contains sections and the subscript doesn't contain sections, the subscript will have to be
inserted in a section of the parent script.

« If the script doesn't contain sections, the subscript cannot contain sections. It will be inserted at the top
level, under the ieg-script element.

Another limitation to keep in mind is that a subscript can appear only once in a script as the page IDs
must be unique within the resulting script.

Note that a script might be used as a subscript elsewhere. When modifying scripts, ensure that any
referencing scripts are re-tested to ensure the changes do not have an undesired impact.

Source Control and Versioning

IEG script definitions are stored in the database. When editing an IEG script using the IEG Editor, the
script is edited in place and updated directly in the database. IEG script definitions are development
artifacts and from a software configuration management point of view it is important that these artifacts
are placed under source control as you would with any other artifacts.

It is possible to download a script definition from the IEG script administration screens. When the option
to download a script is chosen, the script is first retrieved from the database, then the properties files
associated with the script definition are retrieved from the Resource Store and the textual properties are
"injected" into the script definition before it is made available. However downloading a script in this way
does not provide all the resources that may be associated with a script definition. For example, it does not
provide properties files in multiple locales and it does not provide images and icons. Please see the
Compliancy appendix of the Authoring Scripts using Intelligent Evidence Gathering
(IEG) developer's guide for more information on the database representation of an IEG script.

When populating the database with script definitions, it is important to be aware of the differences in
functionality between importing a script through the IEG script administration screens and loading a
script definitions via DMX files.

32 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Rendering Custom HTML on a Summary Page

You can use the custom-output display element to render custom HTML on a summary page. The
custom-output display element enables data from a data store instance to be retrieved and accessed
from a custom renderer so that the data can be rendered by using custom HTML.

Some summary pages might contain much material that is displayed on multiple pages. Therefore, you
might want to implement custom layout requirements so that you can use user interface design concepts.
For example, you might want to use cards to format Intelligent Evidence Gathering (IEG) summary data in
a user-friendly layout that is oriented to data types.

By using the custom-output display element to render custom HTML, you can implement custom-
rendered clusters that include images and rich text formatting on a summary page. Custom-rendered
clusters enable a summary of the data that is provided by a client to be displayed in a more visually
appealing format.

Script description

The following sample shows an example instantiation of the custom-output display elementin a
summary-page element.

<summary-page id="HouseholdSummary">
<title id="HouseholdSummary.Title"><![CDATA[Household Summary]]></title>
<icon image="sample_title_household" />
<custom-output
class-name="curam.ieg.player.custom.IEGSampleCustomRenderer"
data-accessor="curam.ieg.player.custom.IEGSampleCustomOutputDataAccessor" />

</éﬂﬁmary-page>

custom-output element

The custom-output element is an optional child element of the summazry-page display element.
You can use the custom-output element only within a summary-page element. You can include
multiple custom-output elements in a single summary page or in multiple summary pages, in any
order, similarly to cluster, 1ist, condition, and relationship-summary-1list elements.

The custom-output element has two mandatory attributes, a data-accessor attribute, and a
class-name attribute. The custom-output element has no child elements.

custom-output attributes
data-accessor attribute

The data-accessor attribute represents the name of the data accessor class that is used to
retrieve entity data that is rendered as required in the custom renderer class that is specified in
the class-name attribute. The fully qualified name of the data accessor class must be specified
in the attribute field.

For each custom-output element, the data that is retrieved by the specified data accessor class
is unique to the associated, specified custom renderer class. For example, if two custom-output
elements are instantiated on a summary page, a different data-accessor class but the same
custom renderer class can be specified for both elements. For the first custom-output element,
the data accessor class retrieves only person entity data. For the second custom-
outputelement, the data-accessor class retrieves only income entity data. Therefore, for the first
custom-output element, the custom renderer can access only person entity data. For the
second custom-output element, the custom renderer can access only income entity data.

class-name attribute

The class-name attribute represents the name of the custom renderer class that is used to
output custom HTML on a summary page. The class-name attribute value must specify the fully
qualified name of the custom renderer class.

Working with Intelligent Evidence Gathering 33

How to use the custom-output element
To render custom HTML on a summary page, you must configure a data accessor class and a custom
renderer class.

Data accessor class

You must create a data accessor class that is used to retrieve entity data from a data store instance. The
data can then be processed within a custom renderer class. The data accessor class must implement
the curam.ieg.external.impl.IEGCustomOutputEntityData interface and its
getRequiredEntitiesForCustomOutput (IEGScriptExecution) method. The
getRequiredEntitiesForCustomOutput method returns a list of string objects that represent the
entity data and that can be read by a custom renderer on the client side.

Optionally, a data accessor class can also inherit from the
curam.ieg.external.impl.IEGCustomOutputDataAccessoxr class. The
curam.ieg.external.impl.IEGCustomOutputDataAccessor class contains several utility APIs
that are provided to enable entity data from the data store to be accessed more easily. The following list
gives a brief description of the APIs. For a full description, see the Javadoc documentation for the
methods in the curam.ieg.external.impl.IEGCustomOutputDataAccessor class.

List<String> getRequiredEntities(List<String>, IEGScriptExecution)
This method returns a list of XML strings that contain entity data for a list of specified entity type
names.

List<String> getTopLevelEntities(IEGScriptExecution)
This method returns a list of strings that contains the names of the direct child entities of the root
entity.

List<String> getEntityXML(List<Entity>)
This method returns entity data in an XML string format. The following example shows a sample XML
string for an income entity with two attributes, type and amount:

<Income type="Wages" amount="10000"/>

List<String> getChildEntityXML(List<Entity>, String, IEGScriptExecution)
This method returns a list of strings that contain entity data that is of a specified child entity type.

Custom renderer class

You must also create a custom renderer class that is used to create and render custom HTML. The custom
renderer class must inherit from the curam.ieg.player.IEGCustomOutputRenderer class. The
curam.ieg.player.IEGCustomOutputRenderex class contains several utility APIs that are provided
to enable a custom renderer to access and process data that is retrieved by a data accessor class. The
following list gives a brief description of the APIs. For a full description, see the Javadoc documentation
for the methods in the curam.ieg.player.IEGCustomOutputRenderer class.

List<Node> getEntityXMLData(Component, RendererContext)
This method gets the required entity data that was retrieved by the associated data accessor class for
a custom renderer. Entity data for a custom renderer is retrieved in an XML string format and returned
as a list of node objects.

List<String> getEntityData(Component, RendererContext)
This method gets the required entity data was retrieved by the associated data accessor class for a
custom renderer. Entity data for a custom renderer is retrieved and returned as a list of strings.

List<Node> parseXMLString(String)
This method parses an XML String into a list of node objects.

String getLocalizedText(Component, RendererContext, String, List<String>)
This method returns the localized text for a specified property.

String getLocalizedCodeTableItemValue(String, String, RendererContext)
This method returns the localized value of the specified code table item.

34 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

String getLocalizedMoneyStxring(Stxring)
This method returns a localized string that represents a money value.

String getLocalizedBooleanString(RendererContext, String)
This method returns a localized string that represents a Boolean value.

String getlLocalizedDateString(String)
This method returns a localized string that represents a date value.

String getLocalizedImageFromResourceStore(String, RendererContext)
This method returns the relative URI for an image from the resource store for the current locale.

Both data accessor classes and custom renderer classes can be reused multiple times by different
custom-output elements.

Guidelines for using the custom-output element

When you add a custom-output element to a summary page, if custom properties are required to be
used within a custom renderer class, you must add the properties to the properties file for the summary
page. The custom renderer class must then reference the required properties directly.

For example, you can retrieve text from a properties file within a custom renderer by calling the
getlLocalizedText (Component, RendererContext, String, List<String>) method. If
required, pass the property name and a list of arguments for the property as parameters into the method.
The localized text for the property is returned. Similarly, you can also retrieve images from the resource
store by calling the getLocalizedImageFromResourceStore(String, RendererContext)
method. Pass the name of the image as a parameter into the method, and the relative image URI is
returned. You can set the URI value as the source for an image element.

The custom-output element enables data from a data store instance to be retrieved and then rendered
on a summary page by using custom HTML. When you use the custom-output element, use the
following guidelines:

API methods
Several API methods are provided in the curam.ieg.player.IEGCustomOutputRenderer class
to handle the localization of the different data types that can be used within custom renderers. It is
recommended that you use the methods to return localized versions for each of the data types within
a custom renderer. No API methods are supplied for number formatting. The following table lists the
data types for which localization APIs are provided:

Table 2: Data types and associated API localization methods

Data type Method

String getlLocalizedText (Component, RendererContext, String,
List<String>)

Codetable getlLocalizedCodeTableItemValue(String, String,

Note: Codetable RendererContext)

hierarchies are not

supported.

Money getlLocalizedMoneyString (String)

Boolean getlLocalizedBooleanString(RendererContext, String)

Date getlocalizedDateString(String)

Retrieving entity data

« You must use data accessor classes to retrieve entity data that can then be rendered in a custom
renderer class. Data accessor classes support only the reading of data from the data store. The
editing of data store data within a data accessor class might cause adverse effects and is not
supported.

Working with Intelligent Evidence Gathering 35

« Retrieving a large amount of entity data from the data store within a data accessor class can affect
the overall performance of an IEG page. Therefore, take care when you consider how many
custom-output elements are included on a summary page.

« Within custom renderer classes, where it is possible to retrieve data such as images and properties,
ensure that you retrieve data only from the resource store.

Instantiating the custom-output element
Import IEG script definitions that contain the new custom-output element into the database by
using one of the following options:

e ieg.importscript command line build option
« database command line build option

Do not use the option in the administration section of the application to import an IEG script that
contains custom-output elements. Any associated properties that are specified for a custom
renderer are not included in the script definition. Instead, the properties are defined directly in the
associated property file of the summary page where the custom-output elements are instantiated.

Rendering custom HTML

« The HTML that is output by a custom renderer can contain only read-only fields. The HTML output
must not contain any editable fields because no infrastructure is provided that allows data to be
either entered or modified through the mechanism of the custom output feature.

« The custom HTML that is created must be valid HTML within the context of an IEG page. For
example, it is valid to insert a div tag as a starting point for the custom HTML, but inserting an html
tag as a starting point within a custom renderer might cause adverse effects.

 Ensure that the custom renderer does not delegate to other renderers to output HTML on a
summary page.

« Ensure that the custom HTML complies with accessibility standards.

« If specific custom HTML for right-to-left languages and high contrast mode is required, use the
custom renderer to create the custom HTML.

Sample code for rendering custom HTML

The following sample code shows an example of how to set up the custom-output element and its
required classes. The sample code outputs the first names of all the people in the household in a custom
cluster at the top of a summary page. The example also demonstrates how text from a properties file and
images can be retrieved from the resource store and used in a custom renderer.

Data accessor class

The following sample data accessor code implements the supplied
curam.ieg.external.impl.IEGCustomOutputEntityData interface and its
getRequiredEntitiesForCustomOutput (IEGScriptExecution) method. The code then specifies
that person entity data is required for the particular custom-output element. To retrieve the person
entity data, the getRequiredEntities(List<String>, IEGScriptExecution) API methodis
called. The data accessor class can access the API method because the class inherits from the
curam.ieg.external.impl.IEGCustomOutputDataAccessor class.

package curam.ieg.player.custom;

public class IEGSampleCustomOutputDataAccessor extends
IEGCustomOutputDataAccessor implements IEGCustomOutputEntityData §

public IEGSampleCustomOutputDataAccessor() 1
%

public List setRequiredEntities() {
// Create a list of required entity types

List entitylListForCustomOutput = new ArraylList();

36 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

entitylistForCustomOutput.add("Person");
return entitylistForCustomOutput;
%

@Override
public List getRequiredEntitiesForCustomOutput(final IEGScriptExecution execution)
throws AppException, InformationalException {

// Returns a list of XML strings for Entities of the required entity types.
final List entitylList = getRequiredEntities(setRequiredEntities(), execution);
return entitylist;

%

Custom renderer class

The sample custom renderer class accesses the data that was retrieved by the data accessor class,
processes it, and then creates HTML to render the data. To render the data, the custom renderer inherits
from the supplied curam.ieg.player.IEGCustomOutputRendexrer class. You can style HTML in
custom renderers by using either CSS, or inline styling.

Eackage curam.ieg.player.custom;
public class IEGSampleCustomRenderer extends IEGCustomOutputRenderer §

@Override

public void render(final Component component,

final DocumentFragment fragment, final RendererContext context,
final RendererContract contract) throws ClientException,
DataAccessException, PlugInException {

// Get the owner document from the fragment
final Document ownerDocument = fragment.getOwnerDocument();

// CSS classes for customOutput divs
final String customOutputClass = "customOutput";

// Create the required HTML elements
final Element customOutputDiv = ownerDocument.createElement(kDiv);
customOutputDiv.setAttribute (kClass, customOutputClass);

final Element customOutputHouseholdContentDiv =
ownerDocument.createElement (kDiv) ;

final Element customOutputHouseholdTitle =
ownerDocument.createElement (kH2) ;

/*
* Calls the provided API method to retrieve the localized title text from
* a properties file.

*

final String householdTitle = getlLocalizedText(component,
context, "CustomHousehold.Title",

new ArraylList());

customOutputHouseholdTitle.setTextContent(
householdTitle);

// Create a div to hold the household icon
final Element customOutputHouseholdImageDiv =
ownerDocument.createElement (kDiv) ;

// Create the household icon using an image from the resource store.
final Element customOutputHouseholdImage =
ownerDocument.createElement (kImg) ;

/*

* Calls the provided API method to retrieve the image from the resource
* store

*/

customOutputHouseholdImage.setAttribute (kSzc,
getlocalizedImageFromResourceStore("household.png", context));

Working with Intelligent Evidence Gathering 37

customOutputHouseholdImageDiv.appendChild (
customOutputHouseholdImage) ;
customOutputHouseholdContentDiv.appendChild(
customOutputHouseholdTitle);

// Set the attribute name for the entity

final List personAttributeNames = new Arraylist();
personAttributeNames.add ("firstName");

/*

* Calls the provided API method to access the entity data the data
* accessor class retrieved.

*/

final List nodelist = getEntityXMLData(component, context);

Element element;

// Navigate through the node list

for (final Node node: nodelList)$
if(node.getNodeName () .equals("Person")) %

element = processPersonDetails(

personAttributeNames, node.getAttributes(), fragment, context,
component, customOutputHouseholdTitle);
customOutputHouseholdContentDiv.appendChild(element);

b

b

// Add the household content to the container div
customOutputDiv.appendChild (customOutputHouseholdImageDiv) ;
customOutputDiv.appendChild (customOutputHouseholdContentDiv);

fragment.appendChild(customOutputDiv) ;

private Element processPersonDetails(final List attributeNames,
final NamedNodeMap attributes, final DocumentFragment fragment,
final RendererContext context, final Component component,

final Element heading)

throws ClientException, DataAccessException {

// get the owner document from the fragment

final Document ownerDocument = fragment.getOwnerDocument();

final Element attributeDiv = ownerDocument.createElement(kDiv);
final Element attributeContent = ownerDocument.createElement(kSpan);

String name = ;

// Builds up a string that contains the required entity details for
// each entity.

for(int i = 0; i < attributeNames.size(); i++) §

final Node node = attributes.getNamedItem(attributeNames.get(i));
if(attributeNames.get(i).equals("firstName")) 1§

if(node != null) {

if(!node.getNodeValue () .isEmpty()) {
name = node.getNodeValue();

3
§
¥

attributeContent.setTextContent(name);
attributeDiv.appendChild(attributeContent);

return attributeDiv;

¥
¥

38 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Sample properties file for a summary page with a custom-output element

The following sample code shows an example of how to add a custom property to the properties file for
the summary page that contains the custom-output element:

EustomHousehold.Title=Household Details:

Sample IEG script

In the following IEG Script, the custom-output element has been added before a list element on a
summary page:

<summary-page id="HouseholdSummary" progress="45"
show-back-button="true" show-exit-button="false"
show-save-exit-button="true" show-next-button="true" set-focus="true">
<title id="HouseholdSummary.Title"><![CDATA[Household Summary]]></title>
<icon image="sample_title_household" />
<custom-output
class-name="curam.ieg.player.custom.IEGSampleCustomRenderer"
data-accessor="curam.ieg.player.custom.IEGSampleCustomOutputDataAccessor" />
<list entity="Person">
<title id="PersonList.Title"><![CDATA[People in your household]]></title>
<column id="firstName">
<title id="FirstName.Title"><![CDATA[First Name]]></title>
</column>
</list>
</summary-page>

Integrating IEG into a Ciiram Application

This section outlines how IEG can be integrated into an application. IEG can be integrated in two ways:
either by opening the player in a tab or in a modal dialog. The integration tasks that are dealt with here
include creating the script execution; setting finish and quit pages; running in a tab; running in a modal;
cleaning up application data; and resuming scripts.

Creating a Script Execution

It is recommended that, before opening the IEG Player from an application, the script execution is created
using the public API. The execution ID can then be passed to the player.

The following example code snippet shows the creation of a script execution using the public API:

// create the script execution

final IEGRuntime runtimeAPI = new IEGRuntime();

final IEGScriptExecutionIdentifier executionIdentifier =
runtimeAPI.createScriptExecution(iegScriptID, schemaName);

Figure 55: Creation of a script execution

Specifying a Redirection URL

The finish-page and quit-page attributes in an IEG Script indicate what URL to redirect to when
leaving the IEG Player. In this way they provide a connection between the IEG Player and an application.

These attributes are detailed in the IEG Script Element Reference chapter of the Authoring
Scripts using Intelligent Evidence Gathering (IEG) developer's guide.

Modify the example script to include these attributes as shown below:

Working with Intelligent Evidence Gathering 39

<ieg-script
finish-page="IEG2_listAl1IEG2Scripts"
quit-page="IEG2_listAl1IEG2Scripts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="ieg-schema.xsd">

<ieg:ééript>
Figure 56: Script with finish-page and quit-page defined

In the example above, completion or exit from the script will result in redirection to the list of all IEG
scripts provided in the administration screens.

Running the IEG Player in a Tab
Running the IEG Player in a tab is a requires less effort than running it in a modal. It necessitates that the
'opening' link points to ieg/Screening.do and passes in the executionID. Screening.do invokes
the IEG Player.

The parameters are as follows:

Here is an example of a resolve UIM that opens the IEG Player in a tab:

40 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

<?xml version="1.0" encoding="UTF-8"?>
<PAGE PAGE_ID="System_IEGResolver">
<JSP_SCRIPTLET>
<![CDATA[

String scriptID = request.getParameter("scriptID");

String scriptType = request.getParameter("scriptType");

String scriptVersion = request.getParameter(
"scriptVersion");

String schemaName = request.getParameter("schemaName");

String name = request.getParameter("name");

String executionIDParam =
request.getParameter ("executionIDParam");
String url = null;

curam.omega3.request.RequestHandler
rh = curam.omega3.request.
RequestHandlerFactory.getRequestHandler (request);

String context = request.getContextPath() + "/";

if (executionIDParam == null) {
// Need to check to see if there are any script validation
// errors before running the script.

String contextWithUserPreferences = context +
curam.omega3.user.UserPreferencesFactory
.getUserPreferences(

pageContext.getSession()).getlLocale() + "/";

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH
iegScriptAdminCheckForErrors
= new curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH();

iegScriptAdminCheckForErrors.setFieldValue (
iegScriptAdminCheckForErrors.key$scriptID_idx, scriptID);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptType_idx,
scriptType);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptVersion_idx,
scriptVersion);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$schemaName_idx,
schemaName) ;
//Call the method.
iegScriptAdminCheckForErrors.callServer();

String errorsPresentInScript =
iegScriptAdminCheckForErrors.getFieldValue (
iegScriptAdminCheckForErrors
.result$errorsExist_idx);
boolean errorsPresent =
Boolean.valueOf(errorsPresentInScript) .booleanValue();

if (errorsPresent) $

// If there are errors, redirect to the validation error
// page.

String redirectTo = contextWithUserPreferences

+ "System_listValidationErrorsForRunPage.do"

+ "?name=" + name

+ "&scriptID=" + scriptID

+ "&scriptType=" + scriptType

+ "&scriptVersion=" + scriptVersion

+ " + schemaName;

u " + rh.getSystemParameters();

"&schemaName=
rl = redirectTo + "&

t else §

// Call the run script method and redirect to the IEG
// player.

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_runScript_TH iegScriptAdminRunScript

= new curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_runScript_TH();

iegScriptAdminRunScript.setFieldValue(

iegScriptAdminRunScript.key$dtls$scriptID_idx,
scriptlD);

iegScriptAdminRunScript.setFieldValue(

iegScriptAdminRunScript.key$dtls$scriptType_iffgrking with Intelligent Evidence Gathering 41
scriptType);

iegScriptAdminRunScript.setFieldValue(

deoScrintAdminRunScrint kev€d+lefecrintVereion dx

Running the IEG Player in a Modal Dialog

The IEG Player can be opened in a modal dialog, and there are some specific considerations a script
developer needs to account for pertaining to this.

Opening the IEG Player in a Modal Dialog
To open the IEG Player in a modal dialog, open Screening.do, in the modal, passing the executionID
and system parameters, using a resolve UIM.

System_IEGResolverModal.uimis provided out-of-the-box to perform this processing:

<PAGE PAGE_ID="System_IEGResolverModal">
<JSP_SCRIPTLET>
<! [CDATA[

String scriptID = request.getParameter("scriptID");

String scriptType = request.getParameter("scriptType");

String scriptVersion =
request.getParameter("scriptVersion");

String schemaName = request.getParameter("schemaName");

String name = request.getParameter("name");

// Need to check to see if there are any script
// validation errors before running the script.
curam.omega3.request.RequestHandler
rh = curam.omega3.request.
RequestHandlerFactory.getRequestHandler (request);

String context = request.getContextPath() + "/";
String contextWithUserPreferences = context +
curam.omega3.user.UserPreferencesFactory
.getUserPreferences(
pageContext.getSession()).getlLocale() + "/";

String url = null;

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH
iegScriptAdminCheckForErrors
= new curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH();

iegScriptAdminCheckForErrors.setFieldValue (
iegScriptAdminCheckForErrors.key$scriptID_idx,
scriptID);
iegScriptAdminCheckForErrors.setFieldValue (
iegScriptAdminCheckForErrors.key$scriptType_idx,
scriptType);
iegScriptAdminCheckForErrors.setFieldValue (
iegScriptAdminCheckForErrors.key$scriptVersion_idx,
scriptVersion);
iegScriptAdminCheckForErrors.setFieldValue (
iegScriptAdminCheckForErrors.key$schemaName_idx,
schemaName) ;
//Call the method.
iegScriptAdminCheckForErrors.callServer();

String errorsPresentInScript =
iegScriptAdminCheckForErrors.getFieldValue (
iegScriptAdminCheckForErrors.result$errorsExist_idx);
boolean errorsPresent =
Boolean.valueOf (errorsPresentInScript).
booleanValue();

if (errorsPresent) f{

// If there are errors, redirect to the validation
// error page.
String redirectTo = contextWithUserPreferences

+ "System_listValidationErrorsForModalPage.do"

+ "?name=" + name + "&scriptID=" + scriptID

+ "&scriptType=" + scriptType

+ "&scriptVersion=" + scriptVersion

+ "&schemaName=" + schemaName;
url = redirectTo + "&&" + rh.getSystemParameters();

t else §

// Call the run script method and redirect to
// the IEG player.

42 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_runScript_TH iegScriptAdminRunScript
= new curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_runScript_TH();

iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptID_idx,
scriptlD);
iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptType_idx,
scriptType);
iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptVersion_idx,
scriptVersion);
iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$schemaName_idx,
schemaName) ;
//Call the method.
iegScriptAdminRunScript.callServer();

String executionID =
iegScriptAdminRunScript.getFieldValue(
iegScriptAdminRunScript.result$executionID_idx);
executionID = executionID.replaceAll(",", "");

url = context + "ieg/Screening.do?"
+ "executionID=" + executionID
+ "&" + rh.getSystemParameters();

¥

// Redirect to the correct page.
response.sendRedirect(
response.encodeRedirectURL (url));

11>
</JISP_SCRIPTLET>
</PAGE>

Exiting a Script Execution in a Modal Dialog
There are two broad approaches a script developer can take to complete or exit an IEG script execution in
a modal dialog:

- Directly closing the modal dialog, and refresh or redirect in the parent tab.
« Progressing to further UIM screen/s in the modal dialog.

Directly Closing the Modal on Script Completion
To close a modal dialog directly upon completion of; or exit (Exit, Save & Exit actions) from an IEG script
execution, the script developer must specify a resolve UIM as the finish-page and/or quit-page.

That resolve UIM must in turn invoke a custom JSP that calls the appropriate JavaScript function to close
the dialog.

For example, to redirect to the TEG2_1istAl11IEG2Scripts administration screen, include the following
JSP scriptlet in your UIM file:

<PAGE
PAGE_ID="IEG2_resolveFinishScript"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="file://Curam/UIMSchema.xsd"

>
<JSP_SCRIPTLET>
<! [CDATA[

curam.omega3.request.RequestHandler
rh = curam.omega3.request.RequestHandlerFactory
.getRequestHandler (request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory
.getUserPreferences(
pageContext.getSession()).getlLocale() + "/";
String url = "";
url = context + "IEG2_listAll1IEG2ScriptsPage.do";

String forwardParams =
request.getParameter ("forwardParams");

Working with Intelligent Evidence Gathering 43

if (screenContext != null && screenContext
.hasContextBits(
curam.omega3.taglib.ScreenContext.MODAL)) {
url += "?" + rh.getSystemParameters();
String encodeRedirectURL = response.encodeURL (url);
response.sendRedirect (response.encodeRedirectURL (
request.getContextPath() +
"/ieg/CloseAndRedirect.jspx?redirect="
+ encodeRedirectURL));
1 else §
url += "?" + rh.getSystemParameters();
response.sendRedirect(
response.encodeRedirectURL (url));

11>
</JSP_SCRIPTLET>
</PAGE>
CloseAndRedirect. jspxis provided out-of-the-box for closing the modal dialog and redirecting to a
specified UIM (if provided) in the parent.

Progressing to Further UIM Screen/s in the Modal Dialog
To keep the modal dialog open to display further UIM screens after script execution has completed,
specify the required UIM page as the finish-page and/or quit-page in the IEG script definition.

Once that UIM has loaded, you have moved out of IEG and standard UIM processing in a modal dialog
applies.

Cleaning Up Application Data

Cleaning up application data involves removing data from the IEGEXECUTIONSTATE database table and
the Datastore(DS) where appropriate. This section details the manual and automatic data clean-up tasks
that script authors should be aware of, and makes some recommendations to ensure cleaning up
application data can proceed smoothly.

In order to support execution of an IEG script, information about individual script executions must be
maintained by the IEG engine. For example the IEG engine must keep track of the current page for the
script execution. The IEG engine must also maintain a list of the pages that have been presented to the
user to support navigation. The answers to control questions are not persisted in the DS and the IEG
engine must also keep track of these. All the information to support the execution of an IEG script is
persisted in the IEGEXECUTIONSTATE table. When a new IEGScriptExecution object is created via the
IEGScriptExecutionFactory API a corresponding entry is created in the IEGEXECUTIONSTATE table. The
IEGEXECUTIONSTATE table is an "internal" table only intended to be used by the IEG engine and it should
not be modified or extended. Script authors should not become dependent on or make assumptions
about the contents of this table as they can be subject to change without notice.

IEG has no way of knowing when an entry in the IEGEXECUTIONSTATE table is no longer required and
therefore the entries will persist until they are explicitly deleted. To avoid the IEGEXECUTIONSTATE table
becoming unnecessarily cluttered, if a script execution has completed or will not be resumed or re-
executed its entry in the table should be removed via the removeScriptExecutionObject method of the
IEGScriptExecutionFactory API.

IEG cannot make any inference as to what data can be used to logically and uniquely identify a particular
script execution as this can vary from script definition to script definition. The only way for IEG to identify
a script execution is via the generated ID that is assigned to the script execution when it is initially
created. It is highly recommended that script authors implement a mechanism to identify script
executions by associating unique data with the script execution IDs. A new table can be created to
maintain the relationship between the data that identifies the execution and the execution ID to make it
easy for script executions to be resumed. When they are no longer required they can be removed.
Removing a script execution does not cause any of the gathered data that is persisted in the DS to be
removed.

Similarly to IEGEXECUTIONSTATE, the IEG engine and the DS have no way of knowing when the data that
is gathered during a script execution and persisted in the DS is no longer required. Again, the DS can
become unnecessarily cluttered with entities that are no longer required. It is intended that entities will
not persist in the DS indefinitely but that the gathered data be moved to application tables and then

44 1BM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

removed from the DS. When an entity is deleted from the DS its child entities are also deleted. Therefore
when the data that is gathered during a script execution has been moved to application tables and is no
longer required it is sufficient to delete the root entity for the execution.

The following example code snippet shows the deletion of the root entity:

final Long applicationID = execution.getRootEntityID();
final Entity rootEntity = datastore.readEntity(applicationID);
rootEntity.delete();

Figure 58: Deleting the Root Entity

Resuming Executed Scripts
It is possible to stop a script execution and resume it later. To do so, the application must take care of
storing the execution ID in a custom table and associate it with some user ID.
See “Cleaning Up Application Data” on page 44 for more details.

Provided the IEGEXECUTIONSTATE table hasn't been cleaned up and the script definition hasn't been
modified, a script execution will be resumed by passing the executionID parameter to the IEG Player in
the same way it is done when starting a new script execution.

Managing Captured Data

The data captured during script execution is persisted in the Datastore (DS). This section explains how
you can retrieve the captured data from the DS. This section also explains how data can be inserted into
the DS so that it is available to IEG while executing scripts.

Retrieving Captured Data

The Datastore (DS) has a public API which you may use in your application code. This API is most often
used to retrieve information from a populated schema but it can also be used to pre-populate a schema.

For example, once a client has completed an application, they can submit their information. At this point,
the API can be used to extract the data from the schema and populate tables in the relational database.

An example of pre-population is where some information about the client is known in advance of starting
their application. If some of that information is required to navigate through the application, the DS can be
pre-populated with the information.

To read any data from a schema, the appropriate execution of the script needs to be known. This means
you are retrieving the correct application information for a client. Therefore, the executionID and schema
name are vitally important to gain access to the data.

The following example code snippet shows the obtaining of the root entity:

final IEGRuntime runtimeAPI = new IEGRuntime();

final IEGRootEntityID rootEntityID =
runtimeAPI.getScriptExecutionRootEntityID(executionID);

Datastore ds = DatastoreFactory.newInstance()
.openDatastore (kSchemaName) ;

final Entity rootEntity =
ds.readEntity(rootEntityID.entityID));

Figure 59: Obtaining root entity

From here, the root entity can be used to retrieve other entities under this root entity.

Pre-Populating Scripts with Captured Data

It is possible to pre-populate the values that will be displayed to the user so that the answers only need to
be confirmed or modified.

For example, we can pre-populate the name and date of birth of a user on a Personal Details page
assuming that the user has already logged in and another database holds the personal details.

Working with Intelligent Evidence Gathering 45

The DS can be pre-populated prior to the start of script execution as follows:

béfastore ds = null;

try {

// open the data store and create the root entity

ds = DatastoreFactory.newInstance().openDatastore(schemaName);
t catch (NoSuchSchemaException e) {

throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);

final EntityType appType = ds.getEntityType("Application");
final Entity rootElement = ds.newEntity(appType);

ds.addRootEntity(rootElement);

final EntityType personType = ds.getEntityType("Person");
final Entity person = ds.newEntity(personType);

person.setAttribute("firstName", "TestFirstName");
person.setAttribute("lastName", "TestLastName");
person.setAttribute("date0OfBirth", "19700101");
/...

rootElement.addChildEntity (person);
Figure 60: Code Snippet that Populates the DS

The root entity can then be used in creating a new script execution as follows:

// create the script execution
final IEGRootEntityID rootEntityID = new IEGRootEntityID();
rootEntityID = rootElement.getUniqueID();
final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGScriptExecutionIdentifier executionIdentifier =
runtimeAPI.createScriptExecutionExistingRootEntity (
iegScriptID, schemaName, rootEntityID);

Figure 61: Creation of a Script Execution

The IEG Player can then be run using this new script execution as follows:

<?xml version="1.0" encoding="UTF-8"?>
<PAGE PAGE_ID="IEGScriptLauncher">
<JSP_SCRIPTLET>
<! [CDATAL
curam.omega3.request.RequestHandler rh =
curam.omega3.request.RequestHandlerFactory.getRequestHandlexr(
request);

String context = request.getContextPath() + "/";
String url =

context + "ieg/Screening.do?" + "executionID=
+ "&" + rh.getSystemParameters();

+ executionID

// Redirect to the correct page.
response.sendRedirect (response.encodeRedirectURL (url));

11>
</JSP_SCRIPTLET>
</PAGE>

Figure 62: Launching the IEG Player
Note that it is only possible to pre-populate the DS, and not the control questions or other script-related
information as they are stored in the script execution and not in the DS. This means that it is not possible

to pre-populate the data displayed in the first section of the script and start at the second section. The
first section will be displayed and the user will be able to confirm the pre-populated data.

46 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Using the Resource Store

The Resource Store is an area of the infrastructure database which is used to store resources used in a
live application. Resources can be of any type but the most common used by IEG are images and
properties file resources.

Listing all Resources

To gain access to the resource administration screens, you will need to log in as an admin user. Once
logged in, you will see a section in your navigation panel called IEG. When you click on the section, you
will see a menu which contains a link called 'Application Resources'. If you click on this, a list of resource
will be displayed with a search box based on the category.

Resources are organized into categories. Existing resources are displayed by selecting a category in the
filter criteria and selecting 'search’. The resource categories used by IEG are as follows:

- CSS

Stylesheet templates that can be modified to customize the look-and-feel of the IEG Player.
« Image

Images used in the IEG Player and IEG Scripts.
« Property

Properties files containing locale specific text for Scripts and Question Pages.

Uploading a New Resource

At the top of the screen which lists all resources is a link which lets you add a new resource. When you
click on this link, you will be presented with a screen where the resource details should be entered.

You must enter the following information:
« Name

This is a unique name for the resource which can be used within an IEG script to reference it. Depending
on the resource type, a naming convention may be enforced for use within an IEG script. The sections
on “Adding Images” on page 48 and “Changing Static Text” on page 48 have more details.

« Content Type

When serving a resource to a web browser, a content type is required to instruct the browser how to
handle the resource. The most common content types used in an IEG script would be image/png for a
PNG image and text/plain for a properties file.

« Content
The file chooser allows the user to pick the resource to upload.
The following information is optional:
- Category
The category in which the new resource is to be added.
« Content Disposition
For resources used in IEG scripts, this can be left empty.
« Locale

If you wish to have a locale specific version of a resource, enter the locale code here. When the system
searches for a resource, it uses a fall-back mechanism similar to Java. For example, if the current locale
is en_US the system will attempt to locate the resource for the en_US locale, then en and finally the
"default" resource. The "default" resource is specified by leaving the locale field empty when uploading
the resource.

« Internal

Working with Intelligent Evidence Gathering 47

This indicates if the resource is for internal use only and should never be served to the web browser. In
this first release of IEG, this setting can be ignored.

- Description

A description of the resource.

Removing an Existing Resource

To delete an existing resource, select the 'view' link on the resource and from the 'View Resource Page'
select 'delete' to remove this resource from the system.

When you click on this link, a confirmation dialog will be displayed asking you to confirm that you want to
remove this resource from the system.

Updating an Existing Resource

To update an existing resource, select the 'edit’ link on the 'Application Resources' page or on the 'View
Resource' page. You can then browse to the updated resource on your file system in the 'New content'
field.

Downloading an Existing Resource

Each entry in the resources list can be downloaded by clicking the 'download' link on the 'Application
Resources' page. This link will open the browser file download dialog to allow the user to save the
resource or open it directly.

Adding Images

IEG scripts allow you to specify images to use for both your sections (in the navigation panel to the left of
a page, by default) and pages (in the page title area for the page), and also comes with some images
which are built in to the system (like the various person images used in person tabs, and so on).

All of these images must be stored in the resource store so that new images can be added and existing
ones updated without having to rebuild and re-deploy your application. When uploading an image
resource, set the "Content Type" appropriately for the image (e.g., image/png, image/gif etc.) and leave
the "Content Disposition" field empty.

Changing Static Text

The IEG engine allows you to enter all the text for your script for the default locale directly into the script
definition. However, this is not where the text displayed on the screens is actually read from. Instead, all
text referenced from within a script is stored in locale-specific properties files within the resource store.

For each script, there will be a minimum of one properties file for the script itself and one properties file
for each page within the script. In order to ensure the uniqueness of these files, the following naming
convention is used (the last part is obviously only applicable to the page-specific properties files):

scriptID_scriptVersion_scriptType_pagelD

When you use the IEG admin screens to upload a new script into the system, all the static text contained
within it (e.g., all the labels, titles, descriptions, etc.) are automatically extracted into the appropriately
named properties files for your script and stored in the resource store with no locale associated with them
(so that they act as the fall-back properties if no properties exist for the locale in which you are running).
Any of this text can then be changed by simply downloading the current properties file keeping in mind
the naming convention described above to locate the resource in the resources list. Then make the
necessary changes and update the resource as described in “Updating an Existing Resource” on page 48.
No changes to the script itself are required.

Equally, versions of these files for other locales can be easily added and will be picked up in preference to
the default locale properties the next time the script is run in that locale. When uploading a properties file
resource, set the "Content Type" to text/plain and leave the "Content Disposition" field empty.

48 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Changing the Default File Encoding

When uploading a plain text resource, the file will be expected to be in UTF-8 encoding. If you wish to use
a different encoding when uploading the file, the "Content Type" field can be used to specify this through
the use of the optional charset parameter.

For example:
text/plain; charset=IS50-8859-1

Using IBM Rational AppScan to scan IEG

This section describes the steps required to perform security scans of IEG style applications using the
IBMRational AppScan tool.

Preparation

In IEG the communication between the Player and the Engine is coordinated by means of a sync token.
The sync token is used to ensure that the page submitted by the browser is consistent with the page the
IEG engine is expecting to be submitted.

This facilitates detecting when the user uses the browser navigation buttons rather than the navigation
buttons in the Player itself. The sync token changes for every question page that is displayed in the IEG
Player. This makes it very difficult to scan IEG question scripts executing in the IEG player.

For this reason, prior to scanning it is recommended that the script configuration property
appscan.mode.enabled should be set to true. When this property is set to true, the Engine does not check
the value o the sync token that is passed by the Player. Disabling sync token checking is acceptable when
performing a scan but sync token checking should always be enabled in a production environment.

Also, in order to reduce the amount of superfluous information reported in a scan the stack trace should
be disabled. To disable the stack trace:

Go to the folder webclient\JavaSource\curam\omega3\
- Rename Initial_ApplicationConfiguration.properties to ApplicationConfiguration.properties

Open ApplicationConfiguration.properties

Add the entry: errorpage.stacktrace.output=false

Relationship Pages
Relationship pages are a special feature of IEG which facilitate gathering information about the
relationships between the people of a household.

Unlike the other pages of an IEG script Relationship pages have a more dynamic nature and contain a
variable number of fields. Currently the names of the fields that are generated for Relationship pages vary
from execution to execution. This means that currently it is not possible to run a scan on an IEG question
script that contains a relationship page.

Scan Configuration

Once AppScan is launched a new scan can be created by selecting the 'Create New Scan...' option on the
Welcome screen.

Then select 'Regular Scan' from the Predefined Templates on the next screen.
Choose '"Web Application Scan' on the first page of the Configuration Wizard, click 'Next".

On the 'URL and Servers' page of the wizard enter the starting URL of the application. Once the URL is
entered it can be verified by clicking the icon beside the input field. This will cause the AppScan browser
to be displayed and it will attempt to open the URL. Confirm that the URL is correct and accessible. (Click
yes on security warning if necessary). Close the browser and click 'Next' in the Configuration Wizard.

Working with Intelligent Evidence Gathering 49

Enter the necessary Login Management details. Applications running under Eclipse/Tomcat do not require
the user to login, so the option 'None' can be selected. Click 'Next".

On the 'Test Policy' screen click on the 'Full Scan Configuration' link in the 'General Tasks' panel. This
presents the 'Scan Configuration' dialog.

Test Policy

Ensure that 'Test Policy' is selected in the view selection pane on the left-hand side of the configuration
dialog. The most straight forward approach while configuring a scan is to enable all the tests and then
disable the low value tests which increase the time required to run the scan.

Select 'Enabled/Disabled' from the 'sort tests by' dropdown. First check the 'Partially Enabled' then the
'Disabled' boxes. The only entry displayed should be 'Enabled'. Select 'Severity' from the dropdown.
Uncheck the 'Low' and 'Informational' boxes. For the purposes of scanning IEG it is not required to
perform invasive tests as these tests are more concerned with testing the platform. Select 'Invasive' from
the dropdown. Uncheck the 'Invasive' box.

Explore Options
Select 'Explore Options' in the view selection pane.

Set 'Redundant Path Limit' to 1. Choose 'Breadth First' as the 'Explore Method".

Communications and Proxy
Select 'Communications and Proxy' in the view selection pane. Set 'Number of Threads' to 1.

Test Options

Select 'Test Options' in the view selection pane. Uncheck 'Use Adaptive Testing based on application
behavior'.

Multi-Step Operations

IEG requires correctly formatted data be used in certain parameters. As such AppScan must be 'trained'
to use the application being tested. Select 'Multi-Step Operations' in the view selection pane.

Click the record button. This will cause the AppScan browser to be displayed and it will attempt to open
the URL specified on the 'URL and Servers' page of the Configuration Wizard. You should then navigate
through the application as required, entering relevant data. AppScan will record the values entered and
use these values for each test that it runs later. Once you have finished, simply close the browser. The
Scan configuration dialog will be updated with the sequence that has just been recorded. Check the
‘Enable playback of this sequence' checkbox and uncheck the 'Allow play optimization' checkbox.

Take note of all the sequence steps that contain Screening. do. You will have to turn these sequence
steps into regular expressions and add them as exception paths to the exclude path options of AppScan.
AppScan can easily be thrown out of sync when it comes to recorded operations, so you have to ensure
that AppScan will ignore the wrong path and keep to the recorded script when running its tests. This is
achieved by telling AppScan to ignore all sequence steps containing screening.do, except those that
you specify in regular expressions. Take note of each __u=x value found in the list of sequence steps.

Exclude Paths and Files
Select 'Exclude Paths and Files' in the view selection pane.

Click the button to add an Exclude Path. Choose 'Exclude' as the 'Type' and select '‘Regular Expression'
from the 'Match' dropdown. Enter . /Curam/ieg/Screening.do.* for the 'Path' and click 'OK".

Add another Exclude Path. Choose 'Exception' as the 'Type' and select 'Regular Expression' from the
'Match' dropdown. Enter .*/Curam/ieg/Screening.do?executionID=.\d* for the 'Path' and click
'OK..

An Exception should also be added for each __u=x value found in the list of sequence steps. Again, select
'Regular Expression' from the 'Match' dropdown and enter an expression in the following format for

50 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

'Path': .*/Curam/ieg/Screening.do?executionID=.x&__u=[value shown in summary
screen]

Click 'OK..
Click 'OK' to be returned to the configuration wizard.

Click 'Next' in the Configuration Wizard.

Complete

At this point the configuration of the scan is complete. Choose the 'T will start my scan later' option so that
the configured scan will be saved rather than allowing AppScan randomly scan the whole application.
Click 'Finish'.

Running the Scan
To start the scan, select the 'Scan' menu item in the AppScan main window and select 'Test Multi-Step
Operations Only".

Depending on the application to be tested a scan may take a number of days to complete. Once the scan
is complete AppScan will display the results of the scan on a summary screen. These results should then
be investigated to determine which reported issues are real vulnerabilities and which are false positives.

Runtime processing in IEG

This section describes the runtime processing and behaviors that occur when you use an IEG application.

Loss of network connectivity during an IEG session

When a loss of network connectivity occurs while you are running an IEG application, if a user starts an
operation that requires a server call, such as clicking a navigational button or clicking a link that performs
an action, the user is presented with a modal dialog box, that informs them of a network connectivity
error.

By default, the modal dialog box informs the user that a network error occurred while the request was
being processed and to check the internet connection and try again. This default text within the modal
dialog box is configured by using the following properties:

Property Purpose
network.connection.error.dialog.title.text Modal dialog title text
network.connection.error.dialog.message.text Modal dialog message
network.connection.error.dialog.ok.button.test Modal dialog OK button text

The modal dialog box displays at the center of the user's application window and any access to the page
content behind the modal is disabled.

The modal dialog box also contains an OK button which users are able to click to close it. The users can
then continue to interact with the IEG features that do not require a server call to function, for example,
form data, widgets such as drop-down menus and date pickers, help links and expand or collapse clusters
and lists on summary pages.

When the modal dialog box is dismissed by the user, all navigation actions and links are reset and respond
as before. No limit exists for the amount of times that the modal dialog box can be shown and dismissed
while in an offline state.

IEG features that require a server call to function, such as code table hierarchies, do not function in an
offline state. When the connection is restored, the IEG features work as before. The modal dialog box is
not displayed when a user clicks a hyperlink that brings them to an external source or for non-navigation
actions such as clicking a print link.

Working with Intelligent Evidence Gathering 51

When the network connection is restored and the network connectivity error modal dialog box is
dismissed, users are able to start operations that require server calls as normal without the modal dialog
opening, and features such as form validations resume seamlessly. All keyboard shortcuts and gesture
navigation operate as normal and respond gracefully when any network resources are requested.

For a session-timeout warning dialog box that is configured to be displayed before an application session
times out, and if the IEG application is in an offline state when the session-timeout warning dialog box
displays, the session-timeout warning dialog box contains no content and is not dismissable. The reason
is that the session-timeout warning dialog box requires a server call to populate its content. If the
session-timeout warning dialog box displays while IEG is offline, a user needs to refresh the browser
when the network connection is restored to restart the session.

52 IBM Curam Social Program Management: Working with Intelligent Evidence Gathering (IEG)

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2018 53

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

54 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 55

Part Number:

(1P) P/N

	Contents
	List of Figures
	List of Tables
	Chapter 1. Working with Intelligent Evidence Gathering
	Overview
	Additional Reading

	Getting Started
	About IEG
	Datastore (DS)
	Resource Store (RS)
	Script Structure

	Evaluating the Use of IEG
	The Basics
	Create a Schema
	Create a Script
	Adding a Section and a Question Page to an IEG Script

	Adding a Summary Page to an IEG Script
	Run a Script
	Validating a Script

	Capturing Client Information
	Families and Households
	Household Relationships
	Summarizing Client Information

	Capturing Related Data
	Capturing Composite Data
	Displaying Composite Data on a Summary
	Capturing Associated Data
	Displaying Associated Data on a Summary
	Deleting Associated Data

	Efficient Ways of Capturing Data
	List Questions
	Single-select

	Codetable Questions
	Conditional Elements
	Conditional Sections
	Conditional Pages
	Conditional Clusters

	Question Matrices
	Fast Path Navigation
	List Question driving a Loop
	Eligibility Criteria
	Fast Path Conditions
	Condition in Fast Path Loop

	Implicit Delete
	Three Field Date Picker

	Other Script Development Considerations
	Displaying Data as Read-Only
	Invoking External Functionality Using Expressions
	Reusing Scripts
	Source Control and Versioning
	Rendering Custom HTML on a Summary Page
	How to use the custom-output element
	Guidelines for using the custom-output element
	Sample code for rendering custom HTML

	Integrating IEG into a Cúram Application
	Creating a Script Execution
	Specifying a Redirection URL
	Running the IEG Player in a Tab
	Running the IEG Player in a Modal Dialog
	Opening the IEG Player in a Modal Dialog
	Exiting a Script Execution in a Modal Dialog
	Directly Closing the Modal on Script Completion
	Progressing to Further UIM Screen/s in the Modal Dialog

	Cleaning Up Application Data
	Resuming Executed Scripts

	Managing Captured Data
	Retrieving Captured Data
	Pre-Populating Scripts with Captured Data

	Using the Resource Store
	Listing all Resources
	Uploading a New Resource
	Removing an Existing Resource
	Updating an Existing Resource
	Downloading an Existing Resource
	Adding Images
	Changing Static Text
	Changing the Default File Encoding

	Using IBM Rational AppScan to scan IEG
	Preparation
	Relationship Pages
	Scan Configuration
	Test Policy
	Explore Options
	Communications and Proxy
	Test Options
	Multi-Step Operations
	Exclude Paths and Files
	Complete
	Running the Scan

	Runtime processing in IEG
	Loss of network connectivity during an IEG session

	Notices
	Privacy Policy considerations
	Trademarks

