IBM Curam Social Program Management
Version 7.0.3

Curam Person and Prospect Person
Evidence Developers Guide

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
35

Edition

This edition applies to IBM® Clram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

LISt Of TaAlES..c.eiuiirieiririeierinierereerereseacesessasesessssessssesessssesessssesessssessssasessssasessssasasans IV

Chapter 1. Developing with Person and Prospect Person Evidence.........c.cccceevuneanenc 1

OVBIVIBW . ..uttieieiee ittt eeteeeete e e et e e ettt e s et teeesateeeesteeeasteeaasteeeastaeaasteeaastasanssaeaasseeaasseesassaeaanseeensseesnsseesnnseessnseesnnen 1
P I T EQUISITES .. uvveeeieeiieeeeeeitteeeeercreeeeeerrreee e e tbeeeeeestbaeeeeessbbaeeeeaabaaeeeessssaaeeeassaseeeanssseseesssraseesnnssraseenns 1
SECLIONS IN ThIS GUITE...ciiciieiiiieecie ettt e s ree e s te e e stee e s bee e sbaeessbaeessbeeesaseeesnseessnsasennses 1

Person/Prospect Person EVIAENCE OVEIVIEW.......cccuviiieeciirieeeeeieeeeeeecireeeeesireeeeeesbreeesesssaeesesssssesesssssrasees 1
Person/Prospect Person Data as EVIAENCE.......couiviiiiciieee ettt ettt eiree e e trae e e eetbree e eeeanraeas 2
How Person or Prospect Person Evidence is Managed.........ccucveeecieeeiieeniieescieescveeesveeesveeesveessnvees 2

Designing Person/Prospect Person EVidence SOLULIONS.ccuiiciiiicieeiciee ettt cte e see e see s see e svee e 3
Data: DYNamMIC EVIAENCE TYPES i ciieeeeeiirreeeeerireeeeeeerteeeeestreeeeesstbaeeeessssseeeeesssaseessssssssesesssseseesnssssseenes 3
S Eo YR Vo 1=t ol =T o] =Y R SPRPT 4
Curam Express Rules: Case Eligibility/Entitlement Calculations.........ccveeeveeceenieecieeriecceeceeeie e 5

Dynamic EViIdence TYPE Data MapPiNgS....ccccuiicceeircieieiiteesiteeesireeesiteeessseeesssessssesssssesssssssassssssssesesssesssnees 5
FA¥e o =] SRR 6
BaNK ACCOUNT...ttiiitieeccte ettt e e e e e e ste e e ste e e s be e e s bee e s beeeeabeeesasaeesnsaeesaseeassseessnseessnseeensseeensees 6
2] o= T o I LY o TSP 6
(000]] - Tor a1 (=Y =T ol S ST 7
] g T o Ty 7
LCT=T 3T =Y USSR 7
fa L=T 00) o= o o SR 7
NV F= 10 L= OO OO O TP 8
g aTeT oIl U T3 o =Y PP 8
o 1= YA oY T a1 o TSR PUPROE 8
ST F=Y o] a o] A = o] LSRR 9

Customizing Person/Prospect PErson EVIAENCE.......uiiciiiieiieeeieeeieeecteeecite e e eee e esee e srae e s saaeessrae e e saeeeesneeas 9
B =T L ToF=1 o TSRS 9
CONVEBITEIS ittt i ettt ettt e ettt e e et e e e s sba e e e s s s e bt e e e s s abeeeesssbtaeessassaaaessassbaeessssssaeessssssaessnsssnaeessnssses 17
Evidence Sharing AUtOMAtioN.............coociiiiiiiiiiiicccee e e e e e e ba e e e aae e s naeeas 21
Selection of Primary INfOrmMatioN.......ueie ettt cecree e e eerrre e e e eetbreee e seareeeseeabaaeeeessssaeeensnnns 25
RECIPIOCAL EVIABNCE. . eii ittt ettt e e err e e e eesbbe e e eesstbaeeeeeabaeeeeerssaaeeessnsssasseesssseseesnnes 27
Participant Data CasSe OWNEI.....u.uiieiciieeeeeeiireeeeeeireeeeeeireeeeesstseeeeessssaeseessssessessssssesessssssasesssssssesessssnns 33

(10 1o = -3 1 -
Privacy POLICY CONSIABIAtIONS. . .ciiiiiiieeeieiiieee ettt e e eerrree e eerrreeeeestreeeeestsaeeeeessssesesensssaseeessssaesessssseeesnnnnns 36
LI 16 L= g T U TSR 36

List of Tables

B Ve (o [=TT 17 F=Y o] o 11 = USSR
. BaNK ACCOUNT MAPPING...utiiiiiiieeiiteecitteecte ettt e ettt e et e e e te e et eeets e e e seee e saeessseesssseessseesnsseeasseeaseeeasssaesnssnenn
B STl A= YaTe M T= TN d o =T o] o1 o = USSR
. CONtACT PreferenCeS MaPPiNG . i i i ceiitiee ettt e eecrte e e e eete e e e seteee s setaeessesssaaeeeesssbaeesesssteessennsenaesensssenens
B P Y Ne Tt AL o o] o] - OSSPSR
B CT=TaTa L=T g i P Yoo T o ST
B Ko [T ol 43 (o= Y o] o T\ F= 0T 011 = SRR
B N Y2 L= G F- o] o1 1= SRS

O 00 9 600 o WN B

B o U= N[0 g oYl (=T o] o 11 o = USSR
10. RElatiONSNIP MAPPING. .. uutiiiiiciiiee i ccttee e eecte e e e scte e e e e stre e s setaee s sssasareesesssaeeesssssseasesssasenessensseenesssassenessnnnses

Chapter 1. Developing with Person and Prospect
Person Evidence

Use this information to design a person/prospect person evidence solution. This work involves a
consideration of the data, its structure, evidence constraints, and the flow of the data around the system.
Some of the information that is stored about persons and prospect persons is held as evidence, which can
be shared between cases on the system.

Overview

The purpose of this guide is to provide a high level technical understanding of person/prospect person
evidence and its components. This guide also outlines the available customization options and extension
points and provides instructions on how to implement these customizations. This guide is intended for
developers and architects intending to implement a person/prospect person evidence solution.

Important: This guide is only applicable to those readers that are using the participant application with
person and prospect person dynamic evidence.

Pre-requisites
The guide assumes that the reader is familiar with the following.

« Curam Evidence Guide

« Curam Participant Guide

= Curam Dynamic Evidence Configuration Guide
« Google Guice

Sections in this Guide
The following list describes the sections within this guide:

Person/Prospect Person Evidence Overview
This section provides a high level overview of the key technical aspects of person/prospect person
evidence.

Designing Person/Prospect Person Evidence Solutions
This section outlines some design considerations that should be taken into account when designing a
person/prospect person evidence solution.

Dynamic Evidence Type Data Mappings
This section describes the mapping of data from the dynamic evidence types supplied with the
application to legacy database tables.

Customizing Person/Prospect Person Evidence
This section describes the customization options and extension points available for person/prospect
person evidence.

Person/Prospect Person Evidence Overview

© Copyright IBM Corp. 2012, 2018 1

Person/Prospect Person Data as Evidence

Some of the information stored about persons and prospect persons is held as evidence, which can be
shared between cases on the system.

A number of Cliram components and technologies come together to enable the storing of person and
prospect person evidence and the flow of this evidence through the system:

« Curam Dynamic Evidence is used to store the captured person/prospect person data and perform basic
validations.

« Curam Express Rules are used to execute complex validations against the captured data.
« The Curam Evidence Broker can optionally be used to broker the data between cases.

« Curam Verifications can optionally be used to apply verifications to the captured data when it is
brokered between cases.

Depending on the business requirements, some level of configuration, customization or both may be
required. The section describes at a high level how the system manages person/prospect person data and
identifies the points at which configuration and/or customization might be required.

Note: Careful consideration should be given to the required business behavior of the system during the
design phase of a Cdram implementation. The starting point for developing an understanding of how a
system should be configured to support the business requirements should be the Ciram Participant
Guide and the Cdram Evidence Guide.

How Person or Prospect Person Evidence is Managed

The management of person and prospect person data as evidence is underpinned by the following key
foundations:

« Each person and prospect person has an associated person or prospect person case (Participant Data
Case) created 'under the hood' following registration.

« Person and prospect person data is stored as evidence on dynamic evidence tables and is described by
the dynamic evidence types that are associated with the person, a prospect person, or both.

- The data that is recorded as evidence is replicated back to the existing database tables; the existing
database tables need to be in sync with the dynamic evidence.

- When a person or prospect person record is edited, the data is retrieved from, and written to, the
dynamic evidence tables (and again, replicated back to the existing database tables).

- In some cases, application screens and processing continue to read from the existing database tables.

- The person and prospect person case types can be configured to have participant data brokered to and
from other cases, by using the Clram Evidence Broker.

Person/Prospect Person Evidence Types

A number of dynamic evidence types are provided and are associated with the person and prospect
person participants. These evidence types and their attributes must not be removed or disassociated
from the person and prospect person.

Where there is a requirement to manage additional data as person and prospect person evidence, new
evidence types can be created as described in the Ciram Dynamic Evidence Configuration Guide and
associated with the person and prospect person in the administration component. Equally, new attributes
can be added to the existing dynamic evidence types. Where the data being added to new or existing
evidence types is already present on an existing legacy database table, additional customization work
must be performed:

« The code that replicates the data from the dynamic evidence tables to the legacy database tables (the
‘replicator’) must be extended to replicate the additional data being stored as evidence.

« Where data already exists on the legacy database tables, this data must be copied to the equivalent
dynamic evidence table(s). The code that performs that operation (the 'converter') must be extended to
convert the additional data into evidence.

2 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

More detail and example implementations for both of these are provided in the chapter 'Customizing
Person/Prospect Person Evidence'.

Evidence Validations
Person and prospect person evidence is validated when created and edited.

These validations are implemented in one of two ways:

« Using the Dynamic Evidence Editor validations functionality. For example, mandatory field validations.
« Using Curam Express Rule Sets. For example, cross-evidence validations.

Where new dynamic evidence types or attributes are added, customers should use one of these
mechanisms to add any validations required. This is described in more detail in the Cdram Dynamic
Evidence Configuration Guide.

When evidence is brokered to the person and prospect person, these validations are not checked.
Brokered evidence is always accepted to prevent it being lost, as there is no concept of 'incoming
evidence' for a person and prospect person. When person/prospect person evidence is entered, it is
validated immediately. However, evidence brokered in from another case is automatically accepted and
activated, even if the validation checks fail. For other case types, when person/prospect person evidence
is brokered onto the case, a validation failure prevents the evidence from being activated.

Evidence Sharing

The evidence framework can share evidence between a person/prospect person, application cases and
ongoing cases. The Evidence Broker enables and mediates this sharing of evidence. Evidence sharing is
uni-directional and per evidence type. This means that different targets can receive and share an evidence
type in different ways. If required, one case type might be able to receive shared evidence, but might not
be able to share its own evidence.

There are three main functions which triggers the evidence broker to broadcast evidence:

- When a new person is added to a target case. For example, where person/prospect person evidence
such as identification evidence is configured for sharing to an integrated case and a person is added to
an integrated case, the evidence broker first checks to see if that person has any person/prospect
person evidence. If evidence is found, the evidence broker then checks for active identification evidence
and shares it to the integrated case.

« When evidence changes are made to a source case. For example, when changes are made to a person's
identification evidence, the evidence broker shares those changes to the integrated case.

- When a new target case is created. For example, any time a new integrated case is created, the
evidence broker searches for person/prospect person identification evidence to be shared. If this
evidence is found, the evidence broker shares the identification evidence to the integrated case.

For more detailed information on the Evidence Broker, see the Cliram Evidence Broker Guide.

Designing Person/Prospect Person Evidence Solutions

When designing a person/prospect person evidence solution the designer should consider the data, its
structure, constraints and the flow of that data around the system.

Data: Dynamic Evidence Types

Structure

Person/Prospect Person evidence is primarily stored as dynamic evidence and the data structures that
represent it are dynamic evidence types. Dynamic evidence types define the data, its type and behavior
such as volatility, calculated attributes and so on. Once new dynamic evidence types are defined they
must be activated and associated with the relevant case types, persons and prospect persons.

Further information on how to define dynamic evidence types can be found in the Cliram Dynamic
Evidence Configuration Guide.

Developing with Person and Prospect Person Evidence 3

Things to consider:

» Does the evidence vary over time?

- Is the evidence type reciprocal? If so, the evidence type should have participant and related participant
attributes.

- What case types should the evidence be available on?

- Consider making the evidence type 'Preferred,, if it is to be commonly used. It allows case workers to
quickly create evidence for frequently recorded evidence types.

Constraints

Validations

A number of standard validations, frequently used in evidence processing, are provided in the Dynamic
Evidence Editor. More complex validations, such as cross-evidence validations, can be included using
Curam Express Rules.

More information on validations can be found in the Ciram Dynamic Evidence Configuration Guide.
Things to consider:

- What validations are required to ensure integrity of data?

« When person/prospect person evidence is entered, it is validated immediately; however, evidence
brokered in from another case is automatically accepted and activated, even if the validation checks fail.
For other case types, when person/prospect evidence is brokered onto the case, a validation failure
prevents the evidence from being activated.

« Include any validations required to enforce succession constraints.

« Try to use standard validation patterns where possible. Validation rule sets should only be developed if
they cannot be implemented using standard validations.

- If developing validation rule sets for more complex validations, be mindful of how data retrieval is
performed. If performed incorrectly, this can have a significant impact on performance.

Important: System processes rely on the validations shipped with the application and it is not compliant
to remove or alter these validations.

Verifications
This section is only applicable for those readers licensed to use the verifications component. Verification
is the process of checking the accuracy of evidence.

The verification of evidence can take a number of forms; it can be provided by documents, for example,
birth certificates or bank statements, or by verbal means, for example, telephone calls. When evidence is
captured, the verification engine is invoked in order to determine if the evidence requires verification.

Note: With the exception of evidence brokered to a person/prospect person record, evidence cannot be
activated until all mandatory verification requirements are met.

For more information on verifications and their configuration, see the Clram Verification Guide.
Things to consider:

« Does the evidence require verification?
« What are the rules around verification?
« What information needs to be provided by the client?

Flow: Evidence Broker

The Evidence Broker is the mechanism that allows evidence to be shared throughout the system. When
the Evidence Broker broadcasts evidence to a person/prospect person record, the evidence is

4 IBM Curam Social Program Management: Cliram Person and Prospect Person Evidence Developers Guide

automatically accepted and activated on the person/prospect person record, so the user does not have to
manually accept and activate evidence.

For more information on Evidence Broker and configuration options, see the Ciiram Evidence Broker
Guide. For the recommended brokering approach please see the Ciram Evidence Guide.

Things to consider:

- Is the same evidence type used on more than one case type? If so, should changes to this evidence be
communicated to other cases?

« Should the target case be set up to automatically accept changes or should the case worker be forced to
intervene to decide on whether to accept this incoming evidence?

« In order for system processing to function correctly, it is essential that person/prospect person data
recorded outside of the participant manager be shared back to the participant manager.

Curam Express Rules: Case Eligibility/Entitlement Calculations

Areas where Curam Express Rules are used to read participant data from legacy database tables for the
purposes of case eligibility and entitlement calculations, should be analyzed to decide where this data
should be sourced from.

There are three options, each of which have their own benefits and limitations:

« Read participant data from the dynamic evidence stored by the participant manager
« Read participant data, which has been brokered onto cases
« Continue to read from the legacy tables

Read participant data from the dynamic evidence stored by the participant manager
Things to consider:

« Working off primary data source
« Changes in evidence causes immediate recalculations
« No opportunity for case worker to review

Read participant data which has been brokered onto cases
Things to consider:

« This is the recommended option for any new development

« Changes only take place when evidence is activated

 Evidence type has to be configured to be brokered onto the case
Continue to read from the legacy tables

Things to consider:

« This option should be considered carefully and is only recommended for upgrading customers.

Dynamic Evidence Type Data Mappings

The tables here show the data mappings from the dynamic evidence types to the legacy database tables.

Note: Replicators perform this mapping and converters perform the reverse mapping.

Developing with Person and Prospect Person Evidence 5

Address

Bank

Birth

Table 1: Address Mapping

Dynamic Evidence Attribute

Database Column

participant ConcernRoleAddress.concernRolelD (calculated using
caseParticipantRoleID)

address Address.addressData

fromDate ConcernRoleAddress.startDate

toDate ConcernRoleAddress.endDate

addressType ConcernRoleAddress.typeCode

comments ConcernRoleAddress.comments

Account

Table 2: Bank Account Mapping

Dynamic Evidence Attribute

Database Column

participant ConcernRoleBankAccount.concernRolelD (calculated using
caseParticipantRoleID)

accountName BankAccount.name

accountNumber BankAccount.accountNumber

iban BankAccount.iban

accountType BankAccount.typeCode

sortCode BankAccount.bankSortCode

bic BankAccount.bic

fromDate BankAccount.startDate

toDate BankAccount.endDate

accountStatus BankAccount.bankAccountStatus

jointAccountInd

BankAccount.jointAccountInd

comments

BankAccount.comments

and Death

Table 3: Birth and Death Mapping

Dynamic Evidence Attribute

Database Column

person

Person/ProspectPerson.concernRolelD (calculated using
caseParticipantRoleID)

birthLastName

Person/ProspectPerson.personBirthName

mothersBirthLastName

Person/ProspectPerson.motherBirthSurname

dateOfBirth

Person/ProspectPerson.dateOfBirth

dateOfDeath

Person/ProspectPerson.dateOfDeath

comments

N/A

6 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Contact Preferences

Table 4: Contact Preferences Mapping

Dynamic Evidence Attribute

Database Column

participant ConcernRole.concernRolelD (calculated using
caseParticipantRoleID)
preferredLanguage ConcernRole.preferredLanguage

preferredCommunication

ConcernRole.prefCommMethod

comments

N/A

Email Address

Table 5: Email Address Mapping

Dynamic Evidence Attribute

Database Column

participant

ConcernRoleEmailAddress.concernRoleID (calculated using
caseParticipantRoleID)

emailAddress

EmailAddress.emailAddress

fromDate

ConcernRoleEmailAddress.startDate

toDate

ConcernRoleEmailAddress.endDate

emailAddressType

ConcernRoleEmailAddress.typeCode

comments

EmailAddress.comments

Gender

Table 6: Gender Mapping

Dynamic Evidence Attribute

Database Column

person Person/ProspectPerson.concernRolelD (calculated using
caseParticipantRoleID)
gender Person/ProspectPerson.gender
comments N/A
Identification

Table 7: Identification Mapping

Dynamic Evidence Attribute

Database Column

participant

ConcernRoleAlternateID.concernRolelID (calculated using
caseParticipantRoleID)

alternateID

ConcernRoleAlternateID.alternateID

altIDType ConcernRoleAlternateID.typeCode
fromDate ConcernRoleAlternatelD.startDate
toDate ConcernRoleAlternateID.endDate
comments ConcernRoleAlternateID.comments

Developing with Person and Prospect Person Evidence 7

Name

Phon

Table 8: Name Mapping

Dynamic Evidence Attribute

Database Column

participant AlternateName.concernRolelD (calculated using
caseParticipantRoleID)

title AlternateName.title

firstName AlternateName.firstForename

middleName

AlternateName.otherForename

lastName AlternateName.surname
suffix AlternateName.nameSuffix
initials AlternateName.initials
nameType AlternateName.nameType
comments AlternateName.comments
e Number

Table 9: Phone Number Mapping

Dynamic Evidence Attribute

Database Column

participant ConcernRolePhoneNumber.concernRolelD (calculated using
caseParticipantRoleID)

phoneCountryCode PhoneNumber.phoneCountryCode

phoneAreaCode PhoneNumber.phoneAreaCode

phoneNumber PhoneNumber.phoneNumber

phoneExtension

PhoneNumber.phoneExtension

fromDate ConcernRolePhoneNumber.startDate

toDate ConcernRolePhoneNumber.endDate

phoneType ConcernRolePhoneNumber.typeCode

comments PhoneNumber.comments
Relationship

Table 10: Relationship Mapping

Dynamic Evidence Attribute

Database Column

participant

ConcernRoleRelationship.concernRoleID (calculated using
caseParticipantRoleID)

relatedParticipant

ConcernRoleRelationship.relConcernRolelD

fromDate

ConcernRoleRelationship.startDate

toDate

ConcernRoleRelationship.endDate

relationshipType

ConcernRoleRelationship.relationshipType

endReason

ConcernRoleRelationship.relEndReasonCode

8 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Table 10: Relationship Mapping (continued)

Dynamic Evidence Attribute Database Column
comments ConcernRoleRelationship.comments
Snapshot Tables

When person/prospect person data is registered or maintained, this data is not replicated to the following
snapshot tables.

 AlternateNameSnapshot

- ConcernRoleAddressSnapshot

« ConcernRoleAlternateIDSnapshot
« ConcernRoleBankAccountSnapshot
- ConcernRoleRelSnapshot

« ConcernRoleSnapshot

« PersonSnapshot

« ProspectPersonSnapshot

Customizing Person/Prospect Person Evidence

This section describes the customization options and extension points available for person/prospect
person evidence. Some or all of these may be applicable to you depending on your existing
customizations and configurations.

There are five main areas to consider, listed below:
 Replicators

- Converters

« Selection of Primary Information

- Reciprocal Evidence

« Participant Data Case Owner

Each of these areas are described in detail and examples are also provided. Please note, these are
samples only.

Replicators
What is a Replicator?

A replicator reflects changes in evidence onto the relevant legacy tables for the purposes of backward
compatibility. The replicator takes the dynamic evidence details and converts them to a struct containing
the details to be stored on the legacy tables. These details are then written to the relevant database
tables, thus ensuring that the information on the legacy tables is in sync with the primary data source, the
dynamic evidence. Default replicator implementations are provided for each of the person/prospect
person evidence types.

These default implementations contain extension points to allow replication to custom fields, which is
covered in the following section.

Note: Only the last version in a succession set is used to replicate data to the legacy tables.

Developing with Person and Prospect Person Evidence 9

Replicator Extension
Why Extend a Replicator? - In cases where legacy database tables have been extended, it may be
necessary to extend a replicator.

It is possible to extend the replicators supplied with the application to allow replication of person/
prospect person evidence to custom database columns. Interfaces are available for each supplied
evidence type and can be found in the package curam.pdc.impl, listed here.

Custom implementations can be written to use these interfaces, depending on the evidence type.
Replicator Extender Interfaces:

« PDCAddressReplicatorExtender

- PDCAlternateIDReplicatorExtender

« PDCAlternateNameReplicatorExtender

« PDCBankAccountReplicatorExtender

- PDCBirthAndDeathReplicatorExtender

« PDCContactPreferencesReplicatorExtender
« PDCEmailAddressReplicatorExtender

- PDCGenderReplicatorExtender

« PDCPhoneNumberReplicatorExtender

« PDCRelationshipsReplicatorExtender

The majority of the interfaces have one method assignDynamicEvidenceToExtendedDetails. It
accepts two parameters:

« dynamicEvidenceDataDetails - the dynamic evidence details
- details - the struct containing the extended details for the legacy table

PDCBirthAndDeathReplicatorExtender and PDCGenderReplicatorExtender have two
methods, assignDynamicEvidenceToExtendedPersonDetails and
assignDynamicEvidenceToExtendedProspectPersonDetails.
assignDynamicEvidenceToExtendedPersonDetails accepts two parameters:

« dynamicEvidenceDataDetails - the dynamic evidence details

« details - the struct containing the extended person details for the legacy table
assignDynamicEvidenceToExtendedProspectPersonDetails also accepts two parameters:

- dynamicEvidenceDataDetails - the dynamic evidence details
- details - the struct containing the extended prospect person details for the legacy table

Example: Implementing a Person/Prospect Person Evidence Replicator Extender

The following example outlines how to extend a replicator to map person/prospect person evidence to
custom fields. This example provides a very basic implementation of an extension to the
PDCPhoneNumberReplicatorExtender. In this scenario, the PhoneNumber table is extended and
contains a custom field '‘phoneProvider'. The dynamic evidence configuration for Phone Number also
contains an attribute 'phoneProvider'. This example assumes that the struct
ParticipantPhoneDetails is already extended to include the custom field. For more information on
dynamic evidence configuration, see the Ciram Dynamic Evidence Configuration Guide. The responsibility
of the custom replicator extension implementation is to map the dynamic evidence data to the struct
attribute that represents the 'phoneProvider' attribute on the extended PhoneNumber table.

Note: A mapping of data is all that is necessary; the default implementation performs the actual
replication of data.

The steps involved in extending a replicator are:

 Provide a replicator extension implementation that maps the custom data back to the legacy table

10 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

- Add a binding to the new replicator extension implementation

Step 1: Provide a Replicator Extension Implementation

The first step is to provide a new implementation that implements the relevant replication extension
interface for the evidence type and maps the custom data back to the legacy table. The code snippet here
demonstrates a custom implementation for PDCPhoneNumberReplicatorExtender. It simply assigns
the value of the dynamic evidence attribute to the phoneProvider struct attribute. This information is then
inserted along with the other dynamic evidence attributes through the default implementation for
PDCPhoneNumberReplicatorExtender.

public class SampleReplicatorExtenderImpl
implements PDCPhoneNumberReplicatorExtender §

public void assignDynamicEvidenceToExtendedDetails(
DynamicEvidenceDataDetails dynamicEvidenceDataDetails,
ParticipantPhoneDetails details)
throws AppException, InformationalException {

details.phoneProvider =
dynamicEvidenceDataDetails.getAttribute("phoneProvider").getValue();

Step 2: Add a Binding to the New Replicator Extension Implementation

Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule {
public void configure() 1

// Register the replicator extension implementation

Multibindexr<PDCPhoneNumberReplicatorExtender>
sampleReplicatorExtender =

Multibinder.newSetBindexr (bindex (),
PDCPhoneNumberReplicatorExtender.class);

sampleReplicatorExtender.addBinding() .
to(SampleReplicatorExtenderImpl.class);
b

%

Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.

Why Implement a Replicator?
In cases where new dynamic evidence types are introduced, it may be necessary to implement a new
replicator.

Implementing a Replicator

Replicators can be easily developed to cater for scenarios such as new dynamic evidence types. A
detailed example is provided in the next section and outlines the steps and artifacts necessary to get a
new replicator up and running. Replicator implementations are invoked through an event based
mechanism.

When dynamic evidence is activated after an insert, modify or remove, an event is thrown. For new
evidence types an event listener needs to be developed to listen for this event and invoke the replication
process, this is discussed in more detail later in this section. The next section demonstrates how to
implement a replicator.

Example: Implementing a Person/Prospect Person Evidence Replicator

The following example outlines how to implement a replicator. In this scenario, Sample Foreign Residency
is configured as a new dynamic evidence type. For more information on how to configure a new evidence

Developing with Person and Prospect Person Evidence 11

type, see the Ciiram Dynamic Evidence Configuration Guide. The new Sample Foreign Residency evidence
type has the following attributes,

- participant - the case participant role id of the person/prospect person that the evidence is being
entered for

« country - the country of residency

« fromDate - the date the residency started

« toDate - the date the residency ended

- reason - the reason for residency in this country

It is assumed that this dynamic evidence type is activated and is configured for use with person/prospect
person. Until now Sample Foreign Residency information is stored as static evidence on the
SampleForeignResidency database table. It is now necessary to store this information as dynamic
evidence. A new replicator may be required to replicate evidence changes to the legacy database table so
that this table is in sync with the dynamic evidence.

The steps involved in implementing a replicator are:

« Provide a replicator interface for the dynamic evidence type

 Provide a replicator implementation that replicates dynamic evidence to the legacy database table
- Implement an event listener that triggers the replication

« Add a binding to the new event listener implementation

Step 1: Provide a Replicator Interface
The new replicator interface should contain three methods -

replicateInsertEvidence which replicates activated inserted Sample Foreign Residency evidence to
the Sample Foreign Residency legacy database table. It accepts one parameter:

- evidenceDescriptorDtls the activated evidence descriptor details

replicateModifyEvidence which replicates activated modified Sample Foreign Residency evidence to
the Sample Foreign Residency legacy database table. It accepts two parameters:

- evidenceDescriptorDtls the activated evidence descriptor details

« previousActiveEvidDescriptorDtls the evidence descriptor details for the evidence that was active
before the modify

replicateRemoveEvidence which replicates activated removed Sample Foreign Residency evidence to
the Sample Foreign Residency legacy database table. It accepts one parameter:

 evidenceDescriptorDtls the activated evidence descriptor details

@ImplementedBy (SampleForeignResidencyReplicatorImpl.class)
public interface SampleForeignResidencyReplicator {

public void replicateInsertEvidence (
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException;

public void replicateModifyEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls,
final EvidenceDescriptorDtls previousActiveEvidDescriptorDtls)
throws AppException, InformationalException;

public void replicateRemoveEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException;

%

12 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Step 2: Provide a Replicator Implementation

The replicator implementation should provide implementations for the three methods described in the
previous section. These methods should convert the dynamic evidence data to data suitable to be written
to the legacy database tables and update the legacy tables for this evidence type.

public class SampleForeignResidencyReplicatorImpl
implements SampleForeignResidencyReplicator {

protected SampleForeignResidencyReplicatorImpl() {
%

public void replicateInsertEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyDtls sampleForeignResidencyDtls =
new SampleForeignResidencyDtls();

UniqueID uniqueIDObj = UniqueIDFactory.newInstance();

EvidenceControllerInterface evidenceControllexrObj =
(EvidenceControllerInterface) EvidenceControllerFactory
.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

eiEvidenceKey.evidenceID = evidenceDescriptorDtls.relatedID;

eiEvidenceKey.evidenceType = evidenceDescriptorDtls.
evidenceType;

EIEvidenceReadDtls eiEvidenceReadDtls =
evidenceControllerObj.readEvidence(eiEvidenceKey) ;

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails) eiEvidenceReadDtls.
evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate =
(Date) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate =
(Date) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason")
.getValue();

sampleForeignResidencyDtls.concernRoleID =
evidenceDescriptorDtls.participantID;

sampleForeignResidencyDtls.foreignResidencyID =
uniqueIDObj.getNextID();

sampleForeignResidencyDtls.statusCode =
RECORDSTATUS.NORMAL ;

sampleForeignResidencyObj.insert(sampleForeignResidencyDtls);

public void replicateModifyEvidence (
final EvidenceDescriptorDtls evidenceDescriptorDtls,
final EvidenceDescriptorDtls
previousActiveEvidDescriptorDtls)
throws AppException, InformationalException {

List<SampleForeignResidencyKey> sampleForeignResidencyKeylList =
new ArraylList<SampleForeignResidencyKey>();

SampleForeignResidencyDtls sampleForeignResidencyDtls =
new SampleForeignResidencyDtls();

EvidenceControllerInterface evidenceControllerObj =

(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

Developing with Person and Prospect Person Evidence 13

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

eiEvidenceKey.evidencelD =
previousActiveEvidDescriptorDtls.relatedID;

eiEvidenceKey.evidenceType =
previousActiveEvidDescriptorDtls.evidenceType;

EIEvidenceReadDtls eiEvidenceReadDtls =
evidenceControllerObj.readEvidence(eiEvidenceKey) ;

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails)
eiEvidenceReadDtls.evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate =
(Date) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.
getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate =
(Date) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason").getValue();

SampleForeignResidency sampleForeignResidencyObj
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyReadMultiKey
sampleForeignResidencyReadMultiKey =
new SampleForeignResidencyReadMultiKey();
sampleForeignResidencyReadMultiKey.concernRoleID
previousActiveEvidDescriptorDtls.participantID;

SampleForeignResidencyReadMultiDtlsList
sampleForeignResidencyReadMultiDtlsList =
sampleForeignResidency0Obj.searchByConcernRole
(sampleForeignResidencyReadMultiKey) ;

for (SampleForeignResidencyReadMultiDtls
sampleForeignResidencyReadMultiDtls :
sampleForeignResidencyReadMultiDtlslList.dtls) 1

if ((sampleForeignResidencyReadMultiDtls.countryCode.equals(
sampleForeignResidencyDtls.countryCode))
&& (sampleForeignResidencyReadMultiDtls.reasonCode.equals(
sampleForeignResidencyDtls.reasonCode))) 1

SampleForeignResidencyKey sampleForeignResidencyKey =
new SampleForeignResidencyKey();
sampleForeignResidencyKey.sampleForeignResidencyID =
sampleForeignResidencyReadMultiDtls.sampleForeignResidencyID;
sampleForeignResidencyKeylList.add(sampleForeignResidencyKey) ;

%

for (SampleForeignResidencyKey sampleForeignResidencyKey
: sampleForeignResidencyKeylList) {

sampleForeignResidencyDtls = new SampleForeignResidencyDtls();
eiEvidenceKey = new EIEvidenceKey();

eiEvidenceKey.evidenceID = evidenceDescriptorDtls.relatedID;
eiEvidenceKey.evidenceType = evidenceDescriptorDtls.evidenceType;

eiEvidenceReadDtls = evidenceControllerObj.readEvidence(eiEvidenceKey) ;

dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails) eiEvidenceReadDtls.evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate = (Date)
DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate = (Date)

14 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason").getValue();

sampleForeignResidencyDtls.concernRoleID =
evidenceDescriptorDtls.participantID;

SampleForeignResidencyDtls sampleForeignResidencyReadDtls =
sampleForeignResidencyObj.read(sampleForeignResidencyKey) ;

sampleForeignResidencyReadDtls.assign(sampleForeignResidencyDtls);

sampleForeignResidencyObj.modify (sampleForeignResidencyKey,
sampleForeignResidencyReadDtls);

%

public void replicateRemoveEvidence(
final EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

List<SampleForeignResidencyKey> sampleForeignResidencyKeylist =
new Arraylist<SampleForeignResidencyKey>();

SampleForeignResidencyDtls sampleForeignResidencyDtls =
new SampleForeignResidencyDtls();

EvidenceControllerInterface evidenceControllexrObj =
(EvidenceControllerInterface) EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = evidenceDescriptorDtls.relatedID;
eiEvidenceKey.evidenceType = evidenceDescriptorDtls.evidenceType;

EIEvidenceReadDtls eiEvidenceReadDtls =
evidenceControllerObj.readEvidence(eiEvidenceKey) ;

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
(DynamicEvidenceDataDetails) eiEvidenceReadDtls.evidenceObject;

sampleForeignResidencyDtls.countryCode =
dynamicEvidenceDataDetails.getAttribute("country").getValue();

sampleForeignResidencyDtls.startDate =
(Date) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("fromDate"));

sampleForeignResidencyDtls.endDate =
(Date) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails.getAttribute("toDate"));

sampleForeignResidencyDtls.reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason") .getValue();

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyReadMultiKey sampleForeignResidencyReadMultiKey =
new SampleForeignResidencyReadMultiKey();

sampleForeignResidencyReadMultiKey.concernRoleID =
evidenceDescriptorDtls.participantID;

SampleForeignResidencyReadMultiDtlsList
sampleForeignResidencyReadMultiDtlsList =
sampleForeignResidencyObj.
searchByConcernRole(sampleForeignResidencyReadMultiKey) ;

for (SampleForeignResidencyReadMultiDtls
sampleForeignResidencyReadMultiDtls :
sampleForeignResidencyReadMultiDtlslist.dtls) {

if ((sampleForeignResidencyReadMultiDtls.countryCode.equals(
sampleForeignResidencyDtls.countryCode))
&& (sampleForeignResidencyReadMultiDtls.reasonCode.equals(
sampleForeignResidencyDtls.reasonCode))) 1

SampleForeignResidencyKey sampleForeignResidencyKey
= new SampleForeignResidencyKey();
sampleForeignResidencyKey.sampleForeignResidencyID =
sampleForeignResidencyReadMultiDtls.sampleForeignResidencyID;

Developing with Person and Prospect Person Evidence 15

sampleForeignResidencyKeylList.add(sampleForeignResidencyKey) ;
b

for (SampleForeignResidencyKey sampleForeignResidencyKey
: sampleForeignResidencyKeylist) {

sampleForeignResidencyDtls = sampleForeignResidencyObj.
read(sampleForeignResidencyKey) ;
sampleForeignResidencyDtls.statusCode
= RECORDSTATUS.CANCELLED;

sampleForeignResidencyObj.modify (sampleForeignResidencyKey,
sampleForeignResidencyDtls);

¥
¥

Step 3: Implement an Event Listener

A new event listener needs to be implemented to listen for events raised of type Sample Foreign
Residency that occur as a result of evidence activation. This listener should implement the interface
curam.pdc.impl.PDCEvents and provide implementations for the three methods. This is where the
replication process can be kicked off and any other custom processing that may need to happen.

public class SampleForeignResidencyEventslListener
implements PDCEvents {

@Inject
private SampleForeignResidencyReplicator
sampleForeignResidencyReplicator;

public void insertedEvidenceActivated(
EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

if (evidenceDescriptorDtls.evidenceType.equals
("SAMPLEFOREIGNRESIDENCY")) {

sampleForeignResidencyReplicator.replicateInsertEvidence
(evidenceDescriptoxrDtls);

¥

public void modifiedEvidenceActivated(
EvidenceDescriptorDtls evidenceDescriptorDtls,
EvidenceDescriptorDtls previousActiveEvidDescriptorDtls)
throws AppException, InformationalException {

if (evidenceDescriptorDtls.evidenceType.equals
("SAMPLEFOREIGNRESIDENCY")) {

sampleForeignResidencyReplicator.replicateModifyEvidence
(evidenceDescriptorDtls,
previousActiveEvidDescriptorDtls);

b
public void removedEvidenceActivated(
EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {
if (evidenceDescriptorDtls.evidenceType.equals
("SAMPLEFOREIGNRESIDENCY")) {
sampleForeignResidencyReplicator.replicateRemoveEvidence
(evidenceDescriptoxrDtls);

¥
¥

Step 4: Add a Binding to the New Event Listener Implementation

Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule §

public void configure() {

16 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

// Register the event listener
Multibindexr<PDCEvents> sampleEventListeners =
Multibinder.newSetBindexr (bindexr(), PDCEvents.class);

sampleEventlListeners.addBinding() .to(
SampleForeignResidencyEventsListener.class);

%

Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.

Converters

What is a Converter? - A converter is a mechanism for converting legacy person/prospect person data to
dynamic evidence. When legacy database tables are populated external to the application, by using tools
such as the Cdram Data Manager(DMX files), converters can be used to convert this data to dynamic
evidence.

Default converter implementations are provided for each of the person/prospect person evidence types.
These default implementations contain extension points to allow conversion of custom fields, which is
covered in the following section.

Why Extend a Converter?

In cases where legacy database tables are extended, it may be necessary to extend a converter.
Converters are generally only used in a development environment or for upgrade tooling and should not
be used as part of everyday processing.

Converter Extension

The converters provided with the application can be extended to allow conversion of custom database
columns to person/prospect person dynamic evidence. Interfaces are available for each evidence type
and can be found in the package curam.pdc.impl, these are listed below. Custom implementations can be
written that make use of these interfaces, depending on the evidence type.

Converter Extension (Populator) Interfaces:
« PDCAddressEvidencePopulator

« PDCAlternateIDEvidencePopulator

« PDCAlternateNameEvidencePopulator

« PDCBankAccountEvidencePopulator

« PDCBirthAndDeathEvidencePopulator

« PDCContactPreferencesEvidencePopulator
« PDCEmailAddressEvidencePopulator

« PDCGenderEvidencePopulator

« PDCPhoneNumberEvidencePopulator

- PDCRelationshipsEvidencePopulator

The majority of the interfaces have one method populate. It accepts varying parameters depending on
the evidence types.

PDCBirthAndDeathEvidencePopulator and PDCGenderEvidencePopulator, interfaces have two
methods, populatePerson and populateProspectPerson.

populatePerson accepts four parameters:

« concernRoleKey - unique identifier for the concern role that this evidence is relating to
« caselDKey - the unique identifier of the Participant Data Case

- personDtls - the struct containing the extended person details from the legacy table

« dynamicEvidenceDataDetails - the dynamic evidence details

Developing with Person and Prospect Person Evidence 17

populateProspectPexrson also accepts four parameters:

- concernRoleKey - unique identifier for the concern role that this evidence is relating to

« caselDKey - the unique identifier of the Participant Data Case

« prospectPersonDtls - the struct containing the extended prospect person details from the legacy table
« dynamicEvidenceDataDetails - the dynamic evidence details

Example: Implementing a Person/Prospect Person Evidence Populator

The following example outlines how to extend a converter to map custom database columns to person/
prospect person evidence. This example provides a very basic implementation of an extension to
PDCPhoneNumberEvidencePopulator. In this scenario, the PhoneNumber table is extended and
contains a custom column '‘phoneProvider'. The dynamic evidence configuration for Phone Number also
contains an attribute ‘phoneProvider'. The responsibility of the custom populator implementation is to
convert the struct attribute that represents the ‘phoneProvider' attribute on the extended PhoneNumber
table to dynamic evidence data. For more information on dynamic evidence configuration, see the Clram
Dynamic Evidence Configuration Guide.

Note: The conversion of data is all that is necessary, the default converters will look after the actual
storage of the dynamic evidence.

The steps involved in extending a converter are:

- Provide a populator implementation that converts the custom field from the legacy table to dynamic
evidence data

« Add a binding to the new populator implementation

Step 1: Provide a Populator Implementation

The first step is to provide a new implementation that implements the relevant populator interface for the
evidence type and converts the custom field from the legacy table to dynamic evidence. The code snippet
below demonstrates the custom implementation for the PDCPhoneNumberEvidencePopulator, it
converts the phoneProvider struct attribute to the dynamic evidence equivalent attribute. This dynamic
evidence is then stored along with the other dynamic evidence attributes through the default converter
implementation.

public class SamplePopulatorImpl
implements
PDCPhoneNumberEvidencePopulator {

public void populate(
ConcernRoleKey concernRoleKey,
CaseIDKey caseIDKey,
ConcernRolePhoneNumberDtls
concernRolePhoneNumberDtls,
PhoneNumberDtls phoneNumberDtls,
DynamicEvidenceDataDetails dynamicEvidenceDataDetails)
throws AppException, InformationalException {

DynamicEvidenceDataAttributeDetails phoneProvider =
dynamicEvidenceDataDetails.getAttribute("phoneProvider");

DynamicEvidenceTypeConverter.setAttribute (phoneProvider,
phoneNumberDtls.phoneProvider);

Add a Binding to the New Populator Implementation
Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule {
public void configure() 1

// Register the populator implementation

18 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Multibinder<PDCPhoneNumberEvidencePopulator> samplePopulator =
Multibinder.newSetBinder(binder(), PDCPhoneNumberEvidencePopulator.class);

samplePopulator.addBinding() .to(SamplePopulatorImpl.class);
%
b

Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.

Why Implement a Converter?

In cases where new dynamic evidence types are introduced, it may be necessary to implement a new
converter. Converters are generally only used in a development environment or for upgrade tooling and
should not be used as part of everyday processing.

Implementing a Converter
Converter implementations can be developed using the PDCConverter interface. The PDCConverter
interface can be found in the curam.pdc.impl package. This interface has one method storeEvidence.

It accepts two parameters:

« concernRoleKey - the unique identifier of the concern role
« caselDKey - the unique identifier of the Participant Data Case.

The next section demonstrates how to implement a converter.

Example: Implementing a Person/Prospect Person Evidence Converter

The following example outlines how to implement a converter. In this scenario, Sample Foreign Residency
is configured as a new dynamic evidence type. For more information on how to configure a new evidence
type, see the Ciram Dynamic Evidence Configuration Guide. The new Sample Foreign Residency evidence
type has the following attributes:

- participant - the case participant role id of the person/prospect person that the evidence is being
entered for

country - the country of residency

« fromDate - the date the residency started

- toDate - the date the residency ended

- reason - the reason for residency in this country

It is assumed that this dynamic evidence type is activated and is configured for use with person/prospect
person. Sample Foreign Residency information was previously stored as static evidence on the
SampleForeignResidency database table. It is now necessary to store this information as dynamic
evidence. A new converter is required which takes this information from the legacy table and converts and
stores it as dynamic evidence.

The steps involved in implementing a converter are:

 Provide a converter implementation that converts the legacy data to dynamic evidence
- Add a binding to the new converter implementation

Step 1: Provide a Converter Implementation

The code snippet demonstrates the implementation for the PDCConverter. It retrieves all Sample
Foreign Residency information for a person/prospect person from the legacy SampleForeignResidency
table, converts this information to a dynamic evidence data structure, and stores the resulting
information.

public class SampleForeignResidencyConverterImpl
implements PDCConverter

@Inject
private EvidenceTypeDefDAO etDefDAO;

Developing with Person and Prospect Person Evidence 19

@Inject
private EvidenceTypeVersionDefDAO etVerDefDAO;

public void storeEvidence(ConcernRoleKey concernRoleKey, CaseIDKey caselIDKey)
throws AppException, InformationalException {

PDCCaseIDCaseParticipantRoleID pdcCaseIDCaseParticipantRolelID =
new PDCCaseIDCaseParticipantRoleID();

ParticipantDataCase participantDataCaseObj =
ParticipantDataCaseFactory.newInstance();
pdcCaseIDCaseParticipantRoleID.caselID =
participantDataCaseObj.getParticipantDataCase (concernRoleKey) .caselD;

CaseIDTypeCodeKey caseIDTypeCodeKey = new CaseIDTypeCodeKey();
caseIDTypeCodeKey.caseID = pdcCaseIDCaseParticipantRoleID.caselD;
caseIDTypeCodeKey.typeCode = CASEPARTICIPANTROLETYPE.PRIMARY;

pdcCaseIDCaseParticipantRoleID.caseParticipantRolelID =
CaseParticipantRoleFactory.newInstance() .readByCaseIDAndTypeCode
(caseIDTypeCodeKey) .dtls.caseParticipantRoleID;

SampleForeignResidency sampleForeignResidencyObj =
SampleForeignResidencyFactory.newInstance();

SampleForeignResidencyReadMultiKey sampleForeignResidencyReadMultiKey =
new SampleForeignResidencyReadMultiKey();
sampleForeignResidencyReadMultiKey.concernRoleID =
concexrnRoleKey.concernRolelD;

SampleForeignResidencyReadMultiDtlslList sampleForeignResidencylList =
sampleForeignResidencyObj.
searchByConcernRole (sampleForeignResidencyReadMultiKey) ;

for (SampleForeignResidencyReadMultiDtls
sampleForeignResidencyReadMultiDtls :
sampleForeignResidencylList.dtls) {

final EvidenceTypeKey eType = new EvidenceTypeKey();
eType.evidenceType = "SampleForeignResidency";

EvidenceTypeDef evidenceType =
etDefDAO.readActiveEvidenceTypeDefByTypeCode(eType.evidenceType) ;

EvidenceTypeVersionDef evTypeVersion =
etVerDefDAO.getActiveEvidenceTypeVersionAtDate(evidenceType,
Date.getCurrentDate());

DynamicEvidenceDataDetails dynamicEvidenceDataDetails =
DynamicEvidenceDataDetailsFactory.newInstance (evTypeVersion);

DynamicEvidenceDataAttributeDetails participant =
dynamicEvidenceDataDetails.getAttribute("participant");

DynamicEvidenceTypeConverter.setAttribute (participant,
pdcCaseIDCaseParticipantRoleID.caseParticipantRoleID);

DynamicEvidenceDataAttributeDetails country =
dynamicEvidenceDataDetails.getAttribute("countzy");

DynamicEvidenceTypeConverter.setAttribute (countzry,
sampleForeignResidencyReadMultiDtls.countryCode);

DynamicEvidenceDataAttributeDetails fromDate =
dynamicEvidenceDataDetails.getAttribute("fromDate");

DynamicEvidenceTypeConverter.setAttribute (fromDate,
sampleForeignResidencyReadMultiDtls.startDate);

DynamicEvidenceDataAttributeDetails endDate =
dynamicEvidenceDataDetails.getAttribute("toDate");

DynamicEvidenceTypeConverter.setAttribute (endDate,
sampleForeignResidencyReadMultiDtls.endDate);

DynamicEvidenceDataAttributeDetails reasonCode =
dynamicEvidenceDataDetails.getAttribute("reason");

DynamicEvidenceTypeConverter.setAttribute (reasonCode,
sampleForeignResidencyReadMultiDtls.reasonCode) ;

20 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =
new EvidenceDescriptorInsertDtls();
evidenceDescriptorInsertDtls.participantID =
concernRoleKey.concernRolelD;
evidenceDescriptorInsertDtls.evidenceType =
eType.evidenceType;
evidenceDescriptorInsertDtls.receivedDate
curam.util.type.Date.getCurrentDate();
evidenceDescriptorInsertDtls.caseID =
pdcCaseIDCaseParticipantRoleID.caselD;

EIEvidenceInsertDtls eiEvidencelnsertDtls
new EIEvidenceInsertDtls();

eiEvidenceInsertDtls.descriptor.
assign(evidenceDescriptorInsertDtls);
eiEvidencelnsertDtls.descriptor.participantID =
concernRoleKey.concernRoleID;
eiEvidenceInsertDtls.descriptor.changeReason =
EVIDENCECHANGEREASON.REPORTEDBYCLIENT;
eiEvidenceInsertDtls.evidenceObject =
dynamicEvidenceDataDetails;

evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);
3
¥
3
Step 2: Add a Binding to the New Converter Implementation

Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule §
public void configure() 1§
// Register the converter implementation
Multibinder<PDCConverter> sampleForeignResidencyConverter =
Multibinder.newSetBinder(bindexr(), PDCConverter.class);

sampleForeignResidencyConverter.addBinding() .
to(SampleForeignResidencyConverterImpl.class);

¥

Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.

Evidence Sharing Automation

What is Evidence Sharing Automation?

Evidence sharing automation is the ability of an evidence record to be shared between cases and be
automatically activated, without being blocked by validations or requiring manual intervention by a
system user.

The result of automated sharing is one of....

1. The shared evidence is ignored because the same information is already recorded on the target case.
2. The evidence is deemed new and therefore a new evidence record is created on the target case.

3. An existing evidence record on the target case is identified as a match and is updated to reflect the
new information received in the shared evidence.

This automation reflects the process that a caseworker would go through in considering new evidence.

Developing with Person and Prospect Person Evidence 21

Why use Evidence Sharing Automation?

In normal circumstances when evidence is configured to be shared between cases the sharing can be
configured to auto-activate. This means that the evidence is activated on the target case if possible. If it is
not possible, for example a validation rule blocks activation, then the evidence is moved to an in-edit state
allowing the case worker to manually process the evidence.

On a Person case there is no 'in-edit state' for evidence, instead evidence is created in an active state. To
enable the automatic activation on sharing of evidence the validations that would normally block
activation must be overcome. This is achieved by implementing an automation strategy for the evidence

type.
For more on the automation of evidence sharing for the Person case, refer to the Cliram Participant Guide.

Implementing an Automation Strategy
The objective of the automation strategy is to decide on 1 of 3 outcomes for the shared evidence...

The shared evidence is ignored because the same information is already recorded on the target case.

1. The evidence is deemed new and therefore a new evidence record is created on the target case.

2. An existing evidence record on the target case is identified as a match and is updated to reflect the
new information received in the shared evidence.

To identify which option to take for a given evidence type the sharing process calls on the evidence type
specific strategy to make the correct decision.

The PDCEvidence interface is provided as the contract through which an evidence type defines its
automation strategy. Each evidence type that requires an automation strategy, that is, any evidence type
that is configured for use on the Person case, implements this interface describing how that evidence type
is handled when shared to or from the Person case.

Before implementing an automation strategy for an evidence type you must first decide on what the
strategy is. This is typically the task of a business analyst who decides what rules should be applied to
decide whether the shared evidence is ignored, inserted, or results in an existing evidence record being
modified. Once the strategy has been defined it can be implemented by the PDCEvidence interface.

Refer to the javadoc of the curam.pdc.impl.PDCEvidence interface for further details on how to use the
interface to define the automation strategy for the evidence type.

NOTE: When evidence that is configured on a Person case is shared the business validations that are
normally executed to prevent conflicting data from being captured are switched off. The automation
strategy that you employ here is the replacement for those validations. If no custom strategy is provided
for an evidence type the default implementations of the strategy is employed. The default strategy may be
inappropriate for the evidence type, and this can lead to conflicting evidence, such as duplicate records
being added to the case.

NOTE: The sharing strategy is also employed for non identical sharing, that is, where an evidence record
of one type is shared to an evidence of a different type. The automation strategy must cater for this type
of sharing if it is expected that this sharing configuration exists. For example, when comparing fields
between records of different types you may need to differentiate between an attribute that doesn't exist
on one of the evidence types versus an attribute that does not match. In this scenario your business rules
may choose to treat the source attribute with no corresponding target attribute as matching even though
a comparison cannot be made.

For example,

Evidence A value Evidence B value match?
attributes attributes

attrl "a" attrl "a" Y

attr2 “x" attr2 y"

attr3 "abc" Y

22 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Configuring an Automation Strategy
Follow these steps to configure a new automation strategy.

1. Retrieve the identifier for the evidence type that the automation strategy is applied. This can be done
using the below SQL

SELECT code FROM CodeTableItem WHERE TableName='EvidenceType' and Description='<Evidence
Name>'

For example, SELECT code FROM CodeTableItem WHERE TableName="EvidenceType' and
Description='Gender Details' returns "PDC0000262".

2. Bind automation strategy to the evidence type code by adding to an existing or creating a new Guice
Module

public class EvidenceSharingAutomationModule extends AbstractModule {

@Override
public void configure() {
final MapBinder< String, PDCEvidence> pdcEvidenceMapBinder =
MapBinder.newMapBinder(binder(), String.class, PDCEvidence.class);

String genderDetailsCode = "PDCOO00262";
// bind evidence type to evidence automation strategy
pdcEvidenceMapBinder.addBinding(genderDetailsCode) .to(PDCGenderEvidenceImpl.class);

¥

To override an existing implementation use a linked binding to bind the original implementation to the
custom implementation.

@Override
public void configure() {

bind (PDCGenderEvidenceImpl.class).to(MyCustomGenderEvidenceImpl.class);

Example Automation Strategy

The following example is taken from the Gender Evidence strategy that is applied to the product evidence
type Gender Details. For details of the automation strategy see the "Sharing Automation Business Rules"
section of the Clram Participant Guide

package curam.pdc.impl;

import java.util.Set;
import com.google.inject.Singleton;

import curam.codetable.EVIDENCENATURE;

import curam.codetable.impl.EVIDENCENATUREEntzy;

import curam.core.sl.infrastructure.impl.EIEvidenceReadDtls;

import curam.dynamicevidence.impl.DynamicEvidenceDataAttributeDetails;
import curam.dynamicevidence.impl.DynamicEvidenceDataDetails;

import curam.evidence.impl.EvidenceAttributeDataDetails;

import curam.util.exception.AppException;

import curam.util.exception.InformationalException;

import curam.util.type.Date;

[**

* Gender evidence sharing automation strategy

*/

@Singleton

class PDCGenderEvidenceImpl extends AbstractPDCEvidenceImpl §
//
/**

* Defines if this evidence is multi-timeline per type. Gender evidence does not support
having more
* than one gender at the same time, so returns false.

*/

Developing with Person and Prospect Person Evidence 23

@Override
public boolean isMultipleTimelLinePerType(DynamicEvidenceDataDetails sharedEvidenceDetails)
throws AppException,
InformationalException {
return false;

¥
/**
* Compare the shared evidence to evidence on the target case for an exact match.
*
* Returns true if there is an exact match. If there is an exact match the
* evidence will not be shared.
*
*/
@Override

public boolean matchAllEvidenceDetails(final DynamicEvidenceDataDetails
sharedEvidenceDetails, final Date sharedEffectiveDate,

final DynamicEvidenceDataDetails originalEvidenceDetails, final Date originalEffectiveDate)

throws AppException, InformationalException {

// Default implementation will compare all fields to determine exact match.
// No need to implement this method unless you want to change the definition of an exact
match.
// This implementation is just here for illustrative purposes.
return super.matchAllEvidenceDetails(sharedEvidenceDetails, sharedEffectiveDate,
originalEvidenceDetails, originalEffectiveDate);

//
/**
* Compare the shared evidence to evidence on the target case for a 'partial' match.
*
* Returns true if there is a partial match. If there is a partial match, the evidence
* sharing process will continue, but may fail to share the evidence based on other
conditions.
*/
@Override
public boolean matchEvidenceDetails(
final DynamicEvidenceDataDetails sharedEvidenceDetails, final Date sharedEffectiveDate,
final DynamicEvidenceDataDetails originalEvidenceDetails, final Date
originalEffectiveDate)
throws AppException, InformationalException {

EvidenceAttributeDataDetails sourceEvidenceAttributeDetails = new
EvidenceAttributeDataDetails(
sharedEvidenceDetails, EVIDENCENATUREEntry.get(EVIDENCENATURE.DYNAMIC));
EvidenceAttributeDataDetails targetEvidenceAttributeDetails = new
EvidenceAttributeDataDetails(
originalEvidenceDetails, EVIDENCENATUREEntry.get(EVIDENCENATURE.DYNAMIC));

boolean hasSameValueForGender = !
sourceEvidenceAttributeDetails.getEvidenceAttributeMap () .containsKey(
"gender")
|| !'targetEvidenceAttributeDetails.getEvidenceAttributeMap().containsKey (
"gender")
|| sharedEvidenceDetails.getAttribute("gender").getValue().equals(
originalEvidenceDetails.getAttribute("gender").getValue());

boolean isPartialMatch = hasSameValueForGender;
return isPartialMatch;

//

/**
* Assign the shared details to the target evidence.

values that are to be updated are assigned here. For gender evidence the value of the
gender field is updated to match that of the shared evidence.
*/
@Override
public void assignEvidenceDetails(final DynamicEvidenceDataDetails sharedEvidenceDetails,
final DynamicEvidenceDataDetails originalEvidenceDetails)
throws AppException, InformationalException {

*
* If sharing results in an update to existing evidence on the target case, then the
*
*

// Update the gender value
String genderShare = sharedEvidenceDetails.getAttribute("gender").getValue();

if (!genderShare.isEmpty()) %

DynamicEvidenceDataAttributeDetails gender = originalEvidenceDetails.getAttribute(

24 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

"gender");

gender.setValue (genderShare) ;

[N}

Resolve which evidence on the target case will be updated on sharing.

Given a list of evidence records that are a potential candidate for update,
select only one record to be updated. This method is only invoked for
evidence that is not multi-timeline per sub type
(See isMultipleTimelinePexrType(DynamicEvidenceDataDetails)). If invoked it
will only result in an update if the shared evidence is considered to be an
update. An update is decided by comparing the received dates. If the shared
evidence has a later received date, the shared evidence is accepted. If the
shared evidence has an earlier received date it is ignored. If the shared
evidence has the same received date, the creation dates will be compared and
if the shared evidence was created later it will be accepted.

For gender evidence, there can only be 1 records at a time. So just
pick that record if it exists.

~
% ok kK ok Sk ok ok Xk ok F Ok o X ok X L
< *

@Override
public EIEvidenceReadDtls getNonIdenticalEvidenceModifyDetails(
final DynamicEvidenceDataDetails shareEvidenceDetails,
final Set<EIEvidenceReadDtls> evidenceDetailslList)
throws AppException, InformationalException {

return evidenceDetailslList.isEmpty ()
? null
: evidenceDetailslList.iterator().next();

Selection of Primary Information

Legacy participant manager entities have the notion of primary indicators, where users are able to specify
which bank account/phone number and so forth represents the primary data when the evidence is
created. This is not the case with dynamic evidence types. The user does not specify the primary record;
instead there is an algorithm in the background that calculates which should be the primary record.

These algorithms are based on a defined business strategy and can be modified, details of which are
outlined in the following section.

Why Change the Selection of Primary Information?
As the identification of the primary record is not user-driven, it can be necessary to modify this selection
process, if the default business strategy is not preferable.

Changing the Selection of Primary Information
The strategies that determine which data should be selected as primary information can be modified by
using the default primary handler interfaces.

An interface is defined for each dynamic evidence type supplied that has a primary identifier on its legacy
table, found in the curam.pdc.impl package and are listed here.

Primary handler implementations are started with an event based mechanism. When dynamic evidence is
activated after an insert, modify or remove operation, an event is thrown. For new evidence types an event
listener needs to be developed to listen for this event and start the appropriate algorithm that determines

the primary data, this is discussed in more detail later in this section. The next section demonstrates how

to implement a primary handler.

Primary Handler Interfaces:

« PDCPrimaryAddressHandler
« PDCPrimaryAlternateIDHandler
« PDCPrimaryAlternateNameHandler

Developing with Person and Prospect Person Evidence 25

« PDCPrimaryBankAccountHandler
« PDCPrimaryEmailAddressHandler
« PDCPrimaryPhoneNumberHandler

Changing the Selection of Primary Information Example
This example outlines how to implement a primary handler. In this scenario, the defined business strategy
for selecting a primary phone number is to select the phone number with the latest start date.

The steps involved in implementing a primary handler are:

« Provide a primary handler implementation that identifies the primary record
« Add a binding to the new primary handler implementation

Step 1: Provide a Primary Handler Implementation

The first step is to provide a new implementation that implements the relevant primary handler interface
for the evidence type and identifies the primary record. The code snippet demonstrates an
implementation for PDCPrimaryPhoneNumberHandler, it takes the phone number with the latest start
date and sets it as the primary record.

public class SamplePrimaryPhoneNumberHandlerImpl
implements PDCPrimaryPhoneNumberHandler {

protected SamplePrimaryPhoneNumberHandlerImpl() £
%

public void setPrimaryPhoneNumber
(EvidenceDescriptorDtls evidenceDescriptorDtls)
throws AppException, InformationalException {

ConcernRoleKey concernRoleKey = new ConcernRoleKey();
concernRoleKey.concernRolelID =
evidenceDescriptorDtls.participantID;

ConcernRolePhoneNumberDtlsList concernRolePhoneNumberDtlslList =
ConcernRolePhoneNumberFactory.newInstance().
searchByConcernRole (concernRoleKey) ;

ConcernRole concernRoleObj = ConcernRoleFactory.newInstance();
ConcernRoleDtls concernRoleDtls = concernRoleObj.read(concernRoleKey) ;
Date currentPrimaryPhoneNumberStartDate = Date.kZeroDate;

List<SampleSortedPhoneNumber> list =
new Arraylist<SampleSortedPhoneNumber>();

for (ConcernRolePhoneNumberDtls
concernRolePhoneNumberDtls:concernRolePhoneNumberDtlsList.dtls) {

PhoneNumberKey phoneNumberKey = new PhoneNumberKey () ;
phoneNumberKey.phoneNumberID = concernRolePhoneNumberDtls.phoneNumberID;

if (concernRolePhoneNumberDtls.phoneNumberID ==
concernRoleDtls.primaryPhoneNumberID) §
currentPrimaryPhoneNumberStartDate = concernRolePhoneNumberDtls.startDate;
3

SampleSortedPhoneNumber sampleSortedPhoneNumber =
new SampleSortedPhoneNumber (concernRolePhoneNumberDtls);
list.add(sampleSortedPhoneNumber) ;

Collections.sort(list);
SampleSortedPhoneNumber newPrimaryPhoneNumber = list.get(0);
if (newPrimaryPhoneNumber.getStartDate().
after(currentPrimaryPhoneNumberStartDate)) $
concernRoleDtls.primaryPhoneNumberID =

newPrimaryPhoneNumber.getPhoneNumberID() ;
concernRoleObj.pdcModify (concernRoleKey, concernRoleDtls);

class SampleSortedPhoneNumber implements

26 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Comparable<SampleSortedPhoneNumber> §
private long phoneNumberID;
private Date startDate;

SampleSortedPhoneNumber (ConcernRolePhoneNumberDtls dtls) {
this.phoneNumberID = dtls.phoneNumberlID;
this.startDate = dtls.startDate;

%

public long getPhoneNumberID() {
return phoneNumberID;

public Date getStartDate() {
return startDate;

¥

public int compareTo(SampleSortedPhoneNumber o) £
return o.getStartDate().compareTo(this.getStartDate());
3
¥
3

Step 2: Add a Binding to the New Primary Handler Implementation

Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule §
public void configure() 1§
// Register the primary handler implementation

bind (PDCPrimaryPhoneNumberHandler.class) .to(
SamplePrimaryPhoneNumberHandlerImpl.class);

¥

Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.

Reciprocal Evidence

What is Reciprocal Evidence? - Reciprocal evidence is a type of evidence which consists of two pieces of
evidence that must be processed together. The relationship dynamic evidence type is an example of
reciprocal evidence.

When Person A is recorded as a spouse of Person B, the corresponding relationship evidence, Person B is
a spouse of Person A is recorded. When evidence is inserted, modified or removed for Person A, the
system inserts, modifies or removes the corresponding relationship evidence for Person B.

Why Provide a Reciprocal Evidence Implementation?
If you develop a new reciprocal dynamic evidence type, then you must also provide an implementation of
the ReciprocalEvidenceConversion interface.

Reciprocal Evidence Implementations

When evidence is inserted, modified or removed a hook point is invoked, that by default triggers the
reciprocal evidence handler functionality. This new evidence hook point is called the
GlobalEvidenceHook and can be found in the curam.core.sl.infrastructure.impl package. The
GlobalEvidenceHook Interface allows custom processing to occur after evidence operations complete.

GlobalEvidenceHook Interface:
The GlobalEvidenceHook interface contains the following methods:
postInsertEvidence is invoked after evidence is inserted and accepts two parameters:

- caseKey - the identifier of the case that the evidence belongs to
- evKey - the identifier and type of the evidence

postModifyEvidence is invoked after evidence is modified and accepts two parameters:

Developing with Person and Prospect Person Evidence 27

- caseKey - the identifier of the case that the evidence belongs to
« evKey - the identifier and type of the evidence

postRemoveEvidence is invoked after evidence is removed and accepts two parameters:

- caseKey - the identifier of the case that the evidence belongs to
« evKey - the identifier and type of the evidence

postDiscardPendingUpdate is invoked after a pending update of evidence is discarded and accepts
two parameters:

- caseKey - the identifier of the case that the evidence belongs to
« evKey - the identifier and type of the evidence

postDiscardPendingRemove is invoked after a pending remove of evidence is discarded and accepts
two parameters:

- caseKey - the identifier of the case that the evidence belongs to
« evKey - the identifier and type of the evidence

Reciprocal Evidence Handler:

The default implementation for the GlobalEvidenceHook invokes the reciprocal evidence handler
functionality. The reciprocal evidence handler is responsible for all common reciprocal evidence
processing. It locates reciprocal evidence and if found performs the same changes on it that were
performed on the original evidence. If the reciprocal evidence is not found, and the original evidence was
inserted, then it inserts the corresponding reciprocal evidence. As the reciprocal evidence handler is core
to the reciprocal evidence processing it cannot be customized directly, but can be customized by way of
the GlobalEvidenceHook, if necessary.

Reciprocal Evidence Conversion Interface:

The ReciprocalEvidenceConversion interface is responsible for reciprocal and original evidence
comparison, participant retrieval and for creating new and modified reciprocal evidence from original
evidence. To make custom evidence reciprocal, a ReciprocalEvidenceConversion interface
implementation must be provided. While the handler is not aware of the internal evidence structure, the
conversion interface implementation is, as a result this is where the main customization point lies. The
ReciprocalEvidenceConversion interface can be found in the curam.core.sl.infrastructure.impl
package and contains the following methods:

« Object getReciprocal(final Object original, final long targetCaselD) - Creates reciprocal evidence details
from the original evidence details

« Object getUpdatedReciprocal(final Object original, final Object unmodifiedReciprocal) - Creates
modified reciprocal evidence details from the original evidence details and from un-modified reciprocal
evidence details

« long getPrimaryParticipant(final Object originalEvidence) - Retrieves the primary participant (concern
role ID) from the original evidence. Note that the primary participant on the original evidence is the
related participant on the reciprocal evidence

- long getRelatedParticipant(final Object originalEvidence) - Retrieves related participant (concern role
ID) from the original evidence. Note that the related participant on the original evidence is the primary
participant on the reciprocal evidence

« boolean matchEvidenceDetails(final Object evidenceDetails1, final Object evidenceDetails2) - Checks
evidence details for a match. Implementation of this method determines if two evidence details passed
in are considered as a match.

The following section demonstrates how to implement reciprocal evidence.

28 IBM Curam Social Program Management: Ciram Person and Prospect Person Evidence Developers Guide

Reciprocal Evidence Implementation Example
The following example demonstrates a reciprocal evidence implementation. In this scenario, Working
Relationship is configured as a new dynamic evidence type.

For more information on how to configure a new evidence type, see the Ciram Dynamic Evidence
Configuration Guide. The new Working Relationship evidence type is identified as reciprocal and has the
following attributes,

- participant - the case participant role id of the person/prospect person that the evidence is being
entered for

- relatedParticipant - the case participant role id of the related person/prospect person
- workingRelationship - the working relationship between the two participants
It is assumed that this dynamic evidence type is activated and is configured for use with person/prospect

person. In order for this reciprocal evidence to be handled correctly by the infrastructure, an
implementation of the ReciprocalEvidenceConversion interface must be provided.

The steps that are involved:

« Provide a reciprocal evidence conversion implementation
- Add a binding to the new reciprocal evidence conversion implementation

Step 1: Provide a Reciprocal Evidence Conversion Implementation

public class SampleWorkingRelationshipReciprocalConversion
implements ReciprocalEvidenceConversion 1§

@Inject
private EvidenceTypeDefDAO etDefDAO;

@Inject
private EvidenceTypeVersionDefDAO etVerDefDAO;

public SampleWorkingRelationshipReciprocalConversion() 1§

%

public Object getReciprocal(
final Object original, final long targetCaselD)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) original;

String workingRelationshipOriginal =
originalDetails.getAttribute
("workingRelationship").getValue();

String workingRelationshipRec = ;

if (workingRelationshipOriginal.equals("ISMANAGEROF")) {
workingRelationshipRec = "ISMANAGEDBY";

EvidenceTypeKey evdType = new EvidenceTypeKey();
evdType.evidenceType = "WORKINGRELATIONSHIP";

EvidenceTypeDef evdTypeDef =
etDefDAO.readActiveEvidenceTypeDefByTypeCode
(evdType.evidenceType);

EvidenceTypeVersionDef evTypeVersion =
etVerDefDAO.getActiveEvidenceTypeVersionAtDate
(evdTypeDef, Date.getCurrentDate());
DynamicEvidenceDataDetails reciprocalDetails =
DynamicEvidenceDataDetailsFactory.newInstance
(evTypeVersion);

DynamicEvidenceDataAttributeDetails workingRelationshipAttr =
reciprocalDetails.getAttribute("workingRelationship");

DynamicEvidenceTypeConverter.setAttribute

Developing with Person and Prospect Person Evidence 29

(workingRelationshipAttr, workingRelationshipRec);

DynamicEvidenceDataAttributeDetails participantAttr =
reciprocalDetails.getAttribute("participant");

DynamicEvidenceTypeConverter.setAttribute (participantAttr,
originalDetails.getAttribute
("relatedParticipant").getValue());

DynamicEvidenceDataAttributeDetails relatedParticipantAttr =
reciprocalDetails.getAttribute("relatedParticipant");

DynamicEvidenceTypeConverter.setAttribute
(relatedParticipantAttr,
originalDetails.getAttribute("participant").getValue());

return reciprocalDetails;

public Object getUpdatedReciprocal(
final Object original, final Object unmodifiedReciprocal)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) original;

DynamicEvidenceDataDetails reciprocalDetails =
(DynamicEvidenceDataDetails) unmodifiedReciprocal;

long caseParticipantRoleIDRec = Long.parselLong(
reciprocalDetails.getAttribute("participant").getValue());
long relCaseParticipantRoleIDRec = Long.parselLong(
reciprocalDetails.getAttribute
("relatedParticipant").getValue());
String workingRelationshipRec =
reciprocalDetails.getAttribute ("workingRelationship").getValue();

for (final DynamicEvidenceDataAttributeDetails
listDetails: originalDetails.getAttributes()) 1
reciprocalDetails.getAttribute(listDetails.getName()) .setValue (
listDetails.getValue());
%

DynamicEvidenceDataAttributeDetails workingRelationshipAttr =
reciprocalDetails.getAttribute("workingRelationship");

DynamicEvidenceTypeConverter.setAttribute
(workingRelationshipAttr, workingRelationshipRec);

DynamicEvidenceDataAttributeDetails participantAttr =
reciprocalDetails.getAttribute("participant");

DynamicEvidenceTypeConverter.setAttribute (participantAttr,
caseParticipantRoleIDRec);

DynamicEvidenceDataAttributeDetails relatedParticipantAttr =
reciprocalDetails.getAttribute("relatedParticipant");

DynamicEvidenceTypeConverter.setAttribute (relatedParticipantAttr,
relCaseParticipantRoleIDRec);

return reciprocalDetails;

%

public boolean matchEvidenceDetails(
final Object evidenceDetailsl,
final Object evidenceDetails2)
throws AppException, InformationalException {

DynamicEvidenceDataDetails dynamicEvidenceDataDetailsl =
(DynamicEvidenceDataDetails) evidenceDetailsl;

DynamicEvidenceDataDetails dynamicEvidenceDataDetails2
(DynamicEvidenceDataDetails) evidenceDetails2;

curam.core.sl.intf.CaseParticipantRole caseParticipantRoleObj =
curam.core.sl.fact.CaseParticipantRoleFactory.newInstance();

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();
caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetailsl.getAttribute("participant"));

30 IBM Curam Social Program Management: Cliram Person and Prospect Person Evidence Developers Guide

Long concernRoleID1 =
caseParticipantRoleObj.readCaseIDandParticipantID
(caseParticipantRoleKey) .participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetailsl.getAttribute("relatedParticipant"));

Long relConcernRoleIDl =
caseParticipantRoleObj.readCaseIDandParticipantID
(caseParticipantRoleKey) .participantRoleID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails2.getAttribute("participant"));

Long concernRoleID2 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey) .participantRolelD;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
dynamicEvidenceDataDetails2.getAttribute("relatedParticipant"));

Long relConcernRoleID2 = caseParticipantRoleObj
.readCaseIDandParticipantID(caseParticipantRoleKey) .participantRolelID;

return dynamicEvidenceDataDetailsl.getAttribute

("workingRelationship").getValue() .equals(

dynamicEvidenceDataDetails2.getAttribute
("workingRelationship").getValue())

&& (concernRoleID1.longValue() ==
concernRoleID2.longValue())

&& (relConcernRoleID1.longValue() ==
relConcernRoleID2.longValue());

%

public boolean matchOriginalAndReciprocal(
final Object originalEvidence, final Object reciprocalEvidence)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) originalEvidence;

DynamicEvidenceDataDetails reciprocalDetails =
(DynamicEvidenceDataDetails) reciprocalEvidence;

curam.core.sl.intf.CaseParticipantRole caseParticipantRoleObj =
curam.core.sl.fact.CaseParticipantRoleFactory.newInstance();
CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
originalDetails.getAttribute("participant"));

Long concernRoleID1l = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey) .participantRolelD;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
originalDetails.getAttribute("relatedParticipant"));

Long relConcernRoleID1 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey) .participantRolelID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
reciprocalDetails.getAttribute("participant"));

Long concernRoleID2 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey) .participantRolelID;

caseParticipantRoleKey.caseParticipantRoleID =
(Long) DynamicEvidenceTypeConverter.convert(
reciprocalDetails.getAttribute("relatedParticipant"));

Long relConcernRoleID2 = caseParticipantRoleObj.
readCaseIDandParticipantID(caseParticipantRoleKey) .participantRolelD;

String workingRelationshipOriginal =
originalDetails.getAttribute ("workingRelationship").getValue();

Developing with Person and Prospect Person Evidence 31

String workingRelationshipRec = ;
if (workingRelationshipOriginal.equals("ISMANAGEROF")) {
workingRelationshipRec = "ISMANAGEDBY";

return reciprocalDetails.getAttribute("workingRelationship")

.getValue() .equals(

workingRelationshipRec)

&& (concernRoleIDl1.longValue() ==
relConcernRoleID2.longValue())

&& (relConcernRoleIDl.longValue() ==
concernRoleID2.longValue());

¥

public long getPrimaryParticipant(final Object originalEvidence)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) originalEvidence;

long caseParticipantRoleID = Long.parselLong(
originalDetails.getAttribute("participant").getValue());

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
caseParticipantRolelD;

return CaseParticipantRoleFactory.newInstance()
.read(caseParticipantRoleKey) .participantRoleID;

public long getRelatedParticipant
(final Object originalEvidence)
throws AppException, InformationalException {

DynamicEvidenceDataDetails originalDetails =
(DynamicEvidenceDataDetails) originalEvidence;

long caseParticipantRoleID = Long.parselLong(
originalDetails.getAttribute("relatedParticipant").getValue());

CaseParticipantRoleKey caseParticipantRoleKey =
new CaseParticipantRoleKey();

caseParticipantRoleKey.caseParticipantRoleID =
caseParticipantRoleID;

return CaseParticipantRoleFactory.newInstance().
read(caseParticipantRoleKey) .participantRoleID;

%

Step 2: Add a Binding to the New Reciprocal Evidence Conversion Implementation

Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule {
public void configure() 1
MapBinder<CASEEVIDENCEEntzry,
ReciprocalEvidenceConversion> recEvidenceConversionMapBinder =
MapBinder.newMapBinder (binder (),
CASEEVIDENCEENntry.class, ReciprocalEvidenceConversion.class);
reciprocalEvidenceConversionMapBinder.addBinding(
CASEEVIDENCEENntry.get ("WORKINGRELATIONSHIP")) .to(
SampleWorkingRelationshipReciprocalConversion.class);
%
Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.
Reciprocal Evidence Limitations

The reciprocal evidence handling infrastructure has the following limitations:

32 IBM Curam Social Program Management: Cliram Person and Prospect Person Evidence Developers Guide

- The evidence must be temporal evidence. It can be static, dynamic, or generated evidence.

« The evidence must have a participant and related participant, alternatively, the
ReciprocalEvidenceConversion implementation code must be able to determine the participant
and related participant by using the evidence details.

« When reciprocal evidence and its related original evidence are both on the same case then their
changes must be always applied together, otherwise original and reciprocal evidence data are out of
sync.

- Reciprocal evidence can be processed automatically only if both related participants are registered as
MEMBER or PRIMARY participants on the same case, or evidence is recorded as person/prospect
person evidence.

« The reciprocal handler is supported for evidence types that are modeled to allow corrections only.

Participant Data Case Owner

Why Change the Participant Data Case Owner?
It may be necessary to change the participant data case owner if tighter control is required around the
ownership of participants.

Changing the Participant Data Case Owner
When a person/prospect person is registered on the system, a case is created in the background to help
manage this data, this is also known as a 'Participant Data Case".

By default, this case has a case owner, the logged in user. It is possible to change this to a different case
owner by way of the PDCCaseOwnerAssignmentStrategy Interface. The
PDCCaseOwnerAssignmentStrategy Interface can be found in the curam.pdc.impl package and has
one method createOwner. It accepts two parameters:

« key - the identifier of the Participant Data Case
« ownerDtls - the details of the Participant Data Case owner

Changing the Participant Data Case Owner Example
The example here outlines how to change the Participant Data Case Owner, in this scenario the owner is
set to the system user.

The steps that are involved:

« Provide a case owner assignment strategy implementation that sets the case owner
- Add a binding to the case owner assignment strategy implementation

Step 1: Provide a Case Owner Assignment Strategy Implementation

The code snippet demonstrates a sample implementation for PDCCaseOwnerAssignmentStrategy, it
sets the owner to be the system user.

@Singleton
public class SampleCaseOwnerAssignmentStrategyImpl
implements PDCCaseOwnerAssignmentStrategy 1{

public void createOwner(CaseHeaderKey key,
OrgObjectLinkDtls ownerDtls)
throws AppException, InformationalException {

ownerDtls.orgObjectType = ORGOBJECTTYPE.USER;

ownerDtls.userName = UserAccessFactory.newInstance().
getSystemUserDetails() .userName;

OrgObjectLinkFactory.newInstance() .insert(ownerDtls);

OrgObjectLinkKey orgObjectLinkKey = new OrgObjectLinkKey();
orgObjectLinkKey.orgObjectLinkID = ownerDtls.orgObjectLinkID;

CaseUserRoleDtls caseUserRoleDtls =

new CaseUserRoleDtls();
caseUserRoleDtls.caseID = key.caselD;

Developing with Person and Prospect Person Evidence 33

caselUserRoleDtls.orgObjectLinkID =
orgObjectLinkKey.orgObjectLinkID;

caseUserRoleDtls.typeCode = CASEUSERROLETYPE.OWNER;

caselUserRoleDtls.recordStatus = RECORDSTATUS.NORMAL;

curam.core.sl.entity.fact.CaseUserRoleFactory.newInstance()
.insert(caseUserRoleDtls);

CaseHeader caseHeaderObj = CaseHeaderFactory.newInstance();
CaseHeaderDtls caseHeaderDtls = caseHeaderObj.read(key);
caseHeaderDtls.ownerOrgObjectLinkID =

orgObjectLinkKey.orgObjectLinkID;
caseHeaderObj.modify (key, caseHeaderDtls);

Step 2: Add a Binding to the Case Owner Assignment Strategy Implementation

Guice bindings are used to register the implementation.

public class SampleModule extends AbstractModule {
public void configure() 1
// Register the implementation
bind (PDCCaseOwnerAssignmentStrategy.class)
.to(SampleCaseOwnerAssignmentStrategyImpl.class);
%
b

Note: New Guice modules must be registered by adding a row to the ModuleClassName database table.
See the Persistence Cookbook for more information.

34 IBM Curam Social Program Management: Cliram Person and Prospect Person Evidence Developers Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2018 35

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

AlLIBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM'’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at

“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

36 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 37

Part Number:

(1P) P/N

	Contents
	List of Tables
	Chapter 1. Developing with Person and Prospect Person Evidence
	Overview
	Pre-requisites
	Sections in this Guide

	Person/Prospect Person Evidence Overview
	Person/Prospect Person Data as Evidence
	How Person or Prospect Person Evidence is Managed
	Person/Prospect Person Evidence Types
	Evidence Validations
	Evidence Sharing

	Designing Person/Prospect Person Evidence Solutions
	Data: Dynamic Evidence Types
	Structure
	Constraints
	Validations
	Verifications

	Flow: Evidence Broker
	Cúram Express Rules: Case Eligibility/Entitlement Calculations
	Read participant data from the dynamic evidence stored by the participant manager
	Read participant data which has been brokered onto cases
	Continue to read from the legacy tables

	Dynamic Evidence Type Data Mappings
	Address
	Bank Account
	Birth and Death
	Contact Preferences
	Email Address
	Gender
	Identification
	Name
	Phone Number
	Relationship
	Snapshot Tables

	Customizing Person/Prospect Person Evidence
	Replicators
	Replicator Extension
	Example: Implementing a Person/Prospect Person Evidence Replicator Extender
	Step 1: Provide a Replicator Extension Implementation
	Step 2: Add a Binding to the New Replicator Extension Implementation

	Why Implement a Replicator?
	Implementing a Replicator
	Example: Implementing a Person/Prospect Person Evidence Replicator
	Step 1: Provide a Replicator Interface
	Step 2: Provide a Replicator Implementation
	Step 3: Implement an Event Listener
	Step 4: Add a Binding to the New Event Listener Implementation

	Converters
	Why Extend a Converter?
	Converter Extension
	Example: Implementing a Person/Prospect Person Evidence Populator
	Step 1: Provide a Populator Implementation
	Add a Binding to the New Populator Implementation

	Why Implement a Converter?
	Implementing a Converter
	Example: Implementing a Person/Prospect Person Evidence Converter
	Step 1: Provide a Converter Implementation
	Step 2: Add a Binding to the New Converter Implementation

	Evidence Sharing Automation
	What is Evidence Sharing Automation?
	Why use Evidence Sharing Automation?
	Implementing an Automation Strategy
	Configuring an Automation Strategy
	Example Automation Strategy

	Selection of Primary Information
	Why Change the Selection of Primary Information?
	Changing the Selection of Primary Information
	Changing the Selection of Primary Information Example
	Step 1: Provide a Primary Handler Implementation
	Step 2: Add a Binding to the New Primary Handler Implementation

	Reciprocal Evidence
	Why Provide a Reciprocal Evidence Implementation?
	Reciprocal Evidence Implementations
	Reciprocal Evidence Implementation Example
	Step 1: Provide a Reciprocal Evidence Conversion Implementation
	Step 2: Add a Binding to the New Reciprocal Evidence Conversion Implementation

	Reciprocal Evidence Limitations

	Participant Data Case Owner
	Why Change the Participant Data Case Owner?
	Changing the Participant Data Case Owner
	Changing the Participant Data Case Owner Example
	Step 1: Provide a Case Owner Assignment Strategy Implementation
	Step 2: Add a Binding to the Case Owner Assignment Strategy Implementation

	Notices
	Privacy Policy considerations
	Trademarks

