IBM Curam Social Program Management
Version 7.0.3

Curam Modeling Reference Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
86

Edition

This edition applies to IBM® Clram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

©

Contents

LiSt Of FiSUIeS....cuiiuiieiieiieiieiiiiiiieiieiieiienienieiescencsecsessassassessassascsscascssssssssssassassascas Vi
[ES3 oY = 1 =3 < | |

Chapter 1. Ciram modeling reference..........cccuveeeeeeeiieennceerreenncceeneenssceceseensnseeenees 1

CUram MOUELING OVEIVIEW......eeiieeieiteeiesieeiteeeesteetes e e te s e etesseetesseesteesesseessesseessesssensesssesseessessennsessassessees 1
UML OVETVIEW..ceiuutiiiiiieieiieseiteseiteesitessteesssteesssteesseeesbaeessseeessseeeasseeesseeesssaaessssaesnseeessssessnseessnsenesnsseesnsens 1
UML and the input MEta=-MOTEL.....cccccueiiiee ettt e et e e e e ctree e e e eabee e e s s nteeessensaeeesennnes 2
ArChItECTUIE LAYEIS OVEIVIEW...eiiiiiciiiieeeectieeeeectie e e e eeitee e e seteeessesstreseesssteeesesssesesesnseeaseennsenasssenssrneennns 2
] K=T=T0) 1Y/ 01U 2
D RV o1 T T T PP PP 6
P ACKAZES. . ettt ettt e et s e e e e b bt e et e e e aa b e e e a b e e e abae e baeenabeeenabeeennbeeennnes 8
The CODE _PACKAGE OPTiON .. tiieeicectieeeeccitee e e eetee e e eeteeeeseetteesesesteeessenbasessesnsanesesanssesessasssensesennsenns 8
AUdITMAPPINGS ClaSSES OVEIVIEW......uiiiiiiiiiiieiiiieesiieeseteeseieeesieeesssteessaeesssseeessseessaseesssseesssseesssseessnseessnnes 10
AUdITMAPPINGS ClaSSES MULES....uiiiiiiiiieeeiee ettt e s be e st e e s ba e e s beessbaeesabaessaseens 10
AUdITMAPPINGS ClasSES OULPULS...ciiiiiiiiiieiriee ettt sttt sste e s see e s see e ssaee e ssate e ssseessneessseeesnseessnses 11
AUdItMaPPINGS ClasSES OPTIONS...ccccuiiieiiiiieiieeeiteerrte sttt s sttt sre e s saee e s sree e s saeeessseeessaseessseeesnssassnees 11
DomMain defiNITiON ClASSES. .. .uii ittt ettt be e s s be e s sbe e e s be e s sabe e s sabeessaaeessaseesnnseas 12
Domain definition Class OPTIONS.....ciii ittt eere e e et e e e e et e e e e s e beee e s e sssaeeeesnseneesennns 12
Overriding a domain defiNITiON.....ccuiiieiieiiieeee et s e e s st e s e e e s baeessbeeesasaeens 15
N Yo =TT R URRt 15
o) Yol = T] (=SSR 16
o]0} (Y= LT o TV = SRS 16
10} AV o] o1=T = L] 1= 17
o]0) LY o101 0 U £ SR SROE 17
10} AV ol =TT o} A o 3 - ST 18
Optimistic locking for CONCUITENCY CONTIOL....ciicuiiiriiiieiieieteeee et eee e e s see e s ee e s 19
TabLE-1EVEL AUAITING. .. eiiiiiieieiieecte ettt et e s et e e sbe e e s ba e e sbeessbaeesabeeesasaeessaessnsaeesnne 20
D 0 o 12 £ SS 21
10} AV 0] 21T 1 €= U o TS 23
1Sy WY o Ta F= (Yo I 1= o USSR 23
EXEENSION ClASSES.ciiiuiiiicitiiiciee ittt sttt s ete e s eate e sebee e s saee e s bee e sbeeesbeeesbeeesabeeesabeeesaseeesnseessseessaseesnnses 24
EXTENSION ClaSSES USAZE..ciicuiiiiiieeiiieeiiieereteeseie e sttt esete e s teesstteesssteessteesseessseeesseeessseeesseesssensssens 24
WHhEN 10 USE EXTENSION CLASSES...uuiiiiiiiiiieeiiieeeiieeseiteessiee e sttt e steeestee s sebeessbeessbeeesseessseessseessseessnnes 24
Extension classes: considerations and limMitationS.......ccceecueiriieriiiieeiiecieeee e 24
EXtENSION ClaSSES: USAZE FULES..cicuiiieciieeeiieeeite ettt ettt sar e sbae e st e e s sbee e ssbaeessaeesseeessaeesssaesn 25
= Tor- To [l ol = T-1=T= T F OO RTRRRPR 25
- Tor= (o [l ol LT U] (=TS PSPPI 25
Facade ClasSes OPEIAtiONS.......uiiiieciieee ettt e cecttee e e e cree e s e ettt e e e e eeatee e s e e sseeeeeesasteeeseennteneesennsseeassassenes 25
o= Tor=To Lo TR o o o 1SRN 26
PrOCESS ClASSES. .. utiiiiiieiiiite ettt ettt ette e sttt e sttt e st e e s bt e e s bt e e s bt e e sbaeesabaeesabaeesasaessabaeesabaeesabaeeebaeessaeesasaeeans 26
BUSINESS PrOCESS OB ECTS. .eiiiiiiiiiieiciiiee ettt e e e e e ee e e e e tte e e e e e steeeeesasbeeeesenseaeesennssesassansees 27
PrOCESS CLASS MULES. .. uiiiiiiiiiciee ettt st ee e st e e st e e s bt e e sbee s sabee e sabeeessbaeesabaeesaseessnseessases 27
PrOCESS ClasSS OPEIAtIONS...cc i iiiieeecctieee ettt e e e e e erbee e e e e bt e e e s e e btaseeeeansteeeesenstaeeesennsaneesennnsens 27
PrOCESS ClaSS OPTIONS. ...uiiiiiieciiiee ettt rtee e e e ctree e e e e abe e e e e seatee e e e e astaeesesnsteeeeeenseneesennssenassennsenes 28
1) {01 Aol - 111 F SO SPPPSTSRT 28
SETUCT CLASS TULES .. ettiieiieeette ettt et ee e st e e s b e e s bt e e s aea e s beeesabaessnseesnsseesnnsaesnssaesnssens 29
) 4 0ot ol TR0 LU o 10§ £ SR 29
) AU ot ol = T 3o o] 0] o 1SRRI 29
L A] o T =Y USROS PROPRPRROTRRIOt 30
ATEIIDULE TULES .ottt et e st e e st e e s ate e saseeeseaeeesntae s nteesasteesseaesantaesnes 30
FAN (g1 o 10§ =Yoo £ o] o 1S 30

(0] 01T = o 1= 31

(0] 01T =N Ao oI U1 L= 32
(0] o1 =X Ao a1 o]) {1 o ISR 32
Operation parameter options: Mandatory fleldS.......u i 40
ENtity OPEIratioNS OVEIVIEW. .. .uiiiiiiiiiieeeeeiieeeeecitee e e eectee e e e e eteeeesesbreeeseesseeeseessteeeseanstaseessassssesasanssnesnsnnnes 41
) = UaLe F= U o oY o T=T = VA o] - USSR 41
o RISy #=TaTe F-Te loT o 1=T =) 4o 1= 41
N oY R NN o] 01T =Y 1o 1= SR 42
2 F ol a o] 1= = o] 1= S 42
N YA a1 o] 1= = L Ao 1SRN 43
Y 2= L o F= T T 01T o PSPPSR 43
Non-standard insert (SeNerated SOL).....cciiicieiieeieeceeeeeseeeee et esee e e et e ste e reeseeesseesreeenseessaesnseenns 43
SN YA (oY= o I oY o T=T = L o] o TSR 44
) 2= L o F= T I =T o R SRPSPPN 44
StANAArd FEAAMULLILc.vetietie ettt e e st e e e st e e s s be e e sbeeessbaeesaseeesnsaessnsaeenssaessseesnnes 45
Non-standard read (8enerated SQL)......cccuiereeecieeiieeieereeeee et e see s e e seeste e e e saaeebeesraeeseesseeerseeseesnns 45
Non-standard readmulti (generated SOL).....ccueecireierieereeeeete et se e ee e e e e e ee e s e e eae e aeeeneas 46
NON=KEY FEAM. .. eeeiietiiiee ettt e ettt e e ectte e e e e cee e e e et te e e e eebeaeeeeesseseeaeansseeeseanstasessassaneessnnsssaeseansseneesannes 47
N o A NN A == e L 11 USSR 47
SN VAU ToTe Fo N (SN oY o T=T - U o) o TSRS 48
) = Uale F=Ugo M aaToTe 1) AV o] 01T =\ o o PSSP 48
Non-standard modify (generated SQL)......cccueeceiriercieireeeieeste e ese e reeteeseeste e reesee e e e sraeereesraeeneas 48
N o Al oV 1 4T T L1 Y2 OSSP SRROE 49
N VAo L=Y oY d= o] o LT =X o 1P 49
Y= Lo =T I =T 40T 1Y = TP 50
Non-standard remove (ZeNerated SOL).....cccuiiceirieeiieieeeieesee e et e seeesreeseesteesreesase e reesnaeeseessaeenes 50
NON=KEY FEIMOVE. ... uiiiiiiiciieeeeeeitee e e eecttee e s e ettreseesateeeeeeaabeeeeesassteeeesastaaesaaassesesaasnssesessasssensesansseeessnnsses 51
[0} AV o= (ol 1o T 01T =1 o 1= ST 51
(o= (o] T 0 =]=] AR RO PPRUPPRRRPRR 51
(0% 1 (od al Yo 1 Y28 52
Entity handcrafted SQL OPEIratioNS.......ciiccciiieeecciiee e e cctee e e eeree e e serere e s e rtee e e e sabeeeesenbeeeesennseeeeesnssenesnnns 53
N\ Lo] a3 €= Y3 T = U o [O SPSPRIR 53
N Lo] A €= Y aTe F- U o [0 VU1 O OSSPSR 54
Using handcrafted SQL in non-standard entity operations OVErVIEW.........ccvvveerrieernieersiieessneessneens 58
FY =4y Y= L[] o PP PRSPPI 61
FN S =T ot - | oF= Y= TSR 61
ONE-10-0NE AZEIEEATION. ...ttt ictee ittt ittt ettt st et e sttt e sette e seate e s reeeseseeesseeesaseaesastaesseeesasteesassaessseeesans 61
ONE-10-MANY ABEIEEATION.c..utiieciei ettt ettt srree st e e st e e sbe e e ste e s sbee s sbeessabeessnteesssseessssaesnssaesnseeas 62
LN T =4 T o] (= T PP 63
EXPLCIt field @SSISNMENT.....uiiiiiiiiiieiiee ettt st e st e st e s st e e s s beessabaeesabeeessbaeesaseessnseens 64
Suppressing default assigNmMENt fIEldS. ...t e 66
(076 T 0 a1 o1 VT 0T =3=] 1 8 o1 £ PP 66
FOTBIEN KEY S nuiiiiiiiiieiie ettt ettt ettt e st e s st e s s bt e s st e e e sa b e e s esbaeesabaesassaeessseeeansaesansaessnsaessssaesassaesnsaeans 67
Adding a foreign key t0 a database table......cuiiiiiiiiicee e 67
Primary and foreign key Nnaming CONSIraINTS....cc.uiiiiiiriiieniiieniiee ettt see e s sae e s saee e ssaee e s 68
FOrEigN KEY EXAMPLE..ci i iiei ittt ettt ettt ete e st e e s bee e s bt e s s e e e s beeesbaeesabaeesasaeesaseessseessnseas 68
LN EXES. ettt ettt e s e e e e e et e e e e bt e e e bt e e e bt e e e bt e e e b ae e e bee e e bee e e bae e e baeeetaeeebaeeebaeeans 69
Adding an index to a database table OVEIVIEW.......ccuiiiiii ittt 69
INAEX NAMING OVEIVIEW.....utiiiiiieieiieiiiee ettt st e ssteessteessteessteesssteesssteesssseessssassssseessssessnseesssasssssassnns 69
B0 (o= =Y a 1] o] (= TS 69
UNIQUE INAEXES.. . ttieiieeiiieeeeeciteeeeeittee e s eecttte e e setteeeeessssteeeeseasteaesaaastaseesaasseseeassnstessesanssenessesnseesessnnssenesnansees 70
Generated Class NIEIAICRYuii i e e et ee e s e st et e e e e e nsteee e sensteeeesennseneeesnnnes 70
BasiC hierarChy EXamMPLE....uuii ettt e e ree e e e et ee e e e e e nbte e e e s nsteeesssnsasassennssneeesnnnes 71
Subclasses hierarChy EXamMPLe...... . it e e e e e s e ree e e s e e nbe e e e e s enbeeeeeeeanrenens 72
Abstract classes hierarchy @XampPLle.... .. e e e e e e e e raee e e e snreeeeeeanns 73
(O] T AT L= =Y (od 0|V ofo a1 o 1=T =1 o 1= 73
Class hierarChy SUMMIATY......ciiccciieeiccciee e e ettt e e eetee e e eeettee e e e e teeeesesabeeeeeeabesaseesnseneesssnsssnsessnsseneesannns 74
CUTAM IMS (UEUE CONNECTONS. .. ueiiuieereeeteeereeeteeeeeeeteeeeeeeseesseeesseenseeesseeaseeesseeaseesseseseessessseesseessseenseesseenn 74

IMS QUEUE CONNECLONS OVEIVIEW....uuieeeeecuiiieeeeiriieeeeeitteeeseesteeeseesssesessesssssessssassessesssssesssssassssssessassnees 74

(ool ala=Ter (o ae] oT=T 2=\ A Te] g 1Ko) {0] o 1T 74
(o[ofo]ala=Tea (o] ae] o =T F= N A To] TN eto] a1 o [T =1 4o 170U 75
CONNECTOr rULES AN FESTIICHIONS. .uiiiiciiieeiecttee et e e rre e e e sree e e e e rre e e e e e nbeeeeeenbeeeesennsseeeeans 76
Encoding methods for fundamental tyPesS.....cocuii i 77
Customized encoding and decoding Class USAZE......ccuuirrrierriuieiniiierriiiessieessieessreeessseessseessseesssseesns 78
Working with variable length fields eXampPle ...t 78
WOrKing With LiStS @XamIPLe..cuuiiiiiiiiiieiciie ettt ettt e st e s st e s s ba e e sbe e s sbaeesbaeesbaeesasaeenns 81
YU Lo Yol F- T30 Lo o 1= 1] o = PPN 83
BaSiC SUDCLASSING....iiiiiiiieiieiiie ettt ettt e st e s bt e e st ae e s be e e s beeesabaeesasaeeenbaeessaeesseaenn 83
REPLACING the SUPEICLASS. ..ciiiiiiieiieieiteecte ettt s e s s st e e e s be e s sbeessbeesssbaeesabaeesraennns 83
FAY oy = ot o £ T YT OO PSPR 84
T (o (o] TSP 84
Writing COde fOr SUDCLASSING..c...viiiiiiiiiiieiieeete ettt e s e e s e s s e e e s bee e ssbeeessneas 84
Using subclassing to override validation exit points eXample......ccccveieiriiierrieenniieeeeereeese e 84
Overriding Pre Data Access, Post Data Access, and On-Fail exit points example......cccocccevevveereieennne 84
JAYo] o] UTor=Nd o] a WelU 1] (o]] V- YA To] o VNS RR 85

1 0 4o - U -)
RNz (oYl o] oA ot o] g FY T =T = o RSPt 87
LI 16 2 10 T U &SR 87

List of Figures

vi

1. extra.generator.options property in BOOtStrap. PrOPEItiES...cccuuiiiiiciiieeeicciireeeeeiree e eecrre e e erveaee s esrraeeeeeas 23
2. Sample datamanager_config.xml for adding field level security information to the database................. 35
3. Inserting field level security SIDs into the infrastructure SecurityIdentifier table.......ccccoeveiieceiiiiennnnen, 35
4. Handcrafted data access implementation for a standard read........ccccoeevvieeeeccieee e 36
5. Handcrafted data access implementation for a readmMulti........ccccveeecieeciiieeiiieeceeeeeee e 37
O] o1 =Y o ST = o F= 1 (U] = TSRS 40
7. Pseudo-Code for Parameter STrUCTUMES.cuiiiiiei ettt ettt ettt e sate e s e e e sree e snaeesanees 40
8. SQL for nsmulti with a single (List) ParamMeter........i ettt et ste e e re e s re e raesaae s 55
9. Pseudocode for generated structs for use by nsmulti Operation.......ccocceeeeceeiriieenieesiee e 56
10. Generated Java interface for NSMULEi OPEIratioN.......oiiiccciiie et eeee e s e aaae s 56
11. Calling a nsmulti operation from handcrafted Java code (one parameter).......coccevevcvenerreenerseseesennens 56
12. SOL for nsmulti with a key and List ParameEters.......cccueeei ettt e e e rreee e e srreeeeeanns 57
13. Pseudocode for generated structs for use by nsmulti with key and list parameters......ccccecvveeeeecvennnnn. 57
14. Generated Java interface for nsmulti operation with key and list parameters........ccccccveeceeieceeecieeennee, 58
15. Calling a nsmulti operation from handcrafted Java code (two parameters).....ccccceveeeceeveeecreeseeseeennen. 58
16, STrUCT FOr FETUIN FESULL...eei ittt s ee e st e s st e e s bee e s bt e e s beessabeeesabaeesanees 60
D7, JAVA INTOITACE . c.tiiieieetecte ettt ettt et st e st s b e be e sa b e be e st e s be e s a b e s be e baesabeenbeenareenrean 60
RS IS O T F] o] (=T 0 g =T ol =1 o o PSRN 60
109, JAVA INTOITACE. ittt ettt e s et e e st e e s et e s et e e e te e s abe e e et e e et e e st e e sentaeseataenan 60
20. STrUCE fOr EMPLOYET KEY.eeiiueiieciiieete ettt e e e e s e e e e s st e e e s b e e e s beeeenbeeeasseeeensaeeasseeessseeeansens 61
21, SOL IMPLEMENTATION....utiiiieiiiiee ettt e ettt e errre e e eeette e e e e etreeeeseataeeesesraaeeeesssaeeeesassessesannssssesssnsssseennnsnes 61
22.SQL Implementation with qualified PAramMELErS......cicciieii e ee s e eraee e s e aaree e e 61
23. Example Java code for COMbBINING STIUCES.....ccuiiiiiieieieeccte ettt e e e e e be e e s e e e s araeeensae s 67
24. Equivalent Java code for COmMBINING STIUCTS.....uuiiiiiiieiiereiecree e ee et see e sree e sree e s ee s s ree e ssreeessneas 67
25. Using a factory to create an inStance Of My CLass......cuucvieiiiiciiiee it ceciee e s e s e cvree e s e svaee e e e s saaaeee e s 72
26. Sample QueueConnectorFieldMapPerS. PrOPEItIES. ... cuiccieiccireeeieeeecreeetreeerreeerreeesreeesrreeeseeessaeessneas 78
27. Pseudo code for the struct t0 be MapPPed:.......uvi et e e e ee e e e nra e e e e anaaeas 78
28. Pseudo code for the BPO INTEITACE. ...c.cutiiiiiieiteeieeeteete sttt ettt s s e s be e s s e e s s e e s sans 79
29. The property file entries that link the fields t0 the MapPPer.......coccui e 79
30. Mapper class implementation for variable StHNG ..o 80
31. Pseudo code for the Structs 10 be MapPPed:. . i vare e e raaee e e as 81
32. Pseudo code for the BPO INtEITACE.ccciiiiiiiinierieertestt ettt sttt sttt s e s beesaaesbeesaaesabessaesaseens 81
33. The property file entry that links the fields to the MaPPEr......cveeviecciieei e, 81
34. Mapper class implementation for list Of STIUCES.....ciiicciiiiiccee e s e rae e 82

List of Tables

O 00 9 6080 o WON B

. CUTAM ClasS STEIEOTYPES. . .vieiviecieecteecteeccteeetteeteeetee et e et e ete e teeeaeeeebeesaseebeessesenseesseesaseeteesassetaesaseenseenseennses 3
. CUIAM At UL STEIEOTYPES. .eiiuiiciieciie ettt ettt et e ee e te e s e e e te e bee et e e beesabeebaesssesnseesseesnseenseesaseensaesssenn 3
. CUram OPEIatioN StEIEOTYPES...uuiiiciiiietieeecite e ettt ettt eetteeeeteeeeeteeeeeteeeeeteeeeesaeeeesaeessaeessseessaeessseesseeesnsseennns 4
. CUIram relationNShiP STEIEOTYPES.....uiictiecieetee ettt ettt ettt et e teeete e e tee e eteeeteeebe e teeeabeebeeeaseeseessseenseesseennsean 5
oY1= o lo b= €= T £V 0 =TT USSP 6
. Domain primitive types at different levels of a Clram appliCation.........ccceceeeeeeeeeceeeeceeeecee e 12
. Mapping of class and attribute STErEOTYPES....uuiiii it e s e rbae e e s e saree e e s e avees 30
. DAt tYPES ANA NULLS...eeieeeeeeee et e e e e e e e te e e e te e e sabee e e abaeesabeeeentaeesnbaeesnsaeesnsasanssens 59
B =Y oo Te [T o T na 1] 4 o T =3O 77

vii

Chapter 1. Caram modeling reference

The Curam generator uses the UML meta-model to automatically generate all the required stubs,
skeletons, classes, and communications that are required to interact with a database and remote clients.
This approach allows the developer to concentrate on providing the application business logic.

Curam modeling overview

Use the Curam UML model to create client/server applications with a minimum of complexity. The UML
model simplifies database access, EJB management, and client/server interaction.

The Curam Generator uses the UML meta-model to automatically generate all the required stubs,
skeletons, classes, and communications that are required to interact with a database and remote clients.
By using the Ciram Generator, you can concentrate on the application business logic. The following guide
describes the tools and components that you use to model the application, and how the Curam Server
Code Generator handles each component when it generates classes.

The UML meta-model is a platform-independent model that describes the following aspects of the
application:

« Domains: application-specific data types. Domains are analogous to C++ typedefs.

Entities: the objects that are modeled and persistently stored by the application. Entities correspond to
relational database tables.

« Processes: related sets of activities to achieve a business goal.

Structs: passed as messages throughout the application. Structs are analogous to structs in C++.

Remote interfaces: client-visible interfaces that provide access to server functions.

You edit the UML meta-model with IBMRational® Software Architect. The Cliram Server Code Generator
generates the code that produces the following outputs:

« JavaServer implementation code.
« Java beans.
« XML for the database entities and other classes in the model.

The Curam Data Manager processes the XML produced by the Clram Server Generator. The Cdram Data
Manager produces the relevant SQL scripts that are used to create the required database structure for the
application.

The following guide also provides a reference for Ciram model-based functions. Examples of these
functions are Ciram domains, classes, operations, attributes and how they map to the underlying
database.

UML overview

Use Rational Software Architect to create and maintain UML constructs. This model is referred to as the
input meta-model.

The input meta-model provides the input for the Ciiram Generator. It is a logical representation of the
system. Use the meta-model mechanism to specify the content to generate.

The meta-model consists of a set of packages, which contain class representations. Classes have
attributes and operations that have relationships with one another. Classes in the input meta-model result
in various Java-generated classes and, in some cases, tables, and indexes in generated Database
Definition Language (DDL). DDL is an SQL language subset that defines the structure and instances of a
database in both a human-readable form and a machine-readable form.

© Copyright IBM Corp. 2012, 2018 1

UML and the input meta-model

UML constructs, which are created and maintained with Rational Software Architect, are collectively
referred to as the input meta-model.

The meta-model provides input for the Cdram Generator. It is a logical representation of the system that
you are developing. Use the meta-model mechanism to specify the content to generate.

The input meta-model consists of a set of packages, which in turn contain class representations,
potentially containing attributes and operations, that have relationships with one another. Classes in the
input meta-model result in various Java-generated classes and, in some cases, tables, and indices in
generated Database Definition Language (DDL). DDL is an SQL language subset that defines the structure
and instances of a database in both a human-readable form and a machine-readable form.

Architecture layers overview

The Curam architecture is conceptually divided into three layers: the Remote Interface Layer, the
Business Object Layer, and the Data Access Layer.

Remote Interface Layer

Use the Remote Interface Layer as an interface for business functions that a client program can use. The
Remote Interface Layer also interacts with third-party middleware components to ensure consistency and
atomicity of the transactions that run in the business function.

Business Object Layer
Use the Business Object Layer (BPO) to implement the server's entire business functionality.

BPOs represent the basic business entities that are modeled by the server application. BPOs implement
the business logic of a Cliram server application. Typically, BPOs manipulate entity objects in a business-
specific way. In business application development, aim to concentrate most development effort in the
BPO.

Related reference

Process classes
Process classes are a collection of operations that encapsulate a business process.

Data Access Layer

Use the Data Access Layer to coordinate all interactions with the back end Relational Database
Management System (RDBMS).

Related reference

Entity classes

An entity is a collection of fields and associated database operations. Entity classes are the fundamental
building blocks of systems that are developed with Cliram. They correspond to database tables. The
Curam generator supports automatic code generation for entity classes.

Stereotypes

Stereotypes are a Unified Modeling Language (UML) concept that further describes the various aspects of
the Curam application model. In UML, a stereotype is a string expression that assigns a classification to an
object.

In general, stereotypes influence the behavior of the generator and determine its output. Therefore, for
example, an entity class is identified by having a stereotype of entity and DDL and a data-access code that
is produced by the generator.

The following lists the supported stereotypes.

Class stereotypes
Curam class stereotypes include audit_mappings, extension classes, and facade classes.

The following table lists the class stereotypes, a short description of each, and a reference to a more
detailed description.

2 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Table 1: Curam class stereotypes

Class stereotype

Description

Reference

audit_mappings

Use an audit mappings class to
define extra fields in the database
for auditing purposes.

“AuditMappings classes overview”
on page 10

domain_definition

A domain definition is a meta-model
class that defines a data type.

“Domain definition classes” on page
12

entity

An entity class encapsulates data-
maintenance functions on a
database table.

“Entity classes” on page 15

extension

Use extension classes to change the
Audit Fields or Last Updated Field
options of an entity or struct class.

“Extension classes” on page 24

facade

Use facade classes to create client-
visible operations. Facade classes
provide a simplified interface to a
larger body of code, such as a class.

“Facade classes” on page 25

process

A process class encapsulates a
business process.

“Process classes” on page 26

rest

Use a rest stereotype class for
facades that contain nested lists
which REST API services use.

Curam REST API methods

struct

A struct class is a meta-model
representation of a Java class that
contains a collection of fields.

“Struct classes” on page 28

wsinbound

A WS Inbound class represents an
inbound web service.

Curam Web Services Guide

Attribute stereotypes
Curam attribute stereotypes include data items, defaults, and keys.

The following table lists the attribute stereotypes, a short description of each, and a reference to a more

detailed description.

Table 2: Curam attribute stereotypes

Stereotype

Description

Reference

audit_mappings

An audit field entry on the
AuditMappings class.

“AuditMappings classes overview”
on page 10

data item

An attribute on an RDO or ListRDO
class.

Data item attribute

Curam modeling reference 3

Table 2: Curam attribute stereotypes (continued)

Stereotype Description Reference

default A public attribute or field in a struct | “Struct classes” on page 28
class.

details An attribute or field that is part of an | “Entity classes” on page 15
entity but not part of the entity key.

key An attribute or field that is part of an | “Entity classes” on page 15
entity key.

Operation stereotypes

Curam operation stereotypes include batch, nsinsert, and readmulti.

The following table lists the operation stereotypes, a short description of each, and a reference to a more

detailed description.

Table 3: Curam operation stereotypes

Stereotype

Description

Reference

batch

Process by the Batch Launcher by
generated wrapper code.

“batch” on page 25 (facade class)
and “batch” on page 27 (process
class)

batchinsert

Use to insert large amounts of data
by batch.

“batchinsert” on page 51

batchmodify

Use to modify large amounts of data
by batch.

“batchmodify” on page 52

insert.

default Use for standard non-database “default” on page 25 (facade class)
operation. and “default” on page 27 (process
class)
insert Use for a standard database insert. | “Standard insert” on page 43
modify Use for a standard database update. | “Standard modify operation” on
page 48
nkmodity Use for a non-key database update. | “Non-key modify” on page 49
nkread Use for a non-key database read. “Non-key read” on page 47
nkreadmulti Use for a non-key database read. “Non-key readmulti” on page 47
nkremove Use for a non-key database delete. | “Non-key remove” on page 51
ns Use for a database operation for “Non-standard” on page 53
handcrafted SQL.
nsinsert Use for a non-standard database

“Non-standard insert (generated
SQL)” on page 43

4 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Table 3: Curam operation stereotypes (continued)

Stereotype Description Reference
nsmodify Use for a non-standard database “Non-standard modify (generated
update. SQL)” on page 48
nsmulti Use for a database operation for “Non-standard multi” on page 54
handcrafted SQL.
nsread Use for a non-standard database “Non-standard read (generated
read. SQL)” on page 45
nsreadmulti Use for a non-standard database “Non-standard readmulti
read. (generated SQL)” on page 46
nsremove Use for a non-standard database “Non-standard remove (generated
delete. SQL)” on page 50
qconnector Use for connecting to external JIMS. | “gconnector” on page 26 (facade
class) & “gconnector” on page 28
(process class)
read Use for a standard database read. “Standard read” on page 44
readmulti Use for a standard database read. “Standard readmulti” on page 45
remove

Use for a standard database delete.

“Standard remove” on page 50

wmdpactivity

Use for deferred processing.

“wmdpactivity” on page 26
(facade class) and “wmdpactivity”

on page 28 (process class)

Relationship stereotypes

Curam relationship stereotypes include assignable, extension, and foreignkey.

The following table lists the attribute stereotypes, a short description of each, and a reference to a more

detailed description.

Table 4: Curam relationship stereotypes

Stereotype

Description

Reference

aggregation

Use an aggregation to embed or
nest instances of one type of class
within another type of class.

“Aggregation” on page 61

assignable Use an assignable relationship to “Assignable” on page 63
map differing or exclude fields for
an assign function.

extension The link between an extension class

and a target class.

“Extension classes” on page 24

Curam modeling reference 5

Table 4: Curam relationship stereotypes (continued)

Stereotype Description Reference

foreignkey A modeled description of a “Foreign keys” on page 67
database foreign key.

index A modeled description of a “Indexes” on page 69
database index.

uniqueindex A modeled description of a “Unique indexes” on page 70
database unique index.

Data types

The input meta-model supports a number of data types that provide abstraction for you from the different
underlying data types that the database, middleware, and Java layers use. Use these data types to define
attributes, arguments, and return values in a way that is platform-neutral and database-neutral.

Use the SDEJ to map the attributes, arguments, and return values to the appropriate data type in each
layer of the application.

The following table lists the Clram data types and a short description of each.

Table 5: Curam data types

Type Description

SVR_BLOB Use SVR_BLOB to hold binary data.
Corresponds to class curam.util.type.Blob.

Requires a size qualifier that is used only if the field is used on a database
table.

Fields of type SVR_BLOB might be null on the database.

SVR_BOOLEAN Use SVR_BOOLEAN to holding binary values.
Corresponds to the primitive Java type boolean.

Stored as a single character field on the database where 0 = false and 1 =
true.

Fields of type SVR_BOOLEAN cannot be null on the database.

SVR_CHAR Use SVR_CHAR to hold single character values. Therefore, you cannot use
this data type to hold strings or arrays of characters. SVR_CHAR does not
take a size qualifier.

Corresponds to the primitive Java type char.
Fields of type SVR_CHAR cannot be null on the database.

SVR_DATE Use SVR_DATE to hold date values with a resolution of one day.
Corresponds to class curam.util.type.Date.

Fields of type SVR_DATE can be stored as null on the database.

6 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Table 5: Curam data types (continued)

Type Description
SVR_DATETIME Use SVR_DATETIME to hold date and time values with a resolution of one
second.

Corresponds to class curam.util.type.Date.
Fields of type SVR_DATETIME can be stored as null on the database.

SVR_DOUBLE Use SVR_DOUBLE to hold floating point numbers.
Corresponds to the primitive Java type double.
Fields of type SVR_DOUBLE cannot be null on the database.

SVR_FLOAT Use SVR_FLOAT to hold floating point numbers.

Use to hold floating point numbers.

Corresponds to the primitive Java type float.

Fields of type SVR_FLOAT cannot be null on the database.

SVR_INT8 SVR_INTS is an 8-bit integer.
Corresponds to the primitive Java type byte.

Fields of type SVR_INT8 cannot be null on the database.

SVR_INT16 SVR_INT16 is a 16-bit integer.
Corresponds to the primitive Java type shozrt.

Fields of type SVR_INT16 cannot be null on the database.

SVR_INT32 SVR_INT32 is a 32-bit integer.
Corresponds to the primitive Java type int.

Fields of type SVR_INT32 cannot be null on the database.

SVR_INT64 SVR_INT64 is a 64-bit integer.
Corresponds to the primitive Java type long.
Fields of type SVR_INT64 can be null on the database.

SVR_MONEY SVR_MONEY is a fixed-point numeric value with two decimal places that
hold currency values.

Corresponds to the primitive Java type curam.util.type.Money.
Fields of type SVR_MONEY cannot be null on the database.

Curam modeling reference 7

Table 5: Curam data types (continued)

Type Description

SVR_STRING Use SVR_STRING to hold string values
Corresponds to the Java class java.lang.String.

A SVR_STRING can, optionally, have a length qualifier. A SVR_STRING
without a length qualifier is a SVR_UNBOUNDED_STRING. Strings that are
stored on the database must have a length qualifier to enable a maximum
size to be specified for the database column.

You can store a SVR_STRING on the database as either CHAR, VARCHAR
or CLOB, depending on its size and the type of database.

Fields of type SVR_STRING can be null on the database.

SVR_UNBOUNDED Use SVR_UNBOUNDED to hold string values for which it is not necessary
_STRING to specify a maximum length.

Corresponds to the Java class java.lang.String.

SVR_UNBOUNDED_STRING is the only Ciram data type that you cannot
use by an attribute of an entity class. You cannot use the
SVR_UNBOUNDED_STRING data type to specify its maximum size or to
define a database column. To define a string field on an entity, you must
use SVR_STRING with a length qualifier.

Packages

The package structure in the UML meta-model does not affect any of the generated outputs. The
hierarchy of the meta-model is effectively flattened during the build process.

The structure of the hierarchy is significant because options that are set at the package level apply to all
classes and other packages within that package. Any option can be overridden in any of the subpackages
by setting the option at that level to a different value.

The CODE_PACKAGE option

The CODE_PACKAGE option, when specified, affects struct, entity, facade, and process classes within that
package and in the packages contained within that package.

Two or more process or struct classes in the model can have the same name. Equally named classes are
distinguished (on the server side only) by their CODE_PACKAGE value, which might be specified for one of
its containing packages.

As noted, the CODE_PACKAGE option, when specified, affects struct, entity, facade, and process classes
within that package and in the packages contained within that package. When you apply the
CODE_PACKAGE option to a class, it moves that class into a package within the default package, curam,
and includes any of the package's parent CODE_PACKAGE options. The following example outlines how
the CODE_PACKAGE option works.

The UML meta-model class MyProcess in the model creates the following Java classes:

« <ProjectPackage>.intf.MyProcess
« <ProjectPackage>.base.MyProcess
e <ProjectPackage>.fact.MyProcessFactory

You must implement:

« <ProjectPackage>.impl.MyProcess

8 IBM Curam Social Program Management: Ciram Modeling Reference Guide

If you want to create another class that is named MyProcess, you can do so if you create the class within
a package for which a different CODE_PACKAGE option was specified. Creating a MyProcess class
ensures that you can store the corresponding Java classes in separate locations on disk.

You specify the following option for the package that contains the MyProcess class (the option must be
manually typed into the documentation for the package in the UML meta-model):

« CODE_PACKAGE = custom
The following classes and interfaces result:

« <ProjectPackage>.custom.intf.MyProcess
e <ProjectPackage>.custom.base.MyProcess
e <ProjectPackage>.custom.fact.MyProcessFactory

You must implement <ProjectPackage>.custom.impl.MyProcess.

Rules for the CODE_PACKAGE feature
You must apply specific rules to the CODE_PACKAGE feature.

Apply the following rules to the CODE_PACKAGE feature:

« CODE_PACKAGE values must be valid Java identifiers.

« Setting the CODE_PACKAGE option for a package recursively affects subpackages and process, facade,
entity, and struct classes within the package.

« If you specify a CODE_PACKAGE value in a package whose parent also specified a CODE_PACKAGE
value, the value that you specify overrides the value that is specified by the parent.

The following is an example where the value that you specify overrides the value that is specified by the
parent:

— Package A contains package B
— Package A specifies CODE_PACKAGE = cpl
— Package B specifies CODE_PACKAGE = cp2

Then:

— The effective code package of classes in package A is cpl.
— The effective code package of classes in package B is cp2 (not cpl.cp?2).

« A CODE_PACKAGE setting of . (dot) or $ is interpreted as blank because a literal blank is ignored by the
generator, and cannot be used to override a non-blank setting.

« You can specify multiple level code packages by using similar syntax to Java packages whereby each
level is delimited by a dot. For example, the following code package setting represents three levels of
Java packages:

CODE_PACKAGE =cpl.cp2.cp3

« The CODE_PACKAGE option allows multiple struct and process classes to have the same name, but only
one instance of each facade class name can exist. Ciram clients currently cannot distinguish between
multiple facade classes with the same name, regardless of their CODE_PACKAGE setting.

« Like process and struct classes, the behavior of the CODE_PACKAGE option with entity classes results in
generated interface and struct classes that are produced in different packages. However, entity class
names must still be unique throughout the application regardless of the CODE_PACKAGE option setting.
The reason is all entities correspond to tables in the single underlying database.

« Generated list wrapper structs (triggered by the existence of readmulti operations) are produced in the
same code package as the structs that they wrap. This code package might not be the same code
package as the operation that produced them.

Curam modeling reference 9

AuditMappings classes overview

Audit fields contain extra information about the modification history of each record. You can add audit
fields to database tables for auditing purposes.

Audit fields are available on entity and struct classes and are updated only by certain entity operations.
You set the information in the audit fields. You must include the following information:

 Creation time

 Modification time

« Program ID

» UserID

Audit fields consist of all the attributes of a special class in the input meta-model called AuditMappings.
You can automatically add a field corresponding to each attribute of this special class to the database
table and, also, to all the standard details structs for the entity.

AuditMappings classes rules
Specific rules apply to the AuditMappings class and to the AuditMappings implementation class.

The following rules apply to the AuditMappings class:

« The stereotype must be audit_mappings.

« The attributes of the class must be valid domain definitions.

« The class must be "flat", that is, the class cannot aggregate any other classes.

You can make an audit mapping available to application by adding a class that is named AuditMappings
with a audit_mappings stereotype to the model. Individual entity classes can then enable audit mappings
by setting the Audit Fields option.

If the meta-model contains an AuditMappings class, then provide a Java implementation class for it in
the imp1l package.

Note: If this implementation class is not present, the server application cannot be compiled. To address
this, perform ONE of the following actions:

« Delete the AuditMappings class from the model.

OR

- Explicitly disable audit mappings completely by specifying the generator switch -noauditmappings
option.

The following rules apply to the AuditMappings implementation class:

« The class must contain the same fields as defined in the meta-model, that is, they must have the same
name and data type.

« The fields must be public.
« The class does not need to inherit from any other class.

« Optionally, the class can contain the public void set(final boolean isInsert, final
boolean isModify) method.

The public void set(final boolean isInsert, final boolean isModify) call-back
method that is called whenever necessary (such as during inserts and modifies) by the data access
layer. Do not use this call back method to populate the fields of the AuditMappings class. The two
boolean parameters indicate whether the database operation is an insert or a modify.

« Optionally, the class can contain a public void method that is called set, which takes no parameters.
The data-access layer calls this method whenever fields require updating. Any public methods whose
names start with set and take no parameters are called in arbitrary order. Support for using multiple
setter methods will be discontinued.

10 IBM Curam Social Program Management: Ciram Modeling Reference Guide

If the details struct contains any of the audit mapping fields, then these fields are updated in the struct
automatically during the operation and are included in the update or insert.

The corresponding fields of the audit mapping fields that are not present in the details struct are updated
on the database. Therefore, it is unnecessary to include the audit mapping fields in the details struct in
order to update the audit mapping fields on the database. However, the audit mapping fields are not
included in table-level auditing.

AuditMappings classes outputs

Turning on auditing for an entity affects fields and the infrastructure data-access code. Use specific
operation stereotypes to set the audit information.

The following are the effects of turning on auditing for an entity:

- Fields are automatically added to the entity and to the generated standard details struct for the entity.

« Infrastructure data-access code automatically notifies the AuditMappings class to populate its fields
when audit fields are updated on the database.

Use the following operation stereotypes to set audit information:
« modify

e nsmodify

e insert

e nsinsert

e nkmodify

- batchinsert

« batchmodify

AuditMappings classes options

Two options are available for attributes of the AuditMappings class in the model. Depending on the
option that you set, specific operations do not change the value of the applicable audit mapping field.

The following two options are available for attributes of the AuditMappings class in the model:

 Exclude from modify
« Exclude from insert

If the Exclude from modify option is set for an audit mappings field, then the value of this field is not
changed by any of the following operations:

- modify
e nsmodify
e nkmodify

Therefore, the field is set when a record is inserted and is never changed by subsequent updates.
Similarly, if the Exclude from insert option is set, then the value of the field is not set by any of the
following operations:

e insert
e nsinsert

Instead, the value of the field is changed by any subsequent updates. The default value for each of these
options is false.

Note: It is not possible to exclude audit mapping fields from operations of the ns stereotype. Use
handcrafted SQL in these operations to access audit mapping fields directly.

Note: If your audit mappings include a time stamp, then populate this field with the value that is returned
by TransactionInfo, getProgramTimeStamp (). This value ensures that all audit mapping-enabled

Curam modeling reference 11

tables that are modified during the transaction have the same time stamp value even though they were
not written to at the same time.

Domain definition classes

Domains are data type definitions that resolve to a primitive data type or another domain.

In relational database terminology, a domain defines the permitted range of values for an attribute of an
entity. In Cdram, domain definitions work in a similar way. Equivalent primitive types are supported across
client, middleware, server, and database components of a Ciram application.

Table 6: Domain primitive types at different levels of a Curam application
Curam Architecture Layer Datatypes

Server Remote Interface Layer Java datatypes

Server Business Object Layer Java datatypes

Server Data Access Layer Java datatypes

Database Database datatypes

Working with domains, rather than primitive types, means that you are not required to manage different
representations of data in the various application layers. For this reason, you must define entity and
structure attributes in terms of a previously defined domain. You cannot use primitive data types directly.

You can also define validations on each domain type in the client application. You can then execute a
specific validation for all attributes that are defined in terms of a domain type before transactions are
invoked on the server. This client-side, pre-flight validation provides the user with feedback on basic data
type validation without the need to call the server. The subsequent reduction in failed transactions results
in lower network traffic.

Domain definition class options
The following 15 options are available for domain definitions.

Code table names

A code table name contains the valid entries for the domain definition. If the domain definition represents
a hierarchy of code tables, use the name of the lowest code table in the hierarchy to specify the code
table name.

Editable fields

For fields where a code table is specified, the client application displays a drop-down list of valid values
for the field if the field is editable. For a code table hierarchy where the code table field is editable, n-
levels of drop-down lists are displayed, where n is the number of code tables in the hierarchy.

Read-only fields

For fields where a code table is specified, the client application displays a code table translation for the
field if the field is read-only. For a code table hierarchy where the code table is read-only, only the
translation for the lowest level code table is displayed.

This option is only valid for domain definitions that you defined in terms of one that has the Code Table
Root option set to yes.

12 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Code table roots
A code table root specifies whether the current domain definition is the root of a hierarchy of a code table
domain definition.

If the code table root is set to yes, then all domain definitions that are defined in terms of it must specify
the Code Table Name option. If you forget to specify the Code Table Name option, the generator displays
an error.

As this domain definition holds code table codes, the domain definition type must match that of a Cliram
code table code, that is, SVR_STRING<10>.

Related reference

Code table names

A code table name contains the valid entries for the domain definition. If the domain definition represents
a hierarchy of code tables, use the name of the lowest code table in the hierarchy to specify the code
table name.

Compress embedded spaces

A compress embedded space specifies that any extra whitespace (rather than all whitespace) is
embedded in the string and that all leading and trailing whitespace is removed before it is sent to the
server.

A whitespace character consists of any character for which java.lang.Character.isWhitespace(char)
returns true. These characters include the space character, the tab character, and the line-feed character.

Extra whitespace consists of a run of whitespace characters immediately after another whitespace
character. This method means that each run or sequence of whitespace characters is deleted except for
the first whitespace character of the run. For example, a pair of words that are separated by three spaces
are converted to the pair of words that are separated by one space.

In cases where the first whitespace character is not a space, the results might not be as expected. For
example, for a pair of words that are separated by a carriage-return, a line-feed, and a space, space is
converted to the pair of words that are separated by the carriage-return character.

If you use this feature on multiple-line text fields, it removes indentation.

Note: Switching on this option also trims leading and trailing whitespace from the string, regardless of the
Remove Leading Spaces and Remove Trailing Spaces option settings.

Convert to uppercase
Convert to uppercase converts the contents of the string field to uppercase before it sends the string field
to the server.

Custom validation function name
Use the custom validation type to specify the name of the function that associates the custom validation
type with the application UML model.

Domain definition validations that are implemented in the client infrastructure include a custom validation
type that corresponds to a developer-supplied function. The function performs validations on data users
who are entered via the client interface.

Use this option to specify the name of this function that associates it with the application UML model. The
value of the option must be the name of a function (that is, just the function, not class + function as the
class name is defaulted in the client code). It must also be a valid Java identifier.

Note: This feature is deprecated. For more information on the new domain plug-in system, see the
Custom Data Conversion and Sorting related link.

Related reference
Custom Data Conversion and Sorting

Curam modeling reference 13

Default option
A default option specifies that the default option field contains a default value after it is displayed.

Maximum size

The maximum size specifies a maximum number of characters you must enter in this field before it is sent
to the server and forms the field storage size on the database. This feature is implemented in the Cliram
client application and database DDL.

Maximum value
The maximum value specifies the maximum permitted numeric value that you must enter into this field
before it is sent to the server.

Minimum size
The minimum size specifies a minimum number of characters that you must enter in this field before it is
sent to the server.

Minimum value
The minimum value specifies a minimum permitted numeric value that you must enter in this field before
it is sent to the server.

Multibyte expansion factor
For string domains, the multibyte expansion factor specifies an expansion factor (float from 1.0 to 4.0) to
apply when multibyte character set (MBCS) data is used with DB2 or DB2 for z/0S.

The multibyte expansion factor overrides the global build-time property
(curam.db.multibyte.expansion.default.factoz). Only use the multibyte expansion factor to
deviate from the global setting (for example, a particular domain is causing a DB2 limit to be exceeded). A
setting of 1.0 effectively turns off expansion for this domain. You can set this option for domains in
instances where you know that the contents never contain localized data. For example, the domains are
constrained to programmatically defined Western characters and they cannot be input via a client.

The same option set for a string entity attribute can override this domain setting. For more information,
see the Multibyte expansion factor related link. This option is ignored if the feature is turned off (the
curam.db.multibyte.expansion property set to false at build time). For more information, see the
Planning for MBCS Data related link.

Related reference

Multibyte expansion factor

The multibyte expansion factor is an override for the domain-level multibyte expansion factor. The
multibyte expansion factor only applies to string entity attributes.

Pattern match
A pattern match specifies a regular expression that the string value must match before it is sent to the
server.

The regular expression must match the whole string, not just a portion of it. The regular expression syntax
is the standard Java regular expression syntax that is used in Java 1.5. For more information on the
supported syntax for these regular expressions, see the JavaDoc documentation for the
java.util.regex.Pattern class thatis supplied with your Java SDK.

14 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Remove leading spaces
The remove leading spaces option specifies that any leading spaces are removed from the string before
the string is sent to the server.

Remove trailing spaces
The remove trailing spaces option specifies that any trailing spaces are removed from the string before
the string is sent to the server.

Storage type
The storage type option specifies the type of string storage datatype to use for this domain definition on
the database. The storage type is only relevant for string domain definitions where a length is specified.

Overriding a domain definition

Use the Server Development Environment (SDEJ) to override existing domain definitions without
modifying the original domain definition. Use this feature in situations where the original domain
definition is provided by a third party. Therefore, do not modify this feature locally.

The following are the suggested uses for overriding a domain definition:

« Change the maximum size of a string field.
« Change the Storage Type of a domain definition.

Domain definition override examples
To override a domain definition, create a new domain definition with the same name that is prefixed by an
asterisk.

For example, to override the domain definition PERSON_NAME create a domain definition named
*PERSON_NAME. At build time, the system uses the overridden version, complete with its own data type
and options, instead of the original version.

Domain definition override considerations and limitations
Overriding a domain definition affects all usages of the original domain definition.

It is your responsibility to ensure that pre-existing functionality is not broken by overriding domain
definitions. Attempting to change the type of the domain definition, the code table name, or the code
table root is not recommended.

Domain definition usage rules
You can override a domain definition only once.
The following rules apply to using domain definitions:

« You cannot override a domain definition override. For example, if *PERSON_NAME overrides
PERSON_NAME you cannot further override *PERSON_NAME with **PERSON_NAME.

« You cannot create overrides for domain definitions that do not exist. For example, if there is a domain
definition override named *PERSON_NAME then the model must contain a domain that is named
PERSON_NAME.

 You cannot use domain definition overrides as attributes of structs or entities, that is, attributes cannot
use domain definitions where the name of the domain definition begins with an asterisk.

Entity classes

An entity is a collection of fields and associated database operations. Entity classes are the fundamental
building blocks of systems that are developed with Cliram. They correspond to database tables. The
Curam generator supports automatic code generation for entity classes.

Entity classes have a stereotype of entity. An entity class is essentially an object wrapper for a database
table. The attributes of an entity are transformed to columns on the database table. Entities can have
various data maintenance operations such as read, insert, modify, remove, readmulti (read multi reads
multiple records from a table based on a partial key).

Curam modeling reference 15

Standard operations such as read or insert operate on a single database table by default.

Entities can have attributes, operations, dependencies, inherits relations, and aggregations. A set of rules
is associated with each of these constructs.

Related reference

Data Access Layer
Use the Data Access Layer to coordinate all interactions with the back end Relational Database
Management System (RDBMS).

Entity class rules

Entities must have at least one attribute. The exception is if the entity is a subclass of another entity, in
which case the entity must have no attributes. Entities are not allowed to aggregate other classes.

Entity attributes
Entity attributes correspond to columns with the same name on their associated database table.

Attributes are not contained in the generated BOL or RIL because Clram interface objects are stateless
and atomic. Attributes are contained within generated standard key and details structs.

The stereotype of an entity attribute cannot be blank. It must be either a details attribute or a key
attribute. For information about struct class outputs, see the Struct class outputs related link.

Related reference

Struct class outputs

Use input meta-model struct classes to map directly onto generated Java classes in the
<ProjectPackage>.<CodePackage>.struct package. The Java struct class contains public fields
corresponding to each attribute defined in the model.

Details attribute
The details attribute is included as a column on the database table and in the standard details struct for
the entity.

For more information about standard details structs, see the Standard details structs related link.

Related reference

Standard details structs

Standard details structs are generated for all entity classes. Standard details structs contain all the
attributes of the class. Use this struct as a data parameter to insert reads and updates. Structs containing
arrays of standard details structs are returned from standard readmultioperations.

Key attribute
The key attribute is included as a column on the database table.

The key attribute forms part of the primary key. The key attribute is included in both the standard details
struct and the standard key struct for the entity. For more information about standard key structs, see the
Standard key structs related link.

Related reference

Standard key structs

16 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Standard key structs are generated for entity classes. Standard key structs contain those attributes in the
class whose stereotype is key. If no such attributes exist in the class, then no standard key struct is
generated.

Entity operations

Entity operations can be divided into two categories as determined by their stereotype: database and
non-database operations.

Database operations
Database operations are operations where the generator recognizes the stereotype.

Database operations are fully or partially generated by the generator and operate directly on the RDBMS
table that is related to the entity. Database operations include standard operations to read, insert, update,
delete, together with their variants.

Non-database operations
Non-database operations are operations where the generator does not recognize the stereotype.

For non-database operations, the generator only creates prototypes and skeletons. It does not generate
data-access operations. You must implement in the BOL the body of these functions.

The operations available for entity classes are listed in operation stereotypes. For more information, see
the Operation stereotypes related link.

Related reference

Operation stereotypes
Curam operation stereotypes include batch, nsinsert, and readmulti.

Entity outputs

Entity classes are transformed into classes with operations and no attributes. The attributes from the
entity in the input meta-model are transformed into one or more structs.

Standard key structs

Standard key structs are generated for entity classes. Standard key structs contain those attributes in the
class whose stereotype is key. If no such attributes exist in the class, then no standard key struct is
generated.

Use the standard key struct as a parameter for operations that require a primary key. For example, read
and delete operations.

Standard key structs do not appear in the input meta-model, but you can use them as arguments to
operations in the input meta-model. When you are assigning a name to standard key structs, use the
name of the corresponding entity with the word Key appended. For example, the standard key struct for
the class Employer is EmployerKey.

Standard details structs

Standard details structs are generated for all entity classes. Standard details structs contain all the
attributes of the class. Use this struct as a data parameter to insert reads and updates. Structs containing
arrays of standard details structs are returned from standard readmultioperations.

Standard details structs do not appear in the input meta-model, but you use them as arguments to
operations in the input meta-model.

When you are assigning a name to standard details structs, use the name of the corresponding entity with
the word Dt1ls appended. For example, the standard details struct for the class Employex is
EmployerDtls.

Curam modeling reference 17

Standard list structs

Standard list structs are generated for entity classes that contain one or more operations of stereotype
readmulti or nkreadmulti. This struct contains a single attribute, dt1ls, that is a sequence of the standard
details struct for the entity.

The name for a standard list struct is the name of the standard details struct for the entity with the word
List appended. For example, the standard details struct for the class Employer is EmployerDtlslList.

Entity class options

The options available for entity classes are entity class abstracts, allow optimistic locking, audit fields,
enable validation, last updated field, No Generated SQL, and replace superclass.

Entity class abstracts
The entity class abstract specifies that the class is abstract. Abstract classes are typically subclassed by
other classes.

For more information about abstract classes and subclassing, see the Subclassing related link. .
Related reference

Subclass modeling

Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Allow optimistic locking
Optimistic locking only applies to entities that are not subclasses.

Optimistic locking is supported on certain database operations. To use optimistic locking on an entity's
operation, you must first switch on this option for the class.
Related reference

Operations
Operations represent the functions of modeled classes that can, depending on their type, be handcrafted
or generated by the Curam generator.

Optimistic locking for concurrency control
Using optimistic locking for concurrency control means that more than one user can access a record at a
time, but only one of those users can commit changes to that record.

Audit fields
Audit fields only apply to entities that are not subclasses.

You can configure extra fields to store additional information on a database table for auditing purposes.
For more information on these fields, see the AuditMappings classes overview related link.

If this option is switched on, then the available pre-configured audit fields are automatically added to this
entity and its standard details struct.

Related reference

AuditMappings classes overview
Audit fields contain extra information about the modification history of each record. You can add audit
fields to database tables for auditing purposes.

Enable validation
The validation operation is an exit point that automatically calls to validate data. This exit point is called
before the data-access layer entity operations whose stereotype is insert or modify.

For more information about exit points, see the Exit points related link.

Related reference
Exit points

18 IBM Curam Social Program Management: Ciram Modeling Reference Guide

An exit point is a callback function that you write. It is executed at a predefined strategic point by the
server.

Last updated field
The last updated field is only applicable to entity classes that are not subclasses.

To use the last updated field feature for an entity class, first switch on the feature. The feature adds an
extra timestamp field to the specified entity. Typically, the extra timestamp field is updated with the
current date and time whenever the record is written. However, an exception is where the write was
performed by an ns operation. For more information on the last updated field, see the Last updated field
related link.

Related reference

Last updated field
The last updated field is a field that you can add to database tables to contain extra information about the
modification time of each record for reporting purposes.

No Generated SQL
No Generated SQL switches on the No Generated SQL for all database operations of the entity class.

Use individual entity operations to override the value of the No Generated SQL option.
For more information, see the No Generated SQL related link.

Related reference

No Generated SQL
Use No Generated SQL to avoid generating data access code. As a result, you can provide your own
implementation.

Replace superclass
The replace superclass option is only relevant to entities that are subclasses.

If you set the replace superclass option, then requests to create instances of the superclass create the
subclass. Use this feature to change functionality by replacing subclasses with other classes.

Optimistic locking for concurrency control

Using optimistic locking for concurrency control means that more than one user can access a record at a
time, but only one of those users can commit changes to that record.

Once one user modifies the record, another user cannot modify it without first rereading the latest version
of the record. Thus, it is optimistic in the sense that one user does not expect another to attempt to
modify the same record at the same time.

The record the user is editing is locked for update only while the changes are being committed. Locking
the record in this way has the advantage of minimizing the time for which a lock is in place.

The disadvantage of optimistic locking is that when a user begins to edit a record, it is not guaranteed that
the user will succeed. An update that relies on optimistic locking fails if another user updates a record
while the first user is still editing it.

Optimistic locking is implemented by adding an extra field to the database table. The extra field contains
the version number for the record and is automatically incremented each time that the record is modified.
The generated DAL code checks this version number while the record is being updated. If the version
number on the database table is not the same as the version number on the original record, then the
update operation is aborted and an exception is thrown.

Optimistic locking is permitted only on entity classes.

The following operation stereotypes support optimistic locking:
- modify

e nkmodify

e nsmodify

Curam modeling reference 19

The following operation stereotypes are affected by optimistic locking:

« insert - The version number field is automatically included in the details parameter and is
automatically initialized before it is written to the database.

- nsinsert- If optimistic locking is enabled on an entity class, you must include the version number field
in the details struct. The details struct is automatically initialized before it is written to the database.

Optimistic locking is only possible for operations that modify a single database record and whose details
struct includes the generated version number field. Therefore, for non-standard operations, you must
ensure that the non-standard key parameter always identifies a single unique record and that the version
number field is included in the details struct. For nkmodify operations, optimistic locking is only possible
if the database table contains exactly one record. This field must be called versionNo and its type must be
VERSION_NO. You must ensure that the model contains a numeric domain definition named
VERSION_NO.

To support optimistic locking on an operation, you must do two things:
 Enable the Allow Optimistic Locking option on the entity.

By enabling Allow Optimistic Locking, the version number field is automatically added to the entity.
- Enable the Optimistic Locking option on the operation.

By enabling Optimistic Locking, the generator generates code in the DAL for the operation checks and
updates the record version numbers accordingly.

Table-level auditing
Use the Database table-level auditing option to enable table-level auditing.

Auditing is supported on all stereotyped entity operations except ns, nsmulti, batchinsert, and
batchmodify.

The information that is captured by table-level auditing is stored in the database table AuditTrail.

Table-level auditing is enabled by switching on the Database table-level auditing option for an operation.
When you switch on this option, the generated data-access code records audit information for an
operation.

The type of audit information that is recorded depends on whether optimistic locking is switched on or off
for the operation. If optimistic locking is switched on, then the audit information includes the information

of the new and old versions of the record, otherwise it only includes information about the SQL operation

invoked.

Information captured by table-level auditing

Table-level auditing captures information such as the date and time of the transaction and the ID of the
user who invoked the transaction. Before and after audit information about the record is only captured if
optimistic locking is switched on.

The following information is captured by table-level auditing;:

« Date and time - The date and time of the transaction.

 User ID - The ID of the user who invoked the transaction.

 Table name - The name of the database modified table.

« Program name - The FID of the invoked transaction.

« Transaction type - Indicates whether the transaction was online/batch/deferred/ and so on.

« Operation type - Indicates whether the operation was of one of the following: create, read, update, or
delete.

 Key info - The key that is provided to this operation. This key can identify one or many records.

- Details of changed data - Logged details of the changed data in an XML format. You can see the exact
format of this XML in the JavaDoc details for the class curam.util.audit.AuditLogInterfacein
the doc/api directory of the SDEJ. The JavaDoc includes the names of the fields that are referenced by

20 IBM Curam Social Program Management: Ciram Modeling Reference Guide

the details struct, the field types, the new version of the field data and, if optimistic locking is enabled,
the old version of the field data.

If optimistic locking is switched on, then it is guaranteed that only a single record was affected by the
operation. Therefore, the audit information includes information about the record before and after the
operation. The old version of the record is reread. The old value of each field is compared to the new
value, and any changed field is included in the audit information, that is, unchanged fields are filtered
out.

If optimistic locking is switched off, then, for performance reasons, the record is not reread during the
update. Therefore, the audit information contains only the new versions of all the fields that are involved
in the update, and not a before-after comparison of the record. Also, any non-optimistic updates apart
from the 'modify' stereotype can potentially affect more than one record. In that case, you cannot
record a before-after comparison of the update. All the detail fields are included, regardless of whether
the new value is different to the old value.

You can compress this data when you use the default auditing handler by specifying the
curam.audit.audittrail.datacompressionthreshold property. For more information about
this property, see the Curam Configuration Parameters related link.

Related concepts
Curam Configuration Parameters

Audit information storage
By default, the captured audit information is written to the AuditTrail database table.

You can also supply your own auditing handler by specifying a class that implements the
curam.util.audit.AuditlLogInterface interface. For more information, see the Customization
related link.

Related reference
Customization

Exit points
An exit point is a callback function that you write. It is executed at a predefined strategic point by the
server.

Four types of exit points are supported: pre-data access, post-data access, validation, and on-fail.

Pre-data access
The pre-data access function is called before the DAL function (but after validate functions).

The function is named after the method to which it belongs, prefixed with pre, for example, preread.

Post-data access
The post-data access function is called after the DAL function.

The function is named after the method to which it belongs, prefixed with post, for example, postread.

Validation
The validation function is called before standard insert and standard update operations, and also before
the pre-data access functions. It provides a common place to put validation code.

The validation function is named autovalidate. Note that this exit point is enabled per entity rather
than per operation.

The validation exit point always has exactly one parameter, which is the standard details struct for the
entity, and is declared to throw the same exceptions as stereotyped operations of the entity.

Since only insert and modify are guaranteed to pass in the standard details struct, it is only these
operation stereotypes that can utilize the validation exit point. Other operation stereotypes do not utilize
this exit point, even if they have the standard details struct as one of their parameters.

Curam modeling reference 21

On-fail
The on-fail function is called if an error occurs in the data access function.

The on-fail function is named after the method to which it belongs, prefixed with onFail, for example,
onFailread.

Note: For non-void operations, the return class is included in the arguments to this method and is always
null.

Exit point parameters
In most cases, the parameters to an exit point method must include the parameters to the method to
which the exit point belongs and the return type of the method to which the exit point belongs.

For more information about validate exit points, see the Validation related link. Except for validate exit
points, the parameters to an exit point method consist of the following:

« The parameters to the method to which the exit point belongs. (If you specify any extra parameters for a
database operation in the model, this is the only place that you can access them.)

« The return type of the method to which the exit point belongs (if a return type is present).

Limitation: The return type parameter is not included in the parameters of exit point methods for
nsread and ns operations.

Use the following approach to generate the return type parameter into the parameters of exit point
methods for nsread and ns operations:

— Add an unstereotyped method to the entity class to give it the same signature as the nsread or ns
operation.

— Set the post data access option on your nsread or ns operation to False.

— The implementation of your un-stereotyped operation then calls the nsread or ns operation, and can
access its return value as required.

« For on-fail exit points, an exception class. The exception class is the exception that is thrown from the
Data Access Layer. The exit point can handle the error or pass it on by throwing it.

Related reference

Validation
The validation function is called before standard insert and standard update operations, and also before
the pre-data access functions. It provides a common place to put validation code.

Exit point uses

Use exit points for validation or for completing a business process.

For example, after you modify an invoice detail-line record, use the last modified date to update the
invoice header record.

Exit point misuses

Do not use exit points to populate incomplete fields in incoming parameters.

To populate incomplete fields of incoming parameters, wrap the database function in a non-database
function that performs the following:

» Copies the incomplete record.
« Completes the missing fields.
« Invokes the database operation.

When you add an exit point to an entity operation, ensure that the exit point does not affect other users of
the operation.

22 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Entity inheritance
Input meta-model entity classes can subclass other entity classes.

Typically, entity classes are subclassed to add functionality (for example, stereotyped operation) required
for special processing of the associated database table but that do not belong in the parent class.

For more information about subclassing, see the Subclassing related link.

Related reference

Subclass modeling
Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Entity inheritance usage rules
Four entity inheritance rules apply. The entity rules relate to entity classes and subclasses.

The following rules apply when you use entity inheritance:

« Entity classes are only allowed to inherit from other entity classes.
» Subclasses of entities can add any number of extra database and user-defined operations.

Subclasses of entities cannot add attributes because the underlying relational database table must not
be affected by the inheritance.

Entity subclasses do not have standard key and details that are generated for them, they use the
standard key and details structs from the base class.

Last updated field

The last updated field is a field that you can add to database tables to contain extra information about the
modification time of each record for reporting purposes.

The last updated field feature is similar to the AuditMappings feature.

The last updated field feature is only available for entity classes and it is updated only by certain entity
operations.

Switching on the last updated field functionality for an entity has the following effects:

« A lastWritten field of type SVR_DATETIME is automatically added to the entity.

« Unless the write was performed by an ns operation, the Clram infrastructure automatically populates
this field with the current time whenever the record is written to the database.

The following steps must be taken to avail of this feature:

 To turn on the feature for an individual entity class, use the supplied drop-down to set to 1 - yes the
Last_Updated_Field property in the Rational Software Architect Ciram Properties tab.

 To turn on the feature for all of the entities for a particular application, append the following text to the
extra.generator.options property in the Bootstrap.properties file as follows:

extra.generator.options=-defaultoption class_lastupdatedfield=yes

Figure 1: extra.generator.options property in Bootstrap.properties

extra.generator.options=-defaultoption class_lastupdatedfield=yes
« A new domain definition must be specified in the model as follows:
— Domain Definition Name: LAST_UPDATED
— Domain Definition Type: SVR_DATETIME
Invoking operations with the following stereotypes result in the lastWritten field to be set:
e insert
e nsinsert
- modify

Curam modeling reference 23

« nkmodify

e nsmodify

e batchinsert

« batchmodify

Note: Unlike the version number field that the optimistic locking feature uses, there is no requirement to
add the last written field to structures involved in non-standard insert and modify operations. If the
last updated field feature is enabled for an entity, the field is always updated for the preceding operation
stereotypes by the infrastructure data access code. Regardless of whether the field is present in the

structure you are using, the field is always updated for the preceding operation stereotypes by the
infrastructure data access code.

Extension classes

Use extension classes to specify options for a target class without modifying the meta-model definition of
the target class.

Each extension class must link to one target class. At build time, the contents of an extension class are
effectively super-imposed on its target class.

Extension classes usage
To extend an existing class, create a new class of stereotype extension.

For more information on using and modeling with Rational Software Architect, see Working with the Curam
Model in Rational Software Architect related link.

You add options to the extension class in the same way as for other classes. When you add any of these
options to an extension class, they add (if not existing) or modify (if existing) the same named option on
the target class.

When you create an extension class in Rational Software Architect, ensure that the settings for the
extension class are compatible with the class you are extending. The reason for this is that when you
create an extension class it can apply to different class types.

You link the extension class to its target class by adding a relationship of stereotype extension between
the two classes. Create the new class within a custom subpackage of your model.

Related concepts
Working with the Ciram Model in Rational Software Architect

When to use extension classes
Restrict your use of extensions classes to two specific purposes.

The following are the only circumstances in which to use extension classes:
« To switch on the Last Updated Field option on an entity.
« To switch on the Audit Fields option on an entity or struct.

Note: The Rational Software Architect user interface allows you to specify additional information such as
attributes and options for extension classes but only include the preceding two options in the class. Other
changes are not compliant.

Extension classes: considerations and limitations
In the relationship between two classes in Rational Software Architect, the relationship is stored as a
free-standing object in a package. The relationship is not stored within either of the actual classes.

Usually, the relationship between two classes is stored in the package that contains the diagram on which
it was drawn. However, the relationships between the two classes are not always stored in the package.
Ensure that you store the relationship in a location where it will not be lost or overwritten during an

24 IBM Curam Social Program Management: Ciram Modeling Reference Guide

upgrade. Inheritance relationships are always stored within the subclass so there is no risk of
inadvertently losing the inheritance relationships.

Extension classes: usage rules
Ensure that you apply three specific rules when you use extension classes.

The following rules apply to using extension classes:

 You can apply an extension class to only one target class.
« You can extend a class by multiple extension classes.
 You can apply extensions to classes of stereotype entity, struct.

Facade classes

Facade classes encapsulate a business process that is visible to the client. It is a collection of operations.
Facades are the business object layer of the application.

Facade classes do not have data maintenance operations or any relationship with database tables.
Instead, facade classes manipulate other entity and process classes in order to implement a business
process. Facade classes have a stereotype of facade.

Facade class rules
Ensure that you apply five specific rules when you use facade classes.

The following rules apply to using facade classes:

« Facade classes must have a stereotype of facade.
« Facade classes cannot have aggregations to any other classes.

« Facade classes can only inherit from other facade classes; facade classes cannot inherit from entity or
process classes.

« Facade classes cannot have attributes.
« Facade classes cannot have the same name.

Related reference
Options

Facade classes operations
Four operations are supported within facade classes: default, batch, wmdpactivity, and gconnector.

default
The default stereotype provides a standard or plain operation.

batch
For operations of stereotype batch, the Ciram generator produces the necessary source code wrappers to
build a batch wrapper program. This program then enables the Batch Launcher to run the operation.

For more information about batch operations, see the Developing batch processes related link.
The following rules apply to defining batch operations:
« Batch operations cannot have more than one parameter.

« Parameters to batch operations must be structs.
« A facade class cannot have more than one batch operation.

Related concepts
Developing batch processes

Curam modeling reference 25

wmdpactivity
You can designate a method of a facade class as a deferred processing method by setting its stereotype to
wmdpactivity.

For more information, see the Ciiram Server Developer related link.

Related concepts
Curam Server Developer

gconnector
For operations of stereotype gconnector, the generator produces the necessary source code to connect to
a JMS provider (for example, IBM MQSeries).

For more information about IMS, see the Cliram JMS queue connectors related link.

Related reference

Curam JMS queue connectors
Use IBM Curam Social Program Management connectors in a Clram application to connect to other
systems through JMS queues.

Facade class options
Three options are available for facade classes: abstract, generate facade bean, and replace superclass.

Abstract
The abstract specifies that the class is abstract.

Abstract classes are intended to be subclassed by other classes. For more information about abstract
classes and subclassing, see the Subclass modelling related link.

Related reference
Subclass modeling

Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Generate facade bean
The generate facade bean creates a stateless session bean for the facade class.

Use the generate facade bean class to enable your server to be accessed by other systems or by
message-driven beans.

Replace superclass
Use replace superclass if the applicable facade class was subclassed from another class.

For more information about subclassing, see the Subclass modelling related link.

Related reference

Subclass modeling
Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Process classes

Process classes are a collection of operations that encapsulate a business process.

Process classes do not have data maintenance operations, or any relationship with database tables.
Process classes manipulate other entity and process classes to implement a business process.

For example, a banking system has an account transfer process which debits money from one account
and credits another. Internally, the process uses an account entity to debit one account and credit another
account. The process class itself is not responsible for any database manipulation. Instead, the process

26 IBM Curam Social Program Management: Ciram Modeling Reference Guide

class packages a sequence of entity operations to execute the modeled business process. Process
classes have a stereotype of process.
Related reference

Business Object Layer
Use the Business Object Layer (BPO) to implement the server's entire business functionality.

Business Process Objects

Business Process Objects (BPOs) are classes that reside in the Business Object Layer (BOL) of a Cdram
server application, that is, the architectural layer between the Remote Interface Layer (RIL) and the Data
Access Layer (DAL).

All business logic is implemented in the BOL. Consequently, BPOs constitute most of the handcrafted
coding that is required to create a server application.

BPOs do not directly communicate with the RDBMS (which is implemented, largely automatically, in the
DAL) or the middleware (which is implemented, largely automatically, in the BOL). Instead, BPOs
specifically implement business logic.

Process class rules
Five specific rules apply to process classes.

Use the following rules for process class:
» Process classes must have a stereotype of process.
« Process classes cannot have aggregations to any other classes.

 Process classes can only inherit from other process classes; process class cannot inherit from entity
classes.

» Process classes cannot have attributes.

- Two or more process classes can contain the same name only on the condition that different
CODE_PACKAGE values are specified for each name.

Related reference
Options

Process class operations

Four operations within process classes are supported: default, batch, wmdpactivity, and gconnector.

default
The default stereotype offers a standard or plain operation.

batch
For operations of stereotype batch, the Ciram generator produces the necessary source code wrappers to
build a batch wrapper program that enables the Batch Launcher to run this operation.

For more information about the Batch Launcher, see the Developing batch processes related link.
The following rules apply to defining batch operations:

« Batch operations cannot have more than one parameter.

« Parameters to batch operations must be structs.

A process class cannot have more than one batch operation.

Related concepts
Developing batch processes

Curam modeling reference 27

wmdpactivity
A method of a process class can be designated as a deferred processing method by setting its stereotype
to wmdpactivity.

For more information, see the Ciiram Server Developer related link.

Related concepts
Curam Server Developer

qconnector

For operations of stereotype gconnector, the generator produces the necessary source code to connect to
a JMS provider (for example, MQSeries).

For more information about IMS, see the Cliram JMS queue connectors related link.

Related reference

Curam JMS queue connectors
Use IBM Curam Social Program Management connectors in a Clram application to connect to other
systems through JMS queues.

Process class options
Three process class options apply: abstract, Generate Function Identifiers (FIDs), and replace superclass.

Abstract
Abstract classes specify that the class is abstract.

Use abstract classes as a subclass of other classes. For more information about abstract classes and
subclassing, see the Subclass modelling related link.

Related reference

Subclass modeling

Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Generate Function Identifiers (FIDs)
The Generate Function Identifiers (FIDs) class specifies that a FID must be generated for it.

Replace superclass
Replace superclass applies only if this process class was subclassed by another class.

For more information about subclassing, see the Subclass modelling related link.

Related reference
Subclass modeling

Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Struct classes

Struct classes are Java classes with public attributes and no modeled methods. A struct is the Java
equivalent of a C++ struct. Use structs to group domain definitions and other struct classes to form
programmatic record definitions.

Use struct classes as arguments to operations of entity and process classes. Use structs to package
arguments to avoid long argument lists. Struct classes can also aggregate each other. These aggregations
become struct members.

For example, a bank account entity has parameters to a read operation that consists of a key struct and a
details struct. The key struct contains a single field for the account number. The details struct contains
several fields, that is, Name, Balance, and so on. Struct classes have a stereotype of struct.

28 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Struct class rules
Specific rules apply to struct classes.

Apply the following eight rules to struct classes:

« Struct classes must have one or more attribute or aggregation, that is, a struct cannot be empty.
« Struct classes are not allowed to have operations.

« Struct attribute types must be defined in terms of valid domain definitions.

« Struct classes can aggregate entity classes or other struct classes.

« Struct classes cannot be part of inheritance relationships.

« Struct classes that are used as key or details parameters to non-standard database operations must not
aggregate other structs, that is, they must be "flat".

« Two or more struct classes can contain the same name once different CODE_PACKAGE values are
specified for each, that is, similarly named struct classes must be distinguishable by having
CODE_PACKAGE settings.

« In most cases, you must define a struct to use it as a parameter to an operation. The exception to this
rule is standard key and details structs. Standard key and details structs are generated automatically by
the Curam generator are available for you to use.

Related reference
Options

Struct class outputs

Use input meta-model struct classes to map directly onto generated Java classes in the
<ProjectPackage>.<CodePackage>.struct package. The Java struct class contains public fields
corresponding to each attribute defined in the model.

Each field is initialized to its default value. For example, zero for numerics, empty string for Strings, and so
on. As each field is initialized to its default value, you do not need to use null values.

Each field is accompanied by comments that describe the domain definition hierarchy for the datatype.
The class also contains generated code that enables the struct to be cloned and assigned to other structs.

Struct classes have no counterpart in generated DDL.

Struct class options
You can enable the audit fields struct class option.

Audit fields
Enabling audit fields automatically adds the available pre-configured audit fields to this struct.

Enable audit fields to use the struct class as a write operation of an entity where Audit Fields are already
enabled.

For more information about audit fields, see the AuditMappings classes overview related link.

Related reference
AuditMappings classes overview

Curam modeling reference 29

Audit fields contain extra information about the modification history of each record. You can add audit
fields to database tables for auditing purposes.

Attributes

Attributes represent fields of the underlying Java class. The class stereotype determines the attribute
stereotypes that are valid for the class.

The combination of class and attribute stereotypes determines how the Ciram generator processes the
UML meta-model.

Attribute rules
Class stereotypes map to attribute stereotypes. Four rules apply to attribute stereotypes.

The proceeding table shows the mapping of class stereotypes to attribute stereotypes.

Table 7: Mapping of class and attribute stereotypes
Class Stereotype Valid Attribute Stereotypes
audit_mappings audit_mappings
domain_definition N/A

entity details, key
facade N/A

listrdo dataitem

loader N/A

process N/A

rdo dataitem

struct default
wsinbound N/A

The following rules apply to attribute stereotypes:

Attribute names must be unique within a class.
Attributes must be defined in terms of domain definitions.

Since attributes ultimately appear in generated Java code, their names must be valid Java identifiers.

The order of attributes in the primary key of an entity is determined by the order in which the attributes
appear in the entity class. Since their order in the entity is not critical, you can change this order to
obtain the primary key configuration you require.

Attribute options
The following attribute options are available: allow NULLs and multibyte expansion factor.

Allow NULLs
The allow NULLs option is only available for the details stereotyped attribute on an entity class.

The allow NULLs option determines whether NULL values are permitted on the corresponding database
field. Setting this option to no means that a Not Null qualifier is included with this field in the generated
DDL script.

30 IBM Curam Social Program Management: Ciram Modeling Reference Guide

The default value for this option depends on the underlying data type of the field. The default value of this
option for the attributes for fields of type SVR_BOOLEAN, SVR_CHAR, SVR_FLOAT, SVR_DOUBLE,
SVR_MONEY, SVR_INT8, SVR_INT16, SVR_INT32 is no.

The default value of this option for the attributes of type SVR_BLOB, SVR_DATE, SVR_DATETIME,
SVR_STRING, SVR_INT64 is yes.

For more information about NULLs, see the Null considerations related link.

Related reference

"Null" considerations

When you write a handcrafted SQL statement, some Clram datatypes are stored as null on the database if
they are empty (that is, in their initial state).

Multibyte expansion factor
The multibyte expansion factor is an override for the domain-level multibyte expansion factor. The
multibyte expansion factor only applies to string entity attributes.

For more information, see the Multibyte expansion factor related link.

The multibyte expansion factor specifies that an expansion factor (float from 1.0 to 4.0) is applied when
multi-byte character set (MBCS) data is used with DB2 or DB2 for z/0S. It operates with its equivalent
domain option and the global build-time properties
curam.db.multibyte.expansion.default.factor and curam.db.multibyte.expansion. For
more information about these properties, see the Curam Server Developer Guide related link.

The multibyte expansion factor option is only necessary for DB2 MBCS data in order to deviate from the
global or domain settings. For example, you might set this option to 1.0 (which effectively turns off
expansion) for a string attribute where you know that the contents never contain localized data. An
example is where the contents are constrained to programmatically defined Western characters and
cannot be input via a client. This option is ignored if the feature is turned off by using the property
curam.db.multibyte.expansion.

For more information about deviating from the global or domain settings, see the Planning for MBCS Data
related link.

Related concepts
Curam Server Developer
Planning for MBCS data
Related reference

Multibyte expansion factor
For string domains, the multibyte expansion factor specifies an expansion factor (float from 1.0 to 4.0) to
apply when multibyte character set (MBCS) data is used with DB2 or DB2 for z/0S.

Operations

Operations represent the functions of modeled classes that can, depending on their type, be handcrafted
or generated by the Curam generator.

The following rules apply to operations:

- Operations must belong to either entity, process, facade, or wsinbound classes.
« Operations can be fully handcrafted or can use the features that are offered by standard operations.

« Operations cannot be individually hidden or exposed to clients; only whole classes can be hidden or
exposed.

Curam modeling reference 31

Operation rules
Six rules apply to using structs for operations.

The following rules apply regarding the requirements for using structs (versus domain values) as
parameters and return values for operations:

« Parameters for batch operations must be structs.

« Parameters and return types for all database operations must be structs.

« Parameters and return types for queue operations must be structs.

« Parameters and return types for web service connector operations must be structs.

« Parameters and return types for client-visible operations must be structs. (Domain parameters and
return types are not supported by the HTML client.)

- Parameters and return types for other operation stereotypes, including web service client operations or
other classes, can be domain definitions.

Operation options
A total of 24 operation options are available.

Audit Business Interface (BI) calls to this operation
The Audit Business Interface specifies whether Business Interface-level auditing is performed for this
operation.

Business Interface-level auditing applies to client-visible operations only. For Business Interface-level
auditing records, the following information about the operation call is recorded:

« The operation name (Function Identifier).

- The username of the caller.

« The date and time.

« The transaction type (online, batch, deferred, and so on).

You can override this option at application startup-time by using application properties. For more
information, see the Database table-level auditing related link.

Related reference

Database table-level auditing

Table-level auditing records provide information about the changes that are made to actual data on the
database table. Use database table-level auditing to specify whether to perform table-level auditing for
this operation.

Auto ID field
The Auto ID field specifies the field to use as the Auto ID field.

The Auto ID field only applies for certain insert operations of entity classes. During the insert, the Auto ID
field is automatically populated with a generated unique ID to ensure that the record is uniquely
identified.

Auto ID key
Use the Auto ID key to specify the key set from which a unique ID is generated.

Use the Auto ID key option only in conjunction with the Auto ID Field option.

Business Date

Use the Business Date option to specify that one field of the operation parameters is treated as the
Business Date Field for the operation. As a result, the value of this parameter to the operation becomes
the Business Date during the transaction.

The Business Date option applies to operations of a process class only. The Business Date is the Date or
DateTime that is returned by the following methods:

32 IBM Curam Social Program Management: Ciram Modeling Reference Guide

e curam.util.transaction.TransactionInfo. getBusinessDateTime ()
« curam.util.transaction.TransactionInfo. getBusinessDate()

e curam.util.type.Date. getCurrentDate ()

e curam.util.type.DateTime. getCurrentDateTime ()

The main purpose of the Business Date option is to give greater flexibility when you run batch programs
where processing dates are significant. This applies, for example, where a report-generating program is
run at the end of each day to count all payments issued that day. The payment records are obtained by
reading all records whose issue date equals curam.util.transaction.TransactionInfo.
getBusinessDate (). Depending on the day on which it is run, this program processes a different set of
records.

Consider what would happen if you needed to regenerate the report from 10 days ago. Without the
Business Date feature, you would have to do the following:

« Submit a batch request for your batch program.

« Change the system date on the machine where the batch program is run. Note that you need to ensure
that this doesn't affect other users, so no other users can use the machine while you are changing the
system date.

« Ensure that your batch request is the only one in the queue.

« Run the batch launcher to prompt your batch program to be run.
 Revert the system date on the machine.

« Make the machine available for general usage again.

However, if your batch program parameters includes a Business Date field you only need to perform the
following steps:

« Submit a batch request for your program, ensuring that the batch job parameter that is specified as the
Business Date is set to the date 10 days ago.

« Run the batch launcher.

Syntax for the Business Date option
The Business Date option uses one of two formats.

Specify the Business Date option in one of the following formats:

« fieldName
« paramName. fieldName

where

« paramName is the name of a parameter. Using this name is optional and, if not specified, the first
operation parameter is assumed.

« fieldName is the name of a field in the parameter struct.

« Struct ReportArguments contains a Date field named effectiveDate.
« The following is a batch operation: doReportGeneration (ReportArguments argl).

« To use effectiveDate as the Business Date for the operation, you can set the Business Date option either
toargl.effectiveDate or because it is the first (and only) parameter: effectiveDate.

 Struct GeneratePaymentsParameters contains a Date field named paymentDate.

« The following is a batch operation: generatePayments (SomeStruct argA,
GeneratePaymentsParameters argB).

« To use paymentDate as the Business Date for the operation, you would set the Business Date option to
argB.paymentDate.

Curam modeling reference 33

Rules for the Business Date option
The Business Date option only applies to operations that correspond to individual server transactions.

These operations are the operations of facade classes and batch operations. Note that it does not apply to
workflow activity or deferred processing operations.

The following rules apply to the Business Date option:

« The field that is specified as the Business Date Field must be of type SVR_DATE or SVR_DATETIME.

- The Business Date Field only takes effect when the operation is invoked by a remote client (either the
HTTP client or a web services client) or by the Batch Launcher. It does not take effect for operations that
are invoked directly from Java code because this action does not result in starting a new server
transaction.

« If the Business Date Field is set to null, curam.util.type.Date. kZeroDate or
curam.util.type.DateTime. kZeroDateTime for a method invocation, it is ighored and the Business
Date is not overridden for that transaction. In this case, the Business Date for the transaction will either
be the current system date or the overridden value that is specified in application properties. For more
information, see the Date and DateTime JavaDoc documentation.

BytesMessage encoding character set
The BytesMessage encoding character set only applies to connector operations of process classes.

For more information, see the gconnector operations options related link.

Related reference

gconnector operation options
Use the appropriate gconnector operation.

Database table-level auditing

Table-level auditing records provide information about the changes that are made to actual data on the
database table. Use database table-level auditing to specify whether to perform table-level auditing for
this operation.

Database table-level auditing only applies to database operations of entity classes.

The behavior of auditing depends on whether optimistic locking is switched on or off for the operation. For
more information about auditing, see the Table-level auditing related link.

You can override the option at application startup-time by using application properties. This functionality
is available to Audit BI. This option and the following is an example of how to use it.

Changing operation auditing options without rebuilding: Changes to operation options Audit BI and
Database table-level auditing in the model require a rebuild and redeploy to take effect. It is possible to
override these properties in application properties whereby the changes take effect when the application
is restarted.

Use the two options to target individual operations by specifying application properties whose format is as
follows:

curam.audit.audittrail.<ProjectName>.<ClassName>.<0OperationName>
curam.audit.opaudittrail.<ProjectName>.<ClassName>.<0OperationName>

Or, if the class is in a code package:

curam.audit.audittrail.<ProjectName>.<CodePackage>.
<ClassName>.<0OperationName>
curam.audit.opaudittrail.<ProjectName>.<CodePackage>.
<ClassName>.<0OperationName>

Properties whose names begin with curam.audit.audittrail apply to the database table-level
auditing option and capture data to table AuditTrail.

Properties whose names begin with curam.audit.opaudittrail apply to the Audit BI calls option and
capture data to table OpAuditTrail.

34 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Example (1): To switch on the table-level auditing for operation modify of entity CaseHeadexr, which is in
code package core of the Cliram application, set the property
curam.audit.audittrail.curam.core.CaseHeader.modify to true.

Example (2): To switch off the operation auditing for operation modifyAddress of process class
Participant, whichis in code package core.facade of the Clram application, set the property

curam.audit.opaudittrail.curam.core.facade.Participant.modifyAddress

to false.

Note:

« Changing the value of an auditing option requires an application restart to take effect.

« The curam.audit.opaudittrail.* properties only affect client-visible operations.

« The curam.audit.audittrail. properties only affect stereotyped entity operations, excluding
stereotypes ns and nsmulti.

Related reference

Table-level auditing
Use the Database table-level auditing option to enable table-level auditing.

Field Level Security
Apply Field Level Security to the fields returned by client-visible operations (that is, operations of the
facade class). It only applies to operations of a client-visible operation (defined in a facade class).

In Rational Software Architect, use the Secure Fields properties tab of the facade class operation to
apply security to any field returned by an operation by specifying a security identifier (SID) for that field.

To establish secure returned fields for an operation, use the Secure Fields button from the properties tab
for the operation. Click the SID Name cell for the returned Field Name to enter the SID. The maximum
length of a security identifier is 100 characters.

The client infrastructure ensures that fields for which a SID is specified can only be viewed by users to
whom that SID is granted. Fields for which no SID is specified are visible to all users.

The information about Field Level Security, which SID is assigned to a field, is written by the generator to
an XML file. The Data Manager then loads the XML file into the database table FieldLevelSecurity. You
must change the Data Manager configuration file datamanager_config.xml to reference the generated
file <ProjectName>_FieldsReturned.xml. To change the Data Manager, add an entry to the initial
target as shown in Figure 1.
<target name "initial"
<entry

name="build/svr/gen/ddl/<ProjectName>_Fids.xml"

type="xml" base="basedir" />
<entry

name="build/svr/gen/ddl/<ProjectName>_FieldsReturned.xml"

type="xml" base="basedir" />
</target>

Figure 2: Sample datamanager_config.xm! for adding field level security information to the database

Once you add the field names and SIDs to the FieldLevelSecurity table, the SIDs are loaded into the
SecurityIdentifier to assign them to groups. To assign them to groups, use the database command in
Figure 2.
INSERT INTO SecurityIdentifier(sidName, sidType, versionNo)

SELECT DISTINCT sidName, 'FIELD', 1 from FieldlLevelSecurity

WHERE sidName IS NOT NULL;

Figure 3: Inserting field level security SIDs into the infrastructure SecurityIdentifier table

Use the Security Administration console to assign these SIDs to user groups.

Curam modeling reference 35

JNDI name of the QueueConnectionFactory class
The IJNDI name of the QueueConnectionFactory class only applies to qconnector operations of process
classes.

For more information about gqconnector operations, see the gconnector operation options related link.

Related reference

gconnector operation options
Use the appropriate gconnector operation.

JNDI name of the transmission queue
The IJNDI name of the transmission queue only applies to gconnector operations of process classes.

For more information about qconnector operations, see the gconnector operation options related link.

Related reference

gconnector operation options
Use the appropriate gconnector operation.

JNDI name of the reply queue
The IJNDI name of the reply queue.

For more information about qconnector operations, see the gconnector operation options related link.

Related reference

gconnector operation options
Use the appropriate gconnector operation.

Message type
The message type only applies to gconnector operations of process classes.

For more information about qconnector operations, see the gconnector operation options related link.

Related reference

gconnector operation options
Use the appropriate gconnector operation.

No Generated SQL
Use No Generated SQL to avoid generating data access code. As a result, you can provide your own
implementation.

The No Generated SQL option only applies to database operations of entity class.

The following is an example of using No Generated SQL. If the No Generated SQL is set to yes for a
standard read operation that is named myRead, the generator produces a declaration of an abstract
method that is named myRead_da with the same signature as the formerly generated myRead method.
You must provide the implementation of method myRead_da as shown in Figure 1.

public MyEntityDtls myRead_da(

final MyEntityKey key, final boolean forUpdate)
throws AppException, InformationalException {

final MyEntityDtls result = new MyEntityDtls();
result.idNumber = "1234";
return result;

3
Figure 4: Handcrafted data access implementation for a standard read

For readmulti operations, that is operations of stereotype readmulti, nsreadmulti, nkreadmulti,
or nsmulti, the handcrafted implementation must follow a different pattern. The method is declared as
returning a list struct but this return value is ignored. You implement readmulti operations in Clram by
using the visitor design pattern whereby a subclass of
curam.util.dataaccess.ReadmultiOperation is passed into the data access operation that then
invokes its operation (Object) for each record that it finds. Usually, this operation adds the record to a
collection that is returned to the caller.

36 IBM Curam Social Program Management: Ciram Modeling Reference Guide

For more information, see the Ctiram Server Developer related link.

Crucially in readmulti operations, you return data to the caller by adding it to the
ReadmultiOperation class by calling its operation (Object) method, and not by simply returning it
from the method. For an example, see Figure 2.

/*
* This implementation returns two hard coded dummy records.
*/
public MyEntityDtlslist readmulti_da(
final SomeKey k, final ReadmultiOperation op,
final boolean requireInformational)
throws AppException, InformationalException {

// Create and add one record for return to the caller.
final MyEntityDtls oneDtls = new MyEntityDtls();
oneDtls.idNumber = "2222";

op.operation(oneDtls);

// Create and add another record for return to the caller.
final MyEntityDtls twoDtls = new MyEntityDtls();
twoDtls.idNumber = "3333";

op.operation(twoDtls);

// our return value is ignored so just return null.
return null;

%
Figure 5: Handcrafted data access implementation for a readmulti

Related concepts
Curam Server Developer

On Fail operation
Use the On Fail operation option to enable the on-fail exit point.

The On Fail operation option only applies to database operations of entity classes.

If any error occurs in the Data Access Layer (DAL), the On Fail operation is invoked. A copy of the
parameters is given to the DAL and a copy of the DAL exception corresponding to the error.

The type of exception depends on the type of error that occurred. The error can either be handled in this
exit point or the exception can be thrown from here so that the error is managed elsewhere.

For more information, see the Exit points related link.

Related reference

Exit points

An exit point is a callback function that you write. It is executed at a predefined strategic point by the
server.

Optimistic locking

Use optimistic locking to enable optimistic locking for this operation.

Optimistic locking only applies to certain update operations of entity classes.

You can only use optimistic locking if the Allow Optimistic Locking option is set for the entity class.

For more information on optimistic locking, see the Optimistic locking for concurrency control related link.

Related reference
Optimistic locking for concurrency control

Curam modeling reference 37

Using optimistic locking for concurrency control means that more than one user can access a record at a
time, but only one of those users can commit changes to that record.

Order by
Use the order by operation to specify the fields by which a sequence of records are sorted as they are
read from the database.

The order by operation only applies to entity operations of the following stereotype: readmulti,
nsreadmulti, and nsreadmulti.

For the order by operation, any or all of the fields of an entity are valid arguments. Records are always
sorted in ascending order.

If you do not specify the order by option, records are returned in arbitrary order.

Post-data access operation
Use the post-data access operation to determine whether a standard database operation has a post-exit
point.

The post-data access only applies to database operations of entity classes.
For more information on exit points, see Exit points related link.

Related reference

Exit points

An exit point is a callback function that you write. It is executed at a predefined strategic point by the
server.

Pre-data access operation
Use the pre-data access operation to determine whether a database operation has a pre-exit point.

The pre-data access operation only applies to database operations of entity classes.
For more information on exit points, see Exit points related link.

Related reference

Exit points

An exit point is a callback function that you write. It is executed at a predefined strategic point by the
server.

Readmulti_Max
Use the Readmulti_Max operation to specify the maximum number of records that are returned by a
readmulti operation.

The Readmulti_Max option only applies to entity operations of the following stereotype: readmulti,
nsreadmulti, nkreadmulti, and nsmulti.

If there are more records available than the Readmulti_Max, then handling is based on the setting of the
Readmulti_Informational option. Unless the Readmulti_Informational setting is on in the model for the
operation, there is no Readmulti_Max enforcement.

If the Readmulti_Informational option is not specified, then Readmulti_Max uses the generator system
default.

Specifying a value of @ for this option is interpreted as infinity and no limit is applied to the number of
records returned.

For more information, see the Readmulti_Informational related link.

Related reference
Readmulti_Informational

38 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Use the Readmulti_Informational operation to determine the handling of the system when the specified
Readmulti_Max is reached.

Readmulti_Informational
Use the Readmulti_Informational operation to determine the handling of the system when the specified
Readmulti_Max is reached.

The Readmulti_Informational option only applies to entity operations of the following stereotype:
readmulti, nsreadmulti, nkreadmulti, and nsmulti.

By default, a Readmulti_Max message is logged and it returns all entries to the user. If this option is
specified, then you can add an InformationalMessage to the current transactions InformationalManager
for handling in the Application's Facade layer. In this case, only the specified Readmulti_Max number of
entries is returned to the user.

If this option is not specified, then the generator system default false is used.
For more information, see the Readmulti_Max related link.

Related reference

Readmulti_Max
Use the Readmulti_Max operation to specify the maximum number of records that are returned by a
readmulti operation.

Response message timeout (seconds)
The response message timeout (seconds) operation only applies to gconnector operations of process
classes.

For more information, see the gconnector operation options related link.

Related reference

gconnector operation options
Use the appropriate gconnector operation.

Security
Use the security operation to determine whether to apply security to the operation.

The security option only applies to client-visible records.

If you enable security for an operation, the generator produces code in the Remote Interface Layer (RIL).
The RIL then checks whether the user is authorized to invoke the operation. If the user is not authorized
to invoke the operation, an exception is thrown.

SQL
Use the SQL option to supply the SQL code that is executed by the operation. The generator converts the
supplied SQL into DAL (Java and SQL) code.

This option only applies to the entity operations of the following stereotype: ns and nsmulti.

For more information, see the Using handcrafted SQL in non-standard entity operations overview related
link.

Related reference
Using handcrafted SQL in non-standard entity operations overview

Transactional
Use the transactional operation to specify whether a transaction is started for an operation.

The transactional option only applies to client-visible operations.

Curam modeling reference 39

Where
Use the where operation to specify a custom WHERE clause for the generated SQL that the DAL code uses
for this operation.

The where option only applies to operations of the following entity classes: readmulti and
nsreadmulti.

Operation parameter options: mandatory fields

Mandatory fields are fields that you must populate when displayed on a client page. Use the mandatory
fields operation to specify mandatory fields for any parameter.

You must populate the mandatory option value with a single-line, comma-delimited string.

Figure 1 is an example of an operation signature.

public interface Employer

public void updateEmployerDetails(
PersonDetails personDtls
EmploymentDetails employmentDetails)
throws AppException, InformationalException;

Figure 6: Operation Signature

The pseudo-code for the structures that are involved as parameters in this operation is outlined in Figure
2.

// Note that since a person can have two addresses,
// PersonDetails aggregates AddressDetails twice
// - "homeAddress" and "workAddress".
struct PersonDetails §

String firstName;

String surname;

AddressDetails homeAddress;

AddressDetails workAddress;

// The role name for the struct aggregation between
// PersonDetails and AddressDetails "homeAddress" struct
// is set to "homedtls"
struct AddressDetails {
String addresslLinel;
String addresslLine2;
String city;
String country;
ks
// Note that EmploymentDetails aggregates AddressDetails once.
// The role name for the struct aggregation between
// EmploymentDetails and AddressDetails "employerAddress"
// struct is set to "employmentdtls"
struct EmploymentDetails {
String employerName;
Date employmentStartDate;
AddressDetails employerAddress;

Figure 7: Pseudo-Code for Parameter Structures

To make the following fields mandatory for the operation parameter, perform these steps:
For the personDtls parameter:

« The person's first name; and
« The first line of the PersonDetails home address.

For the employmentDetails parameter:
« The first line of the employer's address.
Set the Mandatory Fields option of parameter personDtls to:

firstName, homeAddress.addressLinel

40 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Set the Mandatory Fields option of parameter employmentDetails to:
employerAddress.addressLinel

Therefore, if you add mandatory fields that are contained in structures aggregated by the parameter type
class, the mandatory fields must be fully qualified by the relevant aggregation role names as shown.

Entity operations overview

A database operation is an operation of an entity class whose stereotype is recognized by the Clram
generator. The generator produces data-access Java code that is based on the stereotype for these
operations.

The generator treats all other operations as if their stereotype was blank and produces Java interfaces
and factories for them. The generator does not produce data-access code for these other operations.
Instead, you must provide your own implementation for these operations.

Standard operations
The following standard operations are available: standard single-record and standard multi-record.

Standard single-record operations
Standard single-record operations are the most basic type of operation.

For standard single-record operations, the database only returns a single row and it is not required to
model any arguments. The reason for this is that the code generator assumes standard key and details
structs where appropriate.

The standard single-record operations are represented by the following operation stereotypes:
e insert

e modify

- read

e remove

Standard multi-record operations

Use standard multi-record operations to process multiple rows (instead of operating on a single database
table row).

In database maintenance applications, it is often necessary to return multiple records to a user interface.
The user then selection one record for processing. Batch programs also frequently operate on multiple
rows of a table. For example, a printing batch program for bank account statements typically operates on
the accounts of every client on record.

Standard multi-record operations are represented by the operation stereotype readmulti.

Non-standard operations
The following non-standard operations are available: generated SQL and handcrafted SQL operations.

Generated SQL operations
Non-standard generated SQL operations are similar to the standard operations, except that it is not
assumed that the arguments and return type are standard key and standard details structs.

Non-standard generated SQL operations are similar to the standard operations except that the arguments
and return type are not assumed to be standard key and standard details structs. You must specify a
struct for each argument and return type.

The attributes of the argument and return structs must be subsets of the fields of the entity.

Curam modeling reference 41

The argument structs can be user-defined structs from the input meta-model, or the generated standard
structs that are not explicitly defined in the input meta-model. Using generated standard key and details
structs as the parameters to non-standard operations is equivalent to simply using standard operations.

As you define the key struct of a non-standard generated SQL operation, you can define a key struct that
does not uniquely identify a single record. As a result, certain operations might not behave as expected.
For example, for a non-standard modify operation all records that match the key are modified (not just the
intended record).

The generated SQL operations are represented by the following operation stereotypes:
« nsinsert

e nsmodify

- nsread

e nsreadmulti

* nsremove

Handcrafted SQL operations

Non-standard handcrafted SQL operations are the most flexible type of operation that is provided by the
generator.

Use non-standard handcrafted SQL operations to specify custom parameters and SQL for the operation.
The only parameters that are generated for ns operations are the ones that you provide. All parameters
that you provide are replicated into all the generated layers of the application.

Use this type of operation for situations where none of the other operations are suitable. These situations
include joins across tables and queries that count or calculate max, and so on.

Non-standard handcrafted SQL operations are represented by the following operation stereotypes:
*ns
e nsmulti

Non-key operations

Non-key operations operate on all rows of a database table. Typically, you use non-key operations on
tables that contain one row.

Non-key operations are represented by the following operation stereotypes:

e nkmodify

- nkread

« nkreadmulti
e nkremove

Batch operations
Batch programs use operations that are tailored specifically to the batch environment.

For more information about batch programs, see the Developing batch processes related link.
Batch operations are represented by the following operation stereotypes:

« batchinsert
e batchmodify

Related concepts
Developing batch processes

42 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Entity insert operations

Use insert operations to insert, or add, a row onto a database table.
Insert operations operate on a single row at a time. The following are the two types of insert operation:

e insert
e nsinsert

Standard insert
A standard insert operation contains a stereotype insert.

Standard insert description
Standard insert operations insert a single record onto the appropriate database table by using the
information that is passed in a standard details struct.

You do not need to specify arguments for standard insert operations in the input model. You can specify
extra arguments and exit points that can access these arguments for the operation. The extra arguments
and exit points do not affect the generated code.

Standard insert use
Use a standard insert operation to create a new record on a database table and to update each attribute.

You do not need to specify any arguments for the standard insert operation in the input model. Generated
standard key and details structs are assumed as arguments, where appropriate.

You can specify extra arguments and exit point that can access these arguments for the operation. The
extra arguments and exit points do not affect the generated code.

You can also use this pattern with the generation pattern for the Auto ID Field sequence number.
Standard insert parameter and generator notes

Standard insert operations use the entity's details structure as an input parameter.

The input parameter is automatically generated and contains all the fields of the record.

« Parameters (None)

 Return value (None)

« Generator action (The generator adds the standard details struct as a parameter)

Non-standard insert (generated SQL)
A non-standard insert operation uses a stereotype nsinsert.

Non-standard insert description
Using the information that you provide from a non-standard details struct, non-standard insert operations
insert a single record onto the database table of the parent entity.

Non-standard insert use
Use a non-standard insert operation to create a new record on a database table where you do not need to
update each attribute.

Attributes that are not specified in the parameter to a non-standard insert are set to null values on the
database.

Non-standard insert operations are more efficient than standard inserts because there is less I/O to the
database. The application designer must decide whether the improved efficiency is worth the extra
complexity of more operations on your entities.

Use a non-standard insert where you know that the database can perform the operation significantly
more efficiently or where the operation is required by a high-volume transaction.

Curam modeling reference 43

Non-standard insert operations take a single input parameter, that is, a structure that defines the
attributes to insert. Each attribute of this structure must match some entity attribute by name and type.

Non-standard parameter and generator notes
A warning is displayed if a non-standard operation has a non-standard details parameter that does not
include fields that cannot be null.

For more information, see the Null considerations related link.

Fields that are not included in the details struct are not initialized, that is, the DBMS sets them to <null>.
« Parameters (A non-standard details struct)

* Return Value (None)

 Generator action (None)

Related reference

"Null" considerations

When you write a handcrafted SQL statement, some Clram datatypes are stored as null on the database if
they are empty (that is, in their initial state).

Entity read operations

Depending on the type of operation and arguments you provide, read operations return one or more rows
from a database table.

The following are entity read operation types:

- read

e readmulti

e nsread

e nsreadmulti
« nkread

« nkreadmulti

Standard read
A standard read operation has a stereotype of read.

Standard read description

Standard read operations read a single record from a database table into a standard details struct.
Standard read operations use a standard generated key struct (that is, the primary key) as their search
criteria.

You do not need to specify arguments for standard insert operations in the input model. You can specify
extra arguments and exit points that can access these arguments for the operation. The extra arguments
and exit points do not affect the generated code.

Standard read use
Use a standard singleton read operation to read all the attributes of a specific database record.

Standard singleton read operations use the primary key of an entity to locate the target record. You can
only create standard singleton read operations for entities with primary keys. As the primary key of an
entity is unique, a standard singleton read always returns a single database record.

Standard read parameter and generator notes
Standard singleton read operations use the entity's key and details structures as input and output
parameters respectively.

The parameters are automatically generated and are not specified in the UML meta-model.

44 1BM Curam Social Program Management: Ciram Modeling Reference Guide

You are not required to specify arguments for these operations in the input model. Generated standard
key and details structs are assumed as arguments where appropriate.

You can specify extra arguments and exit points that can access these arguments for the operation. The
extra arguments and exit points do not affect the generated code.

« Parameters (None.)

« Return value (None.)

« Generator action (The generator adds the standard key struct as a parameter and the standard details
struct as the return value.)

Standard readmulti
A standard readmulti operation has a stereotype readmulti.

Standard readmulti description
Standard multiple read operations use an input parameter that you designate as the key structure for the
operation.

The return value is a structure that contains a list of the entity's details structures. You must specify the
first parameter. However, as the return value is automatically generated, the first parameter is not
specified in the UML meta-model.

Standard readmulti use
Use a standard multiple read operation to read all the attributes of a set of database records. This
operation is based on a key that you specify.

The stipulation about efficiency of keyed access, as described for non-standard read, modify, and remove
operations, also applies to multiple reads. As a result, the designer must ensure the efficient use of
database indices.

Standard readmulti parameter and generator notes
A standard readmulti operation takes a partial key struct and returns a list of standard details structs.
Every record that matches the criteria is then returned in the list.

By default, the records in a readmulti are unsorted and are returned in arbitrary order.

To change the arbitrary order in which records are returned, use the Order By option of the readmulti
operation. This option takes a list of the fields of the entity and sorts them in ascending order.

- Parameters (A key struct to specify the search criteria for which a record or records retrieve. The
members of the struct must be a subset of the standard details struct for the entity.)
* Return value (None.)

 Generator action (The generator creates a list wrapper for the standard details struct for the entity and
adds it as the return value for the operation.)

Non-standard read (generated SQL)
A non-standard read operation has a stereotype nsread.

Non-standard read description
Non-standard read operations by using a key struct as their search criteria. Non-standard read operations
then read a single record from a database table into a details struct.

Non-standard read use
Use a non-standard read operation either to read a subset of the attributes on a database record or to use
a key other than the primary key of the entity.

Non-standard operations use a key that you specify to locate the target record. At development, there is
no guarantee that only one record is targeted. If there is more than one record in the result set, a runtime
error is generated.

Curam modeling reference 45

Non-standard read operations can be more efficient than standard read operations. The reason for this is
that non-standard read operations result in less database I/0.

As with any operation where you specify the key, there is no guarantee that the database can access the
target records efficiently. Instead, the designer must define appropriate indices to ensure this efficiency.

Non-standard parameter and generator notes
Non-standard read operations use key and details structures (as input and return types, respectively) that
you must create and specify as operation parameters in the UML meta-model.

Each attribute of each of these structures must match some entity attribute by name and type. You can
also use standard (generated) key or details structures.

« Parameters (A non-standard key struct to specify the record to retrieve. The key must have the capacity
to uniquely identify a single record. If more than one record matches the criteria, an exception is
thrown.)

« Return Value (A non-standard details struct that contains the retrieved data.)
« Generator action (None.)

Non-standard readmulti (generated SQL)
A non-standard readmulti operation has a stereotype nsreadmulti.

Non-standard readmulti description
Non-standard readmulti operations take a partial key struct and a details struct as input meta-model
parameters.

Non-standard readmulti operation return a list of the provided details struct. Every record that matches
the criteria is returned in the list.

The only difference between a non-standard readmulti and a standard readmulti is that a non-standard
readmulti must specify a return value while it is assumed that a standard readmulti is the standard
generated details struct for the entity. For non-standard readmulti, you must specify a struct as the return
value of the operation. The fields of this struct must be a subset of the fields of the entity.

Non-standard readmulti use
Use a non-standard multiple read operation to read a subset of the attributes of a set of database records,
based on a key that you specify.

The designer must ensure the efficient use of database indices when it is reading the indices based on
this key.

Non-standard readmulti parameter and generator notes
Like standard operations, non-standard multiple read operations use an input parameter that you
designate as the key structure for the operation.

The return value that you specify in the UML meta-model is a structure that contains the attributes that
you want to return for each record that is read from the database. The return value in the generated code
is a list of the structure that you specified in the meta-model (the structure that contains the list is
automatically generated).

« Parameters (A non-standard key struct to specify the search criteria for the record or records to retrieve.
The members of the struct must be a subset of the fields of the entity.)

 Return Value (A non-standard details struct to specify the attributes to return from the readmulti
operation. The members of this struct must be a subset of the fields of the entity.)

« Generator action (The generator creates a list wrapper for the non-standard details struct that you
specify, and uses the list wrapper as the return value for the operation.)

46 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Non-key read
A non-key read operation has a stereotype nkread.

Non-key description
Non-key read operations read the only record from a database table into a standard details struct.

Non-key operations, as the name suggests, do not take a key parameter. Non-key operations execute SQL
statements that do not have a where clause, that is, they operate on all rows on a table.

For a non-key read operation, you must have a single row on the table. Typically, you use this type of
operation to read a value from a control table that contains a single record.

There is no such thing as a non-key insert operation as insert operations do not require a key parameter.
Non-key use

Use a non-key singleton read operation to read a record from a database table where there is a single
record.

If the database table contains more than one record, the non-key operation generates a runtime error.

Typically, you use the non-key operation for control tables that contain a single record.

Non-key parameter and generator notes
Non-key singleton read operations take no parameters and the generator automatically adds the standard
details struct for the entity as the return type.

If more than one record exists on the table, the operation throws an exception.
 Parameters (None.)

 Return value (None.)

« Generator (The generator adds the standard details struct as the return value.)

Non-key readmulti
A non-key readmulti operation has a stereotype nkreadmulti.

Non-key readmulti description
Non-key readmultis are similar to standard readmulti operations. The only difference is that the non-key
readmultis return all rows of a table rather than those that match a partial key.

Non-key operations, as the name suggests, do not take a key parameter. Non-key readmultis execute SQL
statements that do not have a where clause, that is, they operate on all rows on a table.

For a non-key read operation, there must be a single row on the table. Typically, you use this type of
operation to read a value from a control table that contains a single record.

There is no such thing as a non-key insert operation as insert operations do not require a key parameter.

Non-key readmulti use
Use a non-key multiple read operation to read all the attributes of the records on a database table.

Non-key readmulti parameter and generator notes

Non-key multiple read operations do not take a key argument. The value the non-key multiple read
operation returns is a structure that contains a list of the entity's details structures as an output
parameter.

You do not specify parameters in the UML meta-model (effectively, the same interface and behavior as a
standard multiple read except there is no key argument).

Generated non-key readmulti operations in the RIL and BOL have one parameter: a list details struct, that
is, a list of standard details structs for the entity.

« Parameters (None.)
« Return value (None.)

Curam modeling reference 47

 Generator action (The generator creates a list wrapper for the standard details struct for this entity and
uses the list wrapper as the return value.)

Entity update operations

Depending on the type of operation and arguments you provide, the entity update operation modifies data
in one or more rows of the database table.

The following are types of entity update operation:
« modify

e nsmodify

e nkmodify

Standard modify operation
A standard modify operation has a modify stereotype.

Standard modify operation description
Use a standard modify operation to modify a specific record on a database table.

You do not need to specify any arguments for the standard modify operation in the input model. Use a
generated standard key struct to specify the record to modify. The modified data is contained in a
generated standard details struct. You can specify extra arguments. You can access these arguments by
exit points for the operation. They have no effect on the generated code.

Standard modify operation use
Use a standard modify operation to update all the attributes on a specific database record.

Standard modify operations use the primary key of an entity to locate the target record. You cannot create
standard modify operations for entities that do not have primary keys. As the primary key of an entity is
unique, a standard modify operation always updates a single database record.

You can also use the standard modify pattern with the optimistic locking pattern.

Standard modify parameter and generator notes
Standard modify operations use the entity's key and details structures as input parameters. The input
parameters are automatically generated and are not specified in the UML meta-model.

« Parameters (None.)
« Return value (None.)

 Generator action (The generator adds the standard key struct and standard details struct as
parameters.)

Non-standard modify (generated SQL)
A non-standard modify operation has a stereotype nsmodify.

Non-standard modify description
Use the non-standard modify operation to update records on the database table of the parent entity with
information from a non-standard details struct that you provide.

Non-standard modify use
Use a non-standard modify operation to update a subset of the attributes on a database record or records.

Non-standard modify operations use a key that you specify to locate the target records. A possible result
is that multiple records are updated. You also specify the attributes of the entity to update.

Non-standard modify operations can be more efficient than standard modify operations because non-
standard modify operations involve less database I/O. Also, the database might not need to update as
many indices relative to using a standard modify operation.

48 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Non-standard parameter and generator notes
Non-standard modify operations use non-standard key and details structures as input parameters. You
must create the input parameters and specify as operation parameters in the UML meta-model.

Each attribute of each of these structures must match some entity attribute by name and type. You can
also use standard (generated) key or details structures.

« Parameters (A non-standard key struct to specify the record to modify. The non-standard key can
specify multiple records. In this case, all records that match the non-standard key are updated.)

A non-standard details struct that contains the updated version of the data.
 Return value (None.)
« Generator action (None.)

Non-key modify
A non-key modify operation has a stereotype nkmodify.
Non-key modify description

Non-key modify operations modify all records on a database table with the information from a standard
generated details struct.

Non-key operations, as the name suggests, do not take a key parameter. They operate by executing SQL
statements that do not have a where clause, that is, they operate on all rows on a table.

For a non-key read operation, there must be a single row on the table. Typically, you use this type of
operation to read a value from a control table that contains a single record.

There is no such thing as a non-key insert operation as insert operations do not require a key parameter.
Non-key modify use
Use a non-key modify operation to update all the records on a database table.

The attribute values of each record are set to the values that you specify in the parameter to the non-key
modify function.

Typically, only use a non-key modify operation for control tables that contain only one record.
Non-key parameter and generator notes

Non-key modify operations use the entity's details structure as an input parameter. The input parameter
is automatically generated and is not specified in the UML meta-model.

 Parameters (None.)
* Return value (None.)
 Generator action (The generator adds the standard details struct as a parameter.)

Entity delete operations

Depending on the type of operation and arguments you provide, delete operations remove one or more
rows from the database table.

The following are entity delete operation types:

« Temove
e nsremove
* nkremove

Curam modeling reference 49

Standard remove
A standard remove operation has a stereotype remove.

Standard remove description
Standard remove operations delete a specific record from a database table.

You do not need to specify any arguments for standard remove operations in the input model. Use a
generated standard key struct to specify the record to delete. You can specify extra arguments. Exit points
for the operation can access these arguments. The extra arguments do not affect the generated code.

Standard remove use
Use a standard remove operation to delete a specific database record.

Standard remove operations use the primary key of an entity to locate the target record. You cannot
create standard remove operations for entities that do not have primary keys. As the primary key of an
entity is unique, a standard remove always deletes a single database record.

Standard remove parameter and generator notes

Standard remove operations use the entity's key structure as an input parameter. The input parameter is
automatically generated and is not specified in the UML meta-model.

« Parameters (None.)

 Return value (None.)

« Generator action (The generator adds the standard key struct as a parameter.)

Non-standard remove (generated SQL)
A non-standard remove operation has a stereotype nsremove.

Non-standard remove description
Non-standard remove operations delete records from the database table of the parent entity that
matches the information in a key struct that you provide.

Non-standard remove use
Based on a key that you specify, a non-standard remove operation to delete a database record or records.

If the key that you specify is not unique, multiple database records are deleted.

As with any operation where you specify the key, there is no guarantee that the database can access the
target records efficiently. Instead, the designer must define appropriate indices to ensure that the
database can access the target records efficiently.

Non-standard remove parameter and generator notes
Non-standard remove operations use a key structure as an input parameter that you must specify in the
UML meta-model. Each attribute of this key must match some entity attribute by name and type.

Note: When you use segmented tablespaces with DB2 for z/OS (the default for version 9), IBM changed
the behavior of the JDBC driver. For more information, see the TechNote on JDBC executeUpdate method
can return a negative row count when the database server is DB2 for z/OS related link. Therefore, a
RecordNotFoundException erroris thrown when a negative row count is returned (that is, a DELETE
FROM with no predicate).

« Parameters (A non-standard key struct to specify the record to modify. This non-standard key can
specify multiple records. In this case, all records that match the non-standard key are deleted.)

e Return Value (None.)
« Generator action (None.)

Related information
JDBC executeUpdate can return a negative row count when the database server is DB2 for z/OS

50 IBM Curam Social Program Management: Ciram Modeling Reference Guide

http://www-01.ibm.com/support/docview.wss?uid=swg21244002

Non-key remove
A non-key remove operation has a stereotype nkremove.

Non-key remove description
Non-key remove operations remove all the records from a database table.

Non-key operations, as the name suggests, do not take a key parameter. They execute SQL statements
that do not have a where clause, that is, they operate on all rows on a table.

For a non-key read operation, there must be a single row on the table. Typically, use this type of operation
to read a value from a control table that contains a single record.

There is no such thing as a non-key insert operation as insert operations do not require a key parameter.

Non-key remove use
Use a non-key remove operation to delete all records from a database table.

Non-key remove parameter and generator notes
Non-key remove operations do not take parameters.
« Parameters (None.)

 Return value (None.)

« Generator action (None.)

Entity batch operations

Batch operations insert or remove many records from the database.
The following are the two batch operation types:

« batchinsert
e batchmodify

Related concepts
Developing batch processes

batchinsert
A batch insert operation has a stereotype batchinsert.

batchinsert description
Use batch insert operations to insert many records into the database. When you batch operations
together, the database is required to perform fewer round trips and it improves performance.

Batch insert operations have a similar signature to non-standard insert operations and can be called in
the same way. However, when a batch insert is invoked the record is not written immediately to the
database. Instead, the insert statement is added to a batch of statements that are stored locally by the
Curam infrastructure by calling the java.sql.PreparedStatement. addBatch method. Once the
batch reaches the desired size, it must be executed by calling the $execute method of the operation.

Note: The $execute method is never called automatically. It must be called from your code. If the entity
object is destroyed without calling its $execute method, any pending (not executed) batched inserts are
discarded.

As a result, you cannot spread batched inserts or modifies across multiple client invocations in an online
environment as all entity objects are destroyed at the end of each invocation (transaction).

The $execute method of the operation calls the executeBatch method of
java.sqgl.PreparedStatement and returns the result of this call that is an array of integers (int []).
Each entry in this array corresponds to one statement in the batch and indicates how many records were
affected by that statement. For example, for a successful batch of inserts, each entry of the array should
be 1 to indicate that each statement caused one record to be written to the database. If one statement

Curam modeling reference 51

violated a unique constraint, its corresponding array entry would contain a zero. A returned value of
java.sqgl.Statement.EXECUTE_FAILED indicates that the command failed to execute successfully.

For more information about this array and how queued statements are executed, see the JDK
documentation for java.sql.PreparedStatement.

The maximum number of statements in a batch is determined by the application property
curam.db.batch.limit (default value = 30), or can be set for an individual operation by calling its
$setBatchSize (int) method. The optimal size of a batch depends on many factors, such as record
size, database configuration, and database vendor. The optimal size can be different for each individual
batch operation. You or the DBA determine the optimal size.

If the batch limit is exceeded, an AppException
(INFRASTRUCTURE.ID_BATCH_SIZE_LIMIT_HAS_BEEN_REACHED) is thrown by the batch insert
operation. In this case, simply call the $execute method of the operation, and then continue as before.

batchinsert use
Use a batchinsert operation to insert many records to the same entity in a single transaction.

batchinsert parameter and generator notes
A batchinsert operation takes a single input parameter, that is, a structure that defines the attributes
to insert. Each attribute of this structure must match some entity attribute by name and type.

The system displays a warning if a batchinsext operation contains a non-standard details parameter
that does not include fields that cannot be null. For more information, see the Null considerations related
link.

« Parameters (A non-standard details struct.)
e Return Value (None.)

Generator Action. The generator adds the following methods to a class that contains a batch insert
operation:

« public void operationName$setBatchSize(final int newBatchLimit) (This method sets
the batch limit for the operation (it overrides the value of the curam.db.batch.limit property).

» public int[] operationName$execute() throws AppException,

InformationalException (This method executes the currently queued batch of statements for the
operation.)

Related reference

"Null" considerations
When you write a handcrafted SQL statement, some Clram datatypes are stored as null on the database if
they are empty (that is, in their initial state).

batchmodify
A batch modify operation has a stereotype batchmodify.

batchmodify description
Batch modify operations are similar to batch insert operations except, as the name suggests, you use
batch modify operations to modify existing records rather than to insert new records.

batchmodify use
Use a batch modify operation to modify many records on the same entity in a single transaction.

batchmodify parameter and generator notes
A batch modify operation uses non-standard key and details structures as input parameters. You must
create the input parameters and specify as operation parameters in the UML meta-model.

Each attribute of each of these structures must match some entity attribute by name and type. You can
also use standard (generated) key or details structures.

52 IBM Curam Social Program Management: Ciram Modeling Reference Guide

A warning is displayed if a batchmodify operation has non-standard details parameter, which does not
include fields that cannot be null. For more information, see the Null considerations related link.

« Parameters (A non-standard key struct to specify the record to modify. This non-standard key can
specify multiple records. In this case, all records that match the non-standard key are updated.)

A non-standard details struct that contains the updated version of the data.
 Return Value (None.)

Generator action (Use the generator to add the following methods to a class that contains a batch modify
operation:

« public void operationName$setBatchSize(final int newBatchLimit) (This method sets
the batch limit for the operation (and overrides the value of the curam.db.batch.limit property).)

« public int[] operationName$execute() throws AppException,
InformationalException (This method executes the queued batch of statements for the operation.)

Note: You cannot spread batchmodify operations across multiple client-server invocations
(transaction). You can only use a batchmodify operation in an online transaction if the batch is executed
before the end of the transaction.

Related reference

"Null" considerations

When you write a handcrafted SQL statement, some Clram datatypes are stored as null on the database if
they are empty (that is, in their initial state).

Entity handcrafted SQL operations

Use non-standard (ns) operations with handcrafted SQL against the database.
The following are the two types of ns operation:

* ns

e nsmulti

Non-standard
A non-standard operation has a stereotype ns.

Non-standard description

Parameters for a non-standard (ns) operation must be structs. Ns operations must be structs because
parameters are replicated in the Data Access Layer (DAL) and the DAL only allows parameters to be
structs.

The return value for an ns operation must also be a struct. Similar to parameters for ns operations, the
DAL allows return values to be structs only.

You must provide SQL with all the ns operations. No SQL is automatically generated.

Ns operations must belong to an entity class. However, the SQL query can operate on any database table.
The SQL query does not have to operate only on the database table that belongs to the entity class, that
is, you can use it to perform SQL joins across tables.

For information on how to specify SQL in an operation, see the Using handcrafted SQL in non-standard
entity operations overview related link.

Related reference
Using handcrafted SQL in non-standard entity operations overview

Curam modeling reference 53

Non-standard use
Use a non-standard operation for a database operation that is too complex for any of the preceding
operations and that does not retrieve multiple records.

The following are examples of where you use the non-standard operation:

« Queries whose where clause contains comparisons other than equals, such as less-than, greater-than,
and so on.

« Queries or commands that operate on more than one database table.

« Queries that return something other than an attribute of a table, such as the results of max and count
functions

You must specify the SQL to execute and you can specify zero or many parameters for the operation. All
parameters must be structs and must be flat, that is, they cannot aggregate other structs.

The handcrafted SQL can perform any database operation so long as a cursor is not required. This
includes single-record-reads, single or multiple record updates and deletes, and joins across multiple
database tables as the parameter structs cannot aggregate other structs. If your handcrafted SQL
requires a cursor, then use a nsmultioperation.

Non-standard parameter and generator notes

« Parameters (Struct or structs.)
e Return value (Struct.)
« Generator action (None.)

Non-standard multi
A non-standard multi operation has a stereotype nsmulti.

Non-standard multi description
Typically, non-standard multi operations are similar to non-standard operations.

The following restrictions account for the differences between non-standard multi operations and non-
standard operations:

« There must be either zero or one parameter.
« The operation must return a struct.
« The SQL for the operation must perform a readmulti operation.

Typically, you use non-standard multi operations for performing readmulti operations that join two or
more database tables.

A non-standard multi operation is the only entity operation that cannot use additional parameters.
Usually, this is done to provide extra parameters to exit points in the Business Object Layer (BOL).
Operations of this stereotype can have either zero or one parameter only. You cannot add any extra
parameters to this operation.

Non-standard multi use
Use non-standard multiple operations in two specific circumstances.
Use non-standard multiple operations in either of the following circumstances:

« To retrieve attributes from multiple database tables, performing a relational join across the tables.

« Toretrieve attributes from one or more database tables when the selection criteria is too complex to
use a readmulti or nsreadmulti operation. For example, if the where clause contains comparisons other
than equals, such as less-than, greater-than, and so on.

A non-standard multiple operation is similar (from a modeling perspective) to a non-standard multiple
read operation (nsreadmulti). The major difference is that the designer must specify the SQL to execute.
This means you can reference multiple database tables and/or to specify complex where clauses.

54 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Non-standard parameter and generator notes
You cannot specify any extra parameters for the non-standard parameter operation.

« Parameters (Key parameter [optional].)
 Return value (List-details parameter.)

« Generator action (The generator creates a list wrapper for the return-value struct you specify and uses
this as the return value for the operation.)

Example 1: nsmulti with a single (list) parameter
The proceeding is an example of an operation in the input meta-model to list every transaction in the
system where the amount is for less than one dollar.

The following struct is defined in the model and contains the information about each transaction. The type
of each attribute of the struct is not relevant here and is omitted for clarity.

« struct class: MinorTxDetails

Attribute Domain

txDate DATE
txAccountNumber ACCOUNT_NUMBER
txAmount AMOUNT

The proceeding table shows an entity that is defined in the model with some of the attributes that the
nsmulti operation getMinorTransactions (), returning an instance of MinorTxDetails, would use.

- entity class: BankAccount

Attribute Domain

details txDate DATE

details txAccountNumber ACCOUNT_NUMBER
details txAmount AMOUNT

details txTellerNumber TELLER_NUMBER

The proceeding is the SQL for the operation (which you supply in the model):

SELECT txAccountNumber, txDate, txAmount
INTO
:txAccountNumber,
:txDate,
:txAmount
FROM BankAccount
WHERE txAmount < 1;

Figure 8: SQL for nsmulti with a single (list) parameter

You provide all of the SQL. The generator produces the remainder and the proceeding shows this for
illustrative purposes.

The following pseudo code describes the structs that this operation uses. The actual Java structs
corresponding to the structs that are defined in the model are produced by the code generator.

Curam modeling reference 55

struct MinoxrTxDetails §
txDate;
txAccountNumber;
txAmount;

’

// this is a generated list wrapper:
struct MinorTxDetailsList §
sequence <MinorTxDetails> dtls;

1

// this is the standard details struct for the entity
// just to show where its attributes are kept:
struct BankAccountDtls {

txAccountNumber;

txDate;

txAmount;

txTellexrNumber;

?
Figure 9: Pseudocode for generated structs for use by nsmulti operation

The code generator produces the Java interface for this entity class, complete with the nsmulti
operation. The proceeding shows how it would look:

public interface BankAccount {

// This is our "nsmulti" operation. Note how the
// generator has transformed the parameter of this function
// from "MinorTxDetails" to a "MinorTxDetails

List

public MinorTxDetailslList getMinorTransactions()
throws AppException, InformationalException;
Ly

Figure 10: Generated Java interface for nsmulti operation

The preceding demonstrates how you would write handcrafted Java code to call this method and to
iterate through each element that is returned by the method:

<ProjectPackage>.intf.BankAccount bankAccount
= <ProjectPackage>.fact.BankAccountFactory.newInstance()

double theTotalAmount = 0;

// Call the operation:
MinorTxDetailslList txList
= bankAccount.getMinorTransactions();

// iterate through the set of results.
for (int i = 0; i < txList.dtls.size(); i++) %
MinorTxDetails currentTx = txList.dtls.item(i);

theTotalAmount += currentTx.txAmount;

Figure 11: Calling a nsmulti operation from handcrafted Java code (one parameter)

Example 2: nsmulti with two parameters (key + list)
In the proceeding example, instead of returning all transactions for less than one dollar in the whole
system, it returns only the transactions for one account that were less than one dollar.

Another parameter is required to specify the required account number. Since nsmulti is a database
operation and database operations require all parameters to be structs, use a struct for the account
number parameter even though the struct has only one field.

Note: The account number field appears in various guises - txAccountNumber, txAccountNum, and
theAccountID. Unlike the other database operations, the names of attributes are not required to
correspond when you use ns or nsmulti operations as the handcrafted SQL can reference the different
field names as appropriate

- struct class: AccountNoWrapper

56 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Attribute

Domain

txAccountNumber

ACCOUNT_NUMBER

You can now use this struct as an input argument to the nsmulti operation

getMinoxrTransactions(theAccountID
MinorTxDetails, for the proceeding entity:

- entity class: BankAccount

: AccountNoWrapper), returning an instance of

Attribute Domain

details txDate DATE

details txAccountNumber ACCOUNT_NUMBER
details txAmount AMOUNT

details txTellerNumber TELLER_NUMBER

The proceeding is the SQL for the operation:

SELECT txAccountNumber, txDate, txAmount
INTO
:txAccountNumber,
:txDate,
:txAmount
FROM BankAccount
WHERE (txAmount < 1)
AND (txAccountNumber = :txAccountNum);

Figure 12: SQL for nsmulti with a key and list parameters

This is all you must provide. The generator produces the remainder and, for illustrative purposes, the

proceeding shows this.

The proceeding pseudo-code describes the structs that the operation uses. (The code generator produces
the actual Java structs corresponding to the structs defined in the model.)

struct MinoxrTxDetails §
txDate;
txAccountNumber;
txAmount;

r

// this is a generated list wrapper:
struct MinorTxDetailsList §
sequence <MinorTxDetails> dtls;

’

struct AccountNoWrapper 1
txAccountNum;

// this is the standard details struct for the entity
// just to show where its attributes are kept:

struct BankAccountDtls §
txAccountNumber;
txDate;
txAmount;
txTellerNumber;

¥

Figure 13: Pseudocode for generated structs for use by nsmulti with key and list parameters

The code generator produces the Java interface for this entity class, complete with the nsmulti operation.

It would look like the proceeding:

Curam modeling reference 57

public interface BankAccount {
// This is our "nsmulti" operation. Note how the
// generator has transformed the return value of this
// function from "MinorTxDetails" to a
// "MinoxrTxDetails
List
public MinorTxDetailslList getMinorTransactions

(AccountNoWrapper theAccountID)
throws AppException, InformationalException;

Figure 14: Generated Java interface for nsmulti operation with key and list parameters

The proceeding demonstrates how you write handcrafted Java code to call this method and to iterate
through each element that the method returns:

<ProjectPackage>.intf.BankAccount bankAccount
= <ProjectPackage>.fact.BankAccountFactory.newInstance();

AccountNoWrapper accNoWrapper = new AccountNoWrapper;
accNoWrapper.txAccountNum = "57033186";
double theTotalAmount = 0;
// Call the operation:
MinorTxDetailsList +txList
= bankAccount.getMinorTransactions(accNoWrapper);
// iterate through the set of results.
for (int i = 0; i < txList.dtls.size(); i++) {1
MinorTxDetails currentTx = txList.dtls.item(i);

theTotalAmount += currentTx.txAmount;
Figure 15: Calling a nsmulti operation from handcrafted Java code (two parameters)

Using handcrafted SQL in non-standard entity operations overview

For entity operations of stereotype ns and nsmulti, you must specify the SQL to use in the Cliram Data
Access Layer (DAL).

These queries have access to all the tables on the database and to all the parameters of the operation.

Using host variables
Host variables in SQL either directly reference fields in the parameter struct or return value struct.

The following are the rules for using host variables:

« Prefix host variables with a colon (2).
« Ensure that host variables are case-sensitive.

For example:
:surname

- Ifafield in the parameter struct or return value struct is a result of aggregation, then use the role name
of aggregation for the host variable.

For example:
:dtls
For more information about aggregation, see the One-to-one aggregation related link.

Related reference
One-to-one aggregation

58 IBM Curam Social Program Management: Ciram Modeling Reference Guide

One-to-one aggregation embeds a single instance of one class within another.

"Null" considerations
When you write a handcrafted SQL statement, some Clram datatypes are stored as null on the database if
they are empty (that is, in their initial state).

For this reason, when you search for these records your query must search for "null" rather than an empty
string. The following examples explain using a query to search for "null" rather than an empty string.

Incorrect "null" search
The following is an example of an incorrect "null" search.

SELECT ... INTO ... FROM ... WHERE someStringColumn = '';

Correct "null" search
The following is an example of a correct "null" search.

SELECT ... INTO ... FROMWHERE someStringColumn is null;
In general, if the Curam data type corresponds to a Java class (as opposed to a primitive Java type), then
its empty state is stored on the database as a null. If the data type corresponds to a primitive Java type,

then a null on the database is not a valid value for it. In this case, the Allow NULLs on this database field
option defaults to no. If necessary, you can override this default.

Note: The Allow NULLs on this database field option controls the NOT NULL qualifier in generated DDL in
an inverted way. If you set this option to no, it adds the NOT NULL qualifier; if you set it to yes, it omits
the qualifier.

Table 1 shows the Ciram data types that can be represented as a null on the database.

Table 8: Data types and nulls

Datatype Nulls allowed
SVR_BLOB yes
SVR_BOOLEAN no
SVR_CHAR no
SVR_DATE yes
SVR_DATETIME yes
SVR_DOUBLE no
SVR_FLOAT no
SVR_INTS no
SVR_INT16 no
SVR_INT32 no
SVR_INT64 yes
SVR_MONEY no
SVR_STRING yes

Curam modeling reference 59

Update considerations with DB2 for z/0S

If you are running against a DB2 for z/OS database, you might need to modify any handcrafted SQL that
explicitly uses a FOR UPDATE clause to prevent the system from throwing RecordLockedException
errors.

If the particular SQL statement is invoked simultaneously by multiple users, consider using FOR UPDATE
WITH RS USE AND KEEP UPDATE LOCKS instead. The locking behavior of DB2 for z/OS is subtly
different to that of DB2 on distributed platforms. The KEEP UPDATE LOCKS syntax ensures that the
locking behavior with DB2 for z/OS is the same as it is on distributed platforms.

SQL example 1
In the following example, entity Employer has a method CountEmployers (stereotype ns)that
returns the number of records in the Employer table.
The following struct is required to return the result as stereotyped entity operations cannot return
primitive types:
public final class LongWrapper
implements Serializable, DeepCloneable {

/**

* LONG_TYPE -> long

*/
public long longValue = 0;

Figure 16: Struct for return result

The following extract is the Java interface for this operation:
public interface Employer
public LongWrapper countEmployers()

throws AppException, InformationalException;
%

Figure 17: Java Interface

Finally, the SQL to implement this query is:

SELECT count(x)
INTO :longValue
FROM Employer;

Figure 18: SQL Implementation

You do not need to specify the name of the LongWrapper class. Instead, simply reference the name of
the longValue attribute within that class because the INTO clause is automatically assumed to reference
the return value.

So, if you use an attribute with the same name in the input parameter struct and return value struct then it
is assumed that the INTO clause references the attribute of the return value struct.

SQL example 2
The following example shows how to use parameter host variables and expands the previous example by
adding another method that updates a numeric field on one record of the Employerx table.

public interface Employer
public void setEmployerSize(EmployerKey empKey,
LongWrapper newSize)
throws AppException, InformationalException;
public LongWrapper countEmployers() throws AppException;

Figure 19: Java Interface

The following struct is required to contain the primary key for the employer:

60 IBM Curam Social Program Management: Ciram Modeling Reference Guide

public final class EmployerKey
implements Serializable, DeepCloneable {
/**
* REFERENCE_NUMBER -> String
*/
public String employerNumber =

?
Figure 20: Struct for employer key

The SQL statement for this method is:
UPDATE Employer

SET size = :2.longValue

WHERE employerNumber = :employerNumber;

Figure 21: SQL Implementation

Note: As the second parameter contains longValue, it is necessary to qualify it with 2.. Unqualified
parameter references are assumed to reference the first parameter.

The SQL statement in Figure 4 qualifies both parameters and is equivalent to the SQL statement in Figure
3:
UPDATE Employer

SET size = :2.newSize.longValue

WHERE employerNumber = :1.employerNumber;

Figure 22: SQL Implementation with qualified parameters

Aggregation

Use aggregation to embed or nest instances of one type of class within another type of class.

The Curam generator supports two types of aggregation relationships: one-to-one and one-to-many.
The main use for aggregation in the generator is to represent sequences in the input meta-model.
The generator permits the following aggregation configurations:

- Structs can aggregate structs.
« Structs can aggregate entities.

A special case

The generator supports the aggregating of standard details structs, even though standard details structs
do not appear in the input model.

Standard details structs are aggregated by aggregating the entity class that "owns" the standard details
struct.

One-to-one aggregation
One-to-one aggregation embeds a single instance of one class within another.

The following example describes how to aggregate a struct class, PersonDetails, into to another struct
class, PersonDetailsWrapper, by using one-to-one aggregation.

To create a one-to-one aggregation, create an Rational Software Architect diagram and then perform the
following steps:

« Add classes PersonDetails and PersonDetailsWrapper to the diagram.

« In the diagram, drag the appropriate arrowhead (it appears when the mouse cursor is over the class)
between the two classes with PersonDetailsWrapper set as the source and PersonDetails the
target.

- Select Create Aggregation from the popup menu.
« Select the aggregation relationship in the diagram.
« Open the General Properties tab.

Curam modeling reference 61

The preceding steps create the aggregation relationship whereby one role corresponds to class
PersonDetailsWrapper and the other role to class PersonDetails. A UML role is essentially one end
of a UML relationship so each relationship has two roles whose names are Role A and Role B. Exactly one
of these roles, usually Role A, has its aggregate option set. The assignment of Role A and Role B is
arbitrary. The key thing is that the role with the checked aggregate box denotes the outermost class of the
pair.

When you select the relationship line in the diagram, the General Properties tab displays
PersonDetailsWrapper in the graphic at the top of the properties sheet with the diamond that is
associated with it. Set the following properties of the aggregation:

« The label is optional.
« For PersonDetailsWrapper:

— Indicate Composite in the aggregation radio button.
— Set Multiplicity to 1.
« For PersonDetails:

— Indicate None in the aggregation radio button.
— By default, the role is set to dtls.
— Set Multiplicity to 1 (to signify a one-to-one aggregation).

The class diagram appears in the Rational Software Architect. The diagram shows the two classes that are
joined by the UML aggregation relationship line (with the diamond end touching
PersonDetailsWrapper). Each side of the relationship shows multiplicity of one and the
PersonDetails shows a role name of dtls.

Note: The position of the diamond in the model diagram is important as it denotes the outermost class in
the pair.

The generated Java code that is produced from this construct takes the following format:

public final class PersonDetails implements
java.io.Serializable, curam.util.type.DeepCloneable §
public String personRefNo = "";
public String firstName = "";

public final class PersonDetailsWrapper implements
java.io.Serializable, curam.util.type.DeepCloneable {

// This class has a single instance of
// class "PersonDetails" embedded in it. PersonDetails dtls =
// new PersonDetails();

One-to-many aggregation
One-to-many aggregation embeds a sequence of one class within many others.

This example models a one-to-many aggregation, which means that a list of one class type is embedded
into the other class. Start by creating PersonDetailslList, which aggregates a list of PersonDetails.
To create a one-to-many aggregation, open an Rational Software Architect diagram and perform the
following steps:

- Add classes PersonDetails and PersonDetailslist to the diagram.

« In the diagram, drag the appropriate arrowhead (it appears when the mouse cursor is hovering over the
class) between the two classes with PersonDetailslList as the source and PersonDetails as the
target.

« Select Create Aggregation from the popup menu.
« Select the aggregation relationship in the diagram.
« Open the General Properties tab.

The preceding steps create the aggregation relationship whereby one role corresponds to class
PersonDetailslList and the other to class PersonDetails.

62 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Note: The position of the diamond is important as it denotes the outermost class in the pair.

When you select the relationship line in the diagram, the General Properties tab displays
PersonDetailsList in the graphic at the top of the properties sheet with the diamond that is
associated with it.

Set the following properties of the aggregation:

« The Label is optional.
« For PersonDetailslList:

— Indicate Composite in the aggregation radio button.
— Set Multiplicity to *.
« For PersonDetails:

— Indicate None in the aggregation radio button.
— By default, the role is set to dtls.
— Set Multiplicity to 1..* (to signify a one-to-many aggregation).

The class diagram appears in the Rational Software Architect. The diagram displays the two classes that
are joined by the UML aggregation relationship line (diamond-end touching PersonDetailsList. The
diagram displays the aggregates side of the relationship that shows a multiplicity of x and
PersonDetails showing a multiplicity of 1. .% and a role name of - dtls.

The pseudo-code that is produced from this construct takes the following format:

struct PersonDetails implements
java.io.Serializable, curam.util.type.DeepCloneable §

String personRefNo =
String firstName = "";

1

struct PersonDetailslList implements
java.io.Serializable, curam.util.type.DeepCloneable {

public static class List_dtls
extends curam.util.type.Valuelist §
public void addRef(PersonDetails s) {
add(s);

public PersonDetails item(final int indx) f{
return (PersonDetails) get(indx);

3
public PersonDetails[] items() £
PersonDetails[] result = new PersonDetails[size()];

toArray(result);
return result;

¥

// This class contains an embedded list of "PersonDetails":
public final List_dtls dtls = new List_dtls();

¥

The resulting generated struct class for PersonDetailslList includes a field that is named dtls. This
field provides functionality that is required for lists such as adding items, getting an item by index, and
getting the list contents as an array.

Assignhable

Use generated struct classes to automatically assign values between matching fields in another struct as
provided by the generated struct's super class curam.util.type.struct.Struct.

Consider an example of a struct, BankBranchStruct with several attributes:

« bankBranchID
« bankId

Curam modeling reference 63

« bankName
bankSortCode
« name

« etc.

A BankBranchListDetails struct class has a subset of attributes that are shared with the
BankBranchStruct class:

« bankBranchID
« bankSortCode
« name

The following Java code illustrates how to create these objects:

BankBranchStruct bankBranchStruct
= new BankBranchStruct();
BankBranchListDetails bankBranchListDetails
= new BankBranchListDetails();

Typically, the following illustrates the assignment from one struct to the other:

bankBranchListDetails.bankBranchID

= bankBranchStruct.bankBranchID;
bankBranchListDetails.bankSortCode

= bankBranchStruct.bankSortCode;
bankBranchListDetails.name = bankBranchStruct.name;

To simplify the preceding code, use the assign function, which becomes more significant as the size of
the structs increase:

bankBranchListDetails.assign(bankBranchStruct);

Use an assignable relationship to allow further control of the specifics of the automatic assignment with
the assign function. It is required when you want to do explicit field assignment between fields with
differing names or to suppress the default assignment between fields of the same name.

Explicit field assignment
An explicit field assignment is where fields with different names are matched.

An explicit field assignment is represented in the model by adding an assignable relationship between the
two classes, and then adding attributes to be matched to both sides of the assignment. Any fields that are
not explicitly linked are treated as default assignment fields.

This is shown in the following classes:

« entity class: Address

Attribute

addressID

addressLinel

addressLine2

addressLine3

addresslLined

cityCode

countryCode

postalCode

regionCode

comments

64 IBM Curam Social Program Management: Ciram Modeling Reference Guide

« struct class: BankBranchStruct

Attribute
bankBranchID
bankID

bankName

addressID

addressLinel

addressLine2

addressLine3

addressLine4d

countryCode

postalCode

regionCode

addressVersionNo

cityID

In an assignable relationship between the two classes Address and BankBranchStruct, you can
explicitly map fields. For example, match BankBranchStruct.cityID with Address.cityCode. In
Rational Software Architect, mapped fields are shown in Role: fields (RoleA & RoleB) of the General tab of
the assignable relationship with the linked pair, cityID in one Role field and cityCode in the other. The
generator automatically handles all the other common fields (for example, AddressLinel, and so on).

For instance, the following illustrates the generated code without the explicit field assignment:

public curam.util.testmodel.struct.BankBranchStruct
assign(final curam.util.testmodel.struct.AddressDtls v)

addressID = v.addressID;

addressLinel = v.addresslLinel;
addressLine2 = v.addresslLine2;
addressLine3 = v.addressLine3;
addressLine4 = v.addresslLine4;

countryCode = v.countryCode;

postalCode = v.postalCode;
regionCode = v.regionCode;
return this;

¥

With the explicit field assignment, the following code is then added to the assign method: cityID =
v.cityCode. The handcrafted Java to assign these structures is as follows:

BankBranchStruct dtls = new BankBranchStruct();
AddressDtls addressDtls = new AddressDtls();
dtls.addressLinel = addressDtls.addresslLinel;
dtls.addressLine2 addressDtls.addressLine2;
dtls.addressLine3 addressDtls.addressLine3;
dtls.addressLine4 = addressDtls.addresslLine4;
dtls.cityID = addressDtls.cityCode;
dtls.countryCode = addressDtls.countryCode;
dtls.postalCode = addressDtls.postalCode;
dtls.regionCode = addressDtls.regionCode;

By using the generated assignment operator, you can reduce these lines of code to just one line:
bankDtls.assign(addressDtls);

Curam modeling reference 65

Suppressing default assighment fields

In some situations, you might not want to match a pair of similarly-named fields. You can omit a pair of
fields from an assignment by listing one of the fields at one end of the relationship.

For the proceeding two classes, PersonInfo and AccountInfo, with a struct relationship, the same
named fields are matched.

« struct class: AccountInfo

Attribute

Id

Surname

FirstName

Balance

struct class: PersonInfo

Attribute

Id

Surname

FirstName

For this example, first create the objects for the PersonInfo and AccountInfo classes as (see the
preceding steps):

AccountInfo account = new AccountInfo();
PersonInfo person = new PersonInfo();

This assignment:

account.assign(person);

is equivalent to the following three statements:
account.Id = person.Id;

account.Surname = person.Surname;

account.FirstName = person.FirstName;

By adding Id as a key to one end of the relationship, it is excluded from the generated assignment. Now
this assignment:

account.assign(person);
is equivalent to the following two statements (that is, the Id assignment is no longer made):

account.Surname = person.Surname;
account.FirstName = person.FirstName;

Combining structs
In some instances, you might need to populate one struct with the contents of two or more other structs.

Figure 1 illustrates a typical piece of Java code.

66 IBM Curam Social Program Management: Ciram Modeling Reference Guide

BankBranchStruct dtls = new BankBranchStruct();
AddressDtls addressDtls = new AddressDtls();
BankBranchDtls bankBranchDtls = new BankBranchDtls();

// Copy from the "AddressDtls" struct
dtls.addressLinel addressDtls.addresslLinel;
dtls.addressLine2 addressDtls.addresslLine2;
dtls.addresslLine3 addressDtls.addressLine3;
dtls.addressLine4d addressDtls.addresslLine4;
dtls.cityCode addressDtls.cityCode;
dtls.countryCode addressDtls.countryCode;
dtls.postalCode addressDtls.postalCode;
dtls.regionCode addressDtls.regionCode;
dtls.

addressVersionNo
= addressDtls.
versionNo

1

// Copy from the "BankBranchDtls" struct
dtls.bankBranchID bankBranchDtls.bankBranchID;
dtls.bankID bankBranchDtls.bankID;
dtls.bankSortCode bankBranchDtls.bankSortCode;
dtls.name bankBranchDtls.name;
dtls.versionNo bankBranchDtls.versionNo;

Figure 23: Example Java code for combining structs

By explicitly mapping the BankBranchStruct.addressVersionNo attribute to the Address.versionNo in the
assignable relationship, you can now write the Java as:

// Copy from the "AddressDtls" struct
dtls.assign(addressDtls);

// Copy from the "BankBranchDtls" struct
dtls.assign(bankBranchDtls);

Figure 24: Equivalent Java code for combining structs

Note: In this case, the second assign does not overwrite the first as it references a different subset of
fields. As a result, the effect is to merge the two struct contents.

Foreign keys

Use the Curam generator to create foreign keys between database tables.

A foreign key relationship between two database tables is specified in the input model by adding a
relationship of stereotype foreignkey (one word, no spaces) between two entity classes. Optionally, you
can name the relationship. The relationship name is then applied to the foreign key constraint added to
the database. Otherwise, the database chooses its own name for the constraint.

The following rules apply to using foreign keys:

« Foreign key relationships are allowed on entity classes only.

- Fields that are referenced by a foreign key are set to unique, as the unique field is required by some
databases.

- If the foreign key references the primary key of another entity, the generator does not produce a
redundant unique clause as the primary key is already unique.

- Foreign keys cannot be specified on subclass entities. You must specify the relationship by using the
actual base entity classes themselves.

Adding a foreign key to a database table

A foreign key is specified between a pair of entities by adding a relationship between the two classes and
by adding key/qualifiers to the role that is touching the referenced class.

Specifying a foreign key in this way is represented on a class diagram by a line between two classes, with
a box that contains the key/qualifiers at the referencing class.

Curam modeling reference 67

The notation for linking pairs of fields in two different classes is the same for foreign keys as for generated
assignments. The class diagram shows two classes that are joined by a line with pairs of linked attributes
in a box at one end of the line. The first name in the pair refers to an attribute in the nearer class. The

second name refers to an attribute in the other class.

Primary and foreign key naming constraints

You can include a constraint name for foreign key constraints in Ciram models.

The name that you give in the model to the foreignkey relationship is applied by the system to the
foreign key constraint itself. If necessary, you can suppress this feature by specifying '-
nonamedforeignkeyconstraint' on the generator command line.

Primary key constraints are also given names in the database. The name of each constraint is the same as
its corresponding entity. This also results in an accompanying index of the same name. You can suppress
this feature by specifying -nonamedprimarykeyconstraint on the generator command line.

Foreign key example

This foreign key example uses two entity classes.

Consider two entity classes, BankAccount and BankTransaction, where BankAccount. accountNo is
a foreignkey on BankTransaction. This means that the BankTransaction table (txAccountNo) must
have a record on the BankAccount table with a matching accountNo value.

The following table illustrates two classes where the foreignkey is between their key attributes:

- entity class: BankAccount

Attribute Domain

key accountNo ACCOUNT_NO

details clientID CLIENT_ID

details branchLocation BRANCH_LOCATION

details currentBalance MONEY

details lastTransaction DATE_TYPE

details lastStatement DATE_TYPE
entity class: BankTransaction

Attribute Domain

key txAccountNo ACCOUNT_NO

details txID TX_ID

details transactionDate TX_DATE

details transactionType TX_TYPE

details transactionAmount TX_AMOUNT

This foreign key generates the following DDL (Oracle SQL shown):

ALTER TABLE BankTransaction ADD(
FOREIGN KEY (txAccountNo)

REFERENCES BankAccount(accountNo));

68 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Indexes

Use the Curam generator to create indexes other than the primary index on database tables.

You can create any humber of indexes on each table, with the usual speed versus database size trade-offs
that are associated with indexes.

An index for a database table is specified in the input model by adding a relationship of stereotype index
between an entity class and a struct class.

Using a struct to represent an index does not have any side-effects on the struct (apart from the
preceding caveats). You can still use the struct as an argument to an operation. Typically, you use the
struct as both a key parameter and as an index to support database accesses via this key.

The following rules apply to using indexes:

« You must name the relationship. The database uses the name to index. The name of the struct in the
relationship does not affect the index.

« The names of the attributes of the struct class must be a subset of the names of the attributes of the
entity.

« The struct class must not aggregate any other classes.

Index names must be unique within the entire model.

Adding an index to a database table overview
Create a struct class whose fields are a subset of the fields of the entity class.

Add a relationship of stereotype index between the entity class and the struct. The direction of the
relationship is unimportant.

Set the relationship name to the name that you want given to the database index.

Index naming overview

You never explicitly reference an index, but referencing an index is a requirement for the Database
Administrator.

As you never explicitly reference an index, use index names that are as meaningful and descriptive as
possible.

Index example
This example uses two classes with an index relationship.

Consider the following two classes with an index relationship named BankClientMNIndex:

- entity class: BankClient

Attribute Domain

key clientID CLIENT_ID

details firstName CUSTOMER_NAME
details middleName CUSTOMER_NAME
details lastName CUSTOMER_NAME
details address1 ADDRESS_LINE
details address2 ADDRESS_LINE
details address3 ADDRESS_LINE
details address4 ADDRESS_LINE

Curam modeling reference 69

« struct class: MiddleNameWrapper

Attribute Domain

middleName CUSTOMER_NAME

The preceding index produces the following DDL by the generator:

CREATE INDEX BankClientMNIndex
ON BankClient(middleName);

Unique indexes

To model a unique index, add a unique index stereotype relationship between an entity class and a struct
class. The rules for modeling a unique index are the same as the rules for modeling a non-unique index.

When you specify a unique index for an entity, the necessary information is included in the generated file
<Application-name>_unique_constraints.xml. You must then reference this file from the data
manager configuration file (datamanager_config.xml).

Note:
The file <Application-name>_unique_constraints. xml contains two sets of information:
1. Unique indexes correspond to explicit 'uniqueindex' relationships in the model and result in DDL of the

form:

CREATE UNIQUE INDEX <index-name>
ON....

where '<index-name>'is the name of the relationship in the model.

2. Unique constraints are implicit unique constraints that are automatically produced by the generator
and that are applied to all fields that are referenced by a foreign key. They correspond to foreignkey
relationships in the model and result in DDL of the form:

ALTER TABLE <table-name> ADD
UNIQUE...

or, if there is a 'uniqueindex' for the fields that are referenced by the foreign key:

ALTER TABLE

<table-name> ADD CONSTRAINT <constraint-name>

UNIQUE. ..
where '<constraint-name>'is the name of the corresponding 'uniqueindex' relationship in the
model.

When you run the data manager, it creates the explicit unique indexes before the implicit unique
constraints. By doing this, it means that the database can use the developer-specified unique indexes to
enforce uniqueness rather than having to create and use its own system-named indexes.

For example, you might want to model a specifically-named unique index to correspond to a particular
foreign key in the model. The generator automatically gives the unique constraint the same name as the
corresponding unique index.

Generated class hierarchy

A hierarchy of classes that are generated by the server-code generator correspond to the classes
designed in the application model.

All classes are defined in the Ciram model by using UML notation. A single process, facade, or entity class
can contain a mixture of automatically generated and handcrafted methods. Do not store handcrafted
code and generated code in the same file due to the risk that the generator overwrites handcrafted code
or vice versa.

Code that you provide is stored in a single class. The code is generated into a number of other classes and
the set is linked together into a hierarchy by inheritance and implementation.

70 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Note: As struct classes do not contain operations, you do not need to separate handcrafted and
generated code. Each struct class in the model corresponds to one generated Java struct class.

Basic hierarchy example

This example shows the elements of the generated and required handcrafted class hierarchy for a basic
entity class named MyClass. This class does not use inheritance or code packages.

The UML representation of the generated Java classes of the entity class MyClass shows the following
four classes:

« <PackageName>.intf.MyClass
- <PackageName>.base.MyClass
— Implements, or realizes, the intf class.
— Itis the super class.
« <PackageName>.impl.MyClass
— Asubclass of the base class.
— Contains any required (non-generated) handcrafted methods.

<PackageName>.fact.MyClassFactory
— Asubclass of the imp1 class.
— Returns an instance of the intf class.

So, four Java classes correspond to the entity class in the UML model. Of the four classes, three share the
name as the class in the model. The fourth class shares the name with the word Factory appended.

The following provides a further description of the classes:
1. <ProjectName>.intf.MyClass
This is a generated Java interface class that contains all the public methods for the class.

The other classes in the hierarchy, either generated or handcrafted, are required to provide
implementations for these methods.

2. <ProjectName>.base.MyClass

This is a generated abstract Java class that implements the interface in the intf version of the file.
The following is contained in the file:

« The implementations of data access methods (that is, stereotyped methods of entity classes) and
connector methods.

« Abstract method declarations for exit point methods.
This is to ensure that you are forced to provide implementations for the exit points.
« Abstract method declarations for methods declared protected in the model.

This is to ensure that you are forced to provide implementations for these methods without exposing
them in the interface (intf layer) for the class.

3. <ProjectName>.impl.MyClass
You supply this class and the class always inherits from the corresponding base version.

You must declare it abstract to ensure that the class cannot be instantiated directly. The class must
only be instantiated by using the factory mechanism - see the proceeding step.

In this class, you must provide implementations for all the methods declared in the class in the model
for which an implementation was not produced by the generator.

While this class inherits from a generated class, it contains only handcrafted code and no generated
code to avoid the risk of either your code overwriting generated code or vice verse.

4. <ProjectName>.fact.MyClassFactory

Curam modeling reference 71

This is a generated Java class that contains one static method: newInstance (). This method creates
instances of the class and is the only way to instantiate entity, facade, and process classes.

As a factory creates all instances of objects, you can also use it for the following;:

« Transparently create and return a customized version of the class requested. For more information,
see Replacing the superclass related link. You do not need to change pre-existing code that you used
in the original version of the class.

« Transparently create and return a proxy class of the requested class. The proxy class wraps the
requested class (by using the Java 1.3 Dynamic Proxy mechanism) and captures detailed tracing
information for all interactions with the class.

The following code sample shows how to create an instance of MyClass.

Note: The return type of MyClassFactory. newInstance is sample.intf.MyClass.

// Use the factory to create an instance:
sample.intf.MyClass myObject =
sample.fact.MyClassFactory.newInstance();

Figure 25: Using a factory to create an instance of MyClass

Related reference

Replacing the superclass
When you define a subclass, you can specify that the subclass replaces its superclass entirely. .

Subclasses hierarchy example

This example shows the elements of the generated or handcrafted class hierarchy for a basic entity class
named SubClass that inherits from MyClass.

The UML representation of the generated Java classes for the entity class SubClass would show the
following four classes:

« <PackageName>.intf.SubClass

— Itinherits from the MyClass intf class.
« <PackageName>.base.SubClass

— Implements, or realizes, the intf class.

— Itis the super class.

— Itinherits from the MyClass impl class.
« <PackageName>.impl.SubClass

— Asubclass of the base class.
— It contains any required (non-generated) handcrafted methods.
« <PackageName>.fact.SubClassFactory

— A subclass of the imp1 class.
— It returns an instance of the intf class.

As with the basic hierarchy example, there are four Java classes corresponding to class SubClass.
However, as SubClass inherits from MyClass it creates two extra relationships. The extra relationships
are as follows:

1. Interface SubClass inherits from interface MyClass. This ensures that SubClass must implement
all of its own declared methods as well as the methods declared in MyClass.

2. Generated class <ProjectName>.base.SubClass inherits from handcrafted class
<ProjectName>.impl.MyClass. This means that SubClass inherits the implementations of the
methods from SubClass as well as their declarations. Therefore, these methods are available to
SubClass and you are not required to re-implement them.

72 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Abstract classes hierarchy example
In a Cdram model, you can mark classes abstract. This means that the classes cannot be instantiated.

For more information on abstract classes, see the Entity class options related link.
From the subclasses example, if M\yClass were qualified abstract the following hierarchy would result:
« <PackageName>.intf.MyClass
- <PackageName>.base.MyClass
— Implements, or realizes, the intf class.
— Itis the super class.
« <PackageName>.impl.MyClass
— Asubclass of the base class.
— It contains any required (non-generated) handcrafted methods.

The hierarchy is the same as for non-abstract classes except that it generates no factory.

Related reference

Entity class options

The options available for entity classes are entity class abstracts, allow optimistic locking, audit fields,
enable validation, last updated field, No Generated SQL, and replace superclass.

Class hierarchy considerations

The following considerations apply to class hierarchies: access control, the meaning of super, and
enforcing the factory mechanism.

Public and protected access control
In Cdram models, the Java language supports two levels of access control: public and protected.

Typically, the Java language supports four levels of access control for methods and member variables:
private, protected, public, and package. As the generated class hierarchy in Ciram includes different
classes in different packages, there is no need to use the private and package access levels.

Note: Not using private and package access levels only applies to operations in Ciram models.

You can still use private and public access in handcrafted Java code as required.

The meaning of super
In Java, the super keyword is a reference to the superclass, that is, the class from which the current class
(this) inherits.

In the subclasses hierarchy example, the superclass of SubClass is MyClass. However, when you write
handcrafted Java code for <ProjectName>.impl.SubClass note that the superclass of this class is
<ProjectName>.base.SubClass rather than any version of MyClass.

Related reference

Subclasses hierarchy example
This example shows the elements of the generated or handcrafted class hierarchy for a basic entity class
named SubClass that inherits from MyClass.

Enforcing the factory mechanism
To create entity, facade, and process objects, only use their associated factory classes.

Do not bypass the associated factory mechanism by using the new keyword to instantiate these classes.
Enforce this by making all implementation classes (that is, all classes in the imp1 packages) abstract. If
you do not make these classes abstract, there is a risk of instantiating these classes directly and,
consequently, class replacement not working as expected.

Curam modeling reference 73

Class hierarchy summary
Specific individual objects in a Ciram application model appear as multiple classes in the output code.

Ensuring the following is the objective of the generated class hierarchy:

« You provide all handcrafted implementation within a single Java class.

« The public parts of the object's interface are accessible to other objects and the non-public parts of the
object's interface are not accessible to other objects.

* You are forced to implement all of the declared interface, both public and non-public (unless the
generator produces the necessary implementation).

« Objects can be subclassed and a subclass can be defined to replace its superclass transparently.
- To support replacement and tracing the runtime type of an object is determined by a factory.

Curam JMS queue connectors

Use IBM Curam Social Program Management connectors in a Ciram application to connect to other
systems through JMS queues.

For facade and process class operations with a stereotype of gconnector, the generator produces code
that:

Converts the operation parameter into a JMS message.

Places the message on a queue and optionally waits for another message.

Converts the message back to a Cdram struct.
Returns the struct to the caller.

For many operations, you can implement queue connectors without writing any handcrafted code. You
can also customize connectors with the use of handcrafted code. In the following instances, customize
connectors with the use of handcrafted code:

« The default encoding of a datatype is not suitable for your purpose. For example, you want to encode
dates in the form DD-MMM-YYYY instead of the default format of YYYYMMDD.

« Your parameter struct is "complex". For example, it contains a variable length field or aggregates
another struct.

JMS queue connectors overview
Use a connection factory to build connections.

Factory objects are stored in a INDI namespace, insulating the JMS application from provider-specific
information.

The fields in the parameter struct are scanned using Java reflection. Each field is converted into a fixed
length string based on its datatype. The strings are concatenated together into a JMS BytesMessage,
which is then placed on a JMS queue.

If you specify a return type for the operation, the Clram application waits for a response message.
Typically, it waits on another queue. The remote system must create a correctly formatted response
message and send it to the Cliram application within the specified timeout period. When the message is
received, it is converted into an instance of the return type struct which is then returned to the caller.

gconnector operation options
Use the appropriate gconnector operation.

The following options are available on qconnector operations:
« JNDI name of the QueueConnectionFactory class

Mandatory. This specifies the name of the QueueConnectionFactozry class in the INDI hamespace.

74 1BM Curam Social Program Management: Ciram Modeling Reference Guide

Queue connections are not instantiated directly. Instead, connection factories create queue
connections. The connection factories are stored in the JINDI namespace of the application server.

JNDI name of the transmission queue

Mandatory. This specifies the INDI name of the queue onto which outgoing messages are placed.
Response message timeout (seconds)

This is only relevant for operations that have a return value. The return value is obtained by receiving a
response JMS message from the recipient and this timeout value is used to ensure that the application
does not wait indefinitely for the response.

Default value: 30 seconds.
JNDI name of the reply queue

This is only relevant for operations that have a return value. It specifies the INDI name of the queue
from which the response message is taken.

Message Type

BytesMessage or TextMessage. Use this message type to specify whether a JIMS BytesMessage or
TextMessage is sent or received by the connector. By default, the JIMS connectors send and receive a
JMS BytesMessage containing the bytes of a string representation of the struct parameters. If the
system or systems you are communicating with use a different character encoding, then these bytes
might be incorrectly translated by the other systems. In this case (provided the message doesn't
contain any binary data), use a JIMS TextMessage to ensure that the message is correctly translated by
the other systems.

BytesMessage encoding character set

This set specifies the name of the character encoding to use when converting the string representation
of a struct to a IMS BytesMessage and vice versa. If you do not specify this option, then the default
local system character encoding is used. (Usually, this is 'Cp1252' for Microsoft Windows, 'Cp1046' for
EBCDIC on IBM z/0S®, and so on.) Use this to ensure that the character encoding for the message
matches the character encoding of the other system with which you are communicating.

This option is not relevant if you use TextMessage.

gconnector operation considerations
gconnector operations are represented in the meta-model and implemented on the remote system.

Determine the message format or formats and create corresponding struct or structs
With the application developer, agree on the format or formats of the messages that pass between the
two systems.

Agree the following with the application developer:

The format of each field in the message

You can use the default encoding method for each field. For information on how to implement a custom
encoding methodology, see the Encoding methods for fundamental types related link and the Using
customized encoding and decoding classes related links.

The length of each field in the message

Like the encoding, the encoded length of each field depends on the type of the field and, for some
datatypes, its length as specified in the model. For information on lengths of datatypes, see the
Encoding methods for fundamental types related link. You can change the length of the field by
implementing a custom mapper for the field.

The ordering of the fields in the message

The fields appear in the message in the same order as they appear in the struct in the meta-model. Use
the toolbar to change the order of struct attributes, if required.

Curam modeling reference 75

Related reference

Encoding methods for fundamental types
Use the table to view the datatype and encoded width for each encoding method.

Customized encoding and decoding class usage
By default, the encoding method for each field in a struct that is used or returned by connector operations
is based on the field type.

Add the operation to the application meta-model
A gconnector operation is modeled like any other process or facade class operation and is subject to
restrictions.

For more information on the restrictions, see gconnector rules and restrictions related link. To specify the
queue or queues and some queuing parameters, you must use some operations. For more information on
the operations, see the gconnector operation options related link.

In summary, the method must contain one struct parameter, it might return void or a struct, and must
contain options to identify the MQSeries queues to use.
Related reference

gconnector rules and restrictions
The gconnector is subject to specific rules and restrictions.

gconnector operation options
Use the appropriate gqconnector operation.

Configure the queues in the application server
The queue connection factory and references to the queues themselves are stored in the JINDI
namespace.

Map these JNDI names to actual connection factories and queues in the application server configuration.

Implement the message recipient in the remote system
The message recipient can be any system that has access to the MQSeries queues.

Typically, the message recipient is a legacy system that the Clram application requires access. The target
system can be either a JMS application or a basic MQSeries application.

If no response is required from the remote system, the remote system simply collects and decodes the
received message and uses it as required.

If a response message is required, that is, if you specified a return type for the operation, then the remote
system must:

 Create a response message AND
« Send the response message back to the waiting Ctram application.

The response message is associated with the original message by using its CorrelationID, that is, the
message recipient must set the CorrelationID of the response message equal to the MessagelD of the
original message.

gconnector rules and restrictions
The gconnector is subject to specific rules and restrictions.

The following rules and restrictions apply to qconnectors:

« The gconnector operation stereotype is valid in process or facade classes only.
« Connector operations must have exactly one struct parameter.

« Connector operations can have a return type of void or a struct.

- The parameter and return structs can take any form. However, the code that you generate can only map
structs that are "flat", that is, structs that do not aggregate other structs and that contain only fixed-
length fields.

76 IBM Curam Social Program Management: Ciram Modeling Reference Guide

For complex structs, you must implement a mapper class to map the struct to and from messages. For
examples of coding and decoding complex structs, see the Encoding methods for fundamental types

related link.

Related reference
Encoding methods for fundamental types

Use the table to view the datatype and encoded width for each encoding method.

Encoding methods for fundamental types

Use the table to view the datatype and encoded width for each encoding method.

Table 9: Encoding methods

Datatype Encoded Width Encoding method

SVR_BLOB Variable Converted directly to a padded
string

SVR_BOOLEAN 1 false =0, true=1

SVR_CHAR 1 Converted directlytoa 1l
character string

SVR_DATE 8 yyyyMMdd

SVR_DATETIME 15 yyyyMMddThhmmss (ISO 8601
standard)

SVR_DOUBLE 25 Numeric

SVR_FLOAT 16 Numeric

SVR_INTS8 1 Numeric

SVR_INT16 6 Numeric

SVR_INT32 11 Numeric

SVR_INT64 21 Numeric

SVR_MONEY 25 Numeric

SVR_STRING Variable Converted directly to a padded
string

SVR_UNBOUNDED_STRING N/A Not natively supported

« SVR_BLOB and SVR_STRING are variable in that the length of the encoded message is equal to the

length specified for that type in the model. If the data in the string is less than the maximum permitted
amount, space padding is appended to the data in the message to bring it up to the maximum size.

- SVR_UNBOUNDED_STRING is not natively supported as the string length is not known when the string
is generated and is required for creating fixed-length messages. However, it is possible to implement a

custom mapper to handle unbounded strings.

Curam modeling reference 77

- Numeric datatypes are converted to right-justified human-readable strings. For example: 45678,
-23123,1000003.14159, 1.4E-45.

Customized encoding and decoding class usage
By default, the encoding method for each field in a struct that is used or returned by connector operations
is based on the field type.

For example, the mapper class for curam.util.type.DateTime is
curam.util.connectors.mgseries.MQFieldMapper.DateTimeMapper. Similarly, for boolean
fields itis curam.util.connectors.mgseries.MQFieldMapper.BooleanMapper.

For any individual field in any operation, you can override this default and specify the name of the class to
map the data. You specify the names of the custom mapper classes in the properties file
QueueConnectorFieldMappers.properties, which you mustinclude in the application classpath.

Use the following format for entries in the properties file:
[class].[operation].[param].[field]=[mapper]
where

« [class] is the name of the process or facade class that contains the connector operation.
« [operation] is the name of the connector operation.

 [param] is the name of the parameter or the property return to specify the return value for the
operation.

« [field] is the name of the field within the parameter struct.

« [mapper] is the fully qualified class name of the required mapper class. [mapper] must be a subclass of
curam.util.connectors.mqgseries.MQFieldMapper.

MyBPO.connectorOpl.dtls.phoneNumber=com.acme.util.PNMapper
MyBPO.connectorOpl.return.phoneNumber=com.acme.util.PNMapper

Figure 26: Sample QueueConnectorFieldMappers.properties

Working with variable length fields example

The following example uses a custom field mapper class to implement a primitive variable length field
message.

Encode the variable length field by prefixing the data with a six character string that contains a number
that specifies the length of the data in the remainder of the string.

Note: The following example only shows the implementation at the Clram end of the queue. The remote
system also needs to recognize the encoding method and implement the necessary translations by using
the language of choice on the remote system.

The following pseudo code describes the struct that is used in the operation. Fields idNumber and
dateOfBirth use the default conversion methods for their type and are converted into 10 and eight
character strings, respectively. The historyText field is a variable length field and is encoded and decoded
by using a custom mapper class.
struct PersonHistory {

String<10> idNumber;

String historyText;

Date dateOfBirth;
b

Figure 27: Pseudo code for the struct to be mapped:

Use method addToHistoxry of class LegacyBPO to send a PersonHistozry struct to a legacy system.
The legacy system appends text to the variable length field historyText, and returns an updated copy of
PersonHistory.

78 IBM Curam Social Program Management: Ciram Modeling Reference Guide

interface LegacyBPO {
PersonHistory addToHistory(dtls PersonHistory);

Figure 28: Pseudo code for the BPO interface

Note: Field historyText is used in two cases: once in the parameter to operation addToPersonHistory
and once in the return value from the operation. Therefore, the custom mapper class must be specified
for each of these cases in QueueConnectorFieldMappers.properties (the lines are broken up for
clarity).
LegacyBPO.addToPersonHistory.dtls.historyText=

com.acme.mqutils.VariableStringMapper

LegacyBPO.addToPersonHistory.return.historyText=
com.acme.mqutils.VariableStringMapper

Figure 29: The property file entries that link the fields to the mapper

Figure 4 shows the implementation of the custom mapper class.

Curam modeling reference 79

package com.acme.mqutils;

// implementation for variable length string field mapper class
public class VariableStringMapper

extends MQFieldMapper $

/**

* The size of a prefix at the beginning of the string
* which specifies the length of following data.

*/

private static final int kStringHeaderInfolLength = 6;

/**

* Gets the encoded version of the mapped field within

* the given struct.

*

* @param object The struct class containing the

* mapped field.

* @return The field encoded as a String.

* @throws AppException if the field could not be encoded.
*

*/

public String encode(Object object)
throws AppException {
String historyText = null;
// get the "historyText" field from the given struct:
try ¢
historyText = (String) getMappedField().get(object);
% catch (IllegalAccessException e) {
// use the handler in the superclass to deal with
// this exception:
handleEncodingException(e, object);

// construct the prefix which will hold the
// size of the data.
int bufferLength = historyText.length();

String sizeSpecifierString = String.valueOf(bufferLength);
// pad the size specifier to the right length
sizeSpecifierString = MQUtils.padRight(
sizeSpecifierString,
kStringHeaderInfolLength);
// put the prefix and the data together.
String result = sizeSpecifierString + historyText;
return result;

%

/**

* Decodes the given string and assigns the resulting value
* to the mapped field in the struct.

*

* @param object The struct class containing the field

* @param encodedString The encoded form of the data.

* @return the number of characters consumed from the

* encoded string.

* @throws AppException if the target struct field could
* not be accessed.

*/

public int decode(Object object, String encodedString)
throws AppException {
// the first N characters contain an expression
// specifying the width of the encoded field.
String sizeSpecifierString =
encodedString.substring(0, kStringHeaderInfolength);
sizeSpecifierString = sizeSpecifierString.trim();
int sizeOfString = Integer.valueOf(
sizeSpecifierString).intValue();
// Now that we know the size of the data, take that
// many characters of data from the encoded string:
String historyText = encodedString.substring(
kStringHeaderInfolLength,
kStringHeaderInfoLength + sizeOfString);
// Update field "historyText" of the given struct:
try {
getMappedField() .set(object, historyText);
% catch (IllegalAccessException e) {
// use the handler in the superclass to deal with
// this exception:
handleDecodingException(e, encodedString);

// indicate how many characters we decoded - remember
// to include both the characters used to indicate the
// string size AND the actual string data.

return sizeOfString + kStringHeaderInfolength;

80 IBI‘;{I ¢dram Social Program Management: Ciram Modeling Reference Guide

Fisure 30: Mapper class implementation for variable string

Examples of MQSeries messages that are transmitted and received by this connector operation are:

« 10000361iwd One.19700714
« 10000361iw9 One. Two.19700714
« 10000361iwl6 One. Two. Three.19700714

where:

- The first 10 characters are the idNumber field.
- The last eight characters are the dateOfBirth field.

- The middle section is the variable length historyText field, of which the first six characters specify the
length of the data.

Working with lists example

The following example uses a custom field mapper class to implement encoding and decoding of a struct
that aggregates a list of another struct.

The list is encoded into a single string. The first four characters contain a number that specifies the
number of entries in the list. The remainder of the string consists of the encoded form of each struct as a
fixed-length string. This example illustrates how list aggregations are handled when aggregations
implement a custom mapper class.

Like the variable length fields example, this example only shows the implementation at the Ciram end of
the queue. The remote system also needs to recognize the encoding method and implement the
necessary translations by using the language of choice on the remote system.

The following pseudo code describes the struct that is used in the operation. Struct PersonDtls is
encoded as a fixed length 18 character string. Struct PersonDtlsList are encoded by:

« Encoding each struct in its list AND

« Concatenating the results into a string AND

« Prefixing the string with a six character string that specifies the number of entries in the list.

struct PersonDtls §
String<8> idNumber;
String<10> surname;

struct PersonDtlslList §
sequence <PersonDtls> dtls;

Figure 31: Pseudo code for the structs to be mapped:

Method processNames of class LegacyBPO sends a PersonDtlsList struct to a legacy system, the
legacy system performs some processing on this data, and returns an updated copy of PersonDtlsList.
interface LegacyBPO {

PersonDtlsList processNames(pl PersonDtlslList);

3
Figure 32: Pseudo code for the BPO interface

Again, as in the previous example, field dtls of struct PersonDtlsList is used in two cases: once in the
parameter to operation processNames and once in the return value from the operation. Therefore, the
custom mapper class must be specified for each of these cases in
QueueConnectorFieldMappers.properties (the lines are split for clarity).
LegacyBPO.processNames.pl.dtls=

com.acme.mqutils.PersonDtlsListMapper

LegacyBPO.processNames.return.dtls=
com.acme.mqutils.PersonDtlslListMapper

Figure 33: The property file entry that links the fields to the mapper

The following shows the implementation of the custom mapper class.

Curam modeling reference 81

package com.acme.mqutils;

// implementation
public class PersonDtlslListMapper {

/**

* The size of a prefix at the beginning of the string
* which specifies the number of encoded entries in the
* remainder of the string.

*/

private static final int kStringHeaderInfolength = 4;

[/ **

* The number of characters used to encode one

* 'PersonDtls' struct.

*/

private static final int kLengthOfOneEncodedStruct = 18;

[/ **

Encodes the 'dtls' member into a string. The first 4
characters contain the number of items in the list, the
rest of the string consists of the encoded version of
each struct in the list concatenated together.

*
*
*
*
*
*
* @param object the object containing the field to be
* encoded

* @throws AppException if it couldn't be encoded

* @return A encoded string.

*
u

public String encode(Object object) throws AppException {
PersonDtlslList.List_dtls d = null;

try ¢
// get a reference to the field within the struct
// to be encoded
d = (PersonDtlslList.List_dtls)
getMappedField().get(object);
%t catch (IllegalAccessException e) {
// use the handler in the superclass to deal with
// this exception:
handleEncodingException(e, object);

¥

// construct the prefix which will specify the number

// of items in the list.

int bufferLength = d.size();

String sizeSpecifierString =
String.valueOf(bufferLength);

// apply padding to make it the right size
sizeSpecifierString =
MQUtils.padRight(
sizeSpecifierString, kStringHeaderInfolength);

// Now go through the items in the

// list and encode each one.

String data = "";

for (int i = 0; i < d.size(); i++) {
PersonDtls currentItem = d.item(i);
data += encodeOneEntry(currentItem);

¥

// put the prefix and the data together.
String result = sizeSpecifierString + data;
return result;

~ o

*Ok

Decodes a series of PersonDtls entries in the string
and adds them to field PersonDtlslList.List_dtls in the
given PersonDtlslList object.

@param object The class containing the field to be decoded
@param encodedString the string containing the field data
@return a number indicating the number of characters decoded
@throws AppException if the string could not be decoded.

*/

public int decode(Object object, String encodedString)
throws AppException {

PersonDtlsList.List_dtls dtls = null;
// Get a reference to the list field within the object.
82 IBM CU%H’*“S@C@@%@@%M%@@%@%E@% FRFA8ENE Reference Guide
Igning1t.

Ireass

d¥le = (PertconD+lcl icet |1t d+le)

For example, the following list of Ent18131 structs:
« ("OOOO361i", "James")

- ("0024684x", "John")

« ("8211519f", "Sharon")

are encoded as follows:
"3 0000361iJames
0024684xJohn 8211519fSharon "
Where:

« The first four characters contain a number that specifies the number of encoded structs to follow AND
« The remaining string consists of three 18 character blocks corresponding to the three encoded structs.

Related reference

Working with variable length fields example

The following example uses a custom field mapper class to implement a primitive variable length field
message.

Subclass modeling

Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

You cannot use subclassing to add extra attributes to entities or structs.
The following are examples of when you would subclass a class:

- Adding new stereotyped methods to an existing entity class.

- Adding or contributing to an existing entity or operation exit points.

- Modifying existing entity operation Readmulti Max options.

Basic subclassing

To transform a class into a subclass, add a generalization relationship from the subclass to the superclass
(base class).

On aclass diagram, the generalized relationship displays as a line between the two classes with an arrow
that points toward the superclass. Therefore, the subclass inherits all the operations of the superclass. In
addition, it might:

- Add extra functions.

- Modify the applicable options of the function in the superclass.

In the following two classes where MySubclass is a subclass of MyBaseClass:
« MyBaseClass has two operations: op1() and op2()

« MySubclass has three operations: op1 (), op2() and op3 () where opl and op2 is inherited from
MyBaseClass and MySubclass.op3 is provided only in the MySubclass class.

Replacing the superclass
When you define a subclass, you can specify that the subclass replaces its superclass entirely. .

To turn on the feature for an individual entity class, set the Replace_Superclass property in the Rational
Software Architect Curam Properties tabto 1 - yes by using the supplied drop-down.

For example, setting Replace_Superclass to yes for a class, MySubclass, means that instances of the
base class, MyBaseClass, are no longer be created. All requests for the base class (MyBaseClass) now
receive an instance of the subclass (MySubclass). The factory mechanism handles the request and the
request is transparent.

Curam modeling reference 83

Abstract classes
To make a class abstract, set the class's Abstract option to yes in the meta-model.

When you set the class's Abstract option to yes in the meta-model, a factory class is not included in the
generated Java class hierarchy for this abstract class. As a result, the class cannot be instantiated. The
purpose of the class is to enable it to be subclassed.

All non-abstract subclasses of the abstract classes contain the factory component and are instantiated in
the normal way.

You must provide the imp1l Java code for abstract classes (unless the abstract class has no subclasses).
From this point, the usual rules for abstract classes apply. The imp1 class can contain:

« Implementations for some or all of the methods declared in the class AND

« Any methods for which no implementation is provided must be implemented by the subclass or
subclasses.

Restrictions

Curam generators do not support multiple inheritance. You can only use subclassing to add or override
operations - you cannot use subclassing to add or override attributes.

Writing code for subclassing

No specific restrictions apply to writing code for subclassing. You can subclass any entity, facade, or
process class without changing how you declare or use the class.

Recommendations for writing code for subclassing

- Write new subclasses of existing classes in new source files.
« The generated class hierarchy dictates the packaging of the new source files.

« Place all new source files within the source subdirectory of the EJBServer\components\<custom>
directory, where:

— <custom> is any new directory that is created under the components directory that conforms to the
same directory structure as components\core.

Using subclassing to override validation exit points example
To override the validation exit point of an entity in a subclass, perform two steps.

To override the validation exit point of an entity in a subclass:
« Enable the Automatic validation operation option on an entity subclass.
« Specify at least one of the entity superclass stereotype insexrt or modify operations in the subclass.

In the example of two classes, MyEntityClass and MyEntitySubClass, the subclass
MyEntitySubClass would inherit the key and the details of the superclass. For the subclass
MyEntitySubClass, the Automatic validation operation option is enabled and would add the insert or
modify operations.

For more information about validation exit points, see the Validation related link.

Related reference

Validation
The validation function is called before standard insert and standard update operations, and also before
the pre-data access functions. It provides a common place to put validation code.

Overriding Pre Data Access, Post Data Access, and On-Fail exit points example

To override the Pre Data Access, the Post Data Access, or the On-fail exit points of an entity in a subclass,
perform two steps.

To override the Pre Data Access, the Post Data Access, or the On-fail exit points of an entity in a subclass:

84 IBM Curam Social Program Management: Ciram Modeling Reference Guide

« Specify the operation or operations of the entity superclass in the subclass.

« Enable the Pre Data Access, the Post Data Access, or the On-fail options, as appropriate, on the
operations of the entity subclass.

In the example of the subclasses EntityClass and EntitySubClass, the subclass,
EntitySubClass, inherits the key and details of the superclass. The same operations would be defined
in both classes, for example, insert, read, and modify. In both these classes, the exit point options are
enabled in the operations:

« On Fail operation is enabled on operation insert.

« Post Data Access operation is enabled on operation read.

« Pre Data Access operation is enabled on operation modify.

For more information about exit points, see Exit points related link.

Related reference

Exit points

An exit point is a callback function that you write. It is executed at a predefined strategic point by the
server.

Application customization

Store customizations separately from the original model. You can then upgrade the original model without
overwriting customizations.

One of the more difficult aspects of customizing an application is managing upgrades to the original
model. Any changes that are stored with the original model are overwritten when a newer version of the
model is applied. To avoid overwriting customizations, you can store customizations separately from the
original model.

The following features are available to help you customize an application:
- Extension classes.

 Overriding a domain definition.

 Subclass modeling.

For more information about extension classes, see the Extension classes related link.

For more information about overriding a domain definition, see the Overriding a domain definition related
link.

For more information about subclass modeling, see the Subclass modeling related link.

Related concepts
Developing Compliantly with Ciram in IBM Curam Social Program Management, Version 7.0.2 and 7.0.3
Related reference

Extension classes
Use extension classes to specify options for a target class without modifying the meta-model definition of
the target class.

Overriding a domain definition

Use the Server Development Environment (SDEJ) to override existing domain definitions without
modifying the original domain definition. Use this feature in situations where the original domain
definition is provided by a third party. Therefore, do not modify this feature locally.

Subclass modeling
Use subclassing for process, facade, entity, and wsinbound classes. Use subclassing to add new
functionality or override existing functionality.

Curam modeling reference 85

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

86 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 87

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

88 IBM Curam Social Program Management: Ciram Modeling Reference Guide

Part Number:

(1P) P/N

	Contents
	List of Figures
	List of Tables
	Chapter 1. Cúram modeling reference
	Cúram modeling overview
	UML overview
	UML and the input meta-model
	Architecture layers overview
	Remote Interface Layer
	Business Object Layer
	Data Access Layer

	Stereotypes
	Class stereotypes
	Attribute stereotypes
	Operation stereotypes
	Relationship stereotypes

	Data types

	Packages
	The CODE_PACKAGE option
	Rules for the CODE_PACKAGE feature

	AuditMappings classes overview
	AuditMappings classes rules
	AuditMappings classes outputs
	AuditMappings classes options

	Domain definition classes
	Domain definition class options
	Code table names
	Code table roots
	Compress embedded spaces
	Convert to uppercase
	Custom validation function name
	Default option
	Maximum size
	Maximum value
	Minimum size
	Minimum value
	Multibyte expansion factor
	Pattern match
	Remove leading spaces
	Remove trailing spaces
	Storage type

	Overriding a domain definition
	Domain definition override examples
	Domain definition override considerations and limitations
	Domain definition usage rules

	Entity classes
	Entity class rules
	Entity attributes
	Details attribute
	Key attribute

	Entity operations
	Database operations
	Non-database operations

	Entity outputs
	Standard key structs
	Standard details structs
	Standard list structs

	Entity class options
	Entity class abstracts
	Allow optimistic locking
	Audit fields
	Enable validation
	Last updated field
	No Generated SQL
	Replace superclass

	Optimistic locking for concurrency control
	Table-level auditing
	Information captured by table-level auditing
	Audit information storage

	Exit points
	Pre-data access
	Post-data access
	Validation
	On-fail
	Exit point parameters
	Exit point uses
	Exit point misuses

	Entity inheritance
	Entity inheritance usage rules

	Last updated field

	Extension classes
	Extension classes usage
	When to use extension classes
	Extension classes: considerations and limitations
	Extension classes: usage rules

	Facade classes
	Facade class rules
	Facade classes operations
	default
	batch
	wmdpactivity
	qconnector

	Facade class options
	Abstract
	Generate facade bean
	Replace superclass

	Process classes
	Business Process Objects
	Process class rules
	Process class operations
	default
	batch
	wmdpactivity
	qconnector

	Process class options
	Abstract
	Generate Function Identifiers (FIDs)
	Replace superclass

	Struct classes
	Struct class rules
	Struct class outputs
	Struct class options
	Audit fields

	Attributes
	Attribute rules
	Attribute options
	Allow NULLs
	Multibyte expansion factor

	Operations
	Operation rules
	Operation options
	Audit Business Interface (BI) calls to this operation
	Auto ID field
	Auto ID key
	Business Date
	Syntax for the Business Date option
	Rules for the Business Date option

	BytesMessage encoding character set
	Database table-level auditing
	Field Level Security
	JNDI name of the QueueConnectionFactory class
	JNDI name of the transmission queue
	JNDI name of the reply queue
	Message type
	No Generated SQL
	On Fail operation
	Optimistic locking
	Order by
	Post-data access operation
	Pre-data access operation
	Readmulti_Max
	Readmulti_Informational
	Response message timeout (seconds)
	Security
	SQL
	Transactional
	Where

	Operation parameter options: mandatory fields
	Entity operations overview
	Standard operations
	Standard single-record operations
	Standard multi-record operations

	Non-standard operations
	Generated SQL operations
	Handcrafted SQL operations

	Non-key operations
	Batch operations

	Entity insert operations
	Standard insert
	Standard insert description
	Standard insert use
	Standard insert parameter and generator notes

	Non-standard insert (generated SQL)
	Non-standard insert description
	Non-standard insert use
	Non-standard parameter and generator notes

	Entity read operations
	Standard read
	Standard read description
	Standard read use
	Standard read parameter and generator notes

	Standard readmulti
	Standard readmulti description
	Standard readmulti use
	Standard readmulti parameter and generator notes

	Non-standard read (generated SQL)
	Non-standard read description
	Non-standard read use
	Non-standard parameter and generator notes

	Non-standard readmulti (generated SQL)
	Non-standard readmulti description
	Non-standard readmulti use
	Non-standard readmulti parameter and generator notes

	Non-key read
	Non-key description
	Non-key use
	Non-key parameter and generator notes

	Non-key readmulti
	Non-key readmulti description
	Non-key readmulti use
	Non-key readmulti parameter and generator notes

	Entity update operations
	Standard modify operation
	Standard modify operation description
	Standard modify operation use
	Standard modify parameter and generator notes

	Non-standard modify (generated SQL)
	Non-standard modify description
	Non-standard modify use
	Non-standard parameter and generator notes

	Non-key modify
	Non-key modify description
	Non-key modify use
	Non-key parameter and generator notes

	Entity delete operations
	Standard remove
	Standard remove description
	Standard remove use
	Standard remove parameter and generator notes

	Non-standard remove (generated SQL)
	Non-standard remove description
	Non-standard remove use
	Non-standard remove parameter and generator notes

	Non-key remove
	Non-key remove description
	Non-key remove use
	Non-key remove parameter and generator notes

	Entity batch operations
	batchinsert
	batchinsert description
	batchinsert use
	batchinsert parameter and generator notes

	batchmodify
	batchmodify description
	batchmodify use
	batchmodify parameter and generator notes

	Entity handcrafted SQL operations
	Non-standard
	Non-standard description
	Non-standard use
	Non-standard parameter and generator notes

	Non-standard multi
	Non-standard multi description
	Non-standard multi use
	Non-standard parameter and generator notes
	Example 1: nsmulti with a single (list) parameter
	Example 2: nsmulti with two parameters (key + list)

	Using handcrafted SQL in non-standard entity operations overview
	Using host variables
	"Null" considerations
	Incorrect "null" search
	Correct "null" search

	Update considerations with DB2 for z/OS
	SQL example 1
	SQL example 2

	Aggregation
	A special case
	One-to-one aggregation
	One-to-many aggregation

	Assignable
	Explicit field assignment
	Suppressing default assignment fields
	Combining structs

	Foreign keys
	Adding a foreign key to a database table
	Primary and foreign key naming constraints
	Foreign key example

	Indexes
	Adding an index to a database table overview
	Index naming overview
	Index example

	Unique indexes
	Generated class hierarchy
	Basic hierarchy example
	Subclasses hierarchy example
	Abstract classes hierarchy example
	Class hierarchy considerations
	Public and protected access control
	The meaning of super
	Enforcing the factory mechanism

	Class hierarchy summary

	Cúram JMS queue connectors
	JMS queue connectors overview
	qconnector operation options
	qconnector operation considerations
	Determine the message format or formats and create corresponding struct or structs
	Add the operation to the application meta-model
	Configure the queues in the application server
	Implement the message recipient in the remote system

	qconnector rules and restrictions
	Encoding methods for fundamental types
	Customized encoding and decoding class usage
	Working with variable length fields example
	Working with lists example

	Subclass modeling
	Basic subclassing
	Replacing the superclass
	Abstract classes
	Restrictions
	Writing code for subclassing
	Using subclassing to override validation exit points example
	Overriding Pre Data Access, Post Data Access, and On-Fail exit points example

	Application customization

	Notices
	Privacy Policy considerations
	Trademarks

