
IBM Cúram Social Program Management
Version 7.0.3

Cúram Batch Streaming Developers
Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
12

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.3 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© .

Contents

List of Figures... iv

Chapter 1. Developing streamed batch programs..1
Overview...1

Prerequisites...1
Why Develop Streamed Batch Programs.. 1

Built-in features..1
Batch Volumes..2

Designing Streamed Batch Programs..2
Identify the Processing Unit...2
Providing Meaningful Information using the Batch Summary.. 3
Identifying any Required Extra Processing..4

Implementing Streamed Batch Programs...4
Before you start.. 4
Modeling and Class structure...5
Chunker Entry-point... 7
Extra Processing... 8
Setting the Batch Stream Entry Point.. 8
Processing a Single Record ID... 8
Processing Skipped Cases..9
Encoding Batch Summary Information..9
Decoding Batch Summary Information... 9
Sending a Batch Report..9
Global Batch StreamConfiguration Options.. 10

Advanced Topics.. 10
Running Multiple Chunker Processes in a Single Instance... 10
Running Multiple Instances of the Same Batch Program... 11
Using Composite Keys to Identify Processing Units... 11

Notices..12
Privacy Policy considerations.. 13
Trademarks.. 13

 iii

List of Figures

1. GenerateInstruments batch program report..4
2. UML Model for Example Streamed Batch Program.. 5
3. Chunker Wrapper implementation..6
4. Chunker Wrapper implementation..7
5. Sending a Batch Report using CuramBatch..10

iv

Chapter 1. Developing streamed batch programs
Use this information to design and develop streamed batch programs. Processing load is divided into
streams of independent processing, for processing on separate computers as required. A chunker process
identifies the processing units and clusters them into chunks of a predefined size. The stream processes
then process one chunk at a time.

Overview
The purpose of this guide is to describe how to design and develop streamed batch programs using the
infrastructure provided by the application.

A streamed batch program is one where the processing load is divided into streams of independent
processing, where these streams can be processed on separate machines as required. At a technical level
the work of the batch program is divided into processing units which can be processed independently of
each other, for example the payments for a person or the reassessment of a case.

At execution time, there is "chunker" process which identifies these processing units and clusters these
into chunks of a predefined size. The stream processes then process one chunk at a time, once all the
chunks have been processed the chunker summarizes the processing carried out by the streams and
reports on the batch processing carried out.

This guide is intended for any reader who wants to develop a streamed batch program.

Prerequisites
The Cúram Batch Performance Mechanisms Guide gives a good background on the general mechanisms
for managing the performance of batch programs including streaming.

Why Develop Streamed Batch Programs
The decision to develop a streamed batch program can be triggered by a known requirement or project
imperative. However, there are a number of reasons why it should be considered in the absence of such a
driver, these are set out in this section.

Built-in features
The batch streaming infrastructure implements a number of features which are typically required for
batch programs. Using the batch streaming infrastructure means that these features do not need to be
directly implemented in your batch program.

The following are the main features of the batch streaming infrastructure:

Commit point processing
The transaction is committed after each chunk is processed. This stops the transaction size getting
too large which can cause performance and/or database locking issues.

Skipping processing for records with errors
Any record which causes an error when being processed is automatically skipped. The transaction for
the chunk is rolled back, the record in error is added to a skip list and the processing of the chunk
restarts.

Generic batch logging/reporting
Logging of progress of the batch process should assist in locating any issues that might be found. The
generic elements of the reporting of the work done by the batch program - chunks processed, any

© Copyright IBM Corp. 2012, 2018 1

chunks unprocessed and any records skipped - are built-in. Additional reporting can be added, see
“Providing Meaningful Information using the Batch Summary” on page 3.

Re-startability
In the situation where the chunker and/or stream processes crash or are killed. They can be restarted
and processing will continue from the point where processing was stopped. This typically means that
any chunks being processed at the time the stream(s) exited will be re-started, however there is
potential under limited circumstances that one or more chunks could remain unprocessed in the
event of a restart.

Batch Volumes
Typically the decisive reason to stream a batch program is because the anticipated volume of records
cannot be processed inside the available time using a single thread of execution. However, it is not easy to
accurately predict the actual volumes that may be encountered in a production system, so the best option
(where possible) is to use streaming for all batch programs - even if the "default" run configuration just
uses the chunker with an in-process stream.

Some styles of processing can never be streamed and must be run as a serial process inside a single
transaction. However, even where this is seemingly the case it is worth closely examining the options to
see if the use of parameters to batch programs or developing multiple batch programs will allow the
required elements to be run serially while still running in parallel within those serial elements. For
example a batch program is required to reassess every active case in the system. All cases of type A
should be reassessed before cases of type B. Case type is used as a parameter which allows the batch
program to be streamed. This is achieved by running the batch program with case type A as a parameter
and then again with case type B as a parameter.

Designing Streamed Batch Programs

Identify the Processing Unit
Identifying the processing unit is the key to the design of streamed batch programs. The aim here is to
identify the smallest possible unit of work that can be executed without risk of overlap between
processing units. While there may be a readily identifiable grouping (by case or participant), more work
will be needed where some serial processing may be required.

It is important to note that this sub-division of the processing is a fundamental activity where the work of
a batch program needs to be done in parallel and this is not merely a feature of the batch streaming
infrastructure, but of the problem being addressed.

Understanding Processing Unit Dependencies
It is also important to understand the different sorts of dependencies than can exist between potential
processing units. There are serial dependencies where dependent processing needs to be carried out in
set order (before or after) the related processing. This serial dependency may form a single logical
transaction of work - where both sets of processing should either be completed or not. There are "fan out"
dependencies where during the processing of one element a set of other elements requiring processing
may be identified.

Such fan outs of processing either need to be handled in the context of the processing that identified
them, which may cause issues with the overlaps between streams and/or with the volume of work in
processing a single record (with the fan out) becoming excessive; or the additional processing required
needs to noted to be processed at a later stage (this could be implemented using Multiple Batch
Programs, see “Multiple Batch Programs” on page 3.

There are many approaches to this sub-division of the processing, but some of the more common are
listed below:

Indirect units
An indirect unit is where the unit of processing is not made up of the artifacts being processed
directly, but rather using a different (related) grouping. For example when generating payments, which

2 IBM Cúram Social Program Management: Cúram Batch Streaming Developers Guide

processes Instruction Line Items (ILIs) the processing unit is a participant - this is necessary because
of the business requirement to issue all payments (ILIs) due to a single participant in a single
payment instrument, grouping by ILI would lead to overlaps as the roll-up of a participant payment
pulled in other ILIs.

Composite keys
Composite keys can be used where there is no "natural" key in the data which uniquely identifies the
unit of processing, for example where the combination of a participant and case needs to be used.
However, because the database design of the application makes it unlikely that any composition
wouldn't have a unique ID in it's own right (Case Participant Role in the example above), this is not
directly supported by the batch streaming infrastructure, but some further information is available in
“Using Composite Keys to Identify Processing Units” on page 11.

Sub-division of processing space
Sub-division of processing space is useful where rather than dividing the entire processing space into
a single logical set of processing units, it is necessary to first divide the processing space into large
sub-units and then produce a set of processing units within each of these. For example where there
are a number of types of financial transactions to be processed, say payments, bills and account
transfers, it may not be possible to divide all of the financial transactions as a group into suitable
processing units. By first sub-dividing by transaction type, each sub-division can then be broken down
into processing units. This is not directly supported by the batch streaming infrastructure, but can be
achieved using Multiple Batch Programs, see “Multiple Batch Programs” on page 3.

Multiple Batch Programs
Where a sub-division of processing space or large amounts of extra processing are required, it may be
beneficial to divide the processing between multiple batch programs rather than trying to complete all the
processing in a single batch program.

Refer to “Identifying any Required Extra Processing” on page 4. In particular the development of
multiple batch programs may significantly simplify the design and development effort for each program as
well as allowing the processing and choice of processing unit be optimized for each distinct task. There
are two distinct options for developing multiple batch programs:

Independent Batch Programs
The advantage of this approach is that given each process has a distinct chunker and stream
implementation more specialized approaches can be taken to improve performance etc. It's also
important to note that, given suitable hardware and scheduling software, independent batch
programs can be run at the same time - this can offer substantially better utilization of the batch
window provided the processing for each program is independent. Alternatively, it is possible to
create a single batch program that runs several distinct chunker processes in sequence without
creating multiple batch programs, see “Running Multiple Chunker Processes in a Single Instance” on
page 10.

Single Batch Program using parameters
This is not directly supported by the batch streaming infrastructure, but can be achieved by adding a
(mandatory) parameter to the chunker identifying the subset of data to be processed and scheduling a
run of the chunker for each sub-division. It's important to note that, barring a specialized
implementation (see “Running Multiple Instances of the Same Batch Program” on page 11) multiple
instances of a single batch program can not be run at the same time - the batch streaming
infrastructure uses a program key to allow the chunker to be restarted in the event of a crash. Two
instances cannot be run concurrently with the same key.

Providing Meaningful Information using the Batch Summary
By default the batch streaming infrastructure reports on the number of chunks skipped as well the total
execution time. As the report is generic, it can only report in terms of chunks and the number of records in
each chunk. By including summary information when implementing a batch program, additional
information on the number of business artifacts processed, including categorization can be included.

This information is included in an email/report aimed at the operator running the batch programs. The
batch summary report should convey only the key details of the processing. In general the report should
contain no more than ten categorizations. For example, included below is the output of the

Developing streamed batch programs 3

GenerateInstruments batch program - the seven counts in the center are produced as summary
information.
Report from GenerateInstruments batch job run on 2011-09-06 at
10:44:53.

Total number of Instruction Line Item record(s) processed: 6

Total number of additional Surcharge Instruction Line Item
records(s) created: 0

Total number of Interest record(s) created: 0

Total number of Payment Instruction record(s) created: 1

Total number of Payment Instrument record(s) created: 1

Total number of Payment Received Instruction record(s) created: 0

Total number of Liability Instrument record(s) created: 0

Job started at 10:44:44 and took 00:00:09 to complete.

Figure 1: GenerateInstruments batch program report

Identifying any Required Extra Processing
Extra processing that is required is processed by the chunker after the chunking has been completed. This
allows processing to start on other streams. However the extra processing happens before the chunker
starts its' own stream (if configured to do so), in a single database transaction. It is important therefore to
take the total volume of processing expected when designing any extra processing into account.

In general if the five year maximum volume of data is likely to take more than a couple of minutes to
process, then a separate batch program (see “Multiple Batch Programs” on page 3) is a better option than
using extra processing. Where extra processing is typically used is where there is some additional
processing cannot be associated with any one chunk.

Implementing Streamed Batch Programs
The implementation of a streamed batch program may seem complex at first glance, however if the
individual elements of the implementation are considered separately it can be broken down into more
manageable tasks. This section should guide you through these tasks.

Before you start
Before starting into the detail, there is one key note in relation to transaction management.

warning: Use of Transaction Management calls is not supported

Because the Batch Streaming infrastructure uses the database as an effective communication mechanism
between the stream(s) and the chunker it needs to retain control over the database transactions. To this
end no transaction management calls should be made within any of the code involved within the
streamed batch program. In particular none of the following methods should be called:

• curam.util.transaction.TransactionInfo.begin()
• curam.util.transaction.TransactionInfo.commit()
• curam.util.transaction.TransactionInfo.rollback()

4 IBM Cúram Social Program Management: Cúram Batch Streaming Developers Guide

Modeling and Class structure
In other for the correct classes to be generated, along with the supporting meta-data for the batch
launcher, a class must be defined in the UML model with one method of stereotype <<batch>> for each
batch executable.

For more information on the <<batch>> stereotype, please consult the Cúram Modeling Reference Guide.
When writing a streamed batch program two batch executables are required for the chunker and the
stream. For example, consider two classes each with a method called process.

In other to use the batch streaming infrastructure the following is also required:

1. a chunker implementation which implements the BatchMain interface.
2. a stream implementation which implements the BatchStream interface

To minimize the volume of classes required, it is recommended to add the methods from the interfaces,
which are required for the implementation, to the modeled classes created above. This gives rise to two
modeled classes as shown in the figure below.

Figure 2: UML Model for Example Streamed Batch Program

The factory mechanism used for generated Cúram classes prevents other classes seeing the interfaces
implemented by the impl classes. To get around this, it is necessary to create a wrapper class to
implement the required interfaces. This is shown in the examples below.

Developing streamed batch programs 5

public class DetermineProductDeliveryEligibilityWrapper
 implements BatchMain {

 private curam.core.intf.DetermineProductDeliveryEligibility
 determineProdDeliveryEligibilityObj;

 public DetermineProductDeliveryEligibilityWrapper(
 curam.core.intf.DetermineProductDeliveryEligibility
 determineProductDeliveryEligibility) {

 determineProdDeliveryEligibilityObj =
 determineProductDeliveryEligibility;

 }

 public void sendBatchReport(
 String instanceID, BatchProcessDtls batchProcessDtls,
 BatchProcessChunkDtlsList processedBatchProcessChunkDtlsList,
 BatchProcessChunkDtlsList unprocessedBatchProcessChunkDtlsList)
 throws AppException, InformationalException {

 determineProdDeliveryEligibilityObj.sendBatchReport(instanceID,
 batchProcessDtls, processedBatchProcessChunkDtlsList,
 unprocessedBatchProcessChunkDtlsList);

 }

 public BatchProcessingResult doExtraProcessing(
 BatchProcessStreamKey batchProcessStreamKey,
 Blob batchProcessParameters)
 throws AppException, InformationalException {

 return null;

 }

}

Figure 3: Chunker Wrapper implementation

In this particular example the doExtraProcessing operation isn't implemented and so the wrapper just
returns and the modeled class doesn't contain this method.

6 IBM Cúram Social Program Management: Cúram Batch Streaming Developers Guide

public class DetermineProductDeliveryEligibilityStreamWrapper
 implements BatchStream {

 private curam.core.intf.DetermineProductDeliveryEligibilityStream
 determineProdDeliveryEligibilityStreamObj;

 public DetermineProductDeliveryEligibilityStreamWrapper(
 curam.core.intf.DetermineProductDeliveryEligibilityStream
 determineProdDeliveryEligibilityStream) {

 determineProdDeliveryEligibilityStreamObj =
 determineProdDeliveryEligibilityStream;

 }

 public String getChunkResult(int skippedCasesCount)
 throws AppException, InformationalException {

 return determineProdDeliveryEligibilityStreamObj.getChunkResult(
 skippedCasesCount);

 }

 public BatchProcessingSkippedRecord processRecord(
 BatchProcessingID batchProcessingID, Object parameters)
 throws AppException, InformationalException {

 return determineProdDeliveryEligibilityStreamObj.processRecord(
 batchProcessingID,
 (DetermineProductDeliveryEligibilityKey) parameters);

 }

 public void processSkippedCases(
 BatchProcessingSkippedRecordList batchProcessingSkippedRecordList)
 throws AppException, InformationalException {

 determineProdDeliveryEligibilityStreamObj.processSkippedCases(
 batchProcessingSkippedRecordList);

 }

}

Figure 4: Chunker Wrapper implementation

Chunker Entry-point
The process method described in the example above needs to complete a few steps in order to initialize
and start the chunker.

1. Call batchStreamHelper.setStartTime() to start the run timer for the program.
2. Set the instanceID, in general this should be based on a hard coded entry in the Batch Process
Name code table. However, making this value dynamic can allow more than one instance of the batch
program to be run concurrently, see “Running Multiple Instances of the Same Batch Program” on page
11.

3. Extract IDs of processing units, see “Extracting Processing Units IDs for the Chunker” on page 8 for
more details.

4. Set the batch main parameters, see “Configuring the Chunker” on page 8 for more details.
5. Call batchStreamHelper.runChunkMain to start the chunker processing. This method will exit

when all the processing for the chunker has completed. Typically this method just returns at this point,
allowing the chunker process to exit. However, by restarting from step one above another chunker
instance could be run in the same process after the first chunker has completed, see “Running Multiple
Chunker Processes in a Single Instance” on page 10.

Developing streamed batch programs 7

Extracting Processing Units IDs for the Chunker
The list of IDs passed into the chunker must be an instance of the struct BatchProcessingIDList. In
general, it is possible to construct a modeled entity operation that returns an instance of this struct or
populate an instance of this struct using the results of one or more entity operations in code.

However, if necessary, complex business logic could be constructed to populate this list with an
appropriate set of IDs. But, in this instance, it is important to consider that this processing will all take
place in the chunkers thread of execution and it may be more efficient to forgo some of the optimization at
this point and allow the streams to filter out some instances where no work is required as this effort will
be parallelized across all the streams.

While the infrastructure assumes that the IDs passed in this struct are single keys, it is possible to use
composite keys if necessary, see “Using Composite Keys to Identify Processing Units” on page 11.

Configuring the Chunker
There are a set of configuration options passed into the chunker when it starts, that control various
parameters of the operation of the streamed batch program.

1. The ChunkMainParameters.chunkSize parameter controls the number of records in each chuck.
Because this value typically has to be tuned for productive use, so that the transaction time for each
chunk remains low, it is typically exposed as an EnvVar with a sensible default value.

2. The ChunkMainParameters.dontRunStream parameter controls whether or not a stream is run in
the chunker process while waiting for the other streams to complete. Because this value typically has
to be tuned for productive use, it may be the case that the machine hosting the chunker is required for
other processing while the streams run elsewhere, it is typically exposed as an EnvVar with a default
value to run the stream (false).

3. The ChunkMainParameters.startChunkKey parameter specifies the key value for the first chunk
to be picked up by the streams. Where extra processing has been implemented this value is typically
offset by one to allow for the ChunkResult used for the extra processing, see “Extra Processing” on
page 8 for further details.

4. The ChunkMainParameters.unProcessedChunkReadWait parameter controls the wait time when
re-scanning to detected unprocessed chunks once all the chunks have been handed out to streams.
Because this value typically has to be tuned for productive use, so that the value is sensible relative to
the transaction time for each chunk, it is typically exposed as an EnvVar with a sensible default value.

Extra Processing
Extra processing is typically processing which logically belongs in the batch program, but does not fit in
the context of any one chunk. As this is executed in a single transaction by the chunker the potential size
of any processing needs to be considered carefully.

This is implemented in the doExtraProcessing method that gets the BatchProcessStreamKey and
batchProcessParameters as parameters and is expected to return a BatchProcessingResult
instance containing the encoded results of it's processing, see “Encoding Batch Summary Information” on
page 9.

Setting the Batch Stream Entry Point
This method, called process in the example above, needs to set the instanceID, to a value that matches
that set by the chunker, then call batchStreamHelper.runStream to start the stream processing.

Typically this method just returns at this point, allowing the stream process to exit, however by restarting
from the beginning above another stream instance could be run in the same process after the first stream
has completed, see “Running Multiple Chunker Processes in a Single Instance” on page 10.

Processing a Single Record ID
The core processing of the stream takes place in this method, implemented in processRecord. This
method gets BatchProcessingID and batchProcessParameters as parameters and is expected to
return a BatchProcessingResult instance containing the encoded results of its' processing.

See “Encoding Batch Summary Information” on page 9 for further details.

8 IBM Cúram Social Program Management: Cúram Batch Streaming Developers Guide

If an unrecoverable technical error is encountered when processing the record passed into this method an
exception should be thrown. This will cause the batch streaming infrastructure to add this ID to a skip list,
roll back the transaction and re-start the processing of the current chunk. This method will not be called
for an record IDs on the skipped list. Examples of unrecoverable technical errors would include database
errors or errors writing to third party systems. The key point to consider is the expectation that the error is
transient i.e. that there is a reasonable chance that it will not recur the next time the processing is run. It
is also possible that the chunker may retry the skipped records once all the streams have completed, for
more information, see “Processing Skipped Cases” on page 9

Given that only a count of skipped IDs will be reported and that the records will be re-processed on the
next run of the batch program, careful consideration needs to be given to any unrecoverable business
errors detected. It may make more sense to modify the business state of the governing business object,
for example suspending the case, and informing a user so they can take corrective action, via a task sent
to the case owner. Examples of unrecoverable business errors would include incomplete or invalid data.
Note that errors like this will only be resolved by the intervention of a knowledgeable user.

One class of unrecoverable business error requires special consideration: where there is invalid or
incomplete configuration data. In this instance we would expect this to effect many (if not all) of the
records to be processed. But by acting to modify the business state of the governing business object and
individually informing users, the impact on the business might be very bad - imagine 1,000,000
suspended cases and individual tasks for users! In this instance it is better to treat such issues in the
same way as unrecoverable technical errors.

Processing Skipped Cases
This method implemented by the stream in processSkippedCases is called once per chunk, passing in
the list of skipped records, in a parameter of type BatchProcessingSkippedRecordList.

This allows any required processing for the skipped records, for example creating notifications, to take
place. Because skipped records can be re-processed, either in the chunker or in a separate run of the
batch program, it's important that any actions, like the notification, make it clear that subsequent
processing may have resolved the issue and this should be verified before taking any corrective action.

Encoding Batch Summary Information
The method implemented in getChunkResult is called at the end of each processed chunk to encode
the results of the processing for this chunk.

The count of skipped chunks is passed into the method. Other values (totals of subcategories of
processing, etc) should be accessed as instance variables in the streamer implementation. As this
method results in a single String it is up to the developer to choose a suitable encoding mechanism to
deal with multiple values. A tab delimiter is typically used. The meaning and ordering of the fields along
with the encoding used should match the decoding processing implemented for the chunker - see
“Decoding Batch Summary Information” on page 9 for further information.

Any instance variables used to values used in this method need to be reset at the end of the encoding
process to ensure the count for the next chunk isn't inflated by the values for the previous chunk(s).

Decoding Batch Summary Information
This processing needs to be implemented in the chunker, in the example above this is in a separate
decodeProcessChunkResult method, which is reused from the Send Report processing. The
meaning and ordering of the fields along with the encoding used needs to match the encoding processing
implemented for the stream.

Refer to “Encoding Batch Summary Information” on page 9 for further information.

Sending a Batch Report
Report processing is implemented in the sendBatchReport method of the chunker. This method gets
the InstanceID, BatchProcessDtls, ProcessedBatchProcessChunkDtlsList and
UnprocessedBatchProcessChunkDtlsList as parameters. It is up to the developer as to what

Developing streamed batch programs 9

information is included in the report and how it is distributed (saved as a file, emailed, sent as a
notification or task in the application, and so on).

However, typically a count of the chunks processed and skipped as well as the totaled summary
information is included, along with the total runtime for the batch program. The
curam.core.impl.CuramBatch class is typically used for this purpose, assuming a StringBuffer
(called emailMessage in the example) has been built up, then the code example below will result in an
email being sent and the report saved to the file system.
curamBatchObj.emailMessage = emailMessage.toString();

 // constructing the Email Subject based on a message file entry
 curamBatchObj.setEmailSubject(
 curam.message.BPODETERMINEPRODUCTDELIVERYELIGIBILITY
 .INF_DETERMINE_ELIGIBILITY_SUB);

 // set output file identifier -
 // the initial part of the file name, the datetime is added to this.
 curamBatchObj.outputFileID =
 curam.message.BPODETERMINEPRODUCTDELIVERYELIGIBILITY
 .INF_DETERMINE_PROD_DEL_ELIG.getMessageText(
 ProgramLocale.getDefaultServerLocale());

 // set the elapsed time
 curamBatchObj.setStartTime(batchProcessDtls.startDateTime);
 curamBatchObj.setEndTime();

 // send email
 curamBatchObj.sendEmail();

Figure 5: Sending a Batch Report using CuramBatch

Global Batch StreamConfiguration Options
There are a set of global configuration options which are set via EnvVars which effect the behavior of all
streamed batch programs.

They are additional to those options referenced in “Configuring the Chunker” on page 8. These are
referenced directly by the batch streaming infrastructure and as such do not need to be referenced by any
specific implementation. However, as these can affect the behavior of the finished batch process they are
documented below:

curam.batch.streams.batchprocessreadwaitinterval
Sets the interval (in milliseconds) for which a batch stream will wait before retrying when reading the
batch process table. The default value for this is 1000.

curam.batch.streams.chunkkeyreadwaitinterval
Sets the interval (in milliseconds) for which a batch stream will wait before retrying when reading the
chunk key table. The default value for this is 1000.

curam.batch.streams.scanforunprocessedchunkswaitinterval
Sets the interval (in milliseconds) for which the main batch stream (chunker) will wait before trying to
scan for unprocessed chunks, once the value in the chunk key table has exceeded the number of
chunks. The default value for this is 1000.

curam.trace.batchprogress
Controls the logging within the batch streaming infrastructure. The default value for this is false
(logging off).

Advanced Topics

Running Multiple Chunker Processes in a Single Instance
Given that the batchStreamHelper.runChunkMain method returns once the chunker has finished it is
possible to write a batch process which kicks off several chunkers in turn. The equivalent for the stream is

10 IBM Cúram Social Program Management: Cúram Batch Streaming Developers Guide

to do the same after the batchStreamHelper.runStream method returns, allowing multiple streams
to be started one after the other.

However, extreme care is required to ensure when doing this that each chunker/stream process does not
pickup any traces of the previous process(es). To this end it's recommend that the batch program instance
be created as a separate class with a distinct class for each chunker/stream instance allowing them to
kept totally separate.

Running Multiple Instances of the Same Batch Program
By varying the instanceID programmatically, most obviously by setting it based on a parameter passed
in, it is possible to run multiple instances of the same chunker implementation at the same. This would
also require a similar mechanism to set the instanceID of the stream instance(s) as this ID acts as the
pairing mechanism between the two.

However, while this is technically possible, care must be taken that this varying of the instanceID also
varies the set of processing units picked by the chunker. The situation can arise where streams with
different instance IDs end up processing the same unit at the same time and contention and/or cross-
locking can occur.

Using Composite Keys to Identify Processing Units
While not directly supported it is possible to use a composite key to identify processing units. However,
because the batch streaming infrastructure itself encodes all the IDs for a chunk into a string (using a tab
separator) care must be taken. The encoding used to turn the composite key into a string cannot include
tab characters or the elements separated by the tab are passed separately into the processRecord
method.

It is also worth noting that the implementation of the processRecord method will need to decode the
BatchProcessingID into the sub-elements of the composite key.

Developing streamed batch programs 11

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

12 Notices

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Notices 13

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

14 IBM Cúram Social Program Management: Cúram Batch Streaming Developers Guide

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	Chapter 1. Developing streamed batch programs
	Overview
	Prerequisites

	Why Develop Streamed Batch Programs
	Built-in features
	Batch Volumes

	Designing Streamed Batch Programs
	Identify the Processing Unit
	Understanding Processing Unit Dependencies
	Multiple Batch Programs

	Providing Meaningful Information using the Batch Summary
	Identifying any Required Extra Processing

	Implementing Streamed Batch Programs
	Before you start
	Modeling and Class structure
	Chunker Entry-point
	Extracting Processing Units IDs for the Chunker
	Configuring the Chunker

	Extra Processing
	Setting the Batch Stream Entry Point
	Processing a Single Record ID
	Processing Skipped Cases
	Encoding Batch Summary Information
	Decoding Batch Summary Information
	Sending a Batch Report
	Global Batch StreamConfiguration Options

	Advanced Topics
	Running Multiple Chunker Processes in a Single Instance
	Running Multiple Instances of the Same Batch Program
	Using Composite Keys to Identify Processing Units

	Notices
	Privacy Policy considerations
	Trademarks

