
IBM Cúram Social Program Management
Version 7.0.3

Business Object Module Development
Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
34

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

List of Figures... iv

Chapter 1. Developing Business Object Modules for Configuration Transport
Manager.. 1
Overview...1

Pre-requisites... 1
Terminology.. 1

BOM Overview..2
Implementing BOMs.. 2
CTM Core Process Flow.. 3
BOM Infrastructure...4
The Range Aware Key Server... 5
Runtime Data.. 5

Developing BOMs... 5
The Example Application..5
BOM Development Methodology... 10
Analyzing Business Object Types.. 11
Analyzing the Folder Business Object Type...12
Analyzing the User Business Object Type... 15
Implementing BOMs.. 19
Testing the transport of Business Object Types..28

Assumptions on the availability of classes... 29
Availability of Facade APIs for managing user operations..30
Availability of Adapter classes... 31
Availability of Data Access Object classes.. 31
Availability of classes generated from Code Tables..31

Customizing the construction of revert Change Set..32
Reference guides... 33

Notices..34
Privacy Policy considerations.. 35
Trademarks.. 35

 iii

List of Figures

1. UML representation for folder screen entities..6
2. UML representation for user screen entities.. 8
3. Type-level relationship between Folder BOM and CodeTable BOM.. 13
4. Type-level relationship between File BOM and Folder BOM... 13
5. Instance-level relationships between Folder BOM and CodeTable BOM..14
6. Instance-level relationships between Folder BOM and CodeTable BOM..15
7. Type-level relationships for User BOM... 17
8. Instance-level relationships for User BOM.. 18
9. Instance-level relationships for User BOM.. 19

iv

Chapter 1. Developing Business Object Modules for
Configuration Transport Manager

Use this information to learn how to transport business objects between systems. A business object type
is a logical grouping of administrative data that defines and governs a particular set of functions. A
business object module is a piece of code responsible for performing the bespoke processing that is
required to transport instances a particular business object type.

Overview
This document provides details of the development activities that are necessary in order to enable the
transport of administrative Business Objects from one system to another via CTM.

The document is intended to be used by any development community that wants to enable the transport
of the administrative Business Objects that they have developed between different application systems
using Configuration Transport Manager (CTM).

Pre-requisites
The document assumes that the reader is familiar with the following components.

See the following guides for more details:

• Cúram modeling reference
• Developing with the Persistence Infrastructure
• Cúram Configuration Transport Manager Guide
• Google Guice 2

Terminology
This section defines some of the key terms that are used throughout the document.

Business Object Type
A Business Object Type is a logical grouping of administrative data that defines and governs a particular
set of functionality. Each Business Object Type consists of the collection of data (that is, entities) that are
required to configure the system to use and/or act on the functionality that it represents.

For example, the set of administrative data related to a Benefit Product involves grouping the entities
related to Benefit Product such as Product, ProductDeliveryPattern, ProductCategory, etc. Therefore,
Benefit Product is a Business Object Type. For further examples, see the Cúram Configuration Transport
Manager Guide.

Business Object
A Business Object is an instance of a Business Object Type.

For example, it's possible that there are multiple Benefit Product configurations available on the system.
Each such configuration is a Business Object.

Business Object Modules
A Business Object Module (BOM) is a piece of code responsible for performing the bespoke processing
that is required in order to transport instances a particular Business Object Type. Several types of BOM
must be implemented for every transportable Business Object Type, with each type of BOM being
responsible for a different part of the flow involved in transporting the Business Object.

© Copyright IBM Corp. 2012, 2018 1

http://code.google.com/p/google-guice

BOM Overview
This section provides an overview of the responsibilities of the various BOM types, describes the
supporting infrastructure available to assist in providing the required functionality, and summarizes the
other activities involved in making a Business Object Type transportable.

The core CTM Infrastructure is responsible for executing the transport operations that are common to all
Business Object Types. It co-ordinates the overall flow involved in the transport of a Business Object,
delegating to other components where necessary. In particular, the CTM infrastructure delegates to the
BOMs for the specific Business Object Types that are being transported at points in the flow where
Business Object – specific activities must be performed. For example, when an XML document containing
the content of a particular Business Object is required, the CTM infrastructure will invoke on the BOM
responsible for producing the XML document for the Business Object.

Implementing BOMs
In concrete terms, developing a BOM involves providing an implementation of the BOM interfaces
appropriate to the Business Object Type that is being made transportable. There are in total eleven
different types of BOM that may need to be implemented for each Business Object type. However, note
that it is not generally necessary to provide implementations of all of the BOM types. Out-of-the-box
implementations are provided for five of the BOM types, and, provided these are suitable, bespoke BOMs
do not need to be provided for these.

The different BOM types are illustrated in the following table:

S.No Interface Responsibility OOTB Implementation Available

1 AuthorisationBOM Determine whether or not the user is
authorized to act on a Business Object.

Y – OOTB implementation uses
SecurityBOM to determine authorisation.

2 DeleteBOM Delete a Business Object. N

3 DependentBOM Provide a list of other Business Objects
upon which a Business Object is
dependent.

N

4 ExistenceBOM Determine whether or not there is a
Business Object already present on the
target system.

N

5 InformationalBOM Provide various information about the
Business Object

N

6 PostCommitActionBOM Perform a Business Object - specific
activity after the transaction applying a
Change Set has been committed.

Y – No-Op OOTB implementation provided.

7 PreCommitActionBOM Perform a Business Object - specific
activity immediately before the transaction
applying a Change Set is committed.

Y - No-Op OOTB implementation provided.

8 PreCommitAction TypeBOM Perform a Business Object Type - specific
activity immediately before the transaction
applying a Change Set is committed.

Y - No-Op OOTB implementation provided.

9 RevertChangeSetConstruction
HandlerBOM

Add extra Business Objects to a Change
Set being created for revert purposes.

Y - No-Op OOTB implementation provided.

10 ReadAndUpsertBOM Create an XML document with the content
of a Business Object; Populate the
database with the content of the XML
document.

N

11 SecurityBOM Provide the SIDs that a user is required to
have in order to read and write the
Business Object.

N – but if an AuthorisationBOM is provided,
then a SecurityBOM does not need to be
implemented.

Details on how the BOMs are used are provided in the next section (“CTM Core Process Flow” on page
3), which describes the CTM Core Process Flow. Additionally, for more detailed technical information
on each of the BOM types, please refer to the Javadoc of the interfaces, which are all contained in the

2 IBM Cúram Social Program Management: Business Object Module Development Guide

curam.util.ctm.bom package. Finally, further details on implementing the BOM interfaces are provided in
the next chapter, “Developing BOMs” on page 5

CTM Core Process Flow
To illustrate where the BOM Infrastructure APIs are used and invoked, the two core CTM flows which
involve BOMs are now described. These are the Release operation and the Apply operation.

The Release Operation
The Release operation captures and freezes the content of the Business Objects contained in a Change
Set.

The operation starts by performing a check to see whether or not a user is permitted to read the relevant
Business Objects. It then collects all of the Business Object contents and converts them into XML
fragments. It gathers the fragments into a single Change Set XML document, and then saves the Change
Set XML document to a release area. All of these activities take place in a single transaction.

As part of the operation, BOMs are used as follows:

• AuthorisationBOM (if provided) or SecurityBOM : Check that the user has the appropriate permissions to
read each Business Object in the Change Set

• ReadAndUpsertBOM : Read the Business Object contents from the data store, and convert to an XML
document.

Apply Operation
The Apply operation provides the functionality to make a Released Change Set "live".

The actions that occur during the Apply operation broadly fall into three categories:

• Pre Apply Phase
• Apply Phase
• Post Apply Phase

Both the Pre-Apply Phase and the Apply-Phase take place in the same transaction. The Post-Apply phase
takes place in a separate transaction, after the Pre-Apply / Apply transaction has been committed. The
phases are now described in more detail.

Pre Apply Phase
The first step of the Pre-Apply phase is to validate the content of the Change Set to see if the Change Set
is eligible to be applied. As the Apply operation involves both database read and write operations, the
user performing the operation must have the appropriate read and write permissions for each Business
Object defined in the Change Set. If the user does not have the appropriate permissions, then the Apply
process is terminated.

Next, the infrastructure creates a revert Change Set for undo purposes. It does so by capturing the current
state of the database with respect to each of the Business Objects in the Change Set. That is, for each
Business Object defined in the Change Set, the infrastructure will identify if the Business Object already
exists in the target database. Since the business logic for determining the existence of a Business Object
is very specific to the Business Object type, the infrastructure delegates the call to the ExistenceBOM in
order to get the desired results.

As part of this phase, BOMs are used as follows:

• AuthorisationBOM (if provided) or SecurityBOM : Check that the user has the appropriate permissions to
read and write each Business Object in the Change Set

• ExistenceBOM : Determine whether or not an instance of each Business Object already exists on the
target system.

Developing Business Object Modules for Configuration Transport Manager 3

Apply Phase
Once the Pre-Apply phase has successfully completed, processing proceeds to the Apply Phase.

In this phase, the infrastructure will iterate over each Business Object and then invoke either an upsert or
delete operation, depending on whether the Business Object is to be upserted or deleted1. To perform
these operations, either the ReadAndUpsertBOM or DeleteBOM are invoked as appropriate. After all
Business Objects in the Change Set have been upserted or deleted, the PreCommitActionBOM for each
Business Object is invoked. This is in order to perform any pre-commit activities that are required for the
Business Object. Following this, the PreCommitActionTypeBOM is invoked for every Business Object Type
which has at least one Business Object instance in the Change Set.

As part of this phase, BOMs are used as follows:

• ReadAndUpsertBOM : Add or update the Business Object in the target system database.
• DeleteBOM : Delete the Business Object from the target system database.
• PreCommitActionBOM : Perform any pre-commit actions for the Business Object.
• PreCommitActionTypeBOM : Perform any pre-commit actions for the Business Object Type.

Post-Apply Phase
Once the Apply Phase has successfully completed, the transaction will be committed and the post apply
phase will be executed.

The post-apply phase involves invoking on the PostCommitActionBOM for each Business Object in the
Change Set. This BOM can perform any activities that are required after a Change Set has been
committed.

As part of this phase, BOMs are used as follows

• PostCommitActionBOM : Perform any post-commit actions for the Business Object.

BOM Infrastructure
A set of infrastructural classes, known as the BOM Infrastructure, are provided to assist in implementing
BOMs. This infrastructure provides default implementations for some of the most common operations.

The main classes provided are as follows:

AbstractEntityBOBuilder
Classes known as Entity Business Object Builders need to be implemented for the entities in a Business
Object Type. These produce XML fragments for the entity and also perform the low-level CRUD actions
involved in upserting the entity's content.

The AbstractEntityBOBuilder class provides capabilities that are helpful in implementing the
ReadAndUpsertBOM. Essentially, it provides two pieces of functionality:

• It is used to build entity instance information from XML fragments
• It acts as a wrapper, hiding the low level CRUD operations for an entity.

For more details, please refer the javadoc for curam.ctm.bom.util.impl.AbstractEntityBOBuilder.
Additionally, more detail on using this class is provided in the “Developing BOMs” on page 5.

Abstract BOM
The AbstractBOM class provides functionality for a number of the BOM types. A Business Object Module
can extend from AbstractBOM to gain access to this common functionality.

For further information, please refer the javadoc for curam.ctm.bom.util.impl.AbstractBOM. Additionally,
more detail on using this class is provided in the “Developing BOMs” on page 5.

1 Note that deletion of Business Objects is currently only supported in the revert Change Sets that are
automatically created for Undo purposes

4 IBM Cúram Social Program Management: Business Object Module Development Guide

The Range Aware Key Server
Another important piece of infrastructure used in integrating Business Object Types with CTM is the
Range Aware Key Server (RAKS). The standard Key Server generates keys that are unique within a
particular system, but which may be duplicated across different systems. The RAKS is a new Key Server
implementation that is responsible for providing identifiers (for example, primary keys) that are unique
across the set of systems that form a System Landscape (that is, the set of systems between which
Business Objects may be transported).

Entities that are part of transportable Business Objects must use primary keys generated by the RAKS
instead of the standard Key Server. This is to ensure that there are no key clashes when a Business Object
is transported and applied on a target system. It's worth noting that entities that already use the standard
Key Server can be changed to use the RAKS.

Runtime Data
An important point to note is that Business Object Types should not contain entities that consist of
runtime data. To avoid this scenario, entities should be designed to either contain runtime data or
administrative (configuration) data. The former (runtime entities) should not be transported via CTM, and
so should use primary keys generated by the standard Key Server; that is, they should not use primary
keys generated by the RAKS. The latter (administrative entities) can be transported, and so must use
primary keys generated by the RAKS.

Developing BOMs
This section describes how to develop the BOMs for a Business Object Type from scratch. To illustrate the
process of developing a BOM, this chapter uses an artificial example application that manages some
pieces of configuration information. Using this example application, the various steps involved in
analyzing the configuration entities are explained. Then, the content of the Business Object Types is
determined. Next, the BOMs for the Business Object Types identified are implemented. Finally, the steps
involved in testing the transport of the Business Objects are explored.

The Example Application
Let us assume that there is a user interface for an application that mimics a traditional Personal
Information Management (PIM) application. Also, let us assume that this functionality is available in the
pim component. Usually, a PIM application provides facilities to manage personal information about a
user. Since managing personal information is quite complex and what we will be discussing here is just for
illustration purposes, we will not be covering the complex details that are involved in standard PIM
application.

Also let us assume that this application provides the following higher level functionality:

• The application manages personal information about a user. This involves creating, editing and
destroying user information.

• The application also supports managing related personal information such as to-do and note items.
• It is possible from the application to link user to multiple to-do and note items.
• Furthermore, while creating notes, it is possible to associate them with particular folders.
• Folders can be separately managed and it is possible to assign multiple permissions to a folder.

Imagine that the application has two separate screens to manage the above configuration information:

• Folder Screen
• User Screen

Folder Screen

The following actions can be performed via the Folder Screen:

• Managing folder information – e.g. creation, modification and removal of folders.

Developing Business Object Modules for Configuration Transport Manager 5

• Managing permissions related to a folder – e.g. adding and removing the permissions associated with a
particular folder.

Let us imagine that the equivalent home page for folder is developed and available in a UIM file named
Folder_home.uim. This page accepts a mandatory page parameter named folderID, whose value is used to
identify and show the relevant folder information in the home page.

Entities

For managing folder and its related permission functionalities, let us assume that the following entities are
involved:

• Folder
• FolderPermission
• FolderPermissionLink

The following diagram represents the entity relationship model for the folder entities through UML.

Figure 1: UML representation for folder screen entities

The following sections describe the low level details of these entities – e.g. the set of attributes, the code
table associations, and the primary and foreign key details.

Folder

The entity Folder represents a standard folder object. The table below lists the various attributes that
make up the Folder object. Note that the attributes type and statusCode have code table relationships to
FolderType and RecordStatus respectively.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderID Y

name

description

type FolderType

statusCode RecordStatus

6 IBM Cúram Social Program Management: Business Object Module Development Guide

FolderPermission

The entity FolderPermission represents a permission object that can be assigned to a folder. For simplicity,
other than the primary key attribute, this entity has only one attribute, name, which stores the name of the
permission. Also note that this attribute has a soft relationship with the code table
FolderPermissionName.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderPermissionID Y

name FolderPermission Name

FolderPermissionLink

Since it is possible for a folder to have multiple permissions associated with it, the association between a
folder and its permissions are captured in this entity.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderPermissionLinkID Y

folderID Folder.folderID

folderPermissionID FolderPermission.
folderPermissionID

Code Tables
The Folder screen entities have dependencies on code tables.

This section lists the set of dependent code tables:

Code Table Name Code Description

FolderType FT_PR Private

FT_PU Public

FolderPermissionName FPN_FC Full Control

FPN_READ Read

FPN_WRITE Write

User Screen

The User Screen provides functionality for the following tasks:

• Managing user information – e.g. creation, modification and removal of users.
• Managing to-do and note items for users - i.e. creation, modification and removal of to-do and note

items.
• Associating to-do and note items with users.
• Assigning notes to folder objects.

Let us imagine that the equivalent home page for user is developed and available in the UIM file
User_home.uim. This page accepts a mandatory page parameter by the name userID, whose value is used
to identify and show the relevant user information in the home page

Entities

The following entities are used to manage user and the related functionality:

• User

Developing Business Object Modules for Configuration Transport Manager 7

• ToDo
• UserToDoLink
• Note
• UserNoteLink
• Category

The following diagram represents the entity relationship model for the user entities through UML.

Figure 2: UML representation for user screen entities

The following sections describe the low level details of these entities – e.g. the set of attributes, the code
table associations, and the primary and foreign key details.

User

The User entity represents the user whose personal information is being managed by the application. The
following table provides further details about this entity:

Column Name Primary Key Column Foreign Key Details Code Table Association

userID Y

username

displayName

statusCode RecordStatus

8 IBM Cúram Social Program Management: Business Object Module Development Guide

ToDo

The ToDo entity represents the information that forms a to-do. For simplicity, this entity contains the
following information:

Column Name Primary Key Column Foreign Key Details Code Table Association

toDoID Y

description

startDate

endDate

categoryId Category. categoryID

percentageComplete

statusCode RecordStatus

groupName GroupName

Note that the attribute categoryID has a foreign key relationship with the entity Category. Also, note that
the columns statusCode and groupName have associations with the RecordStatus and GroupName code
tables respectively.

UserToDoLink

This link entity provides association between User and ToDo entities. Since there exists a one-to-many
relationship between a user and to-do items, the association between them is captured in this entity:

Column Name Primary Key Column Foreign Key Details Code Table Association

userToDoLinkID Y

userID User.userID

toDoID ToDo.toDoID

The Note entity represents the standard note that contains information such as subject, description, etc.
The table below provides more information about this entity:

Column Name Primary Key Column Foreign Key Details Code Table Association

noteID Y

subject

description

folderID Folder.folderID

statusCode RecordStatus

Developing Business Object Modules for Configuration Transport Manager 9

Also, it is possible to associate a note with a folder. This is implemented via a foreign key relationship with
the Folder entity, using the folderID attribute.

UserNoteLink

Since it is possible for a user to have many linked note items, the UserNoteLink entity is introduced in
order to maintain an association between the User and Note entities:

Column Name Primary Key Column Foreign Key Details Code Table Association

userNoteLinkID Y

userID User.userID

noteID Note.noteID

Category

The ToDo, entity has a foreign key relationship with the Category entity through the attribute categoryID.
The following table lists the information available on the Category entity:

Column Name Primary Key Column Foreign Key Details Code Table Association

categoryID Y

name CategoryName

displayName

description

Code Tables
The User screen entities have dependencies on code tables.

This section lists these code tables:

Code Table Name Code Description

CategoryName CN_BIZ Business

CN_PERS Personal

CN_HOLI Holiday

GroupName GN_PRIV Private

GN_SHARED Shared

BOM Development Methodology
This section describes the general steps involved in implementing BOMs.

In broad terms, this involves the following activities:

• Analyzing Business Object Types
• Implementing BOMs
• Testing BOMs

10 IBM Cúram Social Program Management: Business Object Module Development Guide

Analyzing Business Object Types
As part of analysis, the set of configuration entities have to be identified and then grouped into logically
separate Business Object Types.

This process involves the following steps:

• Identifying the Configuration Entities
• Group entities into Business Object Types
• Define Business Object Identifiers
• Ensure that the Configuration Entities use RAKS generated identifiers

Identifying the Configuration Entities
The aim of CTM is to transport configuration data. Therefore, the development group must be able to
identify all of the entities that constitute configuration information in an application. Because CTM is not
designed to support runtime data, caution has to be exercised in order to ensure that the configuration
entities don't have dependencies upon runtime entities. That is, as part of the analysis, the configuration
entities have to be checked to ensure that there are no foreign key constraints or any form of soft
dependent relationship on runtime entities. If any such cases are encountered, then the recommendation
is to refactor the entity design so that separate entities are used for configuration and runtime purposes.

That is, one set of entities to hold only configuration data and the other set of entities to hold the runtime
data. Note that the runtime entities can depend on configuration data, but the reverse is not possible.
Returning to the example PIM application, all of the entities that make up the Folder and User screens are
configuration information.

Group Entities into Business Objects Types
A Business Object Type represents a logical grouping of related configuration data. In the example
application, it is clear that there are two concrete pieces of information.

They are as follows:

• Information pertaining to a folder and their related permissions
• Information specific to a user and its associated relative types such as to-do and note items.

Hence, the entities that make up the PIM application can be logically grouped into two categories – in
other words, two Business Object Types. One is the Folder Business Object Type, which contains
information specific to folders and their related permissions. The other is the User Business Object Type,
which carries information about users and other related details.

Define Business Object Identifiers
Each Business Object must have a unique identifier. This is required by CTM in order to uniquely identify a
Business Object within the system landscape.

The Business Object Identifier is comprised of the following elements:

• Business Object Type Identifier
• Business Object Key

Business Object Type Identifier
This is the identifier used by Business Object Modules to determine the type of the Business Object.
Therefore, it must be unique for each Business Object Type and it must be possible for a Business Object
Module implementation to identify the type of the Business Object from the identifier. It is important to
ensure that this type name does not collide with any other Business Object Types available in the system,
for example, it should not collide with the names of the Business Object Types provided out-of-the-box,
or with any other Business Object Types developed by customer organizations. To guarantee this, it is
recommended that Business Object Type names developed externally to the application are prefixed with
a short abbreviation or name identifying the organization.

So, for an organization called "Sample Organization", the Business Object Type Identifier for the Folder
Business Object Type could be "so.Folder". Similarly, for the User Business Object Type; it could be
"so.User".

Developing Business Object Modules for Configuration Transport Manager 11

Business Object Key
This is the key used by Business Object Modules to uniquely identify an instance of a Business Object of a
particular type. Where the Business Object supports versioning, the key should identify a particular
version of a Business Object. It must be unique within a Business Object Type, and it must be possible for
a Business Object Module to uniquely identify a Business Object in persistent storage using the key. To
identify the Business Object Key for a Business Object, the implementation can choose to provide a
combined value representing the primary key attributes of the Initial Entity. The Initial Entity is the root
entity of a Business Object Type.

For further information, please refer to “Analyzing the Folder Business Object Type” on page 12.

The primary key attribute of the Folder Business Object Type's Initial Entity is folderID. So, the value of the
folderID attribute can be used as the Business Object Key for Folder Business Objects. Similarly, the
primary key attribute of the User Business Object Type's Initial Entity User is userID. So, the value of this
attribute can be used as the Business Object Key for User Business Objects.

Note that it is also possible for an Initial Entity to have multiple primary key attributes. For example, take
the example of a Locale Business Object Type with Initial Entity Locale. The Locale Entity includes the
attributes language, country, and variant. To uniquely identify a particular Locale, the combined value of
the attributes language, country and variant are required. So, the Business Object Key for the Locale
Business Object must contain the values of these three attributes.

Ensure that the Configuration Entities use RAKS generated identifiers
As has been noted previously, it is mandatory for all configuration entities that form part of transportable
Business Object Types to make use of the new Range Aware Key Server (RAKS) for the purposes of
generating primary keys.

The “Making Configuration Entities RAKS enabled” on page 20 provides details of how the RAKS is used.

Analyzing the Folder Business Object Type
This section details the various steps involved in analyzing the configuration information for the Folder
Business Object Type.

Identifying the Configuration Entities
The configuration entities that form the Folder Business Object Type are as follows:

• Folder
• FolderPermission
• FolderPermissionLink

Identifying the Initial Entity
The Initial Entity is the root entity of the Business Object Type. In other words, through this Initial Entity, it
will be possible to identify all of the other entities in the logical grouping. For the Folder Business Object
Type, the Folder entity is the Initial Entity. This is because from this entity, it is possible to identify the
other entities in the Business Object, such as FolderPermission and FolderPermissionLink.

Identifying the Child Entities
All other entities in the logical grouping, excluding the Initial Entity are Child Entities. Hence, the entities
FolderPermission and FolderPermissionLink become the Child Entities.

Identifying the Relative Entities
A Relative Entity refers to an entity whose information needs to be processed before processing a Child
Entity. In this specific case, there are no Relative entities identified for the Folder Business Object Type.

Identifying dependencies
This section illustrates the varying level of dependencies that need to be identified as part of analysis for a
Business Object Type.

The dependencies generally fall into two categories:

• Type-Level dependencies

12 IBM Cúram Social Program Management: Business Object Module Development Guide

• Instance-Level dependencies

Type-Level dependencies
Type-Level dependencies are applicable to relationships that arise after considering the possible set of
values that a particular data field can contain. There is no need to examine the state of the data that
comprise a Business Object in order to identify this level of dependency.

For example, consider the type attribute defined on the Folder entity. The value for this attribute comes
from an entity called CodeTableItem which belongs to CodeTable Business Object Type. Hence, there
exists a static dependency between the Folder and the CodeTable Business Object Types. The following
diagram represents this type level dependency in UML.

Figure 3: Type-level relationship between Folder BOM and CodeTable BOM

Another form of type-level dependency can be identified by examining the attributes of all entities in the
Business Object Type. If any of the attributes have a foreign key relationship with the Initial Entity of
another Business Object Type, then there is a type-level dependency on that Business Object Type. For
example, assume that there is a Business Object Type called File. The Initial Entity of this Business Object
Type is the File entity, which in turn has an attribute folderID with a foreign key relationship with the entity
Folder. So, naturally, the File Business Object Type is related to the Folder Business Object Type. In other
words, File has a type-level dependency on the Folder Business Object Type.Refer the following diagram
that represents this relationship in UML

Figure 4: Type-level relationship between File BOM and Folder BOM

Instance-Level dependencies
Instance-Level dependencies are identified by examining the content of the Business Object.

This is best explained using examples:

Example 1

Consider a folder Business Object instance 'Documents/1' with the following content:
Folder(1, 'Documents', 'Contains all documents', 'FT_PR, 'RST1')

FolderPermission(1, 'FPN_READ')

FolderPermissionLink(1,1,1)

After examining the data in each attribute, it is obvious that there are attributes that have instance
relationships with CodeTable Business Objects. These are illustrated in the following table:

Developing Business Object Modules for Configuration Transport Manager 13

Attribute Name Attribute Value Dependent Business Object
Instance

Folder.type FT_PR CodeTable/FolderType

Folder.statusCode RST1 CodeTable/RecordStatus

FolderPermission.name FPN_READ CodeTable/
FolderPermissionName

The equivalent UML representation is shown in the following diagram.

Figure 5: Instance-level relationships between Folder BOM and CodeTable BOM

Example 2

Consider a folder Business Object instance 'Pictures/2' with the following contents:
Folder(2, 'Pictures', 'Contains all pictures', 'FT_PU, 'RST1')

FolderPermission(2, 'FPN_FC')

FolderPermissionLink(2,2,2)

After examining the data in each attribute, it is obvious that there are attributes that have instance
relationships with CodeTable Business Objects. These are illustrated in the following table:

Attribute Name Attribute Value Dependent Business Object
Instance

Folder.type FT_PU CodeTable/FolderType

14 IBM Cúram Social Program Management: Business Object Module Development Guide

Attribute Name Attribute Value Dependent Business Object
Instance

Folder.statusCode RST1 CodeTable/RecordStatus

FolderPermission.name FPN_FC CodeTable/
FolderPermissionName

The equivalent UML representation is shown in the following diagram.

Figure 6: Instance-level relationships between Folder BOM and CodeTable BOM

Note that based on the content of the Business Object, the dependency information varies. Therefore,
such dependencies are termed Instance-Level dependencies.

Identifying the Mode of Deletion
The Mode of Deletion refers to whether the Business Object Type is logically deleted or physically deleted.
This is identified from the Mode of Deletion that is supported by the Initial Entity. In this case, the mode of
deletion supported by the Folder entity is logical deletion; hence, the Folder Business Object Type
supports logical deletion.

Analyzing the User Business Object Type
This section details the various steps that are involved in analyzing the configuration information for the
User Business Object Type.

Identifying the configuration entities

The following configuration entities form the User Business Object Type:

• User
• ToDo

Developing Business Object Modules for Configuration Transport Manager 15

• UserToDoLink
• Note
• UserNoteLink

Identifying the Initial Entity
The entity User is the Initial Entity. This is because, starting with this entity, it is possible to identify both
the ToDo and Note entities and the UserToDoLink and UserNoteLink link entities.

Identifying the Child Entities
All of the other entities in the logical grouping are child entities. Therefore, the entities ToDo, Note,
UserToDoLink and UserNoteLink are all Child Entities.

Identifying the Relative Entities
A Relative Entity refers to an entity whose information needs to be processed before processing a child
entity.

Identifying Relative Entities involves the following steps:

• Examine all attributes in all child entities for foreign key constraints.
• Determine the other entity upon which there is a constraint. This entity is known as the parent entity.
• Determine if the parent entity is a Relative Entity as follows:

– If the parent entity is included in the same Business Object Type as the original entity, then
identification of the Relative Entity can be ignored. This is because the parent entity will be processed
in any case as part of the Business Object Type.

– If the parent entity is not in the same Business Object Type as the original entity:

- If the parent entity is the Initial Entity of another Business Object Type, then it is not a Relative
Entity. Instead, the other Business Object Type has to be made a dependent Business Object Type.

- If the parent entity is a Child Entity or a Relative Entity in another Business Object Type, then it
should be considered a Relative Entity.

In the example application, working through the above steps, it is clear that there is only one Relative
Entity for the User Business Object Type. This Relative Entity is Category. This is because the attribute
ToDo.categoryID has a foreign key relation to the entity Category. However, let's imagine that there is a
Category Business Object Type which has Category as the Initial Entity; in this case, instead of Category
being a Relative Entity, the User Business Object Type should declare the Category Business Object Type
as a dependent Business Object Type.

Identifying dependencies
This section illustrates the dependencies that need to be identified when analyzing the User Business
Object Type.

Type-Level dependencies
After studying the attributes of all of the entities and relationships, it is clear that the Business Object
Type is dependent on the CodeTable and Folder Business Object Types.

The following table summarizes this information:

Attribute Name Relationship Type Dependent on

User.statusCode CodeTable RecordStatus

ToDo.statusCode CodeTable RecordStatus

ToDo.groupName CodeTable GroupName

Note.folderID Foreign Key Constraint Folder.folderID

16 IBM Cúram Social Program Management: Business Object Module Development Guide

Attribute Name Relationship Type Dependent on

ToDo.categoryID Foreign Key Constraint Category.categoryID

The following diagram shows the equivalent UML representation.

Figure 7: Type-level relationships for User BOM

Instance-Level dependencies
Instance-Level dependencies are identified by examining the content of the Business Object.

This is best explained using examples:

Example 1

Consider a user Business Object instance 'Admin/1', with the following contents:
User(1, 'Admin', 'Admin', 'RST1')

Category(1, 'CN_BIZ', 'Category denoting mail items')

ToDo(1, 'Approve mails', '2011-11-11', '2011-12-12', 1, '45',
 'RST1', 'GN_PRIV')

UserToDoLink(1, 1, 1)

Note(1, 'Send follow up mail', 'Send follow up mail', 1, 'RST1')

UserNoteLink(1, 1, 1)

After examining the data in each attribute, it is obvious that there are relationships with CodeTable and
Folder Business Objects. These are listed in the following table:

Attribute Name Attribute Value Dependent Business Object
Type/Identifier

User.statusCode RST1 CodeTable/RecordStatus

Category.name CN_BIZ CodeTable/CategoryName

Developing Business Object Modules for Configuration Transport Manager 17

Attribute Name Attribute Value Dependent Business Object
Type/Identifier

ToDo.statusCode RST1 CodeTable/RecordStatus

ToDo.groupName GN_PRIV CodeTable/GroupName

Note.folderID 1 Folder/1

The equivalent UML representation is shown in the following diagram.

Figure 8: Instance-level relationships for User BOM

Example 2

Consider a folder Business Object instance, 'SuperAdmin/2', with the following contents.
User(2, 'SuperAdmin', 'SuperAdmin, 'RST1')

ToDo(2, 'Approve mails', '2011-11-11', '2011-12-12', null, '45',
 'RST1', 'GN_PRIV')

UserToDoLink(2, 2, 2)

Note(2, 'Send follow up mail', 'Send follow up mail', null, 'RST1')

UserNoteLink(2, 2, 2)

In this case, there is a single instance level relationship, with a CodeTable Business Object. Observe that
for the Note entity, the value of the attribute folderID is set to NULL. Therefore, in this case, the
'SuperAdmin/1' Business Object is not related to the Folder Business Object.

18 IBM Cúram Social Program Management: Business Object Module Development Guide

Attribute Name Attribute Value Dependent Business Object
Type/Identifier

User.statusCode RST1 CodeTable / RecordStatus

Category.name CN_BIZ CodeTable / CategoryName

ToDo.statusCode RST1 CodeTable / RecordStatus

ToDo.groupName GN_PRIV CodeTable / GroupName

The equivalent UML representation is shown in the following diagram.

Figure 9: Instance-level relationships for User BOM

Identifying the Mode of Deletion
The Mode of Deletion refers to whether the Business Object Type is logically deleted or physically deleted.
This is identified from the Mode of Deletion that is supported by the Initial Entity. In this case, the mode of
deletion supported by the User entity is logical deletion; hence the User Business Object Type supports
logical deletion.

Implementing BOMs
This section describes the steps involved in implementing the BOMs for a Business Object Type. The
example User Business Object Type that was discussed in the previous sections is used to illustrated the
process.

Broadly speaking, implementing BOMs involves the following:

• Making Configuration Entities RAKS enabled
• Writing the Entity Business Object Builders for all the entities

Developing Business Object Modules for Configuration Transport Manager 19

• Writing the BOM implementation
• Registering the BOM implementation(s) with the BOM registry

Making Configuration Entities RAKS enabled
Entities that form part of transportable Business Object Types must use primary keys generated by the
Range Aware Key Server (RAKS).

The basic mechanism is to define a new Key Set for the Business Object Type, to configure the Key Set to
supply keys generated by the RAKS, and then to move all entities in the Business Object Type to use keys
from the Key Set. These keys will be generated using the RAKS.

Further details on the steps involved are provided in the following subsections. Again, the User Business
Object Type that forms part of the example pim component is used to illustrate the process.

Creating New Key Set Configuration
Create a new file called KeyServer.dmx in the location EJBServer\components\pim\data\initial containing
the key set definition for the Business Object Type.

Sample content for this file is provided below:
<row>
 <attribute name="strategy">
 <value>KB1002</value>
 </attribute>

 <attribute name="keySetCode">
 <value>UserBOMKS</value>
 </attribute>

 <attribute name="nextUniqueIdBlock">
 <value>0</value>
 </attribute>

 <attribute name="humanReadable">
 <value>1</value>
 </attribute>

 <attribute name="lastUpdated">
 <value>SYSTIME</value>
 </attribute>

 <attribute name="Annotation">
 <value>Key set for entities used in User BOM </value>
 </attribute>

</row>

There are several things to be noted in the Key Set definition:

• The property strategy with the value KB1002 indicates to the Key Server that the RAKS implementation
should be used to generate key values.

• The property keySetCode specifies the name of the Key Set. In order that the corresponding Business
Object Type can be identified, it is recommended that this name is based on the Business Object Type
name. So, in the example, the Key Set for the User BOM is named UserBOMKS

• The property Annotation is used to provide a description of the purpose of the Key Set configuration.
• Other properties such as nextUniqueIdBlock, humanReadable and lastUpdated are provided with

sensible default values.

Ensure Entities use the new Key Set
All of the entities that form part of the Business Object Type must use keys generated using the new Key
Set. This includes the Initial Entity, the Child Entities and the Relative Entities. So, in the example, all of
the entities that constitute the User Business object must use keys generated using the UserBOMKS key
set. This mechanism for achieving this depends on whether the entity uses Auto ID Generation, or invokes
the Key Server directly.

20 IBM Cúram Social Program Management: Business Object Module Development Guide

Auto ID Generation

Most entities use the key server implicitly – that is, keys are generated automatically when insert
operations are invoked. This is known as Auto ID generation. In order to configure these entities to use
the RAKS, use the following procedure:

• Within the Rational® Software Architect modeling environment, identify all of the insert operations on
the relevant entities. That is, identify the operations with the insert stereotype.

• For each insert operation, perform the following steps:

– Go to Properties; navigate to the Curam tab. Populate the property Auto ID Field with the name of the
primary key attribute. For example, for the sample entity the value for the Auto ID Field will be userID.

– Following this, populate the property Auto ID Key with the name of the Key Set for the Business
Object Type. So, in the sample application, the field value will be UserBOMKS.

Code that invokes the Key Server directly

The Key Server can also be invoked directly, in code. This is achieved by directly invoking on the one of the
curam.util.type.UniqueID class' static methods – usually the nextUniqueID() method. Typically, code that
invokes the standard Key Server will be along the following lines:
ToDoDtls toDoDtls = new ToDoDtls();
toDoDtls.toDoID = UniqueID.nextUniqueID();

In order to use the RAKS, this code should be changed as follows:
UniqueIDKeySet uniqueIDKeySet = new UniqueIDKeySet();
uniqueIDKeySet.keySetName = "UserBOMKS";

ToDoDtls toDoDtls = new ToDoDtls();
toDoDtls.toDoId = UniqueID.getNextIDFromKeySet(uniqueIDKeySet);

Business Object Classes
The following sub-sections of this document include several code snippets. These snippets assume that
the certain classes are available for the Business Object Type – for example. façade classes, DAO classes,
and so on.

For full details of these classes, please refer “Assumptions on the availability of classes” on page 29

Developing Entity Business Object Builder classes for the entities

This section describes the steps involved in writing the Entity Business Object Builder classes for all of the
entities in the example User Business Object Type. Please refer to “BOM Infrastructure” on page 4 for
information on the purpose of Entity Business Object Builder classes.

Category Entity Business Object Builder
The implementation of Entity Business Object Builder for the Category entity is reasonable
straightforward.

Class declaration

The class must extend from curam.ctm.bom.util.impl.AbstractEntityBOBuilder. The primary key data type
and the entity's Dtls data type are Long and CategoryDtls respectively. Therefore, these types must be
specified in the class declaration as follows:
class CategoryEntityBOBuilder
 extends AbstractEntityBOBuilder<Long, CategoryDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across the
system - i.e. in this case, the string Category can be returned.

Developing Business Object Modules for Configuration Transport Manager 21

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() will be called by the infrastructure in order to obtain the entity's Adapter
class to perform various operations on the entity. Hence this method has to be overridden to return an
instance of CategoryAdapter class.

Note Entity Business Object Builder

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's Dtls data
type are Long and NoteDtls respectively. Hence, these types must be specified in the class declaration as
follows,
class NoteEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, NoteDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across the
system - i.e. in this case, the string Note can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden in order to return an instance of the adapter class -
i.e. NoteAdapter.

User Note Link Entity Business Object Builder

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's Dtls data
type are Long and UserNoteLinkDtls respectively. Hence these types must be specified in the class
declaration as follows:
class UserNoteLinkEntityBOBuilder
 extends AbstractEntityBOBuilder<Long, UserNoteLinkDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across the
system - i.e. in this case, the string UserNoteLink can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class - i.e.
UserNoteLinkAdapter.

ToDo Entity Business Object Builder

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's Dtls data
type are Long and ToDoDtls respectively. Hence these types must be specified in the class declaration as
follows,
class ToDoEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, ToDoDtls>{
}

22 IBM Cúram Social Program Management: Business Object Module Development Guide

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across the
system - i.e. in this case, the string ToDo can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class - i.e.
ToDoAdapter.

User ToDo Link Entity Business Object Builder

Class declaration

The class must extend AbstractEntityBOBuilder. The primary key data type and the entity's Dtls data type
are Long and UserToDoLinkDtls respectively. Hence, these types must be specified in the class declaration
as follows:
class UserToDoLinkEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, UserToDoLinkDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden in order to return the name of the entity that is unique across
the system - i.e. in this case, the string UserToDoLink can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class, i.e.
UserToDoLinkAdapter.

User Entity Business Object Builder

Details of the implementation of Entity Business Object Builder for the User entity are provided below:

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's Dtls data
type are Long and UserDtls respectively. Hence these types must be specified in the class declaration as
follows,
class UserEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, UserDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across the
system - i.e. in this case, the string User can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class, i.e.
UserAdapter.

Implementing the BOMs
This section describes the steps involved in implementing the various BOMs for a Business Object Type.
The most straightforward mechanism is to develop a single BOM class for all of the BOM interfaces that
are required for the Business Object Type. That is, the class implements all of the required BOM
interfaces. The recommended means of doing this is to extend the BOM Infrastructure class
curam.ctm.bom.util.impl.AbstractBOM, which implements the BOM interfaces, and provides out-of-the-
box implementations of several of the methods.

Developing Business Object Modules for Configuration Transport Manager 23

Note, however, that it is also possible to implement all of the BOM interfaces directly if desired.

The process of implementing the BOM is now described through example, using the sample User Business
Object Type described above. In the example, the recommended strategy of providing a single BOM
implementation class is followed.

Extend AbstractBOM

The first step is to extend the curam.ctm.bom.util.impl.AbstractBOM class:
public class UserBOM extends AbstractBOM {

// Provide BOM implementation methods

}

Singleton BOMs
An important factor to bear in mind when developing the class is that BOM implementations are
singletons. That is, a single BOM instance will be created and used for all processing of a Business Object
Type. So, if two Change Sets containing instances if the same Business Object Type are being processed
at the same time, the same BOM instance will be used. BOM implementations must therefore be capable
of being used by multiple threads simultaneously, that is, must be thread-safe. The best mechanism for
achieving this is to avoid storing Business Object (instance) -specific state in BOM implementations.

AbstractBOM Method Implementations
The next step is to implement the BOM methods. Details on how to do this are provided. Note also that
the Javadoc for the BOM interfaces provides more information on each of the methods. These interfaces
are all members of the package curam.util.ctm.bom.

getName() : Retrieving the name of the Business Object Type

The method getName() should return the name of the Business Object Type. This name will be displayed
in the User Interface while searching for the set of Business Object Types available on a system. For
example, the implementation for User BOMs could return the BOM name User.

getInitialBO() : Provide the Entity Business Object Builder for the Initial Entity

The get InitialBO() method implementation should provide the Entity Business Object Builder for the
Initial Entity of the Business Object Type. For the sample User Business Object Type, this is the User
entity. The following code snippet illustrates the process:
protected AbstractBOBuilder getInitialBO(
 final BusinessObjectIdentifier boIdentifier) {

 final UserEntityBOBuilder userEntityBOBuilder
 = userEntityBOBuilderProvider.get();

 userEntityBOBuilder.setID(Long.parseLong(
 boIdentifier.getBusinessObjectKey().get()));

 return userEntityBOBuilder;

}

In the code snippet, a new instance of UserEntityBOBuilder is created and initiated with the identifier
obtained from the incoming BusinessObjectIdentifier. This instance is then returned.

The BOTraits annotation: Specifying the Mode of Deletion

The class level annotation curam.util.ctm.bom.annotation.BOTraits is used to indicate the Mode of
Deletion supported by this Business Object Type. It needs to be specified on the implementation of the
curam.util.ctm.bom.InformationalBOM interface. In the UserBOM example, a common implementation
class is being developed for all BOMs (i.e. the UserBOM class). So the annotation is specified on this class.
This is illustrated on the following code snippet:

24 IBM Cúram Social Program Management: Business Object Module Development Guide

@BOTraits(deletionMode = DeletionMode.LOGICAL)
public class UserBOM extends AbstractBOM{

}

The annotation in the example declares that the User Business Object Type supports logical deletion.
However, note that if the BOTraits annotation is not specified, the infrastructure assumes that the
Business Object Type uses Logical deletion. Hence for a Business Object Type that uses Logical deletion,
it is not mandatory to provide this annotation. However, Business Object Types that are physically deleted
must specify the annotation, using the deletion mode DeletionMode.PHYSICAL.

getDependentBusinessObjectIdentifiers() : Fetching the Dependent Business Object identifiers

The getDependentBusinessObjectIdentifiers() method implementation should return the set of Business
Object identifiers on which the Business Object is dependent (if any). The following code snippet
illustrates the process:
public Set<BusinessObjectIdentifier> getDependentBusinessObjectIdentifiers(
 final BusinessObjectIdentifier boIdentifier){

 final Set<BusinessObjectIdentifier> setOfDependantBOs
 = new HashSet<BusinessObjectIdentifier>();

 // Adding CodeTable dependencies.
 addCodeTableBusinessTypeDependency(
 setOfDependantBOs, RECORDSTATUSEntry.TABLENAME);
 addCodeTableBusinessTypeDependency(
 setOfDependantBOs, GroupNameEntry.TABLENAME);
 addCodeTableBusinessTypeDependency(
 setOfDependantBOs, CategoryName.TABLENAME);

 // Add Folder dependencies
 final User user = userDAO.get(Long.parseLong(
 boIdentifier.getBusinessObjectKey().get()));

 for (final Note note : userDAO.searchAllNotes(user)){

 final Folder folder = note.getFolder();

 setOfDependantBOs.add(
 BusinessObjectIdentifierFactoryImpl.get().
 createBusinessObjectIdentifier(
 FolderBOMConstants.kFolderBusinessObjectType.
 get(), String.valueOf(folder.getID())));

 }
 return setOfDependantBOs;

}

As previously noted, during the Business Object Type analysis, it was identified that the User Business
Object is dependent on the CodeTable and Folder Business Objects. Therefore, the code snippet above
adds the relevant CodeTable Business Objects as dependencies. This is achieved by calling the method
addCodeTableBusinessTypeDependency(). Additionally, because the User entity can be related to the
Folder entity through Note entity, the code calls searchAllNotes() to retrieve the set of Note entities related
to a user. Then, for each Note, the corresponding Folder Business Object is identified and added to the set
to be returned.

getReadSecurityIdentifier() : Retrieving the Read Security identifiers

The getReadSecurityIdentifier() method implementation has to return all of the security identifiers (SIDs)
required to read the Business Object content. This is used to assess whether or not an administrative user
using CTM has the required read permissions for the Business Object. An example code snippet is
provided below:

Developing Business Object Modules for Configuration Transport Manager 25

public public Set<String> getReadSecurityIdentifier() {

 final Set<String> readSecurityIdentifiers
 = new HashSet<String>();

 readSecurityIdentifiers.add("UserManager.readUser");
 readSecurityIdentifiers.add("UserManager.readAllNotes");
 readSecurityIdentifiers.add("UserManager.readAllToDos");
 readSecurityIdentifiers.add("UserManager.readAllToDos");
 readSecurityIdentifiers.add("NoteManager.readNote");
 readSecurityIdentifiers.add("ToDoManager.readToDo");

 return readSecurityIdentifiers;

 }

The above implementation gathers together all of the read operation SIDs from the relevant Façade APIs.
Refer to “Assumptions on the availability of classes” on page 29 for more details.

getWriteSecurityIdentifier() : Retrieving the Write Security identifiers

Similarly, the method getWriteSecurityIdentifier() needs to specify all of the security identifies (SIDs)
required to write the Business Object content. An example code snippet is provided below:
public Set<String> getWriteSecurityIdentifier() {

 final Set<String> writeSecurityIdentifiers
 = new HashSet<String>();

 writeSecurityIdentifiers.add("UserManager.createUser");
 writeSecurityIdentifiers.add("UserManager.editUser");
 writeSecurityIdentifiers.add("UserManager.deleteUser");
 writeSecurityIdentifiers.add("UserManager.associateNotes");
 writeSecurityIdentifiers.add("UserManager.disassociateNotes");
 writeSecurityIdentifiers.add("UserManager.associateToDos");
 writeSecurityIdentifiers.add("UserManager.disassociateToDos");

 writeSecurityIdentifiers.add("NoteManager.createNote");
 writeSecurityIdentifiers.add("NoteManager.editNote");
 writeSecurityIdentifiers.add("NoteManager.deleteNote");

 writeSecurityIdentifiers.add("ToDoManager.createToDo");
 writeSecurityIdentifiers.add("ToDoManager.editToDo");
 writeSecurityIdentifiers.add("ToDoManager.deleteToDo");

 return writeSecurityIdentifiers;
}

The above implementation gathers together all of the write operation SIDs from the relevant Façade APIs.
Refer to “Assumptions on the availability of classes” on page 29 for more details.

Registering the BOM implementation
The next step is to register the BOM implementation(s) with the BOM registry. The BOM registry,
implemented using Guice, acts as a central access point for the CTM Infrastructure to obtain BOM
implementations. So, the User BOM implementation has to be registered with the BOM registry. The
following sections detail the steps involved in registering BOMs.

Again, the process is illustrated by example, using the sample UserBOM:

Create a new Guice Module class

Create a new Guice Module called UserBOMModule that extends from com.google.inject.AbstractModule
and provide an implementation of the configure() method as follows,

26 IBM Cúram Social Program Management: Business Object Module Development Guide

protected void configure() {

 final Multibinder<ReadAndUpsertBOM> readAndUpsertBOMBinder
 = Multibinder.newSetBinder(binder(),
 ReadAndUpsertBOM.class);
 readAndUpsertBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<InformationalBOM> informationalBOMBinder
 = Multibinder.newSetBinder(binder(),
 InformationalBOM.class);
 informationalBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<SecurityBOM> securityBOMBinder
 = Multibinder.newSetBinder(binder(),
 SecurityBOM.class);
 securityBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<DeleteBOM> deleteBOMBinder
 = Multibinder.newSetBinder(binder(),
 DeleteBOM.class);
 deleteBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<DependentBOM> dependentBOMBinder
 = Multibinder.newSetBinder(binder(),
 DependentBOM.class);
 dependentBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<ExistenceBOM> existenceBOMBinder
 = Multibinder.newSetBinder(binder(),
 ExistenceBOM.class);
 existenceBOMBinder.addBinding().to(UserBOM.class);

}

Note that in the above code snippet, a new com.google.inject.multibindings.Multibinder instance is created
in order to hold multiple implementations of the curam.util.ctm.bom.ReadAndUpsertBOM interface. An
object of type UserBOM is bound to this binder using the standard addBinding() method. The process is
repeated with binders for all of the other BOM types - i.e. for curam.util.ctm.bom.InformationalBOM,
curam.util.ctm.bom.SecurityBOM, curam.util.ctm.bom.DeleteBOM, curam.util.ctm.bom.DependentBOM and
curam.util.ctm.bom.ExistenceBOM interfaces. Note that as a single implementation is used for all of the
BOM types, the same class is bound to each of the binders (i.e. UserBOM).

Update the new Module class in the MODULECLASSNAME DMX file
Each component can have a MODULECLASSNAME.dmx DMX file containing the configuration information
for the component's Module classes (if any). The fully-qualified class name of the Module registering the
BOMs must be placed in this file.

For the pim component, the file path of the DMX file will be EJBServer\components\pim\data\initial
\MODULECLASSNAME.dmx. This file will need to contain the following information:
<row>
 <attribute name="moduleClassName">
 <value>sample.package.UserBOMModule</value>
 </attribute>
</row>

In the code snippet above, the value of the child element value must be the fully qualified name of the
Module class - i.e. sample.package.USERBOMModule in this case.

Optional BOM types
This section covers the optional BOM types and briefly explains their purpose. Any optional BOMs
required for a Business Object Type should be implemented, adhering to the appropriate contract
described in the BOM Javadoc.

The implementations should then be registered with the BOM registry, using the same pattern
documented above, that is, in the “Registering the BOM implementation” on page 26.

Pre Commit Action BOM
This BOM is used to perform any pre-processing actions on a Business Object during an Apply operation
before the Change Set is committed to the database. An example of an activity that could be implemented
in this BOM is validating the Business Object contents against other Business Objects that may have been

Developing Business Object Modules for Configuration Transport Manager 27

in the Change Set. This BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.PreCommitActionBOM.

Please refer to the Javadoc for curam.util.ctm.bom.PreCommitActionBOM for further information.

Pre Commit Action Type BOM
This BOM is used for pre-processing actions required at a Business Object Type – level during an Apply
operation before the Change Set is committed to the database. This means that irrespective of the
number of the Business Object instances available for a particular Business Object Type in a Change Set,
the BOM implementation will be called only once. This BOM can be implemented by providing an
implementation of the interface curam.util.ctm.bom.PreCommitActionTypeBOM.

Please refer to the Javadoc for curam.util.ctm.bom.PreCommitActionTypeBOM for further information.

Post Commit Action BOM
A BOM for performing any post processing actions after the transaction for an Apply operation has been
committed. This BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.PostCommitActionBOM. Note that unlike the other BOMs, a separate transaction is
used for curam.util.ctm.bom.PostCommitActionBOM implementations, and that the BOMs are invoked
after the Apply transaction has been committed. Therefore, again, unlike the other BOMs,
implementations of this BOM cannot terminate the Apply process by rolling back the transaction.

Please refer to the Javadoc for curam.util.ctm.bom.PostCommitActionBOM for further information on this
BOM.

Revert Change Set Construction Handler BOM
Business Object Types that need to customize the process of constructing a revert Change Set can achieve
this by providing an implementation of this BOM. This BOM can be implemented by providing an
implementation of the interface curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM.

Please refer to both the “Customizing the construction of revert Change Set” on page 32 in the Appendix
and to the Javadoc for curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM for more details.

Authorisation BOM
In order to verify whether or not an administrative user can access a Business Object, it is generally
sufficient to check that a user has the SIDs that are required to read and write instances of the Business
Object Type. As noted above, the SIDs required for a particular Business Object are provided to CTM by
implementing the curam.util.ctm.bom.SecurityBOM.

However, some Business Object Types may have more advanced security requirements, involving custom
programmatic security checks. These checks can be implemented in
curam.util.ctm.bom.AuthorisationBOM for the Business Object Type. If
curam.util.ctm.bom.AuthorisationBOM is provided for a Business Object Type, it will be used instead of the
curam.util.ctm.bom.SecurityBOM to verify whether or not a user can read or write instances of the
Business Object Type.

This BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.AuthorisationBOM. Please refer to the Javadoc for
curam.util.ctm.bom.AuthorisationBOM for further information.

Testing the transport of Business Object Types
This section discusses the common testing scenarios that are applicable to most Business Object Types.

Pre-requisites

The following should be setup before testing commences:

• The source and the target systems should both be available, and should both be configured to be in the
same system landscape.

• The target system should be configured as a destination system for transport purposes within the
source system.

28 IBM Cúram Social Program Management: Business Object Module Development Guide

• Configuration data should be available for all of the entities that form the Business Object Type being
tested.

Testing the User Business Object Type via the Administrative User Interface
It is important to carefully test the BOM implementations. In order to do this, a comprehensive set of unit
tests should be developed for the BOM implementations, and the functionality should be thoroughly
tested via the user interface.

The process of testing Business Object Types via the Administrative User Interface is described in the
following sub-sections. Again, the procedure is illustrated using the example User Business Object Type.

Listing all active User objects
Create a new Change Set, locate the User Business Object Type and search for the available Business
Objects. The screen should only list the User objects that are active.

Checking the dependent Business Objects
Populate a new Change Set with sample User Business Objects. Expand the Change Set and select any of
the User Business Objects. Select the option Add Related Business Object. A pop-up window showing the
Related Business Objects will open and it should contain CodeTable/RecordStatus, CodeTable/GroupName
and CodeTable/CategoryName items. If the selected Business Object has any dependency on a Folder
Business Object, then the Folder Business Object instance must also be listed.

Releasing the Change Set
Select the Release option for the Change Set. Ensure that the Release operation completes successfully,
that is, without any errors.

Exporting the Change Set
Select the Export option on the released Change Set. This export option will convert the contents of all of
the Business Objects in the Change Set into XML format. The Export operation must successfully complete
without any errors.

Transporting the Change Set
Select the Transport option of the release Change Set. Specify the target machine as the destination to
which the Change Set should be transported. The Transport operation must successfully complete
without any errors. Navigate to the target system's CTM screens to verify that the transported Change Set
is available.

Apply the Change Set
Select the Apply option on the released Change Set on the target system. This operation will commit the
content of the Business Objects from the Change Set to the target system. To check the availability of the
Business Objects, navigate to the home page of Folder and User to check if the Business Objects
transported from the source machine are listed.

Undoing the Change Set
Select the newly applied Change Set on the target system. Choose the Undo operation. This operation will
"undo" the Change Set, that is, the content of the Business Objects that were previously applied will
instead be reverted to their old values, or deleted if they were not already present on the target system.
The delete will either be a logical delete or a physical delete, as appropriate to the Business Object Type.
To verify the correctness of the Undo operation, navigate to the home page of Folder and User to check if
the Business Objects are in the Inactive state, that is, have been logically deleted.

Assumptions on the availability of classes
The examples in code assume that the following classes are available for the Business Object type:

Developing Business Object Modules for Configuration Transport Manager 29

Availability of Facade APIs for managing user operations
It is assumed that there are Facade APIs which provide CRUD operations for the user entity, and provide
functionalities for associating/disassociating to-do and note entities from users. Equivalent Facade APIs
are also available for to-do and note objects.

The table below provides details of the operations:

Facade Name Operation Name Description

UserManager createUser Creates a new user

editUser Modify details on existing user

readUser Reads and returns user
information

deleteUser Removes the user from the
system

associateNotes Associates note items to a user

disassociateNotes Dis-associates note items from a
user

readAllNotes Fetches all the notes for a user

associateToDos Associates to-do items with a
user

disassociateToDos Disassociates to-do items from a
user

readAllToDos Fetches all the to-do items for a
user

NoteManager createNote Creates a new note

editNote Edits information from existing
note

deleteNote Removes the note

readNote Reads and returns note
information

ToDoManager createToDo Creates a new to-do

editToDo Edits information from existing
to-do

deleteToDo Removes the to-do

readToDo Reads and returns to-do
information

30 IBM Cúram Social Program Management: Business Object Module Development Guide

Availability of Adapter classes
It is assumed that the PI Adapter classes are generated and available for the Initial Entity, Child Entities
and Relative Entities.

This means that for the User BOM, the adapter classes described below are available:

• UserAdapter
• NoteAdapter
• UserNoteLinkAdapter
• ToDoAdapter
• UserToDoLinkAdapter
• CategoryAdapter

Availability of Data Access Object classes
In most cases, Adapter classes are sufficient to perform database related operations. However, it is
possible that there are entities related to other entities through foreign key associations and, in such
cases, it is desirable to provide Data Access Classes to facilitate fetching data from multiple entities.

For instance, for the User Business Object Type, at least one Data Access Object class is required:

• UserDAO, to fetch related information for a user from to-do and note items

DAO Class name Operation Name Description

UserDAO searchAllUsers Searches all the users in the
system

searchAllToDos Search all the related to-do items
for a user

searchAllToDoLinks Search all the related to-do item
links for a user

searchAllNotes Search all the related note items
for a user

searchAllNoteLinks Search all the related note item
links for a user

searchAllCategories Search all the related categories
for notes that are associated with
a user

Availability of classes generated from Code Tables
The entities that form the User Business Object Type are dependent on several code tables. Hence, it is
assumed that the equivalent Java™ classes for these code tables are also available.

Refer to the table below for details of these classes:

Code Table Name Java Identifier

GroupName GroupNameEntry

CategoryName CategoryNameEntry

Developing Business Object Modules for Configuration Transport Manager 31

Customizing the construction of revert Change Set
You might want to customize the content of a revert Change Set. To illustrate a scenario when would be
necessary, assume that there can be only one active User entity in the system. This means that when a
new User is applied to the system, the previously active User entity becomes inactive, and the current one
becomes active.

As an example, consider a Change Set containing a new Business Object User/X. Also, assume that in the
database, there is already an active User Business Object instance, User/A. While applying the Change Set,
the infrastructure creates a corresponding revert Change Set. This revert Change Set contains a Delete
instruction for the newly added User. When the original Change Set is applied, User/X will be active, and
User/A is inactive.

Now, when applied, the revert Change Set should ideally de-activate User/X (as this was newly created
through the Change Set) and reactivate User/A (as this was previously active). However, this is only
possible if the revert Change Set contains the following instructions:

• User/X-Delete
• User/A-Add

While the revert Change Set automatically contains the instruction User/X-Delete (as it is newly created by
applying the original Change Set), it does not contain the instruction User/A-Add. This is because this
Business Object was not in the original Change Set, and is not directly related to the User/X Business
Object in the original Change Set. So, the implementer of the BOMs for User has to identify the unrelated
Business Object(s) (that is, User-A in this case), and ensure that it is placed in the revert Change Set.

To provide this functionality, an implementation of
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM must be developed. This BOM requires an
implementation of the constructBusinessObjectIdentifiers() method that returns the identifiers of
unrelated Business Object that are required for revert purposes.

Note that there is no need for the implementation to specify the instruction type of the unrelated
Business Object(s), because the infrastructure knows how to identify the instruction type for a specific
Business Object identifier

The code snippet here illustrates the implementation of the
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM 's constructBusinessObjectIdentifiers() for
the User Business Object Type:
public final Set<BusinessObjectIdentifier>
 constructBusinessObjectIdentifiers(
 BusinessObjectIdentifier boIdentifier,
 Document boDocument) {

 Set<BusinessObjectIdentifier> boIdentifiers
 = new HashSet<BusinessObjectIdentifier>();
 BusinessObjectIdentifier activeBO
 = getActiveBusinessObjectIdentifier();

 if (activeBO!= null) {

 // If the identified active Business Object is equal
 // to the incoming Business Object identifier, then
 // we should not have to include it, because this
 // Business Object identifier would have
 // already undergone processing by the framework.

 if (!activeBO.equals(boIdentifier)) {

 // Active Business Object exists in the
 // database. This needs to be included
 // in the revert Change Set XML.

 boIdentifiers.add(activeBO);
 }
 }
 return boIdentifiers;

}

32 IBM Cúram Social Program Management: Business Object Module Development Guide

Reference guides
• Cúram modeling reference
• Developing with the Persistence Infrastructure
• Cúram Configuration Transport Manager Guide
• Google Guice 2

Developing Business Object Modules for Configuration Transport Manager 33

http://code.google.com/p/google-guice

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

34 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 35

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

36 IBM Cúram Social Program Management: Business Object Module Development Guide

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	Chapter 1. Developing Business Object Modules for Configuration Transport Manager
	Overview
	Pre-requisites
	Terminology
	Business Object Type
	Business Object
	Business Object Modules

	BOM Overview
	Implementing BOMs
	CTM Core Process Flow
	The Release Operation
	Apply Operation
	Pre Apply Phase
	Apply Phase
	Post-Apply Phase

	BOM Infrastructure
	AbstractEntityBOBuilder
	Abstract BOM

	The Range Aware Key Server
	Runtime Data

	Developing BOMs
	The Example Application
	Folder Screen
	Entities
	Code Tables

	User Screen
	Entities
	Code Tables

	BOM Development Methodology
	Analyzing Business Object Types
	Identifying the Configuration Entities
	Group Entities into Business Objects Types
	Define Business Object Identifiers
	Business Object Type Identifier
	Business Object Key

	Ensure that the Configuration Entities use RAKS generated identifiers

	Analyzing the Folder Business Object Type
	Identifying the Configuration Entities
	Identifying the Initial Entity
	Identifying the Child Entities
	Identifying the Relative Entities

	Identifying dependencies
	Type-Level dependencies
	Instance-Level dependencies
	Example 1
	Example 2

	Identifying the Mode of Deletion

	Analyzing the User Business Object Type
	Identifying the configuration entities
	Identifying the Initial Entity
	Identifying the Child Entities
	Identifying the Relative Entities

	Identifying dependencies
	Type-Level dependencies
	Instance-Level dependencies
	Example 1
	Example 2

	Identifying the Mode of Deletion

	Implementing BOMs
	Making Configuration Entities RAKS enabled
	Creating New Key Set Configuration
	Ensure Entities use the new Key Set

	Business Object Classes
	Developing Entity Business Object Builder classes for the entities
	Category Entity Business Object Builder
	Note Entity Business Object Builder
	User Note Link Entity Business Object Builder
	ToDo Entity Business Object Builder
	User ToDo Link Entity Business Object Builder
	User Entity Business Object Builder

	Implementing the BOMs
	Extend AbstractBOM
	Singleton BOMs
	AbstractBOM Method Implementations

	Registering the BOM implementation
	Create a new Guice Module class
	Update the new Module class in the MODULECLASSNAME DMX file

	Optional BOM types
	Pre Commit Action BOM
	Pre Commit Action Type BOM
	Post Commit Action BOM
	Revert Change Set Construction Handler BOM
	Authorisation BOM

	Testing the transport of Business Object Types
	Pre-requisites
	Testing the User Business Object Type via the Administrative User Interface
	Listing all active User objects
	Checking the dependent Business Objects
	Releasing the Change Set
	Exporting the Change Set
	Transporting the Change Set
	Apply the Change Set
	Undoing the Change Set

	Assumptions on the availability of classes
	Availability of Facade APIs for managing user operations
	Availability of Adapter classes
	Availability of Data Access Object classes
	Availability of classes generated from Code Tables

	Customizing the construction of revert Change Set
	Reference guides

	Notices
	Privacy Policy considerations
	Trademarks

