IBM Curam Social Program Management
Version 7.0.3

Curam Web Services Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
43

Edition

This edition applies to IBM® Clram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

©

Contents

LiSt Of FigUIeS....cuiiuiiuiieiieiiniieiieiieieieecietiestentasiesiostecescascsscsssssssnssassassassassascascascanes V

[ES3 oY = 1 =3 <R Y |

Chapter 1. Integrating with External Applications through Web Services................ 1

|10} (o Ta (1o} 1o} o OO O O OO RRUPSPRUPPPRRUPPROt 1
U] oo 1= = T T TP PR PPPPPPPPPPPPOt 1
FAYE L 1= o o= T USSR 1
el LT = To [U] (TSR 1
USING WED SEIVICES....iiieiiiieiieieiteeeite et sttt e s te st e e s bt e s sttt e s beeesbeeessbeeesseeesseeesssaesseeesnseeesssaesnssaesnnsens 1
OVEINVIEW OF WED SEIVICES. .. .viiiiiiiiiieerite ettt sttt s st e st e s ste e s sate e s aee e s sabee s ssaesassaesssaesanseesanseess 1
WED SEIVICE PlatfOrmMS. . ci i uiiiiiie ittt ste e s ate e s ee e saee e s ate e s bt e e sseeesseeesseeesseeesseeesan 2
TYPES OF WD SEIVICES...eiiiiiiiee ettt e e s e et e e e s e bt e e e e e beeeeeeesstaeeeeanssaaeesennseneesennsseneenan 2
L Y=t oY o oI R Y Yot]) USSR 5
IS0 T 4= U UPUPPRN 5
OUtboUNd WED SErvIiCEe CONNECIONS. ..iiuiiiiiiieiiitercitescie st e st e st e ssteessareessabeessateesssteesssbeesssseesssseesnnsaesan 5
OVEIVIBW...tieiiiiee ettt sttt e sttt e sttt e seate e seate e st teessteessteessteesaseeesasteesasteesaseeesstaesasteesseeesaseessaseeesaseeesnseeesns 5
(CT=) naTaY=8) €=V (= Ta [PRSP OPPRI 6
Building an Outbound Web Service CONNECTON....cccuiiiiiiiiiiieriitesriteseiee st e ssee e st e sseeesssbaessaseesssseesas 6
Creating a Client and InvoKing the Webh SErviCe.....cuiiviiiiiiieiieecteeee st 7
INDOUNGI WED SEIVICES...ciiiiiiiiiiieiiiee ettt sttt e st st e s sate e sttt e seste e ssbteesstaesanseesassaessssaessseesassaesnnsaennn 9
OVEIVIEBW...tieieiieeieitee st e sttt e sttt e s eate e s eateesbteessteesasteessteesseeesasteesastaesasteesastaesseeesseaesnseeesaseeesaseeesnseeesans 9
(CT=) naTaY=8) €=V £=Ta [P SR UTROPPTI 9
Modeling and Implementing an Inbound Web ServiCe.......couiiiiiiiiiiiieneeeeesee e 10
Building and Packaging WED SEIVICES.....cccuiiiiiiiriiieniiteeiitessite st e st e ssieessae e ssbeessbeesssaessaneesssneas 12
Providing Security Data for Web SErVICES.....c.uiii ittt saae s s 14
Providing web Service CUSTOMIZAtIONS.....ciivciiiiiiiiriee ittt e st et e s sre e s see e s see e ssaee e sseeessaeeesneas 14
SECUIE WED SEIVICES .ottt ee e st e e st e e s bee e s bee e s bee e sbeeesbeeesaseeesaseeesseeesnsens 19
OVEIVIBW.cutteiiieeieitee sttt sete e st essate e seateesaste e s atee s atae s stae s ssee s sseesasseesasbaesasseesassaesassaeenssaesnssaesanseessasaens 19
PN AT =Tl UL 1 AV UaTe 2 UnaY o =L SRS SRS 20
CUSTOM SOAP HEAUEIS. ... uiiiiiieeiiiee ettt sttt ettt stte e st e e s bte e s bte e sbteesbaeesabeeessaeesseessseeesnseessnseeesnns 20
Encrypting CuStOmM SOAP HEAUEIS......uiiiiiiiiiieieiieeeite ettt st s te e stee s saee s sbeesssaessasaessaraessasaesnns 22
Using Rampart With WED SEIVICES.....uuiiiiiiiieicieeccte sttt sttt e s ae e ssabe e ssaaaeeas 23
Securing web service network traffic With HTTPS/SSL....uviiiiiiiiiiieieceieccecce e 32
G (oY (oY a1 SN O == o o PSSR SROS 32
Inbound Web Service Properties - Ws_inbound.XMl.......coocuiiiiieciiee et eereee e eerree e e enree e e 33
PrOPEITY SEELINES. . ittt ettt e e e e st e e s bt e e s b be e s bea e s beee s bbeesanteesnsseesnsaesnssaesnneans 33
Deployment DescCriptor File = SErVICES. XML ..uiii i ciiieiicciieie e cciiee e eecrtee s e et e e e eearre e e s e enree e e eeesreeeseenrenaeean 34
LYol T o) (o gl ol E=l 6o) =Y o) £ SE 34
0101 0] 1=2] aToT o] (10 =S USRI 36
L) o [¥ o34 To] o OO SRS 36
Initial Server Validation and TroubleShOOtiNg........covciiiiiiiiiiiieiicecee e s 37
Tools and Techniques for Troubleshooting AXIS2 ErTOIS.....ciuciiieciiiriiiiniieeeieesite e sne e sveeesaee e 38
FANV oY Te W LN o) BR=1 0 1V Y o 1= SRS 40
FN YA = (ot=Y o) (o 1= R 40
Including the Axis2 Admin Application in Your Web Services WAR Fil€......cccevvviviriieiniieiniieieieesecieenns 40
L) o [¥ o3 T] o O OO OSSO 40
Y (T o1 (o ol = U 1o 11 = TP 40
Including the Axis2 SOAP Monitor in Your Web Services WAR Fil.....ccuvivvieiriieiniieieieeeeieeceieeesiee e 41
L) o [¥ o3 AT] o FH T RSOSSN 41
Y (T o1 (o ol = U 1o 11 = TP 41
o L o (oI Yo T T o 3N 4 (o] Vi (o USSR 42

1 0 4o - Y 3 |
RNz (oYl o] oAV ot o] g FY T =T = o L SRRt 44
LI 1 L2 1 T U &S 44

List of Figures

1. File System Usage For Outbound WED SEIVICES.....cocuiiiiiiceee ettt rne e s s e e s e 6
Y- Ve Yo LT o 1WA d oY TUT o o FOtq o] N =TS 7
3. Sample ws_outbound.xml service with XMLBEANS OVEITIAE.......ccuteeieeciiieeeecreee e cereee e eerree e et e e e 7
4, SAMPLE WED SEIVICE CLIENT..ciiiiiiiee ettt e e s e saree e s e sabe e e e s esabaee e s e abeaeesssssaeesesanssnnessanes 8
5. Sample Web Service Client Using Generated Stub and Custom Code........ceecveeivciieiiieeecieeeeieeeciee e 8
6. File System Usage FOr INDoUNd WED SEIVICES.....cccuiiiiiiiiiieeiieeecee ettt ste e sae e s see e s see e s saaeeesneeas 10
7. Sample getAxis2Credentials METhOM.cui i et e s s eaee e s s e earaeeas 16
8. Sample Custom Receiver to ACCESS the SOAP MESSAZE.....ccccvuieieiieeriieeiiieeiieeeireeesreessreessseesssseesssseeans 17
9. Sample services.xml Descriptor File Entry for a CUStOM RECEIVEN.........uvveiieeciieeeeecireee ettt eeeenes 18
10. Sample Illustrating Schema Validation.........cocciiiei et e s e eaee e e s e e ara e e e senraeeeeenns 19
171, Example CUSTOM SOAP HEAUETccciiieciiieeiee ettt ettt e ettt e e e e te e e e ta e e st e e ssaeessaeeesaeeesaeesssaeeensseesnsseaan 21
12. Sample Method to Create CuStOmM SOAP HEAEIS........uuieiiiciiiiee et e eeetteee e eeree e e e ree e e e raae e e e raaeeeeas 21
13. Sample CUSTOM SOAP HEAUET....uiii ittt eeette e e tee e s e ettt e e e e sabeee e s s e beaaesesssaaeesesnstaeesennseneeean 22
14. Example Encrypted CuStom SOAP HEAUEiicuiiieieeciieeeteeectee et stee et e e te e s sve e e saae e e snbaessnaaeesneeas 23
15. Sample Client Descriptor Settings (Fragment)......ccuccieeceeeieeiiecee e e ete e e seeete s eeeteessaesseesseesneenes 24
16. Sample Server Security Settings (services.Xml Fragment).......cceeccieeeciieecieccceee et ecree e evee e 25
17. AXiS2 Client File SYSTEM STIUCTUIE.....iiiciiee ettt ettt ette e etr e e ebae e sba e e sbee e sbaeesbaeeebaeesseaennns 25
18. SAMPLE RAMPAIT POLICY .. uviieiiiiiieeieecieee ettt e eerrte e e e eetree e e eerae e e eestssaeeeesanbaeeesenbsaeeeesnssaeeeesnseeeenan 26
19. Example Rampart server-crypto.properties File......ui ittt ervre e s svaee e e s eaneeee s 26
20. Identifying Axis2 Client Rampart CoONfigUration.......ccccuiiiecieiciie et e s ae e e 27
21. Sample Client Code to Encrypt a Custom SOAP HEAUETccecciiieeeeeiieeee ettt eeeree e erae e e e 29
22. Sample Client Code (Deprecated) for Setting the Client Security Configuration.......ccccceeeeeeeeiieeeccieeennns 30
23. Sample Client Axis2 Descriptor for Setting the Client Security Configuration for UserNameToken,
wsse-Timestamp, Signing, Encryption for a Outbound WebServiCe......ccovuiirvieiecieeccee e, 31
24. Example of Dynamically Changing the Web Service ENd POINt......ccccvieciiiiiiiiesieieieceieeceveeeeeeesevee s 32
25. Sample Generated ws_inbound.Xml Properties File.......uuiiiie it cvee e e evee e 33
26. Sample Custom ws_inbound.Xml Properties File......c.ciiiiiiiciieccieeccteecte et 34
27.Sample Generated services.Xml DeSCIPLOr File.......uuiiiiiiiiicciiee et e e e rre e e e 35

List of Tables

1. Summary of Web Service Style and USE SUPPOIt.......ccuiiieiieieiie ettt et eetee e tee e e te e e teeeeteeeenseeeans 4
2. Summary of Web Service Style and Use Strengths and Weaknesses.........cccveeeceeiccieeeceeecceee e 5
3. CUram to WSDL data tyPeS fOr AXIS2...ccuuieecieieeeiieecieeeecireeeite e e ettt e e ereeeereeesabeeeeaseeeesseeesaseeessseesesseesnseesnnes 12

vi

Chapter 1. Integrating with External Applications
through Web Services

Use this information to develop Ciram web services. You can make business logic available as web
services. Details are provided on how to secure web services.

Introduction

Purpose

The purpose of this guide is to provide instructions on how to connect IBM Curam Social Program
Management to external applications that have a web service interface, how to make business logic
available as web services and how to secure those web services.

Audience

This guide is intended for developers that are responsible for the interoperability between enterprise
applications using web services. It covers all aspects of IBM Clram Social Program Management web
service development including modeling, building, securing, deploying, and troubleshooting.

Prerequisites

The reader should be familiar with web service concepts and their underlying technologies, including
modeling and developing in an IBM Curam Social Program Management environment.

IBM Curam Social Program Management web services are based on Apache Axis2.

Related concepts

Curam Server Developer
Related information
Curam Modeling Reference

Using Web Services

Overview of Web Services

The term web services describes a standardized way of integrating web-based applications. They allow
different applications from different sources to communicate with each other and because all
communication is in XML, web services are not tied to any one operating system or programming
language. This application-to-application communication is performed using XML to tag the data, using:

« SOAP (Simple Object Access Protocol: A lightweight XML-based messaging protocol) to transfer the
data;

« WSDL (Web Services Description Language) to describe the services available;
- UDDI (Universal Description, Discovery and Integration) to list what services are available.

Web services can be considered in terms of the direction of flow, outbound/accessing and inbound/
implementing, which are supported by the IBM Clram Social Program Management infrastructure for
development and deployment as described below:

© Copyright IBM Corp. 2012, 2018

http://axis.apache.org/axis2/java/core/index.html

Outbound Web Service Connector
An outbound web service connector allows the IBM Curam Social Program Management application to
access external applications that have exposed a web service interface. The WSDL file used to
describe this interface is used by the web service connector functionality in IBM Curam Social
Program Management to generate the appropriate client code (stubs) to connect to the web service.
This means developers can focus on the business logic to handle the data for the web service. See
“Outbound Web Service Connectors” on page 5 for details on developing outbound web service
connectors.

Inbound Web Service
Some functionality within the IBM Curam Social Program Management application can be exposed to
other internal or external applications within the network. This can be achieved using an inbound web
service. The IBM Curam Social Program Management infrastructure will generate the necessary
deployment artifacts and package them for deployment. Once the application EAR file is deployed any
application that wishes to communicate with the IBM Curam Social Program Management application
will have to implement the appropriate functionality based on the WSDL for the web service. The
infrastructure relies on the web service class to be modeled and it utilizes Axis2 tooling in the
generation step for inbound web services. See “Inbound Web Services” on page 9 for details on
developing IBM Cdram Social Program Management inbound web services.

Web Service Platforms
The platform (also called stack) supported for web services is Apache Axis2.

There are other web service platforms available besides Axis2 that you might adapt for use with IBM
Curam Social Program Management. However, some of the benefits of Axis2 web services include:

 Axis2 provides significant improvements in flexibility due to the new architecture and improved
performance. Performance improvements come from a change in XML parser changes by using the StAX
API, which gives greater speed than SAX event-based parsing that is used in the previous web services
implementation.

« New message types available - This third generation of web service support makes new message
exchange patterns (MEPs) available. Rather than just in-out processing, in-only (also known as "fire-
and-forget") and other MEPs are now available.

« Support for new and updated standards such as SOAP (1.2 and 1.1) and WSDL (2.0 and 1.1).

Types of web services

Web services are categorized in a number of ways, one of the main groupings is the web service style and
use, which determines the way web service operation parameters are handled. The following table
summarizes the Axis2 offerings in this area.

The style option (define by the WSDL specification) determines the structure of the SOAP message
payload, which is the contents of the <soap:body> element.

« Document (also referred to as document-oriented web services, or DOWS). The contents of the web
service payload are defined by the schema in the <wsdl:type> and is sent as a self-contained document.
This style is flexible and can process parameters and return data, or by using IBM Rational® Software
Architect modeling, can be a W3C Document that is passed as an argument and return value. Document
is assumed to be the default style if not specified.

« RPC: The contents of the payload must conform to the rules specified in the SOAP specification, that is,
<soap:body> and can contain one element only. The element is named after the operation. Also, all
parameters must be represented as subelements of this wrapper element. Typically, subelements
would be parameters and return values.

Regardless of the choice of style the contents of the SOAP message payload could look the same for a
SOAP message regardless of whether document or RPC style is specified in the WSDL. This is because of
the freedom available in the case of the document style.

The use option determines the serialization rules that are used by the web service client and server to
interpret the payload of the SOAP message.

2 IBM Curam Social Program Management: Ciram Web Services Guide

- Literal. The type definitions are self-defining, following an XML schema definition in <wsdl:types> by
using either the element or type attribute.

« Encoded: The rules to encode and interpret the payload application data are in a list of URIs specified
by the encodingStyle attribute, from the most to least restrictive. The most common encoding is SOAP
encoding, which specifies how objects, arrays, and so on, must be serialized into XML.

The style and use options for a web service are specified in the WSDL <wsdl:binding> section (see http://
www.w3.org/TR/wsdl and http://www.w3.org/TR/wsdl20) as attributes and control the content and
function of the resulting SOAP (see http://www.w3.0org/TR/soapll and http://www.w3.org/TR/soapl2)
message.

The following WSDL fragment illustrates the context for these settings, where the different values for the
options are separated by the pipe (|) character:
<wsdl:binding name="myService" ... >
<soap:binding transport="..." style="document|zrpc"/>
<wsdl:operation name="myOperation">
<soap:operation soapAction="urn:op2" style="document"/>
<wsdl:input>
<soap:body use="literal|encoded"
encodingStyle="uri-list" ... />
</wsdl:input>
<wsdl:output>
<soap:body use="literal|encoded"
encodingStyle="uri-list" ... />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
The encoded use option is discouraged by the Web Services Interoperability Organization (WS-I) and the
Document/Literal is the preferred choice for web service style and use.

Within the context of the Document/Literal style, use pairing is the concept of "wrapped" and
"unwrapped". This paring is not a specific style or use, but a pattern that is characterized by a single part
definition, each part definition in the WSDL references an element, not a type as in RPC (it's these
referenced elements that serve as the "wrappers"), the input wrapper element must be defined as a
complex type that is a sequence of elements, the input wrapper name must have the same name as the
operation, the output wrapper name must have the same name as the operation with "Response”
appended to it, and, the style must be "document" in the WSDL binding section. Based on the capabilities
of Apache Axis2 only the "wrapped" pattern is supportedl. However, it is not supported by WSDL 2.0. The
following WSDL fragment illustrates this pattern by using a simple web service that multiplies two
numbers and returns the results.

1 Because only the Document/Literal-wrapped pattern for Axis2 is supported, turning this off via
doclitBare setto trueinthe services.xml descriptor file is not supported.

Integrating with External Applications through Web Services 3

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12

..%wsdlztypes>

<xs:element name="simpleMultiply">
<xs:complexType>
<Xs:sequence>
<xs:element
minOccurs="0"
name="args0"
type="xs:float"/>
<xs:element
minOccurs="0"
name="argsl"
type="xs:float"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="simpleMultiplyResponse">
<xs:complexType>
<Xs:sequence>
<xs:element
minOccurs="0"
name="return" type="xs:float"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

</Wé&1:types>

<wsdl:message name="simpleMultiplyRequest">
<wsdl:part name="parameters"
element="ns:simpleMultiply"/>
</wsdl:message>
<wsdl:message name="simpleMultiplyResponse">
<wsdl:part name="parameters"
element="ns:simpleMultiplyResponse" />
</wsdl:message>

<wsdl:operation name="simpleMultiply">
<wsdl:input message="ns:simpleMultiplyRequest"
wsaw:Action="urn:simpleMultiply"/>
<wsdl:output message="ns:simpleMultiplyResponse"
wsaw:Action="urn:simpleMultiplyResponse" />
</wsdl:operation>

<wsdl:operation name="simpleMultiply">
<soap:operation soapAction="urn:simpleMultiply"
style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:operation>

The following table shows the various style and use combinations that are supported in IBM Clram Social
Program Management.

Table 1: Summary of Web Service Style and Use Support

Style/Use Curam with Axis2
RPC/Literal -
Document/Encoded Not supported (not WS-I compliant)
Document/Literal (wrapped) Supported

Of the supported style and use combinations, there are a number of relative strengths and weaknesses to
be considered when defining your web services:

4 IBM Curam Social Program Management: Ciram Web Services Guide

Table 2: Summary of Web Service Style and Use Strengths and Weaknesses

Style/Use Strengths Weaknesses

Document/Literal (wrapped) « WS-I compliant « Very complex WSDL
« No type encoding information
- Can validate in a standard way

« Operation name in SOAP
message

RPC/Literal (Axis2 only) « WS-I compliant « Hard to validate the message
- WSDL is straightforward

» Operation name is included in
the WSDL

« No type encoding information

RPC/Encoded (legacy only) - WSDL is straightforward « Not WS-I compliant

« Operation name is included in
the WSDL

Web Services Security

Web service security is an important consideration in your planning, implementation, and runtime support
of web services to ensure your valuable and sensitive enterprise data remains safe. This security is
implemented entirely by the facilities that are integrated with Axis2, which includes WS-Security, wss4j,
and so on. However, with the support of web services with Axis2 there is the option (recommended and
on by default) of requiring that clients of inbound web services provide credentials using IBM Clram
Social Program Management custom SOAP headers.

Summary

The basics of Apache Axis2 web services have been introduced and how IBM Curam Social Program
Management web services correspond to this web service functionality. As the basis for the latest
generation of web service standards, Axis2 brings improved architecture, performance, and standards
support to your web services.

The following chapters provide the details necessary to enable access to web services externally
deployed (outbound) and model, build, customize, secure, and deploy business logic as a web service
(inbound).

Outbound Web Service Connectors

Overview

A IBM Curam Social Program Management outbound web service connector allows the application to
access external applications that have exposed a web service interface. The WSDL file used to describe
this interface is used by the web service connector functionality in IBM Ctram Social Program
Management to generate the appropriate client code (stubs) to connect to the web service.

This topic shows how to create new IBM Curam Social Program Management outbound web services:

« Include the WSDL file in your components file system;
« Add the WSDL file location to the outbound web services file;
« Generate the web service stubs;

Integrating with External Applications through Web Services 5

« Create a client and invoke the web service.

Getting Started

The process for building outbound connectors is briefly:

Include the WSDL file(s) in your components file system
You must have a WSDL file in order to generate client stubs. Once you have the necessary WSDL file(s)
you need to store it within the file system of your EJBServer/components/custom directory as
shown in “Getting Started” on page 6. These WSDL files will be referenced in the following step.

Add the WSDL file location(s) to the component ws_outbound. xml file
For each component you wish to have outbound web service connectors built you must place a
ws_outbound.xml file in the EJBServer/components/custom/axis directory. The format of this
file is described in “Adding the WSDL File Location to the Outbound Web Services File” on page 7.

Generate stubs
You are now ready to generate the web service stubs by invoking the following build script: build
wsconnector2

Create a client and invoke the web service
To invoke the web service you must create and build a client (e.g. a Java main program) that utilizes
the generated stubs to prepare arguments, call the web service, and process the return results.

Each of the above steps is explained in more detail in the sections that follow. To better understand the
process just outlined the following illustrates the structure of directories and files used.

+ EJBServer
+ build
+ svr
+ wsc2
+ <service_name>
- <service_name>.wsdl - where modeled service
WSDL files are built to
+ jav
+ src
+ wsconnector - default location for
generated stub source;
override with property
axis2.java.outdir
+ wsconnector - default location for
compiled stub code;
override, with axis2.
extra.wsdl2java.args

property
+ components
+ custom
+ axis
- ws_outbound.xml - where you identify
your WSDL files as
below

+ <service_name>
+ <service_name>.wsdl - where you might copy a
WSDL file as pointed to
by ws_outbound.xml

Figure 1: File System Usage For Outbound Web Services

Building an Outbound Web Service Connector

Including the WSDL File in Your Components File System

Once you have the WSDL file(s) representing the service you wish to access place them in the file system
(usually under source control). You should place the WSDL file(s) in the custom folder under the location
represented by your SERVER_DIR environment variable (and that location is specified in
ws_outbound.xml, below). Placing your WSDL within this structure will ensure your web services are
isolated from IBM Curam Social Program Management -shipped web services. This is shown in “Getting
Started” on page 6. The base name of the (root) WSDL file must use the service name.

6 IBM Curam Social Program Management: Ciram Web Services Guide

Adding the WSDL File Location to the Outbound Web Services File

Once your WSDL file(s) is in your file system you need to create (if not already in existence) a
ws_outbound.xml file in your component axis directory and update it. The recommended location for
this file is: components/custom/axis/ws_outbound.xml.

In that file you identify the location of the WSDL file(s); for example:

<?xml version="1.0" encoding="UTF-8"?>
<services>
<service name="SomeService"
location=
"components/custom/axis/SomeService/SomeService.wsdl"/>
</services>

Figure 2: Sample ws_outbound.xml File

Inthe ws_outbound. xml file there is one service entity for each web service, specifying the service
name (matching the WSDL file base name) and location (relative to the SERVER_DIR environment
variable).

Generating the Web Service Stubs

The generation of the web service stubs is based on the contents of the ws_outbound. xml files as
specified by your component structure - the setting of the COMPONENT_ORDER environment variable and
any files in your components/custom/axis directories. See the example file system structure in
“Getting Started” on page 6.

When you invoke the IBM Curam Social Program Management build script:
build wsconnector2

each WSDL file identified by the ws_outbound. xml files is used to generate the stub source code, which
is compiled to produce executable code. The generated source is located in the EJBServer/
build/svr/wsc2/jav/src/wsconnectoxr directory and any compiled Java code is located in the
EJBServer/build/svr/wsc2/jav/wsconnector directory.

By default the client stubs are generated with Axis2 data bindings(ADB); however, you can generate some
or all of your stubs using XMLBeans bindings. To generate all stubs using XMLBeans bindings run the
wsconnector2 Ant target with the argument: -Daxis2.extra.wsdl2java.args="-d xmlbeans".

Sometimes not all clients are suitable for the same binding; so, you can override the ADB default
selectively by adding the extraWsdl2javaArgs="-d xmlbeans" attribute to the service definition(s)
in the ws_outbound. xml file; for example:
<service name="SomeService"

location="components/custom/axis/SomeService/SomeService.wsdl"

extraWsdl2javaArgs="-d xmlbeans"

/>
Figure 3: Sample ws_outbound.xml service with XMLBeans override

Creating a Client and Invoking the Web Service

Invoking the web service and utilizing the generated code depends on your development environment;
but, for example, it might include the following steps, assuming the web service has already been
deployed and tested:

1. Copy or reference the generated source and class files; e.g. reference in Eclipse;
2. Code your client; e.g. Java main program. Typically your steps here will include:

- Instantiate the generated stub class;

« Optionally, increase the client timeout threshold (especially for a client that might run first after the
application server starts);

« Setup the credentials in the custom SOAP header (see “Custom SOAP Headers” on page 20 for
more details);

« Call the stub methods to instantiate objects and set their values for passing to the service;

Integrating with External Applications through Web Services 7

« Invoke the service operation;
« Check the response;
3. Build and test.

Typically the generated stub code provides a number of options to invoke the web service. Following are
some sample code fragments to help illustrate that.

The following fragment calls a service named simpleAdd in class WebServiceTest for which the
external tooling generates WebServiceTestStub and related classes:

final WebServiceTestStub stub =
new WebServiceTestStub();

// Set client timeout for slow machines.

ServiceClient client = stub._getServiceClient();

client.getOptions().setProperty(
HTTPConstants.SO_TIMEOUT, new Integer(180000));

client.getOptions().setProperty(
HTTPConstants.CONNECTION_TIMEOUT, new Integer(180000));

// test string and primitive data types

final WebServiceTestStub.SimpleAdd service =
new WebhServiceTestStub.SimpleAdd();

final int i = 20;

final int j = 30;

service.setArgs0(i);

service.setArgsl(j);

final WebServiceTestStub.SimpleAddResponse
simpleAddResponse = stub.simpleAdd(service);
final long sum = simpleAddResponse.get_return();

client.cleanupTransport(); // Call when done with the service
// to avoid exhausting connection pool.
client.cleanup(); // Call when done with the client.

Figure 4: Sample Web Service Client

Sometimes, while the generated code is convenient, you need a little more control over your client
environment. The following example illustrates how you might call an in-only service using a "hand-built"
SOAP message, which in this case takes a simple String argument as input:

final TestWSStub stub =
new TestWSStub();

// Get client from stub
ServiceClient client;
client = stub._getServiceClient();

/*

* Define SOAP using string

*/

final String xml = " <rem:testString "
+ "xmlns:rem=\"http://remote.testmodel.util.curam\">
! <rem:testString>"

My test string!

"</rem:testString>"

" </rem:testString>";

u
+
+
+
+

final ByteArrayInputStream xmlStream =

new ByteArrayInputStream(xml.getBytes());
final StAXBuilder builder = new StAXOMBuilder(xmlStream);
final OMElement oe = builder.getDocumentElement();

// Send the message
client.fireAndForget(oe); // API for In-Only processing
Thread.sleep(10000); // Required for fireAndForget()
client.cleanupTransport(); // Call when done with the service

// to avoid exhausting connection pool.
client.cleanup(); // Call when done with the client.

Figure 5: Sample Web Service Client Using Generated Stub and Custom Code

Note: Later versions of Axis2 JavaDoc indicate that unless your client sets the callTransportCleanup
property to true (not recommended for performance reasons) on the
org.apache.axis2.client.Options object that you must call the

8 IBM Curam Social Program Management: Ciram Web Services Guide

org.apache.axis2.client.ServiceClient.cleanupTransport () API after processing the
response.

Inbound Web Services

Overview

An inbound web service is IBM Curam Social Program Management application functionality that is
exposed to other internal or external applications within the network. This topic describes the
infrastructure for supporting these services and the steps necessary to exploit it.

This topic shows you how to create new IBM Curam Social Program Management inbound web services:

» Model and implement an inbound web service;

Build and package web services;
« Provide security data for web services;

Provide web service customizations.

Getting Started
The process for developing inbound web services is briefly:

Model your web service and provide implementation code
You need to define the classes (WS Inbound) and operations in Rational Software Architect that you
will be implementing to provide the functionality you wish to expose as web services.

As with any IBM Cdram Social Program Management process class you need to provide the
implementation for the classes and operations you model as per the Cliram Modeling Reference Guide.

Build your web services and the web services EAR file
The IBM Cdram Social Program Management build system will build and package your web services.
Use the server and EAR file build targets as described in the Cliram Server Developer's Guide and the
deployment guide appropriate to your platform.

Provide security data for your web services
By default your web services are not accessible until you: a) Provide security data (see “Providing
Security Data for Web Services” on page 14) that defines the service class and operation and which
security group(s) can access them; and b) Your clients must then provide credentials appropriate to
those security definitions (see “Custom SOAP Headers” on page 20 (unless you choose to disable
this security functionality; see “Custom Credential Processing” on page 15).

Each of the above steps is explained in more detail in the sections that follow. To better understand the
process just outlined the following illustrates the structure of directories and files used.

Integrating with External Applications through Web Services 9

+ EJBServer
+ build
+ SvVI
+ gen
+ wsc2 - where the generator
places ws_inbound.xml
property files
- <service_name>.wsdl - where modeled service
WSDL files are generated
+ components
+ custom
+ axis
+ <service_name>
- ws_inbound.xml - where you might place a
custom ws_inbound.xml
property file
- services.xml - where you might place a
custom services.xml
descriptor file

+ source - where optional schema
validation code would go
+ schemas - where you might place
optional schema
+ webservice - where you must place

custom receiver code

Figure 6: File System Usage For Inbound Web Services

Modeling and Implementing an Inbound Web Service

See Working with the IBM Curam Social Program Management Model in Rational Software Architect for
more information on using the Rational Software Architect tool with the Cliram model. Based on your
design decisions you will need to model the necessary classes and operations and set the appropriate
properties in the Cliram model. As per the normal IBM Clram Social Program Management development
process documented in the Curam Server Developers Guide you must also code your web service
implementation classes.

When you model your web services consider:

« The web service binding style - Document (recommended, default) or RPC;
« The web service binding use - Literal or Encoded;

Note: Not all combinations of binding style and use are supported; see “Types of web services” on page
2 for more information.

« Whether the service is processing struct and domain types or a W3C Document.

Creating Inbound Web Service Classes

In Rational Software Architect to add an Axis2 inbound web service class to a package, select Add Class,
WS Inbound from the right-click context menu and name the class.

Note: In IBM Curam Social Program Management web service names are based on the class name
specified in the Rational Software Architect model and must be unique within the environment.

If you require passing and returning a W3C Document instead of IBM Curam Social Program Management
domain types or structs you must:

1. In the Curam properties tab for the WS Inbound class, select the WS_Is_XML_Document property (if
passing W3C Documents providing schema validation is an optional activity and is detailed in
“Providing schema validation” on page 18);

2. Select True as the value from the drop down.

By default the web service style for the class is document, which is defined in the WS_Binding_Style
propertyas" @ - Unspecified " If you require the RPC binding style:

1. In the Curam properties tab, select the WS_Binding_Style property;
2. Select" 2 - RPC " as the value from the drop down.

You can also set the value explicitlyto"1 - Document ", but the generator defaults the " 0 -
Unspecified " value to be document.

10 IBM Curam Social Program Management: Ciram Web Services Guide

The class properties above will apply uniformly to all operations of the web service class; so, you need to
plan your design to account for this. That is, a class can contain W3C Document operations or operations
that use native data types or IBM Curam Social Program Management structs, but not both. Similarly the
binding style (WS_Binding_Style) will be applied to all operations of a class when passed as an argument
to the Java2WSDL tool; so, any requirement for operations with a different binding style in generated
WSDL would need to be handled in a separate modeled class.

Adding Operations to Inbound Web Service Classes

In Rational Software Architect, operations are added to Axis2 inbound web service classes using the
right-click context menu. To add an operation to an inbound web service class:

1. Select Operation from the right-click context menu and choose Default.
2. In the Create 'default' Operation Wizard, name the operation, and select its return type.

The following are issues with Axis2 that are relevant to you when modeling inbound web services:

« Certain method names on inbound web services do not operate as expected because, when handling an
inbound web service call, Java reflection is used to find and start methods in your application. The Axis2
reflection code identifies methods by name only (that is, not by signature). This identification means
that unexpected behavior can occur if your web service interface contains a method with the same
name as an inherited method. Each inbound web service in your application causes a facade bean, that
is, a stateless session bean to be generated.

So, in addition to your application methods, this class also contains methods that are inherited from
javax.ejb.EjbObject, and possibly others generated by your application server tooling. For
example: remove, getEJBHome, getHandle.

This limitation is logged with Apache in JIRA AXIS2-4802. Currently, the only workaround is to ensure
that your inbound web service does not contain any methods whose names conflict with those that are
in javax.ejb.EjbObject.

Adding Arguments and Return Types to Inbound Web Service Operations

Arguments and return types are added to inbound web service operations in the same manner as they are
added to process and facade classes. However, they are only relevant for classes that don't specify
support for W3C Documents (WS_Is_XML_Document property). For more information on how to add
arguments and return types to process classes refer to the relevant sections of: Working with the Ciram
Model in Rational Software Architect.

Note: When modeling a web service struct aggregation within Rational Software Architect graphical
mode, Rational Software Architect automatically adds an aggregation label. This causes the WSDL to be
generated incorrectly. Remove this label in the model before building and the WSDL will generate
correctly.

Processing of Lists

An operation is said to use IBM Curam Social Program Management lists if its return value or any of its
parameters utilize a struct which aggregates another struct using 'multiple’ cardinality.

In the UML metamodel, it is possible to model a <<WS_Inbound>> operation that uses parameters
containing lists (i.e., a struct that aggregates another struct(s) as a list). All operations that are visible as a
web service are normally also visible to the web client.

However the web client does not support the following:

- List parameters.

« Non-struct parameters (i.e. parameters which are domain definitions).
« Non-struct operation return types.

In these cases the web client ignores the operations that it does not support, but these operations can be
used for Axis2 inbound web services.

Integrating with External Applications through Web Services 11

Data Types

The IBM Cdram Social Program Management data types except Blob (SVR_BLOB) can be used in Axis2
inbound web service operations. The mappings between IBM Cldram Social Program Management and
WSDL data types are shown in the following table:

Table 3: Curam to WSDL data types for Axis2

Clram data type WSDL data type
SVR_BOOLEAN xsd:boolean
SVR_CHAR xsd:string
SVR_INTS8 xsd:byte
SVR_INT16 xsd:short
SVR_INT32 xsd:int
SVR_INT64 xsd:long
SVR_STRING xsd:string
SVR_DATE xsd:string

(Format: yyyymmdd)

SVR_DATETIME

xsd:string

(Format: yyyymmddThhmmss)

SVR_FLOAT xsd:float
SVR_DOUBLE xsd:double
SVR_MONEY xsd:float

In conjunction with the supported data types shown in “Data Types” on page 12, only the related XML
schema types that map to primitive Java types and java.lang.String are supported for inbound web
services. For example, "xsd:boolean" and "xsd:long" that map to the boolean and long Java types,

respectively, and "xsd:string" that maps to java.lang.String are supported. All other XML schema
types that do not map to a Java primitive type or to java.lang.String are not supported. An example

of such an unsupported XML schema type is "xsd:anyURI", which maps to java.net.URI. This limitation

applies to inbound web services only and is due to the fact that inbound web services are generated
based on what can be represented in a Ciram model. Outbound web services are not affected by this

issue. For more details on related modeling topics consult the documents: Working with the Curam Model

in Rational Software Architect and Ctram Server Modeling Guide.

Note: Passing or returning the "raw" IBM Curam Social Program Management data types (i.e., "Date",
"DateTime", "Money") as an attribute to an Axis2 web service is restricted. IBM Cldram Social Program
Management data types must be wrapped inside a struct before passing them as attributes to a web

service.

Building and Packaging Web Services

This section discusses the targets (webspherelWebServices and weblogicWebServices) for building

the web services EAR file.

The steps in this build process are:

1. Package global WAR file directories: lib, conf, modules;
2. Iterate over the web service directories in build/svr/gen/wsc2 (one directory per web service

class) created by the generator:

12 IBM Curam Social Program Management: Ciram Web Services Guide

« Process the properties in the following order: custom, generator, defaults (see “Inbound Web Service
Properties File” on page 14 for more information);

« Generate the services. xml descriptor file, unless a custom services.xml has been provided
(see “Deployment Descriptor File” on page 14 for more information);

- Package the web service directory.
The following properties and customizations are available:

- Generation of the webservices2.war can be turned off by setting property: disable.axis2.build;

« You can specify an alternate location for the build to read in additional or custom Axis2 module files by
setting the axis2.modules.dir property that will contain all the .max files and the modules.list file to
be copied into the WEB-INF\modules directory;

« You can include additional, external content into the webservices.war by either of the following
properties:

— axis2.include.location - that points to a directory containing a structure mapping to the the Axis2
WAR file directory structure;

— axis2.include.zip - that points to a zip file containing a structure mapping to the Axis2 WAR file
directory structure.

In conjunction with either of the two properties above, setting the axis2.include.overwrite property will
cause these contents to override the IBM Curam Social Program Management -packaged content in the
WAR file. This capability is for including additional content into your WAR file. An example of how you
might use this would be to include the sample Version service to enable Axis2 to successfully validate
the environment (see “Axis2 Environment Validation” on page 37).

For example, to include the sample Version web service for IBM WebSphere® Application Server you
need to create a directory structure that maps to the webservices2.war file and includes the
structure of Version.aar file as is shipped in the Axis2 binary distribution: axis2-1.5.1-bin/
repository/services/version.aar. That structure would look like this:
+ WEB-INF
+ services
+ Version
+ META-INF
- ./services.xml
+ sample)
+ axlsversion
- ./Version.class
Then, if the location of the Version directory were in C:\Axis2-includes, you would specify the
following property value at build time: -Daxis2.include.location=C:\Axis2-includes. Alternatively, you
could package the above file structure into a zip file and specify the -Daxis2.include.zip property
instead. In both cases the file structure specified would be overlaid onto the file structure (depending
on the value of axis2.include.overwrite) and packaged into the webservice2.war WAR file. (For Oracle
WebLogic Server the above would be changed to replace the contents of the Version directory with a
Version.aar file, which is a compressed file.)

 You can set global, default web services credentials at build time via the following properties set in your
Bootstrap.properties file:

— curam.security.credentials.ws.username - the username used when executing inbound web service
calls;

— curam.security.credentials.ws.password - the password used when executing inbound web service
calls. This password must be encrypted.

The above credentials must exist on the 'Users' table, must be enabled, and should be assigned the
appropriate security role.

Default credentials can streamline your development and testing processes, but should not be used
in a production environment when working with sensitive data and/or processes.

Integrating with External Applications through Web Services 13

Providing Security Data for Web Services

In IBM Curam Social Program Management web services are not automatically associated with a security
group. This is to ensure that web services are not vulnerable to a security breach. You have to provide
security data in order to make your web service usable. As part of your development process you need to
ensure that the appropriate security database entries are created. For instance:

INSERT INTO SecurityGroupSid (groupname, sidname)
values ('WEBSERVICESGROUP', 'ServiceName.anOperation');

The contents of the IBM Clram Social Program Management security tables are explained further in the
Curam Security Guide.

Providing web service customizations

Providing customizations at build-time impacts the security and behavior of your web service at run time.
With the default configuration the web services EAR file build performs the following tasks:

« Assign the appropriate IBM Curam Social Program Management message receiver for struct and domain
types, for argument and operation return values, or for W3C Documents. This assignment is based on
how you set the WS_Is_XML_Document property in Rational Software Architect for the "WS Inbound"
(stereotype: <<wsinbound>>) class.

« Expect the web service client to pass a custom SOAP header with authentication credentials to start the
web service.

To change the default behaviors, you require a custom receiver. For more information, see “Customizing
Receiver Runtime Functionality” on page 15. You might also need to customize the following

« Implementing web services security (Apache Rampart). For more information, see “Secure Web
Services” on page 19.

« Providing external, non- IBM Curam Social Program Management functionality such as the Apache
Axis2 Monitor. For more information, see “Including the Axis2 SOAP Monitor in Your Web Services WAR
File” on page 41.

« Providing other custom parameters for the deployment descriptor (sexvices.xml), for example:
doclitBare, mustUnderstand. For more information, see the Apache Axis2 documentation for more
information (Apache Axis2 Configuration Guide).

To effectively customize your web services you need to know how IBM Ctram Social Program
Management processes web services at build time, which is explained in the following sections.

Inbound Web Service Properties File

Based on the web service classes modeled with Rational Software Architect the generator creates a folder
inthe build/svr/gen/wsc?2 directory for each web service class modeled. This is shown in “Getting
Started” on page 9. (This maps closely to how Axis2 expects services to be packaged for deployment.) In
that folder a properties file, ws_inbound. xml, is generated.

To provide a custom ws_inbound. xml file we suggest you start with the generated copy that you will find
inthe build/svr/gen/wsc2/<sexrvice_name> directory after an initial build. Place your custom
ws_inbound. xml file in your components/custom/axis/<service_name> directory (usually under
source control). During the build the ws_inbound. xm1l files are processed to allow for a custom file first,
overriding generated and default values. See “Inbound Web Service Properties - ws_inbound.xml” on
page 33 for details of the property settings in this file.

Deployment Descriptor File

Each web service class requires its own deployment descriptor file (services.xml). The build
automatically generates a suitable deployment descriptor for the defaults as per “Inbound Web Service
Properties - ws_inbound.xml” on page 33. The format and contents of the services.xml are defined
by Axis2; see the Apache Axis2 Configuration Guide (http://axis.apache.org/axis2/java/core/docs/
axis2config.html) for more information.

14 IBM Curam Social Program Management: Ciram Web Services Guide

http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html

To provide a custom services. xml file we suggest you start with the generated copy that you will find in
the build/svr/wsc2/<service_name> directory after an initial build of the web services WAR/EAR
file. This is illustrated in “Getting Started” on page 9. Place your custom services.xml file in your
components/custom/axis/<service_name> directory (usually under source control). (See
“Deployment Descriptor File - services.xml” on page 34 for details of the contents of this file.) During the
build the services.xml files are packaged into the web services WAR file (vebservices2.war) as per
Axis2 requirements; that is, using this file system structure: WEB-INF/services/<service_name>/
META-INF/services.xml (see the Apache Axis2 User's Guide - Building Services http://axis.apache.org/
axis2/java/core/docs/userguide-buildingservices.html).

Customizing Receiver Runtime Functionality

The default receivers provided with IBM Clram Social Program Management should be sufficient for most
cases; but, you can provide overrides for the following functionality:

« Credentials processing;

- Accessing the SOAP Message;

« Application server-specific provider URL and context factory parameters;
« SOAP factory provider for W3C Document processing.

These are explained in more detail in the following sections.

Custom Credential Processing

You might need to customize credentials processing, for example, if you want to obtain or validate
credentials externally before passing them to the receiver for authentication.

By default, IBM Curam Social Program Management web services are built to expect the client to provide
credentials using a custom SOAP header. These credentials are then used in starting the service class
operation. The default processing flow is as follows:

« Unless curamWSClientMustAuthenticate is set to false in the services.xml descriptor for the service,
the SOAP message is checked for a header and if present these credentials are used. If the SOAP
header is not present, then the invocation of the service fails.

« If curamWSClientMustAuthenticate is set to false the services. xml jndiUser and jndiPassword
parameters are used.

« If there are no jndiUser and jndiPassword parameters in the services.xml descriptor file, default
credentials are used.

However, there is no security data generated for web services. In this case, the defaults credentials on
their own are not adequate to enable access to the service. For more information on providing this data,
see “Providing Security Data for Web Services” on page 14.

If you require your own credential processing you must code your own
getAxis2Credentials(MessageContext) method, extending
curam.util.connectors.axis2.CuramMessageReceiver, to provide these parameters. This
method takes a MessageContext object as an input parameter and returns a java.util.Properties
object that contains the Axis2 parameter name and value. For example:

Integrating with External Applications through Web Services 15

http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html
http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html

public Properties getAxis2Credentials(
final MessageContext messageContextIn) %

final Properties loginCredentials = new Properties();

String sUser = null;
String sPassword = null;

<Your processing here...>

if (sUser != null) {
loginCredentials.put(
org.apache.axis2.rpc.receivers.ejb.EJBUtil.EJB_JNDI_USERNAME,
sUser) ;

if (sPassword != null) {
loginCredentials.put(
org.apache.axis2.rpc.receivers.ejb.EJBUtil.EJB_JNDI_PASSWORD,
sPassword) ;

return loginCredentials;

i
Figure 7: Sample getAxis2Credentials Method

See “Building Custom Receiver Code” on page 17 on how to specify and build this custom class for this
method.

You can use the runtime properties curam.security.credentials.ws.usexrname and
curam.security.credentials.ws.password (encrypted) to specify default web services
credentials. Using runtime properties might not be appropriate in a secure production environment; but,
could be a useful, for instance, in development for simulating functions that would ultimately be provided
by an external security system. For more information on encrypted passwords, see the Clram Security
Guide.

Accessing the SOAP Message

If you require access to the SOAP message extending the Curam receiver class can allow you to do this as
shown in the following example:

16 IBM Curam Social Program Management: Cram Web Services Guide

package webservice;

import org.apache.axis2.AxisFault;
import org.apache.axis2.context.MessageContext;
import org.apache.log4j.Logger;

[/ **
* Sample SOAP message access.
*/
public class CustomReceiverInOutAccessSOAPMsg
extends curam.util.connectors.axis2.CuramMessageReceiver $

/** Class logger. x/
private final Logger log =
Logger.getlLogger(CustomReceiverInOutAccessSOAPMsg.class);

/**
Access the SOAP message and invoke
Curam receiver invokeBusinesslLogic.

@param messageContextIn Input MessageContext.

*
*
*
*
* @param messageContextOut Output MessageContext.
*

*

@throws AxisFault based on called method.
*/
@Override
public void invokeBusinesslLogic(final MessageContext messageContextIn,
final MessageContext messageContextOut) throws AxisFault §
if (messageContextIn != null) {
final org.apache.axiom.soap.SOAPEnvelope inEnv =
messageContextIn.getEnvelope();
if (inEnv != null) {
// Insert custom SOAP processing here.
log.debug("Sample access of SOAP message: " + inEnv.toString());

¥

super.invokeBusinessLogic(messageContextIn, messageContextOut);

3
Figure 8: Sample Custom Receiver to Access the SOAP Message

Note, the invocation of super.invokeBusinessLogic () must be made.

See “Building Custom Receiver Code” on page 17 on how to specify and build this custom class.

Custom Application Server-Specific Parameters

The app_websexrvices?2.xml script will generate correct application server-specific provider URL and
context factory parameters; however, you may find it convenient if you are supporting multiple
environments to derive one or more of these values in your own custom code.

If so, you can provide your own getProviderURL () and/or getContextFactoryName () method(s) by
overriding class curam.util.connectors.axis2.CuramMessageReceiver. Both methods return a
string representing the provider URL and context factory name, respectively. See “Building Custom
Receiver Code” on page 17 on how to specify and build this custom class for these methods.

Custom SOAP Factory

Generally, the default SOAP factory, org.apache.axiom.soap.SOAPFactory, should be adequate for
processing your web services that process W3C Documents. But, if necessary you can override this
behavior by providing your own getSOAPFactory (MessageContext) method. This method takes a
MessageContext object as an input parameter and returns an
org.apache.axiom.soap.SOAPFactory.

Building Custom Receiver Code
For any of the above cases of providing custom receiver code you must:

« Extend the appropriate class (e.g. public class MyReceiver extends
curam.util.connectors.axis2.CuramMessageReceiver). (See “Deployment Descriptor File” on
page 14 for the list of receiver classes and their usage.)

Integrating with External Applications through Web Services 17

« Specify a package name of webservice in your custom Java program (e.g.: package webservice;).

« Place your custom source code in your components source/webservice directory (e.g.
components/mycomponents/source/webservice). The server build target will then build and
package this custom receiver code.

« Create a custom services.xml descriptor file for each service class to be overridden by your custom
behavior. See “Deployment Descriptor File” on page 14 and “Building Custom Receiver Code” on page
17 below.

<messageReceivers>
<messageReceiver
mep="http://www.w3.0rg/2004/08/wsdl/in-out"
class="webservice.MyReceiver"/>
</messageReceivers>

Figure 9: Sample services.xml Descriptor File Entry for a Custom Receiver

The webservices build (implemented in app_webservices2.xml) will package these custom artifacts
into a WAR file.

Providing schema validation

When using web services that pass and return a W3C Document object, you might want to use schema
validation to verify the integrity of the document you are processing. Whether you choose to use schema
validation might depend on factors such as:

« The CPU cost of performing such validation, which depends on the volume of transactions your system
encounters.

» The source of the Documents being passed to your web service, whether that is under your control or
public.

The steps for validating an XML Document in an inbound web service are as follows:

1. Include the schema document in the application ear by storing it somewhere within directory
SERVER_DIR/components/x*/webservices/*x/*.xsd.

2. Provide code within the implementation code of the BPO method that loads the schema file, and
passes it into the infrastructure validator class along with the org.w3c.Document class to be validated.

The code example (“Providing schema validation” on page 18) illustrates how validation can be
implemented.

18 IBM Curam Social Program Management: Ciram Web Services Guide

import curam.util.exception.AppException;

import curam.util.exception.InformationalException;
import curam.util.webservices.DOWSValidator;

import java.io.InputStream;

import org.w3c.dom.Document;

[/ **

* A sample XML document web service.
*/

public org.w3c.dom.Document

¥

myWebServiceOperation(final org.w3c.dom.Document docIn)
throws AppException, InformationalException {

// DOWSValidator is the SDEJ infrastructure class for

// validating org.w3c.Document classes in web services.

final curam.util.webservices.DOWSValidator validator =
new curam.util.webservices.DOWSValidator();

try 1

// The following is used only for error reporting

// purposes by DOWSValidator. 1In your code you can

// provide a relevant value to help identify the schema
// in the event of an error.

final String schemaURL = "n/a";

// Load the schema file from the .ear file.
// For example, the source location of

// 'testl.xsd' was

// SERVER_DIR/components/custom/webservices.

final InputStream schemaStream =
getClass().getClassLoader().
getResourceAsStream("schemas/testl.xsd");

// if schema file is in
// SERVER_DIR/components/custom/webservices/test/testl.xsd
schemaStream =
getClass() .getClassLoader().
getResourceAsStream("schemas/test/testl.xsd");

// Invoke the validator.
validator.validateDocument(docIn, schemaStream,
schemaURL) ;

%t catch (Exception e) 1§
// Schema validation failed. Throw an exception.
AppException ae = new
AppException (SOME_MESSAGES.ERR_SCHEMA_VALIDATION_ERROR,
e);

¥

// normal BPO logic goes here.

return result;

Figure 10: Sample Illustrating Schema Validation

Secure Web Services

Overview

Web service security is an important part of your web services implementation. Existing web service
security is described in this chapter. For Rampart and Axis2 web services security you will learn about:

 Using custom SOAP headers with Axis2 and encrypting them;

 Using and setting up Rampart;

« Using HTTPS/SSL to secure web service network traffic.

Integrating with External Applications through Web Services 19

The following can be used to secure your web services:

« IBM Curam Social Program Management modeling requirements for using secure web services.

« Coding password callback handlers (also applicable to Axis2 if your policy specifies a password callback
handler).

« Setting up the client environment.

« Creating keystore files (also applicable to Axis2 if your environment requires these steps for supporting
HTTPS/SSL).

Axis2 Security and Rampart

Rampart is the security module of Axis2. With the Rampart module you can secure web services for
authentication (but see below), integrity (signature), confidentiality (encryption/decryption) and non-
repudiation (timestamp). Rampart secures SOAP messages according to specifications in WS-Security,
using the WS-Security Policy language.

The only specific restriction placed on the use of web service security for IBM Curam Social Program
Management applications is that Rampart Authentication cannot be used. This is due to the requirements
of IBM Curam Social Program Management receivers (this authentication is typically coded in the service
code itself, which would be moot by that point as these receivers would have already performed
authentication). However, custom SOAP headers provide similar functionality (see “Custom SOAP
Headers” on page 20 for more details).

WS-Security can be configured using the Rampart WS-Security Policy language. The WS-Security Policy
language is built on top of the WS-Policy framework and defines a set of policy assertions that can be
used in defining individual security requirements or constraints. Those individual policy assertions can be
combined using policy operators defined in the WS-Policy framework to create security policies that can
be used to secure messages exchanged between a web service and a client.

WS-security can be configured without any IBM Cldram Social Program Management infrastructure
changes using Rampart and WS-Security Policy definitions. A WS-Security Policy document can be
embedded in a custom services.xml descriptor (see “Deployment Descriptor File” on page 14). WS-
Policy and WS-SecurityPolicy can also be directly associated with the service definition by being
embedded within a WSDL document.

Encryption generally incurs costs (e.g. CPU overhead) and this is a concern when using WS-Security.
However, there are ways to help minimize these costs and one of these is to set the WS-SecurityPolicy
appropriate for each individual operation, message, or even parts of the message for a service, rather than
applying a single WS-SecurityPolicy to the entire service (for example, see “Encrypting Custom SOAP
Headers” on page 22). To apply such a strategy you need to have a clear grasp of your requirements and
exposures. Questions you might consider as you plan your overall security strategy and implementation:
Can some services bypass encryption if they are merely providing data that is already available elsewhere
publicly? Are multiple levels of encryption necessary; for instance, do you really need both Rampart
encryption and HTTP/SSL encryption?

Custom SOAP Headers

Credential checking is enforced in IBM Clram Social Program Management for web service invocations
based on the default expectation that a client invoking a web service will provide a custom SOAP header.
This topic was introduced in “Providing web service customizations” on page 14 insofar as you need to
plan specific customizations if you choose to bypass this security checking. By default, the provided
receivers for Axis2 expect the client invocation of each web service to provide a custom SOAP header that
contains credentials for authenticating IBM Curam Social Program Management access to the web
service. This section explains how your clients can provide these SOAP headers.

The following is an example of the IBM Curam Social Program Management custom SOAP header in the
context of the SOAP message:

20 IBM Curam Social Program Management: Ciram Web Services Guide

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope
xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Header>
<curam:Credentials
xmlns:curam="http://www.curamsoftware.com">
<Username>testerID</Username>
<Password>password</Password>
</curam:Credentials>
</soapenv:Header>
<soapenv:Body>
<!-- SOAP message body data here. -->
</soapenv:Body>
</soapenv:Envelope>

Figure 11: Example Custom SOAP Header

The following is a sample client method for creating custom SOAP headers:

import org.apache.axis2.client.ServiceClient;
import javax.xml.namespace.QName;

import org.apache.axiom.om.OMAbstractFactory;
import org.apache.axiom.om.OMElement;

import org.apache.axiom.om.OMFactory;

import org.apache.axiom.om.OMNode;

import org.apache.axiom.om.OMNamespace;
import org.apache.axiom.soap.SOAPFactory;
import org.apache.axiom.soap.SOAPHeaderBlock;

[/ **

* Create custom SOAP header for web service credentials.
*

* @param serviceClient Web service client

* @param userName User name

* @param password Password

*/

void setCuramCredentials(final ServiceClient serviceClient,
final String usexrName, final String password)

// Setup and create the header

final SOAPFactory factory =
OMAbstractFactory.getSOAP12Factory();

final OMNamespace ns =
factory.createOMNamespace("http://www.curamsoftware.com",
"curam");

final SOAPHeaderBlock header =
factory.createSOAPHeaderBlock("Credentials", ns);

final OMFactory omFactory = OMAbstractFactory.getOMFactory();

// Set the username.

final OMNode userNameNode =
omFactory.createOMElement(new QName("Username"));

((OMElement) userNameNode).setText(userName);

header.addChild (userNameNode) ;

// Set the passwozxd.

final OMNode passwordNode =
omFactory.createOMElement(new QName("Password"));

((OMElement) passwordNode).setText(passwozrd);

header.addChild (passwordNode) ;

serviceClient.addHeader (header);

3
Figure 12: Sample Method to Create Custom SOAP Headers

Then a call to the above method would appear as:

// Set the credentials for the web service:
MyWebServiceStub stub =
new MyWebServiceStub();
setCuramCredentials(stub._getServiceClient(),
"system", "password");
By default, the client failing to provide this custom header will cause the service to not be invoked. And, of
course, incorrect or invalid credentials will cause an authentication error. The following is an example of
failing to provide the necessary custom SOAP header:

Integrating with External Applications through Web Services 21

<soapenv:Envelope xmlns:
soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Body>
<soapenv:Fault>
<soapenv:Code>
<soapenv:Value
>soapenv:Receiver</soapenv:Value>
</soapenv:Code>
<soapenv:Reason>
<soapenv:Text xml:lang="en-US">
No authentication data.
</soapenv:Text>
</soapenv:Reason>
<soapenv:Detail/>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

warning: Potential Security Vulnerability

Be aware that by default custom SOAP headers containing credentials for authentication pass on the wire
in plain-text! This is an unsecure situation and you must encrypt this traffic to prevent your credentials
from being vulnerable and your security from being breached. See “Encrypting Custom SOAP Headers” on
page 22 and/or “Securing web service network traffic with HTTPS/SSL” on page 32 on how you might
rectify this.

For example, this is what the custom SOAP header looks like in the SOAP message with the credentials
visible:

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope
xmlns:soapenv="http://www.w3.0rg/2003/05/soap-envelope">
<soapenv:Header>
<curam:Credentials
xmlns:curam="http://www.curamsoftware.com">
<Username>tester</Username>
<Password>password</Password>
</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

</ééépenv:Body>
</soapenv:Envelope>

Figure 13: Sample Custom SOAP Header

Encrypting Custom SOAP Headers

Since SOAP data (e.g. the headers above in “Custom SOAP Headers” on page 20) travels across the wire,
by default, as plain text, using Rampart to encrypt your IBM Cldram Social Program Management custom
SOAP headers is one way to help ensure the security of these credentials. Of course, you should plan a
security strategy and implementation for all of your web services and related data based on your overall,
enterprise-wide requirements, environment, platforms, etc. The information in this section is just one
small part of your overall security picture.

There is additional information on coding your web service clients for Rampart security in “Using Rampart
With Web Services” on page 23 that will help provide context for the following.

The steps to encrypt these headers are:

1. Add the following to your client descriptor file:

<encryptionParts>
$Elementtfhttp://www.curamsoftware.comi{Credentials
</encryptionParts>

(See “Defining the Axis2 Security Configuration” on page 24 for more information on the contents of
this file.)

Or, add the following to your Rampart policy file:

22 IBM Curam Social Program Management: Ciram Web Services Guide

<sp:EncryptedElements
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sp=
"http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:XPath xmlns:curam="http://www.curamsoftware.com" >
/soapenv:Envelope/soapenv:Header/curam:Credentials/Password
</sp:XPath>
</sp:EncryptedElements>

(See “Defining the Axis2 Security Configuration” on page 24 for more information on the contents of
this file.)

2. Engage and invoke Rampart in your client code as per “Using Rampart With Web Services” on page
23.

With WS-Security applied as per above the credentials portion of the wsse:Security header will be
encrypted in the SOAP message as shown in this example below, which you can contrast with Figure 13
on page 22:

In the following example encryptedParts was used to encrypt the IBM Cldram Social Program
Management credentials.

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenci#">
<soapenv:Header>
<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/
2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="1">
<xenc:EncryptedKey
Id="EncKeyId-A5ACA637487ECDA81713059750729855" >
<xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenci#rsa-1_5" />
<ds:KeyInfo
xmlns:ds="http://www.w3.0rg/2000/09/xmldsigi#">
<wsse:SecurityTokenReference>

</wsse:Security>

<!-- Credential data is then encoded in sections
that follow as illustrated -->
<xenc:EncryptedData Id="EncDataId-3"
Type="http://www.w3.0rg/2001/04/xmlenc#Element">
<xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/
2001/04/xmlenciaes128-chc" />
<ds:KeyInfo
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" >
<wsse:SecurityTokenReference
xmlns:wsse="http://..o0asis-
200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference
URI="4#EncKeyId-A5ACA637444e87ECDA81713059750729855" />
</wsse:SecurityTokenReference>

</ds:KeyInfo>

<xenc:CipherData>
<xenc:CipherValue>
eZFRrk6VSncaDanYCjyVD=</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedData>
<wsa:Action>urn:simpleXML</wsa:Action>
</soapenv:Header>

Figure 14: Example Encrypted Custom SOAP Header

Using Rampart With Web Services

There are a number of parts to Rampart security, as indicated in “Overview” on page 19, and covering
these in detail is outside the scope of this document. However, the following gives a high-level view on
using Rampart with your IBM Curam Social Program Management Axis2 web services.

Integrating with External Applications through Web Services 23

These are the steps for using web services security with Axis2:

1. Define configuration data and parameters for your client and server environments;
2. Provide the necessary data and code specified in your configuration;
3. Code a client to identify and process the configuration.

There is a lot of flexibility in how you fulfill the above steps and the following sections will show some
possible ways of doing this.

Defining the Axis2 Security Configuration

While the necessary configuration will depend on what security features you choose to use the overall set
of activities will be similar regardless. On the client side you can define the security configuration via a
client Axis2 descriptor file (axis2.xml), Rampart policy file, or programmatically (deprecated). On the
server side you can define the security configuration via the service descriptor file (services.xml) or via
a Rampart policy embedded in the service WSDL.

The following examples show the client and server configurations in the context of a client Axis2
descriptor and Rampart policy files and the server configuration via the context of the service descriptor
file.

Client configuration:

<axisconfig name="AxisJava2.0">
<module ref="rampart" />

<parameter name="InflowSecurity">
<action>
<items>Signature Encrypt</items>
<signaturePropFile>
client-crypto.properties
</signaturePropFile>
<passwordCallbackClass>
webservice.ClientPWCallback
</passwordCallbackClass>
<signatureKeyIdentifier>
DirectReference
</signatureKeyIdentifier>
</action>
</parameter>

<parameter name="OutflowSecurity">
<action>
<items>Signature Encrypt</items>

<encryptionUser>admin</encryptionUser>
<user>tester</user>

<passwordCallbackClass>
webservice.ClientPWCallback
</passwordCallbackClass>

<signaturePropFile>
client-crypto.properties
</signaturePropFile>
<signatureKeyIdentifier>
DirectReference
</signatureKeyIdentifier>

<encryptionParts>
iElement}ihttp://www.curamsoftware.comiCredentials
</encryptionParts>
</action>
</parameter>

Figure 15: Sample Client Descriptor Settings (Fragment)

Server configuration:

24 IBM Curam Social Program Management: Ciram Web Services Guide

<serviceGroup>
<service name="SignedAndEncrypted">

<module ref="rampart" />

<parameter name="InflowSecurity">
<action>
<items>Signature Encrypt</items>
<passwordCallbackClass>
webservice.ServerPWCallback
</passwordCallbackClass>
<encryptionUser>admin</encryptionUser>
<user>tester</user>
<signaturePropFile>
server-crypto.properties
</signaturePropFile>
<signatureKeyIdentifier>
DirectReference
</signatureKeyIdentifier>
</action>
</parameter>

<parameter name="OutflowSecurity">
<action>
<items>Signature Encrypt</items>
<encryptionUser>admin</encryptionUser>
<user>tester</user>
<passwordCallbackClass>
webservice.ServerPWCallback
</passwordCallbackClass>
<signaturePropFile>
server-crypto.properties
</signaturePropFile>
<signatureKeyIdentifier>
DirectReference
</signatureKeyIdentifier>
</action>
</parameter>

</service>
</serviceGroup>

Figure 16: Sample Server Security Settings (services.xml Fragment)

All Rampart clients must specify a configuration context that at a minimum identifies the location of the
Rampart and other modules. The following example illustrates this and includes a client Axis2 descriptor
file. Later code examples will utilize this same structure assuming it is located in the C: \Axis2\client
directory.
modules/

addressing-1.3.mar

rahas-1.5.mar

rampart-1.5.mazr

conf/
client-axis2.xml

Figure 17: Axis2 Client File System Structure

The equivalent specification to the parameters in “Defining the Axis2 Security Configuration” on page 24
and “Defining the Axis2 Security Configuration” on page 24 via a Rampart policy file would be as follows:

Integrating with External Applications through Web Services 25

(policy.xml Fragment)

<ramp:RampartConfig
xmlns:ramp="http://ws.apache.org/rampart/policy">
<ramp:user>beantester</ramp:user>
<ramp:encryptionUser>curam</ramp:encryptionUser>
<ramp:passwordCallbackClass>
webservice.ClientPWCallback
</ramp:passwordCallbackClass>

<ramp:signatureCrypto>
<ramp:crypto
provider="org.apache.ws.security.components.crypto.Merlin">
<ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.type">
JKS
</ramp:property>
<ramp:property
name="org.apache.ws.security.crypto.merlin.file">
client.keystore
</ramp:property>
<ramp:property
name=
"org.apache.ws.security.crypto.merlin.keystore.password">
password
</ramp:property>
</ramp:crypto>
</ramp:signatureCrypto>
<ramp:encryptionCypto>
<ramp:crypto
provider="org.apache.ws.security.components.crypto.Merlin">
<ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.type">
JKS
</ramp:property>
<ramp:property
name="org.apache.ws.security.crypto.merlin.file">
client.keystore
</ramp:property>
<ramp:property
name=
"org.apache.ws.security.crypto.merlin.keystore.password">
password
</ramp:property>
</ramp:crypto>
</ramp:encryptionCypto>
</ramp:RampartConfig>

Figure 18: Sample Rampart Policy

Providing the Security Data and Code

The example configurations in “Defining the Axis2 Security Configuration” on page 24 specify an
encryption property file and password call back routine, which would be used in the process of encrypting
your web service data.

The value of signaturePropFile specifies the name of the signature crypto property file to use. This file
contains the properties used for signing and encrypting the SOAP message. An example server crypto
property file is shown below in “Providing the Security Data and Code” on page 26. When using a Rampart
policy file, as shown in “Defining the Axis2 Security Configuration” on page 24, these property files are not
used as the policy itself contains the equivalent settings.

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=server.keystore

Figure 19: Example Rampart server-crypto.properties File

The client-crypto.properties file would have similar properties as above, but with client-specific
values:

26 IBM Curam Social Program Management: Ciram Web Services Guide

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=client.keystore

The creation of the keystore file and the related properties are discussed in “Keystore File Creation” on
page 32.

When configuring a secure web service the server signature property file and keystore file (sexver-
crypto.properties and server.keystore) must be placed in the %SERVER_DIR%/project/
config/wss/ directory so that the build will package them and they will be available on the classpath at
execution time.

The password callback handlers specified in the passwordCallbackClass parameter entities.

Coding the Client

The following code snippets illustrate what's needed to add to the basic client examples in “Creating a
Client and Invoking the Web Service” on page 7 to utilize the preceding security illustrations.

To utilize a client axis2. xml descriptor file you would need to make the following API call where C: /
Axis2/client also contains the Axis2 modules directory as indicated in “Defining the Axis2 Security
Configuration” on page 24:

final ConfigurationContext ctx =
ConfigurationContextFactory.
createConfigurationContextFromFileSystem(
// Looks for modules, etc. here:
"C:/Axis2/client",
// Axis2 client descriptor:
"C:/Axis2/client/conf/client-axis2.xml");

Figure 20: Identifying Axis2 Client Rampart Configuration

To utilize a Rampart policy file you would need to create a context as above, but the client Axis2
descriptor is not necessary in this example, just the Axis2 modules directory:

final ConfigurationContext ctx =
ConfigurationContextFactory.
createConfigurationContextFromFileSystem(
// Looks for modules, etc. here:
"C:/Axis2/client",
null);

When not utilizing an Axis2 configuration that specifies the necessary modules (as shown in “Defining the
Axis2 Security Configuration” on page 24) you will need to explicitly engage the necessary module(s) prior
to invoking the service. The specific modules required will depend on the security features and
configuration you are using; for example:

client.engageModule ("rampart");
Failing to do this will result in a server-side error; e.g.:

org.apache.rampart.RampartException:
Missing wsse:Security header in request

To utilize a Rampart policy you would need to create a policy object and set it in the service options
properties:

final org.apache.axiom.om.impl.builder.StAXOMBuilder builder =
new StAXOMBuilder("C:/Axis2/client/policy.xml");
final org.apache.neethi.Policy policy =
org.apache.neethi.PolicyEngine.
getPolicy(builder.getDocumentElement());
options.setProperty(
org.apache.rampart.RampartMessageData.KEY_RAMPART_POLICY,
loadPolicy(policy);

Integrating with External Applications through Web Services 27

Note: Any number of client coding errors, policy specification errors, configuration errors, etc. can
manifest in the client and/or the server. Often an error in the client cannot be debugged without access to
the log4j trace from the server. For instance, the error when the proper module(s) has not been engaged
(discussed earlier) may appear in the client as:

OMException in getSOAPBuilder
org.apache.axiom.om.0OMException:
com.ctc.wstx.exc.WstxUnexpectedCharException:

Unexpected character 'E' (code 69) in prolog; expected '<'
at [row,col funknown-sourcet]: [1,1]

28 IBM Curam Social Program Management: Ciram Web Services Guide

Here is an example that combines the fragments above, illustrating providing a IBM Curam Social Program
Management custom SOAP header and using Rampart to encrypt it:

import wsconnector.MyServiceStub;

import java.io.File;

import java.net.URL;

import org.apache.axiom.om.impl.builder.StAXOMBuilder;
import org.apache.axiom.om.OMAbstractFactory;

import org.apache.axiom.om.OMElement;

import org.apache.axiom.om.OMFactory;

import org.apache.axiom.om.OMNamespace;

import org.apache.axis2.addressing.EndpointReference;
import org.apache.axis2.client.Options;

import org.apache.axis2.client.ServiceClient;

import org.apache.axis2.context.ConfigurationContext;
import org.apache.axis2.context.ConfigurationContextFactory;
import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.neethi.Policy;

import org.apache.neethi.PolicyEngine;

import org.apache.rampart.RampartMessageData;

/**
* Invoke a web service with encrypted credentials.
*
*/

public void webserviceClient() {

final String serviceName = "myService";
final String operationName = "myOperation";

// Instantiate the stub.
final MyServiceStub stub =
new MyServiceStub();

// Get the end point of the service and convert it to a URL
final Options options = stub._getServiceClient().getOptions();
final EndpointReference eprTo = options.getTo();

final URL urlOriginal = new URL(eprTo.getAddress());

// Use that URL,
// plus our service name to construct a new end point.
final URL urlNew = new URL(
urlOriginal.getProtocol(),
urlOriginal.getHost(),
urlOriginal.getPort(),
"/CuramWS2/services/" + serviceName);
final EndpointReference endpoint =
new EndpointReference (urlNew.toString());

// Load configuration.
final ConfigurationContext ctx = ConfigurationContextFactory.
createConfigurationContextFromFileSystem(

"C:/Axis2/client", // Looks for modules, etc. here.

null); // Configuration provided via API engaging rampart.

final ServiceClient client = new ServiceClient(ctx, null);

// Set the credentials - illustrated as an example earlier
setCuramCredentials(client, "tester", "password");

// Set the operation in the endpoint.
options.setAction("urn:" + operationName);
options.setTo(endpoint);

// Set client timeout to 30 seconds for slow machines.
options.setProperty(

HTTPConstants.SO_TIMEOUT, new Integer(30000));
options.setProperty(

HTTPConstants.CONNECTION_TIMEOUT, new Integer(30000));

// Load the Rampart policy file.
final StAXOMBuilder builder =
new StAXOMBuilder("C:/Axis2/client" + File.separator
+ "policy.xml");
final Policy policy =
PolicyEngine.getPolicy(builder.getDocumentElement());
options.setProperty(RampartMessageData.KEY_RAMPART_POLICY,

policy); . Integrating with External Applications through Web Services 29
client.setOptions(options);

The following shows an equivalent technique for setting the security parameters programmatically,
although it is deprecated, it would replace the block of code commented "Load the Rampart policy file" in
“Coding the Client” on page 27, above as well as the related policy file:

final OutflowConfiguration outConfig =
new OutflowConfiguration();
outConfig.setActionItems("Signature Encrypt");
outConfig.setUser("tester");
outConfig.
setPasswordCallbackClass("my.test.ClientPWCallback");
outConfig.
setSignaturePropFile("client-crypto.properties");
outConfig.setSignatureKeyIdentifier(
WSSHandlerConstants.BST_DIRECT_REFERENCE) ;
outConfig.setEncryptionKeyIdentifier(
WSSHandlerConstants.ISSUER_SERIAL);
outConfig.setEncryptionUser("admin");

final InflowConfiguration inConfig =
new InflowConfiguration();
inConfig.setActionItems("Signature Encrypt");
inConfig.
setPasswordCallbackClass("my.test.ClientPWCallback");
inConfig.setSignaturePropFile("client-crypto.properties");

//Set the rampart parameters

options.setProperty(WSSHandlerConstants.OUTFLOW_SECURITY,
outConfig);

options.setProperty(WSSHandlerConstants.INFLOW_SECURITY,
inConfig);

Figure 22: Sample Client Code (Deprecated) for Setting the Client Security Configuration

30 IBM Curam Social Program Management: Ciram Web Services Guide

Here is an sample working axis2 client descriptor that provides the functionality to send a soap
request message using Rampart, with UserNameToken, wsse-Timestamp, Signing, Encryption:

Use the following code snippet in the axis2 java client to load the axis2 client descriptor.
ConfigurationContext ctx = ConfigurationContextFactory
.createConfigurationContextFromFileSystem(

"base directory under which the axis2 modules are present",

// pass the absolute path of your client axis2 descriptor, as this is very important.
"absolute path of your client-axis2.xml");

Sample client-axis2.xml

<?xml version="1.0" encoding="UTF-8"?>
<axisconfig name="AxisJava2.0">
ref="rampart" />

<parameter name="OutflowSecurity">
<action>
<items>UsernameToken Timestamp Signature Encrypt</items>
<!-- encryption user is the certificate alias , that is present in keystore -->
<encryptionUser>verisignsecondarycacert</encryptionUser>
<!-- the username that is passed in username token-->
<user>scmca</user>
<!-- the client password callback class ,
where at runtime, the username and password can be manipulated-->
<passwordCallbackClass>curam.mm.verification.service.impl.MMClientPWCallback
</passwordCallbackClass>
<!-- the client crypto property file that provides the keystore
related information for the axis2 client engine-->
<signaturePropFile>client-crypto.properties</signaturePropFile>
<signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>
</action>
</parameter>

<parameter name="InflowSecurity">
<action>
<items>Signature Encrypt</items>
<signaturePropFile>client-crypto.properties</signaturePropFile>
<passwordCallbackClass>
curam.mm.verification.service.impl.MMClientPWCallback</passwordCallbackClass>
<signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>

</action>
</parameter>
<!-- -->
<!-- Message Receivers -->
<l-- -->

<!--This is the Default Message Receiver for the system ,
if you want to have MessageReceivers for -->
<!--all the other MEP implement it and add the correct entry
to here , so that you can refer from-->
<!--any operation -->
<!--Note : You can override this for particular
service by adding the same element with your requirement-->
<messageReceivers>
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-only"
class="org.apache.axis2.receivers.RawXMLINOnlyMessageReceiver" />
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-out"
class="org.apache.axis2.receivers.RawXMLINOutMessageReceiver" />

</messageReceivers>

<l-- -->
<!-- Transport Outs -->

<!-- -->

<transportSender name="http"
class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">
<parameter name="PROTOCOL" locked="false">HTTP/1.1</parameter>
<parameter name="Transfer-Encoding" locked="false">chunked</parameter>
</transportSender>
<transportSender name="https"
class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">
<parameter name="PROTOCOL" locked="false">HTTP/1.1</parameter>
<parameter name="Transfer-Encoding" locked="false">chunked</parameter>
</transportSender>

Integrating with External Applications through Web Services 31

N N

Securing web service network traffic with HTTPS/SSL

HTTPS/SSL might be a part of your web services security strategy. Details about setting up HTTPS/SSL are
beyond the scope of this document. However, the use of HTTPS/SSL can be established in either of the
following ways:

 Application server environment - Setting up this environment is specific to your particular application
server, but essentially involves exporting the appropriate server certificates and making them available
to your client environment.

« Rampart WS-Security policy - There are a number of web articles that cover this subject in more detail.

For client access the end point needs to reflect the protocol and port change, which can be done
dynamically at run time. Client code such as the following example, can change the endpoint:

// stub is a previously obtained service stub.

// nHttpsPort is an integer identifying the HTTPS port of
// your application server.

// serviceName is a String identifying the service name.

ServiceClient client = stub._getServiceClient();
// Get the end point of the service and convert it to a URL

final Options options = stub._getServiceClient().getOptions();
final EndpointReference eprTo = options.getTo();
final URL urlOriginal = new URL(eprTo.getAddress());

// Use that URL, plus our service name to construct
// a new end point.

final URL urlNew = new URL("https", urlOriginal.getHost(),
nHttpsPort,"/CuramWS2/services/" + serviceName);
client.setTargetEPR(new EndpointReference (urlNew.toString()));

Figure 24: Example of Dynamically Changing the Web Service End Point

Your client needs to identify the keystore and password that contains the necessary certificates, for
example:
System.setProperty("javax.net.ssl.trustStore",

"C:/keys/server.jks");

System.setProperty("javax.net.ssl.trustStorePassword",
"password") ;

Otherwise, client coding for HTTPS is similar to that of HTTP.

Note: In a WebSphere environment the SSL socket classes are not available by default and you might
experience this error:
org.apache.axis2.AxisFault: java.lang.ClassNotFoundException:

Cannot find the specified class

com.ibm.websphere.ssl.protocol.SSLSocketFactory
Resolve this error with code like the following:
Security.setProperty("ssl.SocketFactory.provider",

"com.ibm.jsse2.SSLSocketFactoryImpl");

Security.setProperty("ssl.ServerSocketFactory.provider",
"com.ibm.jsse2.SSLServerSocketFactoryImpl");

Keystore File Creation

This section describes how to create the server.keystore and client.keystore keystore files for
secure web service configuration:

« Generate the server keystore in file server.keystozre:

%JAVA_HOMEY%/bin/keytool -genkey -alias curam-sv -dname "CN=localhost, OU=Dev,
0=Curam, L=Dublin, ST=Ireland, C=IRL" -keyalg RSA -keypass password -
storepass password -keystore server.keystore

« Export the certificate from the keystore to an external file server.cer:

32 IBM Curam Social Program Management: Ciram Web Services Guide

%JAVA_HOME%/bin/keytool -export -alias curam-sv -storepass password -file
server.cer -keystore server.keystore

« Generate the client keystore in file client.keystore:

%JAVA_HOME%/bin/keytool -genkey -alias beantester -dname "CN=Client, OU=Dev,
O=Curam, L=Dublin, ST=Ireland, C=IRL" -keyalg RSA -keypass password -
storepass password -keystore client.keystore

- Export the certificate from the client keystore to external file client.cer:

%JAVA_HOME%/bin/keytool -export -alias beantester -storepass password -file
client.cer -keystore client.keystore

« Import server's certificate into the client's keystore:

%JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam -file
server.cer -keystore client.keystore -keypass password -storepass password

- Import client's certificate into the server's keystore:

%JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam -file
client.cer -keystore server.keystore -keypass password -storepass password

Inbound Web Service Properties - ws_inbound.xml

Property Settings

The following details the name/value pairs in the ws_inbound. xml property file, which are used to build
services.xml descriptor files for a web service. These files are generated by default, but can also be
customized as described in “Providing web service customizations” on page 14.

These are the default properties produced by the IBM Curam Social Program Management generator:

classname
The fully qualified name of the web service class, from the Rational Software Architect model. This
property should never be overridden and should always be provided by the generator.

ws_binding_style
The web service binding style, based on the Rational Software Architect class property
WS_Binding_Style. Values: document (default) or rpc.

ws_is_xml_document
Indicator of a service class whose operations process W3C Documents, based on the Rational
Software Architect class property WS_Is_XML_Document property. This property should always be
determined by the generator. Values: true or false (default).

An example ws_inbound.xml property file that the generator would create is shown in “Property
Settings” on page 33.

<curam_ws_inbound>
<classname>my.util.component_name.remote.WSClass</classname>
<ws_binding_style>document</ws_binding_style>
<ws_is_xml_document>false</ws_is_xml_document>
</curam_ws_inbound>

Figure 25: Sample Generated ws_inbound.xml Properties File
The following are the properties that can be provided and/or customized via a custom ws_inbound.xml
property file:

ws_binding_style
The web service binding style. This property has no direct dependency on the Rational Software
Architect model. It is used for passing the corresponding argument to the Apache Axis2 Java2WSDL
tool. See also the description of the ws_binding_use property below.

Values: document (default) or rpc.

Integrating with External Applications through Web Services 33

ws_binding_use
The web service binding use. It is used for passing the corresponding argument to the Axis2
Java2WSDL tool.

Values: 1iteral (default) or encoded.

Ws_service_username
A username (see ws_service_password below) to be used for authentication by the IBM Ctram Social
Program Management receiver. Not set by default as the default is to utilize a custom SOAP header for
specifying authentication credentials. If specified, results in the corresponding descriptor parameter
in services.xml being set.

Values: A valid Caram user.

ws_service_password
A password (see ws_service_username above) to be used for authentication by the Cliram receiver.
Not set by default as the default is to utilize a custom SOAP header for specifying authentication
credentials. If specified, results in the corresponding Axis2 descriptor parameter in services.xml
being set.

Values: A valid password for the corresponding Cliram user.

ws_client_must_authenticate
An indicator as to whether custom SOAP headers are to be used for IBM Curam Social Program
Management web service client authentication. Should not be specified with ws_service_username
and ws_service_password (above), but if specified this setting overrides, causing the credentials in
those properties to be ignored. If specified, results in the corresponding Axis2 descriptor parameter in
services.xml being set.

Values: true (default) or false.

ws_disable
An indicator as to whether this web service should be processed by the build system for generating
and packing the service into the WAR file. Typically you would use this to temporarily disable a service
from being built and thus exposed.

Values: true or false (default).

An example, custom ws_inbound. xml property file is shown in “Property Settings” on page 33.

<curam_ws_inbound>
<ws_binding_style>document</ws_binding_style>
<ws_client_must_authenticate>false</ws_client_must_authenticate>
<ws_service_username>beantester</ws_service_username>
<ws_service_password>password</ws_service_password>
</curam_ws_inbound>

Figure 26: Sample Custom ws_inbound.xml Properties File
When providing a custom ws_inbound. xml properties file place the file in your components/custom/

axis/<service_name> directory (the <service_name> and class name must match). During the build
the properties files are combined based on the following precedence order:

« Your custom ws_inbound.xml properties file;
e The generated ws_inbound. xml properties file;
« The default values for the properties.

Deployment Descriptor File - services.xml

Descriptor File Contents

Each web service class requires its own Axis2 deployment descriptor file (services.xml). The Clram
build automatically generates a suitable deployment descriptor for the default settings described in
“Inbound Web Service Properties File” on page 14 and “Inbound Web Service Properties -

34 IBM Curam Social Program Management: Ciram Web Services Guide

ws_inbound.xml” on page 33. The format and contents of the services.xml are defined by Axis2; see
the Apache Axis2 Configuration Guide (http://axis.apache.org/axis2/java/core/docs/axis2config.html) for
more information.

Based on the settings from the ws_inbound. xml property file(s) the app_webservices2.xml script
generates a services. xml file for each web service class. This descriptor file contains a number of
parameters that are used at runtime to define and identify the web service and its behavior.

An example services. xml descriptor file that would be generated is shown in “Descriptor File
Contents” on page 34.

<serviceGroup>
<service name="ServiceName">

<!-- Generated by app_webservices2.xml -->
<description>

Axis2 web service descriptor
</description>

<messageReceivers>
<messageReceiver
mep="http://www.w3.0rg/2004/08/wsdl/in-out"
class=
"curam.util.connectors.axis2.CuramXmlDocMessageReceiver"/>
<messageReceiver
mep="http://www.w3.0rg/2004/08/wsdl/in-only"
class=
"curam.util.connectors.axis2.CuramInOnlyMessageReceiver"/>
</messageReceivers>

<parameter
name="remoteInterfaceName">
my .package.remote.ServiceName</parameter>
<parameter
name="ServiceClass" locked="false">
my .package.remote.ServiceNameBean</parameter>
<parameter
name="homeInterfaceName">
my .package.remote.ServiceNameHome</parameter>
<parameter
name="beanJndiName">
curamejb/ServiceNameHome</parameter>

<parameter
name="curamWSClientMustAuthenticate">
true</parameter>

<parameter
name="providerUrl">
iiop://localhost:2809</parameter>
<parameter
name="jndiContextClass">
com.ibm.websphere.naming.WsnInitialContextFactory
</parameter>

<parameter
name="useOriginalwsdl">
false</parameter>
<parameter
name="modifyUserWSDLPortAddress">
false</parameter>

<l--

NOTE: For any In-Only services (i.e. returning void) you must
explicitly code those operation names here as per:
http://issues.apache.org/jira/browse/AXIS2-4408
For example:

<operation name="insert">
<messageReceiver
class="curam.util.connectors.axis2.
CuramInOnlyMessageReceiver"/>
</operation>
-->

</service>
</serviceGroup>

Figure 27: Sample Generated services.xml Descriptor File

Integrating with External Applications through Web Services 35

http://axis.apache.org/axis2/java/core/docs/axis2config.html

The following lists the mapping of the services.xml parameters to the settings in your build
environment:

messageReceiver
Specifies the appropriate receiver class for the MEPs of the service. For Clram there are three
available settings/classes:

e curam.util.connectors.axis2.CuramXmlDocMessageReceiver - For service classes that
process W3C Documents as arguments and return values.

e curam.util.connectors.axis2.CuramMessageReceiver - For service classes that process
Curam classes and use the in-out MEP.

e curam.util.connectors.axis2.CuramInOnlyMessageReceiver - For service classes that
process Curam classes and use the in-only MEP.

This value is set by the app_webservices?2.xml script as per the description above. (Required)

remotelnterfaceName, ServiceClass, homelnterfaceName, beanIJndiName
Specify the class names and JINDI name required by the receiver code for invoking the service via the
facade bean.

These values are set by the app_webservices2. xml script based on the generated classname value
in the ws_inbound.xml properties file. (Required)

curamWSClientMustAuthenticate, jndiUser, jndiPassword
Specify credential processing and credentials for accessing the operations of the web service class.

These are set by the app_webservices2.xml script based on the corresponding properties in
ws_inbound.xml (see “Inbound Web Service Properties File” on page 14). Default for
curamWSClientMustAuthenticate is true, but can be overridden at runtime by custom receiver
code. (Optional)

providerUrl, jndiContextClass
Specify the application server-specific connection parameters.

These values are set by the app_webservices2.xml script based on your
AppSexver.properties settings for your as.vendor, curam.server.port, and curam.server.host
properties. Can be set at runtime by custom receiver code. (Optional)

useOriginalwsdl, modifyUserWSDLPortAddress
Specify the processing and handling of WSDL at runtime.

These are explicitly set to false by the app_webservices2.xml script due to symptoms reported
in, for instance, Apache Axis2 JIRA: AXIS2-4541. (Required for proper WSDL handling.)

Troubleshooting

Introduction

This appendix discusses some techniques for troubleshooting Axis2 web services. It covers:
- Initial server validation and troubleshooting

« Tools and techniques for troubleshooting Axis2 errors

« Avoid use of anyType

You have modeled your web services, developed your server code, built and deployed your application
and web service EAR files. You are now ready to begin testing and finally delivering your web service.

Axis2 represents a complex set of software and third-party products, especially when viewed from the
perspective of running in an application server environment. While the IBM Clram Social Program
Management environment simplifies many aspects of web service development, the final steps of testing
and debugging your services can prove daunting. The various tips and techniques that are outlined are not

36 IBM Curam Social Program Management: Ciram Web Services Guide

new or comprehensive, but are here to help you consider options and ways of increasing your
effectiveness.

Initial Server Validation and Troubleshooting

Because web services process through many layers, one effective technique for more quickly identifying
and resolving problems is to keep the server and client side of your service testing separate. Once
deployed you want to first focus your testing on the server side to ensure everything works properly and
then introduce your client development and testing so that you know where to focus to resolve errors.

If this is your first deployment of a web service, did the application server and deployed application
EAR/WAR files start without errors? If not, investigate and resolve these errors.

If your application starts successfully the next step is to ensure that your service is available. This is done
differently for Axis2. But, in general, it involves entering the web service URL with the ?wsdl argument to
verify that your service can be accessed. Details for validating the Axis2 environment are in the sections
following.

Axis2 Environment Validation

In order to use the Axis2 web app, it must first be downloaded from Apache. Please follow the
instructions outlined in “Including the Axis2 Admin Application in Your Web Services WAR File” on page
40 for details on including this application in your environment. Axis2 provides an initial validation step
that is provided by its built-in validation check. You invoke this by entering the URL for your Axis2 web
service application as defined by your web services application root context and application server port
configuration. For instance, this might look like: http://localhost:9099/CuramiWS2/axis2-web/
index. jsp. This page brings up the "Welcome!" page with an option to validate your environment, which
you should select. Out of the box, the only error you should see on the resultant page is in the "Examining
Version Service" section where it warns you about not having the sample Apache Axis2 version web
service. You can rectify this error (which is not really an error, but a nice sanity check) by including that
service as external content when you build your Axis2 web services WAR/EAR file; see “Building and
Packaging Web Services” on page 12 for more information on doing this.

Having successfully validated your Axis2 environment you should click the "Back Home" link on that page
and select the Services link on the "Welcome!" page. The resulting "Available services" page will list all
available services (classes) and their operations. If there is any invalid service (e.g. due to a missing
implementation class) it will be flagged here in more detail and you need to use the diagnostics provided
to resolve any errors. For all valid services selecting a service name link from the "Available services" page
will generate and display the WSDL for that service. This verifies your deployed service(s) and it should
now be available for invocation.

To Be Aware Of

« On the "Available services" page you might see the operation "setSessionContext", which you did not
model and code. This behavior is an aspect of the issue that is described in “Modeling and
Implementing an Inbound Web Service” on page 10 and in the Cdram Release Notes. It has no impact
and can be ignored.

« The WSDL generated from the "Available services" links is not equivalent to the WSDL generated by the
Axis2 Java2WSDL tool. Use the Java2WSDL tool to develop outbound web services. You can find the
Java2WSDL toolin the build/svr/wsc directory of your development environment after a web
services EAR file build.

- Axis2 has capabilities for checking, investigating your environment using its external administration web
application (the "Administration" link on the "Welcome!" page). See “Including the Axis2 Admin
Application in Your Web Services WAR File” on page 40 for details on including this application in your
environment. If you don't explicitly build/include this application, the functionality is not available.

Using an External Client to Validate and Troubleshoot

Begin validating the service on the server side first by using an external client because unless the web
service class exists, deployment is set up properly. A client failure might not be clearly distinguishable. To
keep the path length and areas you might have to investigate for possible errors as small as possible. Use

Integrating with External Applications through Web Services 37

a known, working client to start your service. Common areas of failure that a known, working external
client can help validate include: service packaging, receiver processing, security configuration, and
implementation processing. An example of an external client you might use is the freely available soapUI
client (www.soapui.org), which is relatively easy and fast to set up and begin using. While a detailed
treatment of soapUI is beyond the scope of this document the following is an outline of the steps you
would use, which are similar for Axis2:

« Download, install, and start soapUL.
- When validating your service(s) (above) save the generated WSDL.

« In soapUI select the File menu -> New soapUI Project and in this dialog specify the location of your
saved WSDL and click OK. This creates and opens a new soapUI project from where you can invoke your
web services.

- From the soapUI tree control, expand your newly created project and expand the "Soap12Binding" or
"Soapl1Binding". Under this tree branch you will see your service operations and under each operation
a "Request 1" (default name) request. Double-clicking the request opens a request editor. In the left
pane you must code your SOAP message (e.g. parameters, etc.) and a template is provided for doing
this. In the right pane is where the result is displayed. Once you've coded your SOAP message click the
right green arrow/triangle in the tool bar to execute the service. If you've coded the SOAP message
correctly the service output will be displayed in the right pane. However, if an error occurs there will be
error information in this pane. In the event of an error verify your SOAP message syntax and content;
also see “Using an External Client to Validate and Troubleshoot” on page 37 for some further
techniques for resolving and addressing these.

Note: For Axis2 you must keep in mind the default security behavior and that you must include the
custom SOAP header credentials in your request. This would look something like this:

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:rem="http://remote.my.package">
<soap:Header>
<curam:Credentials
xmlns:curam="http://www.curamsoftware.com">
<Username>beantester</Username>
<Password>password</Password>
</curam:Credentials>
</soap:Header>
<soap:Body>

...</soap:Body>

</soap:Envelope>

Note: For Axis2 the first access of a web service may timeout due to the large number of jar files and
processing done at first initialization. This can easily be mitigated in a Java client (e.g. see “Creating a
Client and Invoking the Web Service” on page 7), but for soapUI you can just re-invoke the service and the
subsequent request will likely not timeout; otherwise, see “Tools and Techniques for Troubleshooting
Axis2 Errors” on page 38 for further techniques for resolving and addressing general web services

errors.

Tools and Techniques for Troubleshooting Axis2 Errors

The following highlight possible tools and techniques you might use in troubleshooting errors with Axis2
web services, but is not an exhaustive list. Also, the tools available might vary by operating system and
application server environment.

When trying to understand why a service fails, consider the following:

« To debug axis2 soap request / response messages effectively, add the following as JVM Arguments in
Eclipse (for axis2 java clients) or pass this in websphere console JVM Process definition VM Arguments.

38 IBM Curam Social Program Management: Ciram Web Services Guide

or as JAVA_OPTS for weblogic, and it requires a server restart if applied in application server. Please use
this only for debugging purpose.

-Dorg.apache.commons.logging.Log=o0rg.apache.commons.logging.impl.Simplelog
-Dorg.apache.commons.logging.simplelog.showdatetime=true
-Dorg.apache.commons.logging.simplelog.log.httpclient.wire=debug
-Dorg.apache.commons.logging.simplelog.log.org.apache.commons.httpclient=debug

This java system property enables console logging of the soap request sent and soap response received.
this is another alternative to using soap monitor.

« Use a monitoring tool (Apache TCPMon or SOAP Monitor) to view the SOAP message traffic. It's easier to
setup TCPMon (download from http://ws.apache.org/commons/tcpmon, unzip, & run; also available
within soapUI), but it requires changing your client end points or your server port. Once setup, SOAP
Monitor doesn't require any client or server changes, but does require special build steps for your
WAR/EAR files. Apache ships SOAP Monitor as an Axis2 module and see “Including the Axis2 SOAP
Monitor in Your Web Services WAR File” on page 41 on how to include this in your built Axis2
environment.

« Look at the failure stack trace and investigate any messages there. Try to understand where in the
processing the error occurred. Here is an example Apache log4| properties file that would log verbosely
inaC:\Temp\axis2.1log file, you can adjust these settings to suit your requirements.

Set root category
log4dj.rootCategory=DEBUG, CONSOLE, LOGFILE

Set the enterprise logger priority to FATAL
logdj.logger.org.apache.axis2.enterprise=FATAL
logdj.logger.de.hunsicker.jalopy.io=FATAL
logdj.logger.httpclient.wire.header=FATAL
log4dj.logger.org.apache.commons.httpclient=FATAL

CONSOLE is set to be a ConsoleAppender using a PatternlLayout.
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4dj.appender.CONSOLE.layout=org.apache.logdj.PatternLayout
log4dj.appender.CONSOLE.layout.ConversionPattern=[%p] %m%n

LOGFILE is set to be a File appender using a PatternlLayout.
log4dj.appender.LOGFILE=0rg.apache.logdj.FileAppender
log4j.appender.LOGFILE.File=c:/temp/axis2.log
logdj.appender.LOGFILE.Append=true
log4dj.appender.LOGFILE.layout=0rg.apache.logdj.PatternLayout
log4j.appender.LOGFILE.layout.ConversionPattern=

%d [%t] 9%-5p %c 9%x - %m%n

You need to place the 1og4j.properties somewhere in the classpath of the Axis2 WAR file.
« Check the application server logs for more information.

« Turn on log4j tracing for Axis2, as this will most likely give you the most detailed picture of the web
service processing or error at the time of the failure. This can be quite voluminous so use it with care.

« Turn on the IBM Clram Social Program Management application log4j trace as this will also help to give
you further context for the failure.

« Consider remote debugging the service running on the application server using Eclipse. Consult your
application server-specific documentation for setting up this kind of an environment. Remember that if
you are setting breakpoints in this kind of environment that timeouts in the client and/or server are a
high probability and appropriate steps should be taken; for the client see “Creating a Client and
Invoking the Web Service” on page 7 and for the server consult your application server-specific
documentation for setting timer values.

Note: Application verbose tracing (trace_verbose) is the highest level of logging available for tracing
with web services. This is because the SDEJ employs a proxy wrapper object for ultra verbose
(trace_ultra_verbose) tracing in order to provide detailed logging. Due to the fact that the SDEJ uses
reflection for forwarding a web service request to the underlying process class, the use of a proxy wrapper
object is not compatible with the web services infrastructure.

Integrating with External Applications through Web Services 39

Avoid Use of 'anyType'

Avoid using anyType within your WSDL because it makes interoperability difficult, since both service
platforms and any client platforms must be able to map, or serialize/deserialize the underlying object.

WSDL is typically generated with anyType when the underlying data type (for example, object) cannot be
resolved.

You might find with Axis2 that your WSDL works with anyType because some vendors/platforms map it to,
for instance, java.lang.Object, which allows it, if it's XML-compliant, to be processed into a SOAP message,
and allows processing from XML to a Java object.

Generate your WSDL as early as possible, checking it for the use of anyType. In your development focus
on implementing the overall web service structure first and implement the actual service functionality
last. For instance, code your web service operations as stubs that merely echo back with minimal
processing the input parameters to ensure they can be processed successfully from end to end.

Axis2 Exceptions

Exceptions in web services are returned back to the client as an AxisFault exception with the message
string from the original exception retained whenever possible. For instance, client code might look like
this:

// Processing

é.&atch (final AxisFault a) {
System.out.println(a.getMessage());

The structure and contents of the fault SOAP message will vary depending on whether the request is a
SOAP 1.1 or SOAP 1.2 request.

Also, you need to ensure that, depending on the context of the web service client, the web service
provides a meaningful exception message. Otherwise, it may not be possible for the handler of the
AxisFault exception to react appropriately. However, sometimes failures occur unexpectedly and it will be
necessary to resolve them in conjunction with the application server logs and/or the log4j output from
Curam and/or Axis2.

Including the Axis2 Admin Application in Your Web Services WAR File

Introduction

This appendix shows you how to setup your Axis2 web services build to include the Axis2 Admin web
application, which provides useful functionality for working with your Axis2 environment.

warning: The dynamic functionality of Axis2 (e.g. hot deployment) isn't intended for production
application server environments such as WebSphere Application Server and WebLogic Server and this
functionality should not be attempted in these environments.

Steps for Building

Do not use Axis2 to dynamically modify a production environment. However Axis2 is useful for validating
settings, viewing services, and modules. To build your EAR file to include this application:

« Download the Axis2 binary distribution (http://axis.apache.org/axis2/java/core/
download.cgi) corresponding to the supported Apache Axis2 version and unload it to your hard disk.
For example, C: \Downloads\Axis2).

« Create a location on your disk to contain the necessary Axis2 artifacts, for example:

cd C:\
mkdir Axis2-includes

40 IBM Curam Social Program Management: Ciram Web Services Guide

 Put the class files AdminAgent.class and AxisAdminServlet.class inthe C:\Downloads
\Axis2\webapp\WEB-INF\classes\org\apache\axis2\webapp) into a JAR file that you place
into the WEB-INF\1ib directory in your newly created C:\Axis2-includes location. For example:

mkdir C:\Axis2-includes\WEB-INF\1lib

cd C:\Downloads\Axis2\webapp\WEB-INF\classes

jar -uvf C:\Axis2-includes\WEB-INF\1lib\WebAdmin.jar
org/apache/axis2/webapp/

« Additionally, you might want to add a custom axis2.xml descriptor file to a WEB-INF\conf folder to
change the default credentials. You can copy the existing included axis2.xml file to this example
location:

mkdir C:\Axis2-includes\WEB-INF\conf
copy %CURAMSDEJ%\ear\webservices2\Axis2\conf\axis2.xml
C:\Axis2-includes\WEB-INF\conf

— Then, change the existing userName and password parameters, for example:

<parameter name="userName'">restricted</parameter>
<parameter name="password">special</parameter>

— To secure the username and password, the axis2.xml file must be secured in your development
and deployed environments without access in the runtime environment to the Axis2 configuration.

« Use the following properties when you start your web services ear target (see “Building and Packaging
Web Services” on page 12):

-Daxis2.include.overwrite=true
-Daxis2.include.location=C:\Axis2-includes

« On deployment, access the Administration link using the Axis2 "Welcome!" page menu. For example:
http://localhost:9082/CuramiWS2/axis2-web/index. jsp).

Including the Axis2 SOAP Monitor in Your Web Services WAR File

Introduction

This appendix shows you how to setup your Axis2 web services build to include the Axis2 SOAP Monitor
module in your Axis2 web services WAR file. The SOAP Monitor provides the ability to view SOAP message
requests and responses, which can be useful in debugging.

Steps for Building

The SOAP Monitor module is included with the binary distribution of Axis2 and its module
(soapmodule.max) is included in the packaging of the webservices2.war 1ib directory during the
build. The web . xm1 file that is included with the webservices2.war has the necessary entries to
support the SOAP Monitor. Beyond this the following additional steps are needed to enable this
functionality:

1. Create a location on your disk to contain the necessary Axis2 artifacts, for example:

cd C:\
mkdir Axis2-includes

Integrating with External Applications through Web Services 41

2. As indicated in the Axis2 documentation, you must place the SOAPMonitor applet classes at the root of
the WAR file. For example:

cd C:\Axis2-includes
jar -xvi %CURAMSDEJ%\ear\webservices2\Axis2\modules\soapmonitor.mar
org/apache/axis2/soapmonitor/applet/

3. Then, use the following properties when you start your web services ear target (webspherelWebServices
or weblogicWebServices):

-Daxis2.include.overwrite=true
-Daxis2.include.location=C:\Axis2-includes

4. The included axis2.xml file defines the necessary SOAP Monitor phase elements, but to be
functional the following entry needs to be added (similarly to other module entries):

<module ref="soapmonitor"/>

This change can be made to the EAR file before deployment or for WebSphere in the deployed file
system.

5. To access the SOAPMonitor, use a URL, for example: http://localhost:9082/CuramiWS2/
SOAPMonitor.

6. Unfortunately the applet does not give much information if there is an issue. If you see the error:

"The SOAP Monitor is unable to communicate with the server."

Ensure that there is not a port conflict; the default as set in web . xml is 5001. If so, change that port.

7. This default port can be changed by setting soap.monitor.port = <port number> in the
AppSexrver.properties

Exclude Soap Monitor
Excluding Soap Monitor from being packed into the webservices2.war.

Soap Monitor can be excluded from the deployed EAR file by setting the following property in the
AppServer.properties.

1. exclude.soapmonitor = true

42 IBM Curam Social Program Management: Curam Web Services Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2018 43

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

44 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 45

Part Number:

(1P) P/N

	Contents
	List of Figures
	List of Tables
	Chapter 1. Integrating with External Applications through Web Services
	Introduction
	Purpose
	Audience
	Prerequisites

	Using Web Services
	Overview of Web Services
	Web Service Platforms
	Types of web services
	Web Services Security
	Summary

	Outbound Web Service Connectors
	Overview
	Getting Started
	Building an Outbound Web Service Connector
	Including the WSDL File in Your Components File System
	Adding the WSDL File Location to the Outbound Web Services File
	Generating the Web Service Stubs

	Creating a Client and Invoking the Web Service

	Inbound Web Services
	Overview
	Getting Started
	Modeling and Implementing an Inbound Web Service
	Creating Inbound Web Service Classes
	Adding Operations to Inbound Web Service Classes
	Adding Arguments and Return Types to Inbound Web Service Operations
	Processing of Lists
	Data Types

	Building and Packaging Web Services
	Providing Security Data for Web Services
	Providing web service customizations
	Inbound Web Service Properties File
	Deployment Descriptor File
	Customizing Receiver Runtime Functionality
	Custom Credential Processing
	Accessing the SOAP Message
	Custom Application Server-Specific Parameters
	Custom SOAP Factory
	Building Custom Receiver Code

	Providing schema validation

	Secure Web Services
	Overview
	Axis2 Security and Rampart
	Custom SOAP Headers
	Encrypting Custom SOAP Headers
	Using Rampart With Web Services
	Defining the Axis2 Security Configuration
	Providing the Security Data and Code
	Coding the Client

	Securing web service network traffic with HTTPS/SSL
	Keystore File Creation

	Inbound Web Service Properties - ws_inbound.xml
	Property Settings

	Deployment Descriptor File - services.xml
	Descriptor File Contents

	Troubleshooting
	Introduction
	Initial Server Validation and Troubleshooting
	Axis2 Environment Validation
	To Be Aware Of

	Using an External Client to Validate and Troubleshoot

	Tools and Techniques for Troubleshooting Axis2 Errors
	Avoid Use of 'anyType'
	Axis2 Exceptions

	Including the Axis2 Admin Application in Your Web Services WAR File
	Introduction
	Steps for Building

	Including the Axis2 SOAP Monitor in Your Web Services WAR File
	Introduction
	Steps for Building
	Exclude Soap Monitor

	Notices
	Privacy Policy considerations
	Trademarks

